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a b s t r a c t

Weight-sharing is one of the pillars behind Convolutional Neural Networks and their successes.
However, in physical neural systems such as the brain, weight-sharing is implausible. This discrepancy
raises the fundamental question of whether weight-sharing is necessary. If so, to which degree of
precision? If not, what are the alternatives? The goal of this study is to investigate these questions,
primarily through simulations where the weight-sharing assumption is relaxed. Taking inspiration
from neural circuitry, we explore the use of Free Convolutional Networks and neurons with variable
connection patterns. Using Free Convolutional Networks, we show that while weight-sharing is a
pragmatic optimization approach, it is not a necessity in computer vision applications. Furthermore,
Free Convolutional Networks match the performance observed in standard architectures when trained
using properly translated data (akin to video). Under the assumption of translationally augmented data,
Free Convolutional Networks learn translationally invariant representations that yield an approximate
form of weight-sharing.

© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Digital simulations of neural networks are successful in many
applications but rely on a fantasy where neurons and synaptic
weights are objects stored in digital computer memories. This
fantasy often obfuscates some fundamental principles of com-
puting in native neural systems. To remedy this obfuscation,
learning in the machine refers to a general approach for studying
neural computations. In this approach, the physical constraints of
physical neural systems, such as brains or neuromorphic chips,
are taken into consideration. When applied to single neurons,
learning in the machine can lead, for instance, to the discovery of
dropout (Baldi & Sadowski, 2014; Srivastava, Hinton, Krizhevsky,
Sutskever, & Salakhutdinov, 2014). When applied to synapses,
learning in the machine can lead, for instance, to the discovery
of local learning (Baldi & Sadowski, 2016) and random backprop-
agation (Baldi, Lu, & Sadowski, 2017, 2018; Lillicrap, Cownden,
Tweed, & Akerman, 2016). Moreover, when applied to layers of
neurons, as we do in this paper, learning in the machine leads
one to question the fundamental assumption of weight-sharing
behind convolutional neural networks (CNNs).

The technique of weight-sharing, whereby different synap-
tic connections share the same strength, is a widely used and

∗ Corresponding author.
E-mail addresses: jott1@uci.edu (J. Ott), linstead@chapman.edu

(E. Linstead), lahay100@mail.chapman.edu (N. LaHaye), pfbaldi@ics.uci.edu
(P. Baldi).

successful technique in neural networks and deep learning. This
paradigm is particularly true in computer vision where weight-
sharing is one of the pillars behind convolutional neural networks
and their successes. In any physical neural system, for instance,
carbon- or silicon-based, exact sharing of connections strengths
over spatial distances is difficult to realize, especially on a massive
3D scale. In physical systems, not only is it difficult to create
identical weights at a given time point, but it is also challenging
to maintain the identity over time. During phases of development
and learning the weights may be changing rapidly. During more
mature stages weights must retain their integrity against the
microscopic, entropic forces surrounding any physical synapse.
Furthermore, given the exquisitely complex geometry of neuronal
dendritic trees and axon arborizations, it is implausible to form
large arrays of neurons with identically translated connection
patterns. In short, not only is it challenging to share weights ex-
actly, but it is also difficult to exactly share the same connection
patterns.

While weight-sharing has proven to be very useful in com-
puter vision and other applications, it is extremely implausible in
biological and other physical systems. This discrepancy raises the
fundamental question of whether weight-sharing is a strict pre-
requisite for convolution-based deep learning, or if similar levels
of learning are possible without it. In particular, we consider the
following research questions:

1. Is weight-sharing necessary to prevent overfitting?
2. Is weight-sharing necessary to ensure translational invari-

ant recognition?

https://doi.org/10.1016/j.neunet.2020.03.016
0893-6080/© 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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3. Can acceptable classification performance be achieved
without weight-sharing?

4. Does approximate or exact weight-sharing emerge in a
natural way1?

In formulating the research questions above, we considered
the most common reasons practitioners give for employing
weight sharing in convolutional network architectures. The pur-
pose is to challenge these common points based on the intuitive
principle that weight sharing is implausible in biological systems.
In total, answers to these questions provide new insight into
whether weight sharing is a strict prerequisite for the effective
training of convolutional architectures, and what happens if the
requirement for weight sharing is relaxed. The goal of this study is
to investigate these research questions, primarily through simu-
lations where the weight-sharing assumption is relaxed. Some of
these questions have been previously considered in the literature
in other contexts. We are not the first to utilize locally connected
architectures or assess their performance on computer vision
tasks (Bartunov et al., 2018), for example. However, in aggre-
gate, the answer to these questions provide novel insight into
whether weight-sharing is vital for convolutional architectures
and whether it can emerge in other ways when connections are
not shared.

2. Origins and functions of weight-sharing

Before addressing the question of its necessity, it is useful
to review the origins and functions of weight-sharing. Hubel
and Wiesel’s neurophysiological work (Hubel & Wiesel, 1962) on
the cat visual cortex was the inception of weight-sharing. These
experiments suggested the existence of entire arrays of neurons
dedicated to implementing simple operations, such as edge de-
tection and other Gabor filters, at all possible image locations.
Fukushima systematically used the ideas proposed by Hubel and
Wiesel to create the neocognitron (Fukushima, 1980) in com-
puter vision. Primarily a convolutional neural network architec-
ture with Hebbian learning. However, Hebbian Learning alone
applied to a feedforward CNN cannot solve vision tasks (Baldi &
Sadowski, 2016). Solving vision tasks requires feedback channels
and learning algorithms for transmitting target information to
the deep synapses. A job that is precisely achieved by back-
propagation, or stochastic gradient descent. Successful CNNs for
vision problems, trained via backpropagation, were developed in
the late 80s and 90s (Baldi & Chauvin, 1993; Cun et al., 1990;
Schmidhuber, 2015).

Substantial improvements in the size of the training sets and
available computing power have led to a new wave of success-
ful implementations in recent years, (He, Zhang, Ren, & Sun,
2015; Krizhevsky, Sutskever, & Hinton, 2012; Srivastava, Greff,
& Schmidhuber, 2015; Szegedy et al., 2015), as well as applica-
tions to a variety of specific domains, ranging from biomedical
images (Cireş, Giusti, Gambardella, & Schmidhuber, 2012; Esteva
et al., 2017; Gulshan et al., 2016; Urban et al., 2018; Wang, Ding,
et al., 2017; Wang, Fang, et al., 2017) to particle physics (Au-
risano et al., 2016; Baldi, Bauer, Eng, Sadowski, & Whiteson,
2016; Sadowski, Radics, Ananya, Yamazaki, & Baldi, 2017) and
video analysis (Ott, Atchison, Harnack, Bergh, & Linstead, 2018;
Ott, Atchison, Harnack, Best, et al., 2018; Tompson, Stein, Le-
cun, & Perlin, 2014; Tran, Bourdev, Fergus, Torresani, & Paluri,
2015). Older (Zipser & Andersen, 1988) as well as more recent
work (Cadieu et al., 2014; Yamins et al., 2014) has also shown
that not only do convolutional neural networks rival the object

1 Without explicit constraints in the architecture or imposed constraints in
the form of losses.

category recognition accuracy of the primate cortex but also seem
to provide the best match to biological neural responses, at least
at some coarse level of analysis.

It is worth pointing out that weight-sharing is sometimes used
in other settings, for instance when Siamese Networks are used
to process and compare objects (Baldi & Chauvin, 1993; Bromley
et al., 1993; Kayala & Baldi, 2012), which also includes Siamese
CNNs for images. Siamese Networks consist of two or more sub-
networks that are used to train a contrastive loss function in
order to learn the differences between pairs of inputs. In the case
of Siamese CNN’s, the typical weight sharing paradigm is used
between each subnetwork architecture. In addition, the weights
of each subnetwork are identical with each other, hence achieving
another ‘‘level’’ of weight sharing. Finally, a different kind of
weight-sharing that will not concern us here, when a recurrent
network is unfolded in time. In this case, weight-sharing occurs
over time and not over space (Cho et al., 2014; Hochreiter &
Schmidhuber, 1997).

Biologically motivated architectures have become an impor-
tant focal point of deep learning as of late (Baldi & Sadowski,
2018; Baldi, Sadowski, & Lu, 2017, 2018; Bartunov et al., 2018;
Lillicrap et al., 2016; Ott, 2019; Samadi, Lillicrap, & Tweed, 2017).
Most recently Bartunov et al. (2018) investigated how biolog-
ically motivated deep learning algorithms scale to more mas-
sive datasets. Locally connected networks were included in their
simulations, where each weight kernel interacts with local fea-
tures, not the entire input. However, the focus of the paper is
on how learning algorithms such as feedback alignment (Lilli-
crap et al., 2016) and target propagation (Lee, Zhang, Fischer,
& Bengio, 2015), scale to more significant image recognition
problems. Not addressed in the paper is the problem of learn-
ing translationally invariant representations, overfitting, variable
connection patterns, and the emergence of approximate weight-
sharing. Nor was there in-depth analysis comparing networks
with weight-sharing to those without.

Two primary but different purposes are typically associated
with weight-sharing. The first is to reduce the number of free
parameters that need to be stored or updated during learning.
This requirement can be important in applications where stor-
age space is limited (i.e., cell phones), or where training data
is limited, and overfitting is a danger. It is important to re-
member, however, that in convolutional architectures the local
connectivity of neurons contributes at least as much to parameter
reduction as weight-sharing. In other words, weight-sharing is
not the only way to shrink the parameter space. The second
function of weight-sharing is to apply the same operation at
different locations of the input data, to process the data uniformly
and provide a basis for invariance, typically translation invariant
recognition in CNN architectures.

3. Free convolutional networks

The research questions proposed in Section 1 deal with the
necessity of weight sharing and the result of its absence. As a
result, it is natural to consider simulations where weights are
not shared, but instead are maintained for specific regions of
the input space. Relaxing the weight-sharing assumption in CNNs
yields a Free Convolutional Network (FCN). In FCNs, the weights
of a filter at a specific location are not tied to the weights of the
same filter at a different location (see Fig. 1). This naturally means
that FCNs have far more parameters than the corresponding CNN
and are slower to train on a digital machine. However, this
is not a concern here, as our primary goal is not to improve
the efficiency of CNNs deployed on digital machines, but rather
to understand the consequences of relaxing the weight-sharing
assumption inside a native neural machine.
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Fig. 1. Free convolutional layers maintain a separate kernel at each location,
unlike typical convolutional layers, that apply the same filter across all possible
locations. The above figures are examples of FCN layers on a 9 × 9 input space.
Each 3 × 3 subregion of the input is covered with a distinct kernel (weight
matrix), as shown in the diagram on the left. The top square represents the
output obtained from applying the filter to the corresponding input region. The
diagram on the right depicts free convolutional layers with variable connection
patterns, where the x’s represent absent connections. In this example, 12 out
of the 91 connections are missing, creating a variable connection probability of
roughly 0.15.

Furthermore, it is highly implausible that a given neuron will
share the same dendritic tree with a neighboring neuron (Jan
& Jan, 2010), thus in addition to neighboring neurons of the
same layer not having the same weights, we would like to con-
sider also the possibility of them not having the same receptive
field pattern. Thus, in addition to plain FCNs, FCNs with variable
connection patterns are implemented in the simulations below.
The implementation of variable connection patterns has many
options. Here, for simplicity, a random percentage of connections
is severed (Fig. 1) [Note: this is very different from dropout
where different sets of weights get randomly set to 0 at each
presentation of a training example]. Similar to in methodology
to DropConnect (Wan, Zeiler, Zhang, Le Cun, & Fergus, 2013),
however, the same weights remain 0 for all of training and
testing. The x’s in the right image of Fig. 1 correspond to missing
synaptic connections between neurons that are set to zero and
never trained.

By running simulations comparing CNNs and FCNs (with and
without variable connection patterns), we seek to answer the re-
search questions laid out in the introduction. Appendix C contains
complete details regarding simulations with variable connection
patterns. To our knowledge, this is the first systematic study,
through large-scale computational simulations, that explores the
necessity of weight-sharing in deep convolutional architectures
as it pertains to overfitting and performance in the broader con-
text of biological plausibility. Further novelty is found in our as-
sessment of the emergence of approximate weight-sharing in free
convolutional architectures with and without variable connection
patterns.

4. Data and methods

In the simulations, we focus exclusively on computer vision
tasks. We evaluate various free and shared weight networks
on two well-known benchmark datasets: the handwritten digit
dataset, MNIST (LeCun & Cortes, 2010), as well as the CIFAR-10
object dataset (Krizhevsky, Nair, & Hinton, 2009).

In the case of free weights, we consider using data augmen-
tation by translating images horizontally and vertically to po-
tentially compensate for the lack of translation, inherent in the

architecture. Due to the local receptivity of free weight networks,
individual filters learn features solely within their receptive field.
Translationally invariant data will allow filters to learn more or
less the same features across the input space. Conversely, in
CNNs, weights are shared across space. By applying the same
operation across the input space, translational invariance is nat-
urally embedded in the model. This property of CNNs gives them
an inherent advantage in vision-based tasks. The purpose of these
experiments is not to demonstrate the superiority of one net-
work but to understand the consequences of weight-sharing and
properties that arise around it.

Eleven settings of translation were tested in experiments (0%
to 99% by increments of 10%). Translational augmentation in-
volves shifting images horizontally and vertically by varying de-
grees of the width and height respectively. Points outside the
boundaries of the input get filled according to the nearest pixels.
Fig. 2 shows examples of translational augmentation results on
MNIST. During training, each image presented to the network is
translated left–right as well as up-down by random amounts. 0%
to the augmentation setting for that trial. e.g., at 90% augmenta-
tion, an image may be translated any amount 0%–90% up-down
as well as 0%–90% left–right.

All simulations, each augmentation setting, were completed
using five-fold cross-validation. Simulations were implemented
in Keras (Chollet et al., 2015) with a Tensorflow (Abadi et al.,
2015) backend using NVIDIA GeForce GTX Titan X GPUs with 12
GB memory. For purposes of reproducibility, the code has been
made publicly available.2

4.1. Networks

Conducting a grid search yielded appropriate hyperparameter
configuration for all networks. See Appendix A.2 for complete
details. The search produced network architectures composed
of three convolutional/free convolutional layers, followed by a
single hidden layer, and one output layer for classification. A full
description of all networks, including filter size, number of filters,
stride, and learning rate can be found in Table A.2. MNIST and
CIFAR require different architectures as the input sizes differ. For
every setting of data augmentation (0–99%, increments of 10%) a
CNN and FCN were trained via five-fold cross-validation.

For simplicity, the architecture of CNNs and FCNs are equiva-
lent, except that free convolutional layers replace convolutional
layers. The activation functions, softmax layer, as well as the
number of filters per layer, remain the same across all networks.
Table A.2 lists hyperparameter settings of the networks used in
this paper. Additionally, it is essential to note that there is no
architectural difference between the networks trained with data
augmentation and those trained without.

4.2. Variable connection patterns

Also implemented in this study are neurons with variable
connection patterns in FCNs. At the start of training, a chosen
percentage of weights is randomly set to 0, representing the
absence of a dendritic connection. These missing weights do not
contribute to the output of the layer, and their values are never
updated during backpropagation. The resulting connection pat-
terns are maintained throughout training and testing. There are
multiple options for implementing neurons with variable connec-
tion patterns. For computational simplicity, the implementation
used in this paper is to turn off connections within each square
filter given some probability (depicted in Fig. 1). In simulations,
we vary the drop probability from 0 to 99% by increments of 10%.
The results from these simulations are reported in Figs. C.1 and
C.2 of Appendix.

2 https://github.com/Learning-In-The-Machine/Weight-Sharing

https://github.com/Learning-In-The-Machine/Weight-Sharing
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Fig. 2. Examples of translational augmentation on MNIST. In training images are translated left–right as well as up-down. The above only display the result of
continually translating an image leftwards, for a visual example. (a) 0% translation augmentation, equivalent to a un-altered MNIST image. (b–k) Gradually increasing
the percentage of augmentation by 10% each time.

Table 1
MNIST results. Median accuracies of training, un-augmented validation, and augmented validation set. The left most
column denotes the amount of translational augmentation used during training. When performing translational
augmentation on the validation set, 25% augmentation was used throughout the experiments. Bold values indicate
the highest performing model in that accuracy metric for CNN and FCN, respectively.
Aug % Training accuracy Validation accuracy Translation accuracy

CNN FCN CNN FCN CNN FCN

0.00 0.999964 0.999175 0.990536 0.988071 0.366536 0.372287
0.10 0.997793 0.995665 0.993071 0.991857 0.837963 0.813368
0.20 0.996719 0.991730 0.993000 0.990357 0.986220 0.977033
0.30 0.992555 0.983998 0.992143 0.987643 0.990741 0.985062
0.40 0.976966 0.965521 0.991571 0.984500 0.989439 0.982422
0.50 0.935973 0.923703 0.990071 0.981571 0.987594 0.979456
0.60 0.863680 0.847367 0.988286 0.978500 0.986111 0.976273
0.70 0.752630 0.731917 0.987000 0.974286 0.984484 0.971933
0.80 0.626956 0.606541 0.985500 0.970786 0.982820 0.968171
0.90 0.520896 0.503312 0.984714 0.967821 0.982096 0.965133
0.99 0.448491 0.431218 0.984000 0.965071 0.981120 0.961372

Table 2
CIFAR results. Median accuracies of training, un-augmented validation, and augmented validation set. The left most
column denotes the amount of translational augmentation used during training. When performing translational
augmentation on the validation set, 25% augmentation was used throughout the experiments. Bold values indicate
the highest performing model in that accuracy metric for CNN and FCN, respectively.
Aug % Training accuracy Validation accuracy Translation accuracy

CNN FCN CNN FCN CNN FCN

0.00 1.000000 1.000000 0.671083 0.647333 0.444556 0.433468
0.10 0.982156 0.973354 0.749333 0.724333 0.598538 0.561324
0.20 0.876542 0.858094 0.773250 0.731500 0.705225 0.653478
0.30 0.834646 0.781885 0.774083 0.720167 0.739163 0.683972
0.40 0.775188 0.725198 0.768750 0.704958 0.742608 0.680444
0.50 0.712146 0.657438 0.751667 0.682250 0.729419 0.661458
0.60 0.650719 0.598344 0.734042 0.659958 0.714130 0.642557
0.70 0.592385 0.545354 0.717250 0.641542 0.699555 0.624286
0.80 0.535958 0.496677 0.699667 0.626250 0.681452 0.607695
0.90 0.483635 0.449490 0.684833 0.611667 0.667801 0.593834
0.99 0.442260 0.413802 0.668667 0.599458 0.653436 0.583375

5. Results

We report accuracy metrics on translationally augmented
training (0%–99%, increments of 10%), un-augmented validation,
and translationally augmented validation set (with 25% transla-
tion) throughout training. Results for MNIST and CIFAR are shown
in Figs. 3 and 4, respectively. The legend denotes the amount of
translation used during training (0%–99%, increments of 10%).

Tables 1 and 2 show the median accuracy of the five-fold
cross validation experiments for the MNIST and CIFAR-10 datasets
respectively. The tables display results for each corresponding
setting of translation augmentation (0%–99%, increments of 10%).
Bold values indicate the highest performing model in that accu-
racy metric for CNN and FCN, respectively. The Appendix contains
additional experiments regarding the use of other augmenta-
tion methods, additional training metrics, as well as simulations
regarding neurons with variable connection patterns.
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Fig. 3. MNIST results. Shown above are FCN (left column) and CNN (right column) results trained with varying degrees of translational augmentation, indicated by
the legend. Top row: training accuracy over time. Middle row: validation accuracy over time. Bottom row: accuracy on the translationally augmented validation set.

5.1. Is weight-sharing necessary to prevent overfitting?

Both FCNs and CNNs are shown to overfit the training set,
given a sufficient number of epochs. This result is evident from a
divergence in training accuracy vs. validation accuracy over time
(MNIST and CIFAR, Figs. 3 and 4 respectively). In situations, with-
out overfitting, one would expect training and validation scores
to be close to one another. However, as the training accuracy
continues to increase towards 100%, in many cases the validation
accuracy declines, the telltale indication of overfitting. In the
remaining cases the validation accuracy plateaus while training
accuracy continues to grow. The large gap between training and
validation performance in these cases suggests that the model’s
ability to generalize to new data is suffering, and that overfitting
is likely taking place. In experiments performed on MNIST and
CIFAR overfitting was observed for CNNs and FCNs when transla-
tion was not used, Figs. 3 and 4 respectively. This effect manifests
in CIFAR (Table 2) where there is more than a 30% gap between
training accuracy and validation accuracy for both CNN and FCN,
with no translational augmentation (i.e., 0% translation).

In the case of MNIST, we see from Table 1 that FCNs, trained
on augmented data (10% translation), achieve a median accuracy
of 99.1857% on the validation set. Only slightly less than 99.3071%
median accuracy is achieved by standard CNNs. On the more
complicated CIFAR dataset, with 10% translation, FCNs can come

within 2% of CNN accuracy on the validation set (Table 2). Thus,
we can infer that data augmentation alone is sufficient to prevent
overfitting, and weight-sharing need not be leveraged to achieve
this.

Using augmentation during training (Figs. 3 and 4) not only
reduces overfitting but also leads to an increase in performance
on validation sets. For FCNs on CIFAR specifically, training with
translational amounts of 10, 20, and 30% increases FCN validation
performance while dramatically reducing overfitting, compared
to 0% translation. In human learning, translational augmentation
comes as a byproduct of interacting with a changing world, which
inherently provides the brain with samples of the same object
translated at different positions — for example, a car driving
down the street. Because FCNs cannot rely on weight-sharing to
simulate the effect of translation, they must, therefore, rely on
manual augmentation.

Large, translationally invariant datasets, like those produced
through data augmentation, are essential for free weight networks to
achieve excellent performance and avoid overfitting. If this constraint
can be met, overfitting can be mitigated without weight-sharing.

5.2. Is weight-sharing necessary to ensure translational invariant
recognition?

Learning translationally invariant representations is tested by
using translational augmentation on the validation set. Fig. 3e and
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Fig. 4. CIFAR results. Shown above are FCN (left column) and CNN (right column) results trained with varying degrees of translational augmentation, indicated by
the legend. Top row: training accuracy over time. Middle row: validation accuracy over time. Bottom row: accuracy on the translationally augmented validation set.

f for MNIST and Fig. 4e and f for CIFAR show results of translation
on the augmented validation set.

Significant disparity between validation accuracy and transla-
tion augmented validation accuracy would signal that the net-
work is not capable of translationally invariant recognition. For
example, the FCN trained on MNIST data without augmentation
saw more than a sixty percent gap between validation set accu-
racy and translation augmented validation set accuracy (Table 1).
Similarly, on CIFAR, the FCN trained without translation aug-
mentation performed 20% worse on the translation augmented
validation set than the standard one (Table 2). Meaning these
networks trained with 0% augmentation are incapable of learning
translation invariant representations.

On both MNIST and CIFAR, FCNs achieve comparable results
on the validation set and translation augmented validation set.
This result is evident on MNIST where an FCN trained with 30%
translation achieves a 0.2% difference between validation and
translation augmented validation performance. Likewise, on CI-
FAR, the FCN trained with 40% translation comes within 2% of its
validation performance on the translation augmented validation
set.

The results show that as translational augmentation is used dur-
ing training, the gap between the validation accuracy and translation
augmented validation accuracy decreases. This confirms that FCNs
are capable of learning translationally invariant representations pro-
vided sufficient, translationally augmented, data.

5.3. Can acceptable performance be achieved without weight-
sharing?

FCNs can achieve high-performance scores on two benchmark
computer vision datasets, which agrees with what has been noted
previously in the literature (Bartunov et al., 2018). In the ab-
sence of data augmentation (0% translation), CNNs outperform
FCNs on MNIST and CIFAR. Referencing Table 1, CNNs achieve
99.05% validation accuracy whereas FCNs are slightly worse with
98.81% validation accuracy for MNIST. On CIFAR, Table 2, CNNs
outperform FCNs with 67.11% and 64.73%, respectively. When
FCNs are exposed to translational data, they can achieve 99.19%,
10% augmentation, and 73.15%, 20% augmentation, on MNIST and
CIFAR validation sets, respectively.

The validation set accuracy observed in our simulations shows
that as translational augmentation is increased, FCNs can match the
performance of CNNs. Thus, there is not a fundamental necessity of
weight-sharing to attain satisfactory performance.

5.4. Does approximate or exact weight-sharing emerge in a natural
way?

To test for the emergence of approximate weight-sharing, we
calculate the average euclidean distance between each filter of
the FCN layer, at a specified radius. Experiments in this paper
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Fig. 5. Shown above is the average Euclidean distance between weight kernels in FCN layer overtime at the specified radius away. E.g., a radius of four indicates
comparing a given weight kernel to all kernels four units away. As translational augmentation is increased weights become more similar to one another. As expected,
weights closer in proximity (radius 4; left figure) have a smaller average distance than weights farther away (radius 7; right figure).

Fig. 6. Results for CNN and FCN models trained on MNIST and tested on images
where quadrant I is replaced with quadrant III and vice versa.

use a radius of one and four units to test the similarity of filters
at different distances. Fig. B.5 in the Appendix, gives a visual
example. This depiction means that each filter in the FCN layer
is compared to the filters one and four units, respectively, away
from it. Fig. 5 reports the euclidean distance between filters at
radius one and radius four.

If weight-sharing did emerge naturally, one would expect to
see a lower average euclidean distance between filters within
an FCN layer throughout training. One would only expect to see
this convergence in weight values if a similar stimulus is present
across the input space (i.e., translationally augmented data, akin
to video). Simulations conducted on the MNIST dataset confirms
this. As the amount of translation increases (indicated by the
legend in Fig. 5), the parameters of the FCN layer converge to
similar values; the euclidean distance between filters decreases.
Furthermore, a higher degree of translation yields more similar
the weight values. Conversely, when translation is not used dur-
ing training, the weights diverge and become less similar from
each other over time (i.e., the distance between them increases).

One would also expect filters near one another to be more sim-
ilar than those farther away (i.e., filters at radius 1 should be more
similar than at radius 4). Again, this is confirmed in simulations
where Fig. 5a shows lower average Euclidean distance values, per
augmentation setting, compared to Fig. 5b.

To ascertain the cause of approximate weight-sharing, FCNs
were trained with noise and rotation augmentation while mea-
suring the distance between their filters. Figs. B.6 and B.7 display
euclidean distance results for these experiments. These metrics
confirm that only translation augmentation is sufficient to endow
FCNs with approximate weight-sharing. Additional explanations
are provided in Appendix B.5.

While not exact, the distance between FCN filters shows how
approximate weight-sharing can emerge in a natural way with
translationally augmented data.

5.5. For what learning tasks are free convolutional networks most
applicable?

In CNNs, the same filter is applied to all locations in the input
space. One may hypothesize that, as a result, CNNs will be focused
less on the overall structure of features in spatial relation to each
other, and more on identifying the features themselves. This is
in contrast to FCNs, which can only operate locally within their
receptive field, and so must inherently learn the global structure
of features in relation to one another.

To test this hypothesis, images presented to the networks for
testing need to be manipulated in such a way so as to com-
promise the overall global structure of the image while at the
same time preserving individual features appearing within an
image. Appendix B.3 details the quadrant swap task, in which
quadrants I and III of images are interchanged with each other in
the validation set. See Fig. B.3 for a visual example. In this task,
lower classification accuracy would indicate a higher importance
placed on global structure during training. That is, it is not suf-
ficient for learned features just to be present in an image, but
the spatial relationship between them must also be preserved to
some degree.

The results from the quadrant swap task are shown in Fig. 6.
One might expect severe degradation of performance after re-
arranging parts on an image. However, the CNN performs at
nearly 50% accuracy. This performance indicates that the CNN
is still able to recognize features of the altered images when
making its prediction. Conversely, the FCN performs nearly 20%
worse. Higher accuracy bolsters the notion that the overall global
structure of an image is less important for a CNN as opposed
to the FCN. In domains where global structure is essential such as
face recognition or biomedical imaging, FCNs may find substantial
applicability.

5.6. Is weight-sharing necessary?

The necessity of weight-sharing arises as a means of parame-
ter reduction. Reducing the number of parameters leads to net-
works that are faster to train and smaller to store. Due to the
limitations of modern hardware, practical applications of free
weight networks are not currently viable, especially in embedded
environments. Thus in situations where space is a constraint,
and translationally invariant datasets are not available, weight-
sharing becomes a necessity.

In terms of accuracy, FCNs have shown comparable results are
possible without weight-sharing. In this regard, weight-sharing is not
a necessity.
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Table A.1
Hyperparameter space for the conducted grid search.
Name Options Parameter type

Learning rate 10−i, i ∈ [1, 6] Choice
Number of layers [2, 3] Discrete

5.7. If weight-sharing is not necessary, are translational invariant
training sets necessary?

To examine the necessity of translational datasets, additional
experiments were conducted using noise and rotational augmen-
tation during training. Intuition would suggest that only transla-
tional data is sufficient to endow FCNs with translational invari-
ant recognition. The full results, including accuracy performance
on the noise and rotation, augmented training, un-augmented
validation, rotation augmented validation, noise augmented vali-
dation, and translation augmented validation set can be found in
Appendix B.

Training using other augmentation methods that do not pro-
duce translational invariant datasets yield poor results when test-
ing on the translationally augmented validation set. Referencing
Appendix B (Tables B.1, B.2, and B.3), the results show that FCNs
trained on non-translational data are consistently not capable
of learning translationally invariant representations. Low perfor-
mance indicates that only translationally augmented training data
allows FCNs to learn translationally invariant representations.
Using translationally invariant datasets yields better results in val-
idation set and augmented validation set accuracy, specifically in
FCNs.

6. Conclusion

The use of weight-sharing arises as a solution to parameter
reduction and translationally invariant recognition in neural net-
works. Though weight-sharing is implausible in any biological
or physical setting, it is instrumental in computer vision tasks.
We have examined alternatives to weight-sharing, such as free
convolutional networks, where the weight-sharing assumption
is relaxed. FCNs trained with augmented datasets have been
shown to match and even surpass standard CNNs in validation
set accuracy. Data augmentation, specifically datasets augmented
via translation, is a necessity as a means to avoid overfitting
and train FCNs capable of translationally invariant recognition.
Thus, in environments where data is plentiful and computational

resources can cope with the large number of parameters that re-
sult from abandoning weight-sharing, FCNs provide an alternative
to CNNs that can achieve potentially superior performance and
higher fidelity to physical systems.
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Appendix A. Experimental settings

A.1. Hyperparameter search

We conducted a hyperparameter search to explore the space
of possible architectures. CNN and FCNs trained on MNIST and
CIFAR, using a grid search to find the optimal setting. The search
was executed using SHERPA (Hertel, Collado, Sadowski, & Baldi,
2018), a Python library for hyperparameter tuning. We detail the
hyperparameters of interest in Table A.1, as well as the range of
available options during the search.

During the hyperparameter search, MNIST trained for 100
epochs with a patience of 25 monitoring the validation accuracy.
CIFAR trained for 200 epochs with a patience of 50 monitoring the
validation accuracy. We show the hyperparameters of the best-
performing networks in Table A.2. All networks achieved the best
performance with three layers. The ultimate difference between
MNIST and CIFAR architectures is the learning rate, 10−3 and
10−4, respectively.

A.2. Network architectures

Table A.2 describes the architectures used in this paper. MNIST
networks have three convolutional or free convolutional layers
respective of the architecture. All weight kernels are of size 3 × 3
with 32, 64, and 128 filters for the three layers. This output feeds

Table A.2
Architecture specification resulting from the grid search. The format for convolutional layers
is (kernel size, number of output channels, stride). All layers, except the output, use ReLU
activations.

CNN FCN

MNIST

Convolutional (3 × 3, 32, 2) Free Convolutional (3 × 3, 32, 2)
Convolutional (3 × 3, 64, 2) Free Convolutional (3 × 3, 64, 2)
Convolutional (3 × 3, 128, 1) Free Convolutional (3 × 3, 128, 1)
Fully connected (1024) Fully connected (1024)
Softmax (10) Softmax (10)

Learning rate: 10−3 Learning rate: 10−3

CIFAR

Convolutional (5 × 5,64,2) Free Convolutional (5 × 5,64,2)
Convolutional (5 × 5, 128, 2) Free Convolutional (5 × 5, 128, 2)
Convolutional (3 × 3, 256, 1) Free Convolutional (3 × 3, 256, 1)
Fully connected (1024) Fully connected (1024)
Softmax (10) Softmax (10)

Learning rate: 10−4 Learning rate: 10−4
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Fig. B.1. Examples of edge noise augmentation on MNIST. (a) 0 variance noise, equivalent to a un-altered MNIST image. (b–k) Gradually increasing the variance of
noise augmentation by .1 each time.

Fig. B.2. Examples of noise augmentation on MNIST. (a) 0 variance noise, equivalent to a un-altered MNIST image. (b–k) Gradually increasing the variance of noise
augmentation by .1 each time.

Fig. B.3. Quadrant swap on MNIST. (a) Un-augmented image. (b) Quadrant swap augmentation. Where quadrant I is replaced with quadrant III and III with I.

into a fully connected layer of 1024 nodes, followed by a softmax
layer for classification.

CIFAR networks have three convolutional or free convolutional
layers respective of the architecture. Layer one has a 5 × 5 weight
kernel, 64 filters, and a stride of 2. Layer two has a 5 × 5 weight
kernels, 128 filters, and a stride of 2. Layer three has 3 × 3 weight
kernels, 256 filters, and a stride of 1. Following these layers are a

fully connected layer of 1024 nodes, followed by a softmax layer
for classification.

A.3. Implementation details

Random seeds were set to zero for the Tensorflow backend
and Numpy. Batch sizes were 256 and 128 for MNIST and CI-
FAR, respectively. Weights for all layers were initialized using
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Fig. B.4. Examples of rotation augmentation on MNIST. (a) 0% rotation, equivalent to a un-altered MNIST image. (b–k) Gradually increasing the degree rotation by
10% each time.

Fig. B.5. Filters at a specified radius. (a) Filters at radius 1 from the desired filter, marked by an X. (b) Filters at radius 4 from the desired filter, marked by an X.

Fig. B.6. Euclidean distance between filters of an FCN layer, trained on MNIST with rotation augmentation. (a) Average euclidean distance between filters one unit
away. i.e. all adjacent filters in the layer. (b) Average euclidean distance between filters four units away.

Fig. B.7. Euclidean distance between filters of an FCN layer, trained on MNIST with noise augmentation. (a) Average euclidean distance between filters one unit
away. i.e. all adjacent filters in the layer. (b) Average euclidean distance between filters four units away.
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Table B.1
Edge noise results. Median accuracy of un-augmented validation and translation augmented validation set. The left most
column denotes the amount variance of noise used during training. When performing translational augmentation on the
validation set, 25% augmentation was used throughout the experiments. Bold values indicate the highest performing model
in that accuracy metric for CNN and FCN, respectively.
Aug % MNIST CIFAR

Validation Acc Translation Acc Validation Acc Translation Acc

CNN FCN CNN FCN CNN FCN CNN FCN

0.00 0.99054 0.98807 0.36654 0.37229 0.67108 0.64733 0.44456 0.43347
0.10 0.99100 0.98786 0.36263 0.37666 0.64475 0.62633 0.42742 0.42179
0.20 0.98921 0.98714 0.35503 0.37587 0.63567 0.62375 0.42288 0.42011
0.30 0.98943 0.98714 0.35113 0.36777 0.62992 0.62350 0.41944 0.41986
0.40 0.98950 0.98750 0.34368 0.36053 0.61225 0.62342 0.40835 0.41952
0.50 0.98864 0.98664 0.34107 0.35236 0.60917 0.62167 0.40348 0.41734
0.60 0.98893 0.98750 0.33550 0.34968 0.59083 0.61617 0.39365 0.41541
0.70 0.98843 0.98707 0.33565 0.34650 0.59308 0.61558 0.39415 0.41473
0.80 0.98821 0.98671 0.33200 0.34165 0.58392 0.61375 0.38794 0.41322
0.90 0.98800 0.98679 0.33377 0.33970 0.58058 0.60925 0.38458 0.41112
0.99 0.98829 0.98650 0.32986 0.33767 0.57383 0.60996 0.37912 0.41053

Table B.2
Noise results. Median accuracy of un-augmented validation and translation augmented validation set. The left most column
denotes the amount variance of noise used during training. When performing translational augmentation on the validation
set, 25% augmentation was used throughout the experiments. Bold values indicate the highest performing model in that
accuracy metric for CNN and FCN, respectively.
Aug % MNIST CIFAR

Validation Acc Translation Acc Validation Acc Translation Acc

CNN FCN CNN FCN CNN FCN CNN FCN

0.00 0.99054 0.98807 0.36654 0.37229 0.67108 0.64733 0.44456 0.43347
0.10 0.99000 0.98750 0.35757 0.37004 0.63092 0.63425 0.41507 0.41919
0.20 0.98957 0.98779 0.35880 0.37410 0.59258 0.61825 0.39037 0.40381
0.30 0.99007 0.98829 0.36328 0.36957 0.56258 0.59404 0.37433 0.38899
0.40 0.98979 0.98879 0.35793 0.36769 0.53521 0.56983 0.35652 0.37576
0.50 0.98964 0.98857 0.35084 0.34990 0.51142 0.55075 0.34232 0.36794
0.60 0.98900 0.98836 0.33623 0.33261 0.48083 0.53192 0.32451 0.35685
0.70 0.98807 0.98750 0.31854 0.31782 0.44858 0.50850 0.30612 0.34341
0.80 0.98614 0.98586 0.30433 0.30136 0.42417 0.47683 0.29255 0.32502
0.90 0.98407 0.98350 0.29080 0.28516 0.41179 0.44933 0.28642 0.30855
0.99 0.98164 0.98086 0.27590 0.27235 0.38250 0.40042 0.27050 0.28154

the Xavier Uniform Initialization. The source code for all exper-
iments has been made publicly available at: https://github.com/
Learning-In-The-Machine/Weight-Sharing

Appendix B. Other augmentation methods

To examine the necessity of translational datasets, additional
experiments were conducted using noise and rotational augmen-
tation during training. The hypothesis being that only transla-
tional data is sufficient to endow FCNs with translational
invariant recognition. The full results for edge noise, noise, and
rotation augmentation can be found in Tables B.1, B.2, and B.3,
respectively.

Training using other augmentation methods that do not pro-
duce translational invariant datasets yield poor results when
testing on the translationally augmented validation set. This re-
sult indicates that only translationally augmented training data
allows FCNs to learn translationally invariant representations.
Using translationally invariant datasets yields better results in val-
idation set and augmented validation set accuracy, specifically in
FCNs.

B.1. Edge noise

Augmentation with edge noise represents adding Gaussian
noise to the periphery of an image. For experiments in this paper,

the periphery is defined as the 5 pixels bordering an image (for
both CIFAR and MNIST). This type of augmentation serves to test
the network’s resiliency to noise on the fringe. For datasets like
MNIST and CIFAR that contain the object of interest in center
focus, this noise is unlikely to corrupt the object. Fig. B.1 shows
the effect of edge noise on the periphery, starting from zero noise,
Fig. B.1a, up to a standard deviation of 0.99, Fig. B.1k.

B.2. Noise

Augmentation with noise represents adding Gaussian noise to
the image. This type of augmentation serves to test the network’s
resiliency to noise corruption. Fig. B.2 shows the effect of edge
noise on the periphery, starting from zero noise, Fig. B.2a, up to
a standard deviation of 0.99, Fig. B.2k.

B.3. Quadrant swap

Using the convention from Cartesian geometry, quadrants I
and III of images are swapped. This type of image deforma-
tion serves to test the networks reliance on features as opposed
to global structure. The hypothesis being that because of CNNs
shared weight paradigm, the location of features matters less op-
posed to the presence of the feature itself. Conversely, FCN filters
can only operate locally within their receptive field, rendering the
global structure of the image essential.

https://github.com/Learning-In-The-Machine/Weight-Sharing
https://github.com/Learning-In-The-Machine/Weight-Sharing
https://github.com/Learning-In-The-Machine/Weight-Sharing
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Table B.3
Rotation results. Median accuracies of un-augmented validation and translation augmented validation set. The left most
column denotes the percentage of rotation used during training. When performing translational augmentation on the
validation set, 25% augmentation was used throughout the experiments. Bold values indicate the highest performing model
in that accuracy metric for CNN and FCN, respectively.
Aug % MNIST CIFAR

Validation Acc Translation Acc Validation Acc Translation Acc

CNN FCN CNN FCN CNN FCN CNN FCN

0.00 0.99054 0.98807 0.36654 0.37229 0.67108 0.64733 0.44456 0.43347
0.10 0.99079 0.98836 0.38527 0.37753 0.68233 0.65500 0.48660 0.46211
0.20 0.98907 0.98571 0.36372 0.35055 0.65746 0.62608 0.47450 0.44766
0.30 0.98779 0.98436 0.33587 0.30107 0.64708 0.61000 0.47106 0.43364
0.40 0.98636 0.98329 0.32147 0.28877 0.63625 0.59767 0.46455 0.42981
0.50 0.98439 0.98114 0.32183 0.29492 0.62242 0.58550 0.46337 0.42465
0.60 0.98400 0.97979 0.32154 0.29854 0.61533 0.57458 0.45682 0.41919
0.70 0.98336 0.97864 0.32060 0.29337 0.60717 0.57100 0.44750 0.41465
0.80 0.98236 0.97786 0.31547 0.29015 0.60875 0.56567 0.44758 0.40961
0.90 0.98071 0.97686 0.31040 0.28566 0.59958 0.55767 0.44414 0.40692
0.99 0.98350 0.97975 0.32429 0.29239 0.61842 0.58108 0.46102 0.42221

Fig. C.1. FCNs trained with variable connection patterns on MNIST. The legends indicate the probability of absent dentritic connections in a FCN filter. (a) Accuracy
on translation augmented training set, 30% translations. (b) Accuracy on the un-augmented validation set. (c) Accuracy on the translation augmented validation set,
using 25% translations. (d) Accuracy on the rotation augmented validation set. (e) Accuracy on the noise augmented validation set. (f) Accuracy on the edge noise
augmented validation set.
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Fig. C.2. FCNs trained with variable connection patterns on CIFAR. The legends indicate the probability of absent dentritic connections in a FCN filter. (a) Accuracy
on translation augmented training set, 30% translations. (b) Accuracy on the un-augmented validation set. (c) Accuracy on the translation augmented validation set,
using 25% translations. (d) Accuracy on the rotation augmented validation set. (e) Accuracy on the noise augmented validation set. (f) Accuracy on the edge noise
augmented validation set.

To test this hypothesis, features of images need to be manipu-
lated in such a way to compromise the overall structure of the
image but preserve individual features. Fig. B.3 shows a visual
example of the swap procedure.

The results from this task, shown in Fig. 6, indicate CNNs score
a higher accuracy on Quadrant swapped images compared to
FCNs. This indicates that CNNs are still able to recognize features
of the altered images when making their prediction. This bolsters
the notion that the overall structure of an image is less important
for a CNN as opposed to the FCN, that performs nearly 20% worse.
In this task, a lower score indicates higher importance on the
global structure.

B.4. Rotation

Rotation augmentation is accomplished via rotating images
clockwise about the center point. Fig. B.4 shows the effect of
rotating an MNIST image from 0%, Fig. B.4a, up through 99%,
Fig. B.4k. Table B.3 displays the results of training networks with
rotation augmentation.

B.5. Approximate weight-sharing

The distance between weight kernels within an FCN layer
was measured during training with other types of augmentation.
This experiment tests if translation augmentation is the cause
of approximate weight-sharing in FCNs. Figs. B.6 and B.7 show
the results of training with rotation and noise augmentation,
respectively.

The results show that for all augmentation settings of rotation,
the distance between filters increases over time. Additionally,
in noise augmented training, the average Euclidean distance in-
creases in all cases except very high values of noise (0.8, 0.9, 0.99).
Indicating this increase in filter similarity is due to the high noise
levels across the image. This is confirmed visually by examining
Fig. B.2i, j, and k. Also, the decrease in euclidean distance for noise
is not as dramatic as observed for translation, Fig. 5.

Appendix C. Variable connection patterns

Also implemented in this study are neurons with variable
connection patterns in FCNs. At the start of training, a chosen
percentage of weights is randomly set to 0, representing the
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absence of a dendritic connection. These missing weights do not
contribute to the output of the layer, and their values are not up-
dated during backpropagation. The resulting connection patterns
are maintained throughout training and testing. There are mul-
tiple options for implementing neurons with variable connection
patterns. For computational simplicity, the implementation used
in this paper is to turn off connections within each square filter
given some probability. In simulations, we vary the probability
from 0 to 99% by increments of 10%. The results from these
simulations are reported in Figs. C.1 and C.2 for MNIST and CIFAR,
respectively. Both datasets use 30% translational augmentation
for these experiments.

The variable connection probability is varied from 0% to 99% as
indicated by the legend (VCP %). The results shown in Figs. C.1 and
C.2 were trained using 20% translation augmentation. Accuracy
on the validation set indicates FCNs are robust to even large
amounts of missing connections. Even when 80% of connections
are absent, the FCN is able to perform comparably well on both
MNIST and CIFAR. FCNs are shown to be robust to a high degree
of missing connections. Performance degrades rapidly beyond
90%.
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