Skip Graph Convolutional Networks (Skip-GCN) A Framework for Hierarchical Graph Representation Learning

Jackson Cates, Justin Lewis, Dr. Randy Hoover, Dr. Kyle Caudle

Department of Electrical Engineering and Computer Science and Engineering, South Dakota Mines

Feburary 7th, 2023

Jackson Cates

Skip-GCN

イロト イヨト イヨト イヨト

Feburary 7th, 2023

Introduction - Graph Theory

- Recently there has been great interest in graph representation learning. Graphs are known to be complex data structures because it contains both topological information and features.
- A graph G = (V, E) where |V| = n contains an adjacency matrix $A \in \mathbb{R}^{n \times n}$ that represents the edges.
- Node contain f features are represented with a feature matrix $X \in \mathbb{R}^{n \times f}$.

→ ∃→

Applications

- One application of graph representation learning is the analysis and prediction of social networks. Examples include:
 - Contact tracing or contagion spread
 - Disinformation detection
 - Social media community detection
 - Covert network detection/prediction
- Social networks are known to be challenging to analyze because of topology. Local and global information can be equally important.

Node Embeddings

- Typically, node embeddings are used to perform machine learning tasks.
 - ▶ Node embedding is where we encode a node $u \in V$ to a vector $\text{ENC}(u) = x \in \mathbb{R}^d$.
- The goal is that if nodes *u* and *v* are similar, then they will be close in the embedding space.

Graph Convolutional Networks (GCN)

- One popular method to compute node embeddings is through GCNs by averaging node features based on neighbors.
- A GCN layer is computed by $H_{i+1} = \sigma(\tilde{A}H_iW)$, where $\tilde{A} = D^{-\frac{1}{2}}(A+I)D^{-\frac{1}{2}}$ is the normalized adjacency matrix with Das the diagonal degree matrix of A + I, and $W \in \mathbb{R}^{f \times d}$ is a parameter matrix. For the first layer we use the features matrix $H_0 = X$.

- GCNs perform well for capturing local information, but lack in capturing both local and global information.
- More global information can be captured by adding more GCN layers, however at the sacrifice of diluting local node features.

Our Proposed Method - Skip-GCN

- Our goal is to create a family of representations that capture the full range of an individual's community, both local and global.
- We aim to expand the GCN by allowing skipping in its convolutions, aptly named the skip graph convolutional network (Skip-GCN).

- In order to fully capture the features along all ranges within an individual's community, we will utilize a multilinear algebra framework, utilizing *tensors*.
- A tensor $\mathcal{A} \in \mathbb{R}^{n \times n \times k}$ in this context is a multi-dimensional array, where we denote $\mathcal{A}^{(k)} \in \mathbb{R}^{n \times n}$ as a frontal slice at index k.

Jackson Cates

Feburary 7^{th} , 2023

• Fundamental to the results of the current research is the product of two tensors.

Definition

Let $\mathcal{A} \in \mathbb{R}^{\ell \times n \times m}$ and $\mathcal{B} \in \mathbb{R}^{n \times p \times m}$ be tensors. The tensor-tensor product based on the *L* invertible linear transform $\mathcal{A} *_L \mathcal{B} \in \mathbb{R}^{\ell \times p \times m}$ is computed by applying matrix multiplication to the frontal slices of \mathcal{A} and \mathcal{B} in the transform domain.

∃ ► < ∃ ►</p>

Skipping

- We aim to capture the full representation of an individual's community by performing skipping in graph convolutions.
- To capture the full range, we will convolve nodes that have a walk length of i, up to a maximum parameter k, for $i = 1, \dots, k$.
- We will then collect that into a tensor $\mathcal{Y} \in \mathbb{R}^{n \times f \times k}$, where each frontal slice is a convolution $\mathcal{Y}^{(i)} = \tilde{A}^i X$.

- After performing convolutions, we can also add a parameter tensor $\mathcal{W} \in \mathbb{R}^{f \times d \times k}$.
- Formally, our Skip-GCN layer is $\sigma(\mathcal{Y} *_L \mathcal{W}) = \mathcal{Z} \in \mathbb{R}^{n \times d \times k}$ where $\mathcal{Y}^{(i)} = \tilde{A}^i X$.
- \mathcal{Z} is our node embedding for each node at each skipping size. To perform node classification, we can now flatten \mathcal{Z} to a matrix in $\mathbb{R}^{n \times dk}$ and apply a simple dense layer for the embeddings.

★ 문 → ★ 문 →

Feburary 7th, 2023

- 2

- We will compare our framework with other methods in the literature on benchmark social network datasets.
 - Profiles of Individual Radicalization in the United States (PIRUS) dataset
 - ★ A 2226 node network that contains violent and non-violent extremists in the US from 1948-2018. Connections to individuals are based on their involvement of extremist groups. Node features contain ideology, crime history, and demographic information.

イロト イヨト イヨト イヨト

Feburary 7th, 2023

- 1

PIRUS

Jackson Cates

Skip-GCN

Fold	GCN	GraphSAGE	Skip-GCN
1	0.748	0.735	0.776
2	0.728	0.713	0.748
3	0.753	0.763	0.771
4	0.749	0.743	0.757
5	0.766	0.753	0.764
Avg. \pm Std.	0.749 ± 0.014	0.742 ± 0.019	0.763 ± 0.011

Table: K-fold cross-validation for the PIRUS dataset.

Note all numbers report F1 score. Higher is better.

SOUTH DAKOTA MINES

- Perform experiments with more datasets.
- Explore how to incorporate edge features.
- Explore link prediction.
- Explore different aggregate methods, possibly multiple at once.
 - ► Min
 - ► Max
 - Pooling
- Explore temporal networks by adding LSTM layers.

-

Acknowledgments

Jackson Cates

Skip-GCN

Feburary 7th, 2023

A 3 >

16 / 16

SOUTH DAKOTA MINES

ъ