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ABSTRACT 

The bacterial community (BC) composition in various habitats, ranging from ecosystems to host 

anatomy, plays an important role in determining the nature and role of BC function in the 

ecosystem or host. However, the relative importance of host endogenous and environmental 

exogenous factors in determining the composition of the BC in aquatic habitats (e.g., freshwater 

lakes, fish hosts) remains poorly understood. To address this knowledge gap, this thesis makes 

several contributions to the estimation of the relative effects of endo-exogenous factors in driving 

the BC composition in aquatic ecosystem. To test the impact of biotic and abiotic factors on aquatic 

bacterial biodiversity, I collected water samples from sixty southern Ontario lakes and their BC 

and microbial eukaryotic community (MEC) compositions were determined using high throughput 

metabarcode sequencing of 16S and 18S rRNA gene fragments. Additionally, I sampled skin and 

gut BCs belonging to 17 fish species from 11 families (7 orders) at three distinct Laurentian Great 

Lakes (LGLs) habitats (Detroit River, Lake Erie, Lake Ontario) along with the associated aquatic 

BCs at those sites. These data allowed me to assess the extent to which host habitat and phylogeny 

predict gut and skin BC similarity. Finally, to address the effect of host microbiome on gene 

expression patterns, I manipulated the gut BC in Chinook salmon (Oncorhynchus tshawytscha) 

families using antibiotic and probiotic treatments (with healthy controls) and assessed host gene 

expression using transcriptome sequencing (RNA-Seq) on hindgut tissue samples to identify 

differentially expressed (DE) host genes.  

Using a combination of parametric and non-parametric modelling, I showed deterministic 

processes (exogenous) prevail in shaping BC assembly in freshwater lakes, but that a combination 

of habitat-specific (e.g., microbial diversity associated with water) and species-specific (e.g., host 

ancestry, genotype, or diet) factors shape and promote divergence or convergence of the 
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microbiome BC across host fish species. Additionally, I showed that daily administration of 

antibiotics and probiotics resulted in significant and predictable changes in fish gut and the 

surrounding aquatic microbiota. Normal microbiota depletion by antibiotics generally led to 

downregulation of immune response gene and upregulation of apoptotic processes, while probiotic 

treatment affected post-translation modification and inflammatory response genes (over-

expressed). While these effects were mostly due to microbiome-mediated mechanisms, host-

related mechanisms were also detected (i.e., family effects). 

In general, my thesis showed that BC composition in fish and lakes is regulated by assembly rules 

driven by exogenous abiotic and biotic factors (e.g., habitat, geography, microbial biodiversity, 

diet) and endogenous species-specific related factors (e.g., genetics, physiology, immunity). My 

work thus supports the deterministic view of BC composition variation across diverse habitats. 
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Chapter 1 CHAPTER 1: GENERAL INTRODUCTION  

1.1 Introduction  

 Ecosystems are the functional units composed of the components of biodiversity (animals, 

plants, fungi, and microorganisms) in a particular area interacting with each other and their abiotic 

environments (Levin, 2013). Generally, community ecology focuses on patterns of species 

diversity, abundance, and composition in ecosystems, and of the processes causing these 

relationships (Vellend, 2010). Biodiversity, a measure of the diversity of life in ecosystems, is a 

principal topic in ecology, because substantial loss (or change) of biodiversity could alter the 

function of the ecosystem and hence the habitat stability and benefits provided (Isbell et al., 2017). 

Yet, despite the diversity of mechanisms thought to shape patterns in ecological communities, all 

such mechanisms include only four processes: selection (difference in fitness among individuals 

of different species), drift (random changes in species abundances), speciation (the creation of new 

species), and dispersal (movement of organisms across space) (Hanson et al., 2012; Mallott and 

Amato, 2021; Vellend, 2010). While all ecosystems are affected by similar processes, the 

mechanisms driving microbial ecology are perhaps more challenging to describe due to logistics 

associated with their complexity and microscopic nature (Prosser et al., 2007). Deterministic 

(niche-base) and stochastic (neutral) processes are potential classes of mechanisms underpinning 

microbial community biogeography (Sadeghi et al., 2021). The impacts of abiotic (e.g., spatial 

effects, pH, nutrients) and biotic (e.g., cooperation, competition, predation) variables are generally 

defined as deterministic processes (Zhou and Ning, 2017). On the other hand, stochastic processes 

comprise the neutral theory, in which all taxa are expected to be functionally equivalent and not 

subject to strong environmental effects (Oliphant et al., 2019). In recent years, numerous facets of 

microbial biodiversity have been effectively studied across space, time, and ecological gradients 
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from various perspectives. Nonetheless, the mechanisms behind the complex and varied diversity 

patterns remain indistinct and controversial (Zhou and Ning, 2017).  

 Microorganisms are the most diverse group of life on our planet, living in almost every 

conceivable environment. However, different types of environments harbour strikingly different 

microbial communities. Studies have shown that salinity (Hou et al., 2017), pH (Banda et al., 

2021), seasonality (Sun et al., 2017), and ecological interactions (Steele et al., 2011) are major 

factors determining the composition of microbial communities. Microorganisms not only exist in 

environmental habitats, but they are also found in micro-niches associated with individual 

eukaryotic hosts. A “microbiome” is defined as the microbial community occupying a reasonable 

well-defined habitat which has distinct physio-chemical properties (Berg et al., 2020). All existing 

organisms living today evolved from a single common ancestor which existed more than 1.2 billion 

years ago (Ley et al., 2008; Ros-Rocher et al., 2021). Consequently, this long history of interaction 

among the microbial communities and multicellular organisms shaped microbial communities as 

well as the evolution of vertebrates (Ley et al., 2008). This interaction resulted in specific, and 

sometimes obligate, associations with eukaryote hosts, ranging from insects (Moran et al., 2008) 

to primates (Yildirim et al., 2010). The majority of microbiome studies in vertebrates have focused 

on mammals, which encompass fewer than 10% of total vertebrate diversity (Sullam et al., 2012). 

Far fewer studies have focussed on fish, which consist of more than 32 000 species, originated 

over 600 million years ago and constitute almost half the total number of vertebrate species 

(Sullam et al., 2012; Zhang et al., 2014). Moreover, over three billion people every day depend on 

fish for at least 20% of their protein intake, with a global per capita consumption of almost 20 kg 

per year of fish (FAO, 2016). Given the evolutionary, ecological and social value of fish, it is 
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imperative to characterize the complex relationships between fish, the water they inhabit and the 

microbial communities around and within them.  

1.1.1 Fish microbiome 

 Fish and their microbiomes exhibit a mutualistic relationship (Sehnal et al., 2021b) in 

which the microbial communities associated with the host have been shown to be involved in the 

host’s metabolism and immunity, among other functions. In return, the host supports the 

colonization and nutritional needs of both surface and internal microbiota (Lescak and Milligan-

Myhre, 2017a; Sehnal et al., 2021b). The microbiome has been referred to as a distinct organ 

because of its production of various vital molecules such as short-chain fatty acids (SCFAs) which 

can promote intestinal integrity in the host (Langlois et al, 2021). The metagenome of the human 

microbiome has even been named our ‘second genome’ (Zhu et al., 2010). These organisms affect 

genetic, metabolic, and immunologic functions that help normal host development and support 

general host health (Belkaid and Hand, 2014). The earliest study of fish-hosted microbial 

communities dates back to the late 1920s (Reed and Spence, 1929). Ever since that revolutionary 

paper, much effort has been devoted to characterizing the microbial communities associated with 

fish. Although an active research field, the structure and function of fish microbiome has not been 

characterized in depth, likely due to the complexity of the fish microbiomes. This limitation 

narrows the potential application of microbiome manipulation (and associated methods) in fish 

culture and commercial aquaculture (Merrifield and Ringo, 2014). However, with the advent of 

advanced molecular genetic techniques such as High Throughput Sequencing (HTS), we now have 

a better picture of the taxonomic diversity (structure) and dynamics of the microbial community 

in a range of fish species (Doane et al., 2020; Emie et al., 2021; Uren Webster et al., 2020; Xiao 

et al., 2021). In particular, metabarcoding using short fragment amplicon sequencing methods (e.g. 
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16S and 18S ribosomal RNA (rRNA) gene sequencing) has become the gold standard when 

evaluating the composition and diversity of microbiomes (Huse et al., 2012). Unlike culture-based 

methods, metabarcoding studies (16S rRNA) were able to show the true diversity of the fish 

microbiome; however, it was still found to be dominated by bacteria belonging to the 

Proteobacteria phylum (Ghanbari et al., 2015). Tissue-specific microbial communities have also 

been reported in fish (Legrand et al., 2020). Specifically, fish harbour different microbial 

communities across their anatomy (i.e. gut, gills and skin) (Krotman et al., 2020; Legrand et al., 

2018). Although not yet reported, other body sites such as the eyes, buccal cavity, and urogenital 

opening no doubt have specialized microbiota; indeed, microbiomes associated urogenital region 

may provide a mechanism for vertical transmission of microbiome from dam to the eggs (Legrand 

et al., 2020). 

 Gut: Similar to mammals, fish have diverse intestinal microbiota that help in nutrient 

absorption, immune response, gut epithelial repair and development, and metabolism (Gomez et 

al., 2013; Lescak and Milligan-Myhre, 2017b; Maynard et al., 2012). Microbial colonisation of 

the fish gut mostly originates at the egg stage, with the environment (e.g. the surrounding water 

and the diet) (Egerton et al., 2018) and maternal transmission contributing (Sylvain and Derome, 

2017). As soon as eggs emerge from the mother, the microbiota of the surrounding water as well 

as maternal microbiota come in contact with the eggs and subsequently have the chance to colonise 

the surface (Egerton et al., 2018; Gomez et al., 2013; Langlois et al., 2021; Llewellyn et al., 2014). 

Colonization of fish gut by surrounding water microbiota in combination with fish diet starts after 

hatching – likely the source of the first colonisers of the developing gastrointestinal tract (Colston 

and Jackson, 2016; Egerton et al., 2018; Gomez et al., 2013). As fish grow, the gut microbiota 

becomes further diversified and the fish gut microbiome achieves a complex assemblage of gut 
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associated microbes (Nayak, 2010). Over five hundred different bacteria species belonging to 

diverse phyla are reported to occupy the fish gut, mainly dominated by aerobes or facultative 

anaerobes (Romero and Navarrete, 2006; Talwar et al., 2018). 

 Skin: Skin surfaces of animals, especially in fish, provide an essential primary barrier 

against opportunistic pathogens while harbouring a diverse community of commensal microbes. 

Fish skin is covered in mucus that provides a barrier between the host and the surrounding water 

microbiota (Sehnal et al., 2021). Skin mucus is an important part of the fish immune system, and 

holds various immunoglobulins, antimicrobial peptides, mucins, and other mucosal products that 

protect the fish from pathogens (Gomez et al., 2013). Other biochemical products associated with 

fish skin include defensins, lysozymes and lectin-like agglutinins that also help in the innate 

immune response against pathogens (Guardiola et al., 2014). However, some co-evolved 

mutualistic and commensal microbes can use the mucus as an adhesion site and evade the primary 

defence mechanisms of the host (Ringo and Holzapfel, 2000). Unlike the gut microbiota, our 

knowledge of the even the composition of the skin microbiome in fish remains limited (Chiarello 

et al., 2018). Studies have shown that skin mucus can hosts a diverse community of commensal 

microorganisms, mostly bacteria (Krotman et al., 2020) but also fungi (Egerton et al., 2018). As 

the fish skin microbiota play a significant role in both adaptive and innate immunity, it is not 

surprizing that there are differences in both composition and diversity among host species and 

environments (Sehnal et al., 2021b). For example, a recent study showed that moving from fresh 

water to salt water shifted the skin-associated microbiota of Atlantic salmon  (Salmo salar)(Lokesh 

and Kiron, 2016). 

 As sampling the skin microbiome is less invasive than gut microbiome sampling, requiring 

only a skin swab, the skin microbial community may be an important biomarker of fish health in 
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wild and/or protected species (Sehnal et al., 2021b). Moreover, studies have shown that the skin 

microbiota is more affected by the environment than the gut microbiota, perhaps making it an even 

better predictor of fish health (Sylvain et al., 2020). Taken together, each tissue has a unique 

microbial community which plays important roles in host development and tissue-specific 

physiology which is impacted by numerous factors including host diet, habitat use, and genetic 

background.  

1.1.2 Microbial community of freshwater lakes  

Bacteria as well other microorganisms play important roles in transforming nutrients and 

reintroducing them into the food web (Shahraki et al., 2021). Microorganisms are also involved in 

carbon cycling through microbial loops, and they can act as a food source for other organisms such 

as zooplankton (Buchan et al., 2014). Interactions between the bacteria and phytoplankton can be 

complex. For example, bacteria can support and promote the growth of phytoplankton via the 

recycling of nutrients, but at the same time, they also compete with phytoplankton and other 

organisms for essential nutrients (Buchan et al., 2014). Characterizing the factors that can change 

and govern bacterial community composition (BCC) can offer deeper insight into the processes 

and mechanisms operating in lake ecosystems and ultimately improve our basic knowledge of the 

microbial community and their interactions with other organisms at higher trophic level such as 

fish. 

1.1.3 Factors affecting fish microbiome  

 Several drivers (Figure 1.1) of microbiome diversity have been reported for fish, including; 

host effects (e.g. genetics, gender, weight, age, vertical transmission of maternal microbiota, 

circadian rhythms, immunity,  and intestinal motility) (Liu et al., 2021; Mallott and Amato, 2021; 

Xiao et al., 2021; Thaiss et al., 2016) environmental and dietary effects (e.g. water chemistry and 
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quality, diet) (Minich et al., 2020; Razak et al., 2019) and microbial characteristic effects (e.g. 

adhesion capacity, enzymes and metabolic capacity) (Prakash et al., 2011) and ecological 

interaction (He et al., 2018). While all of those factors contribute to the composition and diversity 

(and hence function) of the host’s microbiome, this thesis focusses on two key factors: 1) 

environmental effects, and 2) host genomic effects. 

 

Figure 1.1. Schematic diagram showing biotic and abiotic factors affecting the fish microbiome 

 Environmental factors: Although microorganisms are found across all habitats, different 

types of environments hold remarkably distinct microbial communities. Environmental factors 

such as water chemistry and quality, salinity, season, and geospatial variation can deeply influence 

the composition of free-living and symbiotic microbial communities (Tarnecki et al., 2017). 

Studies have shown that water chemistry and quality have significant impacts on aquatic microbial 

communities (Bledsoe et al., 2016; Sadeghi et al., 2021). Specifically, nitrogen, phosphorus, 

dissolved and particulate organic matter, high ammonia concentrations, and suboptimal pH and 

salinity have all been shown to perturb the fish microbiota and may lead to compositional 

imbalances that pose a risk to fish health (Giatsis et al., 2015; Sylvain et al., 2016; Zhang et al., 

2016). Temporal, and geographical factors can also affect the skin and gut microbial composition 

(Oh et al., 2016; Suzuki and Worobey, 2014; Woo et al., 2017). Skin microbiota have been shown 
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to be more sensitive to environmental factors than the gut microbiota, suggesting that the gut 

habitat is able to moderate community composition variation, despite environmental fluctuations 

(Dulski et al., 2020).  

 Trophic level and diet: Diet has been identified as a key factor affecting the diversity and 

community structure of not only fish gut but also skin microbiomes (Chiarello et al., 2018; Smith 

et al., 2015). One reason for this could be fishes having distinct diets might produce different 

surface mucus and this might affect their skin microbiome (Chiarello et al., 2018). Moreover, 

fasting in fish is known to substantially change intestinal microbiota composition (Wang et al., 

2018; Xia et al., 2014). However, the effect of natural variation in diet, particularly when 

associated with host development (ontogenetic), on host-microbiota interactions is largely 

unknown (Leeming et al., 2019). Food additive such as antibiotics, prebiotics and probiotics have 

been used in aquaculture to improve grow rate and fish health (Hoseinifar et al., 2016; Navarrete 

et al., 2008; Yassir et al., 2002) and all are expected to affect microbiome composition. Prebiotics 

are non-living substrates that provide nutrients for resident microorganisms harboured by the host 

and can selectively increase the abundance of beneficial microbes in the gut. Moreover, probiotics 

are live bacteria that are applied used orally or through the water column and have quantifiable 

health benefits to the host through increase food digestibility by increasing different digestive 

enzymes such as proteases, alginate lyases, and amylases (Hoseinifar et al., 2018). Antibiotics 

have been used in aquaculture to prevent and treat bacterial diseases, however, there is a great 

chance that large proportion of the antibiotics to enter the environment. Moreover, using antibiotics 

frequently can raise antimicrobial resistance in fish farms (Miranda et al., 2018). Although 

prebiotics have many beneficial impacts on heath and performance as proved for several terrestrial 

animals, the use of prebiotics in aquaculture has been less investigated (Akhter et al., 2015). 
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Moreover, recent studies (Fan et al., 2020; Mallott and Amato, 2021) provided evidence that apart 

from environmental parameters other factors such as host-related genetic factors can change the 

microbiome structure.  

 The influence of host genome: Although the composition of both the gut and skin 

microbiomes in fish is affected by environmental and feeding-related factors, there is also strong 

evidence for a host genetic component in shaping microbial communities (Blekhman et al., 2015; 

He et al., 2018; Mallott and Amato, 2021; Uren Webster et al., 2018). In the vertebrate gut, 

microbial communities play vital physiological roles, influencing metabolic processes such as the 

breakdown of complex carbohydrates, the regulation of fat storage (i.e. production of short chain 

fatty acids by gut bacteria), and providing vital vitamin and amino acids to their host (Sullam et 

al., 2012). These key functions contribute to microbiomes being key factors in host adaptation, 

fitness and ultimately evolution (Xiong et al., 2019). Host genetic diversity (within and among 

populations) is believed to, in turn, impact microbial community composition (Tarnecki et al., 

2017). Genetic differences among fish species, among populations within a species and among 

individuals within populations, can drive variation in immune response, metabolism, behaviour, 

and gene expression of the host, all of which are expected to change the structure of microbiome 

(Grieneisen et al., 2020; Nichols and Davenport, 2021; Sehnal et al., 2021b). Extensive research 

in teleosts as well as in humans has shown that, while the gastrointestinal (GI) microbiota is 

extremely variable from individual to individual (Boutin et al., 2014), family members (those that 

have similar genetic background) tend to have more similar microbiota than unrelated individuals 

(Spor et al., 2011; Steury et al., 2019). Indeed, the same microbiome can be shared between adult 

family members (Spor et al., 2011). However, the evidence for environmental effects on GI 

microbiome are substantially better characterized and documented than the effects of host genetic 
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background on the vital ‘microbial organ’, or microbiome (Dethlefsen et al., 2006; Ley et al., 

2006). 

1.1.4 Genomic approaches to studying the fish microbiome 

 Microbial community characterization is now undergoing a renaissance as high throughput 

sequencing techniques such as metabarcoding and metagenomics allow deep insight into hundreds 

or thousands of microbial taxa within a single sample (Feehery et al., 2013; Hamady and Knight, 

2009). These studies are made possible by the finding that small fragments of ribosomal (16S 

rRNA and 18S rRNA) genes are satisfactory as a proxy for the full-length sequence for 

determining community composition (Janda and Abbott, 2007). 16S rRNA and 18S rRNA genes 

have conserved and variable regions, and the conserved regions can be used to design “universal” 

PCR primers while the amplified variable regions between the conserved primer sequences 

provide phylogenetic information allowing assignment to specific bacterial taxa (Ghanbari et al., 

2015; Johny et al., 2021). Two widely used methods for taxonomic characterization of microbial 

communities are metagenomics and metabarcoding. Metagenomics is used to recreate whole 

organism genomes present in a sample, by employing both taxonomic and functional analytical 

methodologies (Zepeda Mendoza et al., 2015) On the other hand, DNA metabarcoding primarily 

focuses on identifying which species are present in a DNA sample. Metabarcoding is one of the 

most cost effective and efficient high-throughput sequencing methods that enable sequencing of 

multiple species present in individual environmental samples at one time. With the broad 

application of metabarcoding in microbial ecology and evolution, microbial ecologists can now 

characterize diverse and complex microbial community composition and infer putative function.  
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1.1.5 Host microbiome and gene expression interactions  

 Due to the contribution of microbiomes to host fitness, and the effects the host can have on 

the microbiome composition, the microbiome as a community has co-evolved with the host and 

vice-versa (Figure 1.2) (Foster et al., 2017). Thus, selection pressures on the host could, in theory, 

result in changes in the composition of the microbiota to alter their function to maximise benefits 

to the host (Foster et al., 2017), contributing to the host’s adaptive response. If the microbial 

community function enhances host fitness, the result would assure the availability of host habitat 

for the microbiota over the longer term (Goodrich et al., 2017). Moreover, some host species 

display behavioral or other traits that ensure effective microbiome transfer to the next generation. 

Mechanisms for selecting, retaining, and transferring key elements of the microbiome are likely to 

be genetically encoded in the host, and the characterization of those genetic components will point 

to mechanisms underlying the evolution and function of host–microbe symbioses (Ley et al., 

2006). All animals face the important challenge of building and maintaining diverse tissue function 

while maintaining sensitive and adaptive responses to their environment. This balance is most 

noticeable in the intestinal epithelium, which has significant roles in nutrient absorption / toxicant 

barrier function as well as immune response, while being continually exposed to complex 

microbial communities inside the intestinal lumen (Zheng et al., 2020). Although host-microbial 

interactions are widely recognized as valuable (Dabrowska and Witkiewicz, 2016), their regulatory 

molecular mechanisms are not well understood, especially in aquatic organismal hosts. Advanced 

molecular genetic-based technologies have permitted researchers to characterize tissue-specific 

host transcriptomes, which is important for determining not only the functional components of the 

host genome, but also how the host genome responds to environmental challenges. Transcriptomic 

studies also provide mechanistic insight into tissue development and regeneration as well as 

disease state (Ghanbari et al., 2015; Nichols and Davenport, 2021). The ability of intestinal 



Chapter 1: General Introduction 

12 

 

epithelial cells to maintain their physiological functions and respond properly to pathogens is 

enabled through regulation of gene expression, with transcription being the first, and rate limiting, 

step of that process. Genome-wide comparisons of transcript levels in intestinal epithelial cells 

from germ-free mice relative to mice harbouring a functional microbiome have shown hundreds 

of genes (e.g., genes involved in nucleotide metabolism and cell-cycle pathways) that have 

meaningfully differentially expressed mRNA levels (Thaiss et al., 2016). Interestingly, several of 

the mouse genes that appear to be transcriptionally controlled by the gut microbiome have 

zebrafish homologs, suggesting the existence of evolutionarily-conserved mechanisms (Davison 

et al., 2017). 

 

Figure 1.2. A schematic diagram showing the complex interactions between the host, it’s environment 

and it’s microbiome. A combination of biotic and abiotic factors such as genotype, fish physiological 

status (innate and adaptive immune systems), fish lifestyle (including diet), fish environment and 

microbial interactions affect the host microbiome composition, which will cause changes in host function 

and metabolic activities. These changes affect processes involved in growth, performance, energy storage 

and health in fish. 

1.1.6 Thesis objectives 

 The main goal of this thesis is to characterize factors that shape and drive variation in 

natural microbiomes: both within the host (fish) and in it’s aquatic environment. The specific 

objectives that address my main goal comprise three data chapters: 

 In Chapter 2, I investigate the bacterial and micro-eukaryote community composition and 

dynamics in southern Ontario lakes to determine which environmental factors shape the structure 
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and function of aquatic bacterial communities. More specifically, water samples as well as 

environmental parameters from sixty southern Ontario lakes were collected, and the bacterial and 

microbial eukaryotic community (BC and MEC) compositions were determined using high 

throughput metabarcode sequencing of 16S rRNA and 18S rRNA gene fragments. Moreover, I 

was interested in testing hypotheses about the relative contribution of deterministic versus 

stochastic processes as well as the contribution of biotic and abiotic factors in the assembly of 

bacterial communities of freshwater lakes. My hypotheses are deterministic biotic and abiotic 

factors prevail in shaping BC assembly in freshwater lakes, and within the deterministic factors, 

biotic factors will dominate abiotic factors in shaping the BCs. Lakes are excellent systems for 

investigating microorganism community dynamics because they have clear boundaries within 

lakes and strong environmental gradients among lakes. Understanding the drivers and controls of 

microbial (bacterial) communities will improve our knowledge of fundamental properties of 

bacterial communities and thus enhance our ability to predict community states and response to 

change. 

 In Chapter 3, I assess the diversity and taxonomic composition of skin, gut, and water 

microbial communities across 17 fish species sampled in three Great Lakes habitats. The relative 

importance of exogenous abiotic and biotic factors (e.g., habitat, geography, microbial 

biodiversity, diet) and endogenous host-related factors (e.g., genetics, physiology, immunity) in 

driving the composition of the fish microbiome remains poorly understood. I evaluate how 

environmental factors (water microbiome) as well as fish species identity can affect the gut and 

skin microbiomes across diverse fish species. Although it is well known that the intestinal 

microbiome can have an enormous impact on fish health, it is vital to determine how it varies 

among diverse hosts when variation in the aquatic environment is controlled for. This study will 
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improve our knowledge of variables that can affect fish microbiome hence fish fitness and health. 

Moreover, the inclusion of both the skin and gut microbiome in this study will further our 

knowledge of how skin microbiomes vary in natural fish populations. Ultimately, evaluating fish 

microbiome variation as a fish health biomarker using skin swabs may help fish conservation and 

management by providing a rapid, on-invasive method to evaluate fish stock status and health.  

 In Chapter 4, I treated Chinook salmon (Oncorhynchus tshawytscha) fry with probiotics 

and antibiotics to measure the range of effects an altered gut microbiome would have on the host. 

I characterized host response to microbiome manipulation through gut tissue gene expression 

evaluated using transcriptome sequencing (RNA-Seq) and quantitative real-time PCR at 50 

candidate genes. I also performed 16S rRNA sequencing to characterize the microbiome of the gut 

as well as the water that fish were reared in. My hypothesis was that by altering the fish gut 

microbiome, host gene expression, especially the expression of key immune responses in the GI 

tract, will change and these changes will have both beneficial (probiotic) or deleterious (antibiotic). 

The results from this chapter will shed light on how microbial communities can alter host function 

through changes in gene expression patterns and thus characterize the mechanisms of microbiome 

effects on host performance generally.  

 In all data chapters, I apply genetic, ecological and evolutionary theory to characterize the 

nature and extent of the forces driving aquatic as well as host-associated microbiome composition 

using advanced molecular genetic techniques (transcriptomics, metabarcoding, high-throughput 

qRT-PCR). By testing for abiotic and abiotic factors driving bacterial community composition, I 

determined that deterministic and stochastic processes are shaping the BC composition, and hence 

function, across a broad array of temperate freshwater lakes as well as fish species. Moreover, I 

also demonstrated that habitat-specific factors (e.g., aquatic microbial communities, geographical 
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variation) along with species-specific (e.g., host ancestry, genotype, or diet) promotes divergence 

or convergence of fish microbiome. Finally, I was able to explore how the microbiome co-evolved 

with their host, and how this bidirectional interaction is contributing to host phenotype, and 

ultimately health and fitness.  
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Chapter 2 CHAPTER2: MICROBIAL COMMUNITY AND ABIOTIC EFFECTS ON AQUATIC 

BACTERIAL COMMUNITIES IN NORTH TEMPERATE LAKES 

2.1 Introduction 

 An ecosystem can be defined simply as the collection of living organisms and their 

interactions (biotic) coupled with non-living factors (abiotic) that occur in a specific locale. Part 

of what sustains an ecosystem is the constant interchange of energy between its biotic (plants, 

animals, and microorganisms) and abiotic components (habitat, water, soil, light, etc.) (Gurung et 

al., 2001). Unicellular organisms, or microorganisms, consist of a wide range of microscopic 

taxa, representing prokaryotes (i.e. bacteria and archaea) and unicellular microbial eukaryotes 

(i.e. ciliates and amoebae) (Thorp and Covich, 2009). The microbial community is comprised of 

diverse groups of species that live and interact within a defined habitat or space (often defined as 

a “niche”) (Berg et al., 2020). However, the processes driving patterns of microbial diversity 

among ecosystems remain poorly characterized and highly controversial (Nemergut et al., 2013). 

A framework has been established that postulates deterministic (niche-base) and stochastic 

(neutral) factors as potential mechanisms underpinning microbial biogeography (Liu et al., 2019; 

Liu et al., 2020a). Based on niche theory (deterministic processes), abiotic (e.g., nutrients) and 

biotic (e.g., competition, cooperation and predation) factors regulate community structure (Zhou 

and Ning, 2017). On the other hand, the stochastic process hypothesis proposes that all taxa are 

functionally equivalent, and not subject to strong environmental effects and community assembly 

is driven primarily by ecological drift coupled with variation in dispersal (Oliphant et al., 2019). 

This means that spatial distance would result in increasing divergence in microbial community 

composition, hence community composition should exhibit a distance-decay relationship (Zhang 

et al., 2019a). The controversy over the factors that drive microbial community composition 
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reflects a critical knowledge gap in the field of microbial ecology: the nature of the proximate 

and ultimate ecological forces that structure these communities (Oliphant et al., 2019).  

 The complexity of microbiomes encourages a shift from reductionist approaches that 

focus on individual taxa in isolation, to more holistic approaches that emphasize interactions 

among members of the community and their environments (Layeghifard et al., 2017). For 

example, co-occurrence patterns in microbial community have been used to assess community 

assembly rules (Fuhrman, 2009). Numerous ecological processes hypothetically contribute to co-

occurrence patterns, including both deterministic and stochastic processes. Network analyses 

using high-throughput sequencing data may allow the nature of the interactions among 

organisms with the bacterial community (BC) to be characterized through comparisons of BC 

composition across environmental clines. As BCs exhibit diverse interactions with other taxa 

(e.g., protists), all the interacting communities (and abiotic factors) should ultimately be included 

in the analysis (Berry and Widder, 2014; Fuhrman, 2009).  

 Microbial communities associated with fresh water form the foundation of freshwater 

food webs and are the primary biogeochemical agents involved in nutrient cycling; yet the 

factors affecting community composition remain poorly characterized (Percent et al., 2008). To 

address the nature of the interactions among the aquatic microbial community in combination 

with biotic and abiotic factors affecting that community, sixty lakes located on the edge of the 

Precambrian Shield in central Ontario, Canada were sampled for microbial metabarcoding. 

These lakes have been surveyed regularly by the Ontario Ministry of the Environment, 

Conservation and Parks’ Dorset Environmental Science Centre since the late 1970s (Nelligan et 

al., 2019), providing valuable metadata to test hypotheses about environmental factors affecting 

microbial community composition. As the microbial communities within the Precambrian Shield 
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have yet to be fundamentally described, simple baseline data on microbial community 

composition within these systems are valuable; however, network and correlational analyses 

facilitate the determination of how BC interact with other organisms and their environment. 

Here, we use high throughput sequencing and metabarcoding to characterize the factors that 

structure the BCs of small temperate freshwater lakes. We tested the following hypotheses: (1) 

deterministic biotic and abiotic factors prevail in shaping BC assembly in freshwater lakes, (2) 

within the deterministic factors, biotic factors will dominate abiotic factors in shaping the BCs, 

and (3) spatial factors will play a minor role (after correcting for abiotic variation) in driving 

bacterial assemblage in freshwater ecosystems. Our data first provide valuable baseline data on 

the composition and variation in microbial communities among small temperate lakes. More 

importantly, our results define the relative influence of biotics and abiotic factors on freshwater 

lake BC composition. These results can be used to better monitor, predict and respond to changes 

in the heath and stability of lake ecosystems. Our work also provides information on a neglected 

component of the freshwater microbial community, the micro-eukaryotic communities (MECs), 

and their interactions with their associated BCs.  
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2.2 Materials and Methods: 

2.2.1 Sample collection and physicochemical analysis 

 Sixty lakes were sampled in southern Ontario over the course of three days (7-9, October 

2017). Within each lake, we sampled either one location (for 50 lakes), two locations (for 8 

lakes) or three locations (for 2 lakes), making a total of 72 locations across all 60 lakes. The 

number of locations sampled was based primarily on the availability of public access and lake 

surface area (sampling sites with their coordinated are provided in Supplementary Table S2.1). 

Sampling sites with less disturbance and human activity at the site were selected. At each 

sampling location, two (n= 43 lakes) or three (n= 17 lakes) 500 mL water samples of lake water 

from the top meter (0–1.0 m) were collected from the shore without disturbing the sediment 

(Supplementary Table S2.1). In total, 162 bottles of lake water were collected across all 60 lakes. 

Samples were collected in sterile 500mL Nalgene™ HDPE bottles that were rinsed with sample 

site water prior to collection. Field negative controls were collected at the beginning and in the 

middle of each sampling day to ensure that the sampling and transportation did not cause sample 

contamination. Field negative controls were generated by transferring double distilled water from 

one sterile bottle to another, these were stored with the other samples. All water samples were 

stored in a cooler with ice and filtered within two hours of collection using 0.22-micron pore 

size, 47 mm diameter polycarbonate filters (Isopore™, Millipore, MA). After filtration, each 

filter was cut in half and each half was placed in a 2 mL sterile tube with 50-100 g glass beads 

(0.1 mm diameter, Bio-Spec Products, Bartlesville, US) and stored on dry ice in the field. In 

total, 324 half-filter samples were processed (Supplementary Table S2.1), shipped to the lab (on 

dry ice) and stored at -20 oC until DNA extraction.  
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 We collected metadata for each sampled lake (11 environmental variables), those 

variables can be grouped into three categories: (i) physical or geographical characteristics that 

are constant or do not vary at an annual scale (lake depth, surface area, volume, shoreline length, 

altitude), (ii) specific physicochemical variables were selected for their known importance for 

microbial communities in lake systems (pH, total phosphorus (TP), calcium, Secchi depth), and  

(iii) spatial position variables (latitude, longitude). Physicochemical data were obtained from 

Ministry of the Environment, Conservation and Parks (Sutey et al., 2019). Environmental data 

were collected during 2017 and the samples for chemical analysis were collected from offshore. 

Geographical (altitude) and spatial data were collected using cell phone application (Google 

Earth, Google LLC) during sample collection for each lake.  

2.2.2 Environmental DNA (eDNA) extraction  

 eDNA was extracted using a published sucrose lysis buffer protocol (Shahraki et al., 

2019). In brief, the filters were placed in 2-mL tubes with 400 μL of sucrose lysis buffer (400 

mM NaCl, 750 mM sucrose, 20 mM ethylenediaminetetraacetic acid, 50 mM Tris-HCl pH 9.0). 

The samples were homogenized using a Mini-beadbeater-16 (Lab Services BV, Nederland) for 1 

min, three times. Then, each sample was treated with 20 μL lysozyme (10 mg·mL-1), and 60 μL 

of SDS (1%) (Sigma-Aldrich, USA); followed by a one-hour incubation at 37 °C. Following that 

incubation, 2 μL proteinase K (20 mg·mL-1) (Thermo Scientific, USA) was added and the 

solution was incubated, rocking, overnight at room temperature (25 °C). At the end of 

incubation, the Proteinase K was inactivated for one hour at 60 °C. Finally, 100 μL of the lysate 

was used to extract DNA using a “Bead-Robotic” purification protocol with solid-phase 

reversible immobilization (SPRI) paramagnetic beads on an automated liquid handling platform 

(Tecan Freedom Evo150 Liquid Handling Platform, Perkin Elmer, USA) (Shahraki et al., 2019). 
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For each DNA extraction plate (96 wells) one negative control (sterile membrane filter) was 

included to test for lab-based contamination during DNA extraction. The extracted eDNA was 

stored at -20 °C until PCR amplification of the 16S rRNA and 18S rRNA gene fragments was 

performed.  

2.2.3 DNA Library Construction and Sequencing  

 Bacterial metabarcoding was performed using the variable V5-V6 region of the bacterial 

16S rRNA gene. We chose to use the V5-V6 region due to amplicon length restrictions, and the 

need to maximize the sequencing read depth (Liu et al., 2007). The V5-V6 region primers (787F 

= acctgcctgccg-ATTAGATACCCNGGTAG; 1046R = acgccaccgagc-

CGACAGCCATGCANCACCT) amplified a 260 bp fragment providing substantial taxonomic 

resolution. The primer sequences had 12 base extensions on the 5’ end (lower case base codes on 

the primer sequence) to facilitate library preparation for high through-put metabarcode 

sequencing (HTMS). The V5–V6 region of the 16S rRNA gene was amplified in a 25 μL PCR, 

consisting of 2.5 μL 10X Taq reaction buffer, 0.5 μL each of 10 μM forward and reverse 

primers, 0.1 μL of Taq polymerase (5 U/ μL), 1.0 μL of 10 μM dNTPs, 3.5 μL of 20 mM 

MgSO4, and 2.0 μL of extracted eDNA (ultrapure water for negative PCR controls). The thermal 

cycling protocol for the first round PCR consisted of: 95 °C for 3 minutes followed by 28 cycles 

of 95 °C for 30 s, 55 °C for 30 s, and 72 °C for 1 m, and a final elongation at 72 °C for 10 m. 

First-round PCR amplification was verified by visualizing amplicons on an agarose gel. If an 

appropriate band was observed, the remaining PCR solution was purified using Sera-Mag 

Magnetic Beads (GE, Healthcare Life Science, UK).  

 The purified PCR products were used as a template for a second, short-cycle, PCR to 

ligate the adaptor and barcode sequences necessary for sample identification and HTMS. The 
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second PCR was conducted in a total volume of 25 μL, consisting of 2.5 μL of 10X Taq reaction 

buffer, 25 mM MgSO4, 0.2 mM of each dNTP, 0.4 μL 10 μM forward primer (UniA, 

CCATCTCATCCCTGCGTGTCTCCGACTCAGXXXXXXXXXXGATacctgcctgccg), 0.4 μL 

10 μM reverse primer (UniB, CCTCTCTATGGGCAGTCGGTGATacgccaccgagc), 0.1 μL Taq 

polymerase 5U/μL and 10 μL of the cleaned first-round PCR product. The string of ten to twelve 

X’s in the primer sequence represents the sample ID barcode sequence. The thermal cycle 

protocol for the second ligation PCR was 94 °C for 3 min, then 8 cycles of 95 °C for 30 s, 60 °C 

for 30 s, and 72 °C for 1 min, and final elongation at 72 °C for 7 min. The second PCR product 

was visualized on an agarose gel and all field samples produced bands, whereas negative 

controls did not (field, DNA extraction, and PCR negative controls). The (positive) amplified 

samples were pooled roughly based on their band intensity (between 1- 5 μL for samples with 

strong to faint bands respectively) and the combined PCR products were cleaned and purified 

using the QIAquick Gel Extraction Kit (QIAGEN, Toronto, ON, Canada). Six field sampling-

negative controls, four eDNA extraction-negative controls (one for each 96 well PCR plate 

(PROGENE®)), and eight PCR amplification-negative controls (four for BC and four for MEC 

samples) were also included in our amplicon pool for the sequencing library, despite there being 

no visible band on the agarose gels. The concentration of the purified PCR product mix (library) 

was measured on an Agilent 2100 Bioanalyzer with a High Sensitivity DNA chip (Agilent 

Technologies, Mississauga, ON, Canada). The library was then diluted to 60 pmol·μL-1 and 

sequenced on an Ion PGM™ System using the Ion PGM™ Sequencing 400 bp chemistry and an 

Ion 318™ Chip (Thermo Fisher Scientific, Burlington, ON, Canada).  

 Micro-eukaryote metabarcoding using 18S rRNA: V9 region of 18S rRNA gene (PCR 

primers: F = acctgcctgccg GTACACACCGCCCGTC’; R = acgccaccgagcTGATCCTT 
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CTGCAGGTTCACCTAC) was used as the metabarcoding target region, following a previously 

described protocol (Petri et al., 2019). The PCR reagents were same as for the 16S rRNA PCR 

(above). The thermocycling protocol for the first PCR amplification of the V9 region of the 18S 

rRNA gene was an initial denaturing stage at 94 °C for 2 min, followed by 28 cycles of: 

denaturing at 94 °C for 15 s, annealing at 55 °C for 15 s, extension at 72 °C for 30 s, followed by 

a final elongation step at 72 °C for 7 min (Petri et al., 2019). The second short-cycle ligation 

PCR to create the barcoded library was the same as for the 16S metabarcoding ligation second 

PCR (above). The 18S PCR products were cleaned, barcoded, and sequenced following the same 

protocols as for 16s rRNA. 

2.2.4 Sequence Data Processing 

 16SrRNA Sequences: After sequencing was complete, sequence reads were filtered using 

Ion PGM™ software to remove unwanted polyclonal and low-quality sequences. De-

multiplexing and quality filtering of the 16S sequences were done in QIIME 1.9.0. Chimera 

detection was performed using Usearch quality filtering in QIIME (Edgar et al., 2011; Kuczynski 

et al., 2011). Operational taxonomic units (OTUs) were defined at 97% sequence similarity using 

the UCLUST algorithm. Representative sequences were aligned with the PyNast algorithm and 

taxonomy assignment used the default method (RDP). Singleton OTUs were discarded (n=2) 

before further analysis to avoid possible biases. Rarefaction plots were generated in QIIME as 

described previously (Kuczynski et al., 2011). Briefly, rarefied OTU tables were generated using 

the multiple_rarefactions.py script, then alpha diversity indices (Chao1 and number of observed 

OTUs) were computed for each rarefied OTU table with alpha_diversity.py and collated using 

the collate_alpha.py script. Finally, alpha diversity rarefaction plots were generated by 

make_rarefaction_plots.py script. The rarefaction cut-off was set to 2000 reads per sample 
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because most of the sample rarefaction curves plateaued at 2000 reads. Samples that had 

sequence read numbers below the rarefaction cut-off (2000) were removed from further analysis. 

As a result, 270 samples covering 59 lakes (98%) remained. All negative controls (field sampling 

negative controls, DNA extraction negative controls, and PCR negative controls) contained 

fewer than 30 sequence reads and were excluded from the rest of the analysis. Sequences were 

deposited in the NCBI Short Read Archive (SRA) under accession number SRR12080477. 

 18SrRNA Sequences: Bioinformatic analyses were conducted using QIIME 1.9.0. For 

demultiplexing and quality filtering of the raw sequence reads we used the default settings, 

except the minimum sequence length was changed to 130bp (Kuczynski et al., 2011). OTUs 

were defined at 97% sequence similarity using the UCLUST algorithm. Representative 

sequences were aligned with the PyNast algorithm and taxonomy assignment was done using 

blast against the SLIVA 104 reference database 

(http://qiime.org/1.4.0/tutorials/processing_18S_data.html). Singleton OTUs were removed 

(n=2) from further analyses. Alpha diversity indices were computed as for 16s rRNA data. The 

rarefaction cut-off was set to 2000 reads per sample and samples that had sequence read numbers 

below the rarefaction cut-off were removed from further analyses. 18S PCR negative controls 

contained fewer than 10 sequence reads and were excluded at this step. As a result, 237 samples 

from 54 lakes (90%) remained. For the OTU table, OTUs assigned to fungi or vertebrate animals 

were removed and only OTUs related to freshwater invertebrates (protozoa and micrometazoans 

(less than 2mm)) were retained. OTUs classified as “Uncultured_stramenopile”, 

“Uncultured_alveolate”, “Uncultured_cercozoan”, and “Uncultured_freshwater_cercozoan” 

(without class or order classifications) were combined and renamed as uSAR (uncultured 

Stramenopiles, Alveolata, and Rhizaria). All invertebrate fauna classified by SILVA were 

http://qiime.org/1.4.0/tutorials/processing_18S_data.html
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double-checked with the latest scientific nomenclature in the World Register of Marine Species 

(WORMS) (World Register of Marine Species (WoRMS), 2020). The sequences were deposited 

in the NCBI SRA under accession number SRR12080473. 

2.2.5 Statistical analysis 

 Combining replicates: We included location (multiple sites within a lake), biological 

(multiple water samples at a site) and technical (DNA extracted from the two halves of the filter) 

replicates in our study design. To test whether the replicates contributed significantly to the 

variation in MEC and BC composition, we used a nested ANOVA in the R package “lme4” 

across all lakes with technical replicates (filter halves) nested within biological replicates 

(multiple samples at a site) nested within location replicates (multiple locations within a lake) 

nested within lakes. Our dependant variables were alpha diversity indices (Chao1 and number of 

observed OTUs) and beta diversity. Beta diversity was measured using principal coordinate 

analysis (PCoA) conducted in PRIMER (version 7.0.13) based on the Bray-Curtis similarity 

distance. PCoA1, PCoA2, PCoA3 were included as dependant variables based on % variance 

explained and the eigenvalue (e). For BC, PCoA1, PCoA2, and PCoA3 explained 14% (e=13.3), 

8% (e=7.7), and 7% (e=6.8) of the observed variation among samples. Other PCoA axes had 

eigenvalues < 5.0 and explained less than 5% of the variance. For MEC, PCoA1, PCoA2, and 

PCoA3 explained 12.7% (e=2.2), 9.4% (e=1.6), and 7.8% (e=1.3) of the observed variation 

among samples. Other PCoA axes for MEC had eigenvalues < 1.0 and explained less than 1% of 

the variance. Moreover, we also tested the replicate effects on BCs using nested (as above) 

permutational multivariate analysis of variance (PERMANOVA) with the adonis function of the 

vegan R package with the Bray Curtis similarity index applied across all sample data (Team, 

2013a). The nested ANOVA and PERMANOVA tests were not significant across alpha and beta 
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diversity measures for location, sample, and filter replicates (Supplementary Tables S2.2–S2.3). 

As a result, we combined all replicate data within each lake; to do this we summed the number of 

sequence reads across replicates for each OTU within the 59 (BC) and 54 (MEC) lakes. We used 

the biom convert command (McDonald et al., 2012) to convert the resulting combined OTU 

tables to BIOM format. Alpha and rarefied BIOM tables were generated following the same 

protocols for the 18S and 16S rRNA sequencing data. The rarefaction cut-off was set to 2000 

reads per sample and a total of 59, and 54 samples (lakes) remained for the BCs and MECs, 

respectively. All subsequent analyses are based on the replicate-combined samples.  

 Diversity analyses: Microbial diversity (both for bacteria (16S) and micro-eukaryotes 

(18S)) was measured using a series of OTU-based estimates of alpha- and beta-diversity (as 

described above). OTUs with a read frequency greater than 0.001 percent of the total sequence 

reads were selected for further analysis as some of the low abundance OTUs may have derived 

from sequencing errors or other artifacts. Moreover, removing low read OTUs will dramatically 

reduce the computational workload (Unno, 2015; Wallace et al., 2018).  Alpha diversity and 

taxonomic summary analyses were conducted to determine variation in microbial community 

composition among all the lakes. Stacked barplots of the relative abundance of the BCs at the 

order level, and the MECs at the class level were generated using the ggplot package in R 

(version 4.0.) (Team, 2013a).  

 Clustering analyses: OTU tables were square-root transformed prior to calculating the 

Bray–Curtis similarity matrices to reduce skew. To visualize patterns among the sampled lakes, 

Bray–Curtis similarity matrices were used in Paleontological Statistics Software Package for 

Education and Data Analysis (PAST, version 4.03) (Hammer et al., 2001) to create a neighbor-

joining (NJ) tree. To test for significant differences among the identified NJ clusters, we ran a 
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global PERMANOVA test (for among cluster differences), and in cases of significant cluster 

effects, we also performed pairwise PERMANOVA to determine post-hoc specific cluster 

differences. We present the NJ trees with a sample map to aid in interpretations of spatial 

patterns using QGIS (Version 3.16.0) with OpenLayers plugin and Stamen Toner/OSM layer.  

Correlation analysis: The biogeochemical and physical parameters were log-transformed (ln 

(value + 1)) to achieve normal distribution. Pearson correlation analyses were used to test for 

correlations between the bacterial alpha and beta diversity indices with environmental and biotic 

factors (18S alpha and beta diversity) using the cor.test function in R with "pearson" for 

correlation coefficient, the p-value was adjusted using the Bonferroni correction (Team, 2013a). 

DistLM (distance-based multivariate multiple regression based on a linear model) (McArdle and 

Anderson, 2001) conducted in PRIMER (version 7.0.13) was used to examine the relationships 

between the biological communities (18s Chao1, 18s PCOA1, 2, and 3) and multivariate 

environmental data (lake depth, volume, surface area, shoreline length, TP, pH, calcium, Secchi 

depth, altitude, latitude, and longitude) (Legendre and Anderson, 1999). As the physical 

variables (depth, volume, surface area, shoreline length) were highly correlated, a Principal 

Component Analysis was performed using PAST (version 4.03) software. The first and second 

Principal Components (PC1, and PC2) were selected based on eigenvalue > 1.0 and subsequently 

were incorporated in our DistLM model. Moreover, we chose to include only Chao1 as our one 

alpha diversity measure as including multiple alpha diversity indices might cause redundancy in 

our analysis. The BEST DistLM model building procedure with 9999 permutations was used to 

determine the combination of individual factors that accounted for the greatest proportion of 

variation in BC composition, wherein factor addition was evaluated stepwise and was based on 

threshold improvement in the model’s adjusted R2. As DistLM does not accept missing data, 



Chapter2: Microbial community and abiotic effects on aquatic bacterial communities in north temperate lakes 

34 

 

only lakes with all physicochemical data shared between BC and MEC were included (40 lakes). 

Individual variables (marginal tests) and groups of variables (sequential tests (conditional on 

relationships among variables with the community data)) were tested against the null hypotheses 

of no relationship between the biological distribution and environmental data.  

2.2.6 Co-occurrence Network Analysis 

 Given the expected complexity of biotic interactions between and within the BCs and 

MECs among the sampled lakes, we used SparCC (Sparse Correlations for Compositional data) 

in Python to determine patterns of co-occurrence (positive) and co-exclusion (negative) 

relationships using OTU abundance data (Friedman and Alm, 2012). In brief, because microbial 

community data are sparse (with high numbers of OTUs with ‘0’ counts in some lakes), the 

rarefied OTU table was filtered to remove any OTUs with a total sequence abundance of less 

than 0.01% across all samples.  Removing less abundant taxa would help to better present (and 

interpret) the interactions among high abundant taxa; these abundant taxa have disproportionally 

important roles with other taxa relative to rare taxa. The resulting data set consisted of 400 and 

602 OTUs for BC and MEC, respectively for the network analysis. To minimize the effects of 

compositional bias, we used the SparCC method. This method evaluates the variance of the log-

ratio for transformed data, rather than the relative abundance, to infer pairwise relations 

(Friedman and Alm, 2012). The two-side pseudo p-values were calculated using python scripts 

based on bootstrapping with 1000 repetitions. A network plot showing correlation values higher 

than 0.55 or less than -0.55 and pseudo P-value less than <0.05 was generated. Cytoscape (v. 

3.6.1) was employed to visualize the resulting networks (Shannon et al., 2003). We used yFiles 

Organic Layout to draw the network. For better visualization and to improve taxonomic 

relationship resolution, taxa are presented at the phylum level and uSAR and SAR were 
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combined and presented as SAR. Nodes (OTUs) with a high degree (>10), high closeness 

centrality (>0.24), and low betweenness centrality (<0.07) were identified as “keystone” taxa 

(Dai et al., 2020; Huber et al., 2020; Xue et al., 2020). The topology of the network reflects 

interactions among microorganisms. For example, the degree value describes the level of 

connectedness between OTUs, and the betweenness centrality provides information on how 

critical an OTU is to the connectedness of a network (Mondav et al., 2017). 
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2.3 Results 

2.3.1 Combining replicate samples 

 Nested ANOVA for alpha (Chao1 and Observed OTUs) and beta diversity (PCoA1 and 

PCoA2, and PCoA3) indexes, as well as the nested PERMANOVA, showed no significant 

differences between the various types of replicate samples (locations (within a lake), biological 

(two or three bottles per site) and technical (extraction from filter halves)); however, there were 

highly significant lake effects (Supplementary Tables S2.2–S2.3). We thus combined sequence 

data across location, biological and technical replicates to maximize sequence read depth, 

resulting in a total of 59, and 54 samples (lakes) for BC and MEC (respectively) remaining for 

further analysis.  

2.3.2 Structure of Microbial Communities  

 BC composition: Alpha diversity varied considerably (Chao1 ranged from 919 to 3824 

(Supplementary Figure S2.1) and observed numbers of OTUs ranged from 539-1464 among 

lakes) and showed clear differences among BCs in southern Ontario lakes. After removing low 

abundance OTUs (less than 0.001% of reads), 10,012 OTUs remained across all the 59 lakes. 

The taxonomic analysis of the 16S rRNA gene sequences revealed the dominance of three 

bacterial orders: Actinomycetales (33%), Burkholderiales (12%), Enterobacteriales (11%) across 

all sampled lakes (Figure 2.1). Lakes varied considerable in their BC; for example, 

Enterobacteriales dominated L1-L26, however, Actinomycetales and Burkholderiales were more 

abundant in L27 to L59. Individual lakes showed high variation in taxon abundance, for example 

Lake Gananoque (L5) had the lowest abundance (1.6%) of Actinomycetales, while Big Bald 
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Lake (L31) had the highest (65%). Approximately 78% of the total bacteria taxonomic 

abundance was classified into six bacterial orders.  

 

Figure 2.1. Relative abundance (greater than 0.01%) of lake bacterial community composition presented 

at the order level for the 59 sampled lakes. The ‘other taxa’ category includes the sum of all bacterial 

orders that occurred at less than 0.1% relative abundance. 

 

 MEC composition: MEC alpha diversity (Chao1 ranged from 317 to 1283 

(Supplementary Figure S2.1), and observed numbers of OTUs ranged from 166-721 among the 

sampled lakes) showed clear differences among lakes. However, overall, the BCs (Chao1 mean= 

2722 ± 700) were more diverse than the MECs (Chao1 mean= 690 ± 177). For the MECs, after 

removing low abundance OTUs (< 0.001%), a total of 3380 OTUs remained. Of these 3380 

OTUs, 412 OTUs were assigned to fungi and vertebrates and were removed. Taxonomic analysis 

of the MECs revealed that approximately 62% of the total micro-eukaryote taxonomic 

abundance was classified into 6 major classes; uSAR (23%), Maxillopoda (10%), Spirotrichea 
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(9%), Cryptophyceae (8%), Chrysophyceae (4%), Prymnesiophyceae (4%), and 

Synurophyceae (4%). The SAR supergroup (uSAR, Stramenopiles (Chrysophyceae, 

Synurophyceae), Alveolata (Spirotrichea), and Rhizaria (Cryptophyceae)) were the most 

abundant taxa (Figure 2.2).   

Figure 2.2. Relative abundance (greater than 0.01%) of lake MEC composition presented at the class level 

for the 54 sampled lakes. The ‘other taxa’ category includes the sum of all ME orders that occurred at less 

than 0.1% relative abundance. 

 

2.3.3 Clustering analysis  

 NJ clustering of the BCs using the Bray-Curtis distance matrix resulted in six distinct 

clusters or clades, with most of the lake BCs falling into clusters I (n=28, 47%) and II (n=11, 

19%) (Figure 2.3). The geographical distribution of the clusters reflects a clear spatial effect 

(Figure 2.3). PERMANOVA confirmed the statistical significance of the NJ cluster effect 
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(F=3.3, P=0.001). However, the subsequent post-hoc pairwise PERMANOVA analyses revealed 

that some of the individual clusters were not significantly different from others (Supplementary 

Table S2.4). The NJ clustering analysis for the MEC resulted in five clusters, with most of the 

lakes falling into Cluster I (n=18, 33%) and Cluster V (n=17, 31%) (Figure 2.3). The 

PERMANOVA analysis revealed a significant MEC NJ cluster effect (F=3.4, P=0.001). The 

post-hoc pairwise PERMANOVA analyses showed that all clusters were statistically significant 

from each other (Supplementary Table S2.4).  
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Figure 2.3. Map of the selected lakes for BC (top) and MEC (bottom). Lakes are color-coded based on NJ 

cluster assignment. Lake names with their coordinates are listed in supplementary Table S2.1. 

2.3.4 Geochemistry of the studied lakes 

 There was considerable variation in lake depth (3 to 92 m), surface area (18 to 88,052 

ha), volume (0.40 to 11000 m3 x106), shoreline length (2.8-1013 km), altitude (78 to 480 m), 

Secchi depth (0.40 to 8.0 m), TP (0.001 to 0.09 mg/L), calcium (1.5 to 44.0 mg/L) and pH (6.4 to 

8.5) among the sampled lakes (Supplementary Table S2.5). BC alpha and beta diversity indices 

were tested for correlation with environmental variables (PC1 and PC2 of physical variables 
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(lake depth, surface area, volume, shoreline length), TP, Secchi depth, calcium, pH, altitude), 

spatial position variables (latitude and longitude) and biotic variables (i.e., MEC composition 

(Chao1, Observed OTUs, and PCoA1 and PCoA2)). Pearson correlational analyses showed alpha 

and beta diversity indices were significantly and positively or negatively correlated with lake’s 

spatial, geographical, physical, chemical, or biological variables (Figure 2.4).  

Figure 2.4. Pearson correlation coefficients between bacteria alpha (Chao1, observed OTUs) and beta 

diversity (PCoA1, PCoA2, PCoA3) indices with lake physicochemical, geographical, spatial, and 

biological variables. Asterisks show significant correlation (*** = p<0.001; ** = p<0.01; * = p<0.0).  

Detailed results are available in the supplementary Table S2.6. 

 

 DistLM was used to determine the relative contribution of the biotic and abiotic variables 

to variation in the BC composition among the lakes. Marginal DistLM values (Table 2.1) show 

the proportion of variation in the BC composition each variable explains when corrected for all 

other variables. Environmental variables (physical, chemical, and lake altitude) accounted for a 
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substantial component of the BC diversity variation (31%; Table 2.1). Spatial variables (Lat & 

Long) were the second most important set of variables and accounted for 23% of the BC 

diversity variation (Table 2.1). Biological variables (i.e., MEC effects) accounted for 23% of the 

diversity variation (Table 2.1). Among the chemical variables, calcium and pH were statistically 

significant and accounted for 13 percent of the BC diversity variation, while the total BC 

diversity variation explained by all chemical variables was 18% (Table 2.1). The geographical 

variable (lake altitude) was statistically significant and accounted for 7 percent of the BC 

diversity variation (Table 2.1). None of the lake physical characteristics variables contributed to 

the model significantly, but taken together, they accounted for 5% percent of the BC diversity 

variation (Table 2.1). The DistLM BEST explained up to 43% of the BC diversity variation 

(Supplementary Table S2.7). MEC PCoA1 was the single BEST predictive factor 

(Supplementary Table S2.7). In addition to MEC PCoA1, longitude (two-factor model) and 

latitude (three-factor model) emerged as the BEST predictor variables.  

 

Table 2.1. Marginal DistLM values show the proportion of bacterial community variation explained by lake 

spatial, physical, chemical, or biological variables 

Factor Pseudo-F Proportion 

Spatial variables 

Latitude 4.18 0.099***
a
 

Longitude 5.13 0.118*** 

Environmental variables 

Physical characteristics
b

   

PC1 0.96 0.024 

PC2 1.21 0.03 
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Chemical variables   

TP 1.17 0.030 

Calcium 2.7 0.067*** 

pH 2.4 0.060** 

Secchi depth 0.97 0.025 

Geographical variable   

Altitude 3.02 0.073*** 

Biological variables 

18S PCoA1 5.32 0.122*** 

18S PCoA2 1.02 0.026 

18S PCoA3 1.08 0.027 

18S Chao1 2.19 0.054** 

a *** = p<0.001; ** = p<0.01; * = p<0.0 

b Based on PCA with lake depth, volume, surface area, volume, shoreline length. 

 

2.3.5 Network analysis 

 Our SparCC analyses identified 121 unique OTU nodes (83 BC nodes and 38 MEC 

nodes), linked with 224 interactions (edges). We identified 34 interactions that were co-

exclusion, or negative associations (red lines; Figure 2.5), and among those 34 negative 

interactions, 18 edges (53%) were between two BC nodes (a red line connecting circle with a 

circle), 7 (21%) were between a BC and an MEC node (red line connecting circle with triangle), 

and 8 (26%) were between two MEC nodes (red line connecting triangular with triangle). Of the 

190-remaining co-occurrence, or positive associations (black lines; Figure 2.5), 148 edges (77 

%) were between two BC nodes (black line connected circle with circle), 8 (4%) were between a 

BC and an MEC node (black line connected circle with triangular), and 34 (18%) were between 

two MEC nodes. Overall, there were more interactions within the BCs and MECs than between 
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them. Generally, Actinobacteria (42 nodes, 35%), Proteobacteria (26 nodes, 21%), and SAR (24 

nodes, 20%) dominated in terms of the number of representative nodes (Figure 2.5). We 

performed a “general network analysis” in this co-occurrence network to define the basic 

topologies of the microbial communities. The network analysis showed that only BC harbor 

keystone taxa (taxa that are of high degree, high closeness, and low betweenness scores and thus 

have a disproportional influence within the network). All BC keystone taxa were from the 

Actinobacteria (family ACK-M1), and Proteobacteria (family Enterobacteriaceae) phyla. Not 

surprisingly, less abundant taxa (node size) generally had fewer connections than highly 

abundant taxa. Overall, the BC network (which included the only keystone taxa) was much more 

complex than the MEC network.  
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Figure 2.5. Association networks showing the highest correlations between microbial OTUs (correlation 

≥0.55 or ≤-0.55). Node shapes correspond to bacteria (circle) or MEC (triangular) OTUs. Node colors are 

based on their phylum (phyla with fewer than 6 nodes are colored coded the same). Black lines represent 

positive correlations (co-abundance interactions) and red lines, negative correlations (co-exclusion 

interactions). Node symbol size and edge thickness are based on OTU read number, and strength of 

correlation, respectively. Keystone species are nodes with a red border (N = 6). 
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2.4 Discussion   

           Our study characterized temperate lake microbial communities and identified the 

prevailing processes of community assemblage and major BC drivers in a collection of ~60 

southern Ontario lakes. The BCs found in all lakes were generally consistent with previous 

reports of bacterial phyla found in other North American lakes (Morrison et al., 2017; Mou et al., 

2013). Members of Actinomycetales, Burkholderiales (Betaproteobacteria), and 

Enterobacteriales (Gammaproteobacteria) orders dominated the BCs in our selected lakes. 

Previous studies showed that Actinobacteria and Proteobacteria phyla are common resident of 

freshwater lakes (Liu et al., 2021; Mateus-Barros et al., 2021; Newton et al., 2011). Several 

factors such as supplemental mode of energy generation, size and composition of the bacterial 

cell wall, and growth rate, could be the reasons for their broad success (Kiersztyn et al., 2019; 

Newton et al., 2011; Shade et al., 2007). Moreover, in this study, members of Enterobacteriales 

were more abundant in lakes near populated areas (L1-L26) relative to more isolated lakes. One 

reason for this could be lakes around populated areas are experiencing increased nutrient loading, 

which would select against Actinobacteria (Haukka et al., 2006). Bacteria belonging to 

Enterobacteriales, such as Escherichia coli, are found in freshwater lakes (Shahraki et al., 2021); 

however, they are widely considered transient members that originate from anthropogenic or 

zoonotic sources (Newton et al., 2011). Micro-eukaryotic diversity in freshwater lakes is not as 

well documented as bacterial diversity; however, the MECs characterized in our study were 

similar to those reported in other freshwater ecosystems (Bjorbækmo et al., 2020; Gendron et al., 

2019; Mikhailov et al., 2019). In this study, members of SAR dominated the MEC in the 

sampled lakes. This is consistent with other studies indicating that the SAR supergroups 

comprise a range of parasites and bacterial grazers (Boaventura et al., 2018). Moreover, we 

found that biotic and abiotic variables were major factors shaping freshwater BCs, indicating that 
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deterministic processes are likely more of a driver than stochastic processes in freshwater lakes, 

at least for the lakes we sampled. However, microbial communities in lakes that were 

geographically close to each other were more similar than those further apart (Mantel test using 

Bray-Curtis dissimilarity matrix versus geographic distance; R= 0.37, P = 0.001; data not 

shown). The similarity between these communities may be due to dispersal and ecological drift 

coupled with similar environmental conditions at spatially close sampling sites. Such “isolation 

by distance” patterns of diversity are consistent with stochastic assembly processes. Likely the 

freshwater BC composition is determined by a combination of deterministic and stochastic 

processes; however, our analyses indicate the deterministic process are dominant in the systems 

we sampled. Our co-occurrence network analyses provided a broad picture of the organization 

and interactions of the lake microbial communities, clearly indicating fundamental differences in 

the complexity and connectivity of the BCs and MECs. Specifically, the co-occurrence networks 

showed that BCs are more connected than MECs, with Actinobacteria, Proteobacteria and SAR 

dominating the network nodes. These results generally support our hypothesis that deterministic 

biotic and abiotic factors prevail in shaping BC assembly in freshwater lakes. However, within 

the deterministic factors, biotic factors did not dominate the abiotic factors in shaping the BCs 

among our sampled lakes, not supporting our hypothesis. Finally, stochastic processes (dispersal 

limitation and ecological drift) are likely contributing significantly to BC composition among our 

lakes, as spatial factors were found to have a substantial contribution, again not in support of our 

prediction.  

2.4.1 Factors driving community structure  

              Many studies have characterized how aquatic BC diversity distribution patterns reflect 

environmental factors (Bordez et al., 2016; Freedman and Zak, 2015). However, previous such 
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studies of BCs have been limited by focusing on only abiotic factors (Zhang et al., 2019b) or by 

studying only one location (lake) (Gendron et al., 2019). Using multiple diversity indices as well 

as a variety of biotic and abiotic driving factors, we characterized variation in BCs and tested 

whether biotic and abiotic factors were significantly and directly related to different aspects of 

bacterial diversity – in addition to being a driver of composition/structure. Recently, it has been 

accepted by many microbial ecologists that niche-based (deterministic) and neutral-based 

(stochastic) processes together shape local community structure (Aguilar and Sommaruga, 2020; 

Vellend, 2010; Zhou and Ning, 2017). However, the relative importance of deterministic and 

stochastic processes in controlling community assembly, succession, and biogeography in 

different environments is still a central debate (Stegen et al., 2015; Zhou and Ning, 2017).  

             Deterministic processes are the result of the selection imposed by environmental 

conditions (e.g., pH, TP, salt, etc.) and biotic interactions (i.e. predator-prey, mutualism, 

competition, etc.) which govern community structure, leading to more similar or dissimilar 

structure among communities (Aguilar and Sommaruga, 2020; Tripathi et al., 2018). In this 

study, biotic and abiotic factors explained 31 and 23 percent of BC composition variation 

respectively, which shows 54 percent of the variation is explained by deterministic processes. As 

a result, deterministic factors were more important in determining the community assembly 

patterns in the selected freshwater lakes than stochastic process. Similar to our study, 

deterministic process has been reported to be the major driver shaping BC composition in 

freshwater lakes (Aguilar and Sommaruga, 2020; Hanson et al., 2012; Huber et al., 2020). For 

example, Aguilar and Sommaruga (2020) studied one alpine oligotrophic and one subalpine 

mesotrophic lake. In both lakes, deterministic process was the main assembly process and 

explained 67% of the BC turnover (Aguilar and Sommaruga, 2020). Our analysis showed that 
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BC composition was significantly correlated with pH and calcium. Similar results were found in 

other studies showing environmental conditions (such as pH and calcium) govern community 

structure (Yang et al., 2019; Zhou and Ning, 2017). We also found a significant relationship 

between BC diversity and altitude, with high-altitude lakes having higher microbial diversity. A 

similar relationship was also reported in other studies that postulated that altitude reflects 

important changes both biotic and abiotic characteristics (Ortiz-Alvarez and Casamayor, 2016; 

Siles and Margesin, 2016). Moreover, the lake MEC composition explained 20% of BC beta 

diversity, indicating interactions between bacteria and micro-eukaryotes (i.e. predator-prey, 

mutualism, competition, etc.) are structuring the composition of the BC. To the best of our 

knowledge, only a few recent studies have included biotic factors into their analysis of BC 

composition and diversity, and, similar to our results, those studies also reported that biotic 

interactions contribute significantly to community assembly in the lake ecosystem (Gendron et 

al., 2019; Mikhailov et al., 2019). 

            In contrast, stochastic process assumes that microbial diversity (e.g., bacteria) is 

controlled by non-selective processes, such as ecological drift (change in the relative abundance 

of taxa in a location due to chance demographic fluctuations) mediated by dispersal (movement 

of taxa across space) (Hanson et al., 2012; Zhang et al., 2019a). This means that increasing 

spatial distance would result in increasing divergence in BC composition, hence BC should 

exhibit a distance-decay relationship indicating that community similarity decreases with 

increasing geographic distance (Huber et al., 2020). In our study, spatial factors explained 23% 

of BC composition variation (i.e., stochastic process). Moreover, our Mantel test also showed a 

significant a distance-decay relationship (R= 0.37, P = 0.001; see above) among the sampled 

lakes where lakes close to each other had more similar community patterns than those further 
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away (Figure 3.3 and Table 3.1). Several studies have shown that restricted dispersal among BCs 

can lead to distance-decay relationship, while high dispersal rates undermine the relationship 

(Hanson et al., 2012; Liu et al., 2020b; Zhou and Ning, 2017). Overall, spatial, chemical, 

geographical and biological variables all contributed to BC community variation in the selected 

lakes, supporting a growing body of evidence that a combination of niche-based (deterministic) 

and neutral processes (stochastic) affect BC composition (Huber et al., 2020; Zhou and Ning, 

2017).  

              Although environmental and spatial factors described some of the BC composition 

variation, still considerable variation was left unexplained. There are two possible explanations 

for this; first, we may have not measured some key environmental factors that drive variation in 

microbial composition (for example nitrogen and carbon). Secondly, as suggested by Evans et al. 

(Evans et al., 2017), complex interactions among microbial dispersal, drift and selection are 

likely to alter or obscure linear relationships between environmental variables and microbial 

community composition. Moreover, we collected our water samples from the shore and at one 

depth (0-1.0 m), so while we collected from multiple locations for the large lakes, our design did 

not capture within-lake variation in microbial community composition. It is likely that different 

depth or offshore microbial communities might have considerably different community structure 

(e.g., (Meyerhof et al., 2016)) which may have contributed to the unexplained variation in 

community composition.   

2.4.2 Co-occurrence networks of bacteria and microbial eukaryotes 

            A key component in the community assembly of complex aquatic microbial communities 

is how the high-level ecological processes impact the relationships and interactions among the 

organisms in lakes, either among domains (e.g., bacteria vs protists) or even within one domain 
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(different bacterial taxa). Network analyses provide insights into the patterns of interaction 

within and among communities, insights not possible with diversity estimates, community 

structure descriptions and correlation-based analyses (Ziegler et al., 2018). Our network analysis 

showed interactions within the BCs and MECs are mostly positive and more prevalent than 

between those domains. Elevated levels of positive interactions in our network coupled with 

strong deterministic assembly processes indicate the coexistence of complex and diverse 

taxonomic assemblages may be facilitated by specialized niche use (Faust and Raes, 2012; 

Fuhrman et al., 2015). Furthermore, we found the BC was more inter-connected relative to the 

MEC, a pattern previously reported (Nelligan et al., 2019; Zancarini et al., 2017). Since bacteria 

are also known to exhibit metabolic syntrophism (bacterial cooperation to fulfill biochemical 

pathways needed to access environmental nutrients), our observation of a dominance of positive 

network interactions among members of the BCs makes functional sense (Stubbendieck et al., 

2016). While positive interactions between the MEC and BC were rare in our study, they have 

been reported between members of Bacteroidetes (Cytophagales and Flavobacteriales) and 

various phytoplankton taxa such as Haptophyceae, and Cryptophyta (Mikhailov et al., 2019), 

consistent with our study. Those positive interactions are generated by members of Bacteroidetes 

utilizing organic matter produced by the phytoplankton (Mikhailov et al., 2019). Our co-

occurrence analyses showed that the microbes within a few BC phyla (e.g., Actinobacteria) 

exhibited abundant, significant, and predominantly positive interactions among their taxa. This 

pattern of interactions may indicate that, in our mature microbial communities, niche separation 

and absence of competition among those groups resulted in reduced competition, and hence few 

negative interactions. Positive interactions in microbial network analyses could be due to 

common favored conditions, or perhaps cooperative phenomenon such as syntrophic (eating 
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together). Alternatively, negative network interactions may reflect competition for limited 

resources, or predator–prey relationships (Fuhrman, 2009). In our network analysis, there were a 

few important negative interactions between members of Actinobacteria or Proteobacteria and 

the SAR groups. One explanation for those (rare) negative interactions may be competition for 

nutrients - BC and MEC growth is often limited by the availability of macronutrients such as 

nitrogen and phosphorus leading to possible competition scenarios (Amin et al., 2012).  

                The “keystone” taxa identified in this study (i.e., highly connected taxa or network 

hubs (Steele et al., 2011)) have disproportionately important roles in maintaining network 

structure through high connectivity or critical links to other network node taxa (Berry and 

Widder, 2014). In our study, members of Actinobacteria and Proteobacteria were identified as 

keystone taxa. Similar BC keystone taxa were identified in other studies, indicating they may 

fulfill key ecological functions such as nitrogen fixation or ammonia oxidation (Mikhailov et al., 

2019; Xun et al., 2019) and hence are conserved across freshwater ecosystems. Among the 

microbial eukaryotes, members of the SAR supergroup (uSAR and SAR) had the highest values 

of betweenness and centrality, which underscores their important role in the MECs; however, 

they did not reach the threshold of keystone taxa. In general, targeted removal of keystone 

species results in rapid community change and may cause networks to disassemble, and thus, 

keystone taxa play an important role in providing ecosystem stability (Bissett et al., 2013).  

2.5 Conclusion  

               A critical knowledge gap in the field of microbial ecology is the relative role of diverse 

environmental factors in shaping microbial composition and function. In the present study, we 

found important differences in the microbial (both bacterial and micro-eukaryotic) communities 

among our selected freshwater lakes. Using environmental (chemical, physical, and geographical 
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(altitude)), spatial, and biological community data for the sampled lakes, we found that chemical, 

geographical (altitude), spatial and biological factors were major factors associated with BC 

composition variation among the lakes. Interestingly, we found that both deterministic and 

stochastic processes together shape the BC; however, deterministic process prevail in our 

selected lakes. Thus, some form of environmental filtering (biotic or abiotic) generally plays a 

significant role in driving the assembly of bacterial communities. On the other hand, spatial 

factors (stochastic process) did explain a significant proportion of the variation in BC 

composition. Our microbial community network analyses showed that communities of bacteria 

were more connected relative to MEC. Moreover, BC and MEC communities were mostly 

isolated and interactions between BC and MEC were more rare and weaker. Highly connected 

taxa (keystone taxa) were identified within the bacterial networks (Actinobacteria, 

Proteobacteria), and while the MEC showed strongly connected node taxa, they did not 

constitute “keystone” status. Partitioning the relative biotic and abiotic effects on bacterial 

communities across lakes in a gradient of latitude, longitude and is crucial to predicting how 

communities will adapt to environmental changes such as climate change and determining how 

ecosystem dynamics may change with those shifts.  
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Chapter 3 CHAPTER 3: HOST SPECIES AND HABITAT SHAPE FISH BACTERIAL 

COMMUNITIES: PHYLOSYMBIOSIS BETWEEN FISH AND THEIR MICROBIOME 

3.1 Introduction 

 Host-associated microbiomes, specifically the bacterial community (BC) present inside 

and on host surfaces, influence a broad range of host immunological, evolutionary, and ecological 

functions (Bordenstein and Theis, 2015; Woodhams et al., 2020). The microbiome definition refers 

to the entire microbial ecosystem, including the microorganisms (prokaryotes and eukaryotes), 

their genomes, and their surrounding habitats (Marchesi and Ravel, 2015) and is hypothesized to 

have co-evolved with its host (Doane et al., 2020). Significant research effort has focused on the 

importance of exogenous abiotic and biotic factors (e.g., habitat, geography, microbial 

biodiversity, diet) and endogenous host-related factors (e.g., genetics, physiology, immunity) in 

driving the composition of the microbiome (Minich et al., 2020a; Minich et al., 2020b; Riiser et 

al., 2020). Deterministic (endogenous and exogenous) factors are thought to be the dominant 

forces shaping species composition of BCs (Chiarello et al., 2019; Rothschild et al., 2018; Zhou 

and Ning, 2017). On the other hand, stochastic process-driven microbiome assembly (population 

growth, colonization, extinction, and speciation) assumes that BCs species are neutral, and 

community assembly is the result of stochastic dispersal and drift through which organisms are 

randomly lost and replaced (Heys et al., 2020; Sadeghi et al., 2021). Recent studies showed that 

both stochastic and deterministic processes are shaping the microbiome BC, but still a central 

question is the extent to which these two processes influence the host, as well as all of their 

associated microbes (Kohl et al., 2018; Zhou and Ning, 2017). Despite the known effects of habitat 

and host-specific factors on the microbiome across host taxa, very little is known about the degree 

of variation in fish-associated BC diversity and composition that occurs within and among species 

(Uren Webster et al., 2018). Moreover, to know how host-associated BCs may influence host 
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phenotype, and hence contribute to evolutionary processes, quantifying the degree and nature of 

among-host taxa microbiome variation and the systematic drivers behind it seems crucial. 

 We expect that hosts and their microbiomes are linked eco-evolutionarily and the 

microbiome composition will recapitulate the phylogeny of their host, the basis of phylosymbiosis 

theory (Brooks et al., 2016). Essentially, this predicts that hosts that are phylogenetically similar 

will have microbiomes that are more similar and vise-versa (Mallott and Amato, 2021). 

Phylosymbiosis may occur through stochastic and/or deterministic processes (Lim and 

Bordenstein, 2020), mirroring genetic evolution by drift and/or selection. However, patterns of 

phylosymbiosis are expected to be affected by exposure to habitat microbiome(s) (Lutz et al., 

2019). Although most studies in which phylosymbiosis has been identified have focused on 

microbes inhabiting internal organs, such as the gastrointestinal tract (Brooks et al., 2016), recent 

work suggests that external host microbiomes (e.g., skin) can also exhibit a phylosymbiosis signal 

(Ross et al., 2018). In expanding the range of studied vertebrate microbiomes, questions about the 

range of environmental, ecological and evolutionary factors that shape gut and skin microbiomes 

(or more specifically, BCs), and the functions of those communities, still remained challenging. 

For example, similar gut BCs are found among phylogenetically related mammals but also among 

unrelated mammal species with similar diets (Ley et al., 2008a; Ley et al., 2008b; Muegge et al., 

2011).  

 Most host-microbial interaction studies are mainly focused on mammalian species, with 

few studies focussed on other species (Pascoe et al., 2017). Teleosts encompass over one half of 

vertebrate diversity (Nelson et al., 2016) and are one of the most successful groups of vertebrates 

on Earth (Colston and Jackson, 2016). Teleosts are represented by more than 32 000 species, 

originated over 600 million years ago and exhibit a variety of physiologies, natural histories and 
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ecologies (Li et al., 2018). However, their success and species radiation perhaps would not have 

been possible without the help of their microbiome (Ghanbari et al., 2015). Additionally, their long 

history of co-evolution and symbiotic relationships with microbes (compared to mammals which 

evolved 160 million years ago (Ley et al., 2008a)) make them good candidates to study host-

microbial interactions. However, while most published studies of fish microbiomes include the gut 

microbiome, few studies have included other key microbiome habitats such as skin (Krotman et 

al., 2020; Sylvain et al., 2020). Thus, the role the skin microbiome likely has on host health is 

under-studied, and, importantly for this study, the skin microbiome may be under separate 

selective pressures (Uren Webster et al., 2018).  

The five Laurentian Great Lakes (LGLs) in North America form the largest freshwater ecosystem 

on the planet and have provided valuable ecosystem services for humans for centuries (Ozersky et 

al., 2021). The LGLs and their associated drainages include diverse ecosystems, complex trophic 

interactions, and mixed habitats including forests, wetlands, agricultural and urban areas, thus 

establishing a powerful natural ecological laboratory to study important questions about microbial 

ecology, host microbial interactions and co-evolution. While much work has been done on 

characterizing microbial communities in the LGLs (Shahraki et al., 2021; Paver et al., 2020), there 

is a critical need to examine the roles of host species and habitat on the microbiome of fish at the 

community level. Fish and microbial communities of LGLs provide a powerful study system to 

study the intra- and interspecific divergence of host-associated intestinal and skin BCs among 

members of the fish communities.  

The aim of this study was to characterize fish microbiome BCs among a variety of host species 

across three locations to: (i) identify patterns of fish-associated bacterial communities, (ii) quantify 

the connectivity between water BCs and those of the fishes, and (iii) determine the extent to which 
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BCs among fish follow a pattern of phylosymbiosis, while correcting for the effects of location. 

Our analyses will allow us to test three main hypotheses, including host-related deterministic 

processes (host-based selection pressures on BC composition) are the main drivers of BC 

composition variation, and hence most BC composition variation will be found among species. 

We hypothesize that due to the host endogenous effects, the water BC will be distinct from the 

host-associated BCs due to host-based selection pressures driving BCC; however the skin BC is 

expected to be less controlled by host-related factors than the gut BC. Furthermore, we predict that 

the gut microbiome will be more strongly associated with host phylogeny than the skin 

microbiome, as the skin BC will be affected by the local environmental microbiome. 

Characterizing intra-specific variation in fish microbiomes will help managers, particularly in 

aquaculture settings, to effectively manipulate gut and skin BCs to promote animal health and well 

being. On the other hand, such information may provide wild fish population managers tools to 

assess fish stock status and health. Perhaps more exciting however, is investigating possible 

existence of phylosymbiosis in fish as more research on this can shed light on rules governing the 

microbial community associated with fish and their co-evolutionary dynamics with teleosts in 

general.  
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3.2 Material methods 

3.2.1 Study sites 

Samples were collected from three locations (Detroit River, Lake Erie and Lake Ontario) 

Detroit River: The Detroit River of the LGLs is a 51 km channel that comprises the lower portion 

of the Huron-Erie Corridor, connecting Lake St. Clair to Lake Erie (Lapointe, 2014). Samples were 

collected around Fighting Island (from 42°10'56.5"N 83°06'39.9"W up to 42°14'04.2"N 

83°06'32.1"W) from July 17 to August 29, 2018.  

 Lake Erie: Samples came from the western basin of Lake Erie, a shallow (mean 6m), warm, 

and productive basin (area = 26 km2) fed by the Detroit River and several smaller tributaries 

draining agricultural watersheds. Samples were collected on October 18, 2018  

 Lake Ontario: Fish were collected from the Bay of Quinte and the eastern basin of Lake 

Ontario from July 31 to August 1, 2018. The Bay of Quinte is a large (254 km2), Z-shaped 

embayment with a history of nutrient and anthropogenic stress that feeds into the eastern basin and 

the upper St Lawrence River. The eastern basin is a mildly eutrophic, bathymetrically complex 

outlet basin of Lake Ontario with depths averaging ~20m.  

3.2.2 Sample collection  

 Detroit River: Fish were captured using a single anode boat electrofisher (Smith-Root 5.0 

GPP) set to use pulsed DC current at 60 Hz using between 30%– 60% of the range to maintain a 

current of 6–8 A (Klinard et al., 2018). All fish were euthanized with an overdose of tricaine 

methanesulfonate (MS222) following the protocols of the Ontario Ministry of Natural Resources 

and Forestry (OMNRF) and with Canadian Council on Animal Care policies. The skin swabs for 

all fishes were immediately taken by gently rubbing a sterile cotton swab (VWRTM, cat: 470019-

172) on almost 50% of the total surface on the right side of each fish. Dorsal, ventral, and pectoral 
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fin areas were swabbed for larger fish. Swab samples were placed into 2mL tubes and were stored 

on ice with the whole fish and transported to the Great Lakes Institute for Environmental Research 

(GLIER) at the University of Windsor and immediately frozen at -20°C. Within 2-4 hours after 

capture the fish were dissected, and gut content samples were collected and stored frozen at -20°C. 

Water samples (500 mL) were collected at the sampling sites and transported to GLIER for 

filtration and further analysis. Water samples were filtered using 0.22-μm pore size, 47 mm 

diameter polycarbonate membranes (Isopore™, Millipore, MA) and stored at -20oC until DNA 

extraction.  

 Lake Erie: Fish were captured using bottom-set, graded mesh monofilament gillnets. After 

capture, all fish were euthanized in compliance with the protocols of the OMNRF and with 

Canadian Council on Animal Care policies. The skin, fish and water sampling, as well as the 

transportation and storage of the samples were same as for Detroit River.  

 Lake Ontario: Fish were captured using bottom-set, graded mesh (38-152 mm) 

monofilament gillnets (Yuille et al., 2015). Upon capture, all fish were euthanized following the 

protocol described for Detroit River and Lake Erie. Skin swab samples and gut tissue (foregut, 

midgut, and hindgut) with contents were taken within 2-4 hours of fish capture at the Glenora 

Fisheries Station, Ontario, Canada. Samples were stored in a 50 mL falcon tubes filled with 45 mL 

of a high salt solution (700 g/L Ammonium Sulfate, 25 mM Sodium Citrate, 20 mM 

Ethylenediaminetetraacetic acid, pH 5.2) for 48 hours to let the salts penetrate the samples (swabs, 

and gut content), and then stored at -20 oC until DNA extraction. Water samples (500 mL) were 

collected and filtered at the Glenora Fisheries Station by using 0.22-µm filters pore size, 47 mm 

diameter and the filters kept in high salt solution until delivered to GLIER. All samples were stored 

at -20°C until DNA extraction. 
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3.2.3 Sample information 

 A total of 334 fish from Detroit River (n= 98, 29%), Lake Erie (n= 90, 27%), and Lake 

Ontario (n=146, 44%) belonging to 17 fish species were collected for microbiome characterization. 

The fish species included herbivores, invertivores, invertivores/carnivores, 

invertivores/detritivores, invertivores/herbivores, and planktivores (Table 3.1 and Supplementary 

Table S3.1) (Eakins, 2020; Heuvel et al., 2019). For each of the 334 fish, samples of the skin 

mucus (swab), and gut content (3-5 gram of gut content (hindgut) as well as gut tissue) and were 

collected and fork length and total weight were recorded. Gut samples were taken after carefully 

dissecting the fish with a new razor blade or a sterilize scissors to isolate a section comprising 

hindgut with both tissue and gut content. For Detroit River, Lake Erie, and Lake Ontario (based 

on sampling locations) a total of 4, 3, and 5 water samples were collected at the site of capture, 

respectively. 

3.2.4 DNA Extraction, Library Construction and Sequencing 

 DNA was extracted from swabs as well as whole fish hindgut samples, which included 

content as well as the surrounding tissue (~3-5 gram) using a sucrose lysis buffer protocol as 

previously described (Shahraki et al., 2019). The V5 (787 F-acctgcctgccg-

ATTAGATACCCNGGTAG) and V6 (1046 R-acgccaccgagc-CGACAGCCATGCANCACCT) 

variable regions of the 16S rRNA were selected for PCR amplification. The first and second 

PCR conditions were same as our previously published methods (Shahraki et al., 2019). Briefly, 

The PCR protocol for the first round PCR consisted of: 95 °C for 3 min followed by 28 cycles of 

95 °C for 30 s, 55 °C for 30 s, and 72 °C for 1 m, and a final step at 72 °C for 10 m. For each 96 

well PCR plate, one negative control corresponded to PCR mix with ultra-pure water instead of 

DNA template, was used. After first-round PCR amplification, the results were verified by 
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visualizing amplicons on an agarose gel. After checking and verifying first-round PCR products, 

the PCR solution was purified using Sera-Mag Magnetic Beads (GE, Healthcare Life Science, 

UK). A second round of PCR was conducted on purified PCR products to ligate the adaptor and 

barcode (10 -12 bp) sequences necessary for sample identification and sequencing. The second 

PCR was set at 94 °C for 3 min, then 8 cycles of 95 °C for 30 s, 60 °C for 30 s, and 72 °C for 1 

min, and final extension at 72 °C for 7 min. The second round PCR amplifications were 

visualized on an agarose gel and combined in proportions based on their estimated concentration 

(between 1- 5 μL for samples with strong clear to faint bands). Subsequently, the combined 

samples were gel extracted from an agarose gel and cleaned and purified using QIAquick Gel 

Extraction Kit (QIAGEN, Toronto, ON, Canada). In total 299 (89%), 330 (99%), and 10 (83%) 

samples for gut, skin swab and water were amplified successfully for first and second PCR. We 

also included eight PCR blanks (one for each 96 PCR plate) in our library. The concentration of 

purified PCR product mix (library) was measured on an Agilent 2100 Bioanalyzer with a High 

Sensitivity DNA chip (Agilent Technologies, Mississauga, ON, Canada). The library 

concentration was then diluted to 60 pmol·μL-1 and sequenced on an Ion S5™ sequencing 

system using the Ion S5™ sequencing reagents and an Ion 530™ Chip (Thermo Fisher 

Scientific, ON, Canada). 

3.2.5 Processing of 16S sequences 

 Two FASTQ files (one for gut and water samples and one for swab samples) were analyzed 

using the Quantitative Insights Into Microbial Ecology (QIIME2-2020.11) platform (Bolyen et al., 

2019). The FASTQ sequence files were demultiplexed using the cutadapt demux-single command 

to remove sample barcode and primer sequences. Additionally, cutadapt trim-single was used to 

identify and remove the sequencing adapters for the demultiplexed data (Martin, 2011). The 
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DADA2 pipeline (dada2 denoise-pyro) was used to denoise single-end sequences, dereplicate and 

filter chimeras, followed by Amplicon Sequence Variant (ASV) picking (Callahan et al., 2016). 

Chimeric sequences were removed using the removeBimeraDenovo function with the “consensus” 

method with default values used, except the read truncation length was set to 270 (p-trunc-len 

270). The two ASV tables and representative sequences were merged using feature-table merge 

and feature-table merge-seqs, respectively. Taxonomic classification was performed using the 

feature-classifier plugin (Bokulich et al., 2018) and the SILVA 138-99 reference database (Quast 

et al., 2013). This plugin supports taxonomic classification of features using the Naive Bayes 

method. All ASVs were aligned with mafft (Katoh et al., 2002) (via phylogeny align-to-tree-mafft-

fasttree command) and used to construct a phylogeny with fasttree (Price et al., 2010). After quality 

control, chimera removal and combining the two feature tables, the table was summarized with the 

feature-table summarize command. A total of 18 147 574 sequences were obtained for 647 samples 

(299 gut samples, 10 water samples, 330 skin samples plus eight negative controls). The eight 

negative controls had zero to 10 sequence reads with no consistent taxa present. The decontam 

(Davis et al., 2018) (version 1.8.0) in the R package were used to identify the blank sample ASVs 

as possible contaminants in our sample BCs; however, none of the blank sample ASVs were 

identified as a contaminant. Thus, the negative controls were excluded from the rest of the study, 

and we assumed contamination was not an issue for our data set.  

We used the taxa filter-table, to remove ASVs related to mitochondria, chloroplast and 

eukaryote sequences (3% of total sequence). We also removed “Unassigned” ASVs (13%), as well 

as Bacteria and Archaea ASVs without phylum assignment (1%), resulting in a total of 14 990 847 

sequences remaining. The ASV table was rarefied to 3000 reads per sample for the alpha and beta 

diversity estimation because most of the rarefaction curves plateaued at ~3000 reads as variation 
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in read depth can introduce bias in both alpha and beta diversity indices. Samples with fewer than 

3000 reads were deleted. These deleted samples included three gut and six swab samples (Lake 

Trout (1 gut, 2 swab samples), White Perch (1 gut), White Bass (1 gut), Blacknose shiner (1 swab), 

Pumpkinseed (1 swab), White Sucker (1 swab), Freshwater Drum 1 swab)). This decreased the 

total number of samples to 630 samples (296 gut, 324 swab and 10 water samples) (Table 1). ASVs 

were retained for further analysis only if they had at least 10 sequence reads in at least two samples. 

So, the final analysis included13 884 500 reads (93% of reads were retained) and 6 597 ASVs 

(15% of total ASVs (43 763)).  

3.2.6 BC Alpha and Beta Diversity:  

BC alpha diversity indices were calculated for each sample using QIIME alpha diversity alpha 

command. The calculated alpha diversity indices were Chao1 (a metric for species richness), and 

Faith’s phylogenetic diversity (PD) (a metric that incorporates both species richness and species 

evenness). We estimated beta diversity as the Bray–Curtis dissimilarity matrix among all samples. 

The rarefied ASV table was used for the rest of analyses unless stated. Raw data sets are available 

at the Sequence Read Archive of NCBI with a PRJNA701818 BioProject accession number.  

Table 3.1. Summary of fish species in the Great Lakes sampled for gut and skin, and water microbiome. 

We provide a description of their taxonomic information, normal diet of the host species and where the fish 

were sampled. The number of samples included in our analyses are shown for both skin and gut samples 

(and total number for each fish species) after quality filtering and rarefaction is shown.  

Order Family Genus Species 

Fish species 

(common 

name) 

Feeding 

Detroit 

River 
Lake Erie 

Lake 

Ontario 

T* 

 

G* S* G S G S  

Acanthurifor

mes 
Sciaenidae Aplodinotus grunniens 

Freshwater 

Drum 

Invertivore/

carnivore 
1 5 17 16 10 10 59 

Atheriniforme

s 
Atherinopsidae Labidesthes sicculus 

Brook 

silverside fish 
Planktivore 7 7 - - - - 14 

Clupeiformes Clupeidae Alosa pseudoharengus Alewife Planktivore - - - - 20 21 41 
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Clupeiformes Clupeidae Dorosoma cepedianum 
Americangizz

ard Shad 
Herbivore 9 10 - - 2 2 23 

Cypriniforme

s 
Leuciscidae Notropis atherinoides 

Emerald 

shiner 
Planktivore 5 15  - - - 20 

Cypriniforme

s 
Leuciscidae Notropis heterolepis 

Blacknose 

shiner 

Invertivore/

herbivore 
11 8 - - - - 19 

Cypriniforme

s 
Leuciscidae Cyprinella spiloptera Spotfin shiner 

Invertivore/

herbivores 
12 11 - - - - 23 

Cypriniforme

s 
Catostomidae Catostomus commersonii White sucker 

Invertivore/

detritivore 
5 9 - - 2 2 18 

Gobiiformes Gobiidae Neogobius melanostomus Round goby Invertivore -  8 8 16 16 48 

Perciformes Percidae Sander vitreus Walleye 
Invertivore/

carnivores 
- - 19 19 6 7 51 

Perciformes Moronidae Morone chrysops White bass 
Invertivore/

carnivores 
- - 10 10 10 11 41 

Perciformes Moronidae Morone americana White perch 
Invertivore/

carnivores 
- - 21 21 11 12 65 

Perciformes Centrarchidae Lepomis gibbosus Pumpkinseed 
Invertivore/

carnivores 
5 10 - - 5 5 25 

Perciformes Centrarchidae Ambloplites rupestris Rock Bass 
Invertivore/

carnivores 
3 7 - - 3 3 16 

Perciformes Percidae Perca flavescens Yellow perch 
Invertivore/

carnivores 
10 10 15 15 15 16 81 

Salmoniforme

s 
Salmonidae Salmo trutta Brown trout 

Invertivore/

carnivore 
- - - - 16 16 32 

Salmoniforme

s 
Salmonidae Salvelinus namaycush Lake trout 

Invertivore/

carnivores 
- - - - 22 22 44 

- - - - 
Water 

samples 
- 3 - 2 - 5 - 10 

* Abbreviation: G (Gut), S (Skin), T (Total number of fish) 

3.2.7 Statistical analysis of sequence variants 

 Fish versus Environmental (Water) BCs: To test for the effect of the environmental (water) 

BCs on gut and skin samples, taxonomical compositions of the BCs from the different sample 

types (gut, skin and water) were visualized using stacked barplots of the relative abundance of the 

bacteria at the phylum and family level with the online tool MicrobiomeAnalyst (Chong et al., 
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2020). Moreover, differences in alpha diversity (species richness and evenness (Chao1, PD)) 

among the different sample types (gut vs water, as well as skin vs water samples) in all locations 

combined as well as within each location were statistically tested using the Kruskal-Wallis (KW) 

rank test, followed by a posthoc Dunn test with Bonferroni corrected P values in SPSS (IBM SPSS 

25). Subsequently, Non-metric multidimensional scaling (NMDS) plot using the Bray Curtis 

distance matrix was performed using vegan (v.2.5-7) (Oksanen et al., 2013) and ggplot2 (v.3.3.5) 

(Wickham, 2016) packages in R (v.4.1.0) (Team, 2013) to visualize sample type clustering among 

the sample types (skin, gut, and water). We then used permutational analyses of variance 

(PERMANOVAs) using adonis2 in the vegan (v.2.5-7) (Oksanen et al., 2013) package in R (Team, 

2013) to test for significant differences in beta diversity among the sample types (gut vs water, as 

well as skin vs water samples). 

Fish BCs: Taxonomic composition of the BCs of gut and skin samples from seventeen fish species 

sampled at three locations (Detroit River, Lake Erie, and Lake Ontario) were visualized using 

stacked barplots of the relative abundance of the bacteria at the family level using phyloseq 

(McMurdie and Holmes, 2013) and ggplot2 (Wickham, 2016) packages built on R (Team, 2013). 

Bacteria families with relative abundance less than 10% (ranged between 0-9.99%) in all samples 

were combined and presented as “Family <10 percent” in barplots. To test for the differential 

abundance of bacterial taxa between the gut and skin microbiomes, the ASV table data were 

aggregated to the family level in R (v.4.1.0) using phyloseq package (McMurdie and Holmes, 

2013). Subsequently, the non-normalized ASV table was used for the negative binomial Wald test 

in DESeq2 (Love et al., 2014). Default DESeq2 setting with negative binomial generalized linear 

model (GLM) fitting with Wald significance tests were performed. P-values were adjusted for 

multiple testing using Benjamini Hochberg false discovery rate correction (FDR < 0.05) 
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(Benjamini and Hochberg, 1995). Bacterial taxa showing differential abundance were defined with 

the thresholds of FDR < 0.05 and |log2 Fold Change (FC)| > 2. Differences in alpha diversity 

(Chao1, PD) between gut and skin samples was statistically tested using the KW rank test (as 

described in Fish versus Environmental (Water) BCs section). To test for significant beta diversity 

differences between gut and skin samples PERMANOVAs analysis using adonis2 in vegan (v.2.5-

7) (Oksanen et al., 2013) package in R (Team, 2013). 

Endogenous and exogenous factor analyses: Gut and skin samples clustering based on location 

and fish species were visualized using NMDS plot. Observed differences were assessed for 

significance with PERMANOVAs analyses using adonis2 in vegan (v.2.5-7) (Oksanen et al., 

2013) package in R (Team, 2013). To avoid type one error, fish species that were captured at only 

one location were excluded from the PERMANOVA. To examine the effect of biological (fish 

species identity, and weight) and environmental (location) factors on alpha (Chao1, PD) and beta 

(PCoA 1-5 (gut samples: selected axes had at least eigenvalue >2, percent of variation > 6%; skin 

samples: selected axes had at least eigenvalue >5, percent of variation > 3%)) diversity indices for 

gut and skin samples we built an independent linear mixed model (LMM) in R (v.4.1.0) using 

lme4 (Bates et al., 2014) package including location, and fish species as fixed factors, and fish 

weight as a random factor. We also log10 transformed weight, Chao1, and PD to meet the normality 

and heteroscedasticity assumptions of LMMs. 

3.2.8 Host-microbiome phylosymbiosis 

 To test if skin and gut microbiome composition were linked with host phylogeny, 

cytochrome c oxidase I (COX1) and cytochrome b (cytb) sequences for the host fish species were 

downloaded from NCBI website (https://www.ncbi.nlm.nih.gov/gene) and combined to create an 

artificial sequence. The artificial sequences were aligned using MUSCLE (Edgar, 2004) on the 
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CIPRES Science Gateway v.3.1 (Miller et al., 2011). Subsequently, pair-wise phylogenetic 

distances between the species were calculated using the Kimura two-parameter model of 

substitution in MEGA-X (version 10.2.6) (Tamura et al., 2007). Finally, to evaluate the effect of 

host phylogeny on microbiome dissimilarity (phylosymbiosis), we performed Mantel tests (999 

permutations) in R (version 4.0.) using the vegan (V2.5-7) package (Hammer et al., 2001) to 

compare the bacterial community Bray-Curtis dissimilarity matrixes (skin and gut) and fish species 

phylogenetic distance matrix. To do so, Bray-Curtis dissimilarity data were combined among 

samples within fish species.  
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3.3 Results 

 Fish versus Water BCs: Taxonomic compositions of the skin, gut and water BCs were 

distinct; however, the water BC was most divergent. Across all fish species, the fish microbiome 

was dominated at the phylum level by Proteobacteria (78 % (skin), 56% (gut)), Fusobacteriota (6% 

(skin), 19% (gut)), and Firmicutes (7% (skin), 18 % (gut)). However, the water sample taxa showed 

a different set of common taxa, with only Proteobacteria in common among the dominate taxa 

(Proteobacteria (38%), Actinobacteriota (27%), Bacteroidota (18%)) (Supplementary Figure 

S3.1). At the family level, the fish microbiome was dominated by members of Aeromonadaceae 

(gut (21%), skin (19%)), Fusobacteriaceae (gut (19%), skin (6%)), Enterobacteriaceae (gut 

(17%), skin (17%)), and Moraxellaceae (gut (1%), skin (20%)) (Supplementary Figure S3.2). 

However, at the family level, the water microbiome was dominated by Comamonadaceae (23%), 

Sporichthyaceae (19%), and Chitinophagaceae (5%) (Supplementary Figure S3.2).  

Measures of alpha diversity (Chao1, PD) showed higher diversity in the water than in the fish gut 

and skin samples (Chao1: KW 65, P <0.0001; PD: KW 74, P <0.0001) (Supplementary Figure 

S3.3, Table 3.2). The post-hoc pairwise comparisons revealed that when water samples were 

compared against gut and skin samples, gut samples were more different (Chao1: test statistic -

292, adj P <2.00E-06; PD: test statistic -316, adj P < 1.97E-07) compared to skin vs water (Chao1: 

test statistic -192, adj P <2.00E-03; PD: test statistic -208, adj P < 1.00E-03) samples 

(Supplementary Figure S3.3, Table 3.2). We also tested the differences between gut vs water, and 

skin vs water within each location. The differences between gut vs water compared to skin vs water 

were more pronounced when we performed the analysis within each location (Table 3.2).  

The NMDS plot also showed clear separation between the fish microbiome BCs and the water BCs 

(Figure 3.1). The gut and skin BCs showed considerable overlap in the NMDS; however, the water 

BC was separated from the fish BCs and grouped together, indicative of different community 
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composition. PERMANOVA analyses confirmed the statistical significance of the NMDS clusters 

(PERMANOVA pseudo-F: 12.8, P value <0.001). Subsequently, pairwise PERMANOVA showed 

significant effects for the separate analyses of gut (t-value: 3.02; p-value < 0.001) and skin (F-

value: 3.01; p-value < 0.001) compared to water BCs.  

Table 3.2. Results of the Kruskal-Wallis H test followed by a post hoc Dunn test testing differences in alpha 

diversity indices (Chao1, and Faith’s phylogenetic diversity (PD)) for gut, skin, and water samples among 

all the locations followed by separate tests within each location.  

Variables 
Diversity 

index 

Post-hoc 

Pairwise 

Comparisons 

Test 

Statistic 

Std. 

Error 
Adj. Sig.a d 

Kruskal-

Wallis H 

All locations 

Chao1 

gut-skin -99 14.6 2.94E-11 

2 63 ***b gut-water -292 58.5 2.00E-06 

skin-water -192 58.4 2.00E-03 

PD 

gut-skin -108 14.6 4.69E-13 

2 74 *** gut-water -316 58.5 1.97E-07 

skin-water -208 58.4 1.00E-03 

Lake Ontario 

Chao1 

gut-skin -36 9.8 7.00E-04 

2 23 *** gut-water -134 37.7 1.00E-03 

skin-water -98 37.7 0.02 

PD 

gut-skin -62 9.8 7.14E-10 

2 52 *** gut-water -160 37.7 5.00E-05 

skin-water -98 37.7 0.02 

Lake Erie 

Chao1 

gut-skin -67 7 0.00E+00 
 

2 
76 *** gut-water -85 37 0.06 

skin-water -18. 37 1 

PD 

gut-skin -72 7 0.00E+00 
 

2 
88 *** gut-water -97 37 0.02 

skin-water -24 37 1 

Detroit River 

Chao1 

gut-skin 7 7 1 

2 8* gut-water -76 27 0.01 

skin-water -69 27 0.03 

PD 

gut-skin 17 7 0.04 

2 13** gut-water -84 27 7.00E-03 

skin-water -66 27 0.01 
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             a. Significance values have been adjusted by the Bonferroni correction for multiple tests. 

             b. Significance codes: 0.01 < P ≤ 0.05*, 0.001 < P ≤ 0.01**, P ≤ 0.001*** 

 

 

 

Figure 3.1. NMDS plot of BCs associated with fish gut, skin, and water samples based on Bray-Curtis 

dissimilarity distance. Shapes and colours are based on sample types. 

 

Fish Skin vs Gut BCs: Taxonomic analysis of the BCs of skin and gut showed that Proteobacteria 

(Supplementary Figure S3.1), and specifically members of Aeromonadaceae, and 

Enterobacteriaceae families dominate the fish microbiomes (Figure 3.2, 3.3, and Supplementary 
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Figure S3.2). However, gut and skin samples exhibited different BCs (Figure 3.2, 3.3). Differential 

abundance analysis at the family level was used to acquire more specific insight into differences 

in microbiome BC composition between the gut and skin microbiomes. Comparing the family 

abundances between skin vs gut identified 37 bacteria families that had statistically significant 

differences (Supplementary Table S3.2). For example, while members of Deinococcaceae, 

Exiguobacteraceae, and Moraxellaceae family were at high abundance in skin samples, it was rare 

for gut samples. On the other hand, Microbacteriaceae and Lachnospiraceae were higher in gut 

samples (Supplementary Table S3.2).  

Figure 3.2. Bar plots shoring relative abundance of gut bacterial community composition presented at the 

family level for all fish species at the three sample locations (DR; Detroit River, LE; Lake Erie, LO; Lake 

Ontario). Each bar is representative of an individual fish within that species. 
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Figure 3.3. Bar plot showing relative abundance of skin bacterial community composition presented at the 

family level for all fish species at the three sample locations (DR; Detroit River, LE; Lake Erie, LO; Lake 

Ontario). Each bar is representative of an individual fish within that species.  

  

Moreover, the alpha diversity comparison between gut and skin samples showed that skin samples 

had higher diversity relative to gut samples (Chao1: test statistic -99, adj P <2.94E-11; PD: test 

statistic -108, adj P < 4.69E-13) (Table 3.2, Supplementary Figure S3.3). Although gut and skin 

samples showed considerable overlap in the NMDS plot (Figure 3.1), our PERMANOVA analysis 

showed that gut and skin samples had significantly different BCs (t-value: 4.08; p-value < 0.001).  

Factors affecting fish microbiome: The BC composition in the gut and skin samples of different 

fish species sampled at different locations often showed high levels of variation for both skin and 
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gut microbiomes among host species, within host species and among locations, highlighting the 

potential effect of location, and fish species on fish BCs (Figure 3.2, 3.3). Furthermore, NMDS 

analysis showed that BC composition clustered based on the host fish location (Lake Erie, Lake 

Ontario, Detroit River) (Figure 3.4A-B), as well as host fish species within the location for both 

gut and skin BCs (Figure 3.4C-D). PERMANOVA analyses supported those clustering patterns 

and showed highly significant effects of location, host fish species and their interaction on both 

the gut and skin BCs (Table 3.3). 
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Figure 3.4. NMDS plots of skin and gut microbiome bacterial community composition based on 

Bray-Curtis distance matrices for 17 species of fish sampled at three locations (Detroit River, 

Lake Erie and Lake Ontario). The left panels A and C) show the NMDS for the gut microbiome 

bacterial community compositions, while the right panels (B and D) show the NMDS for the skin 

microbiome bacterial communities in the same fish. The top NMDS plots (A and B) are coded to 

show the location of capture for each fish, while the bottom panels (C and D) are coded to show 

the species of each fish sampled. 
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Table 3.3. PERMANOVA results for bacteria community beta diversity (Bray-Curtis dissimilarity matrix) 

testing for the effects of sample location, fish taxonomy and their interaction for both skin and gut samples. 

Only fish species captured at two or more locations were included in this analysis.  

Variables df SS R2 F value 

Gut 

Location 2 10.5 0.13 17*** 

Fish species 9 6.6 0.08 2.4*** 

Fish species* location 10 6.3 0.07 2*** 

Res 181 55.7 0.70  

Total 202 79.2 1.00  

Skin 

Location 2 15.2 0.17 26*** 

Fish species 9 5.9 0.06 2.2*** 

Fish species * location 10 6.3 0.07 2.1*** 

Res 202 59 0.68  

Total 223 86.6 1.00  

Significance codes: P ≤ 0.001*** 

 

To examine the effect of location, fish species, and weight on the alpha (Chao1, PD) and beta 

diversity for BCs from different anatomical sites (skin and gut), a LMM was used. Weight was not 

significant for alpha and beta diversity indices and was dropped from the model. LMM results 

showed that all tested variables had significant effects on the fish microbiome (Table 3.4). 

However, the effect of location on alpha diversity was more pronounced for skin samples 

compared to gut samples (Table 3.4). On the other hand, fish species identity had more significant 

effects (F value as well as significance level) on gut bacterial diversity and richness than on skin 

BC diversity (Table 3.4). Moreover, location, fish species and their interaction had significant 

effects on beta diversity indices (PCs) of gut and skin samples (Table 3.4).  
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Table 3.4. LMM testing the effect of fish taxonomy, locations, interaction between locations with 

fish species  

Gut  Skin 

Chao1  Chao1 

Variables df  Sum Sq F value  Variables df  Sum 

Sq 

F value 

Location 2 0.1 1.4  Location 2 5.5 46.8*** 

Fish species 16 2.9 2.7***a  Fish species 16 1.3 1.3 

Location * fish 

species 

9 0.9 1.5  Location * fish 

species 

2 2.1 3.9*** 

PD  PD 

Location 2 0.1 1.5  Location 2 4.3 55*** 

Fish species 16 2.1 2.85***  Fish species 16 1.1 1.8* 

Location * fish 

species 

2 0.7 1.7  Location * fish 

species 

2 1 2.9** 

PCoA axis1  PCoA axis1 

Location 2 41287 91.9***  Location 2 9117

2 

215*** 

Fish species 16 6649 1.8*  Fish species 16 1274

7 

3.7*** 

Location * fish 

species 

2 4978 1.2*  Location * fish 

species 

2 4034 2.1* 

PCoA axis2  PCoA axis2 

Location 2 9441 23.5***  Location 2 7674 32.8*** 

Fish species 16 16052 4.9***  Fish species 16 9789 5.2*** 

Location * fish 

species 

2 6030 3.3***  Location * fish 

species 

2 4591 4.3*** 

PCoA axis3  PCoA axis3 

Location 2 6765 26.8***  Location 2 1083

9 

49*** 

Fish species 16 10217 5***  Fish species 16 7167 4*** 

Location * fish 

species 

2 5774 5***  Location * fish 

species 

2 6225 6.2*** 

PCoA axis4  PCoA axis4 

Location 2 482 3.3*  Location 2 2515 18.7*** 

Fish species 16 10029 8.6***  Fish species 16 1373

5 

12.7*** 

Location * fish 

species 

2 820 1.2  Location * fish 

species 

2 2897 4.7*** 

PCoA axis5  PCoA axis5 

Location 2 2991 17.5***  Location 2 462 2.6 

Fish species 16 3176 2.3**  Fish species 16 6551 4.7*** 

Location * fish 

species 

2 1959 2.5**  Location * fish 

species 

2 3860 4.9*** 

a. Significance codes: 0.01 < P ≤ 0.05*, 0.001 < P ≤ 0.01**, P ≤ 0.001*** 
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3.3.1 Phylosymbiosis  

Mantel tests of pairwise correlations between host phylogenetic distances and Bray Curtis BC 

dissimilarity values revealed a significant increase in BC dissimilarity with increasing host 

evolutionary distance for both gut (r= 0.18, P < 0.05) skin samples (r= 0.26, P < 0.01) supporting 

phylosymbiosis for fish gut and skin samples. (Figure 3.5). 

 

Figure 3.5. Scatterplot of host phylogenetic distance vs Bray Curtis dissimilarity matrix for both 

gut (a) and skin (b) samples. Samples are combined based on species identity. Host phylogeny is 

based on combining the sequence of COX-1 and cytb genes. 
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3.4 Discussion 

Diverse exogenous and endogenous factors have been reported that can drive the 

composition of fish microbiomes (Minich et al., 2020a; Sylvain et al., 2020; Uren Webster et al., 

2018). However, the relative contributions of those factors in determining the composition of 

teleost fish microbiome remains poorly understood (Riiser et al., 2020; Sylvain et al., 2020). Our 

study evaluated how the bacterial component of the gut and skin microbiomes in 17 wild 

freshwater fish species sampled at three locations is shaped according to the aquatic environment, 

host species, and host phylogeny. While the fish microbiomes (skin and gut) were very different 

from the surrounding environmental microbiome, sample location (Detroit River, Lake Erie, Lake 

Ontario) had a strong effect on the composition of both the gut and skin BCs across all species of 

fish. Moreover, host species as well as host species-by-location interactions were significant but 

did not explain as much variation in the fish BC composition as the location effect. However, the 

fish species effect was phylogenetically consistent, indicative of long-term co-evolutionary 

relationships. We also observed significant but weak relationships between host phylogenetic 

distance and microbiome dissimilarity, consistent with phylosymbiosis. Overall, our results 

indicate that the host’s habitat has a considerably greater role than host-specific selection in the 

assembly and composition of host-associated microbiome and must be accounted for in any 

assessment of host-specific effects on the microbiome.  

The aquatic microbial communities are thought to be the main source for the bacterial 

component of the fish microbiomes, including the gut and skin (Galbraith et al., 2018). 

Nevertheless, even with the on-going and constant exposure to the bacteria in the surrounding 

aquatic environment, studies indicate that fish harbor microbiomes that are distinct from the water 

microbiome (Chiarello et al., 2018; Reinhart et al., 2019). Our work supported those previous 

findings; we showed that the BCs in the fish gut and skin microbiomes were different than in the 
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surrounding water. Previous studies showed that Proteobacteria, Fusobacteria, Firmicutes, and 

Bacteroidetes often comprise up to 95% of the fish microbiota (Li et al., 2017; Minich et al., 2020b; 

Sylvain et al., 2020; Uren Webster et al., 2020), and our results were consistent with those studies. 

This pattern is expected as Proteobacteria play an important role in the growth of fishes through 

nutrient cycling and the mineralization of organic compounds (Kirchman, 2002), while Firmicutes 

and Fusobacteria have roles in fatty acid absorption, lipid metabolism, fermentative process, and 

degradation of oligosaccharides in fish (Ghanbari et al., 2015). The dominant bacterial phyla in 

the fish microbiome in our study had some overlap with the water BC, where Proteobacteria, 

Actinobacteriota, and Bacteroidota were most abundant phyla in the aquatic environment (which 

agrees with previous studies (Krotman et al., 2020; Sylvain et al., 2020; Uren Webster et al., 

2020)).   

While broad comparisons at the phylum level are valuable, a more detailed differential 

abundance analysis at the family level provides more specific insights into BC variation between 

gut and skin microbiomes. Our differential abundance analysis showed fundamental differences 

between the BCs of skin and gut across a diverse array of host fish species. For example, 

Deinococcaceae and Exiguobacteraceae were generally more abundant in the skin mucus 

microbiome, relative to the gut. On the other hand, members of Microbacteriaceae and 

Lachnospiraceae were more common in the gut microbiome. Bacteria in the family 

Deinococcaceae are obligate aerobes, and have a high resistance to ionizing radiation (gamma- 

and/or ultra-violet (UV) radiation) (Slade and Radman, 2011). This makes it unsurprising that 

Deinococcaceae was more abundant in the skin microbiome, as skin experiences more exposure 

to solar radiation that the gut. Their resistance to ionizing radiation may also contribute to 

Deinococcaceae being reported in habitats associated with high levels of solar radiation, including 
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fish skin (Hu et al., 2021), hot springs (Ferreira et al., 1997) and rivers (Lee et al., 2017). In our 

study, we found a general pattern of elevated levels of Deinococcaceae in pelagic species (such as 

yellow perch, walleye) while lower levels were observed in deep water or benthic species (such as 

brown trout, lake trout, and round goby) (Figure 3.3).The prevalence of Exiguobacterium in the 

skin microbiome in this study is consistent with it’s reported occurrence under a large range of 

environmental conditions (Dastager et al., 2015), including fresh water (White et al., 2018) and 

skin in humans (Tena et al., 2014). So perhaps one reason for the elevated abundance of 

Exiguobacterium in fish skin samples relative to the gut samples in our study is the ability of 

Exiguobacterium to thrive under high variable conditions (Vishnivetskaya et al., 2009), an 

important consideration for fish skin microbiomes that are exposed to considerable environmental 

variation relative to the gut habitat. Our detection of Microbacteriaceae at higher levels in the gut 

microbiome is consistent with previous work that reported them in various terrestrial and aquatic 

ecosystems (Evtushenko and Takeuchi, 2006), as well as associated with fish at various life stages 

(Jami et al., 2015; Liu et al., 2014; Nguyen et al., 2020). The association of Lachnospiraceae with 

the fish gut microbiomes likely reflects their important functional role as intestinal symbionts of 

vertebrates (Arroyo et al., 2019), acting as butyrate producers residing in the intestinal 

microbiome. Members of Lachnospiraceae have been reported in the fish gut (Escalas et al., 2021; 

Ricaud et al., 2018), and indeed have been shown to have a symbiotic link to their host in 

surgeonfish (Arroyo et al., 2019). Finally, we found substantially elevated levels of 

Enterobacteriaceae in the fish skin and gut samples, relative to the water samples (Supplementary 

Figure S3.1). Dominance of Enterobacteriaceae taxa in freshwater fish species microbiomes have 

been widely reported (Egerton et al., 2018; Gajardo et al., 2016; Khurana et al., 2020) likely 
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reflecting the importance of these bacteria for fish health and homeostasis (Huang et al., 2020; 

Krotman et al., 2020).  

 A large volume of published work shows that both endogenous and exogenous factors 

contribute to the teleost microbiome composition (Chiarello et al., 2019; Doane et al., 2020; 

Minich et al., 2020a; Riiser et al., 2020). Endogenous factors can act at the individual level to drive 

variation in the microbiome (e.g., via life history or health status, and host genetics), the population 

level (e.g., via adaptation to local selection pressures) or the species-level (e.g., via genomic 

variation and ancestry) (Wong and Rawls, 2012). On the other hand, abiotic (climate, water 

chemistry, geography, etc.) and biotic (such as water microbiome) exogenous factors can 

contribute to variation in microbiome composition as well (Llewellyn et al., 2016). Our analyses 

of alpha and beta diversity indices for both the skin and gut BCs showed that habitat (exogenous) 

and host fish species (endogenous) had significant effects on the microbiome BCs. A variety of 

studies have reported both environmental and host species effects on the gut and skin microbiome 

composition in fishes (Fu et al., 2020; Kim et al., 2021; Minich et al., 2020a; Sylvain et al., 2020). 

Generally, the skin microbiota is reported to be more affected by environmental factors than the 

gut microbiome (Chiarello et al., 2019; Sylvain et al., 2020), which is not surprizing, given the 

close contact between the aquatic environment and fish skin habitat (Guivier et al., 2020). 

Surrounding environments such as water and sediment are thought to be major sources of skin and 

gut microbiome bacteria (Wu et al., 2012; Xing et al., 2013). In this study, sample location 

dominated host species effects, with, as expected, a stronger effect for the skin BC (R2 = 0.17) 

than for the gut BC (R2 = 0.13). This pattern of skin versus gut effects was despite the strong 

divergence between the fish and water microbiomes. However, our Kruskal-Wallis also showed 

that skin BCs were more similar to that found in the water microbiome than the gut BCs. As the 
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skin is in constant direct contact with the surrounding water microbiome the skin BCs would be 

expected to reflect at least part of the bacteriological composition of the surrounding water (Steiner 

et al., 2021). By contrast, the gut microbiome is known to be strongly influenced by host-related 

factors and diet (Xiao et al., 2021). Our study showed approximately equal effects of host species 

on the gut and skin BCs, this may be due to the inclusion of multiple host species that utilized the 

aquatic habitat quite differently. Given that the gut microbiome habitat is highly controlled by the 

host’s physiology, only bacterial species adapted to that environment would be expected to thrive 

in the gut, hence the host should have considerable effect on the gut BC composition (Sylvain et 

al., 2020). 

 Past work has shown that the gut and skin microbiome among diverse taxa are affected by 

host endogenous factors such as genome composition, ancestry, and diet (Boutin et al., 2014; 

Miyake et al., 2015; Wu et al., 2012). Our observed host fish species effects on both gut and skin 

microbiome BCs agree with previous research showing interindividual, population, and species 

variation for microbial community composition (Boutin et al., 2014), all of which were interpreted 

as due to host endogenous factors. Indeed, in this study we included 17 different fish species 

sampled at three different locations and while we found a strong host species effect, the large 

location effect detected may actually reflect local dietary variation among the study species (Kim 

et al., 2021; Sevellec et al., 2019). Thus, our reported exogenous factor (location), may actually 

include a component of endogenous effects. This is further supported by the significant species-

by-location interaction effect; such an effect reflects species-specific sample location effects, 

which would logically be due to differences in host diet, at least for the gut microbiome BC. The 

specific mechanisms driving variation in the fish BC are still unclear, despite substantial research 

(including this work), likely due to complex interactions among possible mechanisms. Different 
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fish capture methods (electrofishing and trawling) were used in the collection gut and skin samples, 

therefore it is possible that capture methods may have an effect on microbial composition of skin 

and gut samples; however, those effects will be confounded with the location effect.  

 Based on phylosymbiosis, BC similarity is predicted to decrease with the increasing 

evolutionary divergence of host organisms. Moreover, Phylosymbiotic associations between the 

host and its associated microbiome can impact host fitness and support the assumption that hosts 

are adapted to their indigenous microbiomes. For example, hybridization between two different 

host species can initiate mismatches in this mutualistic relationship between the host and its 

associated microbiome as creating a hybrid species by combining independently evolved host 

genotypes may cause a breakdown in either microbial colonization and create dysbiosis or host 

control of the microbiome (Lim and Bordenstein, 2020). Phylosymbiosis can be driven by 

numerous factors, including phenotypic divergence between fishes that are phylogenetically 

distant (Brooks et al., 2016), co-evolution between the individual bacteria in the microbiome and 

the host (Miyake et al., 2016). Additionally, evolutionary processes such as selection, and drift can 

also shape the BC and patterns of phylosymbiosis (Mallott and Amato, 2021; O'Brien et al., 2020). 

Numerous studies have documented an effect of the host fish species on microbiome BCs (Doane 

et al., 2020; Fu et al., 2020; Huang et al., 2020). Our results showed correlations between BC 

composition and host fish taxonomy, and this was the same for gut and skin mucus. Previous 

studies showed that host-specific microbiomes are a widespread pattern in nature, occurring in 

many host organisms (Mallott and Amato, 2021), including within the class of mammalia (Ross et 

al., 2018) and fish (Doane et al., 2020; Pollock et al., 2018). Although some microbial lineages 

may still co-diversify with hosts, phylosymbiosis itself is not an indicator of host–microorganism 

co-adaptation or co-evolution. We observed strong host species-level effects on bacterial alpha 
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and beta diversity as well as significant correlation between phylogeny and Bray Curtis bacterial 

dissimilarities (phylosymbiosis) for gut and skin samples. Evidence for phylosymbiosis in non-

mammalian vertebrate animal including amphibians and fish are inconsistent (Mallott and Amato, 

2021). For example, some studies showed the presence of phylosymbiosis (e.g., in fish (Doane et 

al., 2020)), whereas others report mixed or weak evidence (Riiser et al., 2020; Sylvain et al., 2020). 

Moreover, our results support our hypothesis, that skin mucus was more affected by environmental 

condition compared to gut mucus samples and recent studies on Northern Pike from southwestern 

Quebec, Canada and Amazonian 6 fish populations aligns with our results (Reinhart et al., 2019; 

Sylvain et al., 2020) and strengthens our hypothesis. We also found phylosymbiosis was more 

pronounced in fish skin mucus compared to gut. This was not expected as skin microbial 

communities are highly connected with environmental physicochemical parameters (Sylvain et al., 

2020). One possibility is that there might be some unmeasured confounding factors that are driving 

the correlations. However, given that our fish species ranged across 17 fish species, it is probably 

true phylosymbiosis between fish and gut and skin BC composition. Identifying the mechanisms 

that contribute to patterns of phylosymbiosis between hosts and their microbiomes, as well as the 

factors that reinforce or undermine it, are critical directions for a more robust evaluation of the role 

of co-evolution between microbiome communities and host organisms.  

3.5 Conclusion 

In conclusion, our findings contribute to the characterization of the modulators of microbiome 

composition and diversity across fish taxa. While many studies have characterized fish 

microbiome BCs, few of those studies included multiple species sampled in the wild. We analyzed 

organismal surface and internal microbiomes, as well as the aquatic environmental microbiome, 

across 17 freshwater fish species sampled at three locations in the Great Lakes ecosystem. Our 
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study design provided a robust test of the relative effects of habitat, host species and their 

interaction on the BCs of two key microbiomes associated with fish health and fitness. Not 

surprisingly, we found that the fish microbiome BCs are distinct from the aquatic environmental 

BC, but that sampling location had a strong effect on BC composition, nevertheless. Curiously, we 

found strong host species-by-location interaction effects for both skin and gut microbiome BCs, 

indicating that the species effects varied among the three sampled locations, possibly due to local 

fish diet and/or habitat-use differences. As expected, we also found a significant (based on F 

value), but less strong effect of host fish species on both the gut and skin microbiome BCs. Based 

on the host fish species effect, we tested for phylosymbiosis between the host phylogeny and both 

the gut and skin microbiome BC and found weak but significant correlations between host 

phylogenetic distance and microbial dissimilarity in the skin microbiome. This suggests that both 

the gut and skin BCs co-evolved with their host species, although ecological covariation also 

contributes substantially. Investigations of the nature of fish-microbe associations, and whether 

they are sustained, functional relationships or transient effects of fish and habitat associations are 

critical to further our understanding of the potential beneficial interactions between hosts and their 

microbiomes. 
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Chapter 4 CHAPTER 4: REGULATION OF HOST GENE EXPRESSION BY 

GASTROINTESTINAL TRACT MICROBIOTA 

4.1 Introduction 

 The digestive tracts of nearly all animals examined to date are inhabited by microbes. It is 

evident from various studies in humans (Davison et al., 2017; Dayama et al., 2020; Meisel et al., 

2018) and animals (Fuess et al., 2021; Muehlbauer et al., 2021; Naya-Catala et al., 2021) that there 

are bidirectional interactions between the gut microbiome and the host. These interactions affect a 

wide range of host phenotypes such as metabolism, immunity, and physiology (McFall-Ngai et 

al., 2013). Recent studies have also shown that host genetics can also change and shape the gut 

microbiome (Lopera-Maya et al., 2022; Piazzon et al., 2020). For example, genome-wide 

association studies in humans have revealed an association of lactose (LCT) gene variants (that 

hydrolyzes lactose) with multiple microbial taxa in the gut microbiome (Goodrich et al., 2016; 

Lopera-Maya et al., 2022). The evidence for benefits provided by the gut microbiota is increasing 

rapidly, for example gut microbiota can improve nutrition absorption by epithelia (Krajmalnik-

Brown et al., 2012), facilitate colonization resistance against pathogens (Ducarmon et al., 2019), 

train the immune system and perhaps even modify behaviour and mental health (Surana and 

Kasper, 2017). Moreover, the gut microbiota gains substantial benefits from their gut habitat (e.g., 

available nutrients and suitable habitat) resulting in a mutualistic relationship with the host. This 

provides the context for a unique coevolved process in which host and their gut microbial 

communities coexist and coevolve in a mutualistic adaptive scenario (Escalas et al., 2021). In fact, 

the growing evidence for such close interactions is often used to conclude that the host and their 

gut symbiont microbiomes have co-evolved (Groussin et al., 2020). Although coevolution is 

defined as the reciprocal adaptation process experienced by two organisms as the result of 

reciprocal selection pressures that they apply on each other, it is possible for the microbiome to 
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evolve as both a collection of individual species as well as a community response to host-mediated 

selection (Koskella and Bergelson, 2020).  

Many studies have shown the importance of the gut microbiome in healthy and diseased host states, 

which ultimately affects host fitness (Bozzi et al., 2021; Manor et al., 2020; Yao et al., 2018). The 

gut microbiome has been shown to alter host gene expression (Davison et al., 2017; Nichols and 

Davenport, 2021), perhaps a mechanism for the effect of the microbiome on the host. One way 

that the gut microbiome can affect host gene expression patterns is by changing the expression 

level of the host’s epigenetic modifying enzyme (e.g., histone deacetylase 3 (HDAC3) gene) 

(Nichols and Davenport, 2021). However, the mechanisms and direction of these effects is still not 

clear since the evidence is largely correlational. Does a change in microbiome composition cause 

changes in host gene expression, or vice versa? And if the microbiome can change host gene 

expression, which genes will be more affected? Therefore, it is important to characterize the 

biological mechanisms through which the host microbiome composition can cause changes in host 

gene expression and how this relationship is affected during pathological states. 

 Fish live in diverse aquatic environments, but they all harbour complex and diverse 

microbiomes, and those microbial communities start developing when the eggs are laid (Llewellyn 

et al., 2014). Among the microbial communities populating fish, the one occupying the 

gastrointestinal (GI) tract is the most stable, dense, and individually specific (Egerton et al., 2018; 

Perez et al., 2010). The bidirectional interaction between the host gut and its associated microbes 

may arguably be better established in fish, relative to terrestrial animals, as fish are in constant 

direct contact with the aquatic environmental microbiome through their gut, gills, and skin. 

Moreover, given the long evolutionary history of fish as a group, studying host–microbe co-

evolution in fish may provide unique insights into the host–microbe relationships in general 
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(Montalban-Arques et al., 2015). Characterizing the mechanisms of how the gut microbiota and 

gene expression processes of the host interact in a symbiotic manner, will help explain the 

physiological processes that maintain the balance among these intricated cross-kingdom 

interactions and ultimately, prevent dysbiosis (Nichols and Davenport, 2021). Knowing the 

molecular mechanisms by which microbiota associated with host can drive host responses in the 

gut will lead to new strategies for preventing or treating microbiota-associated diseases. 

 Most studies on host- microbiome interactions are correlative or associative analyses 

without clearly defining cause and effect (Surana and Kasper, 2017). To move beyond 

correlational studies of host-microbiome interaction, microbial studies must address causation 

through perturbation experimental analyses (Xia and Sun, 2017). Using probiotics and antibiotics 

to alter gut microbiome in healthy hosts can provide valuable experimental insight into the 

mechanisms of host-microbiome interactions. Antibiotics can be used for antibiotic-induced 

microbiome depletion (AIMD), because not only can they change the structure of host gut 

microbial communities but also their function (Ferrer et al., 2017). Moreover, probiotics can be 

used to change the microbial community of the gut and stimulate the host intestinal immune system 

(Lee and Bak, 2011). The accepted definition of probiotics is live microorganisms that, when is 

given is sufficient amount, deliver a health benefit to the host (Sanders, 2008). Experimental 

perturbations of the gut microbial community with probiotic strains in human and animal disease 

treatment is well known (Azad et al., 2018). However, the effect of probiotics in healthy 

individuals is not as well characterized.  

 Chinook salmon (Oncorhynchus tshawytscha) are ecologically and economically an 

important migratory species, arguably a keystone species in some ecosystems (Meek et al., 2016). 

However, their populations are declining (Kareiva et al., 2000). As the gut microbiome has a 
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significant impact on host heath and fitness, using Chinook salmon as an animal model to describe 

host- microbiome interactions will not only allow us to characterize the salmon gut microbiome 

effect on the host, but will also have implications for the conservation and management of this 

species. Moreover, external fertilization of Chinook salmon eggs provides the opportunity to use 

controlled breeding designs with large numbers of offspring which will allow correction for host 

genome effects, something that is impossible for other organisms.  

 The direction and nature of host-gut microbiome interactions is still an open question in 

the study of the microbiome, although it is likely bidirectional. Experimental analyses of the 

mechanisms of the host-microbiome interactions are needed to shed light on the nature of host 

microbiome interactions. Here, our goal was to explore a broad range of host gut tissue responses 

induced by the experimental manipulation of the gut microbiome. Specifically, we used antibiotic 

and probiotic treatments, plus control fish, to manipulate the gut microbiome and then compare 

host hindgut tissue gene expression patterns to untreated fish (control fish). We used 16S rRNA 

metabarcoding of the gut bacterial community coupled with host gut tissue transcriptomics to; (i) 

quantify the host gut bacterial community composition changes (and holding water) resulting from 

the antibiotic and probiotic treatments, (ii) determine the response of the host gut tissue 

transcriptome to the treatments, (iii) use gene transcriptional profiling TaqmanTM qRT-PCR to 

characterize the host response to the treatment-altered gut microbiome. Given the long 

evolutionary history of the relationship between fish and their microbiomes, we expect strong 

bidirectional effects, but perhaps the effects of the microbiome on the host are more critical. We 

hypothesized that the host transcriptional responses to each treatment could be attributed to the 

abundance of specific bacterial taxa. The results obtained provide insight into the co-evolved 

symbiotic relationship between host and its associated microbiome that may inform future studies 
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exploring host-microbiome interactions and evolution. Additionally, it will help in better using 

microbiome manipulation (probiotics, antibiotics) to improve host health in fishes as well as 

humans and other animals. 
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4.2 Materials and methods 

4.2.1 Study design 

 We used a domesticated line of Chinook salmon (Oncorhynchus tshawytscha) from Yellow 

Island Aquaculture Ltd, an organic salmon farm on Quadra Island, BC, Canada to create the nested 

breeding design. The breeding design was two sires crossed with one dam (2×1) replicated six 

times. Eggs were fertilized in October 2019 and the eggs for each family were separated into two 

groups and incubated in replicated cells of adjusted incubation trays in a flow-through system fed 

by well water. When the eggs hatched and the fish reached the stage of first feeding, in March 

2020, individuals from replicated incubation tray cells were placed in separate 200 L tanks with 

water flow of 2 L per minute with continuous aeration in a standard hatchery-rearing environment 

(16:8 h light-dark cycle). Fish were fed ~3% of their body weight three times per day with 1.0 mm 

EWOS Harmony fry feed until October 24th, 2020. At that time, 5 fish per family were moved to 

new 200 L tanks for a total of 72 tanks (12 (families)*2 (replicates)* 3 (treatments – see below)).  

4.2.2 Microbiome manipulation 

 We manipulated the gut microbiome of the fish in the tanks using control (untreated) feed, 

antibiotic treated feed and probiotic treated feed – details are described below. 

Antibiotic treatment: Oxytetracycline (OTC), and Chloramphenicol (CAP), two broad spectrum 

antibiotics that frequently are used in aquaculture (Lai et al., 1995; Leal et al., 2019), were selected 

for the trial. Twenty-four tanks (for 12 (families)*2 (replicates)) were labelled as antibiotic and on 

the first day were treated with OTC (83 mg/kg/day concentration) (Kokou et al., 2020; Rosado et 

al., 2019). After six days of OTC-treated food, the fish were switched to a combination of CAP 

(42 mg/kg/day) (Bilandzic et al., 2012) plus the OTC for four more days for a total of 10 days of 

antibiotic treatment. Fish were fed three times a day at approximately 3% of their body weight.  
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Probiotic treatment: Twenty-four tanks (for 12 (families)*2 (replicates)) were labelled as probiotic 

treatment and the probiotic trial was for 10 days. The commercially available Jamieson Probiotic 

Complex with 60 billion colony forming units (CFU) (Jamieson Laboratories, Canada) was used 

for this experiment (Supplementary Table S4.1). Three probiotics capsules per 100 grams of fish 

feed were used. Probiotic-treated feed (3 capsules per 100 gram of feed) was coated with 10 mL 

of sodium alginate (1%) and 10 mL of 0.5 % calcium chloride prior to mixing with the probiotic 

powder. Fish were fed three times a day at approximately 3% of their body weight.  

Control: Twenty-four tanks (for 12 (families)*2 (replicates)) were labelled as control group and 

fish were fed with regular feed without probiotic or antibiotic for ten days. Fish were fed three 

times a day at approximately 3% of their body weight.  

4.2.3 Sampling 

 All fish were terminally sampled after the ten-day trial over one day (November 3, 2020). 

The fish were not fed during sampling. The final mean mass of the fish was 23.3 g (±7.2 SE) across 

all families and treatments (no treatment effect on fish body weight was detected). Three fish were 

dip netted from each tank and humanely euthanized immediately in an overdose solution of clove 

oil (Toews et al., 2019). Of the 72 tanks, four tanks (control) had 100 % mortality and those 

replicates were excluded from the study, bringing the total number of samples to 204 fish (72 

probiotic treated fish, 72 antibiotic treated fish, 60 control fish). The sampled fish were 

immediately weighed and dissected, with the entire GI tract placed in a 50 mL tube with 35 mL of 

a highly concentrated salt buffer (ammonium sulfate, 1 M sodium citrate, 0.5 M EDTA, H2SO4 to 

bring the pH to 5.2) for preservation for later RNA extraction. Moreover, 500 mL water samples 

were collected from each of the tanks (N=68) before sampling the fish and filtered immediately 

using 0.22-micron pore size, 47 mm diameter polycarbonate filters (Isopore™, Millipore, MA). 
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All samples (tissue in preservative and the filters) were stored at –20 °C, until used for DNA or 

RNA extraction. 

4.2.4 Bacterial DNA extraction and 16S rRNA gene library preparation  

 DNA was extracted from whole fish hindgut samples, which included content as well as 

the surrounding tissue (~3-5 gram) using a sucrose lysis buffer solution method previously 

described (Shahraki et al., 2019) and extracted DNA was subsequently stored at –20 °C, until 

further analysis. Additionally, the PCR conditions and 16S rRNA primer sets (1st and second PCR) 

were the same as those used in previously described methods (Sadeghi et al., 2021). Briefly, 16S 

rRNA variable regions of V5-V6 were targeted for PCR amplification and sequencing. The PCR 

cycle program was set at 95 °C for 3 min followed by 28 cycles of 95 °C for 30 s, 55 °C for 30 s, 

and 72 °C for 1 m, and a final step at 72 °C for 7 m. A second short-cycle round (7 cycles) of PCR 

was performed on purified first PCR products to ligate the adaptor and barcode (10 -12 bp) 

sequences to the amplicons as required for sample identification and sequencing. During the first 

and second PCR, nine samples failed amplification and 263 samples (195 gut samples, and 68 

water samples) remained for the gel extraction. The second-round PCR products were gel extracted 

using the QIAquick Gel Extraction Kit (QIAGEN, Toronto, ON, Canada). For each 96 well PCR 

plate, one negative control consisting of PCR mix (of first and second PCR) with ultra-pure water 

instead of DNA template was included. The concentration of the pooled purified PCR product mix 

(i.e., the pooled library) was measured on an Agilent 2100 Bioanalyzer with a High Sensitivity 

DNA chip (Agilent Technologies, Mississauga, ON, Canada). The library concentration was then 

diluted to 60 pmol/μL and sequenced on an Ion S5™ sequencing system using the Ion S5™ 

sequencing reagents and an Ion 530™ Chip (Thermo Fisher Scientific, ON, Canada). 



Chapter 4: Regulation of Host Gene Expression by Gastrointestinal Tract Microbiota 

107 

 

4.2.5 16S Matabarcode Sequence Data Processing 

 The resulting FASTQ file was analyzed using the Quantitative Insights Into Microbial 

Ecology (QIIME2-2020.11) platform (Bolyen et al., 2019). The FASTQ sequence file was 

demultiplexed and the DADA2 pipeline was used to denoise single-end sequences, dereplicate and 

filter chimeras. This was followed by Amplicon Sequence Variant (ASV) picking using the 

removeBimeraDenovo function with the “consensus” method, while default values were used for 

the other parameters (Callahan et al., 2016). Taxonomic classification was done through the 

feature-classifier plugin (Bokulich et al., 2018) using the SILVA 138-99 reference database (Quast 

et al., 2013). This plugin supports taxonomic classification of features using the Naive Bayes 

method. All ASVs were aligned with mafft (Katoh et al., 2002) and used to construct a phylogeny 

with fasttree (Price et al., 2010). A total of 8,820,568 sequences with 19,776 ASVs were obtained 

for the 267 samples (195 gut samples, 68 water samples, and 4 negative controls). The four 

negative controls had 1 to 7 reads and were excluded from the rest of the study. Using a taxon 

filter-table, ASVs related to eukaryotes, mitochondria, chloroplasts (combined ~ 1%), and 

unassigned (1%), were removed resulting in a total of 8,655,659 (98%) sequences remaining. 

Furthermore, to have a better estimate of diversity, samples with low sequence depth (less than 

3000 reads), low abundance taxa (less than 10 ASVs) and ASVs that showed up in only one sample 

were removed. This decreased the total number of samples to 255 samples (189 gut samples, 66 

water samples) with 8,217,478 sequences and 2888 ASVs. The 8 deleted samples were not related 

to specific treatment type or family (antibiotic treatment (one water sample), probiotic treatment 

(4 gut samples, and one water sample), control (two gut samples)). Alpha diversity indices of 

bacterial communities were calculated using the QIIME2 alpha diversity plugin. The ASV table 

was rarefied to 3000 reads per sample for the alpha diversity estimation because most of the 

rarefaction curves plateaued at 3000 reads. The calculated alpha diversity indices were Chao1 (a 
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metric for species richness), and Faith’s phylogenetic diversity (PD) (a metric that incorporates 

both species richness and species evenness). A Bray-Curtis dissimilarity matrix was calculated to 

estimate β-diversity.  

4.2.6 RNA extraction 

 RNA was extracted from host hindgut tissue using TRIzol® reagent (Life Technologies, 

Mississauga, ON, CAT=15596018) following the manufacturer’s protocol. RNA was dissolved in 

sterile water and treated with TURBO™ DNase (Life Technologies, Mississauga, ON) to remove 

genomic DNA contamination and preserved at –80°C until RNA sequencing or cDNA synthesis 

and quantitative real-time PCR were performed (see below).  

4.2.7 RNA sequencing and transcriptome assembly 

 A total of 18 samples from one family but different treatments (6 probiotic treated fish, 6 

antibiotic treated fish and 6 control fish) were used for transcriptome analyses by RNA sequencing. 

Fish from one family were used to minimize differences due to genetic variability among 

individuals. RNA quality was assessed using the Eukaryotic RNA 6000 Nano assay on a 2100 

Bioanalyzer (Agilent, Mississauga, ON). Only samples with an RIN > 7 and a 28S:18S rRNA ratio 

>1.0 were used for RNA sequencing. RNA sequencing libraries were prepared and sequenced at 

the McGill University and Genome Quebec Innovation Centre (McGill University, Montreal, QC) 

using the Illumina NovaSeq 6000 S4 PE100 protocol and 100-bp paired-end sequencing. To 

remove potentially contaminating rRNA sequences, raw sequences were filtered against eight 

default rRNA databases using SortMeRNA v2.1 (Kopylova et al., 2012). The non-rRNA 

sequences were then quality-filtered using the default parameters with Trimmomatic v0.38 (Bolger 

et al., 2014). This filtering step removed poor-quality sequences as well as adapter sequence that 

was required for RNA sequencing. The non-rRNA sequences were aligned to the Chinook salmon 
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(GCF_002872995.1_Otsh_v1.0; https://www.ncbi.nlm.nih.gov/assembly/GCF_002872995.1/) 

reference genome using the splicing aligner HISAT2 (Kim et al., 2015). FeatureCounts (Liao et 

al., 2014), was used to calculate the number of transcript sequence fragments assigned to each 

gene. 

4.2.8 Differential expression gene analysis  

 The output from FeatureCounts was imported into DESeq2 (version ‘1.32.0’) (Love et al., 

2014) in R (R version 4.1.1) (Team, 2013) for normalization and differentially expressed genes 

analysis. After importing the count data into DESeq2, calling DESeq2 command will run several 

steps; briefly these steps are: (i) the estimation of size factors, controlling for differences in the 

counts due to varying sequencing depth of the samples (ii) the estimation of dispersion values 

which captures how much the counts for the gene will vary around an expected value (iii) fitting 

negative binomial generalized linear models for each gene and using the Wald test for significance 

testing of deviation from expected read count values. 

4.2.9 qRT-PCR Primer/probe optimization and cDNA synthesis  

Primer and probe optimization: Fifty transcripts (genes) that were significantly differentially 

expressed between antibiotic and probiotic groups versus control group in the DESeq2 analysis 

were selected for OpenArray Taqman qRT-PCR chips. The selected transcripts are listed in 

supplementary Table S4.2. Four endogenous control genes (β-2-microglobulin, β-Actin, ribosomal 

protein L13, and glyceraldehyde-3-phosphate dehydrogenase (GAPDH)) were selected to 

normalise the transcription profiles of the 50 candidate transcripts for each sample. These four 

genes were selected based on previous studies (Geffroy et al., 2021; Limbu et al., 2018; Toews et 

al., 2019). Initial primers for the candidate transcripts were designed using Geneious Software 

v7.1.5 (http://www.geneious.com) and optimized on DNA from Chinook salmon fry. After PCR 
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optimization, the primers were tested on a subset of our cDNA samples with SyBr® Green Dye I 

(Thermo Fisher Scientific) following the manufacturer's protocol on the QuantStudio 12K Flex 

Real‐Time PCR System (Thermo Fisher Scientific). After testing positive for amplification of the 

expected sized fragment using SyBr® Green assays, new quantitative real‐time PCR (qRT‐PCR) 

primers and Taqman® probes were developed using Primer Express® Software v3.0.1 (Thermo 

Fisher Scientific) for all 54 genes (Supplementary Table 1). The qRT‐PCR primers were developed 

across intron‐exon boundaries, to reduce the chance of amplifying genomic DNA or pseudogene 

RNA and for a short amplicon length (50–100 bp). The Taqman® probe was designed for a melting 

temperature between 57 and 60 °C. 

cDNA synthesis: RNA was quality tested on a random subset of the samples both on a 2100 

Bioanalyzer to determine the RNA Integrity Number (RIN) and on 2% agarose gels. RIN values 

were consistent among samples, ranging between 7 and 9.8. Gel images also showed the expected 

rRNA bands, indicative of good RNA integrity. The RNA concentration for each sample was 

estimated by Spark® multimode microplate reader and NanoQuant Plate™ (Tecan, Morrisville, 

NC, USA). All total RNA preparations had purity values of 1.8 – 2.1 (A260/A280) with 

concentrations ranging from 2,000 to 5,000 ng/μL. TURBO DNA-free™ Kits (Thermo Fisher 

Scientific, cat. no. AM1907) were used to remove genomic DNA contamination. Total RNA 

treated with the TURBO DNA-free™ kit was converted to cDNA using High Capacity cDNA Kits 

(Applied Biosystems, Burlington, Ontario, Canada), following the manufacturer's protocol. 

Reverse transcriptase (RT) reactions contained 10 µL of total RNA at a concentration of 200 

ng/μL, 2 µL of 10X RT random primers (Applied Biosystems), 0.8 µL of dNTP (100mM), 50 U 

of MultiScribe RT (Applied Biosystems) and 40 U of RNase Inhibitor (Applied Biosystems) in a 

2 µL of 10X RT buffer at a final volume of 20 µL. RT reactions were incubated at 25°C for 10 



Chapter 4: Regulation of Host Gene Expression by Gastrointestinal Tract Microbiota 

111 

 

min followed by 37°C for 120 min and were stopped by incubating at 85°C for 5 min. cDNA 

samples were stored at –20°C until further analysis.  

4.2.10 OpenArray high-throughput qRT-PCR 

 TaqMan® OpenArray® chips from Applied Biosystems (Burlington, ON, Canada) were 

used to quantify transcription at the 54 genes (50 candidate and 4 endogenous control genes) on a 

QuantStudio 12K Flex Real‐Time PCR System following the manufacturer's protocol. Each chip 

included 48 subarrays, in a total of 2,688 through‐holes per chip. Thus 48 cDNA samples were run 

(two chips for 48 samples) for each of the 54 genes on each chip. A 5 μL reaction volume which 

includes 1.2 μL of cDNA (100ng/µL/per sample), 1.3 μL of ddH2O and 2.5 μL of TaqMan® 

OpenArray® Real‐Time PCR Master Mix (Applied Biosystems, Burlington, ON, Canada) was 

used, aliquoted across a 384‐well plate and then loaded onto the TaqMan® OpenArray® chips 

using the OpenArray® AccuFill System. The through‐holes on the chips were preloaded with the 

primer and probe sequences for each of the 54 genes by the manufacturer. A total of 10 chips were 

used for 213 cDNA samples. The samples were randomly distributed among the chips. 

ExpressionSuite Software (Applied Biosystems, Thermo Fisher Scientific, Carlsbad, CA, USA) 

was used to analyse the endogenous control genes. Of four endogenous control genes, β-Actin was 

selected for normalization due to high among-sample variation for the three other endogenous 

control genes. Subsequently, all 10 chips were normalized with the selected endogenous control 

gene (β-Actin) together in ExpressionSuite Software v1.0.3 (Applied Biosystems, Burlington, 

Ontario, Canada). Moreover, ExpressionSuite Software was used to calculate raw critical threshold 

(CT) values and the relative critical threshold values (ΔCT). Values produced by this platform are 

already corrected for the efficiency of the amplification (Molina-Lopez et al., 2020). We tested for 

replicate effect using Paired sample T test in SPSS (IBM SPSS Statistics for Windows, Version 
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27.0. Armonk, NY: IBM Corp). As we found no evidence for a replicate effect (P value > 0.05), 

CT and ΔCT values were averaged between the replicate and only one CT or ΔCT value was used 

for each gene. 

4.2.11 Statistical analysis 

Treatment effects on bacterial community composition 

Aquatic bacterial community composition- To test for the effect of treatment on the bacterial 

community composition in the hold tank water, taxonomical compositions of the bacterial 

community were visualized using stacked barplots and Pie charts of the relative abundance of the 

bacteria at the phylum and family level using the online tool MicrobiomeAnalyst (Chong et al., 

2020). Moreover, differences in alpha diversity indices (Chao1 and PD) among the treatments 

(antibiotic, probiotic, control) for the tank water BCs were statistically tested using a Kruskal-

Wallis (KW) rank test. In the case of a significant association, a post hoc Dunn tests with 

Bonferroni corrected P values were done. To visualize among-treatment divergence in the tank 

water BCs, a Principal-coordinate analysis (PCoA) using the Bray Curtis distance matrix was used. 

Subsequently, the significance of the observed clusters was assessed using permutational 

multivariate analysis of variance (PERMANOVA) analysis permutations in Primer 6 (v6.1.15). 

Pairwise comparisons were performed in cases of significant PERMANOVA among treatment 

groups.  

Fish gut bacterial community composition- The effect of treatment on taxonomic composition of 

the gut sample BCs was visualized using Pie charts and stacked barplots of the relative abundance 

of the bacterial taxa at the family and phylum level (Chong et al., 2020). To identify the treatment, 

and parental effects on gut microbial community, alpha (Chao1 and PD) diversity indices for gut 

samples were compared using the KW rank test. Moreover, to visualize treatment effects on BC 
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structure, a PCoA using the Bray-Curtis distance matrix was used to generate scatterplot of the 

first two PCoA axes. Moreover, PERMANOVA analysis were performed in Primer 6 (v6.1.15) to 

test treatment and parental (dams, sires) effect on bacterial community composition. Pairwise 

comparisons were performed when significant differences among the treatment groups were 

detected to identify specific treatment effects.  

Comparison between fish gut and aquatic bacterial community composition- Fish gut microbiome 

BC composition was compared against the environmental tank microbiome BC at both the alpha 

and beta diversity level. Alpha diversity measures (Chao1 and PD) of gut and water samples were 

compared using Mann-Whitney U test in SPSS (IBM SPSS Statistics for Windows, Version 27.0. 

Armonk, NY: IBM Corp). PCoA first and second axes were used to visualize clustering of the 

samples based on sample type (gut or water). Subsequently, PERMANOVA analysis were 

performed in Primer 6 (v6.1.15) to test sample type effect on BC composition. 

Gut transcriptome response to treatment: The DESeq2 (version ‘1.32.0’) package in R (version 

4.1.1) was used to identify differentially expressed transcripts in the host gut transcriptome 

between any of the treatment groups in three pairwise comparisons (antibiotic vs control, probiotic 

vs control, antibiotic vs probiotic). The package uses a Wald test to test the significance of gene 

transcription differences. To identify differentially expressed transcripts, Benjamini–Hochberg 

corrections for multiple testing was used (false discovery rate (FDA) < 0.05). We identified 

differentially expressed transcripts as those genes with thresholds of FDR < 0.05 and |log2 FC| > 

1. Volcano plots of differentially expressed genes between the treatments were generated by using 

the FC and the log-scaled adjusted p value using the EnhancedVolcano package (K et al., 2021) in 

R.  
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Transcriptional profile (qRT-PCR) response to treatment: The 50 selected candidate 

transcripts (hereafter “genes”) were tested to determine which genes showed a transcription 

response to either of the treatments. Two genes (cfap58, ubr4) were dropped from the analysis due 

to failure of PCR amplification for most of the samples, thus 48 candidate genes were included for 

the rest of the study. To reduce the number of independent variables and to avoid over fitting the 

models, we used Principal Component Analyses (PCA) on the qRT-PCR data for the 48 selected 

genes using “prcomp” (which is a part of the R statistical analysis package) and factoextra package 

(1.0.7) (Kassambara and Mundt, 2017) in R (version 4.1.1). Based on a threshold of Eigenvalue > 

1, and % variance explained > 2%, the first nine PC axes were selected. We used Linear mixed 

models (LMM) (lmerTest package (v3.1.3)) (Kuznetsova et al., 2017) in R with the selected PC 

axes to test for the effect of treatment (fixed effect), and the random effects of dam, sire, fish body 

weight, tank ID and chip effect, with all interaction terms for fixed and random factors on gene 

transcription patterns. Chip ID, body weight, dam, treatment×dam, treatment×sire effects were 

nonsignificant before FDR correction and were removed from the model. When any of the nine 

PCs were found to exhibit significant effects with any of the independent variables (treatments, 

dam, sire, body weight, tank ID, or chip effect), we examined the individual gene transcription 

loading values. We used fviz_contrib within the factoextra package (1.0.7) to identify genes with 

contributions to the PC greater than expected (Kassambara and Mundt, 2017). The identified genes 

were included in a second analysis that used LMM with the ΔCT values for the selected genes and 

the same independent variables (treatment (fixed effect), and random effect of dam, sire, body 

weight, tank ID and chip effect), including all interaction terms for fixed and random factors. 

Nonsignificant factors (Chip ID, body weight, dam, and all interactions) were removed from the 



Chapter 4: Regulation of Host Gene Expression by Gastrointestinal Tract Microbiota 

115 

 

model and the analysis was re-run.  Lastly, a sequential Bonferroni P value correction was applied 

for multiple testing correction (Rice, 1989). 

Correlation between gut bacterial community and host transcriptional profile: To investigate 

the direct effect of variation in the gut microbiome BC composition on host gene expression 

patterns, regression analyses were performed using the function lm in R (R version 4.1.1). We 

selected common bacterial taxa (bacteria families with more than 5% contribution to total sequence 

reads counts within each treatment; (7 taxonomic families) and individual genes with evidence for 

treatment effects (P value <0.1 (9 genes)) from the gene-level analysis described above. We 

included treatment and family ID as covariates to account for specific treatment and family effects 

on the relationship between host gut microbiome BC composition and gene transcription. 

Moreover, a sequential Bonferroni P value correction was applied for multiple testing correction 

(Rice, 1989). We visualized the pattern of correlation across all genes and bacterial taxa using a 

heatmap generated in the pheatmap function in R (in the package pheatmap).  
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4.3 Results 

4.3.1 Impact of antibiotics and probiotics on aquatic and fish microbiome.  

Microbial community associated with water: We characterized the tank water bacterial 

community at two taxonomic levels; the phylum and family levels. Aquatic (tank) BC diversity 

was divergent among the treatments, with the top 10 most abundant families making up the 

majority of reads. Proteobacteria were the most common phylum among all the treatment waters 

(control (70%), antibiotic (68%), probiotic (51%)). Bacteroidota (13 %), and Actinobacteriota 

(17%) were also common phylum in the control water. Moreover, in the antibiotic treated water, 

Firmicutes (24%) and Bacteroidota (12%) were common phyla after Proteobacteria. On the other 

hand, in the probiotic treated water, Bacteroidota (12%) and Firmicutes (8%) were the common 

phyla after Proteobacteria (Supplementary Figure S4.1). At the family level, the most common 

aquatic associated bacterial taxa were members of Comamonadaceae), a family of the 

Betaproteobacteria (accounting for 30%, 28%, and 35% bacterial taxa in control, antibiotic, and 

probiotic waters, respectively. Mycoplasmataceae were found in all samples, but at relatively 

higher abundance in antibiotic challenge water compared to probiotic and control waters. Members 

of Oxalobacteraceae were also found in all sampled tanks but at higher abundance in the probiotic 

and control tanks relative to the antibiotic tanks. Other notable freshwater-associated bacterial taxa 

at the family level were Flavobacteriaceae, Pseudomonadaceae, Sporichthyaceae and 

Aeromonadaceae (Figure 4.1A).  

 To quantify treatment effects on the aquatic BCs, alpha and beta diversity indices for water 

samples were compared for the three treatment groups (antibiotic, probiotic, control). Alpha 

diversity analysis (Chao1, PD) showed no significant differences among the groups (Chao1: KW 

5, P > 0.05; PD: KW 3, P > 0.05). However, our PCoA plot showed clear separation between the 
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water samples based on treatments (Figure 4.1B). PERMANOVA results confirmed that the 

overall community structures were significantly different for the three groups (F-value 8.9; R-

squared: 0.22; p-value < 0.001). Pairwise comparison also showed that the three groups are 

different from each other, but with the probiotic treatment group compared to antibiotics treatment 

group showing the highest dissimilarity (probiotic- control F: 2.17, P<0.001; probiotic- antibiotic 

F: 2.86, P< 0.001; control-antibiotic F: 2.77, P < 0.001). Moreover, the average dissimilarity within 

treatments was higher for the control tanks (73.2%) compared to our probiotic (65.4%) and 

antibiotic treatment tanks (61.8%).   
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Figure 4.1. Panel A: Pie charts showing BC diversity from tank water samples for the three treatments 

with the relative abundances of the most abundant bacteria families (15 families). Other less abundant 

taxa (here less than 1%) were merged and renamed as “Others” in the pie chart. Panel B: Scatterplot of 

the first two axes from the PCoA of the tank water microbiome BC where the treated fish were held. 

Treatment is shown by colour with the 95% ellipses. 
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Microbial community associated with gut: Firmicutes were the most common phylum for the 

control and probiotic group fish (46%, and 49%, respectively). On the other hand, members of 

Desulfobacterota were the most common bacteria in the antibiotic treated fish gut microbiomes 

(Supplementary Figure S4.2A). We also compared members of Firmicutes phylum among the 

treatments at the family level. Within the Firmicutes phylum, Mycoplasmataceae was the most 

common gut associated bacterial taxa across all treatments, in addition to other important taxa 

(Supplementary Figure S4.2B). For example, control and probiotic treated fish had 

Mycoplasmataceae (control (65%), probiotic (50%)), Streptococcaceae (control (30%), probiotic 

(28%)), and Lactobacillaceae (control (2%), probiotic (17%)) present. However, in the antibiotic 

group, different families were present within Firmicutes phylum (Mycoplasmataceae (68%), 

Streptococcaceae (14%), and Leuconostocaceae (5%) (Supplementary Figure S4.2B). At the 

family level, the most common gut associated bacterial taxa across all treatment groups were 

members of Desulfovibrionaceae (related to Desulfobacterota phylum) and Mycoplasmataceae 

(Figure 4.2A). While Streptococcaceae had high relative abundances in control group, samples in 

probiotic groups had high relative abundances Lactobacillaceae. Moreover, members of 

Pseudomonadaceae had high relative abundances in antibiotic group (Figure 4.2A). Unlike in the 

tank water microbiome, Mycoplasmataceae was higher in the control and probiotic groups 

compared to the antibiotic group. We also found two important fish associated pathogens, 

Enterovibrio and Photobacterium, in the fish gut microbiome, but at low abundance.  

 To identify the treatment and parental (dams and sires) effects on the gut microbial BC, 

alpha diversity indices for gut samples were compared. Alpha diversity analysis (Chao1, PD) for 

the gut microbiome BC showed no significant differences among the treatments (Chao1: KW 2.8, 

P > 0.05; PD: KW 3.2, P > 0.05), sires (Chao1: KW 6.9, P > 0.05; PD: KW 6.8, P > 0.05), and 
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dams (Chao1: KW 5.3, P > 0.05; PD: KW 8.9, P > 0.05) effects. Beta diversity variation was also 

explored using Bray Curtis distance matrices and a PCoA plot. The PCoA plot showed clear 

separation among the samples based on treatments (Figure 4.2B). PERMANOVA results 

confirmed that the overall BC structures were significantly different among the treatments (Table 

1). Treatment alone had the highest influence on the gut microbial community (Pseudo-F:6.1, P 

value < 0.05). Pairwise comparisons also showed that the three treatment groups exhibit significant 

difference in beta-diversity, with the probiotic versus control treatment samples showing the 

highest dissimilarity (probiotic- control F: 3.01, P<0.001; probiotic- antibiotic F: 2.85, P< 0.001; 

control-antibiotic F: 1.52, P < 0.05). Moreover, the average within treatment group dissimilarity 

was higher for the control gut BC (82.2%) than the probiotic (77%) and antibiotic treatments 

(80.5%), indicating that the control group had higher diversity than the other two groups. Dams 

alone did not have significant effects. However, sires had marginal significant effects on BC 

structures (Table 4.1).  
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Figure 4.2. Panel (A) Pie charts showing BC diversity from Chinook salmon hindgut samples for the 

three treatments with the relative abundances of the most abundant bacteria families (15 families). Other 

less abundant taxa (here less than 1%) were merged and renamed as “Others” in the pie chart. Panel (B) 

Scatterplot of the first two axes from the PCoA of the Chinook salmon gut BC. Treatment is shown by 

colour with the 95% ellipses.  
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Table 4.1. Multivariate statistical testing (PERMANOVA) of effects of treatment, dams, and sires (nested 

within dams) on microbial community beta diversity (Bray-Curtis dissimilarity matrix).  

Source df SS MS Pseudo-

F 

P(perm) 

Treatment 2 41246 20623 6.1 0.001 

Dams 5 23505 4700 1.1 0.22 

Sires 

(Dams) 

6 24259 4043 1.3 0.06 

Res 151 4.6 3107.6 - - 

Total 186 6.5 - - - 

 

Association between gut and aquatic microbial community: We evaluated the relationship 

between the tank water microbiome BC and the fish gut microbiome BC. Chao1 and PD (diversity 

measures) showed significant differences in the species richness of the two sample types; overall, 

diversity was significantly higher in the water samples than gut samples (P <0.001, Mann-Whitney 

U test: 2191.5). The PCoA plot (Figure 4.3) showed clear separation between the gut and water 

samples. Moreover, PERMANOVA test also revealed that the clusters showed in PCoA plot were 

significantly different (Pseudo-F: 39.6, P value< 0.05).  
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Figure 4.3. Scatterplot of the first two axes from the PCoA of the Chinook salmon gut as well as water 

BC. Sample type is shown by colour with the 95% ellipses.   

 

4.3.2 Treatment effects on the host gut transcriptome 

 To determine if antibiotic and probiotic-induced changes in the microbiome led changes 

in the host gut transcriptome, RNA-Seq was used to determine host transcript levels in the 

hindgut. Pairwise treatment comparisons resulted in 96 (control vs antibiotic; 35 control 

upregulated and 61 control downregulated), 105 (control vs probiotic; 61 control upregulated, 

and 44 control downregulated), 120 (antibiotic vs probiotic; 84 antibiotic upregulated, and 36 

antibiotic downregulated) transcripts that were differentially expressed among treatments 

(Benjamini-Hochberg false-discovery rate (BH FDR) 0.1, |log2 FC| > 0.25). However, for 

selecting candidate genes for the OpenArray high-throughput qRT-PCR analyses, we took a 

conservative approach and we only selected genes with transcripts that were significantly 
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expressed at |log2 FC| > 1 and FDR P value < 0.05 (Figure 4.4). This decreased the differentially 

expressed transcripts to 29 (control vs antibiotic), 29 (control vs probiotic), and 27 transcripts 

(antibiotic vs probiotic) (Supplementary Table S4.3). For the control versus antibiotic group 

comparisons, the selected genes related to cellular process (e.g., cell activation, cell 

communication, cell cycle, and cell death) were upregulated and genes related to metabolism and 

response to stimuli and stress were downregulated in antibiotic group (Supplementary Table 

S4.3). While in control versus probiotic group genes related to regulation of different 

functions (intracellular protein transport, angiogenesis, transmembrane transporter, cell adhesion, 

negative regulation of apoptotic process) were downregulated and genes related to post-

translation modifications were highly expressed (Supplementary Table S4.3). Moreover, when 

we compared antibiotic against probiotic group genes related to cellular process (mostly 

apoptotic process) were highly expressed in antibiotic group while genes related to cell adhesion, 

regulation of transcription (tcf12) were highly expressed in probiotic group (Supplementary 

Table S4.3). 
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Figure 4.4. Volcano plots of differentially expressed transcripts (genes) between (a) control vs antibiotic 

(positive FC = downregulation of antibiotic and negative FC = upregulation of antibiotic), (b) control vs 

probiotic (positive FC = down regulation of probiotic, negative FC = upregulation of antibiotic) and (c) 

probiotic vs antibiotic (positive FC= upregulation of probiotic, negative FC = upregulation of antibiotic). 

X-axis indicates the FC (log scaled), whereas the Y-axis shows the p values (log scaled). Each symbol 

represents a different gene, and symbols colour means different criteria based on p value and FC 

threshold; gray (NS, not significant), green (log fold >1), blue (p value < 0.05), red (|log2 FC| > 1 and 

FDR P value < 0.05). FDR p value< 0.05 is considered as statistically significant, whereas (|log2 FC| > 1 

as the threshold. 

 

4.3.3 OpenArray high-throughput qRT-PCR 

 The LMM analysis showed PCs 4, 5, 6, 7 and 9 were significantly affected by treatment 

(Table 4.2). We identified only those genes whose contributions to the significantly affected 

principal component axes were important (Supplementary Figure S4.3) and selected them for 

analyses. In our analysis we also included tank, body weight, and OpenArray chip ID as random 

effects to correct for possible technical, environmental, and body size effects. Chip and body 
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weight were not significant for any of the genes and were dropped from our analyses. Sire effects 

(nested within dam) was not significant effect after FDR correction. Moreover, tank effect was 

observed for only one gene (anxa1, p < 0.05) before FDR correction. Moreover, we found no 

significant effect for dam‐by‐treatment or sire-by‐treatment interactions. When considered FDR 

correction into our model aifm3, manf, and prmt3 still showed significant effect for treatment 

(Table 4.3). 

Table 4.2: LMM model of PC1-9 (Eigenvalue > 1, and % variance explained > 2%) on the qRT-PCR data 

for the 48 selected genes test for the effect of treatment. 

PCA 

axes  

Type III Sum 

of Squares 

df Mean 

Square 

F Sig. 

PC1 64.65   2 32.325      1.7583 0.1752 

PC2 5.1956   2 2.5978   0.445 0.6431 

PC3 7.9187   2 3.9594     1.4297   0.285 

PC4 27.45   2 13.725      9.592 0.0002274 *** 

PC5 31.933   2 15.967    14.448 1.038e-05 *** 

PC6 12.648   2 6.3241     5.9915 0.009771 ** 

PC7 12.193   2 6.0965    4.4468 0.01295 * 

PC8 3.1608   2 1.5804     1.6472  0.2324 

PC9 10.621   2 5.3108      5.9366 0.00316 ** 

a. Significant codes:  0.01 < P ≤ 0.05*, 0.001 < P ≤ 0.01**, P ≤ 0.001*** 
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Table 4.3. Results of the LMM analysis for significance levels for treatment, dam, sire (nested in dam), 

tank (nested in sire nested in dam) effects for each. Body weight, dam, treatment×dam, treatment×sire 

effects were nonsignificant before FDR correction and were removed from the model. Treatment was 

considered as fixed effects, with body weight, dam, and sire effects as random effects. The dependent 

variable was log transformed ΔCT. 

Genes Probiotics 

vs Control 

Antibiotics 

VS Control 

Treatment Sire (nested 

within dam) 

Tank 

(sire(dam)) 

uqcrh 0.9 0.14 0.11 0.036 * 0.32 

sidt2 0.07 0.17 0.08 0.09 0.43 

rabep2 0.05*a 0.60 0.015* 0.78 0.45 

piezo1 0.06 0.25 0.18 1.00 1.00 

ffar2 0.71 0.14 0.09 0.83 0.89 

trpv5 0.52 0.88 0.62 0.33 0.98 

aifm3 0.04* 0.89 0.002 **b 0.009 ** 0.99 

ub 0.78 0.14 0.05* 0.62 1.00 

dspa2b 0.4 0.20 0.06 0.07 1.00 

pml 0.58 0.39 0.60 0.01 * 0.99 

nkpd1 0.27 0.33 0.47 0.04 * 1.00 

tmem38b 0.41 0.02* 0.07 0.13 0.98 

pknox1 0.63 0.44 0.43 1.00 1.00 

manf 0.0001*** 0.87 5.6e-06 *** 1.00 0.14 

ifitm3 0.44 0.35 0.25 0.17 0.49 

ifnar2 0.4 0.80 0.77 0.02 * 0.99 

anxa1 0.57 0.31 0.19 0.13 0.02* 

prmt3 0.0027** 0.16 0.001 *** 0.37 1.00 

a. Significant codes:  0.01 < P ≤ 0.05*, 0.001 < P ≤ 0.01**, P ≤ 0.001*** 

b. Significant bold P value indicates significant after P value correction.  
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4.3.4 Correlation between gut bacterial community and host transcriptional profile  

 A multiple regression analysis was carried out to evaluate the potential link between 

bacterial taxon abundance (at the family level) for taxa common to the gut and differentially 

transcribed genes, while controlling for the treatment, family effect. The abundance of 

Lactobacillaceae, Aeromonadaceae, Streptococcaceae were positively correlated with several 

gene transcription levels (Figure 4.5). 

 

Figure 4.5. Hierarchical clustering of the 7 core bacterial taxa and association with gene expression. 

Columns correspond to the 7 core bacterial taxa; rows correspond to 9 selected differentially expressed 

genes. Red and blue denote positive and negative associations, respectively. The intensity of the colors 

represents the degree of association between the genus abundance and bacterial taxa without considering 

treatment effect. Numbers in each square represent significant P-values (unadjusted) with treatment and 

Family ID effects included in our model.  
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4.4 Discussion 

 Interactions between fish hosts and their microbiomes have been an under-studied area of 

research, perhaps due to the complexity of the host-microbiome relationship making the detection 

of specific microbial features that impact the host phenotype challenging. We approached this 

problem by manipulating gut microbiomes and measured the impact on key candidate gene 

regulation – such effects are likely mechanism for microbes to affect host phenotype and health. 

To the best of our knowledge this study is the first to characterize the response of the fish host 

intestinal gene expression to variation in gut microbiome composition driven by antibiotic and 

probiotic microbiome manipulations. We found that our treatments resulted in changes in host 

gene expression patterns, and those changes were mostly related to immune function and cell 

motility/integrity. By correcting for the direct effects of the treatment, as well as the quantitative 

genetic effects of inheritance, we showed that changes in microbial communities do lead to 

changes in host gene expression. Given the putative function of the responding genes, our work 

indicates a likely effect on host fitness as well. Indeed, many recent studies have shown that 

microbial symbionts are critical biological components for host traits closely associated with 

fitness, such as immune system development and function (Fuess et al., 2021; Langlois et al., 2021; 

Rosshart et al., 2017). 

 To the best of our knowledge, this is the first study to consider and compare the impact of 

probiotics and antibiotics fed to fish on the aquatic microbial communities. Our analysis showed 

that aquatic microbial communities in the holding tanks had unique compositions that were 

significantly influenced by our treatments. This was not expected as the fish food was only 3% of 

the fish’s body weight with relatively low levels of antibiotic and probiotic additives. One possible 

factor is that up 90% of the administered antibiotic dose is excreted in the urine and faeces of the 



Chapter 4: Regulation of Host Gene Expression by Gastrointestinal Tract Microbiota 

130 

 

fish, still in the active form (Polianciuc et al., 2020). Our common bacterial phyla in the tank water 

were reported in other studies that showed Proteobacteria, Bacteroidota, Firmicutes are the 

dominant taxa in water where fish are held, including both hatchery and wild populations 

(Chiarello et al., 2015; He et al., 2018; Stevick et al., 2019; Uren Webster et al., 2018; Zhang et 

al., 2019). However, there were significant differences among our treatment group tank waters. 

One reason for this could be that antibiotics can cause antibiotic-associated diarrhea thus more 

microbial associated with the fish gut could be exported to the water. Another reason could be 

because antibiotic-susceptible taxa are replaced by those taxa that were resistant to antimicrobial 

agents (e.g., Mycoplasmataceae (Firmicutes) (antibiotic (15%), control (1%), probiotic (3%)). 

Moreover, the aquatic microbiome itself is important for maintaining fish health (Blancheton et 

al., 2013), and thus, quantifying the unexpected effects of feed-based treatment of the fish on the 

tank water is important as the changes we documented may contribute to dysbiosis in the fish, and 

ultimately affect fish health negatively. Although the negative effects of antibiotics on healthy fish 

have been reported before, few studies have considered the effect of antibiotic treatment targeting 

fish on the water microbiome. Moreover, our study showed that probiotic treatment of the fish did 

change the water microbiome. Previous studies revealed that feeding with probiotics can 

effectively treat the water with probiotics and can improve water quality (e.g., dissolved oxygen, 

free ammonia, and pH) (Elsabagh et al., 2018; Tabassum et al., 2021). Further studies are needed 

to explore the range of potential effects of fish feed treated with antibiotics and probiotics on the 

rearing water microbiome. 

 The microbial communities present in fish tank water are thought to determine the initial 

colonization of the fish microbiota via direct seeding and by promoting the colonization of other 

species (Llewellyn et al., 2014; Talwar et al., 2018). However, similar to other studies (Uren 
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Webster et al., 2018; Wu et al., 2018), our fish gut microbiomes were distinct from the water 

sample microbiomes. This indicates that the fish host gut microbiome is likely independent of the 

water microbial community and while the water microbiota are likely contributing to the fish 

microbiomes, other factors such as diet and host genome also are contributing to the microbial 

communities (Talwar et al., 2018).   

 Our principal goal was to use probiotic and antibiotic treatments to alter the gut 

microbiome to determine the potential role of gut microbiota composition variation in host-

microbiome interactions. However, we also assessed how the gut microbial community reacted to 

the treatments. We found that, while fish gut BC alpha diversity was not affected by the treatments, 

beta diversity was significantly different among all three groups. Similar results were reported in 

other studies, indicating community richness (alpha diversity) did not respond to treatment with 

probiotics and antibiotics, but beta diversity did (Hernandez-Perez et al., 2022; Kokou et al., 2020; 

Laursen et al., 2017). One possible reason for this is that using antibiotics does not necessarily 

mean a reduced diversity of bacterial taxa, indeed a review showed that individuals with dysbiosis 

(potentially caused by treatment) can have even more diverse microbial community compared to 

healthy individuals (Berg et al., 2020). For example, Rosado et al. (2019) showed that treatment 

of farmed seabass (Dicentrarchus labrax) with OTC caused a decrease in core diversity in the gill 

and an increase in the skin microbiome BCs. One reason that our probiotic treatment did not 

change the community richness (alpha diversity) could be that we treated healthy fish with 

probiotics. Previous studies have shown that probiotic supplements in healthy humans does not 

substantially impact the resident microbial populations (Eloe-Fadrosh et al., 2015; Lahti et al., 

2013). In general, external stimuli that affect the intestinal environment can drive a hierarchical 

series of microbiome responses; resistance, resilience, redundancy or finally dysbiosis−depending 
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on if the disturbance overcomes the intestinal microbial ecosystem (Lozupone et al., 2012; Moya 

and Ferrer, 2016; Sommer et al., 2017). BC compositions are generally sensitive to disturbance 

(Allison and Martiny, 2008). It appears that the microbial response to probiotic treatment in our 

healthy fish study was resilience, as previous studies have shown that the BCs tended to be more 

resilience to external stimuli if the stimuli are not substantial. On the other hand, treatment with 

antibiotics, depending on how strong the dose is, will drive the BC to either of resilience, 

redundancy or dysbiosis.  

  It is worth noting that several potentially pathogenic (Vibrionaceae, Aeromonadaceae) and 

beneficial (Lactobacillaceae, Bifidobacteriaceae) microbes were abundant in the antibiotic and 

probiotic treatment groups – an outcome that has critical implications for aquaculture. Previous 

studies have indicated that lactic acid bacteria (Lactobacillus, Streptococcus and Lactococcus) and 

Bacillus include important agents for biological control in aquaculture (Ringo et al., 2020; Vieco-

Saiz et al., 2019). We found that the relative abundance of lactic acid bacteria was high in probiotic 

group but low in the other two groups. Another important family that was observed across all fish 

was Aeromonadaceae. The Aeromonas genus in the Aeromonadaceae family contains two 

important fish pathogens: Aeromonas hydrophila and Aeromonas salmonicida both of which have 

been shown to pathogenically infect fishes (Ringø et al., 2010). Lastly, another important fish 

pathogen, Photobacterium damselae was detected in the gut microbiome in this study, but at low 

relative abundance. Overall, our results generally agreed with the previously described 

microbiomes of healthy Salmonid species (Minich et al., 2020; Uren Webster et al., 2018). 

We predicted that the gut microbial community would respond to the treatments through an 

increase in beneficial gut bacteria (probiotic treatment) or through a decrease in the beneficial 

microbes with a related increase in the number of potential pathogens (antibiotic treatment). This 
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was based on the expectation that antibiotics can cause dysbiosis in the gut, resulting in elevated 

levels of opportunistic pathogens (Dethlefsen and Relman, 2011; Francino, 2015), while prebiotics 

and probiotics are expected to increase the frequency of gut barrier-protecting bacteria such as 

Lactobacillaceae and Bifidobacteriaceae (Xiao et al., 2014). In this study bacteria with potential 

probiotic properties (Lactobacillaceae, Bifidobacteriaceae, Streptococcaceae) were higher in the 

probiotic group compared to other treatment groups. On the other hand, Pseudomonadaceae and 

Aeromonadaceae had high relative abundances in antibiotic group. Similar patterns of response to 

probiotics and antibiotics in BC structure and composition have been reported by others (Falcinelli 

et al., 2016; Kokou et al., 2020; Navarrete et al., 2008; Rutten et al., 2015). For example, Kokou 

et al. (2020) showed that after seven days of administration of antibiotics via the diet, the European 

seabass (Dicentrarchus labrax) microbiome increased in taxa belonging to Staphylococcus, 

Pseudomonas genera (Proteobacteria). OTC treatment was seen to reduce gut microbial diversity 

in Atlantic salmon, while enhancing possible opportunistic pathogens belonging to Aeromonas spp 

likely due to eliminating competing microorganisms (Navarrete et al., 2008). Moreover, Falcinelli 

et al. (2016) showed that metabarcoding sequence reads for Firmicutes, specifically Lactobacillus 

genus, were significantly higher in probiotic treated Zebrafish (Danio rerio) larvae than control 

fish.  

 Studies in humans (Qin et al., 2010) and fishes (Boutin et al., 2014) have reported that the 

gut microbiome varies substantially at the individual and population level, and the transcriptome 

of the fish gut appears to be correlated with this variation (Franzosa et al., 2014; Qin et al., 2010). 

Moreover, Thaiss et al. (2016) showed that treatment with antibiotics will change the mouse gut 

microbiome, and that the microbiome in turn regulates fluctuations in the host transcriptome and 

epigenome. In our study, we showed that our treatment altered the gut microbiota, then we tested 
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if these changes were associated with changes in host gene expression. Specifically, we showed 

that several genes related to cellular processes such as cell activation, cell communication, and cell 

death were upregulated after treatment with antibiotics in the feed. Although previous studies have 

shown a direct effect of antibiotic treatment on gene transcription in human (Ryu et al., 2017) and 

mice (Morgun et al., 2015). However, Ruiz et al. (2017) showed that antibiotic treatment had a 

limited effect on gene expression in germ-free mice, providing evidence that the microbiome 

mediates the effects of orally administered antibiotics on the host. Morgun et al. (2015) argued 

that most antibiotic-induced alterations in the gut can be explained in three scenarios: depletion of 

the microbiota, direct effects of antibiotics on host tissues, and the effects of antibiotic resistant 

microbes, or possibly a combination of all three. In this study we found that our antibiotic treatment 

resulted in the upregulation of genes related to cell death. Moreover, bacteria from the Firmicutes 

and Bacteroidetes phyla were reduced while members of the Proteobacteria phylum increased. 

Zarrinpar et al. (2018) showed a similar shift the BC in the mouse cecal; however, a cecal 

transcriptome analysis showed that the changes in the BC resulted in changes in the expression of 

genes related to cellular growth and proliferation, as well as cell death and survival pathways. This 

suggests that colonic remodeling after treatment with antibiotics is directly driving changes in the 

host transcriptome. Additionally, in our antibiotic treatment group, we showed increased 

transcription of the mrp7 (multidrug resistance-associated protein 7-like) gene. Multidrug 

resistance-associated proteins are a group of closely related gene products that prevent intracellular 

accumulation of certain drugs, thus the observed change in gene transcription may be an example 

of direct effects of antibiotics on the host tissues. However, our experiment design did not allow 

us to capture the third scenario proposed by Mogun et al. (2015). Moreover, our qRT-PCR method 

showed upregulation of aifm3 gene in antibiotic group. A study by Stoddard et al. (2019) in 
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zebrafish showed that after introducing antibiotics to fish, inflammatory gene transcription was 

downregulated and apoptotic genes such as aifm3 were upregulated within 24 hours. 

 Antibiotics are designed to pass the gut barrier and become systemic; however, probiotics 

are live microorganisms that are not able to pass the lumen barrier. Probiotics can directly modulate 

the host physiology by interacting with host cells (mostly immune cells) at mucosal surface, and 

indirect changes of gut microbiome (Langlois et al., 2021). We showed (transcriptomic data) that 

genes related to post-translation modifications were over-expressed in the probiotic treatment 

group, relative to the control and antibiotic treatment groups. Previous studies showed that 

probiotic diet supplements elicit a proinflammatory response in fish (Nayak, 2010) and honeybees 

(Daisley et al., 2020) which promotes more effective pathogen clearance and improved disease 

resistance. Previous studies have shown that the administration of probiotics might have beneficial 

effects by (i) competing with pathogenic bacteria for habitat and nutrients, (ii) enhancing epithelial 

barrier function and prevention of apoptosis of epithelial cells, and (iii) modulation of host immune 

responses (Dawood et al., 2018; Lebeer et al., 2008). In this study we found that our treatment 

with probiotics indeed changes the BC composition by increasing the number of potential probiotic 

taxa (Lactobacillaceae and Bifidobacteriaceae). Moreover, our treatment with probiotics showed 

upregulation of transcription of genes related to membrane trafficking (e.g., rabep2) and post-

translation modifications (e.g., prmt3, cops6, psmb4), angiogenesis (rspo3), compared to control 

groups. Finally, we noticed that our probiotic treatment changed the transcription of several genes 

(hsbp1, commd10, blnk) related to the immune system when compared to control group, similar to 

previous studies (Petrof et al., 2004; Tomosada et al., 2013). For example, Tomosada et al. (2013), 

showed that Bifidobacteria strains can have immunoregulatory effect on the host intestinal 

epithelial cells by modulation the ubiquitin-editing enzyme. Moreover, similar to this study, 
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Willms et al (2022) also showed that beneficial bacteria can promote intestinal angiogenesis in 

Zebrafish. The precise mechanism of action of probiotics remains to be elucidated, especially in 

heathy states.  

 The mechanisms of bidirectional interaction between the host and their microbiomes have 

been an underexplored area of research. The complexity of microbiomes encourages a shift from 

a reductionist approach to a more holistic one. The reductionist approach focuses on identifying 

specific microbial taxa or host factors that affect the two-way interactions which is ineffective for 

complex systems. However, a holistic approach focus on interactions among networks or groups 

of taxa in the microbiome and multiple host genes with diverse function. Complex ecosystems 

exhibit properties such as nonlinearity and uncertainty and are defined as a system that cannot be 

explained by the sum of its interacting components. One approach to characterize the bidirectional 

interactions between the host and the microbiome BC is to perturb the gut and measure the 

response of the host (such as in AIMD studies). In this study, we used antibiotics and probiotics to 

modify the microbial communities within the gut and measured host gene transcription responses 

to those modifications. We explored this effect using correlation between multiple common 

bacterial taxa and host gene transcription. The results of that analysis were consistent with a 

microbiome-mediated effect on the host. We found that specific microbial taxa are affecting the 

regulation of several host genes, for example, the abundance of Lactobacillaceae was positively 

and negatively associated with the transcription of the rabep2 and manf host genes, respectively. 

Previous work has shown that a single-nucleotide polymorphism (SNP) in the rabep2 gene in 

humans is associated with ulcerative colitis, consistent with a strong association between rabep2 

gene and gut bacterial taxa (Jostins et al., 2012). Moreover, upregulation of manf gene can activate 

innate immune cells and facilitate repair of damaged tissue (Neves et al., 2016; Sereno et al., 2017). 
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However, further studies will be required to determine the specific association of Lactobacillaceae 

with the expression of the manf host gene. 

Finally, we cannot ignore the potential influence of the host’s genetic background on the gut 

microbiome. Several bacteria taxa have shown to be associated (both abundance levels and 

presence/absence) with human genome content (e.g., LCT) (Kurilshikov et al., 2021; Lopera-Maya 

et al., 2022), which strongly suggests that the human gut microbiota can be influenced by host 

genetics (Lopera-Maya et al., 2022). Heritability studies for human gut microbiome composition 

have estimated that the host genetic background could explain between 2% to 8% of gut 

microbiome variation (Goodrich et al., 2016; Rothschild et al., 2018). Unfortunately, there is little 

published information on the heritability of the BC composition in fish species. However, our 

study breeding design was incorporated more to correct for host genetic signal than to estimate 

heritability or specific quantitative genetic variances. Moreover, Dvergedal et al. (2020) reported 

weak associations between host (Atlantic salmon) genetics and gut BC composition, similar to our 

findings. A more focussed analysis of the inheritance of the microbiome in fish is overdue, since, 

unlike mammals and other animals, most fishes do not have an obvious vertical transmission 

mechanism. Similar to other organisms (Gutierrez Lopez et al., 2021; Frazier and Chang, 2020), 

the fish microbiome can go through diurnal changes in community composition and hence 

metabolic activity that are impacted by both the host’s circadian rhythms and diet (Willms et al., 

2022). As a result, the time that we collected the samples during the day (one day sampling) might 

have had an effect on host gene transcriptome. Further studies on how host microbiome can change 

during the day and night can its influence on host transcriptome is needed. Moreover, fish 

subjected to environmental stressors such as pharmaceuticals and anesthetic products can change 
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the gut BC composition (Parrott et al., 2022). In this study we used clove oil to euthanize the fish, 

and this might have effect on both fish gut microbiome as well as host gene expression.  

4.5 Conclusion 

The direction of interaction between fish gut and microbiome is not clear. In this study we 

experimentally modified the fish gut microbiome and evaluated host gut tissue responses to those 

perturbations using transcriptome analysis and transcriptional profiling (qRT-PCR). Short term 

(10 days) perturbation of the juvenile Chinook salmon gut microbiome with antibiotics and 

probiotics affected the microbiome BC composition and host gene expression patterns. This study 

has achieved a number of important goals: (1) characterized the effects of antibiotics and probiotics 

on the aquatic BC (2) characterized juvenile Chinook salmon gut microbiome BC response to 

antibiotic and probiotic treatment (3) characterized the host gut tissue transcriptional response to 

antibiotic and probiotic treatments. We showed that our treatments with antibiotics and probiotics 

not only changed the Chinook salmon microbiome BC (composition), but we also observed 

significant changes at the gene expression level in the gut tissue of the fish. This study provides 

insight into a long-standing co-evolved symbiotic relationship between fish gut tissue and its 

associated microbiome. Moreover, understanding factors influencing the fish gut microbiome and 

its influence on host health and fitness will help in better sustainable growth for the aquaculture.  
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Chapter 5 CHAPTER 5: GENERAL CONCLUSION 

5.1 Summary 

 An ecosystem is usually defined as a particular spatial region that houses elements of 

biodiversity (such as animals, plants, and microorganisms) interacting with each other and the 

abiotic environment (Levin, 2013). Part of what sustains and stabilizes an ecosystem is the 

complex networks of interactions among and within those two elements (biotic and abiotic). 

Aquatic microbes (microeukaryotes and prokaryotes) are vital for the function and stability of 

aquatic ecosystems (Trombetta et al., 2020). The definition of a microbiome includes the genome 

of all the microorganisms plus their surrounding and interacting environment (Berg et al., 2020). 

In this dissertation, I focused on bacteria (chapters 2, 3, 4), and to a lesser extent, microeukaryotes 

(chapter 2) due to their role influencing bacterial diversity and community composition (Audebert 

et al., 2016; Beghini et al., 2017).  

 Due to the complex interactions within the microbial community, a shift from a reductionist 

view that focuses on individual taxa, to a more holistic approach that highlights interactions among 

members of the community and their environments seem necessary. The diverse and complex 

microbial communities that we see today were probably necessary for the evolution of life (Ley et 

al., 2008). Indeed, microorganisms created spatially structured communities as early as more than 

3 billion years ago (Ley et al., 2008) and have thus been an integral part of the evolution of all 

biodiversity. Comparative studies of microbial communities are starting to define how biotic (e.g., 

species interactions) and abiotic features (e.g., salinity or pH) contribute to the structure, 

organization, and function of microbial diversity. Ontario, Canada has more than 250,000 lakes 

that include the largest freshwater ecosystems on the earth - those aquatic ecosystems are 

characterized by diverse and complex trophic interactions, with additional terrestrial input from 
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forests, wetlands, and metropolitan areas. Thus, the aquatic ecosystems of Ontario alone provide 

a powerful natural ecological laboratory to study important questions about microbial ecology, 

host-microbial interactions and co-evolution (Gandhi et al., 2015).  

 Microbial community composition also varies substantially within a diverse range of living 

organisms, including human and fish microbiomes (He et al., 2018; Lozupone et al., 2012). More 

than 32 000 fish species live in an environment that is dominated by aquatic microbiomes (Huang 

et al., 2020). Thus, interactions between fish and environmental microbes are unavoidable and 

ongoing, and due to this close association, fish, more than any other group of animals, may exhibit 

close associations with symbiotic microbiomes. Moreover, since fish evolved earlier than other 

vertebrates, fish and their associated microbes have interacted longer than terrestrial vertebrates 

(Gibson, 2018). Thus, studying host-microbe co-evolution in fish is a logical starting point to 

understanding host-microbe co-evolution in general. Exogenous abiotic and biotic factors (e.g., 

habitat, spatial variation, microbial biodiversity, diet, etc.) and endogenous host-related factors 

(e.g., genetics, physiology, immunity) are driving the composition of the aquatic microbiome in 

both lake ecosystems and host fish species (Minich et al., 2020a; Minich et al., 2020b; Sadeghi et 

al., 2021). Despite the well-documented effects of endogenous and exogenous factors on both the 

host fish microbiomes and the surrounding water microbiome, the disagreement over the relative 

contribution of the factors that drive microbial community composition reflects a critical 

knowledge gap in the field of microbial ecology (Zhou and Ning, 2017). Additionally, to determine 

how host-associated BCs may influence host phenotype, and hence contribute to evolutionary 

processes, quantifying the degree and nature of among-taxa microbiome variation, and the 

systematic drivers behind it, seems crucial.  
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 My thesis provides separate, but connected, lines of evidence for the roles of exogenous 

(abiotic and biotic factors) and endogenous (host-related) factors in determining the composition 

of aquatic microbiomes in both lakes and host fish species. I incorporated multidisciplinary field, 

lab, bioinformatic and statistical approaches that allowed me to address significant knowledge 

gaps in the microbiome field, with the most impactful being; 1) characterizing the biotic and abiotic 

effects on aquatic bacterial communities in north temperate lakes (chapter 2), 2) determining the 

environmental and host species (phylogenetic) effects on the fish microbiome (chapter 3), and 3) 

demonstrating the regulation of host gene expression by the gut microbiome using perturbation 

experiments (chapter 4). The overall goal of my dissertation was to address how environmental, 

as well as host-related factors, can affect microbial communities in an aquatic ecosystem. To 

address that goal, my thesis made several technical, analytical, and conceptual contributions to our 

understanding of the factors that can change the microbial community associated with lakes as 

well as fish. 
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Figure 5-1. Schematic diagram (modified from Kers et al., 2018) showing the endogenous and exogenous 

factors that have been shown to affect fish microbiomes. Solid circles indicate endogenic factors while 

dashed circle indicate exogenic factors affecting the fish microbiome. 

 

 Based on Baas Becking’s hypothesis "Everything is everywhere, but the environment 

selects" (Baas-Becking, 1934), environmental factors should dominate in determining the 

composition of microbial communities.  The regulation of community structure by environmental 

factors could be through the abiotic (e.g., pH, nutrients, etc.) and/or biotic compartments (e.g., 

competition, cooperation, and predation) (chapter 2 (Sadeghi et al., 2021)) which generally is 

referred to as the niche theory or deterministic outcomes. However, recent studies have revealed 

that stochastic processes alone or coupled with the deterministic process can also affect microbial 

community composition (Sadeghi et al., 2021; Zhou and Ning, 2017). Based on stochastic theory, 

all microbial taxa are functionally equivalent, and their community composition is driven by 
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ecological drift, coupled with dispersal limitation with little or no environmental input (Oliphant 

et al., 2019). While there is no doubt that both stochastic and deterministic processes can affect 

microbial community composition, their relative contribution and quantitative strength in 

structuring the microbial composition and temporal/spatial variation in natural communities are 

poorly known (Aguilar and Sommaruga, 2020; Grilli, 2020; Stegen et al., 2012).  

 Chapters 2 and 3 were designed to test for how biotic and abiotic variables shape the 

bacterial communities associated with freshwater lakes and fish, respectively. As shown in 

chapters 2 (Sadeghi et al., 2021) and 3, significant effects of biotic and abiotic factors indicating 

deterministic processes affecting BC composition were identified, with greater effects from abiotic 

than biotic factors. Likely the freshwater BC composition is determined by a combination of 

deterministic and stochastic processes (Yuan et al., 2019); however, my analyses indicate that 

deterministic processes are dominant in the lakes I sampled. Similar to my results, deterministic 

processes have been reported to be the major driver shaping BC composition in freshwater lakes 

(Aguilar and Sommaruga, 2020; Llames et al., 2017). The trophic states of those lakes ranged from 

oligotrophic to hypereutrophic lakes. Moreover, exogenous deterministic factors not only have 

been reported to drive microbial community composition of the freshwater lakes but also the 

microbial community within the fish living in those lakes (Kim et al., 2021; Schmidt et al., 2015). 

However, the role of the factors in determining the composition of the teleost fish microbiome 

remains poorly understood. For example, Heys et al. (2020) showed that neutral processes 

dominate microbial community assembly in the Atlantic Salmon gut (Salmo salar). Further 

research in this area is needed to determine how endogenous versus exogenous factors are affecting 

the fish microbiome. Additionally, in chapter 3, I showed that the fish gut and skin microbiomes 

were substantially divergent from the surrounding water. Although fish are exposed to their aquatic 
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microbiome all their life, microbiome studies in fish generally report that fish skin and gut 

environments harbor different microbiome than the water (Li et al., 2015; Reinhart et al., 2019; 

Schmidt et al., 2016). 

 Similar to humans (Lopera-Maya et al., 2022) and other organisms (Gogarten et al., 2018; 

Rudman et al., 2019; Wen and Duffy, 2017), the composition of the gut and skin microbiome in 

fish is dependent on endogenous factors, as exogenous factors alone only explain a small part of 

the variation associated with fish microbiomes. Host endogenous factors such as genomic variation 

(Riiser et al., 2020), gut and skin morphological features (Egerton et al., 2018), and fish age 

(Minich et al., 2020a) are known to drive variation at the individual level (Boutin et al., 2014), the 

population level (Uren Webster et al., 2018) and the species-level (chapter 3; (Kim et al., 2021).  

 Based on “the Red Queen hypothesis” (Van Valen, 1973), biotic interactions should 

dominate abiotic forces in driving evolution as biotic effects can adaptively evolve in both 

directions. This hypothesis has improved our understanding of the evolutionary process as biotic 

conflict can cause microevolutionary responses which subsequently can accumulate into 

macroevolutionary changes (Brockhurst et al., 2014). This is the basis of coevolution, which is the 

process of reciprocal evolutionary changes that appears in pairs of species (O'Brien et al., 2019). 

The Red Queen hypothesis is centered on the concept of antagonistic coevolution, or –host-

parasite/pathogen coevolution, and presumes that adaptations that increase the fitness of one 

species will decrease the fitness of another and thus drive selection (O'Brien et al., 2019). 

Moreover, mutualistic/symbiotic relationships can also cause coevolutionary patterns, resulting in 

benefits on both sides of the relationship (Herre et al., 1999).  

 “Phylosymbiosis”, a pattern of coordinated microbiome-host divergence across host 

species, has been documented among diverse organisms such as within the class Mammalia (Ross 
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et al., 2018), and fish (Doane et al., 2020; Ross et al., 2018). According to phylosymbiosis theory, 

two closely related species (phylogenetically) will have more similar microbiomes than distantly 

related hosts (Lim and Bordenstein, 2020). Evidence for phylosymbiosis in non-mammalian 

vertebrate animals, including amphibians and fish, are not consistent. For example, one study 

showed the presence of phylosymbiosis in coral reef fishes (e.g. (Pollock et al., 2018), whereas 

others report no relationships in 12 co-occurring species of teleost (Escalas et al., 2021) or weak 

relationships (Chiarello et al., 2018) in coral reef fishes. In chapter 3, I found skin and gut samples 

were showed phylosymbiosis patterns. However, the phylosymbiosis signal for skin BCs was 

stronger than for gut BCs. This was surprising as my expectation was that the fish skin microbiome 

would be less impacted by evolutionary changes in the host than the fish gut microbiome, similar 

to what has been reported in terrestrial animals (Ley et al., 2006). One reason for this could be 

related to the aquatic environment (with a diverse group of microorganisms and environmental 

variation) that fish interact with. As a result, skin microbiomes are exposed to harsher 

environments compared to the gut. For example, bacterial communities on the skin are exposed to 

a diverse micro-predator (including protists, predatory bacteria, and bacteriophages) that are not 

able to live in the fish gastrointestinal environment. The success of the fish skin microbiome BC 

(highly differentiated from the water microbiome) probably would not be possible without close 

association with control factors from the host. Moreover, only a small subset of aquatic microbial 

taxa can colonize the skin. The skin microbial community likely has strict conditions for 

membership such as various enzymes to utilize available nutrients on fish skin mucus, being able 

to attach to the ‘‘right’’ location on the skin, or the ability to grow rapidly to avoid washout. This 

implies that the successful taxa are highly adapted to their host and there is a strong selection from 
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the fish for a specific skin community. Such a scenario would explain the strong association 

between fish phylogeny and the skin microbiome BC.  

 In chapter 4, I found that modification of the gut microbiome in fish caused changes in host 

gene expression patterns (Dethlefsen and Relman, 2011; Douglas, 2019; Zheng et al., 2020; Figure 

5-2). Co-evolution requires symmetrical bidirectional selection pressures from each of the two 

species. I speculate that the peculiar structure and composition of bacterial communities in the fish 

gut and skin tissue developed from natural selection acting at two levels. At the host level, selection 

on the community provides stable environments in gut and skin with a high degree of functional 

redundancy. At microbial level, strong selection pressures would be applied for functional 

specialization to succeed in the skin and gut environments. Interactions between bacteria with 

bacteria or other organisms are often described as commensal (one side benefits and the other side 

appears unchanged) rather than mutualistic (benefits for both sides), or parasitic (benefit for one 

side at the expense of the other). It seems that the bidirectional interaction between the fish and its 

associated microbes is more mutualistic rather than commensal or parasitic. Microbial 

communities in fish benefit their host by protecting the fish from pathogens, aid in the development 

of the host immune system and facilitate nutrition absorption. In compensation fish also provide a 

habitat and nutrition for their associated bacterial communities.  
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Figure 5-2. Schematic diagram (modified from Awany et al., 2018) of the host-microbiome interaction; a 

possible scenario that the three-way interactions between environment-microbiome-host can determine 

the microbiome composition, host gene expression pattern, and finally host phenotype. A (blue lines): 

host genetic background (genome composition) directly influences the host phenotype, mediated by 

environmental signals (as shown in chapters 2, 4). B: (purple lines) endogenous and exogenous factors 

can modulate the microbiome and the microbiome will affect the host’s phenotype but note the indirect 

effect of the host’s genome (chapters 3 & 4). C (green lines): another mechanism for three-way 

environment-host-microbiome interactions affecting host gene expression which results in changes in host 

phenotype (as shown in chapters 2,3,4). Probably C is the main way that the environment-host-

microbiome interactions can change host gene expression patterns.  

 

5.2 Conclusion 

 In conclusion, my thesis contributes to the characterization of the modulators of 

microbiome composition in aquatic systems, including both freshwater lakes and fish host habitats 

in those lakes. My study design provided a robust test of the relative effects of exogenous abiotic 
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(chapter 2), biotic (chapter 2, and 3), and endogenous host-specific factors (chapter 3, and 4) on 

aquatic microbiomes. Moreover, I also characterized the effect of the gut microbiome on host 

phenotype (chapter 4). In general, I found a higher impact from exogenous factors relative to 

endogenous factors. Investigations of the nature of fish-microbe associations, and whether they 

are sustained, functional relationships, or transient effects of fish and habitat associations are 

critical to further our understanding of the potential beneficial interactions between the host and 

their microbiomes.  

5.3 Future directions 

Deterministic (mainly) and stochastic processes drive the microbial communities associated with 

freshwater lakes (chapter 2). However, I am aware of confounding interaction effects (either 

stochastic or deterministic). Partitioning those suspected and unknown effects in natural systems 

would be difficult, if not impossible. By implementing controlled experiments in the lab or semi-

natural mesocosms, then adding or changing individual environmental factors (such as nutrients) 

and/or biotic factors (i.e. change the microeukaryote community) in separate steps, we would have 

a better quantitative estimate of the effect of deterministic versus stochastic processes on microbial 

community composition. Moreover, such an approach would allow the quantification of the 

mutualistic and parasitic relationships among bacteria and microeukaryotes that contribute to BC 

composition (chapter 2) but are so complex in most natural systems as to make detailed 

assessments impossible. Specifically, an important next step building on my work would be to test 

the positive and negative correlations identified in my network analysis under controlled (lab) 

conditions.  

 Furthermore, I showed evidence for phylosymbiosis for gut and skin samples across 17 

different fish species. An important extension of this work would be to include fish species that 
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diverged at specific time scales or selecting taxa that have known evolutionary relationships. 

Alternatively, we can select species within a single genus (to control for phylogeny) but with 

different diets (e.g., carnivore, omnivore, and herbivore), or species from different taxonomic 

orders with similar diet preferences to quantify the role of possible phylogeny-associated diets in 

phylosymbiosis. Moreover, it will be interesting to compare the phylosimbiotic patterns among 

ovoviviparous and viviparous fish species with the prediction that ovoviviparous fish species will 

have weaker phylosimbiosis due to the higher influence from the environment and less selection 

pressure from the host. 

 In chapters 3 and 4, I showed that the host-microbiome relationship in aquatic ecosystems 

is strong. The next step should be to characterize how the host genome variation affects the BC 

composition, and more importantly, the mechanisms of interaction between the host and 

microbiome. This can be through heritability assessment (controlled breeding), using genetically 

modified host fish, or using clonal or highly inbred fish. Previous studies have shown that between 

2-8 percent of the microbiome in humans is heritable. However, those studies have been done in 

humans, with greater maternal effects (including vertical transmission of the vaginal microbiome 

(Mueller et al., 2015) compared to fish. Although some recent studies have shown the possible 

vertical transmission of the microbiome from the dam to offspring in fish (Ziab, 2020), still there 

is a lack of strong evidence of vertical transmission of the microbiome for aquatic species.  

 Finally, in chapter 4, I showed positive and negative correlation between some bacterial 

taxa and host gene expression. For example, members of Lactobacillaceae were positively and 

negatively associated with the transcription of the rabep2 and manf host genes, respectively. An 

exciting next step would be to further test the mechanisms driving these associations between 
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different bacteria taxa and the host genome transcription using knock-down experiments (miRNA) 

or knock-out experiments (CRISPR-cas9) with control and or germ-free fish.  
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APPENDIX A; SUPPLEMENTARY INFORMATION OF CHAPTER 2 

 

Supplementary Table S2.1. Sampled Ontario, Canada lakes with name, location, and sampling details  

Lake Lake ID Latitude Longitude Number of 

sampling sites 

Number of 

bottles per 

lake 

Totala 

Balsam L27 44.6292 -78.846 1 2 4 

Bass L9 44.57445 -76.0843 1 2 4 

Bernard L50 45.75027 -79.4003 1 3 6 

Big Blad L32 44.58432 -78.3906 1 2 4 

Big Rideau L11 44.70099 -76.1859 1 2 4 

Boshkong L37 45.09121 -78.7399 1 2 4 

Buck L16 44.51214 -76.477 2 4 8 

 44.53503 -76.44488 

Buckhom L33 44.47568 -78.3689 1 2 4 

Cameron L26 44.54191 -78.7869 1 2 4 

Charleston L7 44.54705 -75.9842 1 2 4 

Colonel L1 44.29347 -76.4496 2 4 8 

 44.30075 -76.43149 

Commanda L54 46.01451 -79.6962 1 3 6 

Couchiching L23 44.73575 -79.3532 2 4 8 

 44.72063 -79.34429 

Cranberry L3 44.4509 -76.2856 1 2 4 

Deer L52 45.80905 -79.5654 1 3 6 

Devilb L15 44.586 -76.4684 3 5 10 

44.57821 -76.4251 

44.57796 -76.51149 

Dog L2 44.39791 -76.3552 1 2 4 

Draper L19 44.48043 -76.5234 1 2 4 

Eagle L51 45.83491 -79.5014 2 6 12 

45.80907 -79.5103 

Fairy L49 45.33778 -79.1912 1 3 6 

Four Mile L34 44.69574 -78.7237 1 2 4 

Gananoque L5 44.45482 -76.1536 1 2 4 

Grippen L6 44.51514 -76.1516 1 2 4 

Gull L35 44.85951 -78.7665 1 2 4 

Halls 38 45.11862 -78.7566 1 2 4 

Kahshe L44 44.85069 -79.3032 1 2 4 

Kawartha L28 44.52129 -78.6263 1 2 4 

Kawigamog L59 45.89188 -80.1814 1 3 6 

Kushog L40 45.11339 -78.8103 1 2 4 
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Lake Joseph L60 45.1824 -79.7677 1 3 6 

Lake of bays L42 45.25506 -78.9787 2 4 8 

45.17768 -79.09778 

Little Blad L30 44.57509 -78.4259 1 2 4 

Little Franklin L17 44.48964 -76.4821 1 2 4 

Loon L13 44.60412 -76.4015 2 4 8 

44.61845 -76.38437 

Loughborough L20 44.37706 -76.529 1 2 4 

Lower Beverley L10 44.60152 -76.148 1 2 4 

Lower Buckhom L32 44.55433 -78.2818 1 2 4 

Mary L47 45.24395 -79.2646 1 3 6 

Milton L56 45.91049 -79.8664 1 3 6 

Mosquito L14 44.6055 -76.3658 1 2 4 

Mountain L36 44.98289 -78.7191 1 2 4 

Mud L18 44.48808 -76.4918 1 2 4 

Muskoka L45 45.02184 -79.454 2 6 12 

45.0643 -79.46823 

Nipissing L53 46.29998 -79.4646 2 6 12 

46.12049 -79.5338 

Odessa L22 44.29968 -76.7017 1 2 4 

Penfold L46 45.26739 -79.2815 1 3 6 

Pigeon L29 44.46662 -78.5045 1 2 4 

Raven L41 45.22878 -78.8625 1 2 4 

Restoule L55 46.05214 -79.7128 1 3 6 

Rosseau L58 45.93109 -80.0464 1 3 6 

Saskachewan L39 45.12937 -78.7792 1 2 4 

Seagull L57 45.90971 -79.9347 1 3 6 

Simcoe L25 44.58826 -79.4042 3 6 12 

44.55818 -79.25674 

44.35104 -79.24893 

South L4 44.44012 -76.2343 1 2 4 

Sparrow L43 44.8124 -79.375 1 2 4 

St. John L24 44.68702 -79.3115 1 2 4 

Sydenham L21 44.430485 -76.525623 1 2 4 

Upper Beverley L8 44.61509 -76.0742 1 2 4 

Upper Rideau L12 44.6872 -76.3449 1 2 4 

Vernon L48 45.31416 -79.2763 1 3 6 

a. Number of samples after cutting each filter into half and extracting from both halves   

b. For Devil Lake one bottle broke during transportation: 5 bottles remained. 

 

 

 



Appendix A; Supplementary Information of Chapter 2 

166 

 

Supplementary Table S2.2. Results from the nested ANOVA for various measure of microbial community 

composition testing for the effects of sampled lake, location within the lake, and the biological and technical 

replicates.  

16S Chao1 

Variable  Df Sum Sq Mean Sq F value Pr(>F) 

Lake 57 2129490  2129490   28.704 4.03e-06 *** 

Location (lake) 49 2383     2383    0.032     0.859 

Biological replicate (Location) 51 88079    88079    1.187     0.283 

Technical replicate (Biological replicate×Lake) 43 10318    10318    0.139     0.711 

16S Observed OTUs 

Variable  Df Sum Sq Mean Sq F value Pr(>F) 

Lake 57 13581    13581    6.481 0.0150 * 

Location (lake) 49 6016     6016    2.871 0.0982  

Biological replicate (Location) 51 5850        5850 2.792 0.1028 

Technical replicate (Biological replicate×Lake) 43 303      303    0.145 0.7057   

16S PC1 

Variable  Df Sum Sq Mean Sq F value Pr(>F) 

Lake 57 0.04739  0.04739   14.215 0.000541 *** 

Location (lake) 49 0.00491  0.00491    1.473 0.232146 

Biological replicate (Location) 51 0.00049  0.00049    0.147 0.703671 

Technical replicate (Biological replicate×Lake) 43 0.00066  0.00066    0.197 0.659400 

16S PC2 

Variable  Df Sum Sq Mean Sq F value Pr(>F) 

Lake 57 0.01101  0.011011    4.379 0.0429 * 

Location (lake) 49 0.00008  0.000082    0.033 0.8577 

Biological replicate (Location) 51 0.00351  0.003506    1.394 0.2448 

Technical replicate (Biological replicate×Lake) 43 0.00291  0.002909    1.157 0.2887 

16S PC3 

Variable  Df Sum Sq Mean Sq F value Pr(>F) 

Lake 57 0.00278  0.0027802    1.305   0.260 

Location (lake) 49 0.00094  0.0009354    0.439   0.511 

Biological replicate (Location) 51 0.00129  0.0012919    0.607   0.441 

Technical replicate (Biological replicate×Lake) 43 0.00068  0.0006821    0.320   0.575 

18S Chao1 

Variable  Df Sum Sq Mean Sq F value Pr(>F) 

Lake 51 11482    11482    0.260   0.613 

Location (lake) 43 66961    66961   1.516   0.225 

Biological replicate (Location) 47 518     518      0.012   0.914 

Technical replicate (Biological replicate×Lake) 42 1218       1218 0.028   0.869 

18S Observed OTUs 
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Variable  Df Sum Sq Mean Sq F value Pr(>F) 

Lake 51 14322    14322    1.739   0.194 

Location (lake) 43 2182     2182    0.265   0.609 

Biological replicate (Location) 47 572      572    0.069   0.793 

Technical replicate (Biological replicate×Lake) 42 989      989    0.120   0.731 

18S PC1 

Variable  Df Sum Sq Mean Sq F value Pr(>F) 

Lake 51 0.06746  0.06746   19.276 6.78e-05 *** 

Location (lake) 43 0.00049  0.00049    0.140     0.710 

Biological replicate (Location) 47 0.00374  0.00374    1.070     0.307 

Technical replicate (Biological replicate×Lake) 42 0.00029  0.00029    0.084     0.773 

18S PC2 

Variable  Df Sum Sq Mean Sq F value Pr(>F) 

Lake 51 0.02682  0.026819    5.045 0.0296 * 

Location (lake) 43 0.00654  0.006538    1.230 0.2733   

Biological replicate (Location) 47 0.00854  0.008543    1.607 0.2114 

Technical replicate (Biological replicate×Lake) 42 0.00064  0.000642    0.121 0.7298 

18S PC3 

Variable  Df Sum Sq Mean Sq F value Pr(>F) 

Lake 51 0.09442  0.09442   71.017 8.31e-11 *** 

Location (lake) 43 0.00064  0.00064    0.481     0.491 

Biological replicate (Location) 47 0.00179  0.00179    1.345     0.252 

Technical replicate (Biological replicate×Lake) 42 0.00055  0.00055    0.412     0.524 

*** = p<0.001; ** = p<0.01; * = p<0.05 
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Supplementary Table S2.3: Results from the nested PERMANOVA for microbial (bacteria and micr-eukaryote) 

community beta diversity (Bray-Curtis dissimilarity matrix) testing for the effects of sampled lake, location within 

the lake, and the biological and technical replicates. 

16SrRNA   Df Sum Sq Mean Sq F value R2 Pr(>F) 

Lake 57 1.7363  1.73627   9.2202 0.18271   0.036 * 

Location (lake) 49 0.3014  0.30144   1.6007 0.03172   0.062 

Biological replicate (Location) 51 0.3447  0.34471   1.8305 0.03627   0.083 

Technical replicate (Biological replicate×Lake) 43 0.1529  0.15286   0.8117 0.01609   0.392 

18SrRNA   Df Sum Sq Mean Sq F value R2 Pr(>F) 

Lake 51 1.7363  1.73627   9.2202 0.18271   0.029 * 

Location (lake) 43 0.3014  0.30144   1.6007 0.03172   0.056 

Biological replicate (Location) 47 0.3447  0.34471   1.8305 0.03627   0.084 

Technical replicate (Biological replicate×Lake) 42 0.1529  0.15286   0.8117 0.01609   0.401 

*** = p<0.001; ** = p<0.01; * = p<0.05 

 

 

 

 

Supplementary Table S2.4: Results from the pairwise PERMANOVA for microbial (bacteria and micr-eukaryote) 

community beta diversity (Bray-Curtis dissimilarity matrix) testing for testing significant differences between NJ 

clusters  

BC NJ clusters T value P value MEC NJ clusters T value P value 
C1-C2 2.44 0.001** C1-C2 2.06 0.001** 

C1-C3 2.30 0.001** C1-C3 1.77 0.002** 
C1-C4 1.00 0.432 C1-C4 1.83 0.002** 

C1-C5 1.27 0.02* C1-C5 2.68 0.001** 
C1-C6 1.89 0.001** C2-C3 1.30 0.014* 

C2-C3 1.72 0.001** C2-C4 1.40 0.001** 

C2-C4 1.40 0.088 C2-C5 1.65 0.001** 
C2-C5 1.57 0.013* C3-C4 1.31 0.03* 

C2-C6 2.17 0.001** C3-C5 1.20 0.012* 

C3-C4 1.31 0.095 C4-C5 1.33 0.004** 

C3-C5 1.48 0.014*  
C3-C6 2.19 0.001** 

C4-C5 1.25 0.34 

C4-C6 1.16 0.13 
C5-C6 1.25 0.02* 

*** = p<0.001; ** = p<0.01; * = p<0.05 
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Supplementary Table S2.5. Mean (and variance) of the physical and biogeochemical characteristics of the sampled 

lakes.  

Factors N Min Max St. Dev. Variance 

Depth (m) 55 3 92 21.2 453 

Depth (log) 55 1.4 4.53 0.7 0.5 

Surface area (he) 58 18 88052 14855 220675893 

Surface area (log) 58 2.9 11.3 1.61 2.7 

Volume (m3 x106) 47 0.4 11408 1744 3041246 

Volume (log) 47 0.3 9 1.87 3.6 

Shoreline length (km) 50 2.8 1013 180.61 32620 

Shoreline length (log) 50 1.3 6.9 1 1.3 

Altitude (m) 59 78 480 95.48 9118 

Altitude (log) 59 4.3 6 0.4 0.2 

Secchi depth (m) 50 0.4 8 1.8 3.4 

Secchi depth (log) 50 0.3 2.1 0.4 0.1 

TP (mg/L) 52 0.001 0.09 0.01 0.0002 

TP (log) 52 0.0009 0.08 0.01 0.0002 

Calcium (mg/L) 48 1.5 43.8 13 170 

Calcium (log) 48 0.9 3.8 0.9 0.8 

pH 51 6.4 8.5 0.6 0.4 

pH(log) 51 2 2.2 0.07 0.005 
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Supplementary Table S2.6. Pearson correlation between bacteria (16SrRNA) alpha (Chao1, observed OTUs) and 

beta diversity indices with lake’s physicochemical and biological variables.  

16s Observed OTUs  

Category Variables Correlation P value 

Geographical characteristic Altitude 0.51 3.367e-05***a 

Spatial variables 
Latitude 0.40 0.001*** 

Longitude -0.52 1.716e-05*** 

Physical characteristics 
PC1b 
PC2 

0.16 0.19 

-0.028 0.83 

Chemical variables 

TP 

Secchi depth 
Calcium 

pH 

-0.26 0.059 

0.167 0.24 

-0.27 0.06 

-0.21 0.13 

Biological variables 

 

18s Chao1 

18s observed OTUs 
18s PCoA1 

18s PCoA2 

0.59 2.184e-06*** 

0.50 0.0001*** 
-0.47 0.0002*** 

0.15 0.26 

18s PCoA3 0.14 0.28 

16s Chao1 

Category Variables Correlation P value 

Geographical characteristic Altitude 0.48 0.0001*** 

Spatial variables 
Latitude 0.35 0.006** 

Longitude -0.52 1.716e-05*** 

Physical characteristics 
PC1 0.09 0.45 

PC2 0.005 0.96 

Chemical variables 

TP -0.20 0.1 

Secchi depth 0.09 0.51 

Calcium -0.22 0.1 

pH -0.17 0.22 

Biological variables 

 

18s Chao1 0.53 3.287e-05*** 

18s observed OTUs 0.47 0.0002*** 
18s PCoA1 -0.46 0.0003*** 

18s PCoA2 0.15 0.26 

18s PCoA3 0.06 0.64 

16S PCoA1 

Category Variables Correlation P value 

Geographical characteristic Altitude -0.65 1.827e-08*** 

Spatial variables 
Latitude -0.64 2.85e-08*** 

Longitude 0.75 7.381e-12*** 

Physical characteristics 
PC1 -0.08 0.54 

PC2 0.15 0.23 

Chemical variables 

TP 0.26 0.057 

Secchi depth -0.02 0.85 

Calcium 0.57 2.119e-05*** 

pH 0.50 0.00017*** 

Biological variables 

18s Chao1 -0.49 0.00014*** 
18s Observed OTUs -0.49 0.00015*** 

18s PCoA1 0.78 2.999e-12*** 

18s PCoA2 -0.22 0.10 

18s PCoA3 -0.15 0.26 

16S PCoA2 

Category Variables Correlation P value 

Geographical characteristic Altitude -0.19 0.13 

Spatial variables 
Latitude -0.49 7.708e-05*** 

Longitude 0.18 0.16 

Physical characteristics 
PC1 0.10 0.44 

PC2 0.23 0.07 

Chemical variables 

TP -0.07 0.59 

Secchi depth 0.037 0.79 

Calcium 0.585 1.274e-05*** 

pH 0.47 0.0004*** 

Biological variables 

18s Chao1 -0.13 0.32 

18s Observed OTUs -0.22 0.10 

18s PCOA1 0.46 0.0004*** 
18s PCoA2 0.18 0.18 
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18s PCoA3 -0.01 0.9 

16S PCoA3 

Category Variables Correlation P value 

Geographical characteristic Altitude 0.081 0.53 

Spatial variables 
Latitude -0.05 0.65 

Longitude -0.13 0.31 

Physical characteristics 
PC1 0.04 0.74 

PC2 0.25 0.051 

Chemical variables 

TP -0.08 0.54 

Secchi depth -0.12 0.39 

Calcium 0.19 0.19 

pH 0.16 0.24 

Biological variables 

18s Chao1 -0.13 0.32 
18s Observed OTUs -0.10 0.46 

18s PCOA1 0.13 0.38 

18s PCoA2 0.38 0.004** 
18s PCoA3 0.4 0.002** 

a. *** = p<0.001; ** = p<0.01; * = p<0.05 

b. First and second principal component of physical characteristics (depth, volume, surface area, shoreline length).  

 

Supplementary Table S2.7. Best solution for selected predictor variables based on DistLM “BEST” selection 

procedure for BC. 

Number of 

variables 
R2 Adjusted R2 Predictor variables 

1 0.122 0.099 18s PCOA1 

2 0.173 0.128 18s PCOA1, Longitude  

3 0.208 0.142 18s PCOA1, Longitude, Latitude  

4 0.237 0.150 18s PCOA1, Longitude, Latitude, Calcium 

5 0.265 0.157 18s PCOA1, Longitude, Latitude, Calcium, Altitude 

6 0.290 0.161 18s PCOA1, Longitude, Latitude, Calcium, Altitude, TP 

7 0.314 0.164 18s PCOA1, Longitude, Latitude, Calcium, Altitude, TP, 18S PCOA3 

8 0.337 0.166 18s PCOA1, Longitude, Latitude, Calcium, Altitude, TP, 18S PCOA2, 18S PCOA3 

9 0.358 0.165 18s PCOA1, Longitude, Latitude, Calcium, Altitude, TP, 18S PCOA2, 18S PCOA3, Sechi depth  

10 0.367 0.162 18s PCOA1, Longitude, Latitude, Calcium, Altitude, TP, 18S PCOA2, 18S PCOA3, Sechi depth, 18s Chao1 

11 
0.395 0.158 18s PCOA1, Longitude, Latitude, Calcium, Altitude, TP, 18S PCOA2, 18S PCOA3, Sechi depth, 18s Chao1, PC1-

Physical variables 

12 
0.412 0.151 18s PCOA1, Longitude, Latitude, Calcium, Altitude, TP, 18S PCOA2, 18S PCOA3, Sechi depth, 18s Chao1, PC1-

Physical variables, PC2-Physical variables 

11 0.429 0.143 All 
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Supplementary Figure S2.1. Scatter plot of alpha diversity index (Chao1) for BC and MEC obtained from 

southern Ontario lakes.  
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APPENDIX B; SUPPLEMENTARY INFORMATION OF CHAPTER 3 

Supplementary Table S3.1. Summary of Great Lakes fish species sampled for gut and skin microbiome. 

We provide a description of the normal diet of the host species along with the sample locations and total 

sample size. 

Species Diet 

Habitats Number 

of 

samples 

Detroit 

River 

Lake 

Erie 

Lake 

Ontario 

Alewife (Alosa pseudoharengus) 
Mostly zooplankton (such as copepods, 

Bythotrephes longimanus), Diporeia, or Mysis 
0 0 22 22 

Blacknose shiner (Notropis 

heterolepis) 

Small aquatic invertebrates, Cladoceran 

(Chydoridae and Bosminidae) and ostracods 
11 0 0 11 

Brook silver (Labidesthes sicculus) 
zooplankton, including copepods, cladocerans, and 

midge larvae 
7 0 0 7 

Brown trout (Salmo trutta) 

Small fish (Alewives, rainbow smelt), aquatic and 

terrestrial insects, fish eggs, amphibians and 

crayfish 

0 0 16 16 

Emerald shiner (Notropis 

atherinoides) 

Protozoans are important in the diet of the young-

of-the-year shiners, and fish and insect larvae are 

eaten by adults 

15 0 0 15 

Freshwater Drum (Aplodinotus 

grunniens) 

Initially planktonic cladocerans (zooplankton) and 

larval midges (Chironomidae) with increasing 

dependence on benthic invertebrates (primarily 

chironomids) and small fish 

5 17 10 32 

Gizzard Shad (Dorosoma 

cepedianum) 

Fry feed primarily on copepods and cladocerans, 

whereas adults consume large amounts of 

phytoplankton and zooplankton 

10 0 2 12 

Lake trout (Salvelinus namaycush) Alewife, round goby, rainbow smelt, slimy sculpin 0 0 24 24 

Pumpkinseed (Lepomis gibbosus) Benthic macroinvertebrates, zooplankton 11 0 5 16 

Rock Bass (Ambloplites rupestris) 
Aquatic insects, larval midges (Chironomidae), and 

small fish (round goby) 
7 0 3 10 

Round goby (Neogobius 

melanostomus) 

Larval midges (Chironomidae), amphipods 

(Echinogammarus), dreissenid mussels 
0 8 16 24 

Spotfin shiner (Cyprinella 

spiloptera) 

Aquatic and terrestrial insects; plants material and 

fishes also recorded in diet 
12 0 0 12 

Walleye (Sander vitreus) 

Initially zooplankton, and benthic invertebrates and 

when they get older predominately fish 

(pumpkinseed and bluegill), some benthic 

invertebrates 

0 19 7 26 

White Bass (Morone chrysops) 
Consume a variety of aquatic insects, amphipods, 

and zooplankton 
0 10 11 21 
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White perch (Morone americana) 
Zooplankton, benthic invertebrates, insect larvae, 

fish eggs, fish, dreissenid mussels 
0 21 12 33 

White sucker (Catostomus 

commersonii) 

Larvae feed near surface on protozoans, diatoms, 

small crustaceans, and bloodworms. Adults feed 

opportunistically on bottom organisms, both plant 

and animal (e.g., chironomid larvae, zooplankton, 

small crayfishes) 

10 0 2 12 

Yellow perch (Perca flavescens) 

Piscivorous, Shifts in diets from benthic 

invertebrates (mainly Diptera) in early spring to 

prey fish in the summer and fall 

10 15 16 41 

Total 98 90 146 334 
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Supplementary Table S3.2. Comparison of differentially abundant bacterial taxa at the family level for gut 

and skin microbiomes across all fish species and sample locations using DESeq2 method (Benjamini-

Hochberg false-discovery rate [BH FDR] 0.05, |log2fold change| > 2). Positive log2 FC indicate higher 

abundance in skin samples and negative log2 FC specify higher abundance in gut samples.  

 
Family log2 FC padj 

Deinococcaceae 5.7 2.00E-169 

Exiguobacteraceae 5.6 4.00E-144 

Alteromonadaceae 5 2.00E-98 

Moraxellaceae 4.9 2.00E-86 

Oxalobacteraceae 4.6 1.00E-135 

Caulobacteraceae 4 2.00E-84 

Weeksellaceae 3.3 2.00E-50 

Sphingobacteriaceae 3.2 3.00E-68 

Xanthomonadaceae 2.7 4.00E-49 

Rickettsiaceae 2.7 1.00E-44 

Flavobacteriaceae 2.5 1.00E-30 

Alcaligenaceae 2.4 1.00E-40 

Devosiaceae 2.3 6.00E-41 

Pseudomonadaceae 2.1 9.00E-28 

Xanthobacteraceae 2.1 7.00E-25 

Comamonadaceae 2 3.00E-36 

P9X2b3D02 (Nitrospinota) 2 8.00E-35 

Microbacteriaceae -5.7 9.00E-139 

Lachnospiraceae -4.3 1.00E-72 

PeM15 (Actinobacteria) -4.3 7.00E-118 

Rhizobiales -4.1 1.00E-106 

Cyanobiaceae -3.4 2.00E-69 

Clostridiaceae -3.3 2.00E-40 

Peptostreptococcaceae -3.3 2.00E-36 

Subgroup_17 (Vicinamibacteria) -3.1 9.00E-65 

Pirellulaceae -3.1 6.00E-50 

Caldilineaceae -3 9.00E-68 

Microcystaceae -3 4.00E-53 

Saccharimonadales -2.9 6.00E-56 

Mycoplasmataceae -2.8 1.00E-38 

Isosphaeraceae -2.6 1.00E-46 
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IMCC26256 (Acidimicrobiia) -2.6 7.00E-58 

Saccharimonadaceae -2.6 5.00E-42 

1_20 (Anaerolineae) -2.4 1.00E-40 

Gemmataceae -2.3 3.00E-39 

Holosporaceae -2 5.00E-33 

Fusobacteriaceae -2 6.00E-15 
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Supplementary Figure S3.1. Relative abundance of bacterial community composition presented at the 

phylum level for gut, skin, and water microbiomes (samples are combined across sample types). Phyla 

with less than 0.01% of relative abundance are combined and presented as “others”)  

 

 

 

Supplementary Figure S3.2. Bacterial community composition (relative abundance at the family level) for 

gut, skin, and water microbiomes across all fish species collected at three sites in the Great Lakes (Lake 

Erie, Lake Ontario and Detroit River). Bacterial families with less than 0.1% relative abundance are 

combined and presented as “others”. 
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Supplementary Figure S3.3. Box and whisker plots of alpha diversity indices (Cho1 (a) and Faith’s 

phylogenetic diversity (b)) for gut, skin and water microbiomes. The colours reflect sample type and the 

black dots are outliers. The black line in each box plot is median.  
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APPENDIX C; SUPPLEMENTARY INFORMATION OF CHAPTER 4 

 

Supplementary Table S4.1. Bacterial species with their proportion present in Jamieson Probiotic Complex 

with 60 billion colony forming units (CFU) (Jamieson Laboratories, Canada) used in this study.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bacterial species Total active cells CFU (billion) 

Lactobacillus plantarum (R1012ND) 25.8 

Lactobacillus casei (R0215ND) 19.8 

Bifidobacterium breve (HA-129) 8.7 

Bifidobacterium longum subsp. longum (HA-135) 3.0 

Lactobacillus paracasei (HA-196) 2.1 

Lactobacillus acidophilus (HA- 122) 0.15 

Bifidobacterium animalis subsp. lactis (HA-194) 0.15 

Bifidobacterium bifidum (HA-132) 0.15 

Lactobacillus rhamnosus (HA- 111) 0.15 
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Supplementary Table S4.2: Primers and prob list for 56 genes selected based on RNA sequencing analysis 

Function Gene Abbreviation Probe (5'-3') Primer F (5'-3') Primer R (5'-3') 

Cell integrity 

vacuolar protein-

sorting-associated 

protein 25-like 

vps25 
CCGCCAT

CACAAGC 

CATGGTGCT

CCCTTGCTCT

C 

GTGGTTGAA

CACAGGGCA

CTCT 

cilia and flagella 

associated protein 58 
cfap58 

GTCCATG

CTGAACA

AG 

AATGATGAG

CTGGCCCTA

CTCTAC 

GTCCTCCACC

CTCTGGTTGT

AC 

FERM domain 

containing 4Bb 
frmd4bb 

AGCAGGT

TGAAGAC

GAGAT 

AGGACGCCA

TGAGGAAAC

TG 

CAGAGGCTC

TTTGGGTAG

GC 

mesencephalic 

astrocyte-derived 

neurotrophic factor 

 

manf 

CCCTAGT

CAAAACC

TG 

CACCAGCGC

AGACATCGA 

CCTTGCCCTT

GGCGTCTT 

sodium-dependent 

multivitamin 

transporter-like 

slc5a6 

TGCCCTTC

ACTATAG

CTGCA 

CTTATGCTGG

CCCTGACCA

A 

AAGGGGAGA

AGACCACTG

GA 

occludin a ocln 

CAAGTCC

AACGTCC

TGTGG 

TGTTTGCCTT

AAAGACGCG

C 

GGGCCTCCT

CGTTGATGA

TC 

ano7 ano7 

TATGTTCC

GGGATTC

CT 

GCAGATGCT

AAGCGACAG

GA 

AAGCGGTGT

ACTCAATGC

CA 

piezo-type 

mechanosensitive ion 

channel component 1-

like 

piezo1 

ACACCAA

GGCGGAT

C 

TAAAGAGGG

CCGTCGGAA

A 

CACGCTTGT

GGCTTCTCTT

TT 

Growth 

WAS protein family 

homolog 1 
wash1 

TCCATCTT

CAGTGGA

GCCA 

TCCAGAGCG

TCTCCAGGA

TT 

TTGGCCTGTA

TGCGGTATC

G 

ubiquitin protein ligase 

E3 component n-

recognin 4 

ubr4 

GACAGAC

CAGACTT

CCA 

TCAGCGGAG

AGTGAGAGT

GAGA 

GTGTCCAGA

ACGTGTCCA

GTCTC 
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phosphatase and actin 

regulator 1-like 
phactr1 

TACGCCTT

ACATCAC

CGAGG 

GGATGAGAT

AGACCGTCG

GC 

TCCAGGTGG

AGAGAGAGA

CGC 

sorting nexin-10B-like snx10b 

TAACCTG

AACAACG

CCCAG 

CTACTCATG

GTCCAGCTG

CCT 

GGCCCTTCAT

CCTCTCTGTG 

rabaptin, RAB GTPase 

binding effector protein 

2 

rabep2 

TCGACAG

ACTCTCCC

ACCA 

GGTTGGAGG

CAGGAGCTA

TG 

TATCCCATCC

GTCCGTTCCT 

trafficking kinesin-

binding protein 1-like 
trak1 

GACGACT

GGCTCCA

CA 

GGACTGCAT

GTTTGGCTAC

G 

ATCTGATCGT

GCGTGAGTC

C 

Immune 

system 

annexin A1-like anxa1 

AGTGCAT

GAGTGTC

AAT 

CCAGCAGAC

AATGTCCAC

CA 

GGCAAGAGC

ATTTGAGGC

AA 

macrophage-

stimulating protein 

receptor-like 

mst1r 

GTCTGCCT

GTCCAAA

G 

CCCCGTCAA

GAGTGTCAC

TGA 

GACAGGCAC

CTTCTTCACC

AC 

transcription factor 12 tcf12 

GAGTGCT

GTCCTCA

GTC 

CCAGACCAC

CATCAAGCT

GT 

TCAACAACA

CGGTCTGGC

TT 

vacuolar protein 

sorting-associated 

protein 33A-like 

vps33a 

CCCCACC

ATCAGGA

AG 

GGTCTTCTGA

AGCCCCAGA

C 

CTGTTCGTTG

GCATCCTCC

A 

apoptosis inducing 

factor mitochondria 

associated 4 

aifm3 

TCTGAAA

AGTGGTG

CGGTC 

GTGGTGGAG

ATCAGAGGG

GA 

CCCTGCTATC

ACCACATCC

G 

HCLS1-binding protein 

3-like 
hs1bp3 

TTGAAAG

TGAGGAG

ACCGCT 

GAACGTTGC

AGATTGGCA

GG 

TTGGTTACTT

TCGCAGCAG

C 

COP9 signalosome 

complex subunit 6 
cops6 

ACTCCTTT

GAGCTGC

TTC 

TAATCGGGA

AGCAGGAGG

GT 

TGTCAATGT

GTGCTCGGT

CA 

protein arginine 

methyltransferase 3 
prmt3 

CGCACAG

AAAGCTA

CAGG 

GGCCACTAC

AGCATCCAT

GA 

GAACACTTC

CGGGTTGAG

GT 
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B-cell linker protein-

like 
blnk 

ACGAGGA

GCTTTTCA

GTAGT 

CGGAAAGGA

GGGCAAGAA

GA 

TCGATCAGC

AGCAGTTGG

TT 

syndecan-1-like sdc1 

GCTGCCT

CCCTGTTA

A 

TTATTGCAG

GAGGAGTGG

TGG 

AGCCTCCCTC

ATCTTTCCTC

T 

SID1 transmembrane 

family, member 2 
sidt2 

AATTTGG

CCCCGTTT

C 

GAAATGGTT

TTGAGGAGC

TGTTG 

CATAACCAA

GCCGGAACA

AGA 

proteasome subunit 

beta type-4-like 
psmb4 

TGGACCA

AAACCCG

GACA 

TCCAAGCGG

TTTGAAGCTC

A 

CATCCTGGG

GCTAAACTG

CT 

CD151 antigen-like cd151 

AACATGT

GGGACCG

TCT 

CCAACAGCG

TACGACGAG

AA 

TGCCAGCCA

GAAAAGGAA

GT 

dispanin subfamily A 

member 2b-like 
dspa2b 

GGAAGAC

TGCATGC

TG 

GGAGACTTG

GAGGGAGCA

AG 

GAAGAGCAG

CCCGAGGAT

TA 

protein PML-like pml 

AGCTTCG

ACGTCGT

TATG 

CATTCGACG

GCAGACAGG

AT 

TGCTCCCATA

CCCAAAGAG

G 

interferon alpha/beta 

receptor 2 
ifnar2 

AGCTACC

ACTGGAC

TGAC 

CTCTAACCCC

GAGACACAC

G 

GTCCAAGGC

CCCATCTTTC

A 

ras-related protein Rab-

34-like 
rab34b 

GTGTCTCT

TGTGTGT

GTGAT 

TTGTTGGAG

CGTGTGTGA

CTGT 

GTGGAAGTT

ACGGGGTGG

TAGG 

Metabolism 

NTPase KAP Family P-

Loop Domain-

Containing Protein 

kidins220 

GCTTTGTG

GGAGGTG

T 

CAGAGATCG

ATGACGCCG

TC 

GAAGCTCCA

TCCTCGAGTC

G 

neuronal acetylcholine 

receptor subunit alpha-

3-like 

chrna3 

ACCAGTT

TATCAGG

CCGGTG 

CAGGTTGTTC

AGGAGGCTG

TTC 

ACCTCAAAC

TCCACGGTG

ACG 

golgin subfamily A 

member 7-like 
golga7 

TGAGGAC

GCTGAAC

AA 

AGCAGCAGT

TTGAGGAGA

CGG 

CAGACAGCC

CTCCAGATA

CGAC 
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free fatty acid receptor 

2-like 
ffar2 

GCTCTCTA

CTGCCCT

GTG 

GTGCAGGGG

TTGTACTTCT

GG 

CATTGGAGC

TTGGTGTGCT

G 

multidrug resistance-

associated protein 7-

like 

mrp7 

CCCTGGA

ACACTGT

CAC 

GAGAACCTG

GACCCATGT

GG 

GATGCAGTT

GATGACAGC

GC 

ER degradation-

enhancing alpha-

mannosidase-like 

protein 2 

edem2 

GCCAGGG

CTACAGA

G 

AAGGGAACG

GTCTCTATGC

CT 

TCAATGCAC

TGTCCAGCTC

A 

NTPase KAP family P-

loop domain-containing 

protein 1-like 

nkpd1 

CATCATG

TCAGAAC

GC 

CCTGCACAG

TGGGCCTCT

AC 

CTCTCTGCCT

CCTGCTCCAT 

homeobox protein 

PKNOX1-like 
pknox1 

AAACTGA

CAGCCCC

TGTT 

CTGCGCACC

AAGATGAAC

AG 

TGGGCTGGA

GGTCTGAAT

CT 

WEE2 oocyte meiosis 

inhibiting kinase [ 
wee2 

TCAGACG

GGCACAG

TTA 

CCCCTCTCCC

TCAGAATGG

A 

TTCTGAAAG

CAGGGGAGA

GC 

cytochrome b-c1 

complex subunit 6, 

mitochondrial-like 

uqcrh 

GCTCCAA

GTCCGAA

AC 

GCGAAACTG

GAGGACTGT

GA 

CGCATGGAG

GAAGTCGAA

AAG 

low-density lipoprotein 

receptor-related protein 

2-like 

lrp2 

GGCATCT

CCTGTAC

CTGT 

ACTGCAATG

GGAATGGGG

AG 

GGTTTTGGC

AGGAGTCTC

CA 

lysophospholipid 

acyltransferase 

LPCAT4-like 

lpcat4 

CTCTCCTT

CACATCG

CCT 

ATCTAAGTG

TGGCGGCTG

TCTC 

GACTGCCAC

TACCCTCTCT

GTCA 

6-phosphogluconate 

dehydrogenase 
pgd 

TCGCTAT

GGACCCT

CACTGA 

TTGTTTGTCG

GCAGTGGAG

T 

TCACCAGGC

CTCTTTGTGT

C 

echinoidin echinoidin 

CCTTTTAC

CTGATAT

CTGC 

AAACAGTGA

CTGGGCCTA

CAGAAG 

AAGCCGTGT

GATCCAGAG

AGA 

Stress‐

related  

genes 

X-ray radiation 

resistance associated 1 
xrra1 

TGTTTCCT

CAATCTG

GCTGA 

GTTTGCCACT

ACCAGAGCT

TTGT 

GCATAGGAA

ACAGGGCCA

CA 
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heat shock factor-

binding protein 1-like 
hsbp1 

ATGCAGG

ATAAATT

C 

CCAGACGCT

GCTGCAACA 

CGATGATCT

GGTCTGACA

TGGT 

transient receptor 

potential cation channel 

subfamily V member 5-

like 

trpv5 

ACAAGAC

CCCTGGA

ACAT 

GATCCACCG

CATGAAGGG

AA 

ATCCCGAAC

ACAGCCATC

AG 

polyubiquitin-like ub 

ACCCAGT

TCAAAGC

CAA 

TGAGGTGGT

GTCAGGTGA

GACT 

TGAATCAGC

CTCTGTTGGT

CG 

trimeric intracellular 

cation channel type B-

lik 

tmem38b 

GATGGGC

TAAAGGT

GCT 

CAAGGATGG

ACTGCTGGT

GA 

CCTCGTACC

AGCTGCTCA

AA 

Endogenous 

control 

genes 

β-2-microglobulin b2m 

ACACCCT

GATCTGT

CACGTG 

AGGGGAACA

TGGGAAGGA

CA 

ATGCCGTTCT

TCAGGAGCT

G 

β-Actin actb 

CCTGGTC

GTTGATA

AC 

TTCCCGGTGC

AGAAATGGA 

ATCATCTCCT

GCGAAACCG

G 

ribosomal protein L13 rpl13 

CAATGCA

CAGTTTTA

G 

TCTACCATTG

GGTGCCATA

TCC 

TGGCTGAAA

GGAAAAAGG

AAGT 

glyceraldehyde-3-

phosphate 

dehydrogenase 

nadp 

CAGGGGC

AGAACGA

CAGA 

TTCAATGAC

GGCCAGGGA 

ATTGAATCC

CCCGAGCTG

AC 
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Supplementary Table S4.3. Comparison of gene expression levels and differentially expressed gene 

distributions between the treatment groups (|log2 Fold Change| > 1 and FDR P value < 0.05) 

Genes Gene name Gene 

abbreviation 

Base 

Mean 

log2 

FD 

pvalue padj 

                                                                              Control Vs Antibiotic  

LOC112248679 golgin subfamily A member 7-like golga7 6.7 -6.86 1.97E-06 0.008 

LOC112248188 annexin A1-like anxa1 123 -5.56 6.34E-07 0.005 

LOC112245911 vacuolar protein sorting-associated protein 33A vps33a 57.2 5.09 3.59E-06 0.009 

LOC112239977

* 

apoptosis inducing factor mitochondria associated 3 aifm3 14.9 -5 6.54E-06 0.011 

LOC112234485 uncharacterized uncharacterized 192 -4.76 1.23E-05 0.015 

LOC112234113 transmembrane protein 220-like tmem220 40 4.68 1.09E-08 0 

LOC112232636 ER degradation enhancer, mannosidase alpha-like 2 edem2 29.8 4.52 4.83E-05 0.047 

LOC112246816 HCLS1 binding protein 3 hs1bp3 160.1 -4.37 6.66E-06 0.011 

LOC112232613 peroxisomal biogenesis factor 14 pex14 17.2 -4.31 7.21E-06 0.011 

LOC112216100 cyclin-dependent kinase 11B cdk11b 32.7 -4.1 3.38E-05 0.03 

LOC112245791 multidrug resistance-associated protein 7-like mrp7 28.4 -4.01 9.57E-06 0.014 

LOC112251319 phosphatase and actin regulator 1 phactr1 23.1 -3.97 2.82E-05 0.03 

nsrp1 nuclear speckle splicing regulatory protein 1 nsrp1 21.1 -3.91 6.33E-06 0.011 

LOC112265673 serine protease 16 prss16 41.2 3.69 4.34E-05 0.043 

LOC112249106 piezo-type mechanosensitive ion channel component 1 piezo1 41.2 3.69 4.34E-05 0.043 

LOC112258258  septin-8-A SEPTIN8 42.1 3.84 4.24E-06 0.008 

LOC112231356 free fatty acid receptor 2-like ffar2 21.3 -3.66 4.05E-06 0.009 

LOC112259970 vacuolar protein-sorting-associated protein 25-like vps25 12.4 -3.52 3.82E-06 0.009 

LOC112220969 macrophage-stimulating protein receptor-like mst1r 47.2 -3.38 2.10E-06 0.008 

ubr4 ubiquitin protein ligase E3 component n-recognin 4 ubr4 149.1 -2.75 5.55E-07 0.005 

cfap58 cilia and flagella associated protein 58 cfap58 302.4 1.73 1.04E-05 0.014 

LOC112215983 natriuretic peptide B nppb 34.2 1.61 1.06E-05 0.014 

LOC112241820 NTPase KAP family P-loop domain-containing protein 1-like nkpd1 422.9 -1.36 1.20E-06 0.007 

LOC112243336 SET domain containing 2, histone lysine methyltransferase setd2 86.5 -1.29 1.37E-05 0.016 

LOC112218626 WAS protein family homolog 1 wash1 58.3 1.22 1.11E-05 0.014 

LOC112261371 echinoidin echinoidin 58.3 1.2 1.18E-05 0.014 

LOC112241821 kinase D-interacting substrate of 220 kDa B-like kidins220 558.8 -1.12 1.35E-06 0.007 

xrra1 X-ray radiation resistance associated 1 xrra1 2201.2 1.07 6.86E-06 0.011 

LOC112255867 neuronal acetylcholine receptor subunit alpha-3-like chrna3 88.5 1.1 1.73E-06 0.008 

                                     Control Vs Probiotics 

LOC112255055 LSM3 homolog, U6 small nuclear RNA and mRNA 

degradation associated 

lsm3 114.8 -7.27 1.00E-05 0.017 

LOC112219606 transmembrane protein 38B tmem38b 114.8 -7.27 1.11E-05 0.017 

LOC112232343 Heat shock factor-binding protein 1-like hsbp1 131.3 -6.57 1.91E-08 0 

LOC112246837 COMM domain containing 10 commd10 31.4 -5.88 3.12E-07 0.002 

LOC112220855 COP9 signalosome complex subunit 6 cops6 138.4 -5.74 5.03E-07 0.002 

LOC112234485 uncharacterized uncharacterized 191.9 -5.59 7.11E-08 0.0007 

LOC112245911 Vacuolar protein sorting-associated protein 33A vps33a 57.2 5.4 3.37E-07 0.002 

prmt3* protein arginine methyltransferase 3 prmt3 138.8 -5.25 3.34E-06 0.007 

LOC112264620 THO complex subunit 4 alyref 138.8 -5.25 3.00E-06 0.007 

LOC112248204 low-density lipoprotein receptor-related protein 2 lrp2 12.9 5.16 5.71E-05 0.045 

LOC112253929 homeobox protein PKNOX1 pknox1 18.1 -5.02 8.06E-07 0.003 

LOC112246700 cytochrome b-c1 complex subunit 6, mitochondrial-like uqcrh 97.9 4.75 9.35E-06 0.015 

sidt2 SID1 transmembrane family, member 2 sidt2 19.7 4.66 4.79E-05 0.04 

LOC112264739 proteasome subunit beta type-4-like psmb4 97.9 -4.25 3.29E-05 0.034 

LOC112263481 CD151 antigen cd151 18.5 4.07 3.89E-05 0.037 

LOC112248608 B-cell linker protein-like blnk 37.6 -4.01 3.57E-06 0.007 

LOC112232610 phosphogluconate dehydrogenase pgd 155.3 -3.97 4.62E-05 0.04 

LOC112234113 transmembrane protein 220-like tmem220 40 3.6 1.73E-06 0.004 

LOC112214559 lysophospholipid acyltransferase lpcat4 42.1 3.46 1.27E-05 0.017 

LOC112249934 syndecan-1 sdc1 71.6 -3.41 1.27E-05 0.017 

rabep2* rab GTPase-binding effector protein 2 rabep2 46.8 -3.05 4.56E-05 0.04 

LOC112261503 sodium-dependent multivitamin transporter slc5a6 291.4 1.8 3.44E-05 0.035 

LOC112242147 uncharacterized uncharacterized 291.3 1.8 3.44E-05 0.034 

LOC112217687 R-spondin-3-like rspo3 90.9 1.38 2.33E-05 0.028 

LOC112241820 NTPase KAP family P-loop domain-containing protein 1-like nkpd1 422.9 -1.35 5.06E-07 0.002 

LOC112242158 Sorting nexin-10A snx10b 7818.8 1.24 9.94E-10 0 

LOC112218768 WEE2 oocyte meiosis inhibiting kinase wee2 353.9 1.15 9.19E-07 0.003 

LOC112254714 ras-related protein Rab-34-like rab34b 558.7 -1.03 2.59E-06 0.005 
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LOC112241821 kinase D-interacting substrate of 220 kDa B-like kidins220 558.7 -1.03 2.59E-06 0.005 

                                Antibiotic Vs Probiotic 

LOC112232343 heat shock factor-binding protein 1-like hsbp1 131.3 -6.47 1.22E-07 0.002 

LOC112220855 COP9 signalosome complex subunit 6 cops6 138.4 -6.27 2.05E-07 0.002 

LOC112248188 annexin A1-like anxa1 123 5.74 2.91E-07 0.002 

LOC112232636 ER degradation enhancer, mannosidase alpha-like 2 edem2 29.8 -5.67 3.23E-07 0.002 

LOC112246837 COMM domain containing 10 commd10 31.4 -5.39 4.10E-06 0.01 

LOC112239977 apoptosis inducing factor mitochondria associated 3 aifm3 14.9 5.17 4.30E-06 0.01 

LOC112232613 peroxisomal biogenesis factor 14 pex14 17.2 4.82 1.14E-06 0.004 

LOC112264739 proteasome subunit beta type-4-like psmb4 97.9 -4.59 2.06E-05 0.033 

LOC112265459 arsenite methyltransferase-like as3mt 57.5 -4.33 2.39E-07 0.002 

nsrp1 nuclear speckle splicing regulatory protein 1 nsrp1 21.1 4 4.35E-06 0.01 

LOC112216146 FERM domain containing 4Bb frmd4bb 24.1 3.93 3.97E-08 0.001 

LOC112231356 free fatty acid receptor 2-like ffar2 21.3 3.47 1.10E-05 0.02 

ano7 anoctamin 7 ano7 62.4 -3.31 4.93E-05 0.049 

LOC112218750 protein mono-ADP-ribosyltransferase  parp12 39.3 3.13 2.94E-05 0.036 

LOC112222087

* 

mesencephalic astrocyte-derived neurotrophic factor manf 43.9 -2.96 1.98E-06 0.006 

LOC112245658 trafficking kinesin-binding protein 1 trak1 36.8 2.52 2.38E-05 0.035 

LOC112245441 uncharacterized uncharacterized 20.3 2.37 4.77E-05 0.049 

LOC112262831 polyubiquitin ub 687.1 2.32 2.65E-05 0.035 

LOC112237710  dispanin subfamily A member 2b dspa2b  780.5 1.89 2.69E-05 0.035 

LOC112215983 natriuretic peptide B nppb 34.2 -1.54 2.60E-05 0.035 

LOC112217407 protein PML pml 442.7 1.36 4.40E-05 0.048 

LOC112218768 WEE2 oocyte meiosis inhibiting kinase wee2 353.9 1.19 1.16E-06 0.004 

LOC112249580 transcription factor 12 tcf12 40.7 -1.1 5.97E-06 0.01 

LOC112225266 interferon alpha/beta receptor 2 ifnar2 158.6 1.07 3.60E-05 0.043 

LOC112220311 Occludin a ocln 2096.9 1.05 7.94E-06 0.016 

LOC112225425 T cell differentiation protein 2 mal2 155.6 1.05 6.50E-05 0.049 

LOC112252883 transient receptor potential cation channel subfamily V 
member 5 

trpv5 160.4 -1.01 1.43E-06 0.005 

*  Indicate that these genes were also significant in our OpenArray high-throughput RT-qPCR analysis.  
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Supplementary Figure S4.1. Pie charts showing microbial community composition of water samples with 

the relative abundances of the most abundant (top 10 families) bacteria phylum in control, antibiotic, and 

probiotic groups. Other less abundant taxa were merged and renamed as “Others”. Bacteria taxa with 

unidentified families were classified as “Not assigned”.  
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Supplementary Figure S4.2. (A) Bar plot comparing relative abundance of top 10 gut associated bacterial 

taxa at phyla level between the groups. All samples within each group are combined and average of 

abundance is presented for each group. Other less abundant phyla are classified as “Others”. (B) Families 

presented within Firmicutes phyla are shown among the groups. Taxa at with low abundance (0.01%) 

were merged and renamed as “Others” in the pie chart. 

 

 

 

B 

A 



Appendix C; Supplementary Information of Chapter 4 

189 

 

 

Supplementary Figure S4.3. The red dashed line on the graph above indicates the expected average 

contribution. For a given component, a variable with a contribution larger than this cutoff could be 

considered as important in contributing to the component. 
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