
University of Windsor University of Windsor

Scholarship at UWindsor Scholarship at UWindsor

Electronic Theses and Dissertations Theses, Dissertations, and Major Papers

2022

ADVANCED REPRESENTATION LEARNING STRATEGIES FOR BIG ADVANCED REPRESENTATION LEARNING STRATEGIES FOR BIG

DATA ANALYSIS DATA ANALYSIS

Wandong Zhang
University of Windsor

Follow this and additional works at: https://scholar.uwindsor.ca/etd

Recommended Citation Recommended Citation
Zhang, Wandong, "ADVANCED REPRESENTATION LEARNING STRATEGIES FOR BIG DATA ANALYSIS"
(2022). Electronic Theses and Dissertations. 8911.
https://scholar.uwindsor.ca/etd/8911

This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor
students from 1954 forward. These documents are made available for personal study and research purposes only,
in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution,
Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder
(original author), cannot be used for any commercial purposes, and may not be altered. Any other use would
require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or
thesis from this database. For additional inquiries, please contact the repository administrator via email
(scholarship@uwindsor.ca) or by telephone at 519-253-3000ext. 3208.

https://scholar.uwindsor.ca/
https://scholar.uwindsor.ca/etd
https://scholar.uwindsor.ca/theses-dissertations-major-papers
https://scholar.uwindsor.ca/etd?utm_source=scholar.uwindsor.ca%2Fetd%2F8911&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.uwindsor.ca/etd/8911?utm_source=scholar.uwindsor.ca%2Fetd%2F8911&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarship@uwindsor.ca

ADVANCED REPRESENTATION LEARNING STRATEGIES
FOR BIG DATA ANALYSIS

by

Wandong Zhang

A Dissertation
Submitted to the Faculty of Graduate Studies

through the Department of Electrical and Computer Engineering
in Partial Fulfillment of the Requirements for

the Degree of Doctor of Philosophy
at the University of Windsor

Windsor, Ontario, Canada

2022

© 2022 Wandong Zhang

Advanced Representation Learning Strategies
for Big Data Analysis

by

Wandong Zhang

APPROVED BY:

R. Laganière, External Examiner
University of Ottawa

B. Boufama
School of Computer Science

R. Razavi-Far
Department of Electrical and Computer Engineering

M. Khalid
Department of Electrical and Computer Engineering

J. Wu, Advisor
Department of Electrical and Computer Engineering

April 21, 2022

Declaration of Co-Authorship / Previous

Publication

I. Co-Authorship Declaration

I hereby declare that this dissertation incorporates material that is result of joint

research, as follows: This dissertation also incorporates the outcome of a research

under the supervision of professor QM Jonathan Wu and co-supervisor Dr. Yimin

Yang, and collaboration with Dr. Hui Zhang (Chapter 4), Dr. Ming Li (Chapter

4), Haojin Deng (Chapter 6), Dr. WG Will Zhao (Chapter 6) and Dr. Thangarajah

Akilan (Chapter 4, 5 and 9). The research under Prof. QM Jonathan Wu and

Dr. Yimin Yang is covered in Chapter 4, 5, 6, 7, 8, and 9 of the dissertation. In

all cases, the key ideas, primary contributions, experimental designs, data analysis,

interpretation, and writing were performed by the author, and the contribution of

the coauthors was primarily through the provision of proof reading and reviewing the

research papers regarding the technical content.

I am aware of the University of Windsor Senate Policy on Authorship and I certify

that I have properly acknowledged the contribution of other researchers to my disser-

tation, and have obtained written permission from each of the co-authors to include

the above materials in my dissertation.

I certify that, with the above qualification, this dissertation, and the research to

which it refers, is the product of my own work.

iii

II. Declaration of Previous Publication

This thesis includes 8 original papers that have been previously published/submitted

to journals for publication, as follows:

Thesis chapter Publication title/full citation Status
Chapter 4 W. Zhang, Q. M. J. Wu, Y. Yang, T. Akilan,

H. Zhang. “A width-growth model with sub-
network nodes and refinement structure for rep-
resentation learning and image classification.”
IEEE Transactions on Industrial Informatics 17,
no. 3 (2020): 1562-1572.

Published

W. Zhang, Q. M. J. Wu, Y. Yang, T. Akilan, M.
Li. “HKPM: A Hierarchical Key-Area Percep-
tion Model for HFSWR Maritime Surveillance.”
IEEE Transactions on Geoscience and Remote
Sensing (2021).

Published

Chapter 5 W. Zhang, Q. M. J. Wu, Y. Yang, T. Akilan.
“Multimodel Feature Reinforcement Framework
Using Moore-Penrose Inverse for Big Data Anal-
ysis.” IEEE Transactions on Neural Networks
and Learning Systems 32, no. 11 (2021): 5008-
5021.

Published

W. Zhang, Q. M. J. Wu, Y. Yang. “Wi-HSNN: A
subnetwork-based encoding structure for dimen-
sion reduction and food classification via har-
nessing multi-CNN model high-level features.”
Neurocomputing 414 (2020): 57-66.

Published

Chapter 6 W. Zhang, Q. M. J. Wu, H. Deng, W. G.
W. Zhao and Y. Yang. “Hierarchical One-
Class Model with Subnetwork for Representa-
tion Learning and Outlier Detection.” IEEE
Transactions on Cybernetics, 2022.

In Press

Chapter 7 W. Zhang, Q. M. J. Wu, Y. Yang. “Semi-
supervised Manifold Regularization via a
Subnetwork-based Representation Learning
Model.” IEEE Transactions on Cybernetics.

Under Review

Chapter 8 W. Zhang, Q. M. J. Wu, Y. Yang. “Multi-Model
MPI-based Recomputation Framework for Large
Data Analysis.” IEEE Transactions on Neural
Network and Learning Systems.

Under Review

iv

Chapter 9 W. Zhang, Q. M. J. Wu, Y. Yang, T. Akilan.
“Fast Domain Transfer Learning for Application
Towards Efficient Pattern Recognition.” IEEE
Transactions on Systems, Man, and Cybernetics:
Systems.

Under Review

I certify that I have obtained a written permission from the copyright owners to

include the above published materials in my thesis. I certify that the above mate-

rial describes work completed during my registration as a graduate student at the

University of Windsor.

III. General

I declare that, to the best of my knowledge, my thesis does not infringe upon any-

one’s copyright nor violate any proprietary rights and that any ideas, techniques,

quotations, or any other material from the work of other people included in my the-

sis, published or otherwise, are fully acknowledged in accordance with the standard

referencing practices. Furthermore, to the extent that I have included copyrighted

material that surpasses the bounds of fair dealing within the meaning of the Canada

Copyright Act, I certify that I have obtained a written permission from the copyright

owners to include such materials in my thesis.

I declare that this is a true copy of my thesis, including any final revisions, as

approved by my thesis committee and the Graduate Studies office, and that this thesis

has not been submitted for a higher degree to any other University or Institution.

v

Abstract

With the fast technological advancement in data storage and machine learning, big

data analytics has become a core component of various practical applications rang-

ing from industrial automation to medical diagnosis and from cyber-security to space

exploration. Recent studies show that every day, more than 1.8 billion photos/images

are posted on social media, and 720 thousand hours of videos are uploaded to YouTube.

Thus, to handle this large amount of visual data efficiently, image/video classification,

object detection/recognition, and segmentation tasks have gathered a lot of attention

since the decade. Consequently, the researchers in this domain has proposed various

feature extraction, feature learning, and feature encoding algorithms for improving

the generalization performance of the aforesaid tasks. For example, the generalization

performance of the image classification models mainly depends on the choice of data

representation. These models aim at building comprehensive representation learning

(RL) strategies to encode the relationship among the input and output attributes

from the raw big data.

Existing RL strategies can be divided into three general categories: statistic ap-

proaches (e.g. probabilistic-based analysis, and correlation-based measures), unsuper-

vised learning (e.g., autoencoders), and supervised learning (e.g., deep convolutional

neural network (DCNN)). Among these categories, the unsupervised and supervised

learning strategies using artificial neural networks (ANNs) have been widely adopted.

In this direction, several auxiliary ideas have been proposed over the past decade,

to improve the learning capability of the ANNs. For instance, Moore-Penrose (MP)

inverse is exploited to refine the parameters (weights and biases) of a trained net-

work. However, the existing MP inverse-based RL methods have an important lim-

itation. The representations learned through the MP inverse-based strategies suffer

from loosely-connected feature coding, resulting into a poor representation of the

objects having lack of discriminative power. To address this issue, this dissertation

proposes a set of eight novel MP inverse-based RL algorithms.

The first part of this dissertation from Chapter 4 to Chapter 7 is dedicated propos-

vi

ing novel width-growth models based on subnet neural network (SNN) for representa-

tion learning and image classification. In this part, a novel feature learning algorithm,

coined Wi-HSNN is proposed, followed by an improved batch-by-batch learning al-

gorithm, called OS-HSNN. Then, two novel SNNs are introduced to detect extreme

outliers for one-class classification (OCC). Finally, a semi-supervised SNN, named

SS-HSNN is introduced to extend the strategy from the supervised learning domain

to the semi-supervised learning domain.

The second part of this thesis, subsuming Chapter 8 and Chapter 9, focuses on

improving the performance of the existing multilayer neural networks through har-

nessing the MP inverse. Here, a novel weight optimization strategy is proposed to

improve the performance of multilayer extreme learning machines (ELMs), where the

MP inverse is used to feedback the classification imprecision information from the out-

put layer to the hidden layers. Then, a novel fast retraining framework is proposed

to enhance the efficiency of transfer learning of DCNNs.

The effectiveness of the proposed subnet- and retraining-based algorithms have

been evaluated on several widely used image classification datasets, such as ImageNet

and Places-365. Furthermore, we validated the performance of the proposed strategies

in some extended domains, such as ship-target detection, food image classification,

camera model identification and misinformation identification. The experimental

results illustrate the superiority of the proposed algorithms.

vii

This thesis is dedicated to

my dear parents

viii

Acknowledgements

Foremost, I would like to express my sincere appreciation to my supervisor Dr. Q.

M. Jonathan Wu for giving me the opportunity to work under his supervision as well

as for his guidance and support in my research. He is kind and patient, and he has

provided me with more than enough resources for my research. I feel that I am very

lucky to be his student. Also, I would like to convey my sincere thanks to my co-

supervisor Dr. Yimin Yang who has raised highly constructive comments throughout

my study. He has supported me greatly in my research of analytic learning in which

we have published several papers in some highly esteemed journals.

I also would like to thank my committee members Dr. Mohammed Khalid, Dr.

Roozbeh Razavi-Far, and Dr. Boubakeur Boufama for guiding me and helping me

with their invaluable suggestions and comments. I heartily thank our department

graduate secretary Ms. Andria Ballo, who has helped me a lot in many areas. I

thank my friend Dr. Thangarajah Akilan and my colleagues in the CVSS laboratory

who have supported and spent time in helping me revise my papers.

Finally yet most importantly, I would like to thank my family, my parents who

have sacrificed nearly everything in supporting my Ph.D. study. They stand with me

as strong pillars of support, and I cannot thank them enough for their sacrifice and

patience.

ix

Contents

Page

Declaration of Co-Authorship / Previous Publication iii

Abstract . vi

Dedication . viii

Acknowledgements . ix

List of Tables . xvii

List of Figures . xx

List of Acronyms . xxiv

1 Introduction . 1

1.1 Overview . 1

1.2 Motivation . 2

1.3 Objective and Contributions . 4

1.4 Research Findings . 6

1.5 Organization of Thesis . 7

2 Background . 9

2.1 Overview . 9

2.2 Image Classification . 9

2.3 Analytic Learning with Moore-Penrose Inverse 10

2.3.1 Extreme Learning Machine . 10

2.3.2 Subnet Neural Network . 12

2.4 Loss Function . 13

2.4.1 Mean Square Error Criterion 14

2.4.2 Maximum Correntropy Criterion 15

2.5 Convolutional Neural Network . 15

2.5.1 Convolutional Layers . 16

2.5.2 Activation Layers . 17

2.5.3 Fully-connected Layers . 18

2.6 Transfer Learning . 19

x

3 Literature Review . 21

3.1 Overview . 21

3.2 Representation Learning Methods . 21

3.2.1 Statistic Approaches . 21

3.2.1.1 Probabilistic Methods 21

3.2.1.2 Correlation-based Methods 23

3.2.2 Supervised Learning Methods 24

3.2.2.1 Supervised Coding Methods 24

3.2.2.2 Deep Convolutional Neural Networks 26

3.2.3 Unsupervised Learning Methods 28

3.3 Moore-Penrose Inverse-based Algorithms 29

3.3.1 Single-layer Moore-Penrose Inverse-based Methods 29

3.3.2 Multi-layer Moore-Penrose Inverse-based Methods 30

4 A Width-growth Model with Subnetwork Nodes and Refinement

Structure for Representation Learning and Image Classification . 32

4.1 Introduction . 32

4.2 The Proposed Algorithm . 35

4.2.1 The Proposed Wi-HSNN . 37

4.2.2 Algorithmic Summary . 42

4.2.3 Proof of The Proposed Wi-HSNN 43

4.3 Experimental Results . 45

4.3.1 Experimental Setup . 45

4.3.1.1 The Environment . 45

4.3.1.2 The Datasets . 45

4.3.1.3 The Rival Methods and The Configuration of Input . 47

4.3.1.4 Evaluation Matrics 49

4.3.2 Model Settings . 49

4.3.3 Analysis on Image Classification Domain 51

4.3.4 Analysis on Extended Domains 51

4.3.5 Timing Analysis . 55

4.3.6 Qualitative Analysis . 56

4.3.7 Limitations of The Proposed Wi-HSNN 56

xi

4.4 Conclusion . 57

5 Multi-Model Feature Reinforcement Framework using MP In-

verse for Big Data Analysis . 59

5.1 Introduction . 59

5.2 The Proposed Algorithm . 61

5.2.1 The Proposed OS-HSNN . 62

5.2.2 Algorithmic Summary . 63

5.2.3 Proof of The Proposed OS-HSNN 65

5.3 Experimental results . 69

5.3.1 Experimental Setup . 69

5.3.1.1 The Environment . 69

5.3.1.2 The Dataset . 69

5.3.1.3 The Rival Methods 71

5.3.1.4 Configurations of The Rival Methods 72

5.3.1.5 Configurations of The Input Features 72

5.3.2 Model Settings . 73

5.3.3 Analysis on Image Classification Domain 75

5.3.4 Analysis on Ship-target Detection Domain 77

5.3.5 Timing Analysis . 82

5.4 Conclusion . 82

6 Hierarchical One-Class Model with Subnetwork for RL and Out-

lier Detection . 84

6.1 Introduction . 84

6.2 Related Works on One-class Classification 87

6.3 The Proposed Algorithms . 89

6.3.1 The Proposed OC-HSNN . 89

6.3.2 The Proposed MCOC-HSNN 92

6.3.2.1 The Objective Function with Correntropy 92

6.3.2.2 The Characteristics of MCOC-HSNN 95

6.4 Experimental Results . 95

6.4.1 Experimental Setup . 95

6.4.1.1 The Environment . 95

xii

6.4.1.2 The Dataset . 95

6.4.1.3 The Rival Methods 98

6.4.1.4 Configurations of the OCC Methods 99

6.4.1.5 Evaluation Metrics 99

6.4.2 Model Settings . 101

6.4.3 Analysis on Visual Classification Domain 103

6.4.3.1 Small-scale Datasets 103

6.4.3.2 Large-scale Datasets 107

6.4.4 Analysis on Extended Domains 110

6.4.4.1 Food Identification 110

6.4.4.2 Misinformation Detection 111

6.4.5 Discussion . 111

6.4.5.1 OC-HSNN vs. MCOC-HSNN 111

6.4.5.2 Limitation . 112

6.5 Conclusion . 112

7 Semi-supervised Manifold Regularization via a Subnetwork-based

Representation Learning Model . 114

7.1 Introduction . 114

7.2 Related Works on Semi-supervised Classification 116

7.3 The Proposed Algorithm . 118

7.3.1 Manifold Regularization . 118

7.3.2 Preliminary . 119

7.3.3 The Proposed SS-HSNN . 121

7.4 Experimental Results . 121

7.4.1 Experimental Setup . 121

7.4.1.1 The Environment . 121

7.4.1.2 The Dataset . 124

7.4.1.3 The Rival Methods 125

7.4.1.4 Configurations of The Semi-supervised Methods . . . 126

7.4.1.5 Evaluation Metrics 127

7.4.2 Model Settings . 127

7.4.3 Analysis on Image Classification Domain 128

xiii

7.4.4 Analysis on Extended Domains 131

7.4.4.1 Text-pattern Categorization 132

7.4.4.2 HFSWR vessel target Detection 132

7.4.5 Timing Analysis . 133

7.4.6 Effectiveness Analysis of SS-HSNN via VC Dimension 134

7.5 Conclusion . 136

8 Multi-Model Moore-Penrose Inverse-based Recomputation Frame-

works for Large Data Analysis . 137

8.1 Introduction . 137

8.2 The proposed algorithms . 139

8.2.1 The Proposed RML-MP . 139

8.2.1.1 Stage 1 - Feedforward Network Initialization 142

8.2.1.2 Stage 2 - Error Backpropagation with MP Inverse . . 143

8.2.1.3 Stage 3: Update Parameters with MP Inverse 144

8.2.1.4 The Learning Steps of RML-MP 145

8.2.2 The Proposed SRML-MP . 145

8.2.2.1 Sparse Learning . 145

8.2.2.2 The Learning Steps of SRML-MP 146

8.3 Experimental Results . 147

8.3.1 Experimental Setup . 147

8.3.1.1 The Environment . 147

8.3.1.2 The Datasets . 147

8.3.1.3 The Rival Methods 148

8.3.1.4 Configurations of The RL Methods 149

8.3.1.5 Configurations of The Input Features 150

8.3.1.6 Evaluation Matrics 150

8.3.2 Model Settings . 150

8.3.3 Analysis on Image Classification Domain 152

8.3.4 Timing Analysis . 154

8.3.5 Analysis on Food Image Classification Domain 156

8.3.6 Qualitative Analysis . 157

8.3.7 Limitations . 158

xiv

8.4 Conclusion . 159

9 Fast Domain Transfer Learning for Application Towards Efficient

Pattern Recognition . 160

9.1 Introduction . 160

9.2 Related Works on Domain Transfer Learning 163

9.3 The Proposed Algorithm . 164

9.3.1 MP inverse-based Dense Layer Refinement 165

9.3.2 Strategy 1 - Random Layer Freezing 167

9.3.3 Strategy 2 - Batch-by-batch FC Layer Refinement 167

9.4 Experimental Results . 170

9.4.1 Experimental Setup . 170

9.4.1.1 The Environment . 170

9.4.1.2 The Datasets . 170

9.4.1.3 The Rival Methods 174

9.4.1.4 Configurations of The Rival Methods 174

9.4.2 Step-by-step Quantitative Analysis 174

9.4.2.1 Analysis of Batch-by-Batch FC Layer Refinement . . 174

9.4.2.2 Analysis of Random Layer Freezing 175

9.4.2.3 Comparison of Transfer Learning 177

9.5 Conclusion . 178

10 Conclusion . 182

10.1 Overview . 182

10.2 Contributions . 183

10.2.1 The Proposed Subnet-based Methods 183

10.2.2 The Proposed Deep Learning Methods 184

10.2.3 The Newly Gathered Datasets 185

10.3 Applications . 186

10.4 Limitations . 187

10.5 Scopes for Future Works . 187

Bibliography . 189

Appendix A: IEEE Permission to Reprint 217

Appendix B: Elsevier Permission to Reprint 218

xv

Vita Auctoris . 219

xvi

List of Tables

4.1 Notations used in this Chapter . 36

4.2 Summary of the image classification and camera model identification

datasets . 46

4.3 Summary of the food image classification datasets 46

4.4 The effectiveness analysis of feature fusion. 51

4.5 Classification accuracy for CNN features with various algorithms on

Place365 dataset (A.(%) - testing accuracy; T.(h) - training time in

hour) . 52

4.6 Performance of the Wi-HSNN on camera model identification dataset. 52

4.7 Comparison of methods on Food datasets. The best and the second

best results are highlighted in boldface and underlined, respectively

[All - input is the concatenated (ResNet, DenseNet, and InceptionNet)

feature]. 53

4.8 Processing time with concatenated feature : Tr. (m) is the training

time in minute, Te. (ms) is the mean average testing time per frame

in millisecond. 56

5.1 Notations to be used in this chapter 61

5.2 Summary of the image classification datasets 70

5.3 Performance comparison of OS-HSNN w/ FT-VGG16 features: Tr.(m)

- training time in minutes, Acc.(%) - testing accuracy, PMU(GB) -

peak memory usage, and N/batch - Batch-by-batch strategy w/ N

number of samples per batch . 74

5.4 Top-1 testing accuracy (%) for representation learning tasks. Values

in red and blue are the best results w/ FT-ResNet and FT-Inception

among other methods respectively. Our best results are underlined. . 76

5.5 RD image ship target detection results. The best and 2nd best results

are in red and blue respectively . 79

xvii

5.6 Processing time w/ FT-VGG16: Tr. (s) is the total training time

in second, Te. (ms) is the mean average testing time per frame in

millisecond. 82

6.1 Summary of Datasets . 96

6.2 Hyperparameter settings of the proposed method and the compared

rival algorithms . 100

6.3 Performance of the proposed method with various combinations [TRT:

training time in minute, GM: G-mean scrore, S1 - W
r and Wv are cal-

culated w/ MSE; S2 - W
r is calculated w/ MSE, while Wv is obtained

w/ MCC; S3 - Wr is calculated w/ MCC, while Wv is calculated w/

MSE; S4 - Wr and Wv are calculated w/ MCC] 103

6.4 G-mean score comparison of the proposed and rival OCC algorithms.

Values in BOLDFACED and UNDERLINED are the best and the

second best results among the OCC methods 104

6.5 AUC score comparison of the proposed and rival OCC algorithms on

CIFAR-10 dataset. Values in BOLDFACED and UNDERLINED are

the best and the second best results among the OCC methods 106

6.6 Comparison of OCC algorithms on large-scale datasets. Values in

BOLDFACED are the best results among OCC methods [GM: G-mean

score (%), TRT (m): training time in minute, TET (ms): mean average

inference time per frame in millisecond] 109

6.7 Comparison of OCC algorithms on extended domains [GM: G-mean

score (%)] . 111

7.1 Notations to be used in this chapter 118

7.2 Summary of the datasets . 124

7.3 Top-1 testing accuracy of SS-HSNN with the increase of neurons in

each subnet. 128

7.4 Top-1 testing accuracy comparison of the SS-MSNN and other state-

of-the-art semi-supervised learning methods. 130

7.5 Comparison with other semi-supervised algorithms on CIFAR-10 and

CIFAR-100 (%). 131

xviii

7.6 Comparison with other semi-supervised algorithms on WeaRe text cat-

egorization (%). 132

7.7 RD image vessel target detection results. 133

7.8 Comparison of processing time: Tr. (s) the training time in second,

Te. (ms) is the mean average testing time per frame in millisecond. . 134

8.1 Notations to be used in this chapter 140

8.2 Summary of the datasets. 148

8.3 Effectiveness analysis of feature fusion strategy. 152

8.4 Top-1 testing accuracy comparison among different non-iterative RL

methods. Values in BLUE are the best results with Inception-v3 fea-

tures. The ones in RED are the best results with concatenated features

(Inc. - Inception-v3 features) . 153

8.5 Processing time w/ Inception features in MINUTE 156

8.6 Comparison with other algorithms on food categorization (%). 157

9.1 Notations used in this chapter . 166

9.2 Hyperparameter settings of the proposed method and the compared

rival algorithms . 172

9.3 Performance comparison of the proposed batch-by-batch method on

VGG-16: Tr. (h) - average retraining time of MP inverse per epoch,

Acc. (%) - Top-1 testing accuracy, PMU (GB) - peak memory usage,

and N/batch - the batch-by-batch proposed pipeline with N samples

per batch . 175

9.4 Performance comparison of the proposed random layer freezing on

ResNet-50: Tr. (h) - average retraining time per epoch in hours, Acc.

(%) - Top-1 testing accuracy . 175

9.5 Top-1 testing accuracy comparison of various domain transfer learning

approaches . 176

9.6 Comparison of the model convergence time in hours (h) 180

xix

List of Figures

2.1 General image classification strategy 10

2.2 The structure of single layer subnet structure proposed in [1]. 12

2.3 An example of CNN architecture: A handwritten digit classifier [2]. . 16

2.4 Convolution and ReLU operation. 17

2.5 A regular three-layer neural network. 19

2.6 Illustration of RL algorithms discovering underling factors. 20

3.1 Scene category co-occurrences [3]. 27

3.2 Feature representation of a deep neural network. Each hidden layer

learns to transform its input data into a different representation. . . . 27

4.1 Abstract dataflow of the proposed framework with one possible mul-

timodal fusion of four separate feature sources (Ω): AlexNet (Ω1),

ResNet (Ω2), HMP (Ω3), SPF (Ω4). 34

4.2 The proposed triple hidden layer “width-growth” structure. In each

iteration a new subnetwork pair (S-node and RS-node) are added to

the representation learning model to update the optimal feature space:

Wf
i - Entrance layer parameters of i-th RS-node, Wr

i - Refinement

layer parameters of i-th RS-node and Wv
i - Output layer parameters.

Notations: Hi - i -th entrance space feature, Ψi - i -th refinement space

feature, Γ - global-level representation space feature (exit layer), and

g(·) - activation function. 38

4.3 Comparison results of Wi-HSNN, MSNN, MP-H, and MP-ML among

all the food image classification datasets. 40

4.4 Comparison results of Wi-HSNN, MSNN, MP-H, and MP-ML among

all the food image classification datasets. 41

4.5 Top-1 accuracy of Wi-HSNN wrt various hyper-parameter L (Input:

“T”-DCNN features). 50

xx

4.6 Comparison results of Wi-HSNN, MSNN, MP-H, and MP-ML among

all the food image classification datasets. 54

4.7 Comparison of Wi-HSNN and other classification and encoding meth-

ods when harnessing concatenated (ResNet, DenseNet and Inception-

Net) feature. 55

4.8 The visualized t-SNE plots of our network on Food-101 and Food-

251 datasets, where different color means different category. The t-

SNE is plotted with four situations: The raw concatenated feature

space [X], the feature representation with one RS-node [Γ1], the feature

representation with two RS-nodes [Γ2], the feature representation with

three RS-nodes [Γ3]. (a) - (d) t-SNE on Food-101 data set, and (e) -

(h) t-SNE on Food-251 dataset. 58

5.1 Top-1 testing accuracy of OS-HSNN with fine-tuned features on Places-

365 dataset when new S-node and RS-node are added to the framework. 74

5.2 Aggregated performance of various RL models across all the datasets. 77

5.3 A sample of an Range-Doppler image. 78

5.4 Samples of synthetically added vessel-targets (the black small circles

denote the synthetic targets). 80

5.5 Detection rate analysis of various methods in challenging environmen-

tal conditions: OMVT - overlapping multiple vessel-targets, PCVT -

partially covered vessel-targets by sea clutter, and IIVT - ionospheric

clutter interfered vessel-targets. 81

5.6 Two sample detection results are shown row-wise. Columns one to

four refer to the original RD images, respective gray-scale value, the

detected targets (the bright pixels) localized by the OS-HSNN, and the

ground truth respectively. 81

6.1 The structure of the OC-HSNN and MCOC-HSNN are depicted as (a),

while (b) and (c) show the details of subspace RL and the latent space

RL. The main difference between these two models lies in calculating

subsapce weight Wr: The OC-HSNN and MCOC-HSNN use MSE and

MCC to learn the optimal Wr, respectively. 90

xxi

6.2 Sensitive performance of the proposed methods and rival methods on

MNIST-5 and Fashion-3 datasets. The performance of the proposed

methods is not sensitive to the hyper-parameter C. For example, with

various C, the average G-mean score of the proposed OC-HSNN on

MNIST-5 dataset ranges from 82.2% to 86.4%. However, the average

G-mean score of OC-H on MNIST-5 dataset ranges from 52.5% to 62.2%.102

6.3 Performance of the proposed OC-HSNN and MCOC-HSNN with BP-

based and MP inverse-based OCC algorithms. (a) and (b) show the

performance comparison of OCC methods on MNIST-2/4 and NORB-

1/2 datasets respectively. (c) and (d) are the results of different OCC

strategies on Fashion-2/3/4/5 datasets. 105

6.4 Performance of the OC-HSNN, MCOC-HSNN, and MCOC-M wrt dif-

ferent percentage of outlier ratio. (a) and (b) are the AUC score of

different methods, (c) and (d) are the comparison results in terms of

the F1 score. 108

6.5 Performance comparison of OC-HSNN, MCOC-HSNN and MCOC-S

on Place-A/C/D datasets. 109

7.1 The diagram of the proposed SS-HSNN. Similar to the Wi-HSNN, the

SS-HSNN is composed of an input layer, an output layer, and three hid-

den layers. The first hidden layer is the entrance layer which contains

L number of S-node. The second hidden layer called the refinement

layer consists of L number of RS-node. The last hidden layer is the

exit layer, which generates the global-level representation. 123

7.2 Top-1 testing accuracy with the increase of subnets. 129

8.1 Flowchart of the RML-MP and SRML-MP for multi-model RL. . . . 140

8.2 Comparison of frameworks of the (a) traditional MP inverse-based deep

network [4], (b) the proposed RML-MP, and (c) the proposed SRML-

MP. The difference of RML-MP and SRML-MP lies in Stage 3, the

RML-MP use ℓ2 penalty to recalculate the parameters while the SRML-

MP adopt ℓ1/2 penalty to update the weights. 141

xxii

8.3 Comparison of different algorithms with Inception-v3 features. (a) and

(b) are the results on Places-365-1 dataset, (c) and (d) are the results

on Places-365-2 dataset. 151

8.4 Comparison of different autoencoder-based algorithms on Places-365

and ImageNet datasets. (a) and (b) are the comparisons with Inception-

v3 feature, (c) and (d) are the results with all concatenation feature. . 155

8.5 The visualized t-SNE plot on Caltech-101 dataset. The t-SNE plots

visualize features quality under four situations: (a) the concatenated

raw feature, (b) the features refined by MLS, (c) the features refined by

the proposed RML-MP, and (d) the features reinforced by the proposed

SRML-MP. 158

9.1 Abstract data flow diagram of the proposed MPFR with one possible

optimizer in Strategy 1: SGDM. 163

9.2 The proposed MPFR strategy. The DCNN is trained with several

epochs consisting of two successive strategies: Strategy 1 is the random

layer freezing, and Strategy 2 refers to the FC layer feature refinement. 168

9.3 Experimental results of the proposed batch-by-batch FC layer refine-

ment strategy and fast retraining. (a) is the ablation results of the

proposed batch-by-batch algorithm. The analysis of this part is elabo-

rated in Section 9.4.2.1. (b) (c) are the ablation results of the proposed

random layer freezing schedule. The details of experiments is explained

in Section 9.4.2.2 . 173

9.4 Top-1 accuracy of various domain transfer learning approaches on Cifar-

100 and Places-365 datasets. Note: the values shown in the highlighted

boxes are the total convergence time in hours. For example, the pro-

posed pipeline in this work takes 55.9 hours for retraining convergence

for ResNet-50 with SGDM on Places-365 dataset. 179

9.5 Top-1 testing accuracy of ResNet-50 and Inception-v3 wrt different

initial learning rates. 180

9.6 Comparison of algorithms using ResNet-50 on Caltech-101 with two

optimizers wrt different initial learning rates. 181

xxiii

List of Acronyms

ANN Artificial neural network

AE Autoencoder

BLS Broad learning system

CFAR Constant false alarm rate

DCNN Deep convolutional neural network

ELM Extreme learning machine

HFSWR High frequency surface wave radar

HMP Hierarchical matching pursuit

LS Least-squares

M-ELM Multilayer extreme learning machine

MCC Maximum correntropy criterion

MCOC-HSNN MCC-based hierarchical subnet neural network

MLNN Multi-layer neural network

MSNN Multi-layer subnet neural network

MP Moore-Penrose

MPFR MP inverse-based fast retraining

MR Manifold regularization

MSE Mean square error

OCC One-class classification

xxiv

OC-HSNN One-class hierarchical subnet neural network

OS-HSNN Online sequential hierarchical subnet neural

network

PCA Principal components analysis

RBM Restricted Boltzmann Machine

RD Range-Doppler

RL Representation learning

RML-MP Recomputation-based multilayer network using MP

inverse

RS-node Refinement layer subnetwork node

S-node Entrance layer subnetwork node

SCN Stochastic configuration network

SGD Stochastic gradient descent

SLNN Single layer neural network

SMN Semantic multinomial

SNN Subnet neural network

SPF Spatial pyramidal feature

SRML-MP Sparse recomputation-based network using MP

inverse

SS-HSNN Semi-supervised hierarchical SNN

SVM Support vector machine

Wi-HSNN Width-growth hierarchical SNN

xxv

Chapter 1

Introduction

In this chapter, the preliminary concepts of big-data, image classification, RL and

MP inverse-based neural networks are discussed. Also, the motivation, objective,

contributions and organization of this thesis are elaborated.

1.1 Overview

As the development of science and technology improves, the demands for high-

dimensional big-data analysis are becoming increasingly higher. Nowadays, more

than billions of images and photos are being generated by the use of smartphones

and cameras [5]. According to a study [6], there were very few photos uploaded to

the internet in 2008. However, in 2014, more than 1.8 billion images were uploaded to

Facebook, Instagram and WhatsApp every day. This number is roughly equivalent to

one photo for every person on the planet. In addition, a large volume of data has been

generated by the installed surveillance cameras, on the fixed or moving platforms. For

example, in 2014, there were more than 200 million surveillance cameras used world-

wide. In 2016, it leaped by more than 100 million to an estimated 350 million cameras.

According to one study [7], all the new vehicles will be equipped with more than 25

cameras by the end of the year 2022, and the total number of surveillance cameras

will reach 45 billion. These cameras can generate a huge amount of images for re-

mote monitoring and facility protection. The generation of an overwhelming number

of images has raised technical questions of how to real-time monitor and analyze the

information. It is almost impossible for humans to process such a volume of data

because it incurs considerable expense in terms of skilled experts. Hence, intelligent

algorithms which can automatically process large-scale information in applications

are what we urgently need.

Image classification is one of the most basic tasks in machine learning. It is

1

a fundamental computer vision problem, where a specific label is assigned to each

testing image. The pivotal difficulty of big-data classification lies in the extraction of

the optimal representations, which has been investigated many years [8]. It is widely

known that the learnt representations can be characterized by different views of the

encoded input data [9, 10]. For example, an image can be described both in color view

with RGB components and in a texture view by texture representation. Similarly, a

vessel target can be localized by using satellite data and radar signals. In most cases,

unimodal feature representation will be biased and inadequate for a certain learning

task, while the multi-model feature learning frameworks can overcome the aforesaid

shortcomings through learning complementary clues [11, 12, 13, 14]. However, the

combined feature vector of multi-model often lies in a high-dimensional space, posing a

serious problem in the final pattern recognition as an enormous dimensional feature is

hard to explain clearly by a mathematical modeling [15]. At the same time, there can

be many redundant components and noise in such high dimensional feature vector.

Thus, it is crucial to develop an RL technology to remove redundancy, noise, and

reduce the dimension of the feature vector for improving the performance of the

model. If the data are fairly low dimensional, evaluating the final statistical model

from the training samples would be more efficient. In the past few decades, much

efforts had been dedicated into exploiting RL and dimension reduction, such as the

statistic approaches [16, 17, 18, 19, 20], supervised learning algorithms [21, 22, 23]

and unsupervised learning strategies [24, 25].

1.2 Motivation

In general, most of the supervised and unsupervised learning methods utilize artificial

neural networks (ANNs) as the foundation in their learning. Most of the present-day

ANNs apply stochastic gradient descent (SGD) or MP inverse to train their frame-

works. The MP inverse specifically, which was proposed by Schmidt [26] in 1992, is the

earliest attempt of using the least-squares (LS) process in single layer neural networks

(SLFNs). Compared to some iterative learning algorithms including SGD that suffer

from slow convergence and get trapped in a local minimum, the MP inverse-based

strategies have advantages of higher training speed [27] and quicker convergence. Au-

2

thors in [26] mentioned that the output layer vector can be called Fishier vector if

the weights are solved by the standard MP inverse solutions. Later, Huang et al. [28]

proved that by having the MP inverse, the network trained with randomly generated

hidden weights can be considered as a universal approximator, even without updating

the hidden layer parameters. Following that, several MP inverse-based RL algorithms,

which encode features in a specific real-world application have been investigated, such

as ELM [24, 25], stochastic configuration network (SCN) [29], broad learning system

(BLS) [30] and SNN [31, 23]. However, the existing MP inverse-based RL approaches

have several limitations elaborated as follows.

First, they cannot obtain satisfactory results on high-dimensional datasets with a

large number of training samples. Most MP inverse-based algorithms have focused on

processing small-scale and medium-scale datasets, such as MNIST [32] and NORB [33]

with no more than 100K samples, whereas utilizing MP inverse to handle big-datasets,

such as ImageNet [34] containing more than 1.2 million patterns and Places365 [35]

with a sample size of more than 1.8 million, has rarely been explored.

Second, most of the multilayer MP inverse-based algorithms suffer from being

incapable of global representations. The existing multilayer MP inverse-based frame-

works utilize a two-step learning mechanism to capture the optimal low-dimensional

encoding and do the final classification separately. Such a learning strategy has ap-

parent drawbacks. Each learning model is designed for solving one specific task. Users

are hard to determine whether or not the obtained encoding is part of the global-level

representations. A more advanced technique is to provide a one-step learning algo-

rithm that merges two steps, aiming to generate a generalized representation that

facilitates the final cognition [36, 37].

Third, the traditional multilayer MP inverse-based algorithms focus on a one-

batch learning fashion that generates the best parameters by training on the entire

data at once. Such a training strategy puts severe demand on the processing environ-

ment, especially when handling a large-scale dataset with huge input data volume. As

for the SGD-based neural networks [38, 39], they can easily avoid the out-of-memory

problem because the SGD can process the input data sequentially. Hence, it urges

to have a multilayer out-of-core algorithm that is capable of handling the inputs in

a batch-by-batch manner. Through a batch-by-batch strategy, users can handle any

3

datasets without having to consider the main memory of the environment.

Fourth, the low-dimensional representations learned from MP inverse-based meth-

ods are weak-kneed to handle noise. In some real-world applications, such as OCC,

the input data are usually polluted by non-Gaussian noise and extreme outliers. Ex-

isting multilayer MP inverse-based algorithms utilize the mean square error (MSE) to

learn the encoding, which is less effective when handling the input data with noise and

large outliers. The maximum correntropy criterion (MCC) is a second-order statisti-

cal measure, showing high robustness in handling non-Gaussian outliers. Therefore,

it is intuitive to solve the non-Gaussian noise by OCC instead of the MSE.

1.3 Objective and Contributions

The major objective of this Ph.D. dissertation is to improve the performance of clas-

sification by proposing a number of MP inverse-based multilayer neural networks. To

the best of our knowledge, the subnet-based RL algorithms [1, 23] have shown the ben-

efits of discriminative feature learning, and recent work in [23] has already achieved

superior performance over other state-of-the-art multilayer MP inverse-based algo-

rithms in multi-class classification. Thus, we plan to implement the enhancements by

introducing novel learning architectures and optimization strategies based on SNN

and MP inverse. The major contributions of this dissertation are listed as follows.

1. A novel SNN-based classification structure called Wi-HSNN.A novel

width-growth MP inverse-based RL structure is proposed. Different from the

other multi-layer neural networks (MLNNs) that build architectures in a layer-

wise manner, this model enriches the latent space representations by the growth

of network width. Here, we call it the width-growth manner. Note that this

method is not a simple ensemble network. Here, the latent space subnet is

guided and optimized according to the error term. Further, a novel end-to-

end feature transformation and classification algorithm is presented. Here, the

feature space transformation and pattern recognition process are combined,

where the potential encoding space at the global-level is searched iteratively.

Here, the mathematical proof of Wi-HSNN is given.

4

2. A batch-by-batch learning algorithm called OS-HSNN. A batch-by-

batch learning strategy for Wi-HSNN to process large-scale datasets is pro-

posed. The learning mode of the proposed OS-HSNN can be switched from

one-batch to batch-by-batch, only with the consideration of the input data size.

By having the batch-by-batch strategy, the data volume of the input data batch

is dramatically reduced, and the process of OS-HSNN does not have a severe

computational requirement. In this dissertation, we mathematically prove the

effectiveness of the proposed batch-by-batch strategy.

3. Two SNN-based one-class classification algorithms. First, a novel multi-

layer subnet-based structure called OC-HSNN for OCC is proposed in this study.

To increase the representational power of the structure, two subnet structures,

namely, the entrance layer subnet (En-Subnet) and exiting layer subnet (Ex-

Subnet), are introduced in OC-HSNN to find the generalized feature subspaces.

Second, the MCOC-HSNN is further proposed for outlier detection in the pres-

ence of non-Gaussian noise, where the MCC is designed in low-dimensional RL

to improve the performance of classification.

4. A semi-supervised subnet structure named SS-HSNN. A subnet-based

algorithm using manifold regularization and graph Laplacian is proposed for

semi-supervised classification. The manifold regularization assumes that both

the labeled and unlabeled samples should have the same distribution. Hence,

the conditional probabilities of two nearby points, i.e., P (y |x 1) and P (y |x 2)

should be similar.

5. Two novel optimization strategies based on multilayer ELM (M-ELM).

A recomputation-based multilayer network using MP inverse (RML-MP) is de-

veloped. The M-ELM can only generate loosely-connected representations in

processing large-scale datasets because it does not contain parameters’ fine-

tuning. Thus, in the proposed RML-MP, a novel recomputation strategy based

on MP inverse is proposed to feedback the error and fine-tune hidden layer

parameters. Meanwhile, the effective ℓ1/2 penalty-based learning framework

is adopted in the retraining stage of RML-MP, leading to a sparse algorithm

SRML-MP. A comprehensive comparison has been conducted to validate the ef-

fectiveness of the proposed methods over other approaches on different datasets.

5

6. A novel transfer learning strategy for DCNNs. A novel fast domain

transfer learning strategy based on MP inverse technique and random layer

learning is proposed for DCNNs. Specifically, the batch-by-batch MP inverse is

utilized to fine-tune the FC layers of one DCNN, while the random layer freezing

strategy is proposed to decrease fine-tuning workloads and to avoid over-fitting.

7. Two new datasets. Two new datasets are gathered in this thesis. First, a

one-class classification dataset named CO-Mask for misinformation detection

is created with texts collected from the “big three” news agencies (Associated

Press, Reuters, and Bloomberg) on wearing masks as a way to curb COVID-19.

Second, a new ship-target detection dataset called HFSWR-RDE has been pre-

pared. The HFSWR-RDE dataset is a challenging but comprehensive dataset

for semi-supervised object detection.

1.4 Research Findings

During the doctorate research, the proposed algorithms and related researches have

been published and submitted in some highly esteemed journals and transactions,

which are elaborated as below.

1. Zhang W, Wu QMJ, et al., Hierarchical One-Class Model with Subnetwork for

Representation Learning and Outlier Detection, IEEE Trans. on Cybern., 2022.

2. Zhang W, Wu, QMJ, et al., Multimodel Feature Reinforcement Framework

Using Moore-Penrose Inverse for big-data Analysis. IEEE Trans. Neural Netw.

Learn. Syst., 2021

3. Zhang W, Wu QMJ, et al., HKPM: A Hierarchical Key-Area Perception Model

for Maritime Surveillance Using HFSWR, IEEE Trans. Geosci. Remote Sens.,

2021

4. Zhang W, Wu QMJ, et al., Detection of Vessel Object Using HFSWR with

ANOVA-based Spatio-Frequency Analysis, IEEE Geosci. Remote Sens. Lett.,

2021

5. Zhang W, Wu QMJ, et al., A Width-growth Model with Subnetwork Nodes

and Refinement Structure for Representation Learning and Image Classification.

IEEE Trans. Ind. Inform., 2020

6

6. Zhang W, Wu QMJ, et al., Wi-HSNN: A subnetwork-based encoding structure

for dimension reduction and food classification via harnessing multi-CNN model

high-level features. Neurocomputing, 57-66, 2020.

7. Zhang W, Wu QMJ, et al., Predicting COVID-19 trends in Canada: a tale of

four models. Cogn. Comput. Syst., 112-118, 2020.

8. Zhang W, Wu QMJ, et al., A Novel Ship Target Detection Algorithm Based

on Error Self adjustment Extreme Learning Machine and Cascade Classifier.

Cogn. Comput., 110-124, 2019.

9. ZhangW,Wu QMJ, et al., Semi-supervised Manifold Regularization via Subnet-

work based Representation Learning Model, IEEE Trans. on Cybern. (Major

Revision)

10. Zhang W, Wu QMJ, et al., Multi-Model LS-based Recomputation Framework

for Large Data Analysis, IEEE Trans. Neural Netw. Learn. Syst. (Under

Review)

11. Zhang W, Wu QMJ, et al., Fast Domain Transfer Learning for Application

Towards Efficient Pattern Recognition, IEEE Trans. Syst. Man Cybern.-Syst.

(Under Review)

1.5 Organization of Thesis

This thesis consists of ten chapters, initially starting with this introductory section.

Then, it elaborates the details of each proposed method and algorithm. Finally,

it concludes the thesis and provides future directions. This thesis is structured as

follows.

Chapter 1 introduces the basic concept of RL, the motivation, aims and objectives.

Chapter 2 discusses the background details of the analytic learning methods with

definitions, equations derivations, and loss function.

Chapter 3 surveys the existing RL algorithms in different categories, including statis-

tic, supervised and unsupervised learning algorithms. Also, the state-of-the-art MP

inverse-based methods are reviewed. The comparison of these methods is discussed,

and the strength and limitations of these algorithms are explained as well.

7

Chapter 4 proposes a novel MP inverse-based algorithm called Wi-HSNN for RL and

image classification. The experimental results show that the Wi-HSNN is superior to

existing MP inverse-based algorithms on most of the image classification datasets.

Chapter 5 introduces an MP inverse-based batch-by-batch learning strategy for big-

data analysis. It is a recursive LS learning algorithm that is capable of processing

any large-scale datasets, even the Places-365 dataset containing more than 1.8 million

training samples.

Chapter 6 proposes two one-class classification algorithms with MSE or MCC to

capture the robust high-level features. Experimental studies verify the effectiveness

of the proposed methods on large-scale datasets.

Chapter 7 intends to present a novel subnet-based neural network for semi-supervised

RL and classification. A new semi-supervised learning dataset for ship-target object

detection is gathered and compared.

Chapter 8 harnesses the ability of multilayer ELM modules in handling large-scale

datasets. The output layer error is pulled back by the proposed retraining strategy,

and the latent space representations can be updated with the pulled back data.

Chapter 9 proposes an MP inverse-based retraining scheme for DCNN transfer learn-

ing. A novel network optimization algorithm instead of a new network structure is

proposed for 2D image classification. Thus, the proposed retraining scheme can be

utilized in any DCNNs.

Chapter 10 concludes the research findings and summarizes the future directions.

8

Chapter 2

Background

2.1 Overview

This chapter introduces the foundation of this dissertation by explaining definitions,

mathematical equations, derivations, and the background information on the key

points related to our proposed MP inverse-based algorithms.

2.2 Image Classification

In computer vision, image classification is a task to decide if a visual image belongs to

one image or not. Classifying an image according to a fixed set of labels is an effortless

task for humans. However, such a process can incur high costs in terms of skilled

human experts, especially when considering the large volume of images uploaded

every day through social media, such as Facebook, Instagram and WhatsApp.

In most cases, solving an image classification task can be divided into four stages:

image preprocessing, representation learning (feature extraction), post-processing

(feature selection) and the final classifier, as shown in Fig. 2.1. The representation

learning stage plays a crucial role in the whole process of image classification, where

an effective algorithm is designed to remove the redundancy and noise from the input

feature vector to boost the classification performance. Among the existing represen-

tation learning algorithms [16, 17, 24, 25], the analytic learning strategy [28, 40] is a

vital branch.

9

Image

Classification

Algorithm
Class: Dog

Pre-processing
Representation

Learning
Post-processing Classifier

Figure 2.1 – General image classification strategy

2.3 Analytic Learning with Moore-Penrose Inverse

Traditional analytic learning methods convert a nonlinear network optimization prob-

lem into several linear segments, where a closed-form least-square solution is utilized

to solve the optimal parameters and weights. The commonly used analytic learning

algorithms include random vector functional link (RVFL) [41], ELM [28], SCN [29],

BLS [30] and SNN [1]. Here, the foundation of ELM and SNN is discussed.

2.3.1 Extreme Learning Machine

Given a training dataset withN training samples {X, T}, xi ∈ Rn is the input vector,

ti ∈ Rd is its associated target. The input weights and the bias of latent space neurons

are randomly assigned, and the training optimization equation becomes minimizing

the error between target T and output.

min J = ||HWf −T||2F , (2.1)

where || · ||F is the Frobenius norm, Wf refers to the output layer weight, H =

{h(xi)} = g(wj · xi + bj) stands for hidden layer features, wj and bj are the in-

put weights and bias of j-th hidden neuron, respectively, and g(·) is the activation

function. The output weight Wf is calculated via the LS strategy:

Wf = H†T, (2.2)

10

where H† is the MP inverse of H.

Based on ELM, the researchers proposed ELM autoencoders (ELM-AEs). Similar

to the other autoencoder (AE) algorithms, the ELM-AE tries to encode the input

data by setting the input as the target output. In particular, the optimal output

layer parameters of ELM-AE are calculated with the MP inverse technique. The

earliest ELM-AE [42], which is an ℓ2 norm-based structure, is trained by minimizing

the following problem:

min J =
1

2
||HWo −X||2F +

C

2
||Wo||2F ,

s.t. H = g(X,Wh, bh), and

WT
hWh = I, bTh bh = 1,

(2.3)

where C is the regularization term, X refers to the input, and {Wh, bh} are the hidden
layer parameters, which are randomly assigned. The optimal weight Wo is calculated

by the MP inverse strategy, and the encoding He of ELM-AE is described by

He = g(XWT
o). (2.4)

Tang et al. [24] proposed M-ELM algorithm by stacking multiple ELM-AEs. Sup-

pose a M-ELM has K hidden layers, g is the activation function which can be chosen

as linear or nonlinear. Mathematically, the objective function J to learn M-ELM can

be described as

min J =
1

2
||HK

e Wf −T||2F +
C

2
||Wf ||2F ,

s.t. Hk
e = g

(
Hk−1

e (Wk
o)

T
)
, 0 ≤ k ≤ K,

(2.5)

where Hk
e is the k-th layer output matrix, X can be considered as the 0-th layer

feature matrix where k equal to zero, i.e., H0
e = X, Wf refers to the weights of

the final classification layer, and Wk
o is the k-th layer weights that will be fixed

once determined. The weights between output layer and the k-th hidden layer are

generated through MP inverse, which is Eq. (2.2).

11

2.3.2 Subnet Neural Network

In SNN [1], a hidden neuron node itself can be replaced with a subnetwork formed by

several neural nodes, and each hidden layer can be considered as a separate subspace.

Hence, the SNN is still a single-layer neural network (SLNN). The structure of the

SNN is depicted as Fig. 2.2.

Represent a

neural node

Represent a subnetwork-based

neural node

n input

m input

L subnet nodes

The dimension

for each subnet

node is d(𝐖1
𝑓
, 𝑏1

𝑓
) (𝐖𝐿

𝑓
, 𝑏𝐿

𝑓
)

Figure 2.2 – The structure of single layer subnet structure proposed in [1].

The SNN is structured iteratively, i.e., the network is first initialized with one

subnet, then, the latent space is gradually enriched by adding new subnets in the

structure. Here, we use index i to denote the number of subnetwork. Suppose a

dataset has N arbitrary samples, {X,T}, which is sampled from a continues system,

the number of subnet in SNN is L, and the dimensionality of each subnet is d. The

representations generated from the first subnet, i.e., Hf
i (i=1) can be expressed as:

Hf
i = g(X ·Wf

i + bfi), (W
f
i)

TWf
i = I, (bfi)

T bfi = 1, (2.6)

12

where Wf
i ∈ Rn×d, bfi are the random weights and bias, respectively.

Given an invertible activation function g and the desired output T, the parameters

between the i-th subnet and the output layer is calculated by

Wh
i =

(
I

C
+ (Hf

i)
THf

i

)−1

(Hf
i)

T ·T,

bhi =

√
MSE(Hf

i W
h
i −T),

(2.7)

where (Hf
i)

THf
i is the MP inverse of the Hf

i , C is the regularization term.

Then, the current output layer error Ei and feedback data Pi are described as

Ei = T− (Wh
i H

f
i + bhi),

Pi =

(
I

C
+ (Wh

i)
TWh

i

)−1

(Wh
i)

TEi.
(2.8)

Set i = i + 1, add a new subnet in the structure. The parameters and the

representations for the newly added subnet is calculated by

Wf
i = (

I

C
+XTX)XT · Tg−1(Pi−1),

bfi =

√
MSE

(
XWf

j − g−1(Pi−1)
)
,

Hf
i = g(X ·Wf

j + bfi).

(2.9)

The last step of SNN is to repeat Eq. (2.7) to Eq. (2.9) L− 1 times.

2.4 Loss Function

In machine learning and mathematical optimization, the loss function is an equation

that measures the distances between the actual network’s output and the desired out-

put (label or target). It uses a mathematical equation to describe how the algorithm

models the input data. The training of one neural network can be considered as an

optimization problem minimizing the loss function. The MSE is the most commonly

used loss function for classification and regression. However, the network trained by

13

MSE is less effective when handling data with non-Gaussian noise and extreme out-

liers. By contrast, the MCC-based loss function is more effective in handling noise

and outliers.

2.4.1 Mean Square Error Criterion

Given N number of training samples {X, T}, let the dimension of each sample is

n. Then, X ∈ RN×n and T ∈ RN×m are the input data and the expected output,

respectively. Suppose H = g(X ·Wh + b) is the hidden layer features, where Wh

and b are hidden layer weights and bias, respectively. For a single-layer network, the

MSE-based objective function is:

min J =
C

2
||HWf −T||22 +

1

2
||Wf ||22, (2.10)

where C is the regularization term, H is the hidden layer features, Wf refers to

the output weight matrix, and the term ||Wf ||22 is the ℓ2 regularization. The Wf

optimized by MSE criterion is described as

Wf = H†T, (2.11)

where H† is the MP inverse of H. In fact, there are different ways to calculate H†,

such as the orthogonal projection, and the singular value decomposition (SVD). In

this paper, with the identity matrix I, the orthogonal projection is utilized because

of its efficiency:

Wf = H†T = (
I

C
+HTH)−1HTT, or

Wf = H†T = HT (
I

C
+HHT)−1T.

(2.12)

14

2.4.2 Maximum Correntropy Criterion

The correntropy V (·) is the second order statistical measure of two vectors X and Y

in the Hilbert space [43] defined as in Eq. (2.13).

V (X, Y) = E [⟨ψ(X), ψ(Y)⟩H] , (2.13)

where E is the expectation, and ψ(·) is the projection of a vector into the Hilbert

space. The projection of the vector in the Hilbert space can be efficiently computed

by exploiting a kernel function as defined in Eq. (2.14).

E [⟨ψ(X), ψ(Y)⟩H] = E [k(X,Y)H] . (2.14)

In this dissertation, a Gaussian kernel Gσ(·) with variable center is utilized to

calculate the expectation in the Hilbert space as defined in Eq. (2.15) [44].

k(X,Y)H = Gσ(X−Y) = exp

(
−||X−Y||2

2σ2

)
, (2.15)

where σ is the bandwidth of Gaussian kernel.

2.5 Convolutional Neural Network

The DCNN is a deep learning algorithm that takes images as the input, using train-

able parameters to differentiate one from the other. The pre-processing required in a

convolutional model is much less than the traditional classification algorithms. The

DCNN is composed of convolutional layers, activation layers and FC layers. The acti-

vation layer can be the rectified linear unit (ReLU) layer, sigmoid layer, softmax layer

and batch normalization layer. For example, Fig. 2.3 shows a DCNN for handwritten

digit recognition in which the feature extraction section and classification section are

included. For the feature extraction part, the input image goes through convolu-

tional and activation layers to extract the high-level abstractive features. As for the

final classification part, this stage uses the fully-connected (FC) layers and objective

functions to classify the latent space representations. Hence, the feature extractors

15

first transform the data from the original RGB space into a latent space. Then, a

loss function, such as the cross-entropy loss, evaluates the relationship between the

output and the ground truth numerically. The DCNN considers the network learning

as an optimization task, where the loss function will be minimized through a back-

propagation strategy like SGD or Adam with respect to the parameters of the loss

function.

Figure 2.3 – An example of CNN architecture: A handwritten digit classifier [2].

The studies in [45, 46] verified that the depth of one DCNN plays a vital role

in pattern recognition, and the DCNN is capable of achieving state-of-the-art per-

formance compared to the traditional methods on various real-world applications.

By the use of local receptive fields, shared weights, and spatial sub-sampling, the

feature extraction layers of a DCNN have distortion and shift-invariant principles.

In the following subsections, we elaborate on the background of the convolutional,

fully-connected and activation layers.

2.5.1 Convolutional Layers

The convolutional layers are the core part of the DCNN. Essentially, they apply

convolution operation for representation learning and feature extraction, where the

weights of each filter operate like a dictionary of feature patterns. The weights of

16

the convolution operation within a feature map are shared. Hence, the position of

the local feature is not an important factor in feature extraction, leading to shift-

invariant. For the input patch X and the filter kernel K, the convolution operation

can be described as the following

C(m,n) =
P∑

p=0

Q∑
q=0

K(p, q) ∗ X (m+ p, n+ q) + b, (2.16)

where ∗ is the convolution operation, {m,n}, {P,Q}, {p, q} refer to the location of 2D

patch, the size of convolution kernel, and the index of convolution kernel, respectively.

A sample of convolution operation is elaborated as Fig. 2.4a.

(a) Convolution

operation
(b) ReLU

Legend: Value Less Than 0 Value Equal to 0 Value Greater Than 0

Figure 2.4 – Convolution and ReLU operation.

2.5.2 Activation Layers

The purpose of adding activation layers in a DCNN is to bring non-linearity into

networks and to learn complex patterns in the data. When comparing with the

neurons in our brain, the activation function is similar to the area at the end deciding

which neuron is going to be activated. In a DCNN, there are several activation layers

in practice, such as ReLU, softmax and batch normalization layers. Among them,

the most commonly used activation function is ReLU, which is shown in Fig. 2.4b.

17

ReLU. The ReLU layer is a piecewise linear function that directly outputs the

input when the input is greater than zero, otherwise, it outputs zero. The DCNN

rectifies the output of convolution operation through ReLU function defined as f(x) =

max(x, 0), where x is the output of convolutional layer.

Softmax. The softmax function is defined as

yi(z) =
ezi∑K
k=1 e

z
k

, (2.17)

where z is a K-dimensional vector extracted from one layer, yi(z) is the normalized

output with a probability distribution consisting of K probabilities. Each element in

yi(z) ranges from 0 to 1, with the summation of these elements equal to 1. Therefore,

if the last layer of a DCNN is the softmax function, then the output of this DCNN of

the actual probability scores for each class label. Further, if the cross-entropy is used

to build the loss function, the softmax function is modified as

Li = −ln(
ezi∑K
k=1 e

z
k

), (2.18)

Batch Normalization. There are several advantages of using batch normalization

in a DCNN, such as speeding up the training and reducing the internal covariate shift.

Mathematically, batch normalization is defined as Eq. (2.19).

Xn =
X− µX√
σ2
X + ϵ

, (2.19)

where X is the input of the batch normalization layer, µX, σX and ϵ are the mean,

variance of the input batch, and a small positive value, respectively.

2.5.3 Fully-connected Layers

The output from the convolutional layer is the high-level features extracted from

the data. The FC layer takes the one-dimensional signal of the output of the last

convolutional layer, and it connects every neuron in it to every neuron in the following

layer. Essentially, the convolutional layers aim at extracting the invariant features

18

from the input images, while the FC layers learn a prediction/classification function

in that space. In place of FC layers, we can also use a conventional classifier, such

as ELM or support vector machine (SVM). But the researchers usually use the FC

layers at the end to make the DCNN end-to-end trainable. A sample connection by

the FC layer is shown in Fig. 2.5.

Input layer

Hidden layer 1 Hidden layer 2

Output layer

Figure 2.5 – A regular three-layer neural network.

2.6 Transfer Learning

Nonetheless, while DCNNs have achieved the state-of-the-art in various machine

learning tasks, such as image classification [14], nature language processing [47], image

captioning [48], and object detection [49], they still face several pitfalls. First, they

need a large number of labelled data to train the model. For example, AlexNet [50]

contains more than 60 million trainable weights, and the researchers need to use

a large-scale dataset like ImageNet with more than 1.4 million training samples to

optimize the parameters. Also, there is a stringent demand for the initialization of

weights for efficient training. Severyn et al. [51] has pointed out that the performance

of the DCNN depends on the initialization of the parameters. Second, the training

of the DCNN from the scratch is time-consuming. If the DCNN has hundreds of

convolutional layers, then the training of this DCNN can take more than months if

the computer does not have a good graphics processing unit (GPU).

19

Transfer learning technique overcomes the afore-said limitations. Transfer learning

unlocks two major benefits: 1) it reduces the network’s training time, and 2) it reduces

the amount of data required. These benefits encourage the researchers to investigate

the transfer learning strategy in many applications, such as scene image classification

and video action recognition. Generally, a base neural network, such as AlexNet, is

first trained on a source domain. Then, the weights of this model are utilized as the

initial weights to a new network which will be fine-tuned and retrained on the target

domain.

One core application of transfer learning is that of multi-modal fusion. In this

area, transfer learning exploits the commonalities among different learning tasks,

aiming to share statistical strength and to transfer the knowledge across tasks. The

RL algorithms have an advantage for this task as they learn the latent space encoding

that captures underlying clues, as shown in Fig. 2.6.

Task 1 Task 2 Task 3

Output of
each task

Input

Hidden layer 1

Hidden layer K

Output

Figure 2.6 – Illustration of RL algorithms discovering underling factors.

20

Chapter 3

Literature Review

3.1 Overview

In this chapter, a detailed literature review of this dissertation is given. The review

mainly includes two sections: the related works on RL and the works regarding the

MP inverse-based algorithms. The existing RL methods elaborated in Section 3.2 can

be categorized into three categories, namely, statistic approaches, supervised learn-

ing methods and unsupervised learning strategies. The review of MP inverse-based

algorithms mainly consists of single-layer and multi-layer analytic learning structures.

3.2 Representation Learning Methods

The topic of representation learning has been investigated for many years [52]. The

following subsections lay the background and elaborate on the existing RL methods.

3.2.1 Statistic Approaches

The current statistic approaches contains two types of algorithms, the probabilistic

methods and the correlation-based frameworks.

3.2.1.1 Probabilistic Methods

From the probabilistic modelling perspective, the RL tasks are based on the statistical

model p(x, h) describing the joint space of the latent space h and the observed data

x. In particular, p(x, h) can be considered as the result of the inference process to

determine the statistical model p(h|x), which is the posterior probability explaining

the probability distribution of the latent space variable h given the raw data x. The

probabilistic methods give us two different manners in which we can consider the

21

question of latent space learning, directed or undirected graphical algorithms. In the

following, we review the existing methods in these two directions.

Directed Graphical Methods These methods apply the conditional likelihood

p(h|x) and the prior probability p(x) to compute the joint distribution probability.

p(x, h) = p(h|x)p(x). (3.1)

The directed graphical methods include principal components analysis (PCA) [53],

sigmoid belief networks [54], and spike-and-slab sparse coding model [55]. The PCA is

a technique that achieves dimension reduction and minimizes the information loss [56].

The earliest work regarding PCA can be traced back to 1901 proposed by Pearson et

al. [57], but it was not until the computers became widely used that it was therefore

computationally feasible to be processed. Going beyond the basic PCA, there are

many adapt and advanced PCAs that achieve modified goals to analyze data, such

as functional PCA [58] and robust PCA [59]. As for the spike-and-slab sparse coding

model [55], it defines two different variables: the spike and slab variables. The spike

variables are latent binary values, while the slab variables are a set of latent real

values. The performance of spike-and-slab sparse coding has been verified in many

datasets, such as CIFAR-10 and CIFAR-100. Experiments validate that this method

outperforms most of the sparse coding representations.

Undirected Graphical Methods Undirected graphical methods, also called Markov

random fields (MRFs), construct the joint distribution probability p(x, h) through a

product of unnormalized non-negative clique potentials [60]:

p(x, y) =
1

Zθ

∏
i

ψi(x)
∏
j

ηj(h)
∏
k

vk(x, h), (3.2)

where ψi(x), ηj(h) and vk(x, h) refer to the clique potentials explaining the interac-

tions between the visible elements, between the hidden variables, and between the

visible and hidden variables, respectively, and the function 1/Zθ normalizes the dis-

tribution. The most commonly used undirected graphical method is the restricted

22

Boltzmann machine (RBM). The RBM [61] essentially is a random network with a

two-layer symmetric connection. In their basic form, the RBM assumes the input of

their structure is the Bernoulli variables with two possible states, 0 or 1. It models

the most prominent interactions that occur in the processing dataset. Depending

on the objective of the task, the RBM can be utilized in either the supervised or

unsupervised domain. Going beyond the original RBM, important progress has been

made in exploring the advanced and improved RBMs for better representation pur-

poses. Ranzato et al. [62] proposed the Gaussian RBM that adds a bias term which

is quadratic in the visible units x to the visible units biases. However, the Gaussian

RBM is sometimes incapable of modelling natural images. Recently, some deep struc-

tures of RBM, such as deep belief network [63] and deep Boltzmann machine [64] have

been formed. Because of its excellent feature representation abilities, the original and

improved RBMs are widely used in feature extraction [65] and image processing [66].

3.2.1.2 Correlation-based Methods

Another important perspective of statistic learning approach is that of the correlation-

based methods. Its premise is the manifold hypothesis based on manifold learning,

which assumes that the observed data lie on a low-dimensional manifold embedded

in a higher-dimensional space. The current correlation-based algorithms can be cat-

egorized into two families, the non-parametric and parametric approaches.

Non-parametric Correlation-based Algorithms In the non-parametric algo-

rithms, each high dimensional data point has its own set of free low dimensional

embedding coordinates. The data points optimized by non-parametric correlation-

based methods can preserve certain properties of the neighbourhood graph from the

original high dimensional space. The neighbourhood graph is also called the geomet-

ric perspective. Most of the geometric perspective-based methods are implemented

based on a training set nearest neighbour graph [67, 68]. However, these methods

cannot learn a mathematical expression or feature learning function from the train-

ing dataset, which is inefficient when handling the newly arrived testing patterns.

Hence, several non-linear manifold learning algorithms have been proposed, which

are discussed in the following subsection.

23

Parametric Correlation-based Algorithms One main advantage of the para-

metric correlation-based methods is that, when the new testing data arrives, these

methods can use a parametric map fθ to directly construct encoding for new points.

Some of the non-parametric algorithms can be modified as the parametric algorithms,

such as the t-SNE [69]. Recently, parametric correlation-based algorithms have been

employed in the area of semi-supervised learning. For example, Weston et al. [70]

utilizes the manifold hypothesis to learn the representation of the input data by a

neighbourhood graph, wherein a hierarchical neural network that can simultaneously

learn the latent embedding and the classifier is developed. The training criterion of

[70] encourages the neighbours of training samples to maintain a similar representa-

tion. Compared to the non-parametric correlation-based algorithms, the parametric

methods forces the model to generate the manifold shape non-locally [71], which

generates better representations and final performance.

3.2.2 Supervised Learning Methods

The supervised learning algorithms have been investigated for decades. Two vital

branches of supervised learning methods are supervised coding methods and DCNNs.

3.2.2.1 Supervised Coding Methods

The supervised coding methods evaluate the importance of a specific feature through

the correlation between features and categories. The supervised coding methods

can be split into three families: sparse representation methods [72, 73], semantic

multinomial methods [74, 3] and the intermediate representation methods [75].

Sparse Representation The sparse representation methods learn a discriminative

codebook for feature representation with separate learning stages or in an end-to-end

fashion. Jiang et al. [22] introduced a supervised coding method, label consistent K-

means-based singular value decomposition (K-SVD), for sparse representation learn-

ing. This algorithm learns the discriminative dictionary, coding parameters, and

classifier parameters simultaneously, whereby the optimal solution is derived. On

the other hand, the neighbourhood preserving embedding (NPE) proposed by He et

24

al. [76], is a linear dimensional reduction algorithm that preserves the local neigh-

bourhood structure on the data manifold. In this way, the NPE is more robust

in handling outlier data points compared with its counterparts. In [77], Cai et al.

provide a novel data-analytic method named locality sensitive discriminant analysis

(LSDA). In contrast with the basic linear discriminant analysis (LDA), the LSDA-

based data processing tool works on the local manifold structure so that it can have

complete preservation of both discriminant and local geometrical structures in the

data. Bo [72] introduced a descriptor called multipath hierarchical Matching Pursuit

(M-HMP), that combines a collection of hierarchical sparse features for image classi-

fication so that multiple discriminative feature vectors can be obtained. The sparse

representation-based methods have achieved good performance in many scenarios [78].

An important branch of sparse representation is the bag-of-word (BoW) method.

Originating in the previous year’s literature, BoW algorithms have become popu-

lar for image processing and pattern recognition because of their effectiveness and

flexibility. BoW methods have four steps: feature extraction, codebook generation,

feature coding, and visual histogram representation. It is already shown that given

the codebook, how to generate the feature coding to find the proper representation

has a vital impact on final classification and recognition. The simplest way is to gen-

erate a specific feature to the closest code, and assign one or zero as its coefficients,

which is termed as “hard-assignment” [79]. This assignment strategy does not con-

sider the feature ambiguity and may introduce large quantization errors. In [80, 81],

the improved coding strategies, soft-assignment and visual word ambiguity (VWA)

were proposed to alleviate the drawback by assigning a local feature to all codewords.

Precisely, the generated coding coefficient shows the membership of a certain feature

to the generated codewords, and the strong relationship with the codeword always

generates a high coefficient. In recent years, local coding schemes have been widely

investigated. They optimize a linear combination of a few codewords to approximate

a local feature and code it with the optimized coefficients. For example, in [82],

Yang et al. proposed a local coding algorithm named sparse coding SPM (ScSPM).

This method uses sparse coding instead of traditional vector quantization to obtain

feature coefficients, and the local maximum pooling is used to generate the optimal

representation. In [83], Wang et al. introduce a simple coding algorithm called local-

25

ity constrained linear coding (LLC). It uses local constraints to project the feature

descriptors to multiple inner subspaces, and these local subspaces are integrated by

a merging operator to further obtain the final representation.

Semantic Multinomial Representation The semantic multinomial (SMN) method

aims to extract the local-level representation. It shows the probability distribution of

a given image patch belonging to each scene category. Figure 3.1 shows two examples

of the categorization results of Image-SMN. It is observed that both regions and im-

ages share the same semantic space in the scene level [3]. In most cases, researchers

use weak-supervision algorithms trained with scene category labels to learn patch

models. However, image patches representing the same local-level concept may also

exist in another scene category, which leads to the category co-occurrences [84]. For

example, in Fig. 3.1b and c, the local-level concept “tree” is common in the categories

“tall building” and “open country”. Kwitt et al. [74] utilizes a second classifier to

separate category co-occurrences from purely accidental co-occurrences, i.e., noise.

It shows that category co-occurrences are consistent across the images in the same

category. This second classifier is capable of correcting the ambiguity resulting from

the weak supervision. However, the work [74] only considers category co-occurrences

using only image-level information and supervised modelling. Hence, Song et al. [3]

proposed an advanced algorithm that can solve the category co-occurrences in both

patch and image levels, which shows superior performance than Kwitt’s work.

3.2.2.2 Deep Convolutional Neural Networks

In the past few years, the deep learning structures have arguably become the state-of-

the-art methods for many computer vision tasks, such as video action recognition and

image classification. In a deep learning network, the input data goes through multiple

hidden layers to extract high-level and abstractive representations. During training,

each hidden layer of a deep structure tries to transform its inputs from the original

space into a different encoding, as shown in Fig. 3.2. Furthermore, this encoding

itself can be considered as an input to the subsequent layer, which leans to transform

it into another representation. Eventually, the final layer of this deep network learns

to represent the last encoding into the final prediction.

26

(a) Raw Image (b) Mid-level concept (c) Scene categories in image (d) Scene categories

Mid-level concepts = {sky, rock, water, building, tree, road, car}

Categories = {coast, mountain, forest, highway, tall building, open country, inside city, street}

Figure 3.1 – Scene category co-occurrences [3].

Predicted

Output

Desired

Output
vs.

Deep neural network

Figure 3.2 – Feature representation of a deep neural network. Each hidden layer learns
to transform its input data into a different representation.

The DCNN is a vital branch of deep learning where the results of a certain con-

volutional layer are the coding vector of the previous layer. It has been around for

a long time since the early works of LeCun in the 1980s [85, 45]. Therefore, DC-

NNs [86, 87, 88] can be seen as an extension of the supervised feature representation

and coding techniques. The works in [89, 90, 91] have already verified that the

performance derived from a classifier with DCNN coding is superior to most of the

27

conventional feature coding approaches.

3.2.3 Unsupervised Learning Methods

One of the most famous and powerful unsupervised learning strategies is the AE.

The AE structure [92] learns the representations of the raw input by reproducing the

input data at the output side. One AE is composed of two parts: the encoder and

decoder part. The encoder part exploit the latent space representation h by a feature-

extracting function fθ. The feature vector h = fθ(x) allows the straightforward

computation and efficient encoding. Another part of one AE is the decoder. A

function gθ maps the data from the latent space back to the input space, generating a

reconstruction r by r = gθ(h). Different from the probabilistic methods that use the

maximum likelihood principle to optimize the learning models, the AEs are optimized

through the encoder and decoder simultaneously on the task of reconstructing through

the iterative learning strategy like SGD or the non-iterative learning method, such

as MP inverse. During training, researchers attempt to minimize the reconstruction

error and the loss function L(x, r), i.e., a measure of the discrepancy between x and

r. Further, to boost the performance of AEs in complex and high dimensional data

learning, explosive developments on regularized AEs have been witnessed, such as

sparse AEs, denoising AEs and contractive AEs.

Sparse AE The idea of sparse AE is to introduce a form of sparsity regularization

in optimizing encoder and decoder weights [93]. The sparse representation of the

input data can be achieved in two manners: 1) penalizing the hidden layer bias by

making them more negative [93, 94, 95], and 2) penalizing the hidden layer activation

by making the output of the hidden layer closer to the saturating value at 0 [96, 97].

The ℓ1 normalization might be the most intuitive idea for sparse learning as it is

widely used in sparse coding [98]. In addition, the close cousin of the ℓ1 penalty,

namely, Student-t penalty [99], has also been widely used in constructing AEs. These

sparse learning penalties show excellent performance in data representation and image

classification.

28

Denoising AE Vincent et al. [100] proposed the denoising AE by reconstructing the

clean data at the output side from the polluted input. In other words, the objective

function of the denoising AE is to reconstruct the clean input from a corrupted version.

By doing so, simply learning the identity is not enough, the encoder and decoder need

to capture the structure of the corrupted input to learn the discriminative knowledge

and reveal the effect of the corruption process. The noise considered in the training

includes Gaussian noise, salt and pepper noise, etc. Experimental results verified that

the discriminative feature can be learned by the denoising AE [101]. Following that,

several variant denoising strategies have been proposed based on the score matching

parameter estimation technique [102, 103, 104].

Contractive AE Rifai et al. [105] proposed the contractive AE to learn the robust

representation by adding an analytic contractive penalty to the objective function,

i.e., the Frobenius norm of the encoder’s Jacobian. Compared to the denoising AE,

the advantage of constructive AE is threefold: First, the sensitivity of the latent

space representation is penalized. Second, the penalty is analytic and controlled

instead of stochastic. Third, there is one hyper-parameter that provides the trade-off

between reconstruction and robustness. However, the objective function of denoising

AE merges these two parts.

3.3 Moore-Penrose Inverse-based Algorithms

The review of MP inverse-based algorithms starts at introducing the single-layer MP

inverse-based neural networks, followed by the multi-layer and hierarchical neural

networks.

3.3.1 Single-layer Moore-Penrose Inverse-based Methods

The MP inverse strategy is an analytic learning method. Compared to the BP learn-

ing scheme that may become trapped in a local minimum and is sensitive to the

learning rate setting, the MP inverse-based strategies have the advantage of quicker

convergence. The earliest attempt of the MP inverse technique in a neural network

29

can be traced back to 1992 [26]. Recently, the random thoughts penetrate neural

networks, several MP inverse-based algorithms, such as radial basis function (RBF)

network [106], RVFL network [107], ELM [42] and SCN [29] have been proposed. The

RBF network optimizes its second layer’s weights based on a closed-form LS solution

while having a simple feature transformation in the first layer. Research in [108] re-

veals that the learning of the first layer weights is relatively unimportant compared to

the learning of the second layer weights, where a random initialization of the weights

is enough for competitive performance. Similarly, the RVFL technique has the ad-

vantage of fast training speed and excellent generalization performance, which uses

random hidden layer features (generated within a suitable range and kept fixed) to

construct the architecture.

Huang et al. [28] in 2006 provided a single layer network called ELM for image

classification and pattern recognition. In ELM, only the output layer parameters are

required to be optimized, while no training is needed for the hidden layer parameters.

Based on that, the MP inverse-based AE [4] using MP inverse technique for unsu-

pervised feature encoding has been proposed. In recent years, researchers in various

real-world applications have made significant contributions to broaden the field scope

of MP inverse-based learning strategies [109, 110], and explosive developments on

multilayer networks using MP inverse technique have been seen [111, 42].

3.3.2 Multi-layer Moore-Penrose Inverse-based Methods

Recently, the progress of MP inverse-based analytic learning methods has shown an

increasing trend towards the incorporation of the fast-learning attribute to deep learn-

ing networks. Compared to shallow networks, deep models have better capabilities

in processing complex and high-dimensional data. In this direction, multiple ELM-

based multilayer networks were proposed. In 2013, the multilayer ELM [42], which

stacked multiple l2 penalty-based ELM autoencoders were proposed. Then, authors

in [98] developed a hierarchical framework structured with l1 penalty-based ELM-AEs

to explore the sparse representations. The representative achievements of the multi-

layer ELM include deep weighted ELM [112], kernel-based ELM [113] and multilayer

one-class ELM [25].

30

In 2016, a novel MP inverse-based architecture called SNN was developed for

supervised learning [114, 115]. The single-layer SNN showed superior performance in

image classification than the traditional MP inverse-based classifiers. In SNN, each

perception in the hidden layer is replaced with a subnetwork composed of a group of

ordinary neurons. The weights of each subnetwork are calculated using the pulled-

back error matrix from the output layer. Recently, the deep subnet-based structure

has been comprehensively investigated. For example, Yang et al. [114] developed

a two-layer SNN model for dimension reduction and representation learning. The

first layer uses the subnetwork structure to encode the features, while the second

hidden layer is the feature learning layer used for feature projection. Recently, a

hierarchical feature encoding and representation learning framework [23] has been

proposed. In [23], hundreds of SNN [1] are embedded in the first layer, generating

hundreds of heterogeneous features. Then, the local features generated from the

SNN are extracted and recast into a more generalized feature space. Finally, the

final category is obtained by a single-layer subnet-based classifier. This hierarchical

structure has been successfully applied to different research areas, including EEG

signal processing [31] and vigilance estimation [116]. However, state-of-the-art subnet-

based strategies [117, 23, 31, 116] face one main drawback: They utilize several sub-

modules to learn the encoding of the input and to learn the classifier separately,

resulting in sub-optimal results.

31

Chapter 4

A Width-growth Model with Subnetwork

Nodes and Refinement Structure for

Representation Learning and Image

Classification

This chapter proposes a new subnetwork-based feature refinement and classification

model for supervised RL. The novelties of this algorithm are as follows: 1) Different

from most multi-layer networks that go deeper with an increased number of network

layers, this work architects a model with wider subnetwork nodes. 2) The conventional

classification methods adopt a separate search mechanism to derive a generalized

feature space and to get the final cognition, but this work proposes a one-step process

to find the meaningful latent space and recognize the objects. 3) The traditional

feature representation and image classification approaches apply unimodal feature

coding, which suffers from being incapable of global knowledge. This work overcomes

the pitfall through multimodal fusion that fuses various feature sources into one super-

state encoding to achieve higher performance. A cross-domain experimental study on

image classification, camera identification, and food image identification shows that

the proposed method achieves superior performance compared to the existing models.

4.1 Introduction

Recently, there has been an increasing demand for high-dimensional data process-

ing and learning for the applications of surveillance and unmanned ground vehi-

cles [118, 119, 120]. It has gathered a lot of attention from researchers, who proposed

various techniques of feature extraction, feature learning, and feature representation

32

for better classification and recognition performance. The pivotal difficulty of big

data processing lies in selecting the optimal feature descriptors, which has been in-

vestigated for many years.

In general, each representation extracted from a feature descriptor tends to learn

some specific characteristics of input data, and these features often have the pitfall

of irrelevant, noisy, or uninformative clues for modelling an accurate learning sys-

tem [14, 10]. Thus, there is an intuition to obtain a resourceful RL algorithm that

encodes and refines these raw features from multiple sources to improve the classi-

fication performance. Once all the features are extracted, they are normalized and

concatenated into one super-vector. Then, this super-vector can be transformed into

a more generalized latent space through a feature refinement strategy. Figure 4.1

depicts an abstract data flow of the proposed learning model with one possible fusion

and four independent feature sources. There are four feature descriptors, namely,

AlexNet, ResNet, hierarchical matching pursuit (HMP) and spatial pyramidal fea-

ture (SPF) that generate output features for each input image with dimensions of

2048, 2048, 3060 and 3000, respectively. The analytic learning strategy using MP

inverse strategy has been widely used in neural networks, including RVFL [121] and

ELM [122]. Recently, these regression-based feature learning has been exhaustively

investigated [123, 42]. Similar to the other AE-based networks, the multilayer analytic

learning methods construct the network with several individual AEs.

Although the multilayer analytic learning approaches resulted in improving clas-

sification performance, several drawbacks remain. Firstly, almost all these algorithms

use “block” models that communicate with each other to establish the network, rather

than in a one-step training principle. The one-step learning strategy is to train the

network from the raw data to the final target directly, reducing the effort of human

design. Researchers have already verified that the generalization performance of a

model trained from several designed processes cannot be expected to be perfectly

aligned with one-step learning. For example, in optical character recognition (OCR),

it is shown to be a better way to apply DCNNs directly to regress the words by

themselves [124, 125], instead of recognizing the characters and cluttering them into

words separately.

In addition, most multilayer analytic learning methods go deeper in the sense

33

Raw Image {X}

(D:2048) (D:2048) (D:3060)

Input Data

Refinement

Layer

(D:3000)

Exit

Layer

Output Label

Refinement

Network

Multilayer Feature Representation Structure

Entrance

Layer

Ω3(X) Ω4(X) Ω1(X) Ω2(X)

X X X X

S-node RS-node

Figure 4.1 – Abstract dataflow of the proposed framework with one possible multi-
modal fusion of four separate feature sources (Ω): AlexNet (Ω1), ResNet (Ω2), HMP
(Ω3), SPF (Ω4).

of increasing network depth (i.e., increasing the number of layers), which is a layer

stacking approach. This is an easy and safe way of obtaining a high-quality hierarchi-

cal network with plenty of training data samples. However, this simple solution may

have poor performance with larger network size, especially if the number of labelled

samples in the training set is limited [87]. This is the main drawback of such net-

works, since they are more sensitive to over-fitting, often reducing the reliability of a

trained network. SNN [23] is a practical way of enhancing the network’s generaliza-

tion capacity for feature learning. In [23], a single hidden layer could contain multiple

subnets and sub-spaces. Inspired by SNN, the work proposed in this chapter addresses

the aforesaid shortcomings by introducing an RL based on a “width-growth” archi-

tecture with subnetwork node (S-node) and refinement subnetwork node (RS-node).

The contributions are as follows:

1) A novel MP inverse-based framework called Wi-HSNN is proposed. To increase

the representational power of the network, two subnetwork structures, S-node, and

refinement S-node are utilized to find the generalized feature subspaces.

2) A novel one-step learning strategy is proposed. Most of the MP inverse-based

34

RL methods generate loosely-connected latent space features. To generate the global-

level representations, a one-step learning strategy based on SNN is proposed.

3) A highly discriminative representation of the samples is achieved through a

multimodal fusion strategy. This work concatenates various feature channels in the

input layer, and the super-state encoding can be generated. Further, the definition

and mathematical proof of global-level representation are present in this chapter.

The rest of the chapter has the following organization: Section 4.2 presents the

proposed width-growth architecture. The extensive experimental results are analyzed

in Section 4.3. Then, the concludes concludes its findings and draws directions for

future work in Section 4.4.

4.2 The Proposed Algorithm

The notations used in this chapter is shown in Table 4.1.

Mathematically, the SLNN (n input to m output) with a cost function J of a

classification problem can be computed as:

minimize J =
1

2

N∑
j=1

||T− g(X,W, b)β||2, (4.1)

where N is the number of data points, X ∈ RN×n represents the input of a data,

T ∈ RN×m is the expected output, (W, b) is the hidden layer parameters, and β

is the output layer parameters, g(·) is an activation function, such as sigmoid, sine,

and tanh. Authors in [123] mentioned that the neuron weights W and β could be

called the Fishier vector and calculated via solving linear equations through standard

numerical methods, such as SGD and MP inverse. Furthermore, when a MLNN is

constructed, the above learning model is updated with the cost function as:

minimize J =
1

2

N∑
j=1

||T− f(X,W)β||2,

f(X,W) = fn (· · · f2 (f1 (X,W1) ,W2) · · · ,Wn) ,

(4.2)

where Wi and fi are the i-th hidden layer parameters and activation function respec-

35

Table 4.1 – Notations used in this Chapter

Notation Meaning

Γ the feature learnt from the exit layer (global-level representation)
Hi feature extracted from the i-th subnet in entrance layer (S-node)
Ψi feature extracted from the i-th RS-node in feature refinement layer

bf
i bias of SNN feature layer, which is generated randomly

br
i bias of feature refinement layer, which is generated randomly

Ei the error matrix
I the identity matrix
L the total number of iterations
m the dimension of output layer (labels)
N the number of training samples
n the dimension of input
Pi the error feedback data in feature refinement layer
D the dimension of S-node
d the dimension of RS-node
T the expected output

Wf
i weight of the i-th subnetwork in entrance layer (S-node)

Wr
i weight of the i-th subnetwork in feature refinement layer (RS-node)

Wv
i parameters of the output layer

X the input feature

tively.

The proposed model, on the other hand, is an integration of subnetworks, which

are built upon several sub-nodes of neurons as depicted in Fig. 4.2. Therefore, the

cost function in Eq. (4.2) is further modified as:

minimize J =
1

2
||T− f(Hi,W

r
i ,b

r
i) ·Wv

L||2,

f(Hi,W
r
i ,b

r
i) = Γ =

L∑
i=1

g(Hi ·Wr
i + br

i),
(4.3)

where T ∈ RN×m is the expected output, X ∈ RN×n is the input matrix, L is the

total number of RS-node nodes, Wr
i and Wv

i are parameters for refinement layer and

output layer respectively. Hi is the entrance layer feature matrix, which is generated

through entrance layer parameters (Wf
i , b

f
i) and original feature X. g(HiW

r
i + br

i)

36

is the features extracted from the i-th RS-node, and Γ =
∑l

i=1 g(HiW
r
i + br

i) is

the exit layer feature matrix. Note that all the layer bias bf
i and br

i are randomly

selected. Based on Eq. (4.3), the global-level latent space encoding Γ defined in this

dissertation is elaborated as Theorem 4.1.

Theorem 4.1. Given N arbitrary distinct samples {X, T}, where X ∈ RN×n is

the input data and T ∈ RN×m is the expected output, respectively. We can get the

global-level latent space feature Γ =
∑L

i=1Ψi =
∑L

i=1 g(Hi ·Wr
i + bri), which satisfies

limL→∞ ∥
(∑L

i=1 g(Hi ·Wr
i + bri)

)
·Wv

L −T∥ = 0 if

Wr
i =

(
I

C
+ (Hi)

THi

)−1

(Hi)
TPi−1,

Pi−1 = Ei−1 ·
(
I

C
+ (Wv

i−1)
TWv

i−1

)−1

(Wv
i−1)

T ,

Hi = g(X ·Wf
i + bfi),

Wv
L = (

I

C
+ ΓTΓ)−1ΓTT,

(4.4)

where P is the pulled back error, Wv
i is the output layer weights, Hi and Wf

i are

the i-th S-node’s feature and weights, Ψi and Wi
ex are the i-th RS-node’s feature and

weights, respectively. Note that Wf
i is randomly assigned for alleviating overfitting.

4.2.1 The Proposed Wi-HSNN

The proposed RL structure has three feature spaces: entrance feature space [H] (en-

trance layer), refinement feature space [Ψ] (refinement layer) and exit feature space

[Γ]. The first space is generated randomly to maintain the universal performance.

The second and third spaces are calculated or updated through the pulled back error.

The training process for this strategy consists of two core phases: Initialization

phase and Iterative subspace learning phase.

37

Input Data

1 2 D 1 2 D 1 2 D 1 2 D

Output

Iteration

i=2Iteration

i=1

Iteration

i=L-1

Iteration

i=L

[H1] [H2] [HL-1] [HL]

1 2 d

1 2 d 1 2 d 1 2 d 1 2 d

S-node RS-node

Neural Node

Legend:

Feature

Transform

Weight:

Weight:

Feature

Descriptor 1

Feature

Descriptor 2

Feature

Descriptor K

[Ψ1]

[Γ]

[Ψ2] [ΨL-1] [ΨL]
Exit

Layer +

Entrance

 Layer

Refinement

 Layer

Weight:

[HL]

[Γ]

+

[ΨL]

g(·)

g(·)

 Stage 1 Stage 2 Stage 2Stage 1

f

LW

r

LW

v

LW

Figure 4.2 – The proposed triple hidden layer “width-growth” structure. In each iteration a new subnetwork pair (S-

node and RS-node) are added to the representation learning model to update the optimal feature space: Wf
i - Entrance

layer parameters of i-th RS-node, Wr
i - Refinement layer parameters of i-th RS-node and Wv

i - Output layer parameters.
Notations: Hi - i -th entrance space feature, Ψi - i -th refinement space feature, Γ - global-level representation space feature
(exit layer), and g(·) - activation function.

38

The first phase is to randomly construct the suitable lower feature space. The

raw feature is firstly projected randomly from original space [X] into entrance fea-

ture space [H] and refinement feature space [Ψ]. Then, the least square method is

performed to find the projection from the global-level representation space [Γ] to the

output label space.

The second phase may be repeated for a given number of times to enhance the

quality of the feature representation through re-computations of the output layer

parameters, and the feature space [Γ] is further learnt by the current classification

results. Assume there are N arbitrary feature samples, ψ = {(xk, tk)}Nk=1 (xk ∈
Rn, tk ∈ Rm), X ∈ RN×n represents the input data and T ∈ RN×m represents the

desired output data, the maximum iteration is L. The training steps for this method

is shown as follows:

Step 1: For iteration i=1, the parameters of the entrance layer S-node (Wf
i ,b

f
i) and

the refinement layer RS-node (Wr
i ,b

r
i) are randomly initialized, as depicted in Fig.

4.3. Thus, the feature matrices Hi and Ψi are computed as

Hi = g(Wf
i ,b

f
i ,X), and

Ψi = g(Wr
i ,b

r
i ,Hi),

(4.5)

where g(·) is the activation function. For sine and sigmoid functions, it will be sin(·)
and 1/(1 + e(·)) respectively.

Step 2: Set Γ = Ψi. Here, i = 1. Calculate the output layer parameters Wv
i by using

the LS method:

Wv
i = (

I

C
+ ΓTΓ)−1ΓT ·T, (4.6)

where (I/C+ΓTΓ)−1 is the Moore-Penrose inverse of Γ, C is the regularization term.

The error can be obtained Ei = T− ΓWv
i .

Step 3: Obtain the desired feature matrix of refinement layer Pi.

Pi = Ei ·
(
I

C
+ (Wv

i)
TWv

i

)−1

(Wv
i)

T . (4.7)

39

(Initialization)

Exit

Layer

S-node RS-node

Figure 4.3 – Comparison results of Wi-HSNN, MSNN, MP-H, and MP-ML among all
the food image classification datasets.

Step 4: Set i=i+1. Add new S-node and RS-node with D and d hidden nodes to this

network. Randomly generate Wf
i . The refinement layer parameters Wr

i and feature

Ψi can be described as:

Wr
i = (

I

C
+Hi

THi)
−1Hi

T · g−1(Pi−1),

Ψi = g(Wr
i ,b

r
i ,Hi),

(4.8)

where Hi = g(Wf
i ,b

f
i ,X) is the output of the i-th entrance layer S-node, g−1 is the

inverse of activation function.

Step 5: Update the i-th iteration optimal feature Γ =
∑i

j=1Ψj, recalculate the

output layer parameters through (4.6). The output error is updated via:

Ei = Ei−1 −Wv
iΓ. (4.9)

Step 6: Repeat Step 3 - 5 L − 2 times, and the feature matrix Γ is the generalized

feature. The structure of the well-trained Wi-HSNN is shown in Fig. 4.4.

40

(L Iterations)

Exit

Layer

S-node RS-node

Figure 4.4 – Comparison results of Wi-HSNN, MSNN, MP-H, and MP-ML among all
the food image classification datasets.

When the feature matrix Γi comes with the optimal feature data, the correspond-

ing output parameter Wv
i is adopted to calculate the final classification result.

In general, there are three common differences between the proposed subnetwork-

based RL model and other multilayer analytic learning methods.

1) Different from other multilayer analytic learning methods, which only construct

with neurons, the hidden layers in this model consist of two kinds of subnetwork nodes,

S-node and RS-node, the former one extract subspace features from the input data,

can be considered as a local feature descriptor; while the RS-node, which is comprised

of SNN layer S-node and refinement layer S-node, aims to recast the obtained local

features into a more discriminative and generalized feature coding. In this sense, the

hidden layers can refine and encode the input features.

2) The framework encodes the optimal feature representations in several training

iterations, whereby in each iteration a new S-node and RS-node are added to the

structure. The new RS-node is only densely connected to the entrance layer S-node

and least-square learning layer without any impact of the previous RS-node, so that

the updated space can maintain the image statistics and knowledge cues well.

41

3) Compared with other stacked multi-layer analytic learning networks: hierar-

chical network [42], multi-layer network [24], the proposed algorithm can train all

the parameters jointly, rather than find the feature spaces and recognize the objects

separately, thus resulting in global optimal results. More importantly, it uses a width-

growth structure that achieves a highly competitive classification performance.

4.2.2 Algorithmic Summary

Figure 4.2 summarizes the entire process of the proposed representation learning and

classification algorithm. It has the following two computational stages:

• Stage 1: Pre-processing stage - The feature vectors from various chan-

nels and descriptors (Ω) are concatenated into one super-vector. Precisely, the

features from different descriptors are normalized in the range, [0, 1] and con-

catenated horizontally.

• Stage 2: Width-growth model training stage - This stage contains two

substages.

Stage 2.1: Initialization (i = 1) - The entrance layer weight, Wf
1 and the

refinement layer weight, Wr
1 are generated randomly. The output layer weight,

Wv
1 is calculated through LS method. The subspace features H1, Ψ1, and Γ are

generated via Step 1 and Step 2. Furthermore, the pulled back error term P1

is calculated through Step 3. Hence, the current feature refinement space Γ is

randomly generated.

Stage 2.2: Iterative subspace learning (2 ≤ i ≤ L) - The Wf
i is randomly

initialized to reduce the overfitting problem and avoid getting trapped in local

minima. However, the refinement layer weights, Wr
i are computed with Pi−1;

hence, the new refinement subspace Ψi is guided by the current error term,

Ei−1. The feature representation space Γ is considered as the aggregation of all

the refinement sub-spaces Ψ1, · · · ,Ψi. Similar to initialization stage, users need

to update the pulled back error term, Pi. Details for this stage are described

from Step 4 to Step 6. It is noted that the optimal value for the iteration L is

selected empirically.

42

4.2.3 Proof of The Proposed Wi-HSNN

In this subsection, the Theorem 4.1 is proved. We prove that if the network continues

adding subnetworks (S-node and RS-node) to the structure, the output error sequence

||Ei|| = ∥
(∑i

j=1 g(Hj ·Wr
j + br

j)
)
·Wv

i −T∥ will be decreasing and bounded by zero.

Proof. Suppose Γ(i) and Γ(i + 1) defined in Eq. (4.10) are the data representations

of the i-th iteration and i+ 1-th iteration, respectively.

Γ(i) =
i∑

j=1

Ψj = Ψ1 +Ψ2 + · · ·+Ψi,

Γ(i+ 1) =
i+1∑
j=1

Ψj = Ψ1 +Ψ2 + · · ·+Ψi+1.

(4.10)

Initially, we have the following expression:

Γ(i+ 1) = Γ(i) + Ψi+1. (4.11)

The L2 norm of the error matrix L2
i of the i-th iteration is

L2
i = ∥Ei∥2 = ∥T− Γ(i)Wv

i ∥2 = ∥PiW
v
i ∥2. (4.12)

Similarly, we have

L2
i+1= ∥T− Γ(i+ 1)Wv

i+1∥2

= ∥T− Γ(i+ 1)(Wv
i +∆Wv

i)∥2,
(4.13)

where Wv
i +∆Wv

i = Wv
i+1 is the optimal output layer weights. Since Wv

i+1 is one of

the least square solutions, we have the following judgement.

L2
i+1= min∥T− Γ(i+ 1)Wo∥2

≤ ∥T− Γ(i+ 1)Wv
i ∥2

(4.14)

43

According to Eq. (4.12) and Eq. (4.13), we can get

L2
i − L2

i+1= ∥Ei∥2 − ∥Ei+1∥2

≥ ∥PiW
v
i ∥2 − ∥T− Γ(i+ 1)Wv

i ∥2

= ∥PiW
v
i ∥2 − ∥T− (Γ(i) + Ψi+1)W

v
i ∥2

= ∥PiW
v
i ∥2 − ∥T− Γ(i)Wv

i −Ψi+1W
v
i ∥2

= ∥PiW
v
i ∥2 − ∥Ei −Ψi+1W

v
i ∥2

= ∥PiW
v
i ∥2 − ∥PiW

v
i −Ψi+1W

v
i ∥2

(4.15)

Nonetheless, the (i+1)-th RS-node and RS-node target at offsetting the feedback data

Pi obtained from the previous iteration, there still has the residual error σσσ between

Pi and Ψi+1, and ∥σσσ∥2 << ∥Pi∥2. Thus, we have

Ψi+1 + σσσ = Pi. (4.16)

With Eq. (4.16), the Eq. (4.15) can be simplified as

L2
i − L2

i+1≥ ∥PiW
v
i ∥2 − ∥PiW

v
i − (Pi − σσσ)Wv

i ∥2

= ∥PiW
v
i ∥2 − ∥σσσWv

i ∥2

=
(
∥Pi∥2 − ∥σσσ∥2

)
∥Wv

i ∥2 ≥ 0

(4.17)

Thus, L2
i ≥ L2

i+1. Further, we can have ∥E∞∥ ≤ · · · ≤ ∥Ei+1∥ ≤ ∥Ei∥ ≤ · · · ≤ ∥E1∥.
Thus, we conclude that the sequence ||Ei|| = ∥

(∑i
j=1 g(Hj ·Wr

j + br
j)
)
·Wv

i −T∥ is
decreasing and bounded to zero.

44

4.3 Experimental Results

4.3.1 Experimental Setup

4.3.1.1 The Environment

The experiments were performed in Matlab 2017b programming paradigm on a 2.8

GHz E5-2650 processor and 256 GB memory workstation with a single NVIDIA

1080Ti GPU. All the experiments recorded in this work are the mean average perfor-

mance from a minimum of three trials.

4.3.1.2 The Datasets

The proposed model was tested on several benchmark datasets from the application

areas of image classification to food image classification as summarized in Table 4.2

and Table 4.3. Along with dataset details, the framework settings are also given.

These datasets fall into three categories: small-scale, large-scale and camera model

identification datasets. The small-scale datasets have a marginally less number of

data samples with less than 40K. Scene-15, LabelMe, Sports, Caltech-101, Caltech-

256, MIT-67, and SUN-397 are the seven small-scale datasets. While, Places-365-1,

Places-365-2, and Places-365-3 are the three large-scale scene classification datasets

that contain more than 40K samples. Here, the SPCUP is a camera identification

dataset.

Small-scale datasets (< 40K samples) Following the commonly used training

settings [23, 3], we took 100 (Scene-15), 30 (Caltech-101/256), 80 (MIT-67) and 50

(SUN-397) samples per category for training, and the rest for evaluation.

Large-scale datasets (> 40K samples) The versions of Places-365 contain a

minimum of 1.8 million images comprising 365 unique scene categories. Because of

hardware limitations, we randomly selected 500, 1000, and 1500 samples per class to

form Places-365-1, Places-365-2, and Places-365-3 datasets, respectively.

45

Table 4.2 – Summary of the image classification and camera model identification datasets

Purpose Dataset Classes
Total

Samples
Training
Samples

Testing
Samples

Neurons in
S-node

Neurons in
RS-node

Training
Iterations (L)

Image Classification

Scene-15 15 4,485 1,500 2,985 100 80 5
MIT-671 67 6,700 5,360 1,340 300 200 5

Small Caltech-101 102 9,144 3,060 6,084 300 200 5
Caltech-256 257 30,608 7,710 22,898 300 200 5
SUN-397 397 39,700 19,850 19,850 500 300 5

Places-365-1 365 182,500 146,000 36,500 500 300 10
Large Places-365-2 365 365,000 292,000 73,000 500 300 10

Places-365-3 365 547,500 438,000 109,500 500 300 10

Camera Identification SPCUP 6 or 10 2,750 2,000 750 100 80 5

1The original MIT-67 set contains 15,620 images. In this chapter, we randomly select 100 samples per category to form the new set.

Table 4.3 – Summary of the food image classification datasets

Type Dataset Classes
Total of
Samples

Training
Samples

Testing
Samples

Neurons in
S-node

Neurons in
RS-node

Training
Iterations (L)

Food Image
Classification

UEC-100 100 14,361 11,492 2,869 300 200 5
UEC-256 256 31,394 25,117 6,277 500 300 5
Food-101 101 101,000 75,750 25,250 300 200 5
Food-251m 251 71,292 59,298 11,994 500 300 3
Food-251a 251 130,469 118,475 11,994 500 300 5

46

Camera calibration dataset (2750 samples) The SPCUP [126] dataset contains

a total of 2750 images comprising six manufacturers and ten separate camera models.

The camera source identification has been attracting a lot of attention recently. It

enables us to discover the most possible source camera model that can be used to

verify the authenticity of an image. Currently, the camera identification methods in

literature can be basically divided as four categories: Sensor pattern noise (SPN)-

based methods [127], Color filter array (CFA) interpolation-based methods [128] and

CNN-based methods [126]. In this chapter, the proposed framework is adopted as

the basic detection model to verify the performance of the algorithm on a specific

application.

Food datasets Image-based food pattern classification poses new challenges for

mainstream computer vision algorithms. UEC-100 [129], Food-101 [130], Food-251 [131],

and UEC-256 [132] are four commonly used food image classification datasets. Follow-

ing the previous settings, we took 75% (Food-101) and 80% (UEC-100 and UEC-256)

of the total training samples for use in training, then used the rest for evaluation. In

addition, Food-251 is one of the latest food classification datasets created in 2019. We

randomly selected 50% of training images for training and used all validation images

for testing to generate the Food-251m set, and utilized the original Food-251 set (the

training set used for training and the validation set used for testing) to validate the

algorithm.

4.3.1.3 The Rival Methods and The Configuration of Input

This section evaluates this method with more than 30 state-of-the-art methods, which

can be categorized into two families.

Traditional RL methods It includes SLNN-based methods, such as Random for-

est (RF) [133], Softmax [134], multilayer MP inverse-based representation learning

network (MP-ML) [42], hierarchical network (MP-H) [24], and multilayer subnet neu-

ral network (MSNN) [23].

To enable fair comparisons, we extracted the same features from the penultimate

layer of some DCNNs, like AlexNet [86], VGG16 [46], DenseNet [135], Inception-

47

v3 [87], and ResNet [88]. For AlexNet and VGG16, we adopt the features from the

activation of the fully connected layer (fc7), which is a 4096-dimensional feature

vector. For Inception-v3, we use the 2048-dimensional vector from the average pool-

ing layer (avg pool). As for ResNet and DenseNet, the 2048- and 1920-dimensional

features are extracted from the fc1000 layer, respectively. These high-level features

are extracted under two conditions: feature extraction using a pre-trained DCNN

without target-domain fine-tuning and with target-domain fine-tuning. This chapter

denotes them “P”-network name and “T”-network name respectively.

1. “P”-DCNN features: These features are directly extracted from a pre-trained

DCNN without the intervention of the target dataset. In this chapter, the Ima-

geNet pre-trained DCNNs are used. Because the pre-trained networks have learnt the

knowledge and information from natural images, these features only contain innate

priors regarding the ImageNet. This chapter uses the prefix “P” like P − AlexNet,
P −ResNet to flag that the features belong to this type.

2. “T”-DCNN features: Technically, these features are extracted from a DCNN,

which is initialized by pre-trained parameters and fine-tuned on the target dataset.

Precisely, an ImageNet pre-trained network is fine-tuned with target domain samples

in an end-to-end manner. After a few training epochs (2 to 3), features are extracted

from a particular layer as stated earlier. Thus, these features contain a cross-domain

knowledge from ImageNet and the target domain. The prefix “T”, like T − V GG16
is used to notify that the features extracted using this fine-tuning approach.

Camera model identification methods The following algorithms were com-

pared: CNN-based [126] algorithm, Mixed Model [126], feature fusion using texture

data [127], and the ensemble classifier [128].

Food Image classification methods These algorithms include the Fishier vec-

tor [136], mid-level patches [136], AlexNet-based algorithm [137], early fusion method [138],

mid-level fusion algorithm [139], fusion of DCNNs [140], and InceptionNet-based

structure [141].

48

4.3.1.4 Evaluation Matrics

The experimental results of the proposed algorithm are quantitatively compared with

many state-of-the-art approaches. In this chapter, the Top-1 accuracy, which is a

measure of system bias, is adopted to evaluate the performance of a certain algorithm.

4.3.2 Model Settings

The proposed solution requires a user decision – the choice of iteration L. In this

subsection, we empirically set L based on its merit. Recommendations are given for

a default configuration, reducing the need for user-tuning of the hyperparameter.

Figure 4.5 (a) presents the Top-1 accuracy of the proposed scheme on a large-

scale dataset with unimodal feature coding (AlexNet, VGG-16, and ResNet) and

with multimodal feature coding with the aforesaid feature extractors. Figure 4.5 (b)

shows the performance of Top-1 testing accuracy on small-scale datasets as new E-

node and RS-node are added to the proposed refinement framework. It is observed

that the performance of the proposed approach converges after L = 8 for large-scale

datasets and after L = 4 on small-scale datasets. To be consistent and ensure the

structure is fully trained, the total number of training iterations L is set to 5 and 10

for small-scale and large-scale datasets, respectively.

Furthermore, to verify the intuition of the multi-view receptive field, a sanity check

with a different combination of complementary feature flows is conducted, which

is shown in Table 4.4. The investigation results reveal that the fusion of all the

complimentary feature flows provides superior performance than those results derived

from a single feature channel. For example, on Food-101 and Food-251a datasets, the

average performance of all feature combinations gains roughly 8.8% and 6.2% boost

over the Wi-HSNN with ResNet features, respectively. The reason could be as follows:

Firstly, pattern recognition with single-channel features suffers from coding bias due to

one-sided feature description, while framework trained with multiple channel fusion

strategy overcomes such pitfall and provides more robust performance. Secondly,

the proposed Wi-HSNN transforms features from their original feature space to a

generalized latent space. Multiple feature channels enable the network to search a

global-level encoding and representation.

49

(b) Performance of Wi-HSNN on small-scale datasets

(AlexNet+ VGG+ResNet)

(a) Performance of Wi-HSNN on Place-365-2

Figure 4.5 – Top-1 accuracy of Wi-HSNN wrt various hyper-parameter L (Input: “T”-
DCNN features).

50

Table 4.4 – The effectiveness analysis of feature fusion.

Feature UEC-100 Food-101 Food-251a UEC-256

ResNet 85.2 82.0 60.2 76.2
Inception 86.5 84.7 63.2 77.7
DenseNet 80.4 82.9 57.6 72.1
ResNet+Inception 87.2 88.9 65.9 79.5
All 87.7 90.8 66.4 83.1

4.3.3 Analysis on Image Classification Domain

The classification performance concerning Places-365-1 Places-365-2 and Places-365-3

datasets are tabulated in Table 4.5, where the best results are in boldface format. For

Places-365-1, it turns out that the proposed method provides a comparable recogni-

tion performance, which is 1.3% better than fine-tune AlexNet, just 0.4% lower than

fine-tune VGG network. In the case of Places-365-2 and Places-365-3 datasets, the

fused transfer learning results are all better than fine-tune AlexNet with 1.5% and

1.1% improvement respectively. Combined with the performance listed in Table 4.5,

we conclude that the proposed framework obtains a competitive performance with an

acceptable computational burden.

4.3.4 Analysis on Extended Domains

The detection results for the SPCUP set are shown in Table 4.6. We use the same

input feature and pre-processing steps as [127], which is derived from the HSV model

and contourlet decomposition results. As seen from Table 4.6, compared with the

original feature fusion method, which is the best among these comparison methods,

the average identification accuracy of the proposed method increases by 0.5% in the

case of 10-camera model identification. Meanwhile, the algorithm has a significant

improvement on 6-manufacturer identification, which is over 6% boost. With the same

input features, the proposed representation learning algorithm achieves competitive

identification performance compared to the work in [127].

51

Table 4.5 – Classification accuracy for CNN features with various algorithms on
Place365 dataset (A.(%) - testing accuracy; T.(h) - training time in hour)

Methods
Places-365-1 Places-365-2 Places-365-3

A.(%) T.(h) A.(%) T.(h) A.(%) T.(h)

Deep learning models and deep features

VGG16, 20 epochs 42.3 168 44.2 265 45.8 326
AlexNet, 20 epochs 40.6 33 41.5 57 42.6 72
SVM, P-VGG16 28.2 31 29.9 43 31.1 75
SVM, P-AlexNet 25.9 31 26.4 45 28.5 73
SVM, T-VGG16 35.2 55 36.8 68 37.2 122
SVM, T-AlexNet 30.9 35 32.7 54 34.0 85

Wi-HSNN, unimodal feature coding

P-VGG16 32.6 1 33.7 2 33.9 3
P-AlexNet 28.9 1 31.2 2 36.8 3
T-VGG16 39.1 25 40.1 42 40.1 55
T-AlexNet 34.1 6 36.8 10 37.5 15

Wi-HSNN, multimodal feature coding

P-AlexNet P-VGG16 33.9 2 35.1 4 37.4 6
T-AlexNet, T-VGG16 40.7 26 41.4 52 42.2 66
T-VGG, T-Resnet, T-AlexNet 41.9 30 43.0 57 43.7 75

1Time consumption on the proposed method with transfer learning features contains CNN train-
ing time and representation learning time.
2“P”-DCNN features - Features directly extracted from a pre-trained DCNN without an inter-
vention of the target dataset; “T”-DCNN features - Features extracted from a DCNN, which is
initialized by a pre-trained parameters and fine-tuned on the target dataset.

Table 4.6 – Performance of the Wi-HSNN on camera model identification dataset.

Methods
10-camera 6-manufacturer

Identification Identification

CNN-based [126] 96.5 97.3
Mixed Model [126] 96.7 98.5
Texture, feature fusion [127] 98.1 92.1
Ensemble classifier [128] 97.3 98.9
Wi-HSNN 98.9 98.4

52

Table 4.7 – Comparison of methods on Food datasets. The best and the second
best results are highlighted in boldface and underlined, respectively [All - input is the
concatenated (ResNet, DenseNet, and InceptionNet) feature].

Method UEC-100 Food-101 Food-251m Food-251a UEC-256 Average

Traditional food classification methods from the literature

Fishier Vector [136] 35.8 38.9 30.1 32.1 38.2 35.0
Mid-level patches [136] 40.3 42.6 38.5 39.4 41.1 40.4
AlexNet-based [137] 78.8 70.4 45.3 48.9 67.6 62.2
Early Fusion [138] 80.0 72.1 47.5 48.2 68.5 63.3
Mid-level Fusion [139] 86.5 87.8 48.7 51.1 78.6 70.5
Fusion of DCNNs [139] 87.7 88.1 54.3 57.9 76.8 73.0
Inception-based [141] 88.5 88.0 50.4 52.6 76.2 71.1

Inception-v3 feature with classifiers and representation methods

Inception + RF [133] 78.2 80.1 50.2 54.2 72.1 67.2
Inception + Softmax [134] 83.0 82.8 54.5 60.4 75.1 71.4
Inception + MP-ML [42] 82.0 81.9 57.1 61.2 77.1 72.1
Inception + MP-H [24] 83.8 80.5 58.3 62.0 76.0 72.4
Inception + MSNN [23] 84.0 83.6 59.2 61.7 76.8 73.3
Inception + Wi-HSNN 86.3 84.7 58.9 63.2 77.7 74.4

Concatenated feature with classifiers and representation methods

All + RF [133] 83.7 87.6 54.4 58.0 80.3 73.0
All + Softmax [134] 86.3 88.3 58.8 64.3 79.1 75.4
All + MP-ML [42] 84.3 85.9 59.1 62.5 81.5 74.7
All + MP-H [24] 85.3 86.7 60.0 63.7 80.2 74.4
All + MSNN [23] 86.8 88.2 60.2 64.9 79.1 76.0
All + Wi-HSNN 87.7 90.8 61.6 66.4 83.1 78.2

However, the ensemble classifier in [128] achieves a mere 0.5% of classification

accuracy improvement when compared to the other models. It is because the au-

thors of [128] construct a rich variety of demosaicing submodels, partial information

of different camera manufacturers could be obtained, resulting in a comprehensive

representation.

The quantitative analysis of food image classification is provided in Table 4.7 as

a comparison between the proposed Wi-HSNN and other algorithms, ranging from

the existing food classification methods to CNN features plus encoding techniques.

53

Figure 4.6 highlights the overall comparison of the proposed Wi-HSNN with other

state-of-the-art representation learning frameworks regarding Top-1 testing accuracy

among all comparison datasets. Our findings show that the proposed Wi-HSNN

harnessing with multi-CNN high-level features exhibits robustness, with average Top-

1 testing accuracy of 90.8%, 61.6%, 66.4%, and 83.1% on Food-101, Food-251m,

Food-251a, and UEC-256 datasets. The overall improvements of the proposed model

are 2.6%, 1.4%, 1.5%, and 4.0% compared to the current leading results for these

datasets, respectively. In addition, when considering the average performance among

datasets, Wi-HSNN has a much more consistent performance than MSNN [23]. The

proposed Wi-HSNN achieves 2.2% higher mean average Top-1 testing accuracy than

MSNN.

UEC-100 Food-101 Food-251m Food-251a UEC-256

MSNN

Figure 4.6 – Comparison results of Wi-HSNN, MSNN, MP-H, and MP-ML among all
the food image classification datasets.

Figure 4.7 summarizes the performance of Wi-HSNN with other representation

learning and classification methods among all of the food and scene datasets via a box-

plot. When considering the average performance across categories, the proposed Wi-

HSNN has more consistent results than all the other representation learning methods.

This could occur because the Wi-HSNN encodes and refines the latent space in a

54

supervised manner, directly updating the optimal feature with the current feedback

error term. However, most MP inverse-based encoding methods represent the raw

feature and generate the latent space in an unsupervised manner, thus generating

loosely connected and poorly discriminative representation.

MSNN

Figure 4.7 – Comparison of Wi-HSNN and other classification and encoding methods
when harnessing concatenated (ResNet, DenseNet and InceptionNet) feature.

4.3.5 Timing Analysis

Table 4.8 lists the training time (total training time) and testing time (inference time

per frame) of Wi-HSNN and other representation learning techniques [24, 42, 23] on

each food dataset. Note that all of the experiments are performed on a CPU platform.

From Table 4.8, we can find that Wi-HSNN takes more training time than MP-H and

MP-ML, as Wi-HSNN requires extra time for pulling back the error term and engaging

in iterative training. For example, on the Food-101 dataset, MP-ML only needs 7.3

minutes to fit the model while Wi-HSNN needs 17.1 minutes. The major overhead of

training Wi-HSNN dwells in the optimal feature encoding process, and the training

time of the iterative representation learning could be significantly diminished when

the batch-by-batch scheme is conducted on a GPU platform. On the other hand,

Wi-HSNN records an excellent inference speed with 1.2ms mean average prediction

55

time on a 2.8 GHz E5−2650 processor. However, the MP inverse-based frameworks,

such as MP-ML [24], MP-H [42], and MP-Sub [23] demand 0.1ms, 0.2ms, and 0.6ms

of more mean average processing time than MSNN, respectively.

Table 4.8 – Processing time with concatenated feature : Tr. (m) is the training time
in minute, Te. (ms) is the mean average testing time per frame in millisecond.

Datasets
MP-ML [24] MP-H [42] MSNN [23] Wi-HSNN

Tr. Te. Tr. Te. Tr. Te. Tr. Te.

UEC-100 1.6 1.4 1.5 1.4 3.1 1.8 2.7 1.2
Food-101 7.3 1.4 7.5 1.4 20.6 1.9 17.1 1.2
Food-251a 18.4 1.3 17.7 1.5 43.9 1.7 40.4 1.2
UEC-256 3.3 1.3 2.9 1.4 10.7 1.8 10.2 1.3

4.3.6 Qualitative Analysis

Fig. 4.8 visualize the optimal feature Γ of the testing set of Food-101 and Food-251

in 2-D space by t-SNE. In these datasets, we loaded the network with concatenated

transfer learning features which are extracted from ResNet, AlexNet and VGG, re-

spectively. For every dataset, we recorded the following space: the raw concatenated

feature (X), network with one iteration (1 RS-node), network with three iterations

(3 RS-nodes) and network with proper iterations (8 RS-nodes). Through visual in-

spection, we can see that with the iteration increases, the data points with the same

category are grouped while the space between different label data points is reserved.

Therefore, the proposed algorithm performs well in feature transformation and learn-

ing.

4.3.7 Limitations of The Proposed Wi-HSNN

It is noted that the proposed method has the following limitations. First, the optimal

feature coding is generated based on the traditional MP inverse strategy, which is a

one-batch learning technique. It requires the input data to be processed once. Hence,

this model is incapable of handling some very big datasets, such as the original Places-

365 dataset with more than 1.8 million samples. Second, it is currently incapable of

56

extracting features from raw images. Thus, the current model can be considered as a

feature refiner and classifier. In other words, this algorithm could be a powerful tool

in the final stage of pattern classification.

4.4 Conclusion

A new RL strategy is proposed for the problem of image classification and camera

model identification. The main contributions of the proposed model are: 1) Fea-

ture encoded from subnetwork model rather than traditional neural node, 2) Instead

of constructing multi-layer network depth-wise, a robust subnetwork-based neural

framework is proposed, which pursues building the optimal feature space through the

growth of subnetwork nodes, and 3) Unlike most existing RL methods that rely on

solving sub-problems to approximate the global optimization, the proposed method

enables the researchers to construct the subspace feature, global feature, and classifier

parameters jointly.

The experimental results on benchmark datasets from multiple domains prove

that this feature coding and representation learning framework provides promising

performances with a flexible structure. As for future direction, it is worth investigating

an SNN-based algorithm, which achieves a generalized feature space based on both

feature properties and class-specific information.

57

Figure 4.8 – The visualized t-SNE plots of our network on Food-101 and Food-251 datasets, where different color means
different category. The t-SNE is plotted with four situations: The raw concatenated feature space [X], the feature repre-
sentation with one RS-node [Γ1], the feature representation with two RS-nodes [Γ2], the feature representation with three
RS-nodes [Γ3]. (a) - (d) t-SNE on Food-101 data set, and (e) - (h) t-SNE on Food-251 dataset.

58

Chapter 5

Multi-Model Feature Reinforcement

Framework using MP Inverse for Big

Data Analysis

Fully-connected representation learning (FCRL) is one of the widely used network

structures in multi-model image classification frameworks, where the subnetwork-

based neural network is a vital branch. However, the subnetwork-based neural net-

work uses the traditional MP inverse as a foundation to learn the data structure, which

is a one-batch learning strategy that can be only utilized on small- and median-scale

datasets. This paper achieves a robust representation through a proposed batch-by-

batch strategy called online-sequential hierarchical subnetwork neural network (OS-

HSNN). The novelties of this framework are: It applies an MP inverse-based batch-

by-batch learning strategy to handle large-scale datasets so that large datasets such

as Places-365 containing 1.8 million images can be processed effectively. The experi-

mental results on multiple domains with a varying number of training samples from

∼ 1K to ∼ 2M show that the proposed feature reinforcement framework achieves

better generalization performance compared with most state-of-the-art FCRL meth-

ods.

5.1 Introduction

Recent years have witnessed the feature representation power of deep learning meth-

ods, including MLNNs and DCNNs, which have been demonstrated in many com-

puter vision-related applications such as image classification and object recognition.

In classical statistics, tasks such as image classification are mainly based on a sta-

tistical model p(x|λ) describing the possibility of observing x given the parameters

59

of a model λ. However, the high dimensionality and large scale of big data pose a

serious problem because the model p(x|λ) over high dimensional space of the training

data is hard to know and explained clearly with a mathematical equation. Instead,

a traditional way is used to process the large patterns of training data by explaining

data on a relatively small scale dimension. Traditionally, MLNNs have approached

this problem through building various RL algorithms, such as deep autoencoders,

multilayer ELM and subnet-based neural network.

In the previous chapter, a novel subnet-based structure named Wi-HSNN was pro-

posed for RL and image classification purposes. Nonetheless, the Wi-HSNN achieves

state-of-the-art performance than most of the RL algorithms on various real-world

applications, such as camera model identification and food image classification. It

cannot efficiently handle large-scale datasets like the original Places-365 and Ima-

geNet datasets. The reason is that it utilizes the traditional MP inverse solution to

analytically calculate the optimal weights. Essentially, the MP inverse is a one-batch

learning technique where all the training data are processed simultaneously. For ex-

ample, the Places-365 is composed of 1,803,460 samples, the dimensionality of desired

output T is pretty high, which is R1,803,460×365 (requires > 100 GB main memory). It

is infeasible to be processed on computers or laptops. It can be only implemented on

a workstation. Therefore, a novel MP inverse-based batch-by-batch learning strategy,

instead of the traditional one-batch algorithm, is what we urgently need.

In this chapter, a novel batch-by-batch solution for the MP inverse is proposed

to efficiently calculate the analytic solution. Batch-by-batch learning is a technique

used when the entire dataset is computationally infeasible to be trained at once,

and it requires out-of-core algorithms. The optimal parameters of the batch-by-batch

implementation are similar to the recursive least-squares algorithm presented in [142].

In particular, the weights of one specific layer are initialized with conventional MP

inverse using the first batch of data, then they are updated with the addition of

sequential batches. By doing so, we can utilize the proposed subnet-based model in

any computer and environment.

60

5.2 The Proposed Algorithm

The network structure of OS-HSNN is the same as that of the Wi-HSNN (cf. Fig.

4.2). The notations utilized in this chapter are elaborated in Table 5.1.

Table 5.1 – Notations to be used in this chapter

Notation Meaning

βββ In this chapter, βββ represents the weight Wv
L for simplification

Γ the feature learnt from the exit layer (global-level representation)
Γ(xp) the p-th batch of Γ
Hi feature extracted from the i-th subnet in entrance layer (S-node)
Hi(xp) the p-th batch of Hi

Ψi feature extracted from the i-th RS-node in feature refinement layer
Ψi(xp) the p-th batch of Ψi

bf
i bias of SNN feature layer, which is generated randomly

br
i bias of feature refinement layer, which is generated randomly
D the dimension of S-node
d the dimension of RS-node
Ei the error matrix
Ei(xp) the p-th batch of Ei

I the identity matrix
L the total number of iterations
M the total number of sub-batches
m the dimension of output layer (labels)
N the number of training samples
n the dimension of input
Pi the error feedback data in feature refinement layer
Pi(xp) the p-th batch of Pi

T the expected output
T(xp) the p-th batch of T

Wf
i weight of the i-th subnetwork in entrance layer (S-node)

Wr
i weight of the i-th subnetwork in feature refinement layer (RS-node)

Wv
i parameters of the output layer

X the input feature
xp the p-th batch of X

61

5.2.1 The Proposed OS-HSNN

The objective function of Wi-HSNN can be summarized as Eq. (5.1).

minimize J =
1

2
||T− f(Hi,W

r
i ,b

r
i) ·Wv

L||2,

f(Hi,W
r
i ,b

r
i) = Γ =

L∑
i=1

g(Hi ·Wr
i + br

i),
(5.1)

where T ∈ RN×m is the expected output, X ∈ RN×n is the input matrix, L is the

total number of RS-node nodes, Wr
i and Wv

i are parameters for refinement layer and

output layer respectively. Hi is the entrance layer feature matrix generated based on

(Wf
i , b

f
i) and the input feature X. Ψi = g(HiW

r
i +br

i) is the features extracted from

the i-th RS-node, and
∑l

i=1 g(HiW
r
i + br

i) is the global-level representations.

For simplification, in this chapter, βββ is used to represent the weight Wv
L. The

traditional MP inverse solution of βββ, i.e., Wv
L, in Eq. (5.1) is calculated as:

βββ = (
I

C
+ ΓTΓ)−1ΓTT (5.2)

However, the MP inverse is a one-batch learning technique where all the train-

ing data are processed simultaneously. This implementation is infeasible when the

dataset is too large to be loaded once. Suppose the input feature and the ex-

pected output X and T are split into M pieces, i.e., X = {x1, x2, · · · , xM} and

T = {T(x1), T(x2), · · · , T(xM)}, the following batch-by-batch learning strategy for

MP inverse is proposed.

Theorem 5.1. Given several chunk of hidden features {Γ(xp), T(xp)}Mp=1, where

Γ(xp) is the loaded input data and T(xp) is the desired output. Assume that the

data Γ(xp) is loaded sequentially, βββp = Kpβββp−1 + R−1
p Γ(xp)

TT(xp) is considered as

the batch-by-batch solution of Moore-Penrose inverse with Kp and Rp are computed

62

by (5.3).

Mp = R−1
p−1Γ(xp)

T

(
Γ(xp)R

−1
p−1Γ(xp)

T + I

)−1

Γ(xp)

Kp =

0, p = 1

I −Mp, 2 ≤ p ≤M

R−1
p =


[
I
C
+ Γ(x1)

TΓ(x1)
]−1

, p = 1

KpR
−1
p−1, 2 ≤ p ≤M

(5.3)

where βββp is the optimal weights which is calculated based on the first p batches of data.

I is the identity matrix.

5.2.2 Algorithmic Summary

The training algorithm for the OS-HSNN is present in Algorithm 5.1. The proposed

method contains three learning procedures: Procedure I - initialization, Procedure

II - error backpropagation, and Procedure III - batch-by-batch learning. The first

two procedures are almost the same as per Wi-HSNN. In particular, Procedure I is

employed as the initialization of OS-HSNN. The weights Wf
1 and Wr

1 are assigned

randomly from a zero-mean Gaussian distribution, where the standard deviation is

equal to 0.01. The weight Wv
1 is generated via the proposed batch-by-batch strat-

egy; Procedure II aims to generate the error term Ei and desired pulled back error

term Pi, which could guide the following network construction, i.e., the new feature

representation Ψi+1; Procedure III is the proposed batch-by-batch solution of MP

inverse. the weight of one layer is first calculated with the first chunk of data via

traditional one-batch MP inverse, while the appropriate parameters are gradually

updated with the consideration of new data chunks. Thus, the optimal weights are

learnt sequentially.

The training process for this algorithm can be easily split into two continuous

phases: Network initialization phase (Line 1-2 in Algorithm 5.1) and iterative feature

encoding phase (Line 3-12 in Algorithm 5.1). From Algorithm 5.1, we conclude that

in each iteration, the newly added subnet nodes (S-node and RS-node) mainly try to

63

Algorithm 5.1 The proposed OS-HSNN
Inputs: The concatenated super-state feature vector (X,T)
Outputs: Class label Y

1: Procedure I: Wf
1 , W

r
1, W

v
1 and Γ ← Initialization

2: Procedure II: E1 and P1 ← Error Backpropagation (T, Γ, Wv
1)

3: for each iteration i do
4: Wf

i ← Assign randomly % The entrance layer weight.

5: Hi = g(Wf
i ·X+ bf

1) % The entrance layer feature.
6: Procedure III: Wr

i ← Batch-by-batch Learning (Hi, Pi−1) % The refinement layer weight.
7: Ψi = g(Wr

i ·Hi + br
i) % The refinement layer feature.

8: Γ =
∑i

j Ψj % Update the global-level representation.
9: Procedure III: Wv

i ← Batch-by-batch Learning (Γ, T)
10: Procedure II: Ei and Pi ← Error Backpropagation (T, Γ, Wv

i)
11: end for
12: Y = Γ ·Wv

i % Γ is the global-level representation, Y is the label.

Procedure I: Initialization
Inputs: NA
Outputs: Wf

1 , W
r
1, W

v
1 and Γ

1: Wf
1 ← Assign randomly % Assign randomly with µ=0, σ=0.01 of Gaussian distribution

2: H1 = g(Wf
1 · [x1,x2, · · · ,xM] + bf

1)
3: Wr

1 ← Assign randomly % Assign randomly with µ=0, σ=0.01 of Gaussian distribution
4: Ψ1 = g(Wr

1 ·H1 + br
1) = g(Wr

1 · [H1(x1),H1(x2), · · · ,H1(xM)] + br
1)

5: Γ = Ψ1

6: Procedure III: Wv
1 ← Batch-by-batch Learning (Γ, T)

7: return Wf
1 , W

r
1 and Wv

1

Procedure II: Error Backpropagation (T,Γ,Wv)
Inputs: Γ=[Γ(x1), Γ(x2), · · · , Γ(xM)], T=[T(x1), T(x2), · · · ,T(xM)], Wv

Outputs: Ei, Pi

1: for each sub-batch p do
2: Ei(xp)=Tp − Γ(xp) ·Wv

3: end for
4: for each sub-batch p do

5: Pi(xp) = g−1
(
Ei(xp) · (I

C +WT
v ·Wv)

−1 ·WT
v

)
6: end for
7: Ei = [Ei(x1), · · · ,Ei(xM)], Pi = [Pi(x1), · · · ,Pi(xM)]
8: return Ei and Pi;

Procedure III: Batch-by-batch Learning (Γ, T)
Inputs: Γ=[Γ(x1), · · · ,Γ(xM)], T=[T(x1), · · · ,T(xM)]
Outputs: βββp

1: R−1
1 = [IC + Γ(x1)

TΓ(x1)]
−1

2: βββ1 = R−1
1 Γ(x1)

TT(x1)
3: for each sub-batch p do
4: Kp = I −R−1

p−1Γ(xp)
T (Γ(xp)R

−1
p−1Γ(xp)

T + I)−1Γ(xp)

5: R−1
p = KpR

−1
p−1

6: βββp = Kpβββp−1 +R−1
p Γ(xp)

TT(xM) ← Updated the weight
7: end for
8: return βββp;

64

help the model find the knowledge from the dataset which has not been learnt. Both

the phases are elaborated as follows:

Network initialization phase: The entrance layer weights, Wf
1 , refinement layer

weight Wr
1 and exit layer weight Wv

1 are obtained via Procedure I (Line 1). The error

E1 and feedback error P1 are obtained through Procedure II (Line 2).

Iterative feature encoding phase: This part may be iterated several times to

learn and approximate the rest feature refinement spaces. In each iteration, a new

subnetwork in the entrance layer and refinement layer is added, respectively. Firstly,

the parameters for the entrance layer are generated randomly (Line 4-5), whereas the

weight in the refinement layer is calculated according to both the pulled back error

and the output of the newly added entrance layer subnetwork. The new subnets are

used to offset the current error (Line 6). Furthermore, after receiving the current

optimal feature representations, users could calculate weight Wv
i through batch-by-

batch strategy to map the coding to label space (Line 7-9). Finally, the error term is

calculated to provide the next learning direction (Line 10).

5.2.3 Proof of The Proposed OS-HSNN

In this subsection, the batch-by-batch learning strategy for OS-HSNN is first proved.

Based on Theorem 5.1, in Theorem 5.2 a proof of its convergence is given.

Proof. Suppose we have Γ(p−1),Γ(p),T(p−1),T(p), which are defined as equation (5.4).

Γ(p) =


Γ(x1)

Γ(x2)
...

Γ(xp)

 =

[
Γ(p−1)

Γ(xp)

]
, T(p) =


T(x1)

T(x2)
...

T(xp)

 =

[
T(p−1)

T(xp)

]
. (5.4)

Initially, the MP inverse result of βββp−1 with p − 1 sets of data are settled by the

following unconstrained optimization solution [26].

βββp−1 =

[
I

C
+ ΓT

(p−1)Γ(p−1)

]−1

ΓT
(p−1)T(p−1), (5.5)

65

where C is the regularization term. Wherein,
(

I
C
+ ΓT

(p−1)Γ(p−1)

)
→ Rp−1 and(

I
C
+ ΓT

(p)Γ(p)

)
→ Rp. Thus, βββp and βββp−1 can be rewritten as:

βββp−1 = R−1
p−1Γ

T
(p−1)T(p−1), and βββp = R−1

p ΓT
(p)T(p). (5.6)

Based on (5.4):

Rp =
I

C
+

[
Γ(p−1)

Γ(xp)

]T [
Γ(p−1)

Γ(xp)

]

=
I

C
+ ΓT

(p−1)Γ(p−1) + Γ(xp)
TΓ(xp).

(5.7)

Then, update Rp with Rp−1

Rp = Rp−1 + Γ(xp)
TΓ(xp). (5.8)

Using Sherman-Morrison-Woodbury (SMW) formula [143], the inverse of Rp can be

attained:

R−1
p = (Rp−1 + Γ(xp)

TΓ(xp))
−1

= R−1
p−1 −R−1

p−1Γ(xp)
T (I + Γ(xp)R

−1
p−1Γ(xp)

T)−1Γ(xp)R
−1
p−1.

(5.9)

Subsequently, the Eq. (5.6) can be rewritten as

βββp =

(
R−1

p−1 −R−1
p−1Γ(xp)

T (I + Γ(xp)R
−1
p−1Γ(xp)

T)−1 · Γ(xp)R
−1
p−1

)
·

[
ΓT
(p−1) Γ(xp)

T
] [T(p−1)

T(xp)

]

=

(
I −R−1

(p−1)Γ(xp)
T (Γ(xp)R

−1
p−1Γ(xp)

T + I)−1 · Γ(xp)

)
·

R−1
p−1

[
ΓT
(p−1) Γ(xp)

T
] [T(p−1)

T(xp)

]
.

(5.10)

66

Furthermore, for simplicity, we denote Kp as:

Kp = I −R−1
p−1Γ(xp)

T (Γ(xp)R
−1
p−1Γ(xp)

T + I)−1Γ(xp). (5.11)

Substitute Kp into Eq. (5.9), Rp can be rewritten as.

R−1
p = KpR

−1
p−1. (5.12)

Meanwhile, substitute Kp into Eq. (5.10), the weight βββp can be simplified to the

following equation:

βββp = KpR
−1
p−1

[
ΓT
(p−1) Γ(xp)

T
] [T(p−1)

T(xp)

]
= KpR

−1
p−1(Γ

T
(p−1)T(p−1) + Γ(xp)

TT(xp))

= KpR
−1
p−1Γ

T
(p−1)T(p−1) +KpR

−1
p−1Γ(xp)

TT(xp).

(5.13)

So, the updated weight βββp can be written with Eq. (5.6) in the case of only new

training data is available:

βββp = Kpβββp−1 +R−1
p Γ(xp)

TT(xp). (5.14)

Now, based on Theorem 5.1, we give the second theorem. Theorem 5.2 proofs that if

the network continue adding the subnetwork, the output error sequence ∥Ei∥ will be
decreasing and finally get stable.

Theorem 5.2. Suppose the error sequence {Ei}∞i=1 is generated based on Algorithm

5.1. As i → ∞, the ℓ2 norm of error sequence L2
i vanishes, thus the sequence L2

i

converge and bound below by zero.

Proof. In this chapter, the subspace feature combination is processed with a specific

operator, f(·). Suppose Γi stands for the global-level feature representation with i-th

iteration. The data representation of (i + 1) − th subnetwork nodes Ψi+1 can be

expressed as:

67

Γi+1 = f

([
Γi

Ψi+1

])
= Γi +Ψi+1, (5.15)

where Γi is the feature representation with i subnetwork nodes, while Ψi+1 is the

feature of the (i + 1) − th newly added subnetwork. Still, we use βββ instead of WL
v

in this proof for simplification (Note: βββi refers to the optimal weight calculated from

the first i batches of data).

L2
i+1 =

∥∥∥∥∥T− f
([

Γi

Ψi+1

])
· βββi+1

∥∥∥∥∥
=

∥∥∥∥∥T− f
([

Γi

Ψi+1

])
· (βββi +∆βββ)

∥∥∥∥∥
≤

∥∥∥∥∥T− f
([

Γi

Ψi+1

])
· βββi

∥∥∥∥∥ ,
(5.16)

where βββi+1 = βββi +∆βββ is the optimal output weight. In addition, we mentioned that

the (n + 1)-th subspace feature aimed to learn the pulled back feature matrix. As

for feature reinforcement layer, the feature Γi+1 attempts to offset pulled matrix P,

while the output weight βββi+1 focuses on fitting output error Ei. However, the residual

error σ still exists. Then, we have

Ei = Ψi+1 · βββi + σ. (5.17)

Substitute Eq. (5.15) Eq. (5.17) into Eq. (5.16) and simplify the equation, we can get

L2
i+1 ≤

∥∥∥∥∥t− f
([

Γi

Ψi+1

])
· βββi

∥∥∥∥∥
= ∥T− Γiβββi +Ψi+1βββi∥

= ∥Ei −Ψi+1βββi∥ = ∥σ∥ .

(5.18)

68

Because ∥σ∥ ≤ ∥Ei∥, we have the following judgement.

L2
i =

∥∥∥∥∥∥∥∥T− f


Ψ1

...

Ψi


 · βββi

∥∥∥∥∥∥∥∥ ≥
∥∥∥∥∥T− f

([
Γi

Ψi

])
· βββi

∥∥∥∥∥ = L2
i+1. (5.19)

Thus, we can have ∥E∞∥ ≤ · · · ≤ ∥Ei+1∥ ≤ ∥Ei∥ ≤ · · · ≤ ∥E1∥. Further we have

limi→∞ ∥Ei∥ = 0. So the sequence ∥Ei∥ is decreasing and bounded below by zero.

5.3 Experimental results

In the following part, the batch-by-batch strategy for OS-HSNN is validated on dif-

ferent application domains, including image classification and ship-target detection.

5.3.1 Experimental Setup

5.3.1.1 The Environment

The experiments performed in this chapter were conducted in MATLAB 2018b on a

computer with a 256 GB memory and a 2.8 GHz E5− 2650 processor. The feature

extraction using DCNNs is carried out on a single NVIDIA 1080Ti GPU.

5.3.1.2 The Dataset

We applied the proposed algorithm on 8 commonly used image classification datasets,

which are described in Table 5.2. Based on the number of training samples, the

adopted datasets can be divided into two categories: small-scale datasets (Scene-15,

Caltech-101/256) and large-scale datasets (Food-251, Places-365-1/2/3, Places-365).

The small-scale datasets are generally a small number of samples (< 100K), whereas

large-scale datasets have marginally large samples (> 100K). It is worth noting that

despite the number of training samples, the experiments conducted in this chapter

are the results of the proposed model using the batch-by-batch strategy. The details

of the image classification datasets are described as follows.

69

Table 5.2 – Summary of the image classification datasets

Mode Datasets Classes
Training Testing Neurons Neurons

Iterations
samples samples in S-node in RS-node

Scene-15 [144] 15 1,500 2,985 500 300 5
Caltech-101 [145] 102 3,060 6,084 500 300 5
Caltech-256 [146] 257 7,710 22,898 500 300 5

Batch-by-batch Food-251 [131] 251 118,475 11,994 1000 500 5
Places-365-1 [147] 365 146,000 36,500 1000 500 5
Places-365-2 [147] 365 292,000 73,000 1000 500 8
Places-365-3 [147] 365 438,000 109,500 1000 500 8
Places-365 [147] 365 1,803,460 365,000 1000 500 8

70

Small-scale datasets: Following the commonly used training settings, in this chap-

ter, we take 100 (Scene-15) and 30 (Caltech-101/256) images per category for training;

the rest of the images are for testing.

Large-scale datasets: As far as we know, Places-365 and ImageNet could be the

largest datasets in the image classification area. Therefore, the Places-365 set was

applied to evaluate the proposed representation learning algorithm with a batch-

by-batch learning fashion. Precisely, (i) we randomly selected 500, 1,000 and 1,500

samples per class from the training set to generate Places-365-1, Places-365-2, and

Places-365-3 (each set 80% samples for training, the rest for testing), and (ii) use the

original Places-365 set (training set for training, validation set for testing) to validate

the algorithm. In addition, the Food-251 dataset was the latest food classification

dataset, created in 2019. All 118,475 training images were used for training and

11,994 validation images for testing.

Furthermore, to fully validate the effectiveness of the proposed OS-HSNN, one

more experiment was conducted on the ship-target detection task. In this chapter,

the HF-radar dataset [148] is utilized for comparison. It consists of 200 RD images

equally divided into training and testing sets. Also, there are 15,192 image patches

with each patch in the size of 20× 20, having either one of the following class labels:

vessel-target, sea clutter, ionospheric clutter, and others.

5.3.1.3 The Rival Methods

The proposed feature representation algorithm is compared with the following state-

of-the-art RL methods, which can be basically divided into two parts:

BP-based RL methods with fine-tuned DCNN features: Several state-of-the-

art BP-based RL methods, including the weight-decay regularization-based autoen-

coder (WD-AE) [149], denoise autoencoder with Gaussian making noise (DAEG) [101],

sparse autoencoder (SAE) [150] were tested for comparison. After the optimal en-

coding was learnt by each representation learning methods, the output label for each

sample was obtained through a softmax classifier.

71

MP inverse-based RL methods with fine-tuned DCNN features: As the

proposed algorithm is a MP inverse-based feature RL algorithm, several represen-

tation learning networks, i.e., MP inverse-based multilayer network (MP-ML) [42],

hierarchical network (MP-H) [24], and the hierarchical subnet-based neural network

(HSNN) [23] were further compared.

Note that the features loaded in our network were first carried out with min-max

normalization, and the quantity analysis stated in this chapter is Top-1% testing

accuracy. All the experiments in this chapter are the mean average of minimum three

experiments.

5.3.1.4 Configurations of The Rival Methods

For the BP-based RL algorithms, the total number of training epochs and the mini-

batch size were both set as 100. The initial learning rate was defined as 0.01, and

was reduced to one tenth every 10 epochs. The input corruption rate of DAEG was

0.5. For H-ELM and M-ELM, the optimal regularization term C and number of

hidden neurons on each dataset were searched within the grid {500, 1, 000, 2, 000} ×
{10−4, 10−2, 100, 102 104}. As for the HSNN, the number of subnetwork in it was set

to 8, each subnetwork contains 1000 hidden neurons, and the optimal regularization

term was optimized within the grid {10−4, 10−2, 100, 102 104}.

5.3.1.5 Configurations of The Input Features

Different from the experiments listed in Chapter 4 that use the “P”-DCNN (pre-

trained model) and “T”-DCNN (3 training epochs) features to validate the

proposed algorithm, in this chapter, we utilize the fine-tuned DCNN features, i.e.,

“FT”-DCNN (10 training epochs) features for validation.

“FT”-DCNN features - In this chapter, the high-level features that are extracted

from the top layer of DCNN are loaded as the raw feature. Note that the “FT”-

DCNN features are the data extracted from a particular layer from a DCNN with

10 training epochs. The details for DCNN features used in this study are as

follows: For VGG16, we adopt the features from the fully-connected layer (”fc7”),

which is a 4096-dimensional feature vector. For Inception-v3, we used the 2048-

72

dimensional vector from the average pooling layer (”avg pool”). As for ResNet, the

2048-dimensional feature was extracted from the ”fc1000” layer. The prefix ”FT-”

has been used to denote the features which belong to this category. For example,

FT-AlexNet, FT-GoogleNet, etc.

5.3.2 Model Settings

In this chapter, the proposed framework adds one decision - the choice of training

mode (one-batch fashion or batch-by-batch strategy) - to the training process of OS-

HSNN. Several indices, including total training time, top-1 testing accuracy and peak

memory usage (PMU) in training are used to empirically evaluate the performance

of the proposed method in different training modes. For a fair comparison, in this

experiment, we provided the same initialization weights Wi
f for each S-node and W1

r

for the first RS-node. Through Table 5.3, one can easily summarize the following

conclusions: (i) When handling the same input features, the proposed two strategies

provide almost the same testing performance. (ii) Compared to the one-batch strat-

egy, the batch-by-batch training mode significantly reduces the PMU of the training

subnetwork model, only needs 10% to 20% more processing time. The reason for the

same testing performance is that: Authors in [28] have already verified that Eq. (5.2)

is the optimal least-squares solution when the rank of feature matrix equals the num-

ber of hidden neurons. From the derivation of the proposed method, i.e., Eq. (5.4)

to Eq. (5.14), it can be seen that the proposed batch-by-batch strategy and original

one-batch solution Eq. (5.2) can achieve the same training error and generalization

accuracy when the rank of Ψ(x1) = d, which means the number of initialization

data should not be less than the neuron number in each subnet d. Thus, the pro-

posed method with batch-by-batch strategy could be conducted and employed in any

processing environment because of its flexible memory usage.

Fig. 5.1 shows the generalization performance of the proposed OS-HSNN on one

of the largest datasets Places-365 by a plot in terms of Top-1 classification accuracy

in percentage. When the new S-node and RS-SNN are added to this network (i.e., a

new iteration), the algorithm generally provides better performance than that without

the new subnet nodes. Note that the optimization of all the weights in OS-HSNN is

73

Table 5.3 – Performance comparison of OS-HSNN w/ FT-VGG16 features: Tr.(m) -
training time in minutes, Acc.(%) - testing accuracy, PMU(GB) - peak memory usage,
and N/batch - Batch-by-batch strategy w/ N number of samples per batch

Datasets Type Tr. (m) Acc. (%) PMU (GB)

Food-251
One-batch 14.0 57.94 11.8
20K/batch 15.2 57.86 2.0
10K/batch 15.6 57.82 1.0

Places-365-3
One-batch 106.1 45.81 42.7
20K/batch 122.1 45.73 2.0
10K/batch 126.2 45.79 1.0

Places-365
One-batch 645.1 47.58 173.5
20K/batch 699.1 47.60 2.0
10K/batch 710.4 47.64 1.0

Places-365

Number of S-node and RS-node (iterations)

Figure 5.1 – Top-1 testing accuracy of OS-HSNN with fine-tuned features on Places-
365 dataset when new S-node and RS-node are added to the framework.

74

a batch-by-batch manner, which means the peak memory usage of this model only

depends on the size of the input batch. Thus, we can conclude that the OS-HSNN is

effective when handling large-scale datasets.

5.3.3 Analysis on Image Classification Domain

The comparison results of all datasets including three small-scale and five large-scale

datasets are tabulated in Table 5.4. Note that the traditional MP-based represen-

tation learning methods (MP-ML, MP-H and HSNN) cannot process large datasets

due to the main memory limitation. To allow a fair comparison, these methods are

conducted with the batch-by-batch strategy proposed in this study. Thus, large-scale

datasets, such as the Places-365 dataset with 1.8 million data samples, can be pro-

cessed and compared. Consequently, the following conclusions can be drawn: (i)

The proposed algorithm with the same feature shows comparable or superior perfor-

mance than the other state-of-the-art BP-based and MP inverse-based representation

learning methods. Overall, the average result of the proposed OS-HSNN with FT-

ResNet feature among all datasets is 63.7%, providing 1.8% and 0.2% improvement,

compared with the best MP inverse-based (HSNN) and BP-based (SAE) encoding

algorithms. (ii) When considering multi-modal learning, the OS-HSNN with concate-

nated super-state vector (FT-VGG, FT-Inception and FT-ResNet) further boosts the

classification accuracy than single-channel “FT” feature. As can be seen in Table. 5.4,

our results on Scene-15, Caltech-101, and Caltech-256 were 93.8%, 93.6%, and 84.9%,

respectively; 3.1%, 1.9%, and 4.0% better than the results with FT-Inception feature.

Therefore, the profits for the multi-model learning strategy were verified.

75

Table 5.4 – Top-1 testing accuracy (%) for representation learning tasks. Values in red and blue are the best results w/
FT-ResNet and FT-Inception among other methods respectively. Our best results are underlined.

Methods Scene-15 Caltech-101 Caltech-256 Food-251 Places-365-1 Places-365-2 Places-365-3 Places-365 Average

BP-based representation learning methods with fine-tuned DCNN features

FT-ResNet, WD-AE [149] 90.4 91.3 76.8 57.7 42.6 44.7 44.4 45.8 61.8
FT-ResNet, DAEG [101] 89.5 90.7 78.9 57.5 42.1 44.2 45.4 46.0 61.8
FT-ResNet, SAE [150] 89.7 91.0 78.7 57.4 42.8 44.1 45.1 46.5 61.9
FT-Inception, WD-AE [149] 90.3 91.3 77.7 60.5 44.6 45.9 46.3 47.5 63.0
FT-Inception, DAEG [101] 89.9 91.4 77.9 60.6 44.2 46.2 46.5 47.8 63.1
FT-Inception, SAE [150] 89.6 91.5 80.4 61.7 45.0 46.4 47.1 48.5 63.8

MP inverse-based RL methods with fine-tuned DCNN features

FT-ResNet, MP-ML [42] 88.2 91.4 79.4 60.1 43.5 44.9 45.8 46.4 62.5
FT-ResNet, MP-H [24] 87.9 91.2 79.6 60.6 42.2 44.7 46.3 46.9 62.4
FT-ResNet, MSNN [23] 89.5 91.5 80.5 59.5 44.5 46.5 46.4 49.6 63.5
FT-Inception, MP-ML [42] 90.3 91.2 80.0 59.9 40.4 44.2 45.1 48.2 62.4
FT-Inception, MP-H [24] 90.0 90.7 80.1 59.4 40.9 44.5 45.2 48.5 62.4
FT-Inception, MSNN [23] 90.0 91.4 80.6 61.8 45.9 47.4 48.2 49.5 64.4

The Proposed OS-HSNN with fine-tuned DCNN features

FT-VGG16 90.0 91.6 75.4 57.9 43.0 44.9 45.9 47.6 62.0
FT-ResNet 90.1 91.8 80.6 60.2 43.9 45.7 46.9 50.4 63.7
FT-Inception-V3 90.7 91.7 80.9 62.3 45.9 47.8 48.6 50.7 64.7
FT-Inception, ResNet 91.6 92.8 84.2 65.6 47.9 49.3 49.4 51.9 66.6
FT-VGG,Inception,ResNet 93.8 93.6 84.9 66.7 49.3 50.6 51.6 53.5 68.0

76

Furthermore, Fig. 5.2 summarizes the results among all the image classification

datasets via box-plots, where the plot is generated based on the best results of our

method. The average figure of each method is listed in Table 5.4. When the average

testing accuracy is considered, the proposed OS-HSNN has better average accuracy

than most of the fine-tuned DCNNs. While the other state-of-the-art representation

learning methods have strong power in processing small-scale datasets, they fail to

exhibit the same ability in large-scale datasets due to the redundant parameters.

For instance, When processing FT-Inception features, the proposed OS-HSNN gains

3.2%, 2.9%, 2.2%, 2.5%, 2.2%, and 1.2% more accuracy than those with WD-AE,

DAEG, SAE, MP-ML, MP-H, and MSNN on Places-365 respectively.

OS-HSNN

Figure 5.2 – Aggregated performance of various RL models across all the datasets.

5.3.4 Analysis on Ship-target Detection Domain

To evaluate the performance of the proposed OS-HSNN algorithm on the real-world

domain, a commonly used radar signal processing dataset - HF-radar set is used for

evaluation.

HF-radar dataset [148] is a radar signal processing set derived from a high-

frequency surface wave radar (HFSWR), located on the coast of Bohai Bay of China.

77

Fig. 5.3 shows a typical radar range-Doppler (RD) image, which consists of five

components: ship targets, ground clutter, background noise, sea clutter, and iono-

spheric clutter. The traditional ship target detection methods can be summarized

through three categories: least-squares-based methods, wavelet transform (WT)-

based method [151, 152, 153], and constant false alarm rate (CFAR)-based meth-

ods [154, 155]. Moreover, as ship target detection algorithm can be categorized as an

object detection problem, we compared this study with several DCNN-based meth-

ods, such as faster region-based convolutional neural networks (faster R-CNN) [156],

you only look once (YOLO)-v2 [157], and single-shot multibox detector (SSD) [158].

In this chapter, we propose that the OS-HSNN can be adopted as a target detection

model to evaluate the performance in a specific domain.

Ionospheric

Clutter

Ground

 Clutter

Sea

 Clutter

Background

Noise

Ship Targets

Doppler Frequency (Hz)

R
an

g
e

(k
m

)

Figure 5.3 – A sample of an Range-Doppler image.

Four evaluation indices [159] for evaluating ship detection datasets are used, which

are detection possibility Pd, false alarm possibility Pf , missing ratio Mr, and error

ratio Er, respectively.

Pd =
TP

(TP + FN)
, Pf =

FP

(FP + TP)
,

Mr = 1− Pd, and Er = Pf +Mr,

(5.20)

78

where TP , FN , and FP refer to true positive, false negative, and false positive

respectively.

In order to obtain fair experiment results, the loaded feature in this part was the

same as [148], which was extracted from Haar-like descriptor. It is apparent from

Table 5.5 that the proposed OS-HSNN boosts detection performance, where the Pd

of OS-HSNN exceeds that of [148] by almost 2%. Meanwhile, the Pf , Mr, and Er of

this study are all smaller or equal to those of the other methods.

Table 5.5 – RD image ship target detection results. The best and 2nd best results are
in red and blue respectively

Method Pd (%) Pf (%) Mr (%) Er (%)

This work 94.2 5.5 5.8 11.3
Regression-based [148] 92.6 5.8 7.4 13.2
CFAR-based [154] 85.4 13.4 14.6 27.7
Wavelet-based [153] 90.3 8.3 9.7 18.0

Faster R-CNN [156] 91.7 7.2 8.3 15.5
YOLO-v2 [157] 92.4 6.7 7.6 14.3
SSD [158] 92.4 6.9 7.6 14.5

Furthermore, three additional sets of experiments are conducted with synthetically

generated targets representing the following three environmental conditions: overlap-

ping multiple vessel-targets (OMVT), partially covered vessel-targets by sea clutter

(PCVT), and ionospheric clutter interfered vessel-targets (IIVT). Particularly, for

each condition, we add 3, 000 randomly generated targets in the SNR range of 20 dB to

50 dB to the test RD images (Note that the HFSWR captures the vessel-targets with

SNR range [20 dB, 50 dB]). Thus, in total, 9, 000 synthetic vessel-targets are tested.

Figure 5.4 presents one sample for each condition with denoted synthetic vessel-

targets. Figure 5.5 shows the performance of the OS-HSNN in comparison to other

traditional vessel-target detection methods, such as the wavelet-based method [153]

and CFAR-based strategy [154]. The experiments were carried out 20 times inde-

pendently for better analysis, and the results are shown by box-plots. Through this

comparative study, it is found that the OS-HSNN has robustness in detecting vessel-

targets even in challenging environmental conditions with an average detection rate

79

of 81.97%, while the other methods, the wavelet-based method [153], CFAR-based

strategy [154] show poor detection performance with an average detection rate of

77.34% and 72.24 %, respectively.

(a) The original RD image (b) Overlapping multiple targets

(c) Targets interfered by sea clutter (d) Targets interfered by ionospheric clutter

Figure 5.4 – Samples of synthetically added vessel-targets (the black small circles
denote the synthetic targets).

Moreover, two sample vessel-target detection results are shown in Fig. 5.6 in sup-

port of the quantitative comparisons listed in Table 5.5. These visual results show

that the proposed OS-HSNN detects and segments the vessel-targets in the RD images

very tightly to the human-annotated ground truth.

80

OS-HSNN

Figure 5.5 – Detection rate analysis of various methods in challenging environmental
conditions: OMVT - overlapping multiple vessel-targets, PCVT - partially covered
vessel-targets by sea clutter, and IIVT - ionospheric clutter interfered vessel-targets.

(a) The original RD image (b) The gray-scale image (c) Results of OS-HSNN (c) Ground truth

Figure 5.6 – Two sample detection results are shown row-wise. Columns one to four
refer to the original RD images, respective gray-scale value, the detected targets (the
bright pixels) localized by the OS-HSNN, and the ground truth respectively.

81

5.3.5 Timing Analysis

In this part, the training and testing time complexities of the proposed and the other

MP inverse-based representation learning networks are tabulated in Table 5.6. Note

that both the training time and inference time recorded in this table do not contain

the VGG-16 feature learning and extraction part. To allow fair comparisons, all these

methods are applied with the proposed batch-by-batch strategy. From Table 5.6, it

can be found that OS-HSNN takes 5% to 10% longer time for training. The reason is

that it searches the optimal feature representations by pulling back the error term in

each training iteration. However, it offers a better generalization performance than

the other methods.

Table 5.6 – Processing time w/ FT-VGG16: Tr. (s) is the total training time in
second, Te. (ms) is the mean average testing time per frame in millisecond.

Datasets
MP-ML [24] MP-H [42] OS-HSNN MSNN [23]

Tr. Te. Tr. Te. Tr. Te. Tr. Te.

Scene15 46.1 1.3 56.7 1.6 56.4 1.2 59.2 1.3
Caltech101 54.8 1.2 79.8 1.5 82.0 1.2 89.6 1.3
Food251 791.4 1.3 906.7 1.7 1001.2 1.2 1022.5 1.3
Place365-1 1682.9 1.5 2248.0 1.8 2562.5 1.4 2610.7 1.5

Furthermore, the proposed OS-HSNN records an inference speed with 1.2msmean

average testing time, which is the same as the Wi-HSNN (cf. Table 4.8). The rea-

son is that the OS-HSNN and Wi-HSNN have the same number of parameters and

structures, and the procedures in the testing stage are the same.

5.4 Conclusion

A batch-by-batch subnetwork-based multi-modal feature reinforcement strategy is

proposed to both refine the meaningful knowledge from various sources as well as

classify the input objects. The key characteristics are as follows: (i) It encodes

multiple-modality features, generates optimal representations, and classifies the pat-

terns with one single structure. (ii) The batch-by-batch representation learning tech-

82

nique enables the proposed OS-HSNN to efficiently handle big data. For instance, it

can process a dataset with more than 1.8 million images without the requirement of

a high-performance computing (HPC) device.

The experiments on eight image classification and ship detection datasets show

that the proposed refinement framework with a flexible network structure outperforms

the conventional algorithms. From an application point of view, it can be employed

to detect ship-targets from HFSWR range-Doppler images.

83

Chapter 6

Hierarchical One-Class Model with

Subnetwork for RL and Outlier Detection

The multilayer one-class classification (OCC) frameworks have been widely inves-

tigated for anomaly and outlier detection. However, most multilayer OCC algo-

rithms suffer from loosely-connected feature coding, making the generated latent

space that cannot properly generate a highly discriminative representation between

object classes. This problem is more noticeable when handling large-scale datasets

with high complexity. To alleviate this deficiency, two novel OCC frameworks, namely

OCC structure using hierarchical subnetwork neural network (OC-HSNN) and maxi-

mum correntropy-based OCC structure using hierarchical subnetwork neural network

(MCOC-HSNN), are proposed in this chapter. The novelties are as follows: i) The

subnetwork is used to build the discriminative latent space; ii) Existing works uti-

lize mean square error (MSE) to learn low-dimensional features, the MCOC-HSNN

uses maximum correntropy criterion (MCC) for discriminative feature encoding; iii)

A brand-new OCC dataset called CO-Mask is gathered. Experimental results on the

visual classification domain with a varying number of training samples from 6,131 to

513,061 demonstrate that the proposed OC-HSNN and MCOC-HSNN achieve supe-

rior performance compared to the existing multilayer OCC models.

6.1 Introduction

One-class classification is a typical machine learning task aiming to develop processing

algorithms where the negative pattern is either absent or not perfectly defined. The

input patterns from one category (denoted as the target class) are well characterized,

while there is little information on the negative category (outlier class) [160, 161].

Different from the multi-class classification methods that classify the input pattern

84

into one of the pre-defined categories, the OCC strategies handle the problems where

the unknown data does not belong to any of those classes. The OCC algorithms

are, therefore, deemed as more suitable for solving some real-world applications, such

as anomaly detection [162], document classification [163], and social media rumour

detection [164].

In recent years, there has been a considerable amount of work proposed in the

field of OCC. The earliest study of OCC can be traced back to 1962 in [165], where

authors stated that the estimation of the target class’s probability density function

could be helpful to the outlier detection, and the negative samples were identified

according to a pre-set threshold. Consequently, several improved OCC schemes, such

as one-class linear programming method [166], one-class minmax probability ma-

chine [167], and tree-based one-class classifier [168] were proposed. Recently, the

one-class algorithms based on the MP inverse strategy have been widely investigated.

The one-class ELM [169] is a single layer neural network, having the advantages of

quicker training time and excellent generalization performance. Following that, ex-

plosive developments on multilayer MP inverse-based one-class networks have been

witnessed [25, 161, 170, 171, 172]. These strategies generally apply the AE as a

cornerstone of their learning, using the two-step modelling approaches: first, the low-

dimensional representation of input data is obtained through the use of AE; then

an estimation network, the single-layer one-class classifier, is applied on the compact

encoding for the final classification. Compared to other OCC algorithms, multilayer

one-class networks stack multiple AEs for deep feature learning, leading to higher

accuracy and robustness.

However, the existing MP inverse-based OCC approaches have several limitations:

First, these algorithms were only validated on small-scale and medium-scale datasets,

such as MNIST and NORB datasets with a sample size of no more than 60,000

samples. However, the MP inverse-based OCC algorithms have rarely analyzed large-

scale datasets with more than 100K training patterns.

Second, the multilayer MP inverse-based OCC networks suffer from generating

local-level encodings. Similar to the MP inverse-based multi-class classification al-

gorithms that utilize the two-step learning strategy for pattern classification, the

multilayer OCC methods use two independent sub-modules to extract representa-

85

tive features and to classify the input pattern. However, this strategy is inefficient.

Hence, we propose a one-step learning algorithm to encode the raw features and do

the classification simultaneously. The subnet-based RL algorithms [23, 173, 174] have

shown the benefits of discriminative feature learning, and the proposed Wi-HSNN in

Chapter 4 has already achieved superior performance over the other state-of-the-art

multilayer MP inverse-based algorithms in multi-class classification.

Third, the existing multilayer OCC algorithms are not powerful in suppressing

non-Gaussian noise and outliers in the input data. The MCC is an effective tool in

impulsing noise and outliers, which has been commonly utilized in MP inverse-based

one-class processing. However, the recently proposed MCC-based methods [170, 171]

only employed MCC strategy on the final classification. In other words, they still

utilize the MSE criterion to generate optimal coding. The success of machine learning

frameworks generally depends on data representation, as it enables us to differentiate

between different concepts [60]. For example, DCNNs have proven to be superior

to the traditional methods in most practical applications [175]. In the state-of-the-

art DCNNs, like ResNet [88] and DenseNet [176], hundreds of convolutional layers

operating as Gabor filters and colour blob detectors are embedded [177], while only

one simple fully-connected layer like softmax is used on the top to predict the label.

To overcome the above-identified limitations, especially the first and second, this

chapter proposes the OC-HSNN to learn the optimal representation and classify the

input pattern, simultaneously. Then, to further address the third issue, the MCOC-

HSNN is provided to handle the non-Gaussian noise and to learn the robust low-

dimensional representations. The contribution of this chapter is threefold:

1. A novel OCC scheme called OC-HSNN: A novel multilayer subnet-based

structure for OCC is proposed. Further, we believe utilizing MP inverse to

handle large-scale OCC datasets is meaningful - as far as we know, no existing

research has attempted to do so.

2. A MCC-based method named MCOC-HSNN: In the presence of non-

Gaussian noise, the MCOC-HSNN is designed in low-dimensional RL to improve

the performance of OC-HSNN.

86

3. New OCC dataset: A dataset (CO-Mask) for misinformation detection is

created for this study with texts collected from the “big three” news agencies

(Associated Press, Reuters, and Bloomberg) on wearing masks as a way to curb

COVID-19.

6.2 Related Works on One-class Classification

The OCC problems have been widely investigated over the past few decades. In

1962, Parzen et al. [165] estimated the probability density function of the target

as the measurement for anomaly detection, and the outliers were identified with a

thresholding strategy. Consequently, the work in [166] provided a linear programming

dissimilarity-data description (LPDD) classifier to detect the outliers, which utilized

the reformulation for general dissimilarity representations. Lanckriet et al. [167] built

the one-class minimax probability machine to minimize the worst-case probability of

data patterns, given only the mean value and covariance matrix of the data distribu-

tion. In the work of [168], the authors proposed a tree-based architecture for OCC.

It develops a minimum spanning (MS) tree with the target-class samples only, and

the testing pattern is identified by the use of the closest edge of the MS tree. Li et

al. [178] proposed an outlier detection strategy using an improved one-class support

vector machine. In this method, the low-rank constraint is first employed to divide the

data into several groups, then the linear solution for each cluster is learned separately.

Consequently, the authors in [179] perform multi-view low-rank analysis (MLRA) for

outlier detection, and the cross-view low-rank coding is utilized to reveal the intrin-

sic structures of the input. Wang et al. [180] introduced a one-class discriminative

subspace (BODS) classifier for outlier detection, where a pair of subspaces are used

for discriminative regularity modelling.

With the rise of enthusiasm in deep learning, the multilayer OCC strategies gained

traction. AE is the most common architecture utilized in these algorithms, using itera-

tive learning schemes like BP as the baseline of its training [149, 101, 150]. Recently,

AEs learned with MP inverse techniques have also been developed [25, 172, 161].

Compared with the BP-based learning strategies, the MP inverse has the benefits of

fast training speed and good generalization performance. The authors in [25] first

87

proposed a multilayer OCC structure to detect the outliers. The AEs trained with

MP inverse are utilized to learn the latent space coding, whereas the OC-ELM is

used for classification. Following that, Wang et al. [172] proposed a hierarchical

one-class algorithm to discriminatively learn the low-dimensional features. Instead

of applying the traditional MP inverse-based AEs to learn the representations, the

sparse matrix AE (SMA) is used. In [161], a within-class scatter information (WSI)

constraint-based one-class structure (OC-WSI) is proposed to enhance the encoding

discriminability. Specifically, the estimated covariance matrix is designed to minimize

the reconstruction error and the within-class scatter of the hidden space representa-

tions. However, the traditional MP inverse-based OCC algorithms use MSE as the

criterion to measure the error matrix, which is insufficient in handling non-Gaussian

noise.

To address the above-mentioned limitation, MCC-based OCC strategies have been

proposed [171, 170]. For example, Cao et al. [170] proposed a multilayer MCC-based

OCC network. First, multiple AEs developed with MSE criterion are stacked to learn

the optimal low-dimensional representations, and then the OC-ELM trained with

MCC strategy (MCOC-ELM) is employed to identify the outliers. Similarly, the work

in [171] first built a multilayer framework with the stack of WSI constraint-based AEs,

and then the MCOC-ELM is adopted as the top-net to detect the outliers. Besides,

in that paper, the top-net is extended for kernel learning for better generalization

performance.

However, the state-of-the-art MP inverse-based OCC algorithms have the fol-

lowing limitations: i) These strategies only verify their frameworks on small-scale

datasets; ii) All these OCC algorithms learn the low-dimensional encoding and do

the final classification with two separate stages, resulting in sub-optimal representa-

tions and limited generalization performance; iii) The MCC is only utilized in the

final stage classification, which is not efficient. The latent space is still built through

the MSE criterion. To alleviate these deficiencies, in this chapter, two novel OCC

schedules using subnet-based structures are introduced.

88

6.3 The Proposed Algorithms

The structure of the proposed OC-HSNN and MCOC-HSNN is very similar to those of

the Wi-HSNN and OS-HSNN. The main difference between OC-HSNN and MCOC-

HSNN lies in the optimization of the weight. The diagram of these two models is

shown as Fig. 6.1. Further, for the notations used in this chapter, please refer to

Table 4.1.

6.3.1 The Proposed OC-HSNN

The detailed learning steps of the proposed OC-HSNN are described in Algorithm

6.1. The differences between the proposed OC-HSNN and MCOC-HSNN are: The

OC-HSNN utilizes MSE to calculate the subnet weight Wr
i (cf. Line 10 in Algo-

rithm 6.1), while the MCOC-HSNN uses the MCC for subspace encoding (cf. Line 13

in Algorithm 6.1). The model consists of two learning stages: Stage 1 - initialization,

and Stage 2 - iterative subspace encoding. The former stage aims to warm up the

network, while the latter stage can incrementally enrich the encoding Γ by adding

new subnet nodes.

Different from the multi-class classification that aims to minimize the distance

between the prediction and the ground truth, the goal of OCC is to reject a small

number of samples during the training stage according to the output. In the network

training stage, only the target-class samples are fed as the input, and the ground truth

of training samples is set to 1. Thus, the OC-HSNN uses a set of target samples to

learn the target distribution and details. In the testing stage, the closer the network

output Yj (j refers to the index of testing pattern, 1 ≤ j ≤ N) approaches 1, the

more likely the input data belongs to the target class. In particular, a threshold µ

is utilized to separate the outliers from the targets: The j-th input is considered as

the outlier if the output distance εj = |O j − 1| is larger than the threshold µ. In this

sense, we consider the output Yj of data points that are smaller than 1−µ (or larger

than 1 + µ) as the outliers.

89

1

n

1

q

2

Input
Layer

Entrance Layer
Refinement

Layer

S-node #1

S-node #2

S-node #L

RS-node #1

RS-node #2

RS-node #L

Output
Layer

Exit
Layer

N

q

...

N

q

③

S-node
 #1

RS-node
 #1

S-node
 #2

RS-node
 #2

S-node
 #L

RS-node
 #L

Entrance
Layer

① ②

Refinement
Layer

Subspace

Representation Learning

Global-level
Representation

③

The Structure of the Subnet-based OC Classification Framework

0

1

1
Outlier

Target

(a) (b) (c)

Global-level

Representation Learning

Legend: Entrance Layer Subnet

(S-node)

Refinement Layer Subnet

(RS-node)

Subspace

Representation Learning

Global-level

Representation Learning

𝐇1

𝐇2

𝐇𝐿 Ψ𝐿

Ψ2

Ψ1

𝐇1

𝐇2

𝐇𝐿 Ψ𝐿

Ψ2

Ψ1
(𝐖1
𝑓
, 𝐛1
𝑓
)

(𝐖2
𝑓
, 𝐛2
𝑓
)

(𝐖𝐿
𝑓
, 𝐛𝐿
𝑓
) (𝐖𝐿

𝑟 , 𝐛𝐿
𝑟)

(𝐖2
𝑟 , 𝐛2
𝑟)

(𝐖1
𝑟 , 𝐛1
𝑟)

(𝐖1
𝑟 , 𝐛1
𝑟)

(𝐖2
𝑟 , 𝐛2
𝑟)

(𝐖𝐿
𝑟 , 𝐛𝐿
𝑟)

𝐖𝑖
𝑓
∈ 𝐑𝑛×𝑝

𝐖𝑖
𝑟 ∈ 𝐑𝑝×𝑞

𝐖𝑖
𝑟 ∈ 𝐑𝑝×𝑞

𝐖𝐿
𝑣 ∈ 𝐑𝑞×1

Ψ1 ∈ 𝐑
𝑁×𝑞

Ψ𝐿 ∈ 𝐑
𝑁×𝑞

Ψ𝑖 = 𝑔(𝐇𝐖𝑖
𝑟 + 𝐛𝑖

𝑟)

Γ = Ψ𝑗

𝑖

𝑗=1

Γ ∈ 𝐑𝑁×𝑞

Figure 6.1 – The structure of the OC-HSNN and MCOC-HSNN are depicted as (a), while (b) and (c) show the details of
subspace RL and the latent space RL. The main difference between these two models lies in calculating subsapce weight
Wr: The OC-HSNN and MCOC-HSNN use MSE and MCC to learn the optimal Wr, respectively.

90

Algorithm 6.1 The proposed OC-HSNN and MCOC-HSNN
Inputs: The input data (X,T), the maximum number of subnetwork L
Outputs: The network output Y

1: • Stage 1: Initialization
2: Procedure I: Wf

1 , W
r
1, Γ, and Wv

1 ← Assign weight
3: E1 = T− Γ ·Wv

1 % Obtain the output error.

4: P1 = E1(W
v
1)

† = E1 ·
(
I
C + (Wv

1)
TWv

1

)−1
(Wv

1)
T %Pull back the error from the output layer

to the refinement layer.
5: • Stage 2: Iterative Subspace Encoding
6: for (i = 2, i <= L, i++) do

7: Wf
i , b

f
i % Randomly assign weight Wf

i .

8: Hi = g(X ·Wf
i + bf

i)

9: if OC-HSNN then
10: Procedure II: Wr

i , Ψi ← MSE-based Weight Learning (X, P)
11: end if
12: if MCOC-HSNN then
13: Procedure III: Wr

i , Ψi ← MCC-based Weight Learning (X, P)
14: end if
15: Γ =

∑i
j=1 Ψj% Ψj is the subspace features, while Γ refers to the global-level (latent space)

representations.
16: Wv

i = (I
C + ΓTΓ)−1ΓTT

17: Ei = T− ΓWv
i

18: Pi = Ei(W
v
i)

† = (T− ΓWv
i) ·

(
I
C + (Wv

i)
TWv

i

)−1
(Wv

i)
T

19: end for
20: Y = Γ ·Wv

L % Y is the results.

Procedure I: Assign weight
Inputs: NA
Outputs: Wf

1 , W
r
1, Γ, and Wv

1: Wf
1 , b

f
1 % Orthogonal random generation.

2: H1 = g(X ·Wf
1 + bf

1)

3: Wr
1, b

r
1 % Orthogonal random generation.

4: Ψ1 = g(H1 ·Wr
1 + br

1)

5: Γ = Ψ1 % Obtain current latent representation.
6: Wv = (I

C + ΓTΓ)−1ΓTT% The weight are generated with MSE.

7: return Wf
1 , W

r
1, Γ, and Wv

Procedure II: MSE-based Weight Learning (X, P)
Inputs: X, P
Outputs: W, H

1: C, b % A preset regularization term C and bias b.
2: X† = (I

C +XTX)−1XT

3: W = X†P% X† is the MP inverse.
4: H = g(X ·W+ b)
5: return W, H

91

Procedure III: MCC-based Weight Learning (X, P)
Inputs: X, P
Outputs: Wq, H

1: K, η, b, W0 = 0 % K is the maximum iteration, η is the tolerance error
2: for (q = 1, q <= K, q ++) do
3: λλλj = XjW

q−1 −Pj , j = 1, 2, · · · , N% Calculate λ for each sample
4: [ΛΛΛ]jj = ψ(λλλj), j = 1, 2, · · · , N% Calculate Λ matrix

5: Wq = (XTΛΛΛX+ 2I
C)−1XTΛΛΛP

6: if J(Wq)− J(Wq−1) ≤ η then
7: break; % Exit FOR loop.
8: end if
9: end for
10: H = g(X ·W+ b)
11: return Wq, H

As for the choosing of µ, it is determined automatically using the training error

where a pre-set percentage of samples is assumed to be the outlier. Here, we set the

percentage to be 10% as an example. First, the output εj of each training sample is

sorted in a descending order: ε(1) ≥ ε(2) ≥, · · · ,≥ ε(N); Then, the optimal threshold µ

is chosen to be ε(t) where the index t is determined by rejecting the first t−1 number

of samples as outliers (in this case, t = N × 10%).

6.3.2 The Proposed MCOC-HSNN

The OC-HSNN applies the traditional MSE as the criterion to build the objective

function. To enhance the robustness of the proposed method, the MCC is adopted to

calculate Wr
i for discriminative feature learning. In this subsection, the correntropy-

based objective function is first given, and the characteristics of the proposed MCOC-

HSNN are then introduced.

6.3.2.1 The Objective Function with Correntropy

Given a dataset {X, P} with N number of arbitrary samples, where X and P are

the input training sample and the pulled back error (expected target), respectively.

Suppose H is the entrance layer feature. Then, an MSE-based objective function J(·)

92

can be computed as in Eq. (6.1).

min J =
C

2
||HW−P||22 +

1

2
||W||2, (6.1)

where W is the refinement layer weight. C is the regularization term, which is a

positive value. Here, the optimal W is estimated using MP inverse method as in

Eq. (6.2) [181].

W =

(
I

C
+HTH

)−1

HTP, (6.2)

where I is the identity matrix.

In order to improve the robustness of the model, the correntropy-based objective

function in Eq. (6.3) is employed instead of the MSE-based loss function.

min J = −C
2
V (HW,P) +

1

2
||W||2. (6.3)

where V (HW,P) is computed using the Gaussian kernel, which is defined in Eq. (6.4)

shown as below.

V (HW,P) ≈ 1

N

N∑
j=1

Gσ(HjW−Pj − kj), (6.4)

where Hj, kj and Pj refer to the hidden layer feature, the center and the target value

of the j-th input data, respectively. By substituting Eq. (6.4) into Eq. (6.3), we can

have the following equation.

J = − C

2N

N∑
j=1

Gσ(HjW−Pj − kj) +
1

2
||W||2. (6.5)

93

By taking the partial derivative of Eq. (6.5) wrt W to zero, we have the following

∂J

∂W
= W− C

2N

∂

∂W

(
N∑
j=1

Gσ(HjW−Pj − kj)

)

= W− C

2N

N∑
j=1

∂

∂W

(
exp

(
−(HjW−Pj − kj)2

2σ2

))

= W− C

2N

N∑
j=1

exp

(
−(HjW−Pj − kj)2

2σ2

)
· HT

j ·
(
− 1

σ2

)
· (HjW−Pj − kj)

= W+
C

2N

N∑
j=1

exp
(
− (HjW−Pj−kj)

2

2σ2

)
σ2

HT
j (HjW−Pj − kj)

= W+
C

2N

N∑
j=1

Gσ(HjW−Pj − kj)
σ2

HT
j (HjW−Pj − kj),

(6.6)

wherein (HjW−Pj − kj)→ λjλjλj, so that Eq. (6.6) can be rewritten as(
C

2N

N∑
j=1

Gσ(λλλj)

σ2
HT

j Hj + I

)
W =

C

2N

N∑
j=1

Gσ(λλλj)

σ2
HT

j Pj. (6.7)

Therefore, the optimal solution for minimizing the objective function J can be ex-

pressed as

W = (HTΛΛΛH +
2I

C
)−1HTΛΛΛP, (6.8)

where ΛΛΛ is a diagonal matrix with [ΛΛΛ]jj = ψ(λjλjλj), ψ(·) is the projection of a vector

into the Hilbert space. Here, it is a Gaussian kernel. The ΛΛΛ is calculated according to

the weight W. Thus, the optimal solution is obtained through a fixed-point iterative

process described in Algorithm 6.1 - Procedure III.

94

6.3.2.2 The Characteristics of MCOC-HSNN

Algorithm 6.1 details the learning steps of the proposed MCOC-HSNN. Compared to

OC-HSNN, the MCOC-HSNN is characterized by two properties.

• The MCOC-HSNN utilizes the MCC scheme to architect the subspace (optimize

the weight Wr
i). The generated low-dimensional encoding in MCOC-HSNN

is not sensitive to the outliers and non-Gaussian noise, thus showing better

generalization performance. However, it increases the computational workload,

as the users need to use the fixed-point iteration algorithm to find the optimal

weight.

• In this chapter, we hypothesize that the performance of one model depends on

the encoding of the input data: When a distinctive latent space feature (Γ)

is achieved, there is no need to further use MCC to optimize the output layer

weight (Wv). A simple LS strategy is enough to fit the objective function.

Thus, in MCOC-HSNN, only the subspace weight (Wr
i) are generated with the

use of MCC. This characteristic is experimentally verified in Section 6.4.2 -

Model Settings.

6.4 Experimental Results

6.4.1 Experimental Setup

6.4.1.1 The Environment

All of the algorithms outlined in this chapter are evaluated in the MATLAB 2020a

environment. The experiments are conducted in a workstation with a 256 GB main

memory and a 2.8 GHz E5-2650 processor.

6.4.1.2 The Dataset

In this chapter, 27 OCC datasets ranging from image classification domain to misin-

formation detection domain are used to evaluate the proposed OC-HSNN and MCOC-

HSNN. The details of these datasets are elaborated in Table 6.1. For all these datasets,

95

Table 6.1 – Summary of Datasets

Datasets Training Data Testing Data1 Features Class2

MNIST-2 6,742 10,000 / 1,135 784 10
MNIST-4 6,131 10,000 / 1,010 784 10
MNIST-5 5,842 10,000 / 982 784 10

NORB-1/2/3 4,860 24,300 / 4,860 2,048 5
Fashion-2/3/4/5 6,000 10,000 / 1,000 784 10

CIFAR-103 5,000 10,000 / 1,000 3,072 10

Place-A 119,168 36,500 / 2,400 2,048 365
Place-B 171,650 36,500 / 3,500 2,048 365
Place-C 165,394 36,500 / 3,400 2,048 365
Place-D 56,849 36,500 / 1,200 2,048 365

Place-ABCD 513,061 36,500 / 10,500 2,048 365

Food+ 118,475 48,494 / 11,994 2,048 251
CO-Mask 4,907 3,725 / 1,310 3,000 2

1Testing Data: Total number of testing data / The number of target data.
2Class: The number of classes in the original dataset.
3CIFAR-10: Each class in CIFAR-10 is treated as the target class separately.

one specific category (at least one class) is manually labelled as the target class,

whereas the rest is defined as the outlier class. The datasets can be divided into four

families: small-scale and large-scale visual datasets, food identification dataset, and

misinformation detection dataset.

Small-scale visual datasets (MNIST-2/4/5, NORB-1/2/3, Fashion-2/3/4/5, and

CIFAR-10) have fewer training samples with less than 50 K patterns. Following the

previous works [170, 161, 25, 171], the number followed the symbol “-” is used to

show the specific label of the target class. For the MNIST dataset, classes 2 (MNIST-

2), 4 (MNIST-4), and 5 (MNIST-5) are applied as the target category, and the rest

categories are labelled as the outlier class, respectively. Similar situations occur with

NORB (NORB-1/2/3), Fashion (Fashion-2/3/4/5) dataset. For the MNIST-2/4/5

and Fashion-2/3/4/5 datasets, the raw images are loaded as the input (n = 28× 28).

For the NORB dataset, the zero phase component analysis whitening [182] is used

for pre-processing, and the input dimension n of NORB-1/2/3 datasets is 2,048. As

for the CIFAR-10 dataset, this dataset contains 10 labels. In each setup, one of the

96

classes is considered as the target class, whereas the rest classes are the outliers.

Hence, the training set for CIFAR-10 contains 5,000 patterns. To comprehensively

evaluate the proposed methods, the raw images and high-level features extracted by

rotation prediction [183] are utilized as the algorithms’ input, respectively.

Large-scale visual datasets (Place-A/B/C/D/ABCD) have a relatively large

number of patterns that have more than 50 K training patterns. The Places-365

dataset, which contains 365 categories, is one of the largest scene classification dataset

with a sample size of over 1.8 million samples. Four large OCC datasets Place-

A/B/C/D are prepared by merging the categories of initials “A”, “B”, “C”, or “D”

respectively as the target class, while the rest are considered as the outlier class. To

further evaluate the performance of OC-HSNN and MCOC-HSNN, one more test is

conducted by comparing algorithms with the Place-ABCD dataset that merges the

classes starting with “A”, “B”, “C”, and “D” as the target, and the rest of the classes

are labelled as outliers. Consequently, for Place-A/B/C/D/ABCD, the validation set

containing 36,500 images is used for testing.

For the large-scale datasets (Place365-A/B/C/D/ABCD), the Inception-V3 [87]

is utilized to extract the high-level feature from the raw samples. The Inception-V3 is

obtained from the ImageNet pre-trained model. The 2048-dimensional feature vector

from the average pooling layer “avg pool” is extracted as the input (n = 2, 048). For

fair comparison, the high-level feature is fed to all the OCC methods.

Food identification dataset (Food+). Food-251 [131] is one of the largest food

image classification datasets, having 118,475 training images and 11,994 testing pat-

terns. Here, the food images are considered as the target class, whereas the non-food

patterns belong to the outlier class. Specifically, we enriched the Food-251 dataset to

conform to the food image identification by merging 365,000 non-food images (ran-

domly selected from the Place-365 dataset) into the testing set of Food-251. Table 6.1

shows the statistics of this dataset which is named Food+.

Misinformation detection dataset (CO-Mask). Misinformation has many neg-

ative impacts on society. For instance, false or misleading statements have proved

97

counterproductive in the world’s combat against COVID-19, which inflected millions

of people around the world [184]. While existing research garnered important in-

sights on rumour detection in social media, there is still a paucity of advancements

in our field that could help detect tendencies for news, in general, to be misleading.

In this chapter, we approach misinformation detection in digital platforms through

OCC algorithms [185]. The main reason is that misinformation (or fake news) is

arbitrarily labelled according to the user’s volition, while the true news is collected

similarly [186, 164]. Therefore, true news and misinformation are considered as the

target class and outlier class respectively.

In this chapter, we created one misinformation detection dataset (”CO-Mask”)1

to verify the effectiveness of the proposed OCC methods. The CO-Mask dataset in-

cludes statements from the “big three” news agencies (Associated Press, Reuters, and

Bloomberg) related to people’s attitude toward wearing masks during the COVID-19.

It contains 4,907 training samples (true news samples) and 3,725 testing patterns. The

embeddings (300-dimensional vectors) of each text pattern are obtained via fastText1.

The number of word vectors in the sequence is 10. Thus, the input dimensionality of

each vector is 3,000.

6.4.1.3 The Rival Methods

The proposed methods are evaluated with three families of algorithms:

The traditional methods. Several BP-based AEs, such as weight-decay regularization-

based AE (WD-AE) [149], denoise AE with Gaussian noise (DAEG) [101] or with bi-

nary noise (DAEB) [101], and sparse AE (SAE) [150] are tested. Furthermore, some

advanced OCC algorithms, such as the deep convolutional generative adversarial net-

work called AnoGAN [187], deep support vector data description (DSVDD) [188] and

self-supervised learning-based kernel density estimation (SSLKDE) [189] are com-

pared.

1CO-Mask dataset can be download here.
1FastText can be download here.

98

https://github.com/W1AE/OCC/blob/main/README.md
https://fasttext.cc/docs/en/english-vectors.html

The MP inverse-based methods. In this chapter, some MSE-based OCC al-

gorithms, including single-layer one-class algorithm (OC-S) [169], multilayer-based

one-class neural network (OC-M) [42], hierarchical one-class model (OC-H) [98], mul-

tilayer kernel-based one-class structure (OC-K) [25], OC-based SMA algorithm (OC-

SMA) [172], and OC-WSI [161] are used for evaluation.

The maximum correntropy-based one-class classification (MCOC) meth-

ods. The multilayer MCOC network (MCOC-M) [170], the multilayer MCOC net-

work using kernel learning (MCOC-K) [171], hierarchical MCOC network (MCOC-

H) [98], WSI constraint-based hierarchical MCOC network (MCOC-WSI) [171] uti-

lized for comparison.

6.4.1.4 Configurations of the OCC Methods

The detailed hyperparameter settings of the proposed work and the compared rival

methods are summarized in Table 6.2 for reproducibility. For DSVDD, AnoGAN

and SSLKDE, we follow the hyperparameter settings elaborated in [188], [187], and

[189], respectively. It is worth noting that for all the proposed and rival algorithms,

following the commonly used training settings [170, 171], the threshold µ is determined

by rejecting 10% of training samples as outliers.

6.4.1.5 Evaluation Metrics

In this chapter, the G-mean, F1 score, and area under the curve (AUC) score are

utilized as the measurements to assess the performance of algorithms.

F1 =
2R · P
P +R

,

G−mean =

√
R · TN

TN + FP
,

P =
TP

TP + FP
, and R =

TP

TP + FN
,

(6.9)

99

Table 6.2 – Hyperparameter settings of the proposed method and the compared rival algorithms

Methods Parameters

MP inverse methods
C = selected within {1.0−5, 1.0−3, 1.00, 1.03, 1.05}, HN = grid searched within {1000, 2000, 3000}, AE =

3, the kernel function in OC-K [25] = e
∥xi−xj∥

2σ2 , and outlier rate = 10%.

Traditional methods
BS = 100, ILR = grid searched within {1.0−2, 1.0−3, 1.0−4}, TE = 8, DR = 0.1 per 10 epochs, HN = grid
searched within {1000, 2000, 3000}, AE = 3, the corruption rate in DAEG and DAEB [101] = 0.5, and the
outlier rate = 10%.

The MCOC methods
C = selected within {1.0−5, 1.0−3, 1.00, 1.03, 1.05}, HN = grid searched within {1000, 2000, 5000}, AE =
3, maximum iteration K = 50, tolerance error η = 1.0−5, and outlier rate = 10%.

OC-HSNN
C = selected within {1.0−5, 1.0−3, 1.00, 1.03, 1.05}, nodes in S-node = 500, nodes in RS-node = 500, L =
5, and outlier rate = 10%.

MCOC-HSNN
C = selected within {1.0−5, 1.0−3, 1.00, 1.03, 1.05}, nodes in S-node = 500, nodes in RS-node = 500, L =
5, maximum iteration K = 50, tolerance error η = 1.0−5, and outlier rate = 10%.

Notations: HN - the number of hidden layer nodes, AE - the number of autoencoders, BS - batch size, ILR - initial learning rate,
TE - total number of retraining epochs, DR - decay rate, outlier rate - the µ is determined by rejecting 10% of training samples
as outliers.

100

where P and R refer to the precision rate and recall rate. TP , TN , FP , and FN

are true positive, true negative, false positive, and false negative, respectively. For

the computation of AUC score, it measures the 2-dimensional area underneath the

receiver operating characteristic (ROC) curve. For each algorithm and dataset, at

least five trials are conducted.

6.4.2 Model Settings

Figure 6.2 shows the sensitive performance of the proposed methods and the rival

algorithms as the hyperparameter C changes. The experiments were conducted 20

times for comprehensive comparison. It is observed that the C of the proposed OC-

HSNN and MCOC-HSNN is not sensitive to the generalization performance. For

example, as C changes, the average G-mean score of the proposed OC-HSNN on the

MNIST-5 dataset ranges from 82.2% to 86.4%. However, the average G-mean score

of the rival method, i.e., OC-H on the MNIST-5 dataset ranges from 52.5% to 62.2%.

To validate the intuition of the proposed MCOC-HSNN where only the subspace

weight (Wr
i) are calculated with MCC in MCOC-HSNN, a sanity check with a differ-

ent combination of groups ranging from the purely MSE-based network learning (S1)

to the purely MCC-based optimization (S4) is conducted. From Table 6.3, one can

conclude the following: i) Compared to S1 and S2, the proposed MCOC-HSNN (S3)

provides a much superior performance in terms of the G-mean score. ii) Compared

to S4, the developed MCOC-HSNN (S3) shows a similar generalization performance,

but records just half of the training time. The reason is that the weight calculated by

the S4 strategy is inefficient as the generated latent space Wr
i using MCC is discrim-

inative enough to classify the outliers from the target. There is no need to calculate

the Wv and P through the fixed-point iteration algorithm. Thus, the merits of the

proposed MCOC-HSNN are obvious.

101

501  .C 301  .C 001.C 301.C 501.C
501  .C 301  .C 001.C 301.C 501.C

OC-HSNN MCOC-HSNN

(a) MNIST-5 dataset

OC-HSNN MCOC-HSNN

(b) Fashion-3 dataset

501  .C 301  .C 001.C 301.C 501.C

OC-H MCOC-H

(c) MNIST-5 dataset

501  .C 301  .C 001.C 301.C 501.C

OC-H MCOC-H

(d) Fashion-3 dataset

G
-m

ea
n

 s
co

re
 (

%
)

G
-m

ea
n

 s
co

re
 (

%
)

G
-m

ea
n

 s
co

re
 (

%
)

G
-m

ea
n

 s
co

re
 (

%
)

Figure 6.2 – Sensitive performance of the proposed methods and rival methods on MNIST-5 and Fashion-3 datasets. The
performance of the proposed methods is not sensitive to the hyper-parameter C. For example, with various C, the average
G-mean score of the proposed OC-HSNN on MNIST-5 dataset ranges from 82.2% to 86.4%. However, the average G-mean
score of OC-H on MNIST-5 dataset ranges from 52.5% to 62.2%.

102

Table 6.3 – Performance of the proposed method with various combinations [TRT:
training time in minute, GM: G-mean scrore, S1 - Wr and Wv are calculated w/ MSE;
S2 - Wr is calculated w/ MSE, while Wv is obtained w/ MCC; S3 - Wr is calculated
w/ MCC, while Wv is calculated w/ MSE; S4 - Wr and Wv are calculated w/ MCC]

Methods
MNIST-4 NORB-1 Fashion-2

GM (%) TRT (m) GM (%) TRT (m) GM (%) TRT (m)

S1 66.9 5.7 81.5 4.6 75.5 5.6
S2 71.6 10.5 81.7 7.6 77.6 9.2
S3 73.1 10.2 82.1 7.5 78.9 8.4
S4 73.3 19.6 82.0 15.4 78.9 17.7

6.4.3 Analysis on Visual Classification Domain

6.4.3.1 Small-scale Datasets

In this evaluation, the raw images are loaded as the input. Table 6.4 and Fig. 6.3

show the comparison results with the other state-of-the-art OCC algorithms. Through

observation, the following two conclusions can be drawn: Firstly, the proposed OC-

HSNN and MCOC-HSNN outperform the existing MSE-based and MCC-based OCC

algorithms on most of the small-scale datasets. For example, when compared to the

best MCC-based results in the literature, the MCOC-HSNN boosts the performance

by 2.7%, 5.2%, 7.2% and 10.9% on MNIST-4, MNIST-5, Fashion-3 and Fashion-

5, respectively. Similarly, as for the MSE-based methods, the proposed OC-HSNN

improves the G-mean score by 9.3% and 14.5% than the best MSE-based results in the

literature on MNIST-5 and Fashion-5 datasets, respectively. Secondly, the MCOC-

HSNN records a superior performance over the OC-HSNN algorithm from 0.3% to

2.5% improvement in G-mean score. Thus, the MCOC-HSNN is more powerful in

processing small-scale datasets.

103

Table 6.4 – G-mean score comparison of the proposed and rival OCC algorithms. Values in BOLDFACED and
UNDERLINED are the best and the second best results among the OCC methods

Methods MNIST-2 MNIST-4 MNIST-5 NORB-1 NORB-2 NORB-3 Fashion-2 Fashion-3 Fashion-4 Fashion-5

OCC Algorithms Using MSE

OC-S [169] 84.1±0.7 58.4±0.3 65.9±2.2 78.7±0.5 86.8±0.1 65.3±1.0 67.7±0.9 64.8±2.4 70.1±0.3 66.4±3.5
OC-K [25] 85.9±0.5 62.4±0.1 73.3±1.0 80.4±0.3 90.3±0.1 69.2±0.2 69.8±1.1 71.1±2.6 82.6±0.3 66.5±2.1
OC-M [42] 88.5±0.5 65.3±5.6 69.7±2.4 79.7±0.1 92.4±0.1 66.5±1.4 74.4±1.7 76.3±2.4 78.7±0.4 71.1±3.7
OC-H [98] 84.6±1.2 57.3±4.8 62.4±1.4 78.9±0.6 88.4±1.1 67.0±0.5 63.7±1.0 68.3±1.2 66.5±1.6 66.9±1.0
OC-SMA [172] 86.7±0.3 59.0±4.8 72.9±3.8 79.4±0.5 90.5±0.4 67.4±1.8 70.1±2.6 72.9±1.8 73.1±0.8 71.1±3.7
OC-WSI [161] 90.6±2.2 66.3±0.1 77.0±3.5 81.6±0.1 92.9±0.1 67.0±1.5 75.4±0.1 77.2±1.4 80.8±0.1 72.6±2.8
OC-HSNN 94.5±0.9 66.8±0.1 86.3±0.9 81.5±0.4 92.6±0.1 68.9±0.1 75.5±0.2 86.5±0.7 82.1±0.2 87.1±1.3

OCC Algorithms Using MCC

MCOC-K [171] 88.4±1.4 62.7±0.1 74.6±1.7 81.3±0.5 90.0±0.1 69.0±1.0 72.4±0.2 79.9±0.6 84.0±0.6 75.4±2.4
MCOC-M [170] 89.2±2.1 65.8±3.3 74.2±1.3 80.2±0.4 92.7±0.5 66.8±1.9 74.8±0.4 78.8±1.4 79.6±0.5 73.5±1.3
MCOC-H [98] 86.5±1.4 59.7±3.1 64.5±2.0 79.0±0.3 90.1±0.7 67.1±1.0 65.8±0.1 71.4±1.3 70.1±1.1 69.3±3.0
MCOC-WSI [171] 92.2±0.7 70.4±0.1 83.6±1.1 82.8±0.1 93.8±0.1 68.1±0.5 77.4±0.1 80.1±0.8 81.4±0.3 77.5±1.7
MCOC-HSNN 94.8±0.6 73.1±0.1 88.8±0.3 82.1±0.3 93.6±0.1 69.3±0.1 78.8±0.1 87.3±0.5 83.5±0.4 88.4±1.0

104

(a) Comparison of different OC methods on MNIST-2 and MNIST-4

(c) Comparison of different OC methods on Fashion-2 and Fashion-3 (d) Comparison of different OC methods on Fashion-4 and Fashion-5

(b) Comparison of different OC methods on NORB-1 and NORB-2

G
-m

ea
n
 (

%
)

G
-m

ea
n
 (

%
)

G
-m

ea
n
 (

%
)

G
-m

ea
n
 (

%
)

OC-HSNN

MCOC-HSNN

OC-HSNN

MCOC-HSNN

OC-HSNN

MCOC-HSNN

OC-HSNN

MCOC-HSNN

OC-HSNN

MCOC-HSNN

OC-HSNN

MCOC-HSNN

OC-HSNN

MCOC-HSNN

OC-HSNN

MCOC-HSNN

Figure 6.3 – Performance of the proposed OC-HSNN and MCOC-HSNN with BP-based and MP inverse-based OCC
algorithms. (a) and (b) show the performance comparison of OCC methods on MNIST-2/4 and NORB-1/2 datasets
respectively. (c) and (d) are the results of different OCC strategies on Fashion-2/3/4/5 datasets.

105

Table 6.5 – AUC score comparison of the proposed and rival OCC algorithms on CIFAR-10 dataset. Values in BOLD-
FACED and UNDERLINED are the best and the second best results among the OCC methods

Datasets Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Mean

Inputs: The Raw Images

OC-M [42] 60.3±2.7 63.5±0.5 57.7±1.9 58.4±0.9 65.9±0.6 62.0±0.4 65.2±1.6 66.8±2.2 74.6±1.3 71.2±1.6 64.6±1.4
OC-H [98] 59.6±2.2 60.2±0.9 57.3±1.3 58.2±1.2 61.7±1.0 60.3±0.7 64.6±0.3 65.4±1.8 68.2±1.1 73.3±1.9 62.9±1.2
MCOC-M [170] 65.2±1.5 70.3±1.4 58.4±1.1 58.7±0.4 70.8±1.9 65.3±2.2 76.3±1.1 70.4±0.6 77.9±0.5 77.4±1.3 69.2±1.2
AnoGAN [187] 67.1±2.5 54.7±3.4 52.9±3.0 54.5±1.9 65.1±3.2 60.3±2.6 58.5±1.4 62.5±0.8 75.8±4.1 66.5±2.8 61.8±2.6
DSVDD [188] 61.7±4.1 65.9±2.1 50.8±0.8 59.1±1.4 60.9±1.1 65.7±2.5 67.7±2.6 67.3±0.9 75.9±1.2 73.1±1.2 64.8±1.8
OC-HSNN 73.9±0.3 74.5±0.1 60.5±0.2 62.3±0.1 70.6±0.1 69.0±0.4 78.6±0.2 70.7±0.1 81.3±0.0 78.8±0.1 72.0±0.2
MCOC-HSNN 75.9±0.2 74.2±0.1 63.1±0.1 63.9±0.3 71.1±0.3 68.2±0.5 79.7±0.0 71.0±0.1 81.1±0.3 79.4±0.2 72.8±0.2

Inputs: High-level Features Extracted from Rotation Prediction [183]

OC-M [42] 88.0±1.0 96.9±0.7 85.5±0.4 78.7±0.4 88.0±0.3 86.4±0.8 93.6±0.5 95.0±0.3 95.2±0.6 93.7±0.2 90.1±0.5
OC-H [98] 87.3±1.3 96.5±0.4 86.4±0.5 79.1±0.6 87.2±0.3 86.5±1.0 93.1±0.7 94.8±0.2 95.0±1.3 93.9±0.1 90.0±0.6
MCOC-M [170] 88.5±0.7 97.6±0.5 85.3±0.5 78.5±0.3 88.6±0.1 86.9±0.7 94.1±1.0 95.2±0.6 95.7±1.1 94.3±0.1 90.5±0.6
SSLKDE [189] 88.5±0.3 97.5±0.3 88.2±0.3 78.3±1.0 90.2±0.2 88.2±0.6 94.6±0.3 97.0±0.1 95.7±0.1 94.9±0.1 91.3±0.3
OC-HSNN 88.7±0.1 97.6±0.1 87.8±0.2 80.1±0.3 89.4±0.2 89.1±0.2 94.8±0.4 96.7±0.0 96.0±0.1 94.8±0.1 91.5±0.2
MCOC-HSNN 89.4±0.2 97.7±0.1 88.0±0.2 80.2±0.2 90.0±0.1 89.7±0.1 95.2±0.4 97.3±0.0 96.3±0.1 94.9±0.1 91.8±0.2

106

Table 6.5 shows the performance comparison of the proposed OCC algorithms

with other state-of-the-art rival algorithms, including AnoGAN [187], DSVDD [188]

and SSLKDE [189], on the CIFAR-10 datasets. It is worth noting that the best

results of the OCC algorithms on each dataset are marked in boldface. Note that the

experiments contain two different scenarios, i) algorithms trained with raw CIFAR-10

images, and ii) algorithms proceed with high-level features extracted from the rotation

prediction [183]. For the first scenario, it is found that the proposed MCOC-HSNN

records 2.5% to 14.2% AUC improvement compared to the DSVDD algorithm. As for

the second scenario, the proposed MCOC-HSNN achieves 0.9%, 0.2%, 1.7%, 1.5%,

0.6% and 0.6% improvement in terms of AUC scores over the SSLKDE on classes

airplane, automobile, cat, dog, frog and ship, respectively. When compared to the

mean average AUC score, the MCOC-HSNN outmatches the SSLKDE by 0.5%, which

is the best among these OCC algorithms. Hence, the effectiveness of the proposed

algorithms is verified.

To further validate the robustness of the proposed OC-HSNN and MCOC-HSNN,

we conducted a sanity analysis with different noise rates as shown in Fig. 6.4. The

number of selected noise samples is set to be 10%, 20%, and 30% of the total number

of samples of the target category, respectively. Through observation, we can con-

clude that the proposed OC-HSNN and MCOC-HSNN show better performance than

the MCOC-M algorithm. For example, the mean average F1 score of the proposed

MCOC-HSNN with 10%, 20% and 30% outlier rate show 11.3%, 21.9%, and 47.3%

improvement compared to the MCOC-M on MNIST-2 dataset, respectively.

6.4.3.2 Large-scale Datasets

The performance of the OC-M, MCOC-S, OC-HSNN and MCOC-HSNN wrt large-

scale datasets are shown in Fig. 6.5 and Table 6.6. For a fair comparison, the high-level

features extracted from Inception-V3 are utilized as the input to all the proposed and

rival methods. Rather than simply comparing the algorithms with the G-mean score,

the training time and the mean average inference time per frame are evaluated as

well.

107

1F1F

1
F1
F

MCOC-HSNN OC-HSNN MCOC-M

Figure 6.4 – Performance of the OC-HSNN, MCOC-HSNN, and MCOC-M wrt different percentage of outlier ratio. (a)
and (b) are the AUC score of different methods, (c) and (d) are the comparison results in terms of the F1 score.

108

(a) Comparison of peak memory usage on Place-A/C/D datasets (b) Comparison of training time on Place-A/C/D datasets (c) Comparison of AUC score on Place-A/C/D datasets

58.7

54.6

62.4

67.4

58.9

66.566.5

59.2

66.1

6.7 8.4
4.07.8 11.2

4.2

84.9

142.5

39.7

56.8

109.4

12.9

1.9 2.7 0.9

56.8

109.4

12.9

MCOC-S

OC-HSNN

MCOC-HSNN

MCOC-S

OC-HSNN

MCOC-HSNN

MCOC-S

OC-HSNN

MCOC-HSNN

Figure 6.5 – Performance comparison of OC-HSNN, MCOC-HSNN and MCOC-S on Place-A/C/D datasets.

Table 6.6 – Comparison of OCC algorithms on large-scale datasets. Values in BOLDFACED are the best results among
OCC methods [GM: G-mean score (%), TRT (m): training time in minute, TET (ms): mean average inference time per
frame in millisecond]

Datasets
OC-M [42] OC-H [98] MCOC-M [170] OC-HSNN MCOC-HSNN

GM TRT TET GM TRT TET GM TRT TET GM TRT TET GM TRT TET

Place-A 40.2±1.4 8.5 1.6 43.7±1.5 9.6 1.7 40.6±1.3 144.8 1.5 53.5±0.5 9.4 1.3 53.6±0.6 162.9 1.3
Place-B 32.9±3.0 12.8 1.6 35.6±2.1 15.7 1.6 33.5±2.4 304.7 1.3 42.2±1.8 14.8 1.4 41.9±1.7 337.5 1.3
Place-C 33.4±0.9 12.1 1.4 37.9±0.2 15.5 1.5 31.7±0.7 297.9 1.5 43.8±0.4 14.6 1.3 43.5±0.1 310.7 1.3
Place-D 42.7±0.2 4.8 1.5 42.2±0.1 5.9 1.5 42.8±0.3 76.2 1.4 54.6±0.2 6.6 1.2 54.8±0.1 80.6 1.2
Place-ABCD 25.9±1.5 44.6 1.4 27.8±1.2 50.1 1.7 ROM1 ROM1 ROM1 39.1±0.8 46.4 1.3 ROM1 ROM1 ROM1

1ROM: result not available due to the fact of out of memory

109

From Fig. 6.5 and Table 6.6, we observe that: i) The proposed OC-HSNN and

MCOC-HSNN have similar (roughly 10% more) training complexity compared to the

OC-M and MCOC-M, respectively. Although the proposed methods need extra time

for data feedback and weight calculation, the dimensionality of each subnetwork in

OC-HSNN and MCOC-HSNN is small; ii) The proposed frameworks provide faster

inference speed. This is because the major timing overhead of the proposed methods

in the testing stage dwells in the feedforward process. The proposed methods have

fewer parameters; iii) The OC-HSNN outmatches the comparison algorithms while

providing a competitive performance compared to the MCOC-HSNN strategy. Al-

though the MCOC-HSNN shows slightly better performance on the Place-A dataset,

the algorithm needs around 12 times more training time over that of the OC-HSNN

strategy. This is because the MCOC-HSNN utilizes a fixed-point scheme to calculate

the subspace weight Wr
i , causing more computational burden.

Furthermore, Fig. 6.5 (a) shows that the peak memory usage (PMU) of the pro-

posed MCOC-HSNN is much higher than that of the OC-HSNN, as the dimension of ΛΛΛ

in Eq. (6.8) is very high. For example, for the Place-C dataset, the ΛΛΛ ∈ R165,394×165,394

occupies around 109 GB or 218 GB memory in single-precision or double-precision

array, respectively. Thus, the MCC-based strategies have stringent computational

requirements for the large-scale dataset. Considering all the evaluation metrics in-

cluding the training time and PMU, the OC-HSNN has a certain superiority over

MCOC-HSNN on large-scale datasets.

6.4.4 Analysis on Extended Domains

6.4.4.1 Food Identification

Various OCC algorithms, including the MSE-based and the MCC-based schemes,

are compared in Table 6.7. The proposed OC-HSNN and MCOC-HSNN outperform

the other MSE-based and MCC-based algorithms from 3.8% to 9.0% in terms of

G-mean score. The F1 score and AUC of the proposed models are all higher than

those of the comparison algorithms. Also, compared to MCOC-HSNN, the OC-HSNN

achieves similar performance on Food+. For example, the OC-HSNN and MCOC-

HSNN provide 50.3% and 50.1% of G-mean scores, respectively.

110

Table 6.7 – Comparison of OCC algorithms on extended domains [GM: G-mean score
(%)]

Methods
Food+ CO-Mask

GM F1 AUC GM F1 AUC

OCC Algorithms Using MSE

OC-S [169] 41.3 39.6 57.2 78.8 40.6 85.2
OC-M [42] 42.4 44.0 60.1 79.4 43.7 89.6
OC-WSI [161] 46.1 43.0 61.0 81.1 50.4 91.1
OC-HSNN 50.3 44.4 64.4 83.4 54.4 91.2

OCC Algorithms Using MCC

MCOC-S [170] 42.1 41.1 58.6 80.1 47.2 88.4
MCOC-M [170] 43.1 42.0 58.9 82.6 47.8 90.2
MCOC-WSI [171] 46.3 43.0 61.2 82.8 51.8 89.4
MCOC-HSNN 50.1 44.4 64.0 87.8 54.6 94.8

6.4.4.2 Misinformation Detection

To fully evaluate the performance of the OC-HSNN and MCOC-HSNN, one more

experiment is carried out on the CO-Mask dataset. Experimental results in Table 6.7

show that i) the MCOC-HSNN provides the best performance among the OCC al-

gorithms, and ii) the OC-HSNN shows superior performance over the existing OCC

models, while having a very competitive performance compared to the MCOC-HSNN.

For example, the OC-HSNN learning pipeline gains a 4.0% of more F1 score than that

of the OC-WSI framework, only 0.2% less of F1 score compared to the MCOC-HSNN.

6.4.5 Discussion

6.4.5.1 OC-HSNN vs. MCOC-HSNN

The above outcomes demonstrate the following:

• The MCOC-HSNN achieves better generalization performance over OC-HSNN

on small-scale datasets. The proposed MCC-based feature learning scheme is

powerful in suppressing non-Gaussian noise and large outliers. Therefore, the

MCOC-HSNN framework is capable of generating more robust low-dimensional

encoding for the input data.

111

• On the other hand, compared to MCOC-HSNN, the OC-HSNN has the ad-

vantage of handling large-scale datasets. The benefits of the OC-HSNN are:

Firstly, the OC-HSNN shows a competitive G-mean score compared to the

MCOC-HSNN. Secondly, the subspace representations generated through the

OC-HSNN framework are much faster than MCOC-HSNN since the coding ma-

trix is updated with the analytic solution instead of the fixed-point iteration.

Thirdly, the OC-HSNN demands a fewer amount of memory usage while the

MCOC-HSNN needs access to industrial-scale computational resources to pro-

cess big datasets.

6.4.5.2 Limitation

Although the proposed OC-HSNN and MCOC-HSNN show superior performance

compared to the existing OCC algorithms, they still have the following two limi-

tations: Firstly, the subspace representations are only optimized with the category

information. However, in complex tasks, they are inefficient. One practical way is

to combine the supervised and unsupervised learning simultaneously. Secondly, the

structure is incapable of extracting high-level features as the models do not contain

convolutional layers. In other words, when handling large-scale datasets like Place-

365, the models need the feature extraction frameworks, such as VGG, ResNet, and

Inception-V3, to extract the abstractive features.

6.5 Conclusion

To achieve a highly discriminative representation, a novel multilayer one-class classi-

fication algorithm OC-HSNN containing the subnetwork structure is proposed. Con-

sequently, a robust framework called MCOC-HSNN using the maximum correntropy

criterion for subspace feature learning is further developed. The contributions of this

chapter are: i) The latent space features are encoded through subnetworks instead

of conventional neurons; ii) Unlike the existing one-class networks that solve several

sub-problems to approximate the global optimization, the proposed methods search

the optimal representations and do the final one-class classification jointly; iii) Instead

112

of simply applying maximum correntropy criterion in the final layer classification, in

this chapter, the latent space encoding of MCOC-HSNN is generated with the use of

maximum correntropy criterion; iv) A new dataset called CO-Mask is gathered.

Experimental results on 27 one-class classification datasets, ranging from MNIST-

4 having 6,131 training samples to Place-ABCD containing 513,061 patterns, prove

that the proposed OC-HSNN and MCOC-HSNN have promising performance when

compared to the existing one-class classification algorithms. As for future direction, it

would be worthwhile to develop a novel structure by considering unsupervised input

details and supervised label information simultaneously.

113

Chapter 7

Semi-supervised Manifold Regularization

via a Subnetwork-based Representation

Learning Model

Semi-supervised classification with limited labelled training samples is a challenging

task in the area of data mining. MP inverse-based manifold regularization (MR) is a

widely used technique in tackling semi-supervised classification. However, most of the

existing MP inverse-based MR algorithms can only generate loosely-connected feature

encoding, which is generally less effective in data representation and feature learning.

To alleviate this deficiency, we introduce a new semi-supervised hierarchical subnet

neural network termed SS-HSNN. The key contributions of this model are as follows:

1) A novel MP inverse-based MR model using a subnetwork structure is introduced.

The MR is utilized in the learning of the optimal MP inverse-based weights. 2) A

new semi-supervised dataset called HFSWR-RDE is gathered. Experimental results

on multiple domains show that the SS-HSNN achieves superior performance over the

other semi-supervised learning algorithms, demonstrating fast inference speed and

better generalization ability.

7.1 Introduction

The task of semi-supervised classification has attracted much attention in many real-

world applications, such as video action recognition [190, 191], text mining [192],

and remote image recognition [193, 194]. The collection of labelled data in these

tasks is more difficult than the collection of unlabelled data, as labelled data incur

more costs in terms of skilled human experts [195]. Taking medical diagnostics as an

example, the collected data require not only expensive medical equipment, but also

114

time-consuming analysis in terms of labelling by experts. Thus, it is crucial to devise

efficient machines to learn discriminative features from a limited amount of labelled

data and a large amount of unlabelled data.

The traditional semi-supervised learning algorithms can be divided into four cat-

egories: generative-based strategies [196, 197], self-training (ST) algorithms [198,

199], co-training (CT) methods [200, 201], and manifold regularization (MR) ap-

proaches [202, 203]. In general, semi-supervised algorithms need to pre-define as-

sumptions associated with the distribution of the data PX to a practical classification

task [204]. For instance, the MR learning schemes assume that when the data points

distribute on a low-dimensional manifoldM, and a classifier is smooth on this area,

the nearby points x1 and x2 on M should have similar conditional probabilities

P (y|x1) and P (y|x2). Recently, many approaches have been proposed to explore the

potential of MR approaches [202, 203, 205, 206, 207, 208, 30, 209]. In this direction,

the MP inverse-based method [203, 205, 208, 30, 209] is one of the widely adopted MR

strategies for semi-supervised classification. Compared to the other MR algorithms,

the MP inverse-based algorithm has the advantages of faster learning speed along

with comparable performance.

Nonetheless, while the MP inverse-based MR approaches are capable of providing

superior performance in semi-supervised learning tasks, they still face several pitfalls.

First, due to the randomization mechanism, the number of hidden neurons in MR

algorithms is usually very high. The researchers in [210] prove that an MP inverse-

based network can achieve great generalization performance as long as the number

of hidden layer neurons is large enough. However, this is inefficient because there

are many redundant and meaningless features in such high-dimensional representa-

tions. Also, too many hidden layer units in one neural network may lead to high

generalization error due to overfitting and high variance.

Second, most of the MP inverse-based MR frameworks encode features and find

the final cognition with successive stacked learning blocks, which results in poor gen-

eralization performance. The subnet-based neural network, which offers a practical

way to enhance a network’s capacity to discriminate data representation, has already

been applied in supervised classification and recognition, such as Wi-HSNN [173],

OS-HSNN [211] and OC-HSNN. Thus, in this chapter, we propose a subnet-based

115

multilayer RL framework for semi-supervised classification.

Driven by the motivations mentioned above, we propose a new MP inverse-

based MR paradigm: a semi-supervised hierarchical subnet-based neural network

(SS-HSNN) that can generate highly discriminative global representations for semi-

supervised classification. Compared with the traditional semi-supervised learning

algorithms, this structure provides competitive generalization performance based on

a one-step training strategy. The contributions of this chapter are threefold:

1. A novel MP inverse-based MR network. A subnet-based framework called

SS-HSNN is proposed for semi-supervised classification.

2. A new dataset. A new vessel target detection dataset called HFSWR-RDE

has been prepared in this chapter. The HFSWR-RDE dataset is a challenging

but comprehensive dataset for semi-supervised object detection.

3. Comprehensive comparison. A set of experiments was conducted on mul-

tiple MP inverse-based MR approaches over different datasets, which included

image classification, text categorization, and radar target detection.

7.2 Related Works on Semi-supervised Classifica-

tion

A semi-supervised paradigm serves as an extension of supervised and unsupervised

learning that makes use of a small amount of labelled data along with a large amount

of unlabelled data. Essentially, semi-supervised classification approaches can be di-

vided into four families: generative methods, ST methods, CF methods, and MR

methods. The generative methods [196, 197, 212] assume a mathematical model

P (x, y) = P (y)P (x|y), where P (x|y) is the mixture distribution estimated by the

unlabelled data. For the ST algorithms [198, 199, 213, 214], a classifier is first built

using the labelled training samples. The trained classifier is utilized to generate the

pseudo-label for the unlabelled training patterns. Then, the most confident unla-

belled samples are appended to the labelled training set with the predicted tags.

Following that, the classifier is retrained with the new labelled set, and the procedure

116

is repeated [215]. The CT methods [200, 201, 216, 217] assume that two different

feature views can provide complementary information on the input data. Hence, two

separate classifiers with two different sets of features are first trained on the labelled

samples. Then, the most confident results of each classifier on the unlabelled training

samples are iteratively added to the training set to expand the labelled data [218].

In recent years, the MR algorithms [202, 203, 207, 208, 205, 206] have become a

hotspot area for research in semi-supervised classification. Essentially, the MR meth-

ods can build a learning graph in which the vertices are the labelled and unlabelled

training instances. The edge between the samples portrays the similarity of the two

patterns. In particular, the MR algorithms assume that the labels of samples are

smooth over the graph [215]. The Laplacian support vector machine (LapSVM) [202]

builds its model upon the standard SVM structure, and it creates a specific kernel that

defines similarity as a function of a mixture of geodesic and ambient distances [219].

The separating hyperplane of LapSVM in the feature space is the same as that of the

traditional SVM framework, but the kernel is different: the SVM utilizes the labelled

data to build the kernel, whereas the LapSVM defines a kernel that uses both labelled

and unlabelled samples to reflect the intrinsic geometry. The Laplacian regularized

least-squares (LapRLS) [202] bases its structure on the L2 norm-based regression

model and the intrinsic geometry of the Laplacian kernel. Huang et al. [203] combined

MR with an MP inverse-based single-layer network and extended the structure [28]

from a supervised domain to a semi-supervised domain. Based on [203], the work

in [205] provides a multilayer structure that can efficiently handle semi-supervised

classification tasks. Aside from utilizing the Laplacian kernel, recent studies have

also extended the semi-supervised approach to other regularization techniques and

learning systems, such as Hessian regularization [207, 208] and broad learning system

(BLS) [30]. Zhao et al. [206] employed an advanced BLS [30] for semi-supervised clas-

sification, and the semi-supervised BLS achieved superior generalization performance

when compared to other MP algorithms using different semi-supervised datasets.

Additionally, the MR algorithms have also been investigated in many real-world ap-

plications. It has been verified that the MR technique is powerful for semi-supervised

classification and usually facilitates state-of-the-art performance on a wide range of

datasets, such as EEG signal-processing [205] and action-recognition [209].

117

Despite the successes of the above-mentioned algorithms, the accuracy and sta-

bility of the MR algorithms can be further improved. Most MR approaches focus

on boosting generalization performance by increasing the number of hidden layers

instead of optimizing the network’s topology. For example, the study in [205] can be

considered a multilayer version of a single-layer structure [203]. The only difference

between these two models lies in the number of stacked hidden layers. In this chapter,

we propose a novel MP inverse-based MR algorithm using a subnetwork structure for

semi-supervised representation learning and classification.

7.3 The Proposed Algorithm

The annotations used in this chapter can be found in Table 4.1 and Table 7.1.

Table 7.1 – Notations to be used in this chapter

Notation Meaning

Γl the exit layer representation of the labelled data.
Γu the exit layer representation of the unlabelled data.
Hl the entrance layer representation of the labelled data.
Hu the entrance layer representation of the unlabelled data.
Ψl the refinement layer representation of the labelled data.
L the Laplacian matrix.
L the total number of iteration.
l the total number of labelled training samples.
Pi the error feedback data from the i-th iteration.
u the total number of unlabelled samples.
Xl the labelled training data.
Xtes the testing data.
Xu the unlabelled training data.

7.3.1 Manifold Regularization

The MR assumes that both the labelled and unlabelled samples have the same distri-

bution spaceM, and the conditional probabilities of two nearby points P (y|x1) and

P (y|x2) should be similar. Suppose we have few labelled data and a large number of

unlabelled data: X = {Xl;Xu}. We denote {Xl,T} as the labelled data, and {Xu}

118

as unlabelled patterns, l and u are the number of labelled and unlabelled samples,

respectively. The MR algorithms minimize the following loss function to achieve the

smoothness assumptions of the input data [202]:

Lloss =
1

2

l+u∑
i

l+u∑
j

wij||P (y|xi)− P (y|xj)||2, (7.1)

where wij is the pairwise similarity between samples xi and xj. In particular, the

similarity weight wij is defined as the thermonuclear equation [203]:

wij =

exp
(
− ||xi−xj ||2

2δ2

)
, xi ∈ K(xi) orxj ∈ K(xj)

0, otherwise,
(7.2)

where K(x) denotes the set of k neighbors of point x. Eq. (7.1) can be approximated

by the following expression:

L̂loss =
1

2

l+u∑
i

l+u∑
j

wij||ŷi − ŷj||2, (7.3)

where ŷi and ŷj are the output of xi and xj, respectively. It can be further simplified

by the following:

L̂loss = Tr(ŶLŶ) (7.4)

where Tr(·) represents the trace of a matrix. The Laplacian matrix L is defined by

L = D −W, D is a diagonal matrix with its diagonal elements Dii =
∑l+u

j wij,

W is a matrix formed with wij, and the Laplacian matrix L can be represented by

D−1/2(D−W)D−1/2.

7.3.2 Preliminary

Huang et al. [203] proposed a semi-supervised learning algorithm, which incorporates

the Laplacian matrix into a single-layer structure to leverage the unlabelled data to

boost the generalization performance in the case of sparse labelled patterns. It is

119

formulated as follows [203].

min
1

2
||W2||2 +

C

2
||E||2 + λ

2
Tr(YTLY),

s.t. E = T− g(Xl,W1,b1) ·W2,

Y = g(X,W1,b1) ·W2,

(7.5)

where the Laplacian matrix L and the network output Y are built based on labelled

and unlabelled patterns, T is the expected output, C is the regularization parameter,

λ is the tradeoff parameter, and W1 and W2 are the hidden and output weights,

respectively.

Similarly, in this chapter, the objective function of the proposed semi-supervised

classification algorithm termed SS-HSNN is defined by Eq. (7.6).

min
1

2
||Wv||2 + C

2
||E||2 + λ

2
Tr(YTLY),

s.t.E = T− ΓlW
v = T−

L∑
i=1

g(Hl,W
r
i ,b

r
i) ·Wv,

Y = ΓWv =
∑
i=1

g(H,Wr
i ,b

r
i) ·Wv,

(7.6)

where Γ = {Γl; Γu} is the global-level features with l labelled and u unlabelled data,

H = {Hl; Hu} is the entrance layer features, L stands for the number of subnet nodes,

(Wr
i , b

r
i) are the parameters of the i-th RS-node, Wv is the output layer weight, and

g(·) is the activation function. Substitute the constraints into the objective equation,

Eq. (7.6) is equivalent to minimize the following equation:

1

2
||Wv||2 + 1

2
C||T− ΓlW

v||2 + λ

2
Tr
(
(Wv)TΓTLΓWv

)
. (7.7)

We set the gradient to zero:

∇LSS−HSNN = Wv + ΓT
l C(T− ΓlW

v) + λΓTLΓWv = 0. (7.8)

120

The weight Wv of the SS-HSNN can be solved:

Wv = (I + CΓT
l Γl + λΓTLΓ)−1ΓT

l CT,

Γ =
s∑
i

g(H,Wr
i ,b

r
i), and Ψl =

s∑
i

g(Hl,W
r
i ,b

r
i).

(7.9)

Thus, we obtain the analytic solution of Eq. (7.6).

7.3.3 The Proposed SS-HSNN

The structure of the proposed algorithm is depicted as Fig. 7.1, which is similar

to Wi-HSNN. The learning procedure of the proposed SS-HSNN is elaborated in

Algorithm 7.1. Similarly, the learning steps have two stages: Stage 1 - Initialization

stage, and Stage 2 - Iterative learning stage.

Compared with Wi-HSNN, the SS-HSNN have the following key characteristics:

1) The SS-HSNN is a more advanced RL algorithm for semi-supervised classification.

By the use of the Laplacian matrix, the SS-HSNN is capable of handling the semi-

supervised task efficiently. 2) The SS-HSNN uses the MR to optimize the refinement

and exit layer weights and to pull back the error to the refinement layer (Pi). By doing

so, the subnet model can process the labelled and unlabelled data simultaneously.

7.4 Experimental Results

7.4.1 Experimental Setup

7.4.1.1 The Environment

All of the experiments conducted in this study were tested using MATLAB 2020b on

a workstation with a 256 GB memory and 2.8 GHz E5-2650 processor.

121

Algorithm 7.1 The proposed SS-HSNN
Inputs: The concatenated super-state feature vector (X,T)
Outputs: Class label Y

1: • Stage 1: Initialization Stage (i = 1)

2: Procedure I: Wf
1 , W

r
1, W

v
1 Γ1 and Γ ← Initialization

3: Procedure II: Wf ← Weights Learning (Γl, Γ, T)
4: Procedure III: E1 and P1 ← Error Backpropagation (T, Γl, W

v
1)

5: • Stage 2: Iterative Learning Stage (2 ≤ i ≤ M) % Iteratively increase the number of
subspace

6: for each iteration i do
7: Wf

i ← Assign randomly % The entrance layer weight.

8: Hli = g(Wf
i ·Xl + bf), Hi = g(Wf

i ·X + bf) % The entrance layer feature, Hli and Hi are
the features of the labelled data and all the data, respectively.

9: Procedure III: Wr
i ← Weights Learning (Hli, Hi, Pi−1) % The refinement layer weight.

10: Ψli = g(Wr
i ·Hli +br), Ψi = g(Wr

i ·Hi +br) % The refinement layer feature, Ψli and Ψi are
the features of the labelled data and all the data, respectively.

11: Γl =
∑i

j Ψlj , Γ =
∑i

j Ψj % Update the global-level representation.
12: Procedure III: Wv

i ← Weights Learning (Γl, Γ, T)
13: Procedure II: Ei and Pi ← Error Backpropagation (T, Γl, W

v
i)

14: end for
15: Y = Γ ·Wv

i % Γ is the global-level representation, Y is the label.

Procedure I: Initialization
Inputs: NA
Outputs: Wf

1 , W
r
1, W

v
1, Γl and Γ

1: Wf
1 ← Assign randomly % Assign randomly with µ=0, σ=0.01 of Gaussian distribution

2: Hl1 = g(Wf
1 ·Xl + bf

1) and H1 = g(Wf
1 ·X+ bf

1)
3: Wr

1 ← Assign randomly % Assign randomly with µ=0, σ=0.01 of Gaussian distribution
4: Ψl1 = g(Wr

1 ·Hl1 + br
1) and Ψ1 = g(Wr

1 ·H1 + br
1)

5: Γl = Ψl1 and Γ = Ψ1

6: Procedure III: Wv
1 ← Weights Learning (Γl, Γ, T)

7: return Wf
1 , W

r
1, W

v
1, Γl and Γ

Procedure II: Weights Learning (Γl, Γ, T)
Inputs: Γl, Ψ = {Γl; Γu}, T
Outputs: W

1: L ← Construct via Γ % Construct the Laplacian Matrix with both labelled and unlabelled
features.

2: C, λ % Choose tradeoff parameters
3: W = (I + CΓT

l Γl + λΓTLΓ)−1ΓT
l CT

4: return W;

Procedure III: Error Backpropagation (T,Γl,Wf)
Inputs: T, Γl, Wf

Outputs: Ei, Pi

1: Ei = T− Γl ·Wv

2: Pi = g−1
(
Ei ·

(
I + C(Wv)TWv + λ(Wv)TLWv

)−1
(Wv)TC

)
%Pulling back the error

3: return Ei and Pi

122

Refinement Layer

[]

Exit Layer

[]

Entrance Layer

[H]  

Original Raw

Feature Space [X]

Random Feature

 Mapping

Refinement

Feature

Global-level

Feature

#1

Extractor 1

#2

Extractor 2

#S

Extractor S

Image Set

Raw Image

Semi-supervised HSNN (SS-HSNN)

Feature Refinement & Image Classification

C
la

ss
if

ic
at

io
n

 R
es

u
lt

Multi-modality Feature Concatenation Training the SS-HSNN

Stage I Stage II

Figure 7.1 – The diagram of the proposed SS-HSNN. Similar to the Wi-HSNN, the SS-HSNN is composed of an input
layer, an output layer, and three hidden layers. The first hidden layer is the entrance layer which contains L number of
S-node. The second hidden layer called the refinement layer consists of L number of RS-node. The last hidden layer is the
exit layer, which generates the global-level representation.

123

7.4.1.2 The Dataset

In this chapter, we performed experiments on 12 popular datasets, including image

classification, text categorization, and vessel target detection. The details of each

dataset are summarized in Table 7.2.

Table 7.2 – Summary of the datasets

Datasets Xl Xu Xtes n

G50c 50 313 100 50
Coil-20 240 920 280 1,024
YaleB 418 1,520 476 1,024
Coil-100 1,200 4,600 1,400 1,024
Isolet 1,248 4,992 1,557 617
USPS 1,460 5,831 2,007 256
CIFAR-10 10,000 40,000 10,000 2,048
CIFAR-100 10,000 40,000 10,000 2,048
MNIST-1 1,000 9,000 60,000 784
MNIST 10,000 50,000 10,000 784

WeaRe 3,951 15,732 4,217 3,000
HFSWR-RDE 25 500 25 65,536

We employed six commonly used datasets, G50c, USPS, Coil-20, Coil-100, Iso-

let, and YaleB, and four complex datasets, CIFAR-10, CIFAR-100, MNIST-1, and

MNIST, to evaluate the SS-HSNN. Most of the datasets are quite challenging for

semi-supervised classification. For example, the Coil-100 dataset contains only 5,800

training samples but has 100 classification categories. It is worth noting that for

the G50c, MNIST-1, and MNIST datasets, we followed the commonly used training

settings [203, 205, 206]. As for the Coil-20, YaleB, Coil-100, Isolet, USPS, CIFAR-10,

and CIFAR-100 datasets, 20% of training samples per category were collected as la-

belled samples, while the remaining 80% of the data were used as unlabelled training

samples. Each of the datasets was split into three parts, two of which were used for

training (denoted by Xl and Xu), and the rest (Xtes) were used for testing.

For the text categorization dataset, we utilized one weather report dataset, WeaRe1,

to fully verify the proposed method. The WeaRe dataset consists of 23,900 training

1The dataset can be download at here.

124

https://github.com/wandongzhang/SS-HSNN/blob/master/README.md

samples from 39 learning objects. The training set contains 19,683 patterns, while the

testing set has 4,217 patterns. In this dataset, 20% of training texts are labelled, with

the remaining training patterns being unlabelled. The embeddings (300-dimensional

vectors) of each text pattern were obtained via fastText2, a pretrained word embed-

ding dictionary containing one million English words that was created by Facebook’s

AI Research (FAIR) lab. In this chapter, the number of word vectors in the sequence

is set at 10. Thus, the dimension of each text vector is 3,000.

As for the vessel target detection dataset, we created a new dataset called HFSWR-

RDE, which is an extension of HF-radar [148]. HF-radar is a vessel detection dataset

collected from high-frequency surface-wave radar (HFSWR) located on the coast of

Bohai Bay, China. In a shore-based HFSWR system, the receiving array detectors are

lined up in an array spaced at a homogeneity interval. The sea waves generate res-

onance scattering that can easily cause interference with vessel signal transmissions.

Thus, it is very difficult to recognize vessels against such a complex background. In

addition, in practical HFSWR monitoring, not all of the images have accurate ground

truth. In other words, the available labelled training samples are very limited. As

a result, the traditional object detection algorithms easily run into an over-fitting

problem. In this chapter, to verify the effectiveness of the proposed SS-HSNN, we

extended the existing dataset with hundreds of unlabelled HFSWR samples, forming

a new radar dataset (HFSWR-RDE) with both labelled and unlabelled radar images.

7.4.1.3 The Rival Methods

In this chapter, we will make comparisons with several state-of-the-art MR-based

semi-supervised learning algorithms [205, 206, 208], ST-based semi-supervised classi-

fication strategies [198, 220, 214], subnet-based classification algorithms [1, 114, 23],

and vessel detection algorithms for radar [154, 153, 148].

MP inverse-based MR algorithms These methods include the semi-supervised

single-layer Moore-Penrose inverse-based algorithm (SS-SMP) [203], the semi-supervised

hierarchical network (SS-HMP) [205], the semi-supervised broad learning system net-

2FastText can be download at here.

125

https://fasttext.cc/docs/en/english-vectors.html

work (SS-BLS) [206], and the Laplacian-Hessian regularization-based hierarchical

model (LHR-HMP) [208].

ST-based algorithms The self-training algorithms, such as strong constraint self-

training (SCST) [198], decision tree-based self-training (DTST) [220], and confidence

regularized self-training (CRST) [214], were compared with the proposed strategy.

Subnet-based algorithms The state-of-the-art subnet-based algorithms were used

for comparison. These algorithms include the single-layer subnet-based neural net-

work (SSNN) [1], the two-layer subnet-based neural network (TSNN) [114], and the

hierarchical subnet-based neural network (HSNN) [23]. Notably, these methods are

designed for supervised learning. For a fair comparison, the above-mentioned algo-

rithms utilized the proposed MP inverse-based solution to optimize weights, and thus

these strategies can be implemented for semi-supervised learning. This chapter uses

the prefix “SS” (SS-SSNN, SS-TSNN, and SS-HSNN) to refer to these algorithms

using this procedure.

To conduct comprehensive evaluations, raw images or high-level features extracted

from an ImageNet pre-trained ResNet [88] were fed to the proposed SS-HSNN as

well as all the comparison algorithms as the input. In particular, for the G50c,

Coil-20, Coil-100, YaleB, Isolet, USPS, MNIST-1, and MNIST datasets, we loaded

with raw images. For CIFAR-10 and CIFAR-100, we used the 2048-dimensional

features extracted from the “fc1000” layer of ResNet as the input. Note that high-

level features are the data extracted from the pre-trained ResNet without fine-tuning.

These features, therefore, only contain innate priors regarding ImageNet.

7.4.1.4 Configurations of The Semi-supervised Methods

The detailed hyperparameter settings of the proposed work and the compared rival

methods are summarized as follows.

For the MP inverse-based MR algorithms, the hidden layer nodes and the regular-

ized parameters C and λ were optimized within the grid {1000, 2000, 3000, 5000} ×
{10−3, 100, 103}. The number of hidden layers was set to 3. The regularized pa-

rameters of the last classification layer were optimized within grid {100, 103, 105}.

126

The activation function of the enhancement layer in SS-BLS was sigmoid. For the

ST-based algorithms, the total number of training epochs and the mini-batch size

were both set to 100, and the initial learning rate was 0.01, with a 0.1 attenuation

rate for every 20 epochs. In SCST, the threshold value T and t were set to 0.999

and 0.001, respectively. As for the subnet-based rival algorithms as well as the pro-

posed SS-HSNN, the number of subnets in each algorithm was set to 5, and each

subnet contains 500 hidden neurons. The C and λ were optimized within the grid

{10−3, 100, 103}, respectively.

7.4.1.5 Evaluation Metrics

In this chapter, for the semi-supervised classification and text categorization domains,

we utilized the Top-1 testing accuracy, training time, and inference time to evaluate

the performance of each algorithm. To comprehensively verify the performance of the

proposed SS-HSNN, the recorded results shown in this chapter are the mean average of

a minimum of three experiments. As for the radar image vessel target detection task,

vessel target detection probability, i.e., true positive rate (Pd), false-alarm probability

(Pf), missing probability (Mr), and error probability (Er) were used. In particular,

those evaluation indexes are defined by the following:

Pd =
TP

(TP + FN)
, Pf =

FP

(FP + TP)
,

Mr = 1− Pd, and Er = Pf +Mr,

(7.10)

where TP stands for true positive, FP refers to false positive, and FN is the false

negative.

7.4.2 Model Settings

In this subsection, we have the sensitive analysis of the SS-HSNN on the dimension

of each subnetwork d and the choice of iteration L.

As can be seen from Table 7.3, with the increase of neuron nodes in each sub-

net, the testing accuracy of the SS-HSNN shows a trend of first increasing and then

fluctuating. The experimental results show that if the proposed SS-HSNN needs to

127

maintain high generalization performance, at least 200 to 400 neuron nodes are re-

quired in each subnet. On the other hand, it seems intuitive that when the number

of iterations is fixed, the greater the number of neurons in each subnet, the longer

the training time and inference time for SS-HSNN to process one dataset. To be

consistent and shorten the processing time, the number of nodes in each subnet d was

set to 500.

Table 7.3 – Top-1 testing accuracy of SS-HSNN with the increase of neurons in each
subnet.

Dataset 100 300 400 500 600 800 1000

G50c 89.7 95.6 96.6 95.9 96.2 96.2 96.0
Coil-20 91.5 96.2 95.5 96.1 95.6 95.6 95.7
Coil-100 79.7 82.7 83.3 83.5 83.1 83.2 83.2
USPS 85.5 91.0 90.4 90.9 91.4 90.6 90.4

To find the effect of the number of subnets L, we carried out extensive experiments

on the image classification datasets, and the results are shown in Fig. 7.2. The number

of neurons in each subnet was set to 500. It is easily concluded that the testing

accuracy of the proposed algorithm converges after s = 4. To ensure the structure is

well-trained, it is recommended that L should be set to 5 by default.

7.4.3 Analysis on Image Classification Domain

Table 7.4 shows the comparison results of the proposed method and several state-

of-the-art semi-supervised learning algorithms on the image classification task. The

best result corresponding to each dataset is shown in boldface. We observed that

SS-HSNN outperformed its competitors on 6 out of 8 datasets. In particular, the

best results among the comparison algorithms on USPS, Coil-20, Isolet, YaleB, and

MNIST are 91.2%, 95.5%, 90.4%, 80.1%, and 85.7%, respectively. The benefits of

the proposed SS-HSNN are significant. The best-recorded results of the proposed

SS-HSNN are 91.9%, 96.4%, 91.8%, 80.6%, and 87.3%, respectively, providing 0.4%

to 1.5% improvement on these datasets. As for the overall mean performance, the

proposed SS-HSNN exhibits robustness with an average overall performance of 88.8%.

The overall improvements of the proposed model are 2.3%, 4.3%, 2.8%, 3.9%, 3.8%,

128

Figure 7.2 – Top-1 testing accuracy with the increase of subnets.

129

Table 7.4 – Top-1 testing accuracy comparison of the SS-MSNN and other state-of-the-art semi-supervised learning meth-
ods.

Method G50c (%) USPS (%) Coil-20 (%) Coil-100 (%) Isolet (%) YaleB (%) MNIST-1 (%) MNIST (%) Average (%)

The Comparison Algorithms

SS-HMP [205] 95.9 89.5 94.5 80.9 90.2 79.4 79.0 83.6 86.6
LHR-HMP [208] 95.2 87.8 90.2 78.4 88.3 78.2 77.8 81.0 84.6
SS-BLS [206] 96.2 88.7 94.4 79.5 89.4 80.1 77.5 82.5 86.1
SCST [198] 93.8 89.2 92.2 78.1 89.3 79.2 76.1 82.4 85.0
DTST [220] 94.7 88.4 93.7 77.5 87.4 78.5 76.5 83.1 85.1
CRST [214] 96.5 90.4 94.7 84.2 89.7 79.6 80.7 84.8 87.6
SS-SSNN1 [1] 95.5 87.8 92.3 79.4 86.9 76.3 77.1 83.5 84.9
SS-TSNN1 [114] 96.3 89.2 94.8 80.3 90.1 79.6 78.5 85.0 86.7
SS-MSNN1 [23] 97.1 91.2 95.5 80.9 90.4 79.1 80.2 85.7 87.5

The Proposed Algorithm

SS-HSNN 96.6 91.9 96.4 83.6 91.8 80.6 82.8 87.3 88.9

1 The original SSNN [1], TSNN [114], and MSNN [23] are proposed for supervised learning. For fair comparison, the above-mentioned
algorithms are conducted with semi-supervised solution proposed in this study. They are denoted as SS-SSNN, SS-TSNN, and SS-TSNN
respectively.

130

1.3%, 4.0%, 2.2%, and 1.4% compared to SS-HMP [205], LHR-HMP [208], SS-

BLS [206], SCST [198], DTST [220], CRST [214], SS-SSNN [1], SS-TSNN [114], and

SS-MSNN [23], respectively. A possible reason for this better performance could be

that the newly generated feature subspace is searched via the current error term in

SS-HSNN, thus helping the structure to dynamically adjust the latent feature space

and offset the error item.

In addition, Table 7.5 shows the comparison results of the semi-supervised algo-

rithms on the CIFAR-10 and CIFAR-100 datasets. The results are consistent with

the observations in the aforementioned experiments. As expected, SS-HSNN outper-

formed the SS-SMP on both datasets. In particular, the proposed method achieved

both 1.2% increments of Top-1 testing accuracy over the existing hierarchical subnet-

based framework on CIFAR-10 and CIFAR-100 datasets, while showing a 3.7% and

4.6% boost compared to SS-SMP. Therefore, the proposed algorithm is an effective

technique for handling semi-supervised tasks.

Table 7.5 – Comparison with other semi-supervised algorithms on CIFAR-10 and
CIFAR-100 (%).

Methods
Datasets

CIFAR-10 CIFAR-100

A: SS-SMP 76.9 50.1
B: SS-SSNN 77.0 51.8
C: SS-MSNN 79.4 53.5
D: SS-HSNN 80.6 54.7

80.6%

76.9%

77.0%

79.4%

54.7%

50.1%

51.8%

53.5%

7.4.4 Analysis on Extended Domains

This chapter does not just evaluate the proposed SS-HSNN on the semi-supervised

image classification domain; it also employs comparisons on two real-world application

domains: text-pattern classification and HFSWR vessel target detection.

131

7.4.4.1 Text-pattern Categorization

Text categorization is the task of deciding whether a piece of text belongs to any of a

set of pre-specified categories. Table 7.2 shows the details of the text dataset WeaRe.

In this study, the embeddings of each sequence pattern were fed directly as input to

verify the categorization capacity of each comparison algorithm. The classification

performance of the WeaRe dataset is reported in Table 7.6. The proposed SS-HSNN

achieved a testing accuracy of 70.5% on this dataset, which is 4.0%, 3.3%, and 1.7%

better than those of SS-SMP, SS-SSNN, and SS-HSNN, respectively.

Table 7.6 – Comparison with other semi-supervised algorithms on WeaRe text cate-
gorization (%).

Methods Top-1 accuracy

A: SS-SMP 65.5
B: SS-SSNN 67.2
C: SS-HSNN 68.8
D: SS-MSNN 70.5

70.5%

65.5%

67.2%

68.8%

7.4.4.2 HFSWR vessel target Detection

The traditional range-Doppler (RD) image contains the following components: dead

zone, sea clutter, ionospheric clutter, background, and vessel targets. However, in

HFSWR, the available samples are limited, and only a few RD images have accurate

ground truth that can be used for training. HFSWR-RD [148] is an RD image

dataset derived from an HFSWR located on the coast of Bohai Bay in China. It

contains 50 RD images; half of the images were used for training while the rest

were used for testing. In order to facilitate research on vessel target detection with

radar and evaluate SS-HSNN against other semi-supervised algorithms in a practical

application domain, we include an extra 500 unlabelled RD images into our original

HF-radar dataset, thus providing a more challenging but comprehensive RD radar

image dataset: HFSWR-RDE. The basic details of HFSWR-RDE are summarized in

Table 7.2.

132

The state-of-the-art HFSWR ship-target detection algorithms include the least-

square-based methods [148], wavelet transform (WT)-based methods [152, 153], and

constant false-alarm rate (CFAR)-based methods [154, 155]. Rather than only mak-

ing comparisons with traditional radar-processing algorithms, several semi-supervised

MR frameworks including SS-MSNN [23] and SS-HMP [205] were also evaluated.

To obtain fair experimental results, the pre-processing steps for SS-MSNN [23], SS-

HMP [205], and the proposed SS-HSNN were the same as [148], which were extracted

from a Haar-like descriptor. The detection results for the HFSWR-RDE dataset are

shown in Table 7.7. As can be seen from Table 7.7, the proposed SS-HSNN provides

superior performance, whereas the Pd of SS-HSNN exceeds that of SS-MSNN [23] by

around 1%. Meanwhile, the Pf , Mr, and Er of this study are all smaller or equal to

those of the other methods.

Table 7.7 – RD image vessel target detection results.

Method Pd (%) Pf (%) Mr (%) Er (%)

Regression method [148] 92.6 5.8 7.4 13.2
CFAR method [154] 85.4 13.4 14.6 28.0
Wavelet method [153] 90.3 8.3 9.7 18.0
SS-HMP [205] 92.8 6.5 7.2 13.7
SS-MSNN [23] 93.4 6.0 6.6 12.6
SS-HSNN 94.4 5.6 5.6 11.2

7.4.5 Timing Analysis

The average training time and inference time of SS-HSNN and other state-of-the-art

comparison methods, including SS-HMP [205], SS-TSNN [114], and SS-MSNN [23],

are tabulated in Table 7.8. The SS-HMP strategy takes the shortest amount of time

for training, whereas the other subnet-based algorithms need more processing time, as

the subnet structures need time to pull back the error. Surprisingly, SS-HSNN only re-

quires about half of the training time of SS-TSNN and one-tenth of the computational

time as of SS-HSNN. The reason for this is: the existing multilayer subnet-based algo-

rithms, including SS-TSNN and SS-HSNN, still need to stack multiple learning blocks

to find the discriminative encoding. For example, SS-TSNN constructs the multilayer

133

structure with hundreds of two-layer subnets; similarly, the SS-HSNN framework uses

hundreds of bottom layers to broaden the structure, and each bottom layer consists

of a two-layer subnet structure. However, the proposed SS-HSNN serves as a one-step

training structure that learns the latent space representations with a single model.

Furthermore, the mean average testing time per frame is also recorded in Table 7.8.

We found that the proposed SS-HSNN provides an excellent inference speed. Thus,

the efficiency of the proposed model is verified.

Table 7.8 – Comparison of processing time: Tr. (s) the training time in second, Te.
(ms) is the mean average testing time per frame in millisecond.

Datasets
SS-HMP [205] SS-TSNN [203] SS-MSNN [23] SS-HSNN

Tr. Te. Tr. Te. Tr. Te. Tr. Te.

G50c 0.5 1.4 3.5 1.6 19.4 2.4 2.0 1.4
Coil-20 1.4 1.4 22.8 1.7 128.5 2.8 14.6 1.4
Coil-100 31.8 1.4 452.1 1.5 2694.1 2.7 284.2 1.4
USPS 45.6 1.4 624.4 1.6 3958.2 2.8 371.2 1.5

7.4.6 Effectiveness Analysis of SS-HSNN via VC Dimension

In this subsection, the effectiveness of the proposed SS-HSNN over the existing MP

inverse-based networks is verified based on Vapnik–Chervonenkis (VC) dimension.

In statistical learning theory, the true risk (ϵtrue) of the model has a relation-

ship with the network’s performance on a known set of training data (ϵemp) and the

distribution of the data (Φ), which is termed as Eq. (7.11).

ϵtrue = ϵemp + Φ(h, t), (7.11)

where h is the VC-dimension of the learning model, and t is the total number of

training samples.

In most cases, the ϵtrue is not computable as the true risk requires the joint proba-

bility distribution function (Φ) for the input and output of the learning model, which

is almost impossible to accurately obtain. On the other hand, the learning process

of one model is driven by the optimization of the average of the error computed

134

over all the training samples, i.e., ϵemp. In fact, the Φ(h, t) in Eq. (7.11) is the

VC-confidence [221], which can be expressed by Eq. (7.12).

Φ(h, t) =

√
hln
(
(2t/h) + 1

)
− ln(η/4)

t
. (7.12)

The Eq. (7.12) establishes, with probability 1 − η, how close the ϵemp is to the

ϵtrue. It is a probable measure of the confidence in the generalization capabilities of

a model trained to perform a certain task [222]. Further, VC compression (h/t) is

a ratio that relates to the expressive power of one learning structure. The smaller

the VC compression (h/t), the better the theoretical guarantee of generalization. In

other words, given several learning networks and a sufficiently small η, it is best to

choose the structure that minimizes the VC dimension h and Φ(h, t), as this network

gives the lowest upper bound on the true error ϵtrue.

It has been shown that the lower bound on the VC dimension of a neural network

is in the order h = Ω(W2), where W is the total number of parameters in one

model [223]. Further, Koiran et al. [224] mentioned that with continuous activation

function, the VC-dimension of one multilayer neural network is proportional to the

square of the number of the weights W. Compared to the other MP inverse-based

MR algorithms, the proposed SS-HSNN has fewer trainable parameters. Take the

Coil-20 dataset as an example. Following the hyperparameter settings mentioned in

Table 7.2, the number of neurons in each subnetwork is 500, and we completed 5

iterations to refine the latent space feature. The total number of trainable weights in

SS-HSNN = 1024×500×5+500×20 ≈ 2.6M . For a SS-HMP structure, the smallest

number of parameters (best case) in this structure is [1024-1000-1000-1000-1], and

the total number of trainable weights in this case = 1024 × 2000 + 1000 × 1000 +

1000× 1000 + 2000× 20 ≈ 4.1M . Thus, our model requires fewer weights. Thus, we

have ΦSS−HMP (h, t) ≤ ΦSS−HSNN(h, t). Furthermore, the true risk of SS-HSNN and

SS-HMP has the following conclusion:

ϵSS−HSNN ≤ ϵSS−HMP . (7.13)

135

7.5 Conclusion

In this chapter, we propose a new semi-supervised multilayer subnet-based neural

network (SS-HSNN) to effectively handle image classification tasks. Specifically, this

study makes the following contributions: First, it proposes a subnet-based algorithm

with a new connection topology for semi-supervised classification. Second, it intro-

duces a one-step training strategy that combines global-level representation learning

and final pattern recognition to boost the network’s training efficiency. Third, a new

semi-supervised dataset HFSWR-RDE was collected. The cross-domain experiments

on ten semi-supervised classification datasets, one text categorization dataset, and

one radar signal-processing dataset show that the SS-HSNN can accomplish semi-

supervised classification with higher accuracy and efficiency than existing state-of-

the-art semi-supervised algorithms.

For future research, it would be worthwhile to develop a novel subnet-based algo-

rithm with self-training capabilities for semi-supervised learning.

136

Chapter 8

Multi-Model Moore-Penrose

Inverse-based Recomputation Frameworks

for Large Data Analysis

Most multilayer MP inverse-based neural networks, such as deep random vector func-

tional link (RVFL), are structured with two separate stages: unsupervised feature

encoding and supervised pattern classification. Once the unsupervised learning is

finished, the latent encoding would be fixed without supervised fine-tuning. How-

ever, in complex tasks such as handling the ImageNet dataset, there are often many

more clues that can be directly encoded, while unsupervised learning, by definition,

cannot know exactly what is useful for a certain task. There is a need to retrain

the latent space representations in the supervised pattern classification stage to learn

some clues that unsupervised learning has not yet been learned. In particular, the

error matrix from the output layer is pulled back to each hidden layer, and the pa-

rameters of the hidden layer are recalculated with MP inverse for more generalized

representations. In this chapter, a recomputation-based multilayer network using MP

inverse (RML-MP) is developed. A sparse RML-MP (SRML-MP) model to boost the

performance of RML-MP is then proposed. The experimental results with varying

training samples (from 3K to 1.8M) show that the proposed models provide better

generalization performance than most representation learning algorithms.

8.1 Introduction

The AE-based RL structures have been widely investigated [149, 23]. The AE is an

unsupervised learning algorithm that generally applies iterative learning strategies

such as SGD as a cornerstone of their training, aiming to learn the reduced encoding

137

by reproducing the input patterns at the output layer. The AE was firstly introduced

in [225] as a way of pretraining in ANNs. Then, the structure is employed for rep-

resentation learning tasks, such as sparse AE (SAE) [150], denoise AE (DAE) [101],

and weight-decay regularization-based AE (WD-AE) [149].

Not just learnt with iterative learning strategies, AEs trained with LS-based MP

inverse techniques were also investigated in the past decade. The ELM [181], which

adopts random hidden layer neurons and generates the output weights with the LS-

based MP inverse, is a single layer neural network with fast training speed and ex-

cellent generalization accuracy. Following that, the multilayer ELM (M-ELM) [42],

which is stacked with ℓ2 penalty-based ELM autoencoders (ELM-AEs), has been

proposed. Then, authors in [98] developed a hierarchical framework structured with

ℓ1 penalty-based ELM-AEs to explore the sparse representations. In recent years,

researchers in various real-world applications have made significant contributions to

broaden the field scope of ELM [148, 226, 227], and explosive developments on mul-

tilayer ELM-AE based RL algorithms have been witnessed [25, 173, 23, 113, 172].

However, the existing ELM-AE-based RL algorithms cannot be directly adopted

in multiview big data analysis. They have several limitations: Firstly, they cannot ob-

tain satisfactory results on high-dimensional datasets with a large number of training

samples. Most ELM-AE-based RL algorithms only focused on processing small-scale

and medium-scale datasets. The performance of these models on big datasets has

rarely been exploited.

Secondly, most of the ELM-AE-based RLs generate loosely-connected represen-

tations in processing large-scale datasets. The MP inverse-based AE belongs to the

unsupervised dimension reduction technique since no labels are included in the train-

ing. In most cases, MP inverse-based AE is an intermediate model toward the final

objects. For example, Katuwal et al. [228] proposed an MP inverse-based deep net-

work using multiple MP inverse-based AEs for feature extraction. Then, the weights

of the final layer are analytically calculated on the low-dimensional representation

using MP inverse. In contrast to BP-based AEs for which the parameters of each AE

would be fine-tuned according to the label information, the multilayer MP inverse-

based networks do not contain fine-tuning. Therefore, the parameters of these AEs

are fixed once the feature is extracted. Such a training process makes MP inverse-

138

based networks achieve fast training speed and comparable performance on small-scale

datasets over some BP-based deep networks. However, lacking supervision, some im-

portant clues may be filtered before training the final layer, which affects the final

performance [229]. This issue is more obvious when handling large-scale sets with

high complexity.

To address the above-mentioned limitations, this chapter proposes a novel MP

inverse-based algorithm called RML-MP for big data analysis. First, the MP inverse-

based AEs using the ℓ2 penalty are stacked to exploit the effective encoding from

complex input data, and the final classification layer is calculated with the LS scheme.

Then, the MP inverse strategy is applied to pull back the error from the output layer

to each hidden layer one by one, generating the desired output P for each layer.

Finally, based on the input data and desired output, the MP inverse technique is

utilized to recompute weights in each layer. By doing so, the bond between hidden

layer representations and labels is strengthened, and robust representations can be

obtained. Meanwhile, the effective ℓ1/2 penalty-based learning framework is adopted

in the retraining stage of RML-MP, leading to a sparse algorithm SRML-MP. The

ℓ1/2 penalty in retraining helps SRML-MP to obtain sparse weights. Furthermore, as

stated in [8, 230], for most applications, multi-model feature learning is more practical

than single-model learning. It is thus of great interest to exploit multi-modal big data

analysis for higher performance purposes.

This chapter makes three contributions to extant knowledge. First, an RML-MP

framework is proposed to perform multi-modal big data encoding. Second, an SRML-

MP is further developed to improve the performance of RML-MP. The flowchart of

RML-MP and SRML-MP is depicted as Fig. 8.1. Third, a comprehensive compari-

son is conducted to validate the effectiveness of the proposed models over the other

representation learning approaches on different datasets, such as Places-365.

8.2 The proposed algorithms

8.2.1 The Proposed RML-MP

Table 8.1 describes the notations used in this chapter.

139

Inception v3

ResNet 50

VGG 16

Big

Dataset
[Internal

Storage]

[N
,

4
0

9
6

]
[N

,
2

0
4

8
]

[N
,
2

0
4

8
]

[N
,

8
1

9
2

]

RML-MP/

SRML-MP

（Dimension

Reduction）

Big

Dataset
[Label]

Output

Figure 8.1 – Flowchart of the RML-MP and SRML-MP for multi-model RL.

Table 8.1 – Notations to be used in this chapter

Notation Meaning

ηηη(i) offset weights of the i-th encoding layer
σ(·) the activation function

Ψ
(i)
e the encoding of the i-th layer

Ψ̂
(i)
e the updated encoding of the i-th layer
C regularization term C
E error matrix from the output layer
M the number of AEs in RML-MP / SRML-MP
m the dimensionality of the output
N the number of samples
n the dimensionality of each sample
λ learning rate

P(i) the i-th layer error feedback data
T the target, T ∈ RN×d

W
(i)
e parameters of the i-th encoding layer

Ŵ
(i)
e updated parameters of the i-th encoding layer

Wf parameters of the last classification layer

Ŵf updated parameters of the last classification layer
X the input, X ∈ RN×n

Y the actual output, Y ∈ RN×m

140

1st

LS-based AE

E
n
co

d
in

g

Mth

LS-based AE

E
n
co

d
in

g

Classification layer

Output layer

RandomProjection

RandomProjection

𝑃(𝑀)

𝑃(𝑀−1)

𝑃(1)

𝐸 𝑾𝑓

𝑾𝑒
(𝑀)

𝑾𝑓

E
n
co

d
in

g
E

n
co

d
in

g

𝑾𝑒
(1)

+ 𝜂(1)

𝑾
 + 𝜂(𝑀)

𝑿

𝑿

𝑿

𝚿𝑒
(𝑀−1)

𝚿 𝑒
(𝑀−1)

𝚿 𝑒
(𝑀)

𝑻

L2 Norm

L2 Norm

L2 Norm𝑾

𝑃(𝑀)

𝑃(𝑀−1)

𝑃(1)

𝐸

E
n
co

d
in

g
E

n
co

d
in

g

𝑿

𝑿

L1/2 Norm

L1/2 Norm

L1/2 Norm𝑾

(a) Traditional LS-based deep network (b) RML-MP (c) SRML-MP

 Legend: Input/Output Neurons Learning Steps of Traditional LS-based Model Stage 2 - Error Backpropagation w/ MP Inverse

 Hidden Neurons Stage 1 - Feedforward Network Initialization Stage 3 - Update Parameters w/ MP Inverse

𝑻

𝑻

𝑻

𝑻

𝑾𝑒
(1)

 𝑾

𝑾𝑒
(𝑀)

𝚿𝑒
(𝑀)

𝑾𝑓

𝚿𝑒
(𝑀−1)

𝑾

𝑾𝑒
(𝑀)

𝚿𝑒
(𝑀)

𝑾𝑒
(1)

+ 𝜂(1)

𝑾
 + 𝜂(𝑀)

𝚿 𝑒
(𝑀−1)

𝚿 𝑒
(𝑀)

Figure 8.2 – Comparison of frameworks of the (a) traditional MP inverse-based deep network [4], (b) the proposed RML-
MP, and (c) the proposed SRML-MP. The difference of RML-MP and SRML-MP lies in Stage 3, the RML-MP use ℓ2
penalty to recalculate the parameters while the SRML-MP adopt ℓ1/2 penalty to update the weights.

141

Figure 8.2 shows the diagrams of the traditional MP inverse-based model, the pro-

posed RML-MP, and the SRML-MP for comparison. The main difference between

the proposed models and other traditional MP inverse-based neural networks [4, 228]

lies in the model training procedures. The proposed RML-MP contains three suc-

cessive learning stages: Stage 1 - feedforward network initialization, Stage 2 - error

backpropagation with MP inverse, and Stage 3 - update parameters with MP inverse.

8.2.1.1 Stage 1 - Feedforward Network Initialization

The first stage aims to develop a traditional MP inverse-based deep neural network.

Given a training dataset with N number of training samples, X = [xT
1 ,x

T
2 , · · · ,xT

N]
T ,

xi ∈ Rn is the input vector, T = [tT1 , t
T
2 , · · · , tTN]T , ti ∈ Rm is its associated target.

The MP inverse-based AE [4, 228, 42] tries to encode the input data through setting

the input as the target. In particular, the optimal output layer parameters of MP

inverse-based AE are calculated with the MP inverse technique. With randomly

assigned hidden layer weights W and b, the ℓ2 norm-based AE is optimized with the

following minimizing problem:

min J =
C

2
||ΨeWe −X||2F +

1

2
||We||2F ,

s.t. Ψ = σ(X,W, b), and

WTW = I, bT b = 1,

(8.1)

where σ(·) is the activation function (sine or sigmoid), C is the regularization term,

Ψe is the hidden space encoding, and We refers to the output layer weight, which is

calculated with MP inverse: We = Ψ†
eX. In this chapter, with the identity matrix I,

the LS fit is utilized:

We = Ψ†
eX = (

I

C
+ΨT

e Ψe)
−1ΨT

e X. (8.2)

The encoding Ψe of the MP inverse-based AE is

Ψe = σ
(
X ·WT

e

)
. (8.3)

142

Supposing that an multilayer MP inverse-based network has M hidden layers.

Mathematically, the objective function J to learn this deep network can be described

as:

min J =
C

2
||Ψ(M)

e Wf −T||2F +
1

2
||Wf ||2F ,

s.t. Ψ(i)
e = σ

(
Ψ(i−1)

e ·
(
W(i−1)

e

)T)
, 1 ≤ i ≤M,

(8.4)

where Ψ
(i)
e is the i-th layer output matrix,X can be considered as the 0-th layer feature

matrix (Ψ
(i)
e where i equal to zero), Wf refers to the weights of the classification layer

which is generated through MP inverse, and W(i)
e is the i-th layer weights that would

be fixed once determined.

The output layer weights Wf are calculated as Eq. (8.5).

Wf =

(
I

C
+ (Ψ(M)

e)TΨ(M)
e

)−1

(Ψ(M)
e)TT,

Y = Ψ(M)
e ·Wf .

(8.5)

8.2.1.2 Stage 2 - Error Backpropagation with MP Inverse

For the classification layer, the targetT and the network outputY are obtained. Next,

the network error E is pulled back from the output layer to each hidden layer. The

proposed retraining strategy adjusts the hidden layer representations by attempting

to offset the feedback error. First, the error of the output layer can be described by

E = T−Ψ(M)
e ·Wf . (8.6)

Then, we pull the error back across the last classification layer. By having E and

Wf , the desired change of the last hidden layer is

P(M) = E ·
(
I

C
+Wf

TWf

)−1

WT
f , (8.7)

where (I/C +WT
f Wf)

−1WT
f is the MP inverse of Wf . The target change of other

143

hidden layer is calculated by

P(i−1) = σ−1

(
P(i) ·

(
I

C
+
(
W(i)

e

)T
W(i)

e

)−1

·
(
W(i)

e

)T)
, (8.8)

where 2 ≤ i ≤ M , σ−1(·) is the inverse of activation function, and P(i) is the i-th

layer target offset.

8.2.1.3 Stage 3: Update Parameters with MP Inverse

In this chapter, we hypothesize that the error E and feedback data P(i) contain some

information clues that AEs have not learned, and the weights optimized by the target

offset P(i) and encoded feature Ψ
(i)
e can boost the feature encoding capacity and

improve the generalization performance. After error backpropagation, at Stage 3,

both the output layer and hidden layer weights of RML-MP are updated.

For the i-th hidden layer, an error-based update weight ηηη(i) is calculated, satisfying

Ψ̂(i−1)
e (W(i)

e + λ · ηηη(i)) = Ψ(i)
e +P(i), 1 ≤ i ≤M (8.9)

where λ stands for learning rate, Ψ̂
(i−1)
e is the updated (i− 1)-th hidden layer repre-

sentations. The weight ηηη(i) aims to offset the error P(i). Hence, we have Ψ̂
(i−1)
e ·ηηη(i) =

P(i) → ηηη(i) = (Ψ̂
(i−1)
e)†P(i). By using MP inverse, ηηη(i) is calculated by

ηηη(i) =

(
I

C
+ (Ψ̂(i−1)

e)T Ψ̂(i−1)
e

)−1

(Ψ̂(i−1)
e)TP(i), (8.10)

where Ψ̂
(i−1)
e is the updated encoding calculated by Eq. (8.11).

Ψ̂(i−1)
e =

X, i = 1

σ
(
Ψ̂

(i−2)
e · Ŵ(i−1)

e

)
, 2 ≤ i ≤M,

(8.11)

In Eq. (8.11), Ŵ
(i)

e is the updated weight. When i = 1, the weights of 1-st hidden

layer are updated. The input X is considered as the 0-th layer feature Ψ̂
(0)
e . Thus,

the i-th hidden layer weight can be updated by

Ŵ
(i)
e = W(i)

e + λ · ηηη(i)

= W(i)
e + λ ·

(
I

C
+ (Ψ̂(i−1)

e)T Ψ̂(i−1)
e

)−1

(Ψ̂(i−1)
e)TP(i),

(8.12)

144

Then, the weights of the output layer are calculated by

Ŵf =

(
I

C
+ (Ψ̂(M)

e)T Ψ̂(M)
e

)−1

(Ψ̂(M)
e)T ·T, (8.13)

8.2.1.4 The Learning Steps of RML-MP

The proposed RML-MP can be summarized as follows.

• Step 1: Given input features and the corresponding labels {X, T}, the learning
rate λ, and regularization term C.

• Step 2: Train a multilayer MP inverse-based network withM AEs, analytically

calculate the output layer parameters Wf with Eq. (8.5).

• Step 3: Pull back error term E from the classification layer to the first hidden

layer by Eq. (8.7) and Eq. (8.8) one-by-one.

• Step 4: Recalculate weights Ŵ
(i)

e and Ψ̂
(i)
e from the 1-st hidden layer to the

M -th hidden layer via Eq. (8.10) and Eq. (8.12) sequentially.

• Step 5: Update classification layer weights Ŵf by Eq. (8.13).

8.2.2 The Proposed SRML-MP

Essentially, the proposed RML-MP utilizes a ℓ2 norm to recompute the parameters.

However, the updated weight with such a regularization penalty tends to be dense

and may further lead to over-fitting problems. Thus, in this chapter, a sparse solution

calculated with ℓ1/2 penalty is then developed.

8.2.2.1 Sparse Learning

SAE [150] is an AE whose training criterion contains sparse penalty. One can build

a model’s loss function via penalizing activations of hidden layers so that only a lim-

ited number of neurons are activated. The most commonly used SAE is developed

through the use of the ℓ1 regularizer. Experimental results [231] have already shown

the superior performance of sparse learning on some small-scale datasets. Thus, it

is intuitive to propose a retraining algorithm using sparse learning for better gen-

eralization performance. Recently, authors in [232] have mentioned that ℓ1/2 norm

145

can produce sparser solutions than ℓ1 regularizer. Thus, a structure of combining

RML-MP with ℓ1/2 norm (SRML-MP) is further proposed.

In SRML-MP, the updated weight ηηη(i) for the i-th encoding layer is calculated as

min J =
1

2
||Ψ̂(i−1)

e ηηη(i) −P(i)||22 + C||ηηη(i)||1/21/2, (8.14)

where ||ηηη(i)||1/21/2 =
∑N

j=1 |ηηη
(i)
j |1/2. A fast iterative jumping thresholding (IJT) [233]

algorithm is adopted to solve Eq. (8.14). Specifically, with IJT [233], the proximity

operator proµ,C|·|q of ℓq(0 < q < 1) regularization can be described as

proµ,C|·|q(z) =


(
·+ C

2
µqsign(·)q−1

)−1
(z), |z| ≥ τµ,q

0, |z| ≤ τµ,q,
(8.15)

for any z ∈ R, where

τµ,q =
2− q
2− 2q

(Cµ(1− q))
1

2−q ,

ψµ,q = (Cµ(1− q))
1

2−q .

(8.16)

The range of proµ,C|·|q is {0} ∪ [ψµ,q,∞). For q = 1/2, with proximity operator, the

i-th encoding layer weights ηηη(i) can be expressed analytically [234]:

ηηη(i) = UP(i) · diag{σP(i) −
√
CPℓ1(

σP(i)√
C

)} · V T
P(i) , (8.17)

where UP, VP, and σP(i) stand for the left unitary matrix of SVD of target output

P(i), the right unitary matrix of SVD of target output P(i), and singular values of

P(i), respectively. Pℓ1(·) is the orthogonal projection of one vector onto the ℓ1 unit

ball.

8.2.2.2 The Learning Steps of SRML-MP

The proposed SRML-MP is developed with four steps.

• Step 1: Train a multilayer MP inverse-based network with M AEs, calculate

output layer weights Wf via Eq. (8.5).

146

• Step 2: Pull back error E via Eq. (8.7) and Eq. (8.8).

• Step 3: Calculate the i-th layer updated weight ηηηi with ℓ1/2 penalty by IJT

algorithm by Eq. (8.17), recompute the hidden layer weights via Eq. (8.12).

• Step 4: Update the output layer weights Ŵf with ℓ1/2 norm.

8.3 Experimental Results

To evaluate the performance of the proposed RML-MP and SRML-MP, a set of ex-

periments was conducted with other representation learning algorithms on the image

classification domain. Additionally, to comprehensively evaluate the practical bene-

fits of the proposed strategies, extensive discussion and experiments were carried out

on the food categorization domain.

8.3.1 Experimental Setup

In this subsection, the experimental setup and the dataset description are presented.

8.3.1.1 The Environment

All of the experiments conducted in this chapter were performed in the Matlab R2019b

environment, running in a workstation with Intel Core E5− 2650 CPU and 256 GB

memory. The high-level features extracted from DCNNs were carried out on the

NVIDIA 1080Ti GPU.

8.3.1.2 The Datasets

In this chapter, seven image classification datasets were used for evaluation, Caltech-

101, ImageNet-1/2, Places-365-1/2/3, and Places-365. Further, the proposed methods

were evaluated on one food categorization dataset (Food-251 [131]). The dataset

specifications are shown in Table 8.2. Details of each dataset are as follows.

Image classification datasets: The Places-365 and ImageNet datasets are consid-

ered the largest datasets in the image classification area. The ImageNet contains more

147

Table 8.2 – Summary of the datasets.

Modes Datasets Classes Training Testing

Image Classification

Caltech-101 102 3060 6084
ImageNet-1 1,000 200,000 50,000
ImageNet-2 1,000 500,000 50,000
Places-365-1 365 182,500 36,500
Places-365-2 365 365,000 36,500
Places-365-3 365 547,500 36,500
Places-365 365 1,803,460 36,500

Food Image Classification Food-251 251 118,475 11,994

than 1.2 million patterns. In this chapter, two mini datasets are utilized. In particu-

lar, the ImageNet-1 and ImageNet-2 datasets are generated by randomly selecting 200

and 500 images per category from the dataset, respectively. The Places-365 dataset

is composed of 365 categories, containing more than 1.8M images. 500, 1,000, and

1,500 images per category from Places-365 are selected to generate the Places-365-1,

Places-365-2, and Places-365-3 datasets. For all of these datasets (ImageNet-1/2,

Places-365-1/2/3), the validation set is utilized in the testing stage. Furthermore,

the original Places-365 dataset is used to validate the proposed algorithms, where the

training set is applied for training and the validation set is to test the model. Besides,

Caltech-101 is a widely used dataset. Following the training settings in the previous

works [23], we take 30 patterns per class for training and use the rest for testing.

Food categorization dataset: The recently proposed food dataset Food-251 is

used for experimental analysis. The Food-251 dataset contains 118,475 training im-

ages and 11,994 validation images. In this study, the whole training set is used for

training. The validation set is adopted to test the accuracy of the algorithms. The

following methods were compared: low-level feature-based methods [235], high-level

CNN-based algorithms [137], and feature fusion-based frameworks [115].

8.3.1.3 The Rival Methods

In this chapter, several autoencoder-based multilayer models are tested, which can

be divided into the following three families.

148

Representation learning algorithms with SGD technique This family in-

cludes WD-AE [149], denoise autoencoder with Gaussian (DAEG) [101] and binary

(DAEB) [101] making noise, and SAE [150]. After the optimal encoding is learned

via each algorithm, a softmax classifier is used to find the final classification result.

For the above-mentioned algorithms, fine-tuning is utilized to adjust the weights of

the trained model to boost the network’s generalization performance.

Representation learning algorithms with MP inverse technique These meth-

ods include hierarchical RVFL-based neural network (H-RVFL) [4], multilayer MP

inverse-based framework (MLS) [42], subnet-based structure (SNN) [236], multilayer

subnet framework (MSNN) [23], and Wi-HSNN [173]. Note that the weights of hid-

den layers are fixed after the unsupervised encoding is finished. In other words, these

comparison algorithms do not contain any fine-tuning.

Furthermore, to fully validate the effectiveness of the proposed methods, we com-

pared RML-MP and SRML-MP with the strategy that does not contain retraining.

In other words, this strategy develops its model using Eq. (8.1) to Eq. (8.5) with no

error backpropagation (Stage 2) and weights updating (Stage 3). We use a multilayer

network with MP inverse (ML-MP) to denote this baseline.

8.3.1.4 Configurations of The RL Methods

For BP-based strategies, the training epochs and size of each mini-batch are set to

be 100. The initial learning rate is set as 0.01 with a 0.1 attenuation rate for ev-

ery 10 training epochs. The input corruption rate of DAEG is 0.5. The training

epochs for fine-tuning is 20. For MP inverse-based algorithms, the number of hid-

den neurons and the regularization term in all AEs are optimized within the grid

{500, 1000, 2000}×{10−3, 100, 103}, while the regularization term for the last clas-

sification layer is searched from {100, 102, 104}. The number of subnets is set as 5,

and the number of neurons in each subnet is defined as 1000. Also, the regularization

term in subnet-based models is optimized within the grid {100, 102, 104}. As for the
proposed RML-MP and SRML-MP, the number of stacked AEs is 2, and the number

of hidden neurons for each MP inverse-based AE is 1000. The sigmoid function is

chosen as the non-linear activation function. The offset term C is 4.

149

8.3.1.5 Configurations of The Input Features

Multi-model algorithms fuse different sources of features that are complementary to

each other to achieve superior recognition performance. Three pre-trained DCNNs,

namely VGG-16 [87], ResNet-50 [88], and InceptionNet-v3 [237], are adopted as fea-

ture extractors. These DCNNs are pre-trained on the ImageNet set, and the final

softmax layer contains 1,000 neurons. In this chapter, the high-level features that are

extracted from the top layer of DCNNs are loaded as the raw feature. As for high-level

feature extraction, the original top layer is decapitated and replaced with a new classi-

fication layer with the same number of classes as the target dataset. After the DCNN

is fine-tuned, the high-level features are captured from the penultimate layer of each

DCNN. Thus, the data extracted from VGG-16, ResNet-50, and InceptionNet-v3 are

4,096-, 2,048-, and 2,048-dimensional vectors, respectively. The dimensionality of the

concatenated feature is 8,192.

8.3.1.6 Evaluation Matrics

For the image classification and food categorization, the Top-1 testing accuracy is

adopted to compare the accuracy of the proposed algorithms and other state-of-the-

art methods. Besides, the training time and the inference time are compared. For

each algorithm, at least three trials were conducted for each dataset.

8.3.2 Model Settings

The proposed retraining algorithms have several hyperparameters, such as the number

of AEs used in SRML-MP/RML-MP and the number of neurons in each AE. In this

subsection, we empirically verify the recommendations of these two hyperparameters.

Figure 8.3 shows the Top-1 testing accuracy of the proposed methods, MLS, and H-

RVFL on Places-365-1/2 datasets as the number of AEs increased. In this evaluation,

although each algorithm’s learning procedures differ, the offset term C, the number of

hidden neurons in each AE remain the same (1,000 or 2,000) for consistency and fair

comparison. Fig. 8.3 (a) and (c) depict the results when the number of hidden neurons

in each AE equals 1,000, while Fig. 8.3 (b) and (d) show the comparison results when

150

the number of latent space nodes in each AE is 2,000. It is observed that i) the

performance of RML-MP and SRML-MP converge after the number of MP inverse-

based AEs equals 2, ii) the proposed models achieve competent performance when

the number of neurons in each AE is 1,000, and iii) with the same hyperparameters,

the Top-1 testing accuracy of the proposed models is improved by 2% when compared

to the existing multilayer MP inverse-based algorithms, such as H-RVFL and MLS.

Thus, in this chapter, for the proposed RML-MP and SRML-MP, the number of

stacked AEs is set to 2, and the number of hidden neurons in each AE is 1,000.

(a) Places365-1 (No. hidden node=1000) (b) Places365-1 (No. hidden node=2000)

(c) Places365-2 (No. hidden node=1000) (d) Places365-2 (No. hidden node=2000)

T
es

ti
n
g
 A

cc
u
ra

cy
 (

%
)

T
es

ti
n
g
 A

cc
u
ra

cy
 (

%
)

Figure 8.3 – Comparison of different algorithms with Inception-v3 features. (a) and
(b) are the results on Places-365-1 dataset, (c) and (d) are the results on Places-365-2
dataset.

151

8.3.3 Analysis on Image Classification Domain

In this subsection, the testing accuracy of the proposed RML-MP, SRML-MP, and

other comparison algorithms on several commonly used image classification datasets

is reported.

To verify the effectiveness of multi-modal learning, a sanity check with various

combinations of high-level features is conducted as reported in Table 8.3. Different

combinations from single-model to multi-model features are loaded as input. The ex-

perimental results show that the fusion of multi-modal features provides a remarkable

performance boost over models trained with single-model features. For example, the

RML-MP with the concatenated features (ResNet-50 + InceptionNet-v3 + VGG-16)

provides 48.9%, 51.8%, and 82.5% testing accuracy on the Places-365-1, Places-365-3,

and ImageNet-2 datasets, respectively, having 2.2%, 4.6%, and 16.7% higher accuracy

than the single-model VGG-16 feature.

Table 8.3 – Effectiveness analysis of feature fusion strategy.

Methods Features Places-365-1 Places-365-3 ImageNet-2

RML-MP

VGG 46.7 47.2 65.8
ResNet50 45.2 45.9 79.3
Inception-v3 46.2 48.6 81.4
ResNet50, Inception-v3 47.2 49.5 82.1
VGG, ResNet50, Inception-v3 48.9 51.8 82.5

SRML-MP

VGG 46.8 47.6 66.2
Re. 45.3 46.8 79.3
Inception-v3 46.8 49.0 81.5
ResNet50, Inception-v3 47.8 50.7 82.2
VGG, ResNet50, Inception-v3 49.9 52.0 82.4

The overall comparisons of the existing multilayer LS-based RL algorithms and

the proposed methods on the image classification datasets are provided in Table 8.4.

Along with the Top-1 testing accuracy, the mean average performance among all

datasets is shown as well. Through comparison, the following conclusions can be

drawn:

152

Table 8.4 – Top-1 testing accuracy comparison among different non-iterative RL methods. Values in BLUE are the best
results with Inception-v3 features. The ones in RED are the best results with concatenated features (Inc. - Inception-v3
features)

Methods Caltech-101 ImageNet-1 ImageNet-2 Places-365-1 Places-365-2 Places-365-3 Places-365 Average

Single-model: Inception-v3 features

Inc.+H-RVFL [4] 90.2 76.1 78.8 43.5 45.7 46.5 48.8 61.4
Inc.+MSNN [23] 89.4 77.2 79.6 44.8 45.4 47.6 48.9 61.8
Inc.+MLS [42] 89.7 74.1 76.7 43.6 45.2 46.3 46.6 60.3
Inc.+SNN [236] 88.6 76.2 79.2 42.7 45.5 47.1 48.4 61.1
Inc.+Wi-HSNN [173] 89.6 76.9 79.9 44.6 46.7 47.4 49.8 62.1
Inc.+ML-MP 89.6 74.0 76.9 42.9 45.7 45.8 46.9 60.2
Inc.+RML-MP 91.7 78.8 81.4 46.2 47.1 48.6 52.9 63.8
Inc.+SRML-MP 91.8 78.6 81.5 46.8 48.2 49.0 52.5 64.1

Multi-model: concatenated features

All+H-RVFL [4] 91.4 78.2 80.2 46.5 48.9 48.8 51.7 63.7
All+MSNN [23] 92.2 81.5 82.3 47.4 48.8 49.0 51.4 64.7
All+MLS [42] 91.7 78.2 80.3 46.9 47.7 49.2 50.3 63.5
All+SNN [236] 91.8 78.9 80.1 45.7 47.4 47.7 51.5 63.3
All+Wi-HSNN [173] 92.1 79.2 81.5 47.6 49.4 50.5 52.6 64.7
All+ML-MP 91.5 78.7 80.4 46.7 47.9 49.3 50.5 63.6
All+RML-MP 93.2 80.6 82.5 48.9 51.1 51.8 55.7 66.3
All+SRML-MP 93.4 81.0 82.4 49.9 51.6 52.0 55.0 66.5

153

• The proposed RML-MP and SRML-MP with single-model feature provide su-

perior performance compared to the comparison algorithms. For instance, the

SRML-MP shows a valuable increment over the ML-MP, including 3.2%, 4.6%

and 5.6% on Places-365-3, ImageNet-2 and Places-365, respectively.

• The RML-MP and SRML-MP with the concatenated features have competent

performance over other RL frameworks. For example, the mean average accu-

racy of RML-MP and SRML-MP is promoted by 2.8% and 3.0% than that of

the MLS, respectively.

• Compared to SRML-MP, RML-MP offers benefits in processing big and com-

plex datasets (with more than 1 million samples). For example, when only

considering multi-model concatenated feature, RML-MP achieves 0.7% better

accuracy than the SRML-MP on Places-365 dataset.

Furthermore, the comparison results with all state-of-the-art autoencoder-based

representation learning algorithms, including DAEG [101], SAE [150], WD-AE [149],

MLS [42], H-RVFL [4], MSNN [23], and Wi-HSNN [173], are shown in Fig. 8.4. As

can be observed, the proposed RML-MP and SRML-MP generally outperform the

rest of the autoencoder-based algorithms. Therefore, the benefits of the proposed

RML-MP and SRML-MP on big data analysis are verified.

8.3.4 Timing Analysis

Table 8.5 tabulates the training and inference time complexities of the existing MP

inverse-based methods and the proposed RML-MP and SRML-MP. All of the results

recorded in Table 8.5 are counted in minutes. For a fair comparison, the DCNN

training time and feature pre-processing time are ignored. Only the complexities of

network encoding and pattern classification are recorded. One can readily see from

the table that the MLS needs the shortest training time, while the proposed RML-MP

and SRML-MP take around two to three times longer for training. The reason for the

longer training time is that, on one dataset, the proposed learning pipelines search the

better representations by pulling back the error matrix from the final classification

layer to each hidden layer respectively.

154

(a) Comparison of different RLs with Inception-v3 feature on Places365

(c) Comparison of different RLs with concatenated features on Places365 (d) Comparison of different RLs with concatenated features on ImageNet

(b) Comparison of different RLs with Inception-v3 feature on ImageNet

HRVFL
MLS

Places365-1

Figure 8.4 – Comparison of different autoencoder-based algorithms on Places-365 and ImageNet datasets. (a) and (b) are
the comparisons with Inception-v3 feature, (c) and (d) are the results with all concatenation feature.

155

Table 8.5 – Processing time w/ Inception features in MINUTE

Methods Places-365-1 Places-365-2 Places-365-3 ImageNet-2

Training time comparison

MLS 1.7 3.0 5.5 4.9
H-RVFL 2.5 4.4 9.2 8.5
SNN 17.7 27.3 38.7 35.1
MSNN 18.4 38.2 49.8 48.3
RML-MP 4.9 10.5 20.6 18.1
SRML-MP 6.6 11.9 18.4 16.9

Testing time comparison

MLS 2.2 2.3 2.2 3.8
H-RVFL 3.3 3.3 3.3 5.1
SNN 4.9 4.8 4.8 8.2
MSNN 6.2 6.5 6.4 9.8
RML-MP 2.1 1.9 2.0 3.3
SRML-MP 2.0 2.0 2.0 3.1

Although the proposed MRL-MP and SMPL-MP need longer training time, they

are more effective as they provide much better generalization performance than the

existing multilayer MP inverse-based methods. As for the inference time, the RML-

MP and SRML-MP provide similar inference time as that of MLS. Also, they require

less time compared to the rest algorithms. For example, on the ImageNet-2 dataset,

the proposed RML-MP and SRML-MP speed up the inference by around 1.5, 2.5 and

3.0 times when compared to the H-RVFL, SNN and MSNN, respectively.

8.3.5 Analysis on Food Image Classification Domain

To further verify the effectiveness of the proposed RML-MP and SRML-MP algo-

rithms, experiments were further conducted on the food image classification dataset.

Here, several state-of-the-art food image classification algorithms [137, 139, 115] are

compared, and the results are described in Table 8.6. For consistency and fair com-

parison, the same pre-processing steps and input features as those in [115] are utilized.

As shown in Table 8.6, compared with the state-of-the-art food image catego-

rization model (width model [115]), the proposed RML-MP algorithm still provides

156

better performance with a 0.7% of improvement. Besides, the proposed feature en-

coding structure show superior performance over the AlexNet-based model [137] and

fusion method [139] by 18.2% and 9.2% of boost, respectively.

Table 8.6 – Comparison with other algorithms on food categorization (%).

Methods Food-251

B: AlexNet-based [137] 48.9
C: Fusion of DCNN [139] 57.9
D: Width model [115] 66.4
A: RML-MP 67.1

67.1%

48.9%

57.9%

66.4%

8.3.6 Qualitative Analysis

T-SNE-based visual inception is presented by comparing the encoded features by

different algorithms in Fig. 8.5. Due to space constraints, we only show the qualitative

comparison with MLS, RML-MP, and SRML-MP on one dataset, i.e., Caltech101.

It can be concluded from Fig. 8.5 (b), (c), and (d) that RML-MP and SRML-MP

enhance the outer distance and reduce the inner distance of each category. The above

result suggests that the proposed multilayer MP inverse-based retraining strategies

can explain the loaded data in a more discriminative way. The reason is that the

encoding from MP inverse-based AEs only contains unsupervised details; however,

some important clues may be missing without the help of supervised learning. The

proposed retraining strategies provide the network with the opportunity to distill

the representations after unsupervised encoding, thus leading to better generalization

performance.

157

(a) (b)

(c) (d)

Figure 8.5 – The visualized t-SNE plot on Caltech-101 dataset. The t-SNE plots
visualize features quality under four situations: (a) the concatenated raw feature, (b)
the features refined by MLS, (c) the features refined by the proposed RML-MP, and
(d) the features reinforced by the proposed SRML-MP.

8.3.7 Limitations

Although the proposed RML-MP and SRML-MP show superior performance among

existing multilayer MP inverse-based algorithms on large-scale datasets, some limi-

tations remain. First, the models in this chapter are only structured with multiple

AEs. Without convolutional layers, the feature learning capacity of RML-MP and

SRML-MP is limited. In other words, when handling big datasets, they need feature

extraction algorithms, such as DCNNs, to get the raw features. These models, there-

158

fore, can be considered as feature reinforcement models instead of feature extractors.

Second, the existing multilayer MP inverse-based networks, even the proposed RML-

MP and SRML-MP, learn their models with two separate steps: unsupervised learning

that is applied as network pre-training and supervised learning for final pattern clas-

sification. However, in complex tasks, it is not efficient. One practical way is to

combine supervised with unsupervised learning in one deep network simultaneously,

such as a semi-supervised ladder network [36].

8.4 Conclusion

The chapter proposes two multilayer neural networks for multi-model large data anal-

ysis. The RML-MP and SRML-MP are developed to enhance the generalization ca-

pability of the traditional multilayer MP inverse-based structures. The contributions

of this chapter are as follows: First, representations learned from traditional least

squares-based autoencoders may be biased and inadequate for solving complex tasks

(such as ImageNet). In this chapter, the retraining strategy is proposed to enhance the

representation capacity of one model. Second, the proposed RML-MP and SRML-

MP handle big data efficiently. These models process large-scale datasets such as

Places-365 containing more than 1.8 million samples with competitive performance

and affordable training time. The experiments on 8 datasets ranging from image

classification and food categorization show that the RML-MP and SRML-MP pro-

vide superior performance to the existing multilayer MP inverse-based representation

learning algorithms.

159

Chapter 9

Fast Domain Transfer Learning for

Application Towards Efficient Pattern

Recognition

Domain transfer learning is a technique that exploits a pre-trained model from a

source domain for a related task in a target domain to achieve better performance

when the target domain lacks labelled data. Recently, MP inverse-based parameter

fine-tuning of pre-trained fully-connected (FC) layers has emerged in transfer learn-

ing. However, due to the stringent computational requirements, such an approach is

yet to gain much traction for practical applications. In this chapter, we address this

issue through a novel fast retraining strategy, which greatly enhances the applica-

bility of the MP inverse-based retraining of DCNNs. Specifically, in each retraining

epoch, we employ a random layer freezing strategy to control the number of layers

to be fine-tuned, and an MP inverse-based batch-by-batch refinement of dense layer

parameters. This strategy greatly enhances the convergence time required for retrain-

ing the DCNNs. The experimental results show that the proposed retraining pipeline

achieves competitive performance with quicker model convergence compared to the

conventional transfer learning approaches. For instance, the proposed approach con-

verges nearly 1.5 times faster when retraining an ImageNet pre-trained ResNet-50 on

the Places-365 dataset.

9.1 Introduction

Transfer learning has been a very effective strategy in machine learning (ML) for

various applications, such as image classification [238, 14, 173, 239], nature language

processing [47, 240], image captioning [48], and object detection [49, 241]. Taking a

160

pre-trained DCNN, and fine-tuning its layers is one of the widely adopted transfer

learning approaches. It can be done in two ways [47, 242, 243]: i) retraining only

a few selected layers, particularly the top FC layers with replacement of a custom

output layer, and ii) full model end-to-end fine-tuning using target domain labelled

samples. In end-to-end fine-tuning, all layer parameters are trained, resulting in ac-

curate predictions, but demanding more time and large-scale datasets to avoid the

overfitting issue. Therefore, ML solution developers take advantage of the first ap-

proach that retrains only a few selected layers. In this direction, recent research has

utilized the MP inverse-based technique to retrain the densely-connected few layers of

DCNNs with any standard optimizers such as stochastic gradient descend with mo-

mentum (SGDM) [38], root mean square propagation (RMSProp) [244], and adaptive

momentum estimation (Adam) [39] to achieve better generalization performance.

Mathematically, the parameter optimization of the FC layers can be done through

LS estimation as in any linear system, whereby the optimal parameters of these layers

correspond to the LS solutions. The MP inverse is the most widely used technique

to find the unique solution to any LS problems with matrix representation [211, 245,

246, 247]. The earliest work utilizing LS strategy in an artificial neural network

(ANN) can be traced back to 1992, where Schmidt et al. [26] proved that the output

layer weights can be calculated using the MP inverse technique, and the information

encoded through this process called Fishier vector. Following this, an increased focus

has been placed on MP inverse-based hierarchical networks [173, 248]. To the best

of our knowledge, Yang et al. [27] is the state-of-the-art algorithm that utilizes the

MP inverse in transfer training. In each training epoch, a pre-trained DCNN, such as

AlexNet [50], GoogLeNet [87] or DenseNet [176], is first fine-tuned with a standard

optimizer on the target domain; then, the parameters of the FC layers are refined

through MP inverse computation. By doing so, the fine-tuned DCNN achieves high-

level generalization performance. Despite its advantage, it is not as widespread as

it could be. The limitation is caused due to two reasons: stringent computational

requirement and inefficiency of all layers fine-tuning.

1) Stringent demand for computational resources: One of the drawbacks in

Yang et al. [27] is that it significantly increases the computational workload. In fact,

this model needs high computational resources, such as a workstation with 256 GB

161

main memory to process the big datasets like Places-365 [35] which consists of more

than 1.8 million samples for visual classification. The reason is that the traditional

MP inverse used in Yang et al. [27] is essentially a one-batch learning algorithm

that requires processing the input data at once [249, 250]. When utilizing ImageNet

pre-trained VGG-16 [46], Yang et al. [27] requires around 200 GB main memory to

perform MP inverse for the FC layers, which is infeasible for regular commercial

computers and laptops.

2) Inefficiency of all layers fine-tuning: Yang et al. [27] approaches the model

transfer as an end-to-end all layer retraining. Judging from some successful tech-

niques [135, 251], we hypothesize in this chapter that it is not necessary to involve

the entire convolutional layers in each retraining epoch. Thus, we randomly select a

few layers in the retraining process. It will help us to overcome the over-fitting issues

that generally happen when training DCNNs on small-scale datasets [135]. Some

works [251] accelerate the retraining process through complex hyper-parameter ad-

justment in the optimizers. Although it accelerates the retraining process, it faces a

huge performance degradation.

To address the afore-said shortcomings, this work proposes a novel retraining

pipeline called MP inverse-based fast retraining (MPFR), which is shown in Fig.

9.1. The proposed MPFR has notable advantages in terms of learning efficiency and

applicability. It is built upon two strategies: Strategy 1 - random layer freezing, and

Strategy 2 - batch-by-batch FC layer feature refinement. The first strategy employs

a fast retraining strategy to speed up the fine-tuning process of the DCNN. Here,

we propose a mechanism that randomly activates an ra portion of the DCNN layers

in every retraining epoch. The rate ra is a preset value and progressively decreased.

In the first several retraining epochs, ra is set to 1 to fully retrain the network, i.e.,

all of the parameters of the DCNN are fine-tuned. Then, ra is gradually decreased

to 0.2 at the last retraining epoch, i.e., 80% of the DCNN layers do not require

parameter updates. The second strategy is the MP inverse-based batch-by-batch

learning algorithm. Essentially, the batch-by-batch algorithm processes dense layer

refinement sequentially, instead of the memory-hungry refinement models like in [27]

that process the entire input data at once. Thus, the proposed MPFR framework

does not necessarily need high-end hardware resources.

162

MP Inverse-based

Batch-by-batch

Strategy

 SGDM-based

Random Layer

Freezing

The MPFR

Network Input

Raw Images

n Epoch

Network Output

Label of Each Image

Bird
Frog

Horse
Truck

Airplane

The Deep Convolutional Neural Network

like AlexNet, VGG, ResNet and DenseNet

Strategy 1 – Random Layer Freezing Strategy 2: FC Layer Refinement

One Epoch

Legend Convolutional Layer Fully-connected Layer

Figure 9.1 – Abstract data flow diagram of the proposed MPFR with one possible
optimizer in Strategy 1: SGDM.

In the extensive experiments, several ImageNet pre-trained DCNNs are utilized

to verify the effectiveness of the proposed MPFR pipeline. The contributions of this

chapter are threefold:

• Applicability: The batch-by-batch algorithm is utilized to ensure that the

proposed model can support any hardware environment.

• Efficiency: The random layer freezing is utilized to decrease fine-tuning work-

loads of the MP inverse-based refinement strategy and to avoid over-fitting.

• Extensive experimental analysis: We conduct through experimental study

using six benchmark datasets, including the Places-365 to show the robustness

of the proposed pipeline.

9.2 Related Works on Domain Transfer Learning

In general, the conventional domain transfer learning approaches are either task-

driven or data-driven [238]. Hence, these approaches can be categorized into three

163

groups of techniques according to Pan et al. [252], such as transductive transfer

learning (TTL), unsupervised transfer learning (UTL) and inductive transfer learning

(ITL).

In TTL, both source and target tasks are similar but the application domains are

different. The labelled data are available only in the source domain, but not in the

target domain; thus, the framework can be conceived as semi-supervised learning.

Adversarial training is one of the well-known examples of TTL. For instance, Kam-

nitsas et al. [253] utilized a domain adaptation method for image segmentation by

using adversarial training of two 3D neural networks. The domain-invariant features

are learned using 3D models, and a multi-connected domain discriminator is applied

to segment the input image. Moreover, Zhang et al. [254] studied an adversarial

domain adaptation from whole slide images (WSI) to microscopy images. In particu-

lar, a novel deep microscopy adaptation network (DMAN) is proposed to conduct a

WSI-trained structure to predict microscopy images.

As for UTL, the label information is unknown for both the source and the target

domains. For example, Chen et al. [255] proposed the discriminative mapping trans-

form (DMP) for unsupervised linear adaptation, where the constrained maximum

likelihood linear regression (CMLLR) is operated in the feature space to estimate the

model parameters. Similarly, Lee et al. [256] introduced a self-learning algorithm for

unsupervised domain adaptation for spoken document summarization. A structured

pseudo model is used to generate the initial summaries for the target documents.

Then, these generated summaries serve as extra training examples for learning a new

summarizer.

9.3 The Proposed Algorithm

The goal of this chapter is to develop an efficient domain transfer learning. It exploits

two key strategies: Strategy 1 - random layer freezing, and Strategy 2 - batch-by-batch

FC layer feature refinement.

164

9.3.1 MP inverse-based Dense Layer Refinement

In this subsection, we review the learning algorithm proposed in [27]. Based on this

strategy, we proposed our developed method.

In [27], the authors introduced a dense layer retraining algorithm for deep neural

network fine-tuning. In each epoch, they retrain all the parameters of the DCNN

using a standard optimizer, such as SGDM and Adam. Then, the conventional MP

inverse is used to feedback the residual error En from the last FC layer before the

final classifier layer to reestimate the weights of all the FC layers. The recomputation

process can be divided into two steps, Step 1 - updating the last FC layer’s weight

α̂ααn and Step 2 - recomputing the earlier FC layers’ weight α̂ααi (Notations are made

available in Table 9.1).

Step 1 - Updating the last FC layer’s weight α̂ααn: Firstly, the compensation

weight ηηηn is computed in Eq. (9.1).

ηηηn = (H n)†En =

(
(H n)T (H n) +

I

C

)−1

(H n)T ·En, (9.1)

where
(
(H n)T (H n) + I/C

)−1
(H n)T is the MP inverse of H n. The weights of the

last FC layer are updated by Eq. (9.2).

α̂ααn = αααn + γ · ηηηn

= αααn + γ ·

((
(H n)T (H n) +

I

C

)−1

(H n)T ·En

)
,

(9.2)

where C is the regularization term, αααn is the weights of n-th FC layer, α̂ααn is the

updated weights.

Step 2 - Recomputing the earlier FC layers’ weight α̂ααi: After updating the

weights of the last FC layer, we should recalculate the weights of the earlier FC

layers. It is worth noting that before updating the weights of one FC layer, we need

to calculate this layer’s error. Take the i-th FC layer as an example, we have:

E i · α̂ααi+1 = E i+1 | 1 ≤ i < n. (9.3)

Now using MP inverse, the error E i can be computed as in Eq. (9.4).

E i = E i+1

(
(α̂ααi+1)T (α̂ααi+1) +

I

C

)−1

(α̂ααi+1)T (9.4)

165

Table 9.1 – Notations used in this chapter

Notation Meaning

† the Moore-Penrose inverse
αααi i-th FC layer weights (before MP inverse-based retraining)

α̂ααi i-th FC layer weights (after MP inverse-based retraining)
γ the retraining rate in Strategy 2
ηηηip compensation weights calculated with the first p batches

of data in the i-th FC layer, ηηηip ∈ Rdi−1×di

C the regularization term
di the number of neurons in the i-th FC layer

E i the i-th FC layer error feedback data, E i ∈ RN×di

F the dropout operation
Ep the p-th batch of error data

H i the input features of the i-th FC layer, H i ∈ RN×di−1

H p the p-th batch of input feature
I the identity matrix
La the number of activated convolutional layers
Lc the total number of convolutional layers
Li the number of activated convolutional layers
M the total number of mini-batches
N the total number of training samples
Np the number of training samples in p-th data batch
n the number of FC layer in one DCNN
ra the activation rate in Strategy 1

T i the target of the i-th FC layer

Although Yang et al. [27] provide excellent performance on image classification,

it has the following two limitations.

△ It can only be employed in a workstation as the parameters calculated by Eq. (9.2)

demand huge computational resources. For example, when using VGG-16 on the

Places-365 dataset, the method in [27] requires all the samples in the dataset to be

processed once. In other words, we have to store all the samples’ high dimensional

feature maps, such as H n and En in the main memory. For instance, the last dense

layer’s feature map H n ∈ R1,803,460×4,096, and the peak memory usage in processing

this feature map demands 218.9 GB.

△ Furthermore, Yang et al. [27]’s retraining algorithm is inefficient because it is a

full-model end-to-end fine-tuning approach. It requires more retraining time and faces

166

an overfitting issue on small-scale datasets.

9.3.2 Strategy 1 - Random Layer Freezing

It uses a simple random layer retraining algorithm as depicted in Fig. 9.2a to both

avoid network over-fitting and speed up the fine-tuning. Specifically, the proposed

method randomly freezes some hidden layers in each epoch using a preset activation

rate ra. Initially, the activation rate ra is set to 1 in the first several fine-tuning

epochs for warming up the pretraining model, whereby all the trainable parameters

are updated in every backward pass. After the warm-up stage, the first several layers

are capable of extracting low-level features that can be used by the following layers to

build high-level features, and they are reliable enough to represent the target domain

data. Thus, ra is decreased, resulting in an increment of the number of inactivated

layers in the subsequent epochs. Suppose that a DCNN architecture contains Lc

total number of layers (including convolutional and fully-connected layers), the total

number of activated (La) and inactivated (Li) layers in each epoch are:

La = ra × Lc, and

Li = (1− ra)× Lc.
(9.5)

9.3.3 Strategy 2 - Batch-by-batch FC Layer Refinement

Suppose H i, αααi, T n, and fi(·) are the input feature, weights of the i-th FC layer, the

target of the last FC layer, and the i-th FC layer activation function, respectively.

The objective function of the MP inverse-based FC layer retraining is defined as:

minimize J =
1

2
||En||2 = 1

2
||T n − f(H,ααα)||2

f(H,ααα) = fn
(
· · · f2

(
f1
(
H1,ααα1

)
,ααα2
)
· · · ,αααn

)
,

(9.6)

where fi(·) is a linear function. The MP inverse-based retraining aims to find the

optimal weight α̂ααi so that the loss function reaches the minimum. With the retraining

rate γ, the weight ηηηi is used to compensate the network error, i.e., α̂ααi = αααi + γ · ηηηi.

167

(n-1)-th layer

n
H1n

H

𝑬𝒏−𝟏

𝑯𝒏−𝟏
 𝑯𝒏

 𝜶𝒏−𝟏 + 𝜼𝒏−𝟏

𝜶𝒏 + 𝜼𝒏

𝑬𝒏−𝟐

FC layersConvolutional (Conv) Layers

Strategy 1 - Random layer freezing. In each epoch, users
randomly activate La number of layers, while freezing the
rest Li number of layers from backward pass. La and Li

are determined by a hyperparameter ra.

Legend ReLu layer and Dropout Convolutional layer

Conv Layers

𝜶𝒏 + 𝜼𝒏

𝜶𝒏−𝟏 + 𝜼𝒏−𝟏

𝑬𝒏−𝟏 𝑬𝒏−𝟐 𝑬𝒏

Strategy 2 - Batch-by-batch fully-connected layer feature
refinement. ηηηn and ηηηn−1 are obtained by Procedure I, and
En−1 and En−2 are received via Procedure II. The detailed
learning steps of Procedures I and II can be found in Al-
gorithm 9.1.

Figure 9.2 – The proposed MPFR strategy. The DCNN is trained with several epochs consisting of two successive
strategies: Strategy 1 is the random layer freezing, and Strategy 2 refers to the FC layer feature refinement.

168

For the i-th FC layer, the error-based compensation weight ηηηi satisfies:

H i(αααi + γ · ηηηi) = T i | 1 ≤ i ≤ n, (9.7)

where γ ∈ (0, 1]. Based on Eq. (9.7), we have the following equation.

H i · ηηηi = E i | 1 ≤ i ≤ n, (9.8)

where E i is the matrix evaluating the gap between target T i and the actual i-th layer

output. The ηηηi is calculated by ηηηi = (H i)†Ei, where (H i)† is the MP inverse of H i.

However, the traditional MP inverse requires huge main memory in training because

it generate the optimal FC layer weights on the entirety of the data.

To reduce the demand for computational resources, the batch-by-batch method

proposed in Chapter 5 is utilized. By doing so, the H i and E i are processed chunk-

by-chunk with M pieces. In other words, we use a sequential learning algorithm to

handle the memory requirement in Eq. (9.2). First, the initial batch H 1 and E 1 is

given, and the weights ηηη1 is calculated by the traditional one-batch learning method.

Then, the weights ηηηp are updated through H p, E p, and ηηηp−1 in an iterative way. The

iterative learning steps for ηηηp are expressed in Eq. (9.10).

ηηηp =

0, p = 0

Upηηηp−1 +W−1
p H T

pEp, 1 ≤ p ≤M
(9.9)

where W−1
p , Up and Np are obtained by

W−1
p =


[
I
C +H T

1 H 1

]−1
, p = 1

UpW
−1
p−1, 2 ≤ p ≤M

Up =

0, p = 1

I −Np, 2 ≤ p ≤M

Np =W−1
p−1H

T
p

(
H pW

−1
p−1H

T
p + I

)−1
H p,

(9.10)

Based on Eq. (9.10), for a specific FC layer, the weights are initialized using

the first batch of data (H 1) as in traditional MP inverse-based refinement approach.

Then, they are updated using the remaining batches (H p, 1 < p ≤ M) sequentially.

169

After the network is retrained with M batches of data, the parameters αααn in the last

(n-th FC) layer can be updated as in Eq. (9.11):

α̂ααn = αααn + γ · ηηηnM , (9.11)

where γ is the retraining rate. Similarly, with dropout F and activation function

ReLU, the parameters αααi in the earlier i-th FC layer with M batches data can be

updated via Eq. (9.12):

α̂ααi = F
(
ReLU(0, αααi + γ · ηηηiM)

)
(9.12)

The proposed domain transfer learning pipeline is summarized in Algorithm 9.1:

Lines 2-5 define the random layer freezing (Strategy 1). Here, we use the SGDM as

an example to fine-tune the model. Lines 6-16 define the batch-by-batch FC layer

feature refinement (Strategy 2). Strategy 2 depends on two call back procedures:

Procedure I, batch-by-batch learning, and Procedure II, error backpropagation to

refine the dense layer features and feedback the error, respectively.

9.4 Experimental Results

9.4.1 Experimental Setup

9.4.1.1 The Environment

The experiments were conducted in MATLAB 2019b on a workstation with a 256 GB

memory and an E5-2650 processor, and all of the DCNNs were trained on NVIDIA

1080Ti GPU. Furthermore, the mean average Top-1 testing accuracies were computed

from a minimum of three trials.

9.4.1.2 The Datasets

The following visual and food image classification datasets, including Caltech-101/256,

Cifar-100, Places-365, Places-365-1, and Food-251 are used for performance evalua-

tion of the proposed pipeline.

170

Algorithm 9.1 The proposed MPFR
Inputs: Given a DCNN, maximum number of retraining epoch D, input dataset X, the last (n-th)
FC layer target Tn

Outputs: A well-trained DCNN

1: for (j = 1, j <= D, j ++) do
2: • Strategy 1: Random Layer Freezing
3: Randomly select Li layers form the DCNN.
4: Inactivate layers. %Freeze layers.
5: Train with SGDM for one epoch. % Train the DCNN with SGDM optimizor.
6: • Strategy 2: Batch-by-batch FC Layer Feature Refinement
7: H n, αααn % Extract from the last (n-th) FC layer.
8: En=Tn −H n ·αααn

9: Procedure I: ηηηn ← Batch-by-batch learning (H n, En)
10: α̂ααn=αααn+γ · ηηηn % Update the last FC layer.
11: for (i = n− 1, i >= 1, i−−) do
12: H i, αααi % Extract from the i -th FC layer.
13: Procedure II: E i ← Error Backpropagation (E i+1, α̂ααi+1)
14: Procedure I: ηηηi ← Batch-by-batch learning (H i, E i)
15: α̂ααi = F

(
ReLU(0, αααi + γ · ηηηiM)

)
% Update the parameters in the i -th FC layer, F is the

dropout operation.
16: end for
17: end for

Procedure I: Batch-by-batch Learning (H , E)
Inputs: H=[H T

1 ,H
T
2 , · · · ,H

T
M]T , E=[ET

1 ,E
T
2 , · · · ,E

T
M]T

Outputs: ηηηM

1: W−1
1 = [IC +H T

1 H 1]
−1, U1 = 0

2: ηηη1 =W−1
1 H T

1 E1 % Weights updated with the first data batch.
3: for (p=2, p < M , p++) do
4: Np =W−1

p−1H
T
p (H pW

−1
p−1H

T
p + I)−1H p

5: Up = I −Np

6: W−1
p = UpW

−1
p−1

7: ηηηp = Upηηηp−1 +W−1
p H T

p Ep % Sequential learning.
8: end for

Procedure II: Error Backpropagation (E i,αααi)
Inputs: E i=[(E i

1)
T , (E i

2)
T , · · · , (E i

M)T]T , αααi

Outputs: E i−1

1: for (p = 1, p <=M,p++) do

2: E i−1
p = max

(
0,E i

p ·
(
I
C + (αααi)Tαααi

)−1 · (αααi)T
)

% Error matrix back-propagation using MP

inverse.
3: end for
4: E i−1 = [(E i−1

1)T , (E i−1
2)T , · · · , (E i−1

M)T]T ;

171

Table 9.2 – Hyperparameter settings of the proposed method and the compared rival algorithms

Methods Parameters

Bottou et al. (SGDM) [38]
BS = 32, ILR = grid searched within {1.0−2, 1.0−3, 1.0−4}, TE = 8, DR = 0.1 per 3 epochs,
and the momentum = 0.9.

Kingma et al. (Adam) [39]
BS = 32, ILR = grid searched within {1.0−2, 1.0−3, 1.0−4}, TE = 8, DR = 0.1 per 3 epochs,
gradient decay factor β1 = 0.9 and β2 = 0.999.

Kurbiel et al. (RMSprop) [244]
BS = 32, ILR = grid searched within {1.0−2, 1.0−3, 1.0−4}, TE = 8, DR = 0.1 per 3 epochs,
and the exponential decay rate for squared gradient moving average = 0.9.

Brock et al. (FreezeOut) [251]
BS = 32, ILR = grid searched within {1.0−2, 1.0−3, 1.0−4}, TE = 8, DR = 0.1 per 3 epochs,
freezing time t0 = 0.5, and momentum = 0.9.

Yang et al. [27]
BS = 32, ILR = grid searched within {1.0−2, 1.0−3, 1.0−4}, TE = 8, DR = 0.1 per 3 epochs,
momentum = 0.9, β1 = 0.9 and β2 = 0.999, C = grid searched within {10−3, 100, 103},
and γ = 0.2.

Ours (MPFR)

BS = 32, ILR = grid searched within {1.0−2, 1.0−3, 1.0−4}, TE = 8, DR = 0.1 per 3 epochs,
initial ra is 1, and it is set to 0.75, 0.5, and 0.25 at 25%, 50%, and 75% of TE, respectively.
In Strategy 2, C = grid searched within {10−3, 100, 103}, γ = 0.2, and batch size in MP
inverse = 20 K.

Notations: BS - batch size, ILR - initial learning rate, TE - total number of retraining epochs, DR - decay rate.

172

P
M

U
 (

G
B

)

(a) Peak memory usage on Places-365 (b) Training time per epoch on Places-365-1 (c) Top-1 testing accuracy on Places-365-1

T
ra

in
in

g
 T

im
e

P
er

 E
p

o
ch

 (
h
)

A
cc

u
ra

cy
 (

%
)

SGDM

SGDM+FreezeOut

SGDM+Random Freezing

SGDM

SGDM+FreezeOut

SGDM+Random Freezing

Figure 9.3 – Experimental results of the proposed batch-by-batch FC layer refinement strategy and fast retraining. (a)
is the ablation results of the proposed batch-by-batch algorithm. The analysis of this part is elaborated in Section 9.4.2.1.
(b) (c) are the ablation results of the proposed random layer freezing schedule. The details of experiments is explained in
Section 9.4.2.2

173

9.4.1.3 The Rival Methods

In this chapter, the following state-of-the-art domain transfer learning algorithms,

such as Bottou et al. (SGDM) [38], Kingma et al. (Adam) [39], Kurbiel et al.

(RMSProp) [244], FreezeOut [251], and Yang et al. [27] are applied as the baselines

for comparison.

The MPFR is validated on several state-of-the-art ImageNet pre-trained DC-

NNs, including AlexNet [50], VGG-16 [46], Inception-V3 [237], ResNet-50 [88] and

DenseNet-201 [176].

9.4.1.4 Configurations of The Rival Methods

The detailed hyperparameter settings of the proposed work and the compared rival

methods are summarized in Table 9.2 for redroducibility. It is worth noting that we

do not adopt any data augmentations in all our experiments.

9.4.2 Step-by-step Quantitative Analysis

9.4.2.1 Analysis of Batch-by-Batch FC Layer Refinement

To verify the effectiveness of applying an MP inverse-based batch-by-batch scheme

in FC layer retraining, a sanity check is conducted to compare the proposed sequen-

tial learning strategy and the one-batch schedule [27] as tabulated in Fig. 9.3a and

Table 9.3. This experiment is only intended to focus on validating the proposed

batch-by-batch strategy. Thus, the ra in each epoch (cf. Strategy 1 in Fig. 9.2a) is

kept fixed (ra = 1) while conducting different learning strategy in Strategy 2 (one-

batch/batch-by-batch) listed in Table 9.3. Along with the Top-1 testing accuracy and

the average training time of MP inverse in each epoch, peak memory usage (PMU) in

fine-tuning is also used to evaluate the performance of different schemes. The inves-

tigation reveals that i) the batch-by-batch strategy significantly reduces the memory

usage in retraining, and ii) the one-batch and batch-by-batch learning strategy show

similar testing accuracy across all the datasets while having around 10% more pro-

cessing time. Therefore, we can summarize the first conclusion : The provided

batch-by-batch method significantly reduces the computational burden while main-

174

Table 9.3 – Performance comparison of the proposed batch-by-batch method on VGG-
16: Tr. (h) - average retraining time of MP inverse per epoch, Acc. (%) - Top-1 testing
accuracy, PMU (GB) - peak memory usage, andN/batch - the batch-by-batch proposed
pipeline with N samples per batch

Datasets Type Tr. (h) Acc. (%) PMU (GB)

Places-365-1
One-batch 1.2 50.68 87.2
20K/batch 1.3 50.42 3.2
10K/batch 1.4 50.40 1.6

Places-365
One-batch 3.2 55.21 218.9
20K/batch 3.5 55.38 3.2
10K/batch 3.7 55.32 1.6

Table 9.4 – Performance comparison of the proposed random layer freezing on ResNet-
50: Tr. (h) - average retraining time per epoch in hours, Acc. (%) - Top-1 testing
accuracy

Methods
Places-365-1 Places-365

Tr. (h) Acc. (%) Tr. (h) Acc. (%)

SGDM 3.7 49.3 11.9 53.3
SGDM + FreezeOut 3.3 47.5 10.6 50.3
SGDM + Random freezing 2.8 49.1 9.1 52.4

Adam 4.4 49.6 13.4 53.6
Adam + FreezeOut 3.6 47.5 11.9 51.2
Adam + Random freezing 3.1 49.2 10.7 52.9

taining competitive performance on different datasets. Hence, this method allows the

dense layer retraining to be utilized in any environment, which overcomes the main

drawback of Yang et al. [27].

9.4.2.2 Analysis of Random Layer Freezing

To validate the effectiveness of random layer freezing, more ablation experiments are

conducted on the Places-365-1 dataset. The experiments are conducted and trained

under three different configurations: DCNN trained with i) the SGDM baseline, ii) the

SGDM with FreezeOut [251] scheme, and iii) the SGDM with the proposed method.

175

Table 9.5 – Top-1 testing accuracy comparison of various domain transfer learning approaches

Architecture Model Caltech-101 Caltech-256 Cifar-100 Food-251 Places-365-1 Places-365 Average

VGG-16

Bottou et al. (SGDM) [38] 89.2 69.3 77.4 52.7 49.9 54.0 65.4
Kingma et al. (Adam) [39] 90.8 72.0 78.2 54.1 49.0 55.0 66.5
Kurbiel et al. (RMSProp) [244] 88.8 69.5 77.6 53.5 48.4 53.8 65.3
FreezeOut [251] + SGDMa 87.0 68.5 77.0 51.8 48.2 52.6 64.2
Yang et al. [27] + SGDMb 90.1 73.0 79.5 56.4 50.6 55.5 67.7
Ours + SGDMc 91.5 73.7 79.2 57.4 50.5 55.4 67.8

ResNet-50

Bottou et al. (SGDM) [38] 89.6 75.4 82.3 59.4 49.3 53.3 68.3
Kingma et al. (Adam) [39] 88.5 78.5 81.4 60.3 49.6 53.6 68.6
Kurbiel et al. (RMSProp) [244] 89.1 75.5 84.2 59.2 49.1 53.2 68.4
FreezeOut [251] + SGDMa 88.2 74.7 83.1 57.1 47.5 50.3 66.8
Yang et al. [27] + SGDMb 91.0 79.5 83.6 61.8 50.5 54.6 70.1
Ours + SGDMc 91.5 80.3 83.7 61.6 50.4 54.6 70.4

Inception-V3

Bottou et al. (SGDM) [38] 89.7 75.3 83.8 58.3 50.5 53.2 68.6
Kingma et al. (Adam) [39] 89.1 81.0 82.9 60.4 49.2 53.7 69.4
Kurbiel et al. (RMSProp) [244] 89.3 75.2 83.4 59.8 50.5 53.5 68.6
FreezeOut [251] + SGDMa 87.6 74.9 83.0 59.3 49.1 52.4 67.7
Yang et al. [27] + SGDMb 91.3 81.4 84.2 61.3 51.3 54.7 70.9
Ours + SGDMc 91.6 81.9 84.3 61.8 51.1 54.4 70.8

DenseNet-201

Bottou et al. (SGDM) [38] 92.5 79.7 86.1 61.6 49.7 54.7 70.7
Kingma et al. (Adam) [39] 91.2 81.0 84.2 61.9 49.5 53.2 70.2
Kurbiel et al. (RMSProp) [244] 91.6 80.3 85.5 60.7 49.6 53.9 70.3
FreezeOut [251] + SGDMa 89.9 77.5 84.1 59.8 47.2 51.3 68.3
Yang et al. [27] + SGDMb 91.0 81.2 85.4 62.4 50.6 55.4 71.1
Ours + SGDMc 91.7 81.6 85.2 62.5 50.7 55.0 71.1

a FreezeOut [251] + SGDM: The SGDM is used for fine-tuning, and the FreezeOut [251] is utilized to speed up training.
b Yang et al. [27] + SGDM: The SGDM is used for fine-tuning, and the Yang et al. [27]’s method is utilized to refine the FC layer features.
c Ours + SGDM: The SGDM is used for fine-tuning, and our proposed strategy (MPFR) is utilized to refine the FC layer features.

176

This analysis is intended to focus on evaluating the performance of the proposed

random layer freezing. Hence, in each epoch, random layer freezing (strategy 1) is

employed while the retraining strategy (strategy 2) is excluded from the training.

Fig. 9.3b, 9.3c and Table 9.4 compare the average retraining time per epoch and the

Top-1 testing accuracy. Through analysis, we reach the second conclusion : The

retraining time of the proposed random layer freezing speeds up the training by more

than 30%, and it has a mild impact on the testing performance.

9.4.2.3 Comparison of Transfer Learning

Taking the above outcomes as the foundation, more experiments are carried out to

compare the MPFR and the other transfer learning algorithms. The experimental

results of all the datasets are tabulated in Table 9.5. Through observation, one

can conclude the following: i) Compared to Yang et al. [27] + SGDM pipeline, the

Top-1 testing accuracy of the proposed algorithm (Ours + SGDM) is improved by

0.3% to 1.4% on the small-scale datasets while showing a competitive performance

on the large-scale datasets. ii) Compared to the existing transfer learning method,

the proposed algorithm (Ours + SGDM) has a remarkable improvement in terms of

the Top-1 testing accuracy. For example, for the VGG-16, the MPFR improves the

Top-1 accuracy by 1.4% to 4.7% over Bottou et al. [38].

Fig. 9.4 shows the generalization performance of the MPFR with SGDM and

Adam on Cifar-100 and Places-365-1 by a plot as the number of fine-tuning epochs

increases. It is worth noting that the convergence point (CoP) of each method is

shown as well. Hence, we can easily summarize that the proposed MPFR converges

at 4 to 5 learning epochs, whereas the SGDM needs 7 to 8 epochs to reach its stable

state. Further, Table 9.6 tabulates the model convergence time of the proposed

MPFR, Yang et al. [27] and Bottou et al. [38] on Cifar-100, Places-365-1 and Places-

365 datasets. The proposed MPFR speeds up the retraining process nearly by 10%

better than of Yang et al. approach [27]. This amount of time-saving is contributed

by the proposed random freezing (Strategy 1). Hence, from the results presented in

Table 9.5 and Fig. 9.4, we reach the third conclusion that the proposed MPFR

strategy outmatches the compared algorithms wrt the evaluation metrics including

177

the complexity and applicability.

Furthermore, Fig. 9.5 draws the Top-1 testing accuracy wrt various initial learning

rates: 1.0−2, 1.0−3, and 1.0−4 on Caltech-101 and Places-365-1 datasets. Note that for

Yang et al. [27] and MPFR, the SGDM is utilized for fine-tuning. For completeness,

we carried out additional experiments with basic two optimizers and different learning

rates to analyze the proposed pipelines’ performance as shown in Fig. 9.6. Where, the

SGDM and Adam are utilized for DCNN fine-tuning, respectively. The experiments

were conducted twenty times independently for a comprehensive comparison. In both

experiments, the configurations, such as decay rate and batch size were kept fixed

for consistency. Based on the experimental results shown in Fig. 9.5 and Fig. 9.6,

we reach the fourth conclusion that the proposed MPFR algorithm consistently

produce the best classification accuracy regardless of the initial learning rate.

9.5 Conclusion

In this chapter, a unified fast retraining procedure for domain transfer learning is

proposed. This method achieves better generalization performance than the state-

of-the-art transfer learning strategies. In particular, it provides i) a random freezing

schedule to speed up the retraining process and prevent over-fitting, and ii) a batch-

by-batch MP inverse-based strategy to optimize the parameters of the dense layers.

The experimental results on benchmark datasets prove the effectiveness of the pro-

posed algorithm. It has the following three main advantages: i) It alleviates overfitting

problems on small-scale datasets. Also, it can provide competitive performance on

large-scale datasets. ii) It doesn’t require a high demand for computational resources.

iii) It achieves a quicker retraining convergence time over the traditional approaches.

The proposed strategy can be easily adapted in many industrial applications, such as

power line fault detection in diagnosis and anomaly detection for Internet of Things

(IoT) applications.

As for future direction, it would be worthwhile to use the proposed MP inverse

strategy to train all the layers in DCNNs.

178

Places-365, ResNet-50

4.0 h

Legend: Convergence point (CoP)

Cifar100, Inception-v3 Places-365, Inception-v3

Cifar100, ResNet-50

7.2 h

5.9 h

9.4 h

148.1 h

241.8 h

153.1 h

268.6 h

1.6 h

2.4 h
2.7 h

4.1 h

55.9 h

93.1 h

70.2 h

103.1 h

CoP of Bottou et al. (SGDM)

CoP of Kingma et al. (Adam)

CoP of Ours + SGDM

CoP of Ours + Adam

CoP of Bottou et al. (SGDM)

CoP of Kingma et al. (Adam)

CoP of Ours + SGDM

CoP of Ours + Adam

CoP of Bottou et al. (SGDM)

CoP of Kingma et al. (Adam)

CoP of Ours + SGDM

CoP of Ours + Adam

CoP of Bottou et al. (SGDM)

CoP of Kingma et al. (Adam)

CoP of Ours + SGDM

CoP of Ours + Adam

Number of Retraining Epochs Number of Retraining Epochs

Number of Retraining Epochs Number of Retraining Epochs

Figure 9.4 – Top-1 accuracy of various domain transfer learning approaches on Cifar-
100 and Places-365 datasets. Note: the values shown in the highlighted boxes are the
total convergence time in hours. For example, the proposed pipeline in this work takes
55.9 hours for retraining convergence for ResNet-50 with SGDM on Places-365 dataset.

179

Table 9.6 – Comparison of the model convergence time in hours (h)

Methods
Cifar-100 Places-365-1 Places-365

Average
ResNet-50 (h) Inception-v3 (h) ResNet-50 (h) Inception-v3 (h) ResNet-50 (h) Inception-v3 (h)

Bottou et al. (SGDM) [38] 2.4 7.2 28.4 81.4 93.1 241.8 77.6
Yang et al. [27] + SGDM 1.7 4.4 19.1 54.3 58.2 165.5 50.5
Ours + SGDM 1.6 4.0 17.6 51.1 55.9 148.1 46.3

Kingma et al. (Adam) [39] 4.1 9.4 33.2 90.3 103.1 268.6 84.8
Yang et al. [27] + Adam 2.9 6.4 21.8 58.6 75.3 170.4 56.0
Ours + Adam 2.7 5.9 19.9 54.9 70.2 153.1 51.1

(a) Caltech-101 (b) Places-365-1

301 
.

201 
. 401 

.301 
.

201 
.

401 
.

A
cc

u
ra

cy
 (

%
)

Figure 9.5 – Top-1 testing accuracy of ResNet-50 and Inception-v3 wrt different initial learning rates.

180

401 
.301 

.
201 

.

A
cc

u
ra

cy
 (

%
)

Bottou et al. (SGDM) Ours + SGDMYang et al. + SGDM

A
cc

u
ra

cy
 (

%
)

Kingma et al. (Adam) Ours + AdamYang et al. + Adam

401 
.301 

.
201 

.

(a) SGDM (b) Adam

Figure 9.6 – Comparison of algorithms using ResNet-50 on Caltech-101 with two optimizers wrt different initial learning
rates.

181

Chapter 10

Conclusion

10.1 Overview

The dissertation is an effort to show a detailed overview of the big data-based rep-

resentation learning, then, several subnet-based representation learning algorithms

using MP inverse strategy, such as Wi-HSNN, OS-HSNN, OC-HSNN, MCOC-HSNN

and SS-HSNN, are proposed. Further, the RML-MP and SRML-MP are two ad-

vanced learning strategies for the multilayer MP inverse-based neural networks. At

the end of this dissertation, a new optimization strategy for DCNN-based transfer

learning is proposed. By doing so, it achieves a quicker network convergence speed.

In Chapter 1, the fundamental details of the representation learning are discussed.

Also, the discussion of the motivations and contributions of this dissertation is elab-

orated. It is also important to highlight the proposed methodologies and the disser-

tation’s expected outcomes. Chapter 2 builds a strong foundation by providing the

background of the MP inverse-based models and some essential topics discussed in

this dissertation. Then, Chapter 3 intends to provide a literature review on the exist-

ing state-of-the-art representation learning methods and advanced MP inverse-based

networks, such as multilayer extreme learning machine and subnet neural network.

With the foundations and background ready, this dissertation elaborates the pro-

posed subnet-based structures in Chapter 4, 5, 6, and 7. Following that, several

novel network optimization algorithms by the combination of MP inverse strategy

and advanced representation learning methods are proposed in Chapter 8 and 9. In

the following section, the contributions of each chapter are summarized.

182

10.2 Contributions

The contributions of this dissertation can be split into three sections: the proposed

subnet-based methods, i.e., Wi-HSNN, OS-HSNN, OC-HSNN, MCOC-HSNN and SS-

HSNN; the deep learning methods, which are RML-MP, SRML-MP and MPFR; the

newly gathered datasets, such as HFSWR-RD and CO-Mask. The key characteristics

of each algorithm and dataset are listed in the following subsections.

10.2.1 The Proposed Subnet-based Methods

In 2016, a novel MP inverse-based architecture called SNN was developed for super-

vised learning [1]. It has the advantages of excellent generalization performance and

a quicker learning curve. In this dissertation, we extend the idea of the subnet neu-

ral network to specific application domains. The variants of subnet neural networks

include online learning, semi-supervised learning and one-class classification domains.

Chapter 4 presents a new supervised width-growth model (Wi-HSNN) based on

subnet structure for feature refinement and classification. The contributions of this

chapter are: 1) Most of the state-of-the-art multilayer networks architect their model

in a layer-wise manner, however, the Wi-HSNN utilizes a width-growth strategy to

iteratively search the optimal latent-space representations. Mathematical proof veri-

fies the effectiveness of this model. 2) The Wi-HSNN is a one-step learning algorithm,

learning the global-level encoding and classification simultaneously, which is capable

of providing global-level representations. 3) A multi-model feature fusion strategy is

proposed for better performance. The experimental results outperform all the compet-

ing MP inverse-based RL algorithms by 1% to 5% on the image classification domain.

In addition, the proposed feature refinement strategy saves a large amount of train-

ing and inference time compared to the other subnet-based neural networks. Overall,

compared to the other MP inverse-based structures, the proposed width-growth model

is robust across various datasets in terms of generalization performance.

Chapter 5 derives a batch-by-batch learning strategy for the MP inverse technique.

The traditional MP inverse method is a one-batch learning algorithm. However, in

some real-world applications, the processing data is computationally infeasible to be

183

trained at once. Thus, the recursive MP inverse is adopted and reformulated into a

recursive learning scheme. By doing so, any sized large-scale datasets can be efficiently

handled. Experimental results verify that the proposed strategy can process big data

without the requirements of the high-performance computing device.

Chapter 6 proposed two subnet-based algorithms for one-class classification. The

contributions of this chapter are: 1) A multilayer subnet-based one-class learning

structure named OC-HSNN is proposed. 2) The MCOC-HSNN is an advanced one-

class classification model using the maximum correntropy criterion for subspace latent

optimization. 3) A new dataset named CO-Mask is gathered. In comparison to some

advanced one-class learning algorithms, the proposed OC-SNN and MCOC-SNN have

promising performance. Further, the visualized t-sne plot indicates that after several

learning iterations, the inter-class distance of each category is reduced, while the

intra-class counterpart is enhanced.

Chapter 7 extends the Wi-HSNN from the supervised learning domain to the

semi-supervised learning domain. Specifically, the contributions of Chapter 7 are

listed below. 1) A subnet-based semi-supervised learning method called SS-HSNN

is proposed. Essentially, it is a manifold regularization algorithm that assumes the

data with the same label are more likely to be close together. 2) A novel semi-

supervised dataset for ship-target detection is formed. Comparisons with the other

MP inverse-based semi-supervised methods show that the SS-HSNN achieves 0.5% to

2% improvement on image classification tasks. Also, the SS-HSNN achieves a real-

time inference speed (1.2 ms per frame) with affordable training expenses. Therefore,

the merits of the proposed MS-HSNN have been validated.

10.2.2 The Proposed Deep Learning Methods

Deep learning methods have become state-of-the-art algorithms both in the area

of computer vision and big data analysis. Several advanced DCNN models, such

as DenseNet and ResNet have achieved excellent performance on some 2D image

datasets, including ImageNet and Place-365. By having the MP inverse strategy,

the multilayer networks, such as multilayer ELM and DCNN, have shown superior

performance in representation learning and some practical applications. Hence, this

184

work utilizes the MP inverse-based retraining strategy to boost the performance of

the existing multilayer network. It improves the performance through building novel

optimization strategies in the following two aspects.

Chapter 8 harnesses the ability of multilayer ELM in handling large-scale datasets.

It uses a multilayer framework to extract the useful features and to classify the input

patterns. The core contribution of this chapter is that of the optimization of the

hidden layer weights. Inspired by the subnet neural network that utilizes the pulled

back error to search the weights of the new subspaces, the proposed models in Chapter

8 pull back the weights from the output layer to each hidden layer one by one. Then,

the weights are updated according to the input and the feedback data. Further, the

ℓ1/2-based loss function is used to search the sparse encoding. Experimental results

show that the proposed optimization strategy boosts the performance by around 2%

to 8% over the original multilayer ELM on image classification tasks.

Chapter 9 utilizes the batch-by-batch strategy to refine the FC layers of a DCNN.

First, a random freeze learning strategy is adopted that uses one hyperparameter

r to control the number of layers trained in each epoch to mitigate the overfitting

problem. Second, the batch-by-batch strategy is engaged to refine the dense layer

weights. The proposed method outmatches the compared optimization algorithms on

some challenging transfer learning tasks concerning the evaluation metrics including

the complexity and applicability. It achieves an average of 1.4% to 4.7% improvement

compared to the SGD optimizer. In addition, compared to the original method, this

strategy greatly enhances the convergence time (around 1.5 times quicker) required

for retraining the DCNNs.

10.2.3 The Newly Gathered Datasets

In this dissertation, two new datasets called HFSWR-RD and CO-Mask are gathered.

In Chapter 6, we form a new misinformation detection dataset called CO-Mask.

The information of this dataset is collected from the “big three” news agencies, which

are Associated Press, Reuters, and Bloomberg. This dataset contains 4,907 training

patterns and 3,725 testing patterns.

The HFSWR-RD is a semi-supervised learning dataset that is gathered from a

185

high-frequency radar located on the east coast of China. Compared to the other

sensors, the data processing of radar signals is more complex since various interference

co-exists with the vessel signal. In addition, in practical ship-target monitoring, not

all of the images have accurate ground truth. However, the current HFSWR dataset

is dedicated to the supervised-learning task which only contains labelled samples.

Therefore, we form a new radar dataset in Chapter 7 (HFSWR-RDE) with both

labelled and unlabeled radar images for semi-supervised learning.

10.3 Applications

In this dissertation, the effectiveness of the proposed methods is verified in the fol-

lowing real-world applications.

• Food Image Classification. A healthy diet has crucial importance to human

health, and food image classification plays a vital role in recording daily diets.

Recent works on feature fusion have significantly boosted the generalization

performance of food categorization tasks. The effectiveness of the proposed

Wi-HSNN, OS-HSNN, OC-HSNN, MCOC-HSNN, RML-MP, SRML-MP and

MPFR is validated on a challenging food dataset called Food-251.

• Ship-target Detection. High-frequency surface wave radar can be effectively

used to detect ships in the exclusive economic zone. However, the ship sig-

nal is concealed and interfered with various clutter and background noise in

the Doppler spectrum. Thus, the proposed OS-HSNN and SS-HSNN are uti-

lized on HF-radar and HFSWR-RD datasets to efficiently detect ship-targets

respectively.

• Camera Model Identification. This application domain aims to identify the

camera that the image was taken with. It is quite a challenging task because the

photos were taken from different cameras mostly differ in the texture details.

A powerful and useful representation learning algorithm is what we urgently

need for camera identification. Hence, we verified the proposed Wi-HSNN with

state-of-the-art camera model identification models on the SPCUP dataset.

186

• COVID-19-related Misinformation Detection. From the general public

perspective, social media is increasingly becoming a powerful tool for ordinary

citizens to gather information and keep abreast of the developments of breaking

news such as that related to COVID-19. However, misinformation exists that

hinders the implementation of and compliance with public policies designed to

flatten the curve and to go back to normal. We approached misinformation

detection in digital platforms through one-class classification strategies, such as

OC-HSNN and MCOC-HSNN.

10.4 Limitations

The limitations of the proposed methods are listed in this subsection as follows.

• For the Wi-HSNN, OS-HSNN, OC-HSNN, MCOC-HSNN, SS-HSNN, RML-

MP, and SRML-MP, these methods have one key limitation: The structures are

incapable of extracting high-level features because these models do not contain

the convolutional layers. In other words, these algorithms could be feature

refiners and classifiers, and they need advanced convolutional networks such as

VGG, ResNet, and DenseNet for high-level feature extraction.

• For the proposed MPFR, it utilizes the MP inverse strategy to refine the dense

layer weights. However, the training of the convolutional layers still needs the

use of backpropagation-based optimization strategies, like SGDM and Adam.

This hinders its applicability and popularity.

10.5 Scopes for Future Works

This section thoroughly presents the future works for boosting the proposed subnet

neural networks and the deep learning models.

• The Google Brain research team proposed a novel deep learning architecture

called MLP-Mixer [257]. This architecture is built based exclusively on multi-

layer perceptrons. Hence, for future works, we can try to use the MP inverse

strategy to boost the performance of the MLP-Mixer.

187

• The proposed subnet neural networks generate their global-level representa-

tions through the category information. Hence, it is worth investigating an

SNN-based algorithm, which achieves a generalized feature space based on both

feature properties and class-specific information.

• Self-supervised learning is a hot topic both in computer vision and machine

learning. It will be promising if we extend the supervised subnet neural network

into the self-supervised learning domain.

• The MPFR is proposed for DCNN retraining and transfer learning. It recalcu-

lates the dense layer weights in each retraining epoch. It would be worthwhile

to use the proposed MP inverse strategy to train all the layers including convo-

lutional layers in DCNNs.

188

Bibliography

[1] Y. Yang and Q. J. Wu, “Extreme learning machine with subnetwork hid-

den nodes for regression and classification,” IEEE transactions on cybernetics,

vol. 46, no. 12, pp. 2885–2898, 2016.

[2] T. Akilan, “Video foreground localization from traditional methods to deep

learning,” Ph.D. dissertation, University of Windsor (Canada), 2018.

[3] X. Song, S. Jiang, L. Herranz, Y. Kong, and K. Zheng, “Category co-occurrence

modeling for large scale scene recognition,” Pattern Recognition, vol. 59, pp. 98–

111, 2016.

[4] R. Katuwal and P. N. Suganthan, “Stacked autoencoder based deep random

vector functional link neural network for classification,” Applied Soft Comput-

ing, vol. 85, p. 105854, 2019.

[5] A. A. MUSTAFA, “Selecting a representative image from a collection of images

by solving a system of non-linear algebraic equations,” International Journal of

Signal Processing, vol. 1, pp. 177–185.

[6] J. Edwards, “Planet selfie: We’re now posting a staggering 1.8 billion photos

every day,” Business Insider, 2014.

[7] L. Capital, “billion cameras by 2022 fuel business opportunities,” Tech reports,

2017.

[8] L. Zhang, Q. Zhang, L. Zhang, D. Tao, X. Huang, and B. Du, “Ensemble

manifold regularized sparse low-rank approximation for multiview feature em-

bedding,” Pattern Recognition, vol. 48, no. 10, pp. 3102–3112, 2015.

[9] C. Du, C. Du, L. Huang, and H. He, “Reconstructing perceived images from

human brain activities with bayesian deep multiview learning,” IEEE transac-

tions on neural networks and learning systems, vol. 30, no. 8, pp. 2310–2323,

2018.

189

[10] T. Akilan, Q. J. Wu, and H. Zhang, “Effect of fusing features from multiple

dcnn architectures in image classification,” IET Image Processing, vol. 12, no. 7,

pp. 1102–1110, 2018.

[11] F. De la Torre, “A least-squares framework for component analysis,” IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 6, pp.

1041–1055, 2012.

[12] L. Zhao, T. Yang, J. Zhang, Z. Chen, Y. Yang, and Z. J. Wang, “Co-learning

non-negative correlated and uncorrelated features for multi-view data,” IEEE

Transactions on Neural Networks and Learning Systems, 2020.

[13] Z. Ding and Y. Fu, “Robust multiview data analysis through collective low-rank

subspace,” IEEE transactions on neural networks and learning systems, vol. 29,

no. 5, pp. 1986–1997, 2017.

[14] T. Akilan, Q. J. Wu, Y. Yang, and A. Safaei, “Fusion of transfer learning fea-

tures and its application in image classification,” in 2017 IEEE 30th Canadian

Conference on Electrical and Computer Engineering (CCECE). IEEE, 2017,

pp. 1–5.

[15] T. Akilan, Q. J. Wu, and W. Zhang, “Video foreground extraction using multi-

view receptive field and encoder–decoder dcnn for traffic and surveillance ap-

plications,” IEEE Transactions on Vehicular Technology, vol. 68, no. 10, pp.

9478–9493, 2019.

[16] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” the

Journal of machine Learning research, vol. 3, pp. 993–1022, 2003.

[17] M. Welling, M. Rosen-Zvi, and G. E. Hinton, “Exponential family harmoniums

with an application to information retrieval.” in Nips, vol. 4. Citeseer, 2004,

pp. 1481–1488.

[18] Y. Jia, M. Salzmann, T. Darrell et al., “Factorized latent spaces with structured

sparsity.” in NIPS, vol. 10, 2010, pp. 982–990.

190

[19] P. L. Lai and C. Fyfe, “Kernel and nonlinear canonical correlation analysis,”

International Journal of Neural Systems, vol. 10, no. 05, pp. 365–377, 2000.

[20] S. Akaho, “A kernel method for canonical correlation analysis,” arXiv preprint

cs/0609071, 2006.

[21] J. Zheng, F. Cai, W. Chen, C. Feng, and H. Chen, “Hierarchical neural repre-

sentation for document classification,” Cognitive Computation, vol. 11, no. 2,

pp. 317–327, 2019.

[22] Z. Jiang, Z. Lin, and L. S. Davis, “Label consistent k-svd: Learning a discrim-

inative dictionary for recognition,” IEEE transactions on pattern analysis and

machine intelligence, vol. 35, no. 11, pp. 2651–2664, 2013.

[23] Y. Yang and Q. J. Wu, “Features combined from hundreds of midlayers: Hierar-

chical networks with subnetwork nodes,” IEEE transactions on neural networks

and learning systems, vol. 30, no. 11, pp. 3313–3325, 2019.

[24] J. Tang, C. Deng, and G.-B. Huang, “Extreme learning machine for multi-

layer perceptron,” IEEE transactions on neural networks and learning systems,

vol. 27, no. 4, pp. 809–821, 2016.

[25] H. Dai, J. Cao, T. Wang, M. Deng, and Z. Yang, “Multilayer one-class extreme

learning machine,” Neural Networks, vol. 115, pp. 11–22, 2019.

[26] W. F. Schmidt, M. A. Kraaijveld, and R. P. Duin, “Feedforward neural net-

works with random weights,” in Pattern Recognition, 1992. Vol. II. Conference

B: Pattern Recognition Methodology and Systems, Proceedings., 11th IAPR In-

ternational Conference on. IEEE, 1992, pp. 1–4.

[27] Y. Yang, J. Q. Wu, X. Feng, and A. Thangarajah, “Recomputation of dense

layers for the performance improvement of dcnn,” IEEE transactions on pattern

analysis and machine intelligence, 2019.

[28] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: theory

and applications,” Neurocomputing, vol. 70, no. 1-3, pp. 489–501, 2006.

191

[29] D. Wang and M. Li, “Stochastic configuration networks: Fundamentals and

algorithms,” IEEE transactions on cybernetics, vol. 47, no. 10, pp. 3466–3479,

2017.

[30] C. P. Chen and Z. Liu, “Broad learning system: An effective and efficient

incremental learning system without the need for deep architecture,” IEEE

transactions on neural networks and learning systems, vol. 29, no. 1, pp. 10–24,

2017.

[31] Y. Yang, Q. J. Wu, W.-L. Zheng, and B.-L. Lu, “Eeg-based emotion recogni-

tion using hierarchical network with subnetwork nodes,” IEEE Transactions on

Cognitive and Developmental Systems, vol. 10, no. 2, pp. 408–419, 2017.

[32] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning

applied to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp.

2278–2324, 1998.

[33] Y. LeCun, F. J. Huang, and L. Bottou, “Learning methods for generic object

recognition with invariance to pose and lighting,” in Computer Vision and Pat-

tern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer

Society Conference on, vol. 2. IEEE, 2004, pp. II–104.

[34] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large scale visual recog-

nition challenge,” International journal of computer vision, vol. 115, no. 3, pp.

211–252, 2015.

[35] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10

million image database for scene recognition,” IEEE transactions on pattern

analysis and machine intelligence, vol. 40, no. 6, pp. 1452–1464, 2017.

[36] A. Rasmus, M. Berglund, M. Honkala, H. Valpola, and T. Raiko, “Semi-

supervised learning with ladder networks,” in Advances in Neural Information

Processing Systems, 2015, pp. 3546–3554.

192

[37] I. Golan and R. El-Yaniv, “Deep anomaly detection using geometric transfor-

mations,” in Advances in Neural Information Processing Systems, 2018, pp.

9758–9769.

[38] L. Bottou, “Large-scale machine learning with stochastic gradient descent,” in

Proceedings of COMPSTAT’2010. Springer, 2010, pp. 177–186.

[39] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[40] Y. Yang and Q. J. Wu, “Extreme learning machine with subnetwork hid-

den nodes for regression and classification,” IEEE transactions on cybernetics,

vol. 46, no. 12, pp. 2885–2898, 2016.

[41] D. Husmeier, “Random vector functional link (rvfl) networks,” in Neural Net-

works for Conditional Probability Estimation. Springer, 1999, pp. 87–97.

[42] L. L. C. Kasun, H. Zhou, G.-B. Huang, and C. M. Vong, “Representational

learning with extreme learning machine for big data,” IEEE Intelligent Systems,

vol. 28, no. 6, pp. 31–34, 2013.

[43] W. Liu, P. P. Pokharel, and J. C. Pŕıncipe, “Correntropy: Properties and appli-

cations in non-gaussian signal processing,” IEEE Transactions on Signal Pro-

cessing, vol. 55, no. 11, pp. 5286–5298, 2007.

[44] B. Chen, X. Wang, Y. Li, and J. C. Principe, “Maximum correntropy criterion

with variable center,” IEEE Signal Processing Letters, vol. 26, no. 8, pp. 1212–

1216, 2019.

[45] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,

and L. D. Jackel, “Backpropagation applied to handwritten zip code recogni-

tion,” Neural computation, vol. 1, no. 4, pp. 541–551, 1989.

[46] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-

scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

193

[47] S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf, “Transfer learning in nat-

ural language processing,” in Proceedings of the 2019 Conference of the North

American Chapter of the Association for Computational Linguistics: Tutorials,

2019, pp. 15–18.

[48] T. Akilan, A. Thiagarajan, B. Venkatesan, S. Thirumeni, and S. G. Chan-

drasekaran, “Quantifying the impact of complementary visual and textual cues

under image captioning,” in 2020 IEEE International Conference on Systems,

Man, and Cybernetics (SMC). IEEE, 2020, pp. 389–394.

[49] P. Kaur, B. S. Khehra, and A. P. S. Pharwaha, “Deep transfer learning based

multiway feature pyramid network for object detection in images,” Mathemat-

ical Problems in Engineering, 2021.

[50] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with

deep convolutional neural networks,” in Advances in neural information pro-

cessing systems, 2012, pp. 1097–1105.

[51] A. Severyn and A. Moschitti, “Twitter sentiment analysis with deep convolu-

tional neural networks,” in Proceedings of the 38th international ACM SIGIR

conference on research and development in information retrieval, 2015, pp. 959–

962.

[52] G. Lin, J. Zhang, W. Luo, L. Pan, Y. Xiang, O. De Vel, and P. Montague,

“Cross-project transfer representation learning for vulnerable function discov-

ery,” IEEE Transactions on Industrial Informatics, vol. 14, no. 7, pp. 3289–

3297, 2018.

[53] S. Roweis, “Em algorithms for pca and spca,” Advances in neural information

processing systems, pp. 626–632, 1998.

[54] R. M. Neal, “Connectionist learning of belief networks,” Artificial intelligence,

vol. 56, no. 1, pp. 71–113, 1992.

[55] I. J. Goodfellow, A. Courville, and Y. Bengio, “Spike-and-slab sparse coding

for unsupervised feature discovery,” arXiv preprint arXiv:1201.3382, 2012.

194

[56] I. T. Jolliffe and J. Cadima, “Principal component analysis: a review and recent

developments,” Philosophical Transactions of the Royal Society A: Mathemati-

cal, Physical and Engineering Sciences, vol. 374, no. 2065, p. 20150202, 2016.

[57] K. Pearson, “Liii. on lines and planes of closest fit to systems of points in

space,” The London, Edinburgh, and Dublin philosophical magazine and journal

of science, vol. 2, no. 11, pp. 559–572, 1901.

[58] Y. Li, N. Wang, and R. J. Carroll, “Selecting the number of principal compo-

nents in functional data,” Journal of the American Statistical Association, vol.

108, no. 504, pp. 1284–1294, 2013.

[59] Q. Zhao, D. Meng, Z. Xu, W. Zuo, and L. Zhang, “Robust principal component

analysis with complex noise,” in International conference on machine learning.

PMLR, 2014, pp. 55–63.

[60] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review

and new perspectives,” IEEE transactions on pattern analysis and machine

intelligence, vol. 35, no. 8, pp. 1798–1828, 2013.

[61] P. Smolensky, “Chapter 6: information processing in dynamical systems: foun-

dations of harmony theory,” Parallel distributed processing: explorations in the

microstructure of cognition, vol. 1.

[62] M. Ranzato and G. E. Hinton, “Modeling pixel means and covariances using

factorized third-order boltzmann machines,” in 2010 IEEE computer society

conference on computer vision and pattern recognition. IEEE, 2010, pp. 2551–

2558.

[63] A.-r. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using deep

belief networks,” IEEE transactions on audio, speech, and language processing,

vol. 20, no. 1, pp. 14–22, 2011.

[64] A. MEİMANDİ, A. OryAn, S. HAddAdI, and A. B. SAdegH, “Histopathological

and biomechanical evaluation of bone healing properties of dbm and dbm-g90

195

in a rabbit model,” Acta orthopaedica et traumatologica turcica, vol. 49, no. 6,

p. 683, 2014.

[65] G.-S. Xie, X.-B. Jin, X.-Y. Zhang, S.-F. Zang, C. Yang, Z. Wang, and J. Pu,

“From class-specific to class-mixture: Cascaded feature representations via re-

stricted boltzmann machine learning,” IEEE Access, vol. 6, pp. 69 393–69 406,

2018.

[66] X. Lü, L. Meng, C. Chen, and P. Wang, “Fuzzy removing redundancy re-

stricted boltzmann machine: improving learning speed and classification accu-

racy,” IEEE Transactions on Fuzzy Systems, vol. 28, no. 10, pp. 2495–2509,

2019.

[67] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally

linear embedding,” science, vol. 290, no. 5500, pp. 2323–2326, 2000.

[68] G. Hinton and S. T. Roweis, “Stochastic neighbor embedding,” in NIPS, vol. 15.

Citeseer, 2002, pp. 833–840.

[69] L. Van Der Maaten, “Learning a parametric embedding by preserving local

structure,” in Artificial Intelligence and Statistics. PMLR, 2009, pp. 384–391.

[70] J. Weston, F. Ratle, H. Mobahi, and R. Collobert, “Deep learning via semi-

supervised embedding,” in Neural networks: Tricks of the trade. Springer,

2012, pp. 639–655.

[71] Y. Bengio, H. Larochelle, and P. Vincent, “Non-local manifold parzen windows,”

in NIPS, vol. 18, 2005, pp. 115–122.

[72] L. Seidenari, G. Serra, A. D. Bagdanov, and A. Del Bimbo, “Local pyramidal

descriptors for image recognition,” IEEE transactions on pattern analysis and

machine intelligence, vol. 36, no. 5, pp. 1033–1040, 2014.

[73] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek, “Image classification

with the fisher vector: Theory and practice,” International journal of computer

vision, vol. 105, no. 3, pp. 222–245, 2013.

196

[74] R. Kwitt, N. Vasconcelos, and N. Rasiwasia, “Scene recognition on the semantic

manifold,” in European Conference on Computer Vision. Springer, 2012, pp.

359–372.

[75] L. Zhang, X. Zhen, and L. Shao, “Learning object-to-class kernels for scene

classification,” IEEE Transactions on image processing, vol. 23, no. 8, pp. 3241–

3253, 2014.

[76] X. He, D. Cai, S. Yan, and H.-J. Zhang, “Neighborhood preserving embedding,”

in Tenth IEEE International Conference on Computer Vision (ICCV’05) Vol-

ume 1, vol. 2. IEEE, 2005, pp. 1208–1213.

[77] D. Cai, X. He, K. Zhou, J. Han, and H. Bao, “Locality sensitive discriminant

analysis.” in IJCAI, vol. 2007, 2007, pp. 1713–1726.

[78] L. Bo, X. Ren, and D. Fox, “Multipath sparse coding using hierarchical match-

ing pursuit,” in Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, 2013, pp. 660–667.

[79] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyra-

mid matching for recognizing natural scene categories,” in 2006 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’06),

vol. 2. IEEE, 2006, pp. 2169–2178.

[80] L. Liu, L. Wang, and X. Liu, “In defense of soft-assignment coding,” in 2011

International Conference on Computer Vision. IEEE, 2011, pp. 2486–2493.

[81] J. C. Van Gemert, C. J. Veenman, A. W. Smeulders, and J.-M. Geusebroek,

“Visual word ambiguity,” IEEE Transactions on Pattern Analysis & Machine

Intelligence, no. 7, pp. 1271–1283, 2009.

[82] J. Yang, K. Yu, Y. Gong, and T. Huang, “Linear spatial pyramid matching

using sparse coding for image classification,” 2009.

[83] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained

linear coding for image classification,” in Computer Vision and Pattern Recog-

nition (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 3360–3367.

197

[84] N. Rasiwasia and N. Vasconcelos, “Holistic context models for visual recogni-

tion,” IEEE transactions on pattern analysis and machine intelligence, vol. 34,

no. 5, pp. 902–917, 2012.

[85] J. Weng, N. Ahuja, and T. S. Huang, “Cresceptron: a self-organizing neural

network which grows adaptively,” in [Proceedings 1992] IJCNN International

Joint Conference on Neural Networks, vol. 1. IEEE, 1992, pp. 576–581.

[86] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[87] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,

2015, pp. 1–9.

[88] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2016, pp. 770–778.

[89] A. Sharif Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “Cnn features off-

the-shelf: an astounding baseline for recognition,” in Proceedings of the IEEE

conference on computer vision and pattern recognition workshops, 2014, pp.

806–813.

[90] S. Guo, W. Huang, L. Wang, and Y. Qiao, “Locally supervised deep hybrid

model for scene recognition,” IEEE transactions on image processing, vol. 26,

no. 2, pp. 808–820, 2016.

[91] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no.

7553, pp. 436–444, 2015.

[92] H. Bourlard and Y. Kamp, “Auto-association by multilayer perceptrons and

singular value decomposition,” Biological cybernetics, vol. 59, no. 4, pp. 291–

294, 1988.

198

[93] M. Ranzato, C. Poultney, S. Chopra, Y. LeCun et al., “Efficient learning of

sparse representations with an energy-based model,” Advances in neural infor-

mation processing systems, vol. 19, p. 1137, 2007.

[94] H. Lee, C. Ekanadham, and A. Ng, “Sparse deep belief net model for visual area

v2,” Advances in neural information processing systems, vol. 20, pp. 873–880,

2007.

[95] I. Goodfellow, H. Lee, Q. Le, A. Saxe, and A. Ng, “Measuring invariances in

deep networks,” Advances in neural information processing systems, vol. 22, pp.

646–654, 2009.

[96] M. Ranzato, Y.-L. Boureau, Y. LeCun et al., “Sparse feature learning for deep

belief networks,” Advances in neural information processing systems, vol. 20,

pp. 1185–1192, 2007.

[97] W. Y. Zou, A. Y. Ng, and K. Yu, “Unsupervised learning of visual invariance

with temporal coherence,” in NIPS 2011 workshop on deep learning and unsu-

pervised feature learning, vol. 3, 2011.

[98] J. Tang, C. Deng, and G.-B. Huang, “Extreme learning machine for multi-

layer perceptron,” IEEE transactions on neural networks and learning systems,

vol. 27, no. 4, pp. 809–821, 2015.

[99] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field prop-

erties by learning a sparse code for natural images,” Nature, vol. 381, no. 6583,

pp. 607–609, 1996.

[100] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and

composing robust features with denoising autoencoders,” in Proceedings of the

25th international conference on Machine learning, 2008, pp. 1096–1103.

[101] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol, “Stacked

denoising autoencoders: Learning useful representations in a deep network with

a local denoising criterion,” Journal of machine learning research, vol. 11, no.

Dec, pp. 3371–3408, 2010.

199

[102] P. Vincent, “A connection between score matching and denoising autoen-

coders,” Neural computation, vol. 23, no. 7, pp. 1661–1674, 2011.

[103] K. Swersky, M. Ranzato, D. Buchman, B. Marlin, and N. de Freitas, “On score

matching for energy based models: Generalizing autoencoders and simplifying

deep learning,” in Proc. ICML, 2011.

[104] G. Alain and Y. Bengio, “What regularized auto-encoders learn from the data-

generating distribution,” The Journal of Machine Learning Research, vol. 15,

no. 1, pp. 3563–3593, 2014.

[105] S. Rifai, P. Vincent, X. Muller, X. Glorot, and Y. Bengio, “Contractive auto-

encoders: Explicit invariance during feature extraction,” in Icml, 2011.

[106] J. Park and I. W. Sandberg, “Universal approximation using radial-basis-

function networks,” Neural computation, vol. 3, no. 2, pp. 246–257, 1991.

[107] B. Igelnik and Y.-H. Pao, “Stochastic choice of basis functions in adaptive

function approximation and the functional-link net,” IEEE Transactions on

Neural Networks, vol. 6, no. 6, pp. 1320–1329, 1995.

[108] D. P. Mesquita, J. P. P. Gomes, and L. R. Rodrigues, “Artificial neural net-

works with random weights for incomplete datasets,” Neural Processing Letters,

vol. 50, no. 3, pp. 2345–2372, 2019.

[109] C. Huang, Q. Huang, and D. Wang, “Stochastic configuration networks based

adaptive storage replica management for power big data processing,” IEEE

Transactions on Industrial Informatics, vol. 16, no. 1, pp. 373–383, 2019.

[110] Y. Ren, P. N. Suganthan, N. Srikanth, and G. Amaratunga, “Random vec-

tor functional link network for short-term electricity load demand forecasting,”

Information Sciences, vol. 367, pp. 1078–1093, 2016.

[111] Y. Zhang, J. Wu, Z. Cai, B. Du, and S. Y. Philip, “An unsupervised parameter

learning model for rvfl neural network,” Neural Networks, vol. 112, pp. 85–97,

2019.

200

[112] T. Wang, J. Cao, X. Lai, and B. Chen, “Deep weighted extreme learning ma-

chine,” Cognitive Computation, vol. 10, no. 6, pp. 890–907, 2018.

[113] C. M. Wong, C. M. Vong, P. K. Wong, and J. Cao, “Kernel-based multilayer

extreme learning machines for representation learning,” IEEE transactions on

neural networks and learning systems, vol. 29, no. 3, pp. 757–762, 2016.

[114] Y. Yang and Q. J. Wu, “Multilayer extreme learning machine with subnetwork

nodes for representation learning,” IEEE transactions on cybernetics, vol. 46,

no. 11, pp. 2570–2583, 2016.

[115] W. Zhang, J. Wu, and Y. Yang, “Wi-hsnn: A subnetwork-based encoding struc-

ture for dimension reduction and food classification via harnessing multi-cnn

model high-level features,” Neurocomputing, vol. 414, pp. 57–66, 2020.

[116] W. Wu, Q. J. Wu, W. Sun, Y. Yang, X. Yuan, W.-L. Zheng, and B.-L. Lu, “A

regression method with subnetwork neurons for vigilance estimation using eog

and eeg,” IEEE Transactions on Cognitive and Developmental Systems, 2018.

[117] Y. Yang, Q. J. Wu, and Y. Wang, “Autoencoder with invertible functions for di-

mension reduction and image reconstruction,” IEEE Transactions on Systems,

Man, and Cybernetics: Systems, vol. 48, no. 7, pp. 1065–1079, 2016.

[118] B. Xiao and S. Yin, “A new disturbance attenuation control scheme for quadro-

tor unmanned aerial vehicles,” IEEE Transactions on Industrial Informatics,

vol. 13, no. 6, pp. 2922–2932, 2017.

[119] H.-J. Ma, Y. Liu, T. Li, and G.-H. Yang, “Nonlinear high-gain observer-based

diagnosis and compensation for actuator and sensor faults in a quadrotor un-

manned aerial vehicle,” IEEE Transactions on Industrial Informatics, vol. 15,

no. 1, pp. 550–562, 2018.

[120] M. S. Hossain, M. Al-Hammadi, and G. Muhammad, “Automatic fruit classi-

fication using deep learning for industrial applications,” IEEE Transactions on

Industrial Informatics, vol. 15, no. 2, pp. 1027–1034, 2018.

201

[121] C. P. Chen, “A rapid supervised learning neural network for function interpola-

tion and approximation,” IEEE Transactions on Neural Networks, vol. 7, no. 5,

pp. 1220–1230, 1996.

[122] G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: a new

learning scheme of feedforward neural networks,” in Neural Networks, 2004.

Proceedings. 2004 IEEE International Joint Conference on, vol. 2. IEEE,

2004, pp. 985–990.

[123] W. F. Schmidt, M. A. Kraaijveld, R. P. Duin et al., “Feed forward neural

networks with random weights,” in International Conference on Pattern Recog-

nition. IEEE Computer Society Press, 1992, pp. 1–1.

[124] I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet, “Multi-digit

number recognition from street view imagery using deep convolutional neural

networks,” arXiv preprint arXiv:1312.6082, 2013.

[125] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies

for accurate object detection and semantic segmentation,” in Proceedings of the

IEEE conference on computer vision and pattern recognition, 2014, pp. 580–587.

[126] A. El-Yamany, H. Fouad, and Y. Raffat, “A generic approach cnn-based camera

identification for manipulated images,” in 2018 IEEE International Conference

on Electro/Information Technology (EIT). IEEE, 2018, pp. 0165–0169.

[127] B. Xu, X. Wang, X. Zhou, J. Xi, and S. Wang, “Source camera identification

from image texture features,” Neurocomputing, vol. 207, pp. 131–140, 2016.

[128] C. Chen and M. C. Stamm, “Camera model identification framework using an

ensemble of demosaicing features,” in 2015 IEEE International Workshop on

Information Forensics and Security (WIFS). IEEE, 2015, pp. 1–6.

[129] Y. Matsuda, H. Hoashi, and K. Yanai, “Recognition of multiple-food images

by detecting candidate regions,” in 2012 IEEE International Conference on

Multimedia and Expo. IEEE, 2012, pp. 25–30.

202

[130] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101–mining discrimina-

tive components with random forests,” in European Conference on Computer

Vision. Springer, 2014, pp. 446–461.

[131] P. Kaur, K. Sikka, W. Wang, S. Belongie, and A. Divakaran, “Foodx-251: A

dataset for fine-grained food classification,” arXiv preprint arXiv:1907.06167,

2019.

[132] Y. Kawano and K. Yanai, “Automatic expansion of a food image dataset lever-

aging existing categories with domain adaptation,” in European Conference on

Computer Vision. Springer, 2014, pp. 3–17.

[133] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international con-

ference on document analysis and recognition, vol. 1. IEEE, 1995, pp. 278–282.

[134] C. M. Bishop, Pattern recognition and machine learning. springer-Verlag, 2006.

[135] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Weinberger, “Deep networks with

stochastic depth,” in European Conference on Computer Vision. Springer,

2016, pp. 646–661.

[136] S. Singh, A. Gupta, and A. A. Efros, “Unsupervised discovery of mid-level dis-

criminative patches,” in European Conference on Computer Vision. Springer,

2012, pp. 73–86.

[137] K. Yanai and Y. Kawano, “Food image recognition using deep convolutional

network with pre-training and fine-tuning,” in 2015 IEEE International Con-

ference on Multimedia & Expo Workshops (ICMEW). IEEE, 2015, pp. 1–6.

[138] P. Pandey, A. Deepthi, B. Mandal, and N. B. Puhan, “Foodnet: Recognizing

foods using ensemble of deep networks,” IEEE Signal Processing Letters, vol. 24,

no. 12, pp. 1758–1762, 2017.

[139] J. Zheng, L. Zou, and Z. J. Wang, “Mid-level deep food part mining for food

image recognition,” IET Computer Vision, vol. 12, no. 3, pp. 298–304, 2017.

203

[140] E. Aguilar, M. Bolaños, and P. Radeva, “Food recognition using fusion of clas-

sifiers based on cnns,” in International Conference on Image Analysis and Pro-

cessing. Springer, 2017, pp. 213–224.

[141] H. Hassannejad, G. Matrella, P. Ciampolini, I. De Munari, M. Mordonini, and

S. Cagnoni, “Food image recognition using very deep convolutional networks,”

in Proceedings of the 2nd International Workshop on Multimedia Assisted Di-

etary Management. ACM, 2016, pp. 41–49.

[142] E. K. Chong and S. H. Zak, An introduction to optimization. John Wiley &

Sons, 2004.

[143] G. H. Golub and C. F. Van Loan, Matrix computations. JHU press, 2012,

vol. 3.

[144] L. Fei-Fei and P. Perona, “A bayesian hierarchical model for learning natural

scene categories,” in Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on, vol. 2. IEEE, 2005, pp. 524–531.

[145] L. Fei-Fei, R. Fergus, and P. Perona, “Learning generative visual models from

few training examples: An incremental bayesian approach tested on 101 object

categories,” Computer vision and Image understanding, vol. 106, no. 1, pp.

59–70, 2007.

[146] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,”

2007.

[147] B. Zhou, A. Lapedriza, A. Khosla, A. Oliva, and A. Torralba, “Places: A 10

million image database for scene recognition,” IEEE transactions on pattern

analysis and machine intelligence, vol. 40, no. 6, pp. 1452–1464, 2018.

[148] W. Zhang, Q. Li, Q. J. Wu, Y. Yang, and M. Li, “A novel ship target detection

algorithm based on error self-adjustment extreme learning machine and cascade

classifier,” Cognitive Computation, vol. 11, no. 1, pp. 110–124, 2019.

204

[149] D. Charte, F. Charte, S. Garćıa, M. J. del Jesus, and F. Herrera, “A practi-

cal tutorial on autoencoders for nonlinear feature fusion: Taxonomy, models,

software and guidelines,” Information Fusion, vol. 44, pp. 78–96, 2018.

[150] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no. 2011,

pp. 1–19, 2011.

[151] F. Jangal, S. Saillant, and M. Helier, “Wavelets: a versatile tool for the high

frequency surface wave radar,” in 2007 IEEE Radar Conference. IEEE, 2007,

pp. 497–502.

[152] F. Jangal, S. Saillant, and M. Hélier, “Wavelet contribution to remote sensing

of the sea and target detection for a high-frequency surface wave radar,” IEEE

Geoscience and Remote Sensing Letters, vol. 5, no. 3, pp. 552–556, 2008.

[153] Q. Li, W. Zhang, M. Li, J. Niu, and Q. J. Wu, “Automatic detection of ship tar-

gets based on wavelet transform for hf surface wavelet radar,” IEEE Geoscience

and Remote Sensing Letters, vol. 14, no. 5, pp. 714–718, 2017.

[154] J. O. Hinz, M. Holters, U. Zölzer, A. Gupta, and T. Fickenscher,

“Presegmentation-based adaptive cfar detection for hfswr,” in 2012 IEEE Radar

Conference. IEEE, 2012, pp. 0665–0670.

[155] T. Liu, G. A. Lampropoulos, and C. Fei, “Cfar ship detection system using

polarimetric data,” in 2008 IEEE Radar Conference. IEEE, 2008, pp. 1–4.

[156] L. Zhang, W. You, Q. Wu, S. Qi, and Y. Ji, “Deep learning-based automatic

clutter/interference detection for hfswr,” Remote Sensing, vol. 10, no. 10, p.

1517, 2018.

[157] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,” in Proceedings

of the IEEE conference on computer vision and pattern recognition, 2017, pp.

7263–7271.

[158] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C.

Berg, “Ssd: Single shot multibox detector,” in European conference on computer

vision. Springer, 2016, pp. 21–37.

205

[159] F. Gao, T. Huang, J. Sun, J. Wang, A. Hussain, and E. Yang, “A new algorithm

for sar image target recognition based on an improved deep convolutional neural

network,” Cognitive Computation, vol. 11, no. 6, pp. 809–824, 2019.

[160] Y. Xiao, H. Wang, and W. Xu, “Parameter selection of gaussian kernel for

one-class svm,” IEEE Transactions on Cybernetics, vol. 45, no. 5, pp. 941–953,

2014.

[161] T. Wang, J. Cao, X. Lai, and Q. J. Wu, “Hierarchical one-class classifier with

within-class scatter-based autoencoders,” IEEE Transactions on Neural Net-

works and Learning Systems, 2020.

[162] M. Nicolau, J. McDermott et al., “Learning neural representations for network

anomaly detection,” IEEE Transactions on Cybernetics, vol. 49, no. 8, pp.

3074–3087, 2018.

[163] F. Alaei, N. Girard, S. Barrat, and J.-Y. Ramel, “A new one-class classification

method based on symbolic representation: Application to document classifi-

cation,” in 2014 11th IAPR International Workshop on Document Analysis

Systems. IEEE, 2014, pp. 272–276.

[164] A. E. Fard, M. Mohammadi, Y. Chen, and B. Van de Walle, “Computational

rumor detection without non-rumor: A one-class classification approach,” IEEE

Transactions on Computational Social Systems, vol. 6, no. 5, pp. 830–846, 2019.

[165] E. Parzen, “On estimation of a probability density function and mode,” The

annals of mathematical statistics, vol. 33, no. 3, pp. 1065–1076, 1962.

[166] E. Pekalska, D. M. Tax, and R. Duin, “One-class lp classifiers for dissimilarity

representations,” in Advances in Neural Information Processing Systems, 2003,

pp. 777–784.

[167] L. E. Ghaoui, M. I. Jordan, and G. R. Lanckriet, “Robust novelty detection

with single-class mpm,” in Advances in Neural Information Processing Systems,

2003, pp. 929–936.

206

[168] P. Juszczak, D. M. Tax, E. Pe, R. P. Duin et al., “Minimum spanning tree based

one-class classifier,” Neurocomputing, vol. 72, no. 7-9, pp. 1859–1869, 2009.

[169] Q. Leng, H. Qi, J. Miao, W. Zhu, and G. Su, “One-class classification with

extreme learning machine,” Mathematical Problems in Engineering, vol. 2015,

2015.

[170] J. Cao, H. Dai, B. Lei, C. Yin, H. Zeng, and A. Kummert, “Maximum corren-

tropy criterion-based hierarchical one-class classification,” IEEE Transactions

on Neural Networks and Learning Systems, 2020.

[171] X. Cui, J. Cao, T. Wang, and X. Lai, “Robust randomized autoencoder and

correntropy criterion based one-class classification,” IEEE Transactions on Cir-

cuits and Systems II: Express Briefs, 2020.

[172] T. Wang, X. Lai, J. Cao, C.-M. Vong, and B. Chen, “An enhanced hierarchical

extreme learning machine with random sparse matrix based autoencoder,” in

ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP). IEEE, 2019, pp. 3817–3821.

[173] W. Zhang, Q. J. Wu, Y. Yang, T. Akilan, and H. Zhang, “A width-growth model

with subnetwork nodes and refinement structure for representation learning and

image classification,” IEEE Transactions on Industrial Informatics, 2020.

[174] W. Zhang, Q. J. Wu, Y. Yang, T. Akilan, and M. Li, “Hkpm: A hierarchical

key-area perception model for hfswr maritime surveillance,” IEEE Transactions

on Geoscience and Remote Sensing, 2021.

[175] T. Akilan, Q. J. Wu, A. Safaei, and W. Jiang, “A late fusion approach for

harnessing multi-cnn model high-level features,” in 2017 IEEE International

Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2017, pp. 566–

571.

[176] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely con-

nected convolutional networks.” in CVPR, vol. 1, no. 2, 2017, p. 3.

207

[177] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are fea-

tures in deep neural networks?” in Advances in Neural Information Processing

Systems, 2014, pp. 3320–3328.

[178] S. Li, M. Shao, and Y. Fu, “Locality linear fitting one-class svm with low-rank

constraints for outlier detection,” in 2014 International Joint Conference on

Neural Networks (IJCNN). IEEE, 2014, pp. 676–683.

[179] S. Li, M. Shao, and Fu, “Multi-view low-rank analysis with applications to

outlier detection,” ACM Transactions on Knowledge Discovery from Data

(TKDD), vol. 12, no. 3, pp. 1–22, 2018.

[180] J. Wang and A. Cherian, “Gods: Generalized one-class discriminative sub-

spaces for anomaly detection,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, 2019, pp. 8201–8211.

[181] G.-B. Huang, L. Chen, C. K. Siew et al., “Universal approximation using incre-

mental constructive feedforward networks with random hidden nodes,” IEEE

Trans. Neural Networks, vol. 17, no. 4, pp. 879–892, 2006.

[182] A. J. Bell and T. J. Sejnowski, “The “independent components” of natural

scenes are edge filters,” Vision Research, vol. 37, no. 23, pp. 3327–3338, 1997.

[183] S. Gidaris, P. Singh, and N. Komodakis, “Unsupervised representation learning

by predicting image rotations,” arXiv preprint arXiv:1803.07728, 2018.

[184] W. Zhang, W. W. Zhao, D. Wu, and Y. Yang, “Predicting covid-19 trends in

canada: a tale of four models,” Cognitive Computation and Systems, vol. 2,

no. 3, pp. 112–118, 2020.

[185] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, “Detection

and resolution of rumours in social media: A survey,” ACM Computing Surveys

(CSUR), vol. 51, no. 2, pp. 1–36, 2018.

[186] P. Faustini and T. F. Covões, “Fake news detection using one-class classifi-

cation,” in 2019 8th Brazilian Conference on Intelligent Systems (BRACIS).

IEEE, 2019, pp. 592–597.

208

[187] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adver-

sarial networks,” arXiv preprint arXiv:1611.02163, 2016.

[188] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui, A. Binder,

E. Müller, and M. Kloft, “Deep one-class classification,” in International con-

ference on machine learning. PMLR, 2018, pp. 4393–4402.

[189] K. Sohn, C.-L. Li, J. Yoon, M. Jin, and T. Pfister, “Learning and evaluating rep-

resentations for deep one-class classification,” arXiv preprint arXiv:2011.02578,

2020.

[190] J. Zhang, Y. Han, J. Tang, Q. Hu, and J. Jiang, “Semi-supervised image-to-

video adaptation for video action recognition,” IEEE transactions on cybernet-

ics, vol. 47, no. 4, pp. 960–973, 2016.

[191] S. Wang, Z. Ma, Y. Yang, X. Li, C. Pang, and A. G. Hauptmann, “Semi-

supervised multiple feature analysis for action recognition,” IEEE transactions

on multimedia, vol. 16, no. 2, pp. 289–298, 2013.

[192] M. R. Keyvanpour and M. B. Imani, “Semi-supervised text categorization: Ex-

ploiting unlabeled data using ensemble learning algorithms,” Intelligent Data

Analysis, vol. 17, no. 3, pp. 367–385, 2013.

[193] D. Tuia and G. Camps-Valls, “Semisupervised remote sensing image classifica-

tion with cluster kernels,” IEEE Geoscience and Remote Sensing Letters, vol. 6,

no. 2, pp. 224–228, 2009.

[194] J. Muñoz-Maŕı, F. Bovolo, L. Gómez-Chova, L. Bruzzone, and G. Camp-Valls,

“Semisupervised one-class support vector machines for classification of remote

sensing data,” IEEE transactions on geoscience and remote sensing, vol. 48,

no. 8, pp. 3188–3197, 2010.

[195] Z. Yu, Y. Zhang, J. You, C. P. Chen, H.-S. Wong, G. Han, and J. Zhang,

“Adaptive semi-supervised classifier ensemble for high dimensional data classi-

fication,” IEEE transactions on cybernetics, vol. 49, no. 2, pp. 366–379, 2019.

209

[196] A. Fujino, N. Ueda, and K. Saito, “A hybrid generative/discriminative approach

to semi-supervised classifier design,” in AAAI, 2005, pp. 764–769.

[197] X. Zhu and J. Lafferty, “Harmonic mixtures: combining mixture models and

graph-based methods for inductive and scalable semi-supervised learning,” in

Proceedings of the 22nd international conference on Machine learning, 2005,

pp. 1052–1059.

[198] Z. Yuan and C. Lin, “Research on strong constraint self-training algorithm and

applied to remote sensing image classification,” in 2021 IEEE International

Conference on Power Electronics, Computer Applications (ICPECA). IEEE,

2021, pp. 981–985.

[199] D. Wu, M. Shang, G. Wang, and L. Li, “A self-training semi-supervised classi-

fication algorithm based on density peaks of data and differential evolution,” in

2018 IEEE 15th international conference on networking, Sensing and Control

(ICNSC). IEEE, 2018, pp. 1–6.

[200] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-

training,” in Proceedings of the eleventh annual conference on Computational

learning theory, 1998, pp. 92–100.

[201] Z.-H. Zhou and M. Li, “Semisupervised regression with cotraining-style al-

gorithms,” IEEE Transactions on Knowledge and Data Engineering, vol. 19,

no. 11, pp. 1479–1493, 2007.

[202] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: A geomet-

ric framework for learning from labeled and unlabeled examples,” Journal of

machine learning research, vol. 7, no. Nov, pp. 2399–2434, 2006.

[203] G. Huang, S. Song, J. N. Gupta, and C. Wu, “Semi-supervised and unsupervised

extreme learning machines,” IEEE transactions on cybernetics, vol. 44, no. 12,

pp. 2405–2417, 2014.

210

[204] B. Lecouat, C.-S. Foo, H. Zenati, and V. Chandrasekhar, “Manifold regulariza-

tion with gans for semi-supervised learning,” arXiv preprint arXiv:1807.04307,

2018.

[205] Q. She, B. Hu, Z. Luo, T. Nguyen, and Y. Zhang, “A hierarchical semi-

supervised extreme learning machine method for eeg recognition,” Medical &

biological engineering & computing, vol. 57, no. 1, pp. 147–157, 2019.

[206] H. Zhao, J. Zheng, W. Deng, and Y. Song, “Semi-supervised broad learning

system based on manifold regularization and broad network,” IEEE Transac-

tions on Circuits and Systems I: Regular Papers, vol. 67, no. 3, pp. 983–994,

2020.

[207] G. Krishnasamy and R. Paramesran, “Hessian semi-supervised extreme learning

machine,” Neurocomputing, vol. 207, pp. 560–567, 2016.

[208] Y. Lei, L. Cen, X. Chen, and Y. Xie, “A hybrid regularization semi-supervised

extreme learning machine method and its application,” IEEE Access, vol. 7,

pp. 30 102–30 111, 2019.

[209] A. Iosifidis, A. Tefas, and I. Pitas, “Regularized extreme learning machine for

multi-view semi-supervised action recognition,” Neurocomputing, vol. 145, pp.

250–262, 2014.

[210] G.-B. Huang, H. Zhou, X. Ding, and R. Zhang, “Extreme learning machine for

regression and multiclass classification,” IEEE Transactions on Systems, Man,

and Cybernetics, Part B (Cybernetics), vol. 42, no. 2, pp. 513–529, 2011.

[211] W. Zhang, Q. J. Wu, Y. Yang, and T. Akilan, “Multimodel feature rein-

forcement framework using moore-penrose inverse for big data analysis,” IEEE

Transactions on Neural Networks and Learning Systems, 2020.

[212] G. Druck, C. Pal, A. McCallum, and X. Zhu, “Semi-supervised classification

with hybrid generative/discriminative methods,” in Proceedings of the 13th

ACM SIGKDD international conference on Knowledge discovery and data min-

ing, 2007, pp. 280–289.

211

[213] Z. Ju and H. Gu, “Predicting pupylation sites in prokaryotic proteins using

semi-supervised self-training support vector machine algorithm,” Analytical bio-

chemistry, vol. 507, pp. 1–6, 2016.

[214] Y. Zou, Z. Yu, X. Liu, B. Kumar, and J. Wang, “Confidence regularized self-

training,” in Proceedings of the IEEE/CVF International Conference on Com-

puter Vision, 2019, pp. 5982–5991.

[215] R. Sheikhpour, M. A. Sarram, S. Gharaghani, and M. A. Z. Chahooki, “A survey

on semi-supervised feature selection methods,” Pattern Recognition, vol. 64, pp.

141–158, 2017.

[216] Z.-H. Zhou and M. Li, “Semi-supervised regression with co-training.” in IJCAI,

vol. 5, 2005, pp. 908–913.

[217] S. Qiao, W. Shen, Z. Zhang, B. Wang, and A. Yuille, “Deep co-training for

semi-supervised image recognition,” in Proceedings of the european conference

on computer vision (eccv), 2018, pp. 135–152.

[218] V. J. Prakash and D. L. Nithya, “A survey on semi-supervised learning tech-

niques,” arXiv preprint arXiv:1402.4645, 2014.

[219] V. Garla, C. Taylor, and C. Brandt, “Semi-supervised clinical text classification

with laplacian svms: an application to cancer case management,” Journal of

biomedical informatics, vol. 46, no. 5, pp. 869–875, 2013.

[220] J. Tanha, M. van Someren, and H. Afsarmanesh, “Semi-supervised self-training

for decision tree classifiers,” International Journal of Machine Learning and

Cybernetics, vol. 8, no. 1, pp. 355–370, 2017.

[221] C. J. Burges, “A tutorial on support vector machines for pattern recognition,”

Data mining and knowledge discovery, vol. 2, no. 2, pp. 121–167, 1998.

[222] L. Szymanski and B. McCane, “Deep networks are effective encoders of peri-

odicity,” IEEE transactions on neural networks and learning systems, vol. 25,

no. 10, pp. 1816–1827, 2014.

212

[223] P. W. Goldberg and M. R. Jerrum, “Bounding the vapnik-chervonenkis di-

mension of concept classes parameterized by real numbers,” Machine Learning,

vol. 18, no. 2-3, pp. 131–148, 1995.

[224] P. Koiran and E. D. Sontag, “Neural networks with quadratic vc dimension,”

journal of computer and system sciences, vol. 54, no. 1, pp. 190–198, 1997.

[225] D. H. Ballard, “Modular learning in neural networks.” in AAAI, 1987, pp. 279–

284.

[226] F. Lu, J. Wu, J. Huang, and X. Qiu, “Restricted-boltzmann-based extreme

learning machine for gas path fault diagnosis of turbofan engine,” IEEE Trans-

actions on Industrial Informatics, vol. 16, no. 2, pp. 959–968, 2019.

[227] T. Wu, W. Xue, H. Wang, C. Chung, G. Wang, J. Peng, and Q. Yang, “Extreme

learning machine-based state reconstruction for automatic attack filtering in

cyber physical power system,” IEEE Transactions on Industrial Informatics,

2020.

[228] R. Katuwal, P. N. Suganthan, and M. Tanveer, “Random vector func-

tional link neural network based ensemble deep learning,” arXiv preprint

arXiv:1907.00350, 2019.

[229] G. Chao, Y. Luo, and W. Ding, “Recent advances in supervised dimension

reduction: A survey,” Machine learning and knowledge extraction, vol. 1, no. 1,

pp. 341–358, 2019.

[230] Y. Wang, W. Zhang, L. Wu, X. Lin, and X. Zhao, “Unsupervised metric fusion

over multiview data by graph random walk-based cross-view diffusion,” IEEE

Transactions on Neural Networks and Learning Systems, vol. 28, no. 1, pp.

57–70, 2015.

[231] J. Xu, L. Xiang, Q. Liu, H. Gilmore, J. Wu, J. Tang, and A. Madab-

hushi, “Stacked sparse autoencoder (ssae) for nuclei detection on breast cancer

histopathology images,” IEEE Transactions on Medical Imaging, vol. 35, no. 1,

pp. 119–130, 2015.

213

[232] X. Zong-Ben, G. Hai-Liang, W. Yao, and H. ZHANG, “Representative of l1/2

regularization among lq (0¡ q 1) regularizations: an experimental study based

on phase diagram,” Acta Automatica Sinica, vol. 38, no. 7, pp. 1225–1228, 2012.

[233] J. Zeng, S. Lin, and Z. Xu, “Sparse regularization: Convergence of iterative

jumping thresholding algorithm,” IEEE Transactions on Signal Processing,

vol. 64, no. 19, pp. 5106–5118, 2016.

[234] Z. Xu, X. Chang, F. Xu, and H. Zhang, “L1/2 regularization: A thresholding

representation theory and a fast solver,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 23, no. 7, pp. 1013–1027, 2012.

[235] M. M. Anthimopoulos, L. Gianola, L. Scarnato, P. Diem, and S. G.

Mougiakakou, “A food recognition system for diabetic patients based on an

optimized bag-of-features model,” IEEE Journal of Biomedical and Health In-

formatics, vol. 18, no. 4, pp. 1261–1271, 2014.

[236] W. Wu, W. Sun, Q. J. Wu, Y. Yang, H. Zhang, W.-L. Zheng, and B.-L. Lu,

“Multimodal vigilance estimation using deep learning,” IEEE Transactions on

Cybernetics, 2020.

[237] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the

inception architecture for computer vision,” in Proceedings of the IEEE confer-

ence on computer vision and pattern recognition, 2016, pp. 2818–2826.

[238] K.-K. Lurz, M. Bashiri, K. F. Willeke, A. K. Jagadish, E. Wang, E. Y. Walker,

S. Cadena, T. Muhammad, E. Cobos, A. Tolias et al., “Generalization in data-

driven models of primary visual cortex,” in International Conference on Learn-

ing Representations, 2021.

[239] S. Khan, N. Islam, Z. Jan, I. U. Din, and J. J. C. Rodrigues, “A novel deep

learning based framework for the detection and classification of breast cancer

using transfer learning,” Pattern Recognition Letters, vol. 125, pp. 1–6, 2019.

214

[240] S. Malhotra, V. Kumar, and A. Agarwal, “Bidirectional transfer learning model

for sentiment analysis of natural language,” Journal of Ambient Intelligence and

Humanized Computing, pp. 1–21, 2021.

[241] H. Chen, Y. Wang, G. Wang, and Y. Qiao, “Lstd: A low-shot transfer detec-

tor for object detection,” in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 32, no. 1, 2018.

[242] F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A

comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109,

no. 1, pp. 43–76, 2020.

[243] L. Wen, L. Gao, and X. Li, “A new deep transfer learning based on sparse

auto-encoder for fault diagnosis,” IEEE Transactions on systems, man, and

cybernetics: systems, vol. 49, no. 1, pp. 136–144, 2017.

[244] T. Kurbiel and S. Khaleghian, “Training of deep neural networks based on

distance measures using rmsprop,” arXiv preprint arXiv:1708.01911, 2017.

[245] P. Courrieu, “Fast computation of moore-penrose inverse matrices,” arXiv

preprint arXiv:0804.4809, 2008.

[246] R. MacAusland, “The moore-penrose inverse and least squares,” Math 420:

Advanced Topics in Linear Algebra, pp. 1–10, 2014.

[247] M. A. Rakha, “On the moore–penrose generalized inverse matrix,” Applied

Mathematics and Computation, vol. 158, no. 1, pp. 185–200, 2004.

[248] H. Zhuang, Z. Lin, and K.-A. Toh, “Blockwise recursive moore-penrose inverse

for network learning,” IEEE Transactions on Systems, Man, and Cybernetics:

Systems, 2021.

[249] J. Liu, L. Zuo, X. Xu, X. Zhang, J. Ren, Q. Fang, and X. Liu, “Efficient

batch-mode reinforcement learning using extreme learning machines,” IEEE

Transactions on Systems, Man, and Cybernetics: Systems, 2019.

215

[250] L. Zhang and P. N. Suganthan, “A comprehensive evaluation of random vector

functional link networks,” Information Sciences, vol. 367, pp. 1094–1105, 2016.

[251] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Freezeout: Accelerate training

by progressively freezing layers,” arXiv preprint arXiv:1706.04983, 2017.

[252] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[253] K. Kamnitsas, C. Baumgartner, C. Ledig, V. Newcombe, J. Simpson, A. Kane,

D. Menon, A. Nori, A. Criminisi, D. Rueckert et al., “Unsupervised domain

adaptation in brain lesion segmentation with adversarial networks,” in Inter-

national Conference on Information Processing in Medical Imaging. Springer,

2017, pp. 597–609.

[254] Y. Zhang, H. Chen, Y. Wei, P. Zhao, J. Cao, X. Fan, X. Lou, H. Liu, J. Hou,

X. Han et al., “From whole slide imaging to microscopy: Deep microscopy adap-

tation network for histopathology cancer image classification,” in International

Conference on Medical Image Computing and Computer-Assisted Intervention.

Springer, 2019, pp. 360–368.

[255] L. Chen, M. J. Gales, and K. Chin, “Constrained discriminative mapping trans-

forms for unsupervised speaker adaptation,” in 2011 IEEE International Con-

ference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011,

pp. 5344–5347.

[256] H.-y. Lee, Y.-y. Chou, Y.-B. Wang, and L.-s. Lee, “Unsupervised domain adap-

tation for spoken document summarization with structured support vector ma-

chine,” in 2013 IEEE International Conference on Acoustics, Speech and Signal

Processing. IEEE, 2013, pp. 8347–8351.

[257] I. Tolstikhin, N. Houlsby, A. Kolesnikov, L. Beyer, X. Zhai, T. Unterthiner,

J. Yung, D. Keysers, J. Uszkoreit, M. Lucic et al., “Mlp-mixer: An all-mlp

architecture for vision,” arXiv preprint arXiv:2105.01601, 2021.

216

Appendix A

IEEE Permission to Reprint

In reference to IEEE copyrighted material which is used with permission in this

thesis, the IEEE does not endorse any of University of Windsor’s products or ser-

vices. Internal or personal use of this material is permitted. If interested in reprint-

ing/republishing IEEE copyrighted material for advertising or promotional purposes

or for creating new collective works for resale or redistribution, please go to http://

www.ieee.org/publications_standards/publications/rights/rights_link.html

to learn how to obtain a License from RightsLink.

217

http://www.ieee.org/publications_ standards/publications/rights/rights_link.html
http://www.ieee.org/publications_ standards/publications/rights/rights_link.html

Appendix B

Elsevier Permission to Reprint

In reference to Elsevier copyrighted material which is used with permission in this

thesis, the Elsevier does not endorse any of University of Windsors products or ser-

vices. Internal or personal use of this material is permitted. If interested in reprint-

ing/republishing Elsevier copyrighted material for advertising or promotional pur-

poses or for creating new collective works for resale or redistribution, please visit:

https://www.elsevier.com/about/our-business/policies/copyright#Author-rights.

218

https://www.elsevier.com/about/our-business/policies/copyright#Author-rights

Vita Auctoris

NAME : Wandong Zhang

BIRTH YEAR : 1993

BIRTH PLACE : China

EDUCATION

2022 : Doctor of Philosophy

Electrical and Computer Engineering

University of Windsor, Windsor, Ontario, Canada

2018 : Masters of Applied Science

Pattern Recognition and Intelligent System

Ocean University of China, Shandong, China

2015 : Bachelors of Engineering

Automation

Ocean University of China, Shandong, China

219

	ADVANCED REPRESENTATION LEARNING STRATEGIES FOR BIG DATA ANALYSIS
	Recommended Citation

	Declaration of Co-Authorship / Previous Publication
	Abstract
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Introduction
	Overview
	Motivation
	Objective and Contributions
	Research Findings
	Organization of Thesis

	Background
	Overview
	Image Classification
	Analytic Learning with Moore-Penrose Inverse
	Extreme Learning Machine
	Subnet Neural Network

	Loss Function
	Mean Square Error Criterion
	Maximum Correntropy Criterion

	Convolutional Neural Network
	Convolutional Layers
	Activation Layers
	Fully-connected Layers

	Transfer Learning

	Literature Review
	Overview
	Representation Learning Methods
	Statistic Approaches
	3.2.1.1 Probabilistic Methods
	3.2.1.2 Correlation-based Methods

	Supervised Learning Methods
	3.2.2.1 Supervised Coding Methods
	3.2.2.2 Deep Convolutional Neural Networks

	Unsupervised Learning Methods

	Moore-Penrose Inverse-based Algorithms
	Single-layer Moore-Penrose Inverse-based Methods
	Multi-layer Moore-Penrose Inverse-based Methods

	A Width-growth Model with Subnetwork Nodes and Refinement Structure for Representation Learning and Image Classification
	Introduction
	The Proposed Algorithm
	The Proposed Wi-HSNN
	Algorithmic Summary
	Proof of The Proposed Wi-HSNN

	Experimental Results
	Experimental Setup
	4.3.1.1 The Environment
	4.3.1.2 The Datasets
	4.3.1.3 The Rival Methods and The Configuration of Input
	4.3.1.4 Evaluation Matrics

	Model Settings
	Analysis on Image Classification Domain
	Analysis on Extended Domains
	Timing Analysis
	Qualitative Analysis
	Limitations of The Proposed Wi-HSNN

	Conclusion

	Multi-Model Feature Reinforcement Framework using MP Inverse for Big Data Analysis
	Introduction
	The Proposed Algorithm
	The Proposed OS-HSNN
	Algorithmic Summary
	Proof of The Proposed OS-HSNN

	Experimental results
	Experimental Setup
	5.3.1.1 The Environment
	5.3.1.2 The Dataset
	5.3.1.3 The Rival Methods
	5.3.1.4 Configurations of The Rival Methods
	5.3.1.5 Configurations of The Input Features

	Model Settings
	Analysis on Image Classification Domain
	Analysis on Ship-target Detection Domain
	Timing Analysis

	Conclusion

	Hierarchical One-Class Model with Subnetwork for RL and Outlier Detection
	Introduction
	Related Works on One-class Classification
	The Proposed Algorithms
	The Proposed OC-HSNN
	The Proposed MCOC-HSNN
	6.3.2.1 The Objective Function with Correntropy
	6.3.2.2 The Characteristics of MCOC-HSNN

	Experimental Results
	Experimental Setup
	6.4.1.1 The Environment
	6.4.1.2 The Dataset
	6.4.1.3 The Rival Methods
	6.4.1.4 Configurations of the OCC Methods
	6.4.1.5 Evaluation Metrics

	Model Settings
	Analysis on Visual Classification Domain
	6.4.3.1 Small-scale Datasets
	6.4.3.2 Large-scale Datasets

	Analysis on Extended Domains
	6.4.4.1 Food Identification
	6.4.4.2 Misinformation Detection

	Discussion
	6.4.5.1 OC-HSNN vs. MCOC-HSNN
	6.4.5.2 Limitation

	Conclusion

	Semi-supervised Manifold Regularization via a Subnetwork-based Representation Learning Model
	Introduction
	Related Works on Semi-supervised Classification
	The Proposed Algorithm
	Manifold Regularization
	Preliminary
	The Proposed SS-HSNN

	Experimental Results
	Experimental Setup
	7.4.1.1 The Environment
	7.4.1.2 The Dataset
	7.4.1.3 The Rival Methods
	7.4.1.4 Configurations of The Semi-supervised Methods
	7.4.1.5 Evaluation Metrics

	Model Settings
	Analysis on Image Classification Domain
	Analysis on Extended Domains
	7.4.4.1 Text-pattern Categorization
	7.4.4.2 HFSWR vessel target Detection

	Timing Analysis
	Effectiveness Analysis of SS-HSNN via VC Dimension

	Conclusion

	Multi-Model Moore-Penrose Inverse-based Recomputation Frameworks for Large Data Analysis
	Introduction
	The proposed algorithms
	The Proposed RML-MP
	8.2.1.1 Stage 1 - Feedforward Network Initialization
	8.2.1.2 Stage 2 - Error Backpropagation with MP Inverse
	8.2.1.3 Stage 3: Update Parameters with MP Inverse
	8.2.1.4 The Learning Steps of RML-MP

	The Proposed SRML-MP
	8.2.2.1 Sparse Learning
	8.2.2.2 The Learning Steps of SRML-MP

	Experimental Results
	Experimental Setup
	8.3.1.1 The Environment
	8.3.1.2 The Datasets
	8.3.1.3 The Rival Methods
	8.3.1.4 Configurations of The RL Methods
	8.3.1.5 Configurations of The Input Features
	8.3.1.6 Evaluation Matrics

	Model Settings
	Analysis on Image Classification Domain
	Timing Analysis
	Analysis on Food Image Classification Domain
	Qualitative Analysis
	Limitations

	Conclusion

	Fast Domain Transfer Learning for Application Towards Efficient Pattern Recognition
	Introduction
	Related Works on Domain Transfer Learning
	The Proposed Algorithm
	MP inverse-based Dense Layer Refinement
	Strategy 1 - Random Layer Freezing
	Strategy 2 - Batch-by-batch FC Layer Refinement

	Experimental Results
	Experimental Setup
	9.4.1.1 The Environment
	9.4.1.2 The Datasets
	9.4.1.3 The Rival Methods
	9.4.1.4 Configurations of The Rival Methods

	Step-by-step Quantitative Analysis
	9.4.2.1 Analysis of Batch-by-Batch FC Layer Refinement
	9.4.2.2 Analysis of Random Layer Freezing
	9.4.2.3 Comparison of Transfer Learning

	Conclusion

	Conclusion
	Overview
	Contributions
	The Proposed Subnet-based Methods
	The Proposed Deep Learning Methods
	The Newly Gathered Datasets

	Applications
	Limitations
	Scopes for Future Works

	Bibliography
	Appendix A: IEEE Permission to Reprint
	Appendix B: Elsevier Permission to Reprint
	Vita Auctoris

