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ABSTRACT 

 

The rarity of Melanoma skin cancer accounts for the dataset collected to be limited and 

highly skewed, as benign moles can easily mimic the impression of the melanoma-affected 

area. Such an imbalanced dataset makes training any deep learning classifier network 

harder by affecting the training stability. We have an intuition that synthesizing such skin 

lesion medical images could help solve the issue of overfitting in training networks and 

assist in enforcing the anonymization of actual patients. Despite multiple previous 

attempts, none of the models were practical for the fast-paced clinical environment. In this 

thesis, we propose a novel pipeline named SkinCAN AI, inspired by StyleGAN but 

designed explicitly considering the limitations of the skin lesion dataset and emphasizing 

the requirement of a faster optimized diagnostic tool that can be easily inferred and 

integrated into the clinical environment. Our SkinCAN AI model is equipped with its 

module of adaptive discriminator augmentation that enables limited target data distribution 

to be learned and artificial data points to be sampled, which further assist the classifier 

network in learning semantic features. We elucidate the novelty of our SkinCAN AI 

pipeline by integrating the soft attention module in the classifier network. This module 

yields an attention mask analyzed by DenseNet201 to focus on learning relevant semantic 

features from skin lesion images without using any heavy computational burden of artifact 

removal software. The SkinGAN model achieves an FID score of 0.622 while allowing its 

synthetic samples to train the DenseNet201 model with an accuracy of 0.9494, AUC of 

0.938, specificity of 0.969, and sensitivity of 0.695. We provide evidence in our thesis that 

our proposed pipelines outperform other state-of-the-art existing networks developed for 

this task of early diagnosis.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Overview 

Early diagnosis of skin cancer can lead to an effective treatment cycle while helping 

increase the overall survival rate and recovery and assist in predicting any recurrences [1]. 

This requirement for an early diagnosis tool creates an opportunity for artificially 

intelligent methods to take up the mantle of initial diagnosis deployed to understand any 

advent or even presence of malignant cells. The benefits of deploying such accurate, low-

cost artificially intelligent (AI) based diagnostic aids for detecting skin cancer include 

better access to clinical care and lesser need for biopsies, resulting in lower hospital 

expenses and better survival rate, eventually reducing the mental pressure on patients and 

family. Implementing AI-based diagnostic methods to assist clinical environments where 

adequate clinical expertise and equipment are absent. Therefore such a clinical tool could 

serve the less financially established population. The growing number of various image 

modalities such as dermoscopy and histopathology available to capture the lesion's essence 

has helped create a catalog of publicly available datasets. Addressing the potential of AI in 

this domain, deep learning algorithms trained on such datasets requiring minimal assets 

and constantly striving to improve efficiency could optimize and streamline clinical 

workflows [2]. 

1.2 Motivation 

Cancer is responsible for over 10 million deaths in 2020 worldwide, and it has been 

estimated to disrupt over 1.9 million lives in the US in 2021 [3]. According to National 

Cancer Institute, among all the deadly cancers present globally, the most common type of 

cancer is skin cancer, having more diagnosed cases than the sum of all the other cancer 

cases in the US annually [4]. It has been statistically estimated that more than two people 

die every hour cause of complications from skin cancer [5]. According to predictive 

statistics, an increment of newly diagnosed melanoma cases by 5.8% and 4.8% in deaths 
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caused due to melanoma is indicated for 2021 [5]. There is a growth of 44% in the number 

of invasive melanoma cases detected yearly in the previous decade, while also indicated to 

cause the death of more than 7000 lives in the year 2021 [5]. Non-Melanoma Skin Cancer 

is estimated to be blamed for more than 5400 deaths every month globally. 

The occurrence of skin cancer is determined by the abnormal growth of cells into cancerous 

cells in the epidermis layer of the skin. There are various types of skin cancer depending 

on which layer of the epidermis is affected during the mutation. Typically, the cause of this 

abnormal skin growth can be blamed upon the mutation of DNA, underexposure to 

ultraviolet (UV) rays or ionizing radiations, and even immunosuppression. With an intent 

to categorize, the types of skin cancer are divided into Recurrent basal cell carcinoma 

(BCC), Squamous cell carcinoma (SCC), Melanoma, Merkel cell carcinoma, and other rare 

skin cancers, including Kaposi sarcoma, Keratoacanthoma, and cutaneous T-cell 

lymphoma [6]. Some of them are depicted in Figure 1. Basal cell carcinoma and Squamous 

cell carcinoma are estimated to be diagnosed in over 3.6 million cases and 1.8 million cases 

each year in the US [3]. Organ transplant patients are evaluated to be at a 100-fold higher 

risk of developing some form of skin cancer [7]. Small, itchy, rough-looking patches called 

Actinic Keratosis appearing as red or brown are among the common precancers and have 

been known to affect over 58 million lives in the US [8]. The medical treatment expenses 

projected for treating skin cancer in America are more than 8.1 billion USD yearly (4.8 

billion USD for Non-Melanoma Skin Cancer treatment & 3.3 billion USD for Melanoma 

Skin Cancer treatment) [9].  

Moreover, clinics around the globe have reported an increase in the cases of skin cancers 

around the world due to the rise in the penetration of solar ultraviolet rays caused by the 

depleted ozone layer. The Caucasian population or even population with Fitzpatrick skin 

type I-III, or people with blonde or red hair are more inclined to develop this kind of 

mutated growth, as pigmentation of skin plays a crucial part in the pathway of cancerous 

growth. Exposure to UV rays from the sun is attributed to cause about 90% of cases of 

Non-Melanoma Skin Cancer and about 86 % of Melanoma Skin Cancer cases. Research 

has indicated that when melanin pigment forming cells called melanocytes initiate pell-

mell multiplying, it yields in the development of malignant tumors in the skin. Researchers 
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have claimed that the risk of developing melanoma in the average human body doubles if 

they have encountered more than five sunburns. In some cases, even one prolonged 

sunburn in their life has been known to double the risk of developing malignancy late in 

their life [10], [11]. Severe exposure to indoor tanning beds is also attributed as the cause 

of the increase in skin cancer cases, especially among women in the age group 45 or 

younger [12], [13]. Typically, the characteristics exhibited by such melanoma lesions 

include asymmetry in shape, irregularity around the borders, colorful features, diameter of 

more than 6 mm, and constantly enlarging tumor (depicted as an acronym ABCDE) [14]. 

Amongst which, color and structure are the crucial factors for diagnosing melanoma. The 

list of features that are taken into examination while performing diagnosis are enlisted 

below: 

• Distribution of Pigment along with lesion’s heterogeneity or homogeneity 

• Asymmetry or Symmetry in the shape of the lesion 

• Presence of keratin on the surface 

• The intensity of oddity in vascular morphology 

• Presence of Ulceration and burning sensation 

• Irregularity of lesion border  

• Colour: white, grey, black, yellow, or even brown 

 

Figure 1:  Basal Cell Carcinoma (top-left), Squamous Cell Carcinoma (top-right), 

Melanoma (middle), Kaposi Sarcoma (bottom-left), Skin Lymphoma (bottom-right) [15] 
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Among various types of skin cancer, melanoma skin cancer is notoriously lethal, as it has 

been assessed to have an overall five-year survival rate fatally depending on the stage at 

which the cancer is diagnosed, ranging from almost 100% when detected at an initial stage, 

while less than 20% if diagnosed too late for a proper treatment cycle. The disease's 

survival rate is also known to degrade to about 66 % if the tumor reaches the lymph nodes 

and can eventually fall to only 27 % if cancer metastasizes to other organs. The fact that 

there is a drastic drop in survival rate with the function of timely detection of melanoma 

highlights the crucial need for tools that can enable early diagnosis while also actively 

reducing its incidence rate [16]. Contrary to the misconception that melanoma can be 

primarily found in pre-existing moles, in a medical setting, only 20-30% of melanoma were 

diagnosed in existing moles, while about 70-80% arise from mutation in normal skin [17]. 

Individuals with a family history of any skin cancer variant, be it melanoma or non-

melanoma, are more prone to develop lethal melanoma than those without any genetic 

history [18]. The melanoma survivors are at heightened risk of nine times more likely to 

develop melanoma than other individuals, as research has indicated cancer’s substantial 

recurrence possibility [19]. 

The graphical data, as showcased in Figure 2 and Figure 3, elucidate the risk factors of 

developing melanoma, involving individuals' characteristics, including their age, sex, and 

race [20]. Although the incidence rate of developing skin cancer among the non-Hispanic 

white population is much higher than in Black or Asian communities [3], the research 

strongly indicates the survival rate of patients with skin of color is much less than the 

Caucasian population [21]. This is because it’s harder to diagnose skin cancer among 

African American individuals, as it is prone to develop in areas that aren’t exposed to the 

sun, for example, on palms, soles, groin, or inner section of the mouth. Once it is detected 

adequately at its later stages, the study has shown that in around 25 % of cases, until then, 

melanoma has already spread to lymph nodes and even other organs [21], [22].  
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Figure 3: Graph of the rate of new Melanoma cases by sex and ethnicity [20] 
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Figure 2: Bar Chart depicting the rate of new Melanoma cases by age groups [20] 
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Earlier studies have constantly affirmed that almost 50 % of melanoma tumors can be self-

detected by visual inspection [23], [24]. American Academy of Dermatology Association 

has been vocal about the importance of self-examinations, usually once a month, for 

individuals who have either personal or family history of cancer [25]. But this method is 

proven to be not always reliable, as malignant ones can closely resemble benign lesions 

until the very later stage. Histopathology has proven to deliver the highest accuracy and 

precision for diagnosing skin cancer [26]. But taking a biopsy of a patient's skin comes 

with its difficulties. It is an expensive, invasive procedure and can cause infections [27] if 

not taken in a safe clinical environment. To overcome these issues, alternatives such as 

non-invasive techniques [28]–[30] have been developed to prevent foreseeable biopsy 

complications. Dermoscopy is one the most prevalent non-invasive procedure for 

facilitating skin lesion diagnosis cause of its effectiveness. Dermoscopy yields high-

resolution imaging incorporating precisely applied pigmentation to gather information 

through visual inspection from multiple layers of skin by eliminating any reflections from 

the skin surface [31]. Medical research has shown that dermoscopy has achieved high 

diagnostic accuracy for a skin lesion compared to standard photography procedures [32]. 

Dermoscopy enables dermatologists to analyze the morphological features of the presence 

of tumors, which are not perceptible for bare eyes to inspect. A couple of techniques 

performed to enhance such morphological characteristics include Epiluminescence 

microscopy (ELM), Cross polarization Epiluminescence (XLM), side transillumination, 

and solar scans [33]–[37]. These techniques have assisted dermatologists by providing 

more intricate diagnostic criteria and further improving the diagnostic accuracy by 10-30%  

[38].  

A typical procedure of dermoscopy starts with a skilled dermatologist observing a 

suspected lesion, then only performing a biopsy if required. This procedure could be 

accounted for consuming a lot of time, leading to the eventual advancement of fatal tumor 

growth in the patient. Even after that, studies have suggested that the diagnostic accuracy 

of most dermatologists can be even less than 80%, taking into consideration their skill and 

the clinical environment [39]. This leads to a much big-picture issue affecting the skin 

cancer crisis, like the scarcity of highly skilled dermatologists who are willing to work for 

the public healthcare system. 
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Attributing to all the problems discussed before, the intuition of this research leads to 

developing an automated or computer-aided diagnostic model that could not only provide 

assistance to dermatologists for making their decision quicker while improving diagnostic 

accuracy but also prove accessible diagnosis to the clinical environment that doesn’t have 

the expense to involve such highly skilled dermatologist, at such an early stage of 

diagnosis. 

1.3 Challenges Addressed 

This research address challenges that fellow researchers frequently neglect. Even though 

some challenges are tackled, the research lacks a direction in which multiple problems are 

tackled efficiently. One of the most complex challenges that have become the force of 

hindrance to applying deep learning techniques in the field of medical imaging is the 

problem of dataset imbalance. It has been statistically proven that when the learning 

algorithm has been introduced with a skewed dataset, the algorithm is ineffective in 

performing for a class present in the minority [40]. This can also be concluded using the 

fact that improving the loss in a smaller set class has been proven more challenging than 

improving the loss value in the majority class. This challenge could be tackled using two 

techniques; the first includes balancing the ratio of training data by changing the overall 

proportion of categories, which could be attained by increasing the sample set in the weaker 

classes. In contrast, the second method involves designing and formulating the algorithm 

so that training is performed in a much-balanced fashion by re-weighting the losses that 

pertain to each class or even samples [41], [42].  

Researchers have shown that defining the exact penalty cost for the majority and minority 

classes in domains such as medical diagnosis can be challenging [43]. This research 

proposes to develop a method that combines both by including a generative model, not 

only to increase the overall sample size through augmentation but also to improve the 

feature resolution of the images provided to the learning algorithm and proposes a pipeline 

along with a custom loss function explicitly designed to tackle imbalance in the dataset. 

Previous studies have shown high overhead while performing inferences to yield 

generative samples on the distinctly low-end graphic processing unit. This issue is also 
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addressed in this research while simultaneously optimizing the memory constraints and the 

time complexity. 

1.4 Objective 

In this thesis, a deep learning architecture pipeline called SkinCAN AI is proposed to 

provide an early diagnostic tool for the dermatologist to detect and segment skin cancer 

and improve overall diagnostic accuracy compared to other existing techniques. The 

proposed model involves generating synthetic samples for minority classes using 

SkinGAN architecture that is closely inspired by stylegan2-ADA [44] and develops its 

custom loss function and mini-batch logic on top of it for the classifier model. The classifier 

model is later integrated with an attention module that could help the learning algorithm 

focus on essential features in the lesion dermoscopic images. The proposed pipeline also 

includes an integrated module for data-specific manipulation tasks like removing hair, ink 

marks, or scale marking artifacts from the lesion images or even increasing the image's 

resolution without losing critical features. The whole pipeline is trained end-to-end to 

maximize results in diagnostic evaluation metrics while keeping in mind the pipeline's 

scalability and time complexity. The experiments conducted have shown that the proposed 

architectural pipeline can outperform the existing methods in skin lesion detection by 

deploying soft attention. 

The pipeline presented in the thesis is developed, considering the feasibility of deploying 

them in a fast-paced clinical environment with a much lower computing requirement. This 

research also addresses the impact of such an artificially intelligent model where the 

medical cancer research is lagging in improving the health care diagnosis for communities 

like people of color and trans people. 

1.5 Structure of the thesis 

The rest of the thesis is cataloged as follows: Chapter 2 provides a brief on relevant studies 

conducted for skin lesion diagnosis and standardized datasets deployed for benchmarking 

in skin cancer classification. Subsequently, Chapter 3 elaborates on a survey of related deep 
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learning generative algorithms. Chapter 4 elucidates the proposed pipeline and its modules 

and relevant discussion on hyperparameter selection for optimal training. Experiments 

accompanying results, comparative analysis of the proposed pipeline against existing 

algorithms, and in-depth ablation studies are described in Chapter 5. The thesis explores 

the significance and impact of the proposed method and depicts the explainability of this 

AI model in Chapter 6. Finally, concluding remarks are pointed out in Chapter 7. 
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CHAPTER 2 

LITERATURE SURVEY 

 

Humans often underestimate their ability to observe and understand the physical world-

encompassing their lives, including how objects are visualized or how they interact. 

Although the advances in technology have made it possible to convert this enormous 

treasure trove of information about the physical world into the form of digital bits, the 

research community is still haunted by the arduous task of training or formulating 

algorithms that could understand the intricacy of the features present in these datasets. 

Deep learning practitioners have recently discovered that generative models can show 

promising results in creating data with close feature similarity with the physical real-world 

data.  

With the growth of technology, the research community has ever since tried to integrate 

technology or computer-based aid into the medical domain so that high-level effectiveness 

could be achieved and earlier diagnosis could be made feasible. Usually, a computer-aided 

diagnosis (CADx) system comprises an algorithm, be it machine learning or deep learning 

behind the scenes trying to facilitate experts in the field to yield a precise diagnosis of a 

patient’s current health condition. These high processing computational power-based 

techniques can effortlessly aggregate multiple data streams and provide an opportunity to 

develop robust information enriched diagnostic systems spanning from radiographic 

images to patients’ historical data, pathology of cancer, genomics, and lastly, even 

involving the social network.  

Under the hood of cancer imaging, AI has assisted in multiple clinical procedures by 

transforming the image interpretation methodology. Detection is the first step that can be 

elaborated with the localization of the object of interest in tumor imaging. This subfield 

developed is called computer-aided detection (CADe) [45]. Characterization is the second 

step involving diagnosis, segmentation analysis, recognizing the precise stage at which the 

tumor growth has already developed, and finally, prognostication to predict treatment 

trajectory correctly. The last step in which AI could be deployed is monitoring, in which 

pinpoint features are observed temporally to register the efficacy of current treatment on 
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the patient’s health [46]. This thesis focuses on implementing AI in the detection and 

characterization step. 

2.1 Datasets 

Computer-aided tools require a knowledge bank of a dataset to learn the discrete features 

of the task at hand. While evaluating the performance of these diagnostic tools and ensuring 

that optimum and diverse information is distilled in the network, a feature-rich dataset 

plays a significant role. Cancer datasets have historically suffered not only in their 

quantitative abundance but also in their feature diversity and have eventually hampered the 

integration of artificial networks in the field. As it is impossible to increase the data size, 

AI networks must adapt themselves for few-shot learning or generate synthetic data to train 

and learn the nuances of diverse information about the tumor. Table 1 summarizes essential 

datasets that have led the development of AI networks from their neonatal stage. This thesis 

will mainly focus on architectures trained on the ISIC archive; therefore, they will be 

described in length moving forward in the section. 

Table 1: Popular Skin Cancer Datasets 

Name of Dataset 
Year of Release and 

Updates 
No. of Images 

HAM10000 [18] 2018 10,015 

PH2 [47] 2013 200 

ISIC archive [48] 2016-2020 25331 

DermQuest [49] 1999 22082 

DermIS [50] - 6588 

AtlasDerm [51] 2000 1024 

Dermnet [52] 1998 23000 
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2.1.1 HAM10000 

This publicly available dataset named “human-against-machine” of skin lesions contains 

10,015 dermoscopy images cataloged from two sources, namely Cliff Rosendahl’s skin 

cancer practice in Queensland, Australia, and the Dermatology Department of the Medical 

University of Vienna, Austria. This dataset was initially just photographic scans of lesions 

compiled for 20 years, which was later digitalized with the help of a Nikon scanner and 

then converted to an 8-bit JPEG image. Lastly, the photos were resized to 800 x 600 pixels 

at 72 DPI. The dataset tries to tackle the issue of diversity by applying variegated 

acquisition functions and cleaning methods while collecting for eight different categories, 

as depicted in Figure 4. The datasets' acquisition devices vary from MoleMax HD, 

DermLite Foto (3Gen) camera, DermLite Fluid, DermLite DL3, and analog cameras [53]. 

Table 2 summarizes the HAM10000 dataset along with its subcategories. Figure 4 provides 

a glimpse inside the HAM10000 dataset. 

Table 2: HAM10000 dataset [18] 

Type of Skin lesion No. of Images 

Actinic Keratoses 327 

Basal cell carcinoma 514 

Benign Keratoses 1099 

Dermatofibromas 115 

Melanocytic Nevi 1113 

Melanomas 6705 

Vascular Skin Lesion 142 
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Figure 4: Images from HAM10000 [18] 

2.1.2 ISIC Archive 

International Skin Imaging Collaboration (ISIC) made this dataset publicly available at 

International Symposium on Biomedical Imaging (ISBI) challenge 2016. The original 

older dataset contained a much lesser number of samples, making it challenging to assist 

any AI networks in learning crucial diverse features from it. The ISIC has been known for 

increasing the size of its archive every year by expanding its categorical scope and its 

quality metadata. Table 3 explains the evolution of the ISIC dataset every year and its 

details. The recent ISIC datasets (depicted in Figure 5) have the most categorized classes 

among all the previous year's datasets while also including the metadata of patients such 

as demographics, age, and gender. The equipment used for acquisition in ISIC dataset 

compilation consists of the MoleMax HD dermatoscopy system. In contrast, some even 

used the Dermoscopic attachment connected to a digital single reflex lens camera system. 
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ISIC data archive contains not only the JPEG version of the lesion but also a feature-rich 

DICOM version. 

Table 3: Summary of ISIC datasets through years [18], [54], [55] 

ISIC 2016 [56] 

Classes of tumor Training set Testing set 

Melanomas (MEL) 273 115 

Benign Nevi. 627 264 

Total 900 379 

ISIC 2017 [57] 

Classes of tumor Training set Validation set Testing set 

Melanomas (MEL) 374 30 117 

Seborrheic-Keratoses (SK) 254 42 90 

Benign Nevi. 1372 78 393 

Total 2000 150 600 

ISIC 2018 [18], [58] 

Classes of tumor Training set Validation set Testing set 

Actinic Keratoses (AK) 327 

Basal Cell Carcinoma (BCC) 514 

Benign Keratoses (BKL) 1099 

Dermatofibroma (DF) 115 

Melanocytic Nevi. (NV) 6705 

Melanoma (MEL) 1113 

Vascular Skin Lesion (VL) 142 

Total 12,594 100 1000 

ISIC 2019 [18], [54], [55] 

Actinic Keratoses (AK) 867 

Basal Cell Carcinoma (BCC) 3323 

Benign Keratoses (BKL) 2624 

Dermatofibroma (DF) 239 
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Melanocytic Nevi. (NV) 12,875 

Melanoma (MEL) 4522 

Vascular Skin Lesion (VL) 253 

Squamous Cell Carcinoma 

(SCC) 
628 

Total 25,331 

 

Figure 5: ISIC 2019 [18], [54], [55] dataset samples (bottom row examples are benign & 

top row examples are malignant) 

2.2 Recent Trends of Deep Learning Techniques deployed for Skin lesion diagnosis 

Deep neural networks were formulated to mimic the human brain's functionality by 

adopting its structure of interconnected neural nodes while using the power of 

computational acceleration provided by modern GPUs. Typically, these neural networks 

are trained on a massive amount of data, and knowledge is distilled into their weighted 

structure as they become experts in their field. The research community has deployed these 

deep neural networks to detect the presence of malignancy and distinguish among various 

types of skin lesions. 
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2.2.1 Artificial Neural Network-based techniques 

ANN utilizes backpropagation to learn underlying intricate mathematical relationships and 

distill the information into its layers according to the pattern sequence observed in the 

training dataset. A set of extracted features are provided to ANN, which is tasked with 

classifying whether the feature containing the image is malignant or benign according to 

the visual patterns observed by the algorithm during training.  

Xie et al. [59] proposed a pipeline of a classification system, which initially extracts lesions 

from a dataset using a self-generating neural network, and later extracts features like 

border, the texture of lesion, and pigmentation of the tumor. The precisely selected 57 

features were reduced dimensionally using Principal Component Analysis (PCA) in the 

final step. They were deployed to train an ensemble of neural networks combining 

backpropagation neural networks and fuzzy neural network variants. This model achieved 

91.11% accuracy and a performance boost of 7.5% in sensitivity compared to other existing 

classifiers.  

Cueva et al. [60] proposed a model that extracts features based on the ABCDE rule using 

threshold parameters for pigmentation and diameter (>6mm malignant) while deploying 

Mumford-Shah Algorithm and Harris-Stephen Algorithm for evaluating lesion’s 

asymmetry and border. This proposed model achieved 97.51% accuracy on a dataset of 31 

images. Some of the methods submitted by the community even involved using a gray-

level co-occurrence matrix (GLCM) to extract detailed features of the lesion [61], [62]. 

During the infancy stage of the computer-aided techniques, various machine learning 

algorithms were formulated for the diagnosis of skin lesions that includes k-nearest 

neighbors (kNN) [63], support vector machines (SVM) [64], random forest (RF) [65], and 

self-organizing maps [66].  

However, it became evident that these algorithms cannot learn high-level features due to 

their dependency on pixel intensity space and the hand-crafted features, thus inculcating a 

priori of knowledge during prediction [67], [68]. Figure 6 below summarizes the flow of 

training an ANN for skin lesion detection. 
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Figure 6: ANN pipeline for diagnosis 

2.2.2 Convolutional Neural Network (CNN) based techniques 

A convolutional neural network streamlines multiple convolutional layers, followed by 

non-linear pooling layers, which finally connect to a set of fully connected layers. CNN 

was made feasible to deploy for skin tumor diagnosis due to the advent of easy access to 

computational processing power and the increasing availability of data enriched with 

features to learn. To overcome the issues presented by hand-crafted features in classical 

machine learning, researchers have formulated CNNs and their variants like ResNet, 

Efficient Nets, NFNets, and Capsule networks which achieved significantly higher results 

in medical applications like detection, segmentation, and classification. These networks are 

implemented with a learning objective and loss function to discover and learn features for 

the given task [69]. Historically, in traditional computer-aided diagnosis, researchers have 

tried deploying hand-crafted image processing filters that yield features describing the 

characteristics of the cancerous tumor. But methods like the Harris Corner detector 

algorithm for detecting just the edge or corner in the image are memory-intensive and time-

consuming, thereby causing more issues during training for such time-sensitive tasks. 

Statistics have shown that less than 20% of patients are diagnosed with melanoma after a 

biopsy in the clinical environment. There are often cases where patients have opted out 

from even going for a biopsy [70]. This situation creates a difficult choice for health experts 

to either let the lesion progress without biopsy or get the patient to consider having a 

biopsy, which might become a burden to the patient and the hospital care services. The two 

strategies that academicians have come up with to solve this issue of limited data are either 

to perform data augmentation or perform transfer learning. The transfer learning strategy 
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has shown some great results, but the question of knowledge transfer of features observed 

between the non-medical and medical fields is still questionable [71]. This evidence has 

led the thesis to focus on developing new data augmentation techniques or even few-shot 

learning-based algorithms. 

Lequan et al. [72] proposed a fully convolutional residual network comprising 16 residual 

blocks and took average results using both SVM and softmax classifier to yield 85.5% 

accuracy with segmentation and 82.8% without segmentation. Another study [73] deployed 

Inception v-3 architecture pre-trained on ImageNet and then using transfer learning. The 

architecture or model is trained on a standard dataset with abundant features to learn from 

in transfer learning. Then in the final step of training, only the last few layers are modified 

and learned on the target feature distribution. These modified layers were specifically fine-

tuned to learn application-specific features. The study fine-tuned the pre-trained network 

on two different resolutions of skin lesion images: 1) coarser scale to learn contextual and 

geometric features of the dermoscopic image, 2) finer scale to learn the textual information 

about lesion. 

A study from 2018 [74] formulated a Resnet-152 pre-trained and then finetuned to classify 

12 classes of skin lesions which yielded a performance metric AUC score of 0.99. The 

dataset of 3797 lesions was used for training the network, and augmentations like scale 

transformations were also applied to create a robust algorithm. Dorj et al. [75] deployed 

AlexNet to extract features and then concatenated the pipeline to SVM, which served as a 

classifier trained to classify four variants of skin lesions. This study showed 95.1% 

sensitivity, 98.9% specificity, and 94.17% accuracy. A couple of studies [76], [77] also 

deployed ensemble learning for training deep CNN. In this technique, multiple versions of 

the same network are trained, and then averages of weights are taken to create a new model 

weight. Perez et al. [78] evaluated the utility of implementing 13 different data 

augmentation techniques for lesion classification while performing analysis on Inception-

v4, ResNet, and DenseNet.  

Mahbod et al. [79] formulated a pipeline for skin lesion classification by extracting deep 

learning features from pretrained complex convolutional networks and then fusing a 

machine learning classifier trained on those features to achieve the best performance. The 
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study's authors deployed AlexNet, ResNet-18, and VGG16 to generate information-rich 

features for their model. Later a multi-class classifier such as SVM and softmax is 

implemented to evaluate and yield 97.55% and 83.83% area under the curve (AUC) 

performance, respectively, for both classifiers, on lesion classification using the ISIC 

dataset. 

Sagar et al. [80] deployed transfer learning on ResNet-50 architecture to classify melanoma 

and non-melanoma dataset of 3600 lesion ISIC dataset. This model achieved an accuracy 

of 93.5%, precision of 94%, and F1 score of 85%, which was better than all the popular 

models of CNNs at that time, including InceptionV3, DenseNet169, and MobileNet. Polap 

et al. [81] designed an AI model consisting of a cascade of convolutional layers for image 

feature extraction and a genetic algorithm for calculating the likelihood of a specific sample 

classified in a particular class. This method achieved 7.5% better results than transfer-

learned algorithms. Ahmad et al. [82] formulated a triplet loss function and deployed that 

along with ResNet152 and Inception ResNetv2 models to achieve significant accuracy 

results. Adegun et al. [83] implemented a fully convolutional network with long and short-

cut skip connections, designed to learn coarse features such as appearance and fine details. 

They achieved 98% accuracy, 98.5% recall, and 99% AUC score on the HAM10000 

dataset when integrating their model with the Conditional Random Field (CRF) module to 

perform contour refinement and boundary localization of tumors using Gaussian Kernels. 

Al-Masni et al. [84] proposed a new approach where a full-resolution convolutional 

network is trained for the segmentation task of the lesion. Then segmented features are fed 

to a deep learning architecture to classify the lesion. 

Another recent study [85] proposed a region-based CNN with ResNet152 trained on 2742 

dermoscopic images (ISIC dataset). In the study, a mask and RCNN (region-based CNN) 

yielded interesting regions (ROIs) that were later fed to ResNet152 for classification. This 

model architecture achieved an accuracy of 90.4%, sensitivity of 82%, and specificity of 

92.5%. Alzubaidi et al. [86] designed a CNN architecture that is pretrained on massive 

unlabeled medical data and then transferred learned to small labeled medical data, 

providing the network with better and faster-pretrained features augmentation. Their 

methodology achieved an F1 score of 98.53% and an accuracy of 97.51%. Liu et al. [87] 
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implemented a unique architecture of a convolutional neural network built in a multiscale 

ensemble fashion comprising three branches. Initially, the lesion area is selected by picking 

the maximum number of pixels belonging to the skin tumor. Then the site of interest is 

optimized using the model, while at the last stage, two scales were picked for input to other 

branches. Iqbal et al. [88] carefully designed a deep convolutional network with multiple 

specialized layers and filter sizes to provide maximum optimization for skin lesion 

classification tasks. Some studies in 2021 experimented with how data could be 

manipulated to make it better suited for training computer-aided skin lesion diagnosis tasks. 

This included Ali et al. [91], which investigated techniques like image normalization and 

noise artifacts removal followed by data augmentation. In contrast, other studies 

experimented by removing hair artifacts using specialized techniques like Dullrazor 

technology. Figure 7 shows various ideas and intuition adopted for applying CNN 

architecture in skin lesion diagnosis tasks. 

 

Figure 7: CNN pipeline for skin lesion diagnosis 
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2.2.3 Generative Adversarial Network (GAN) based techniques 

Due to the limitation presented while training a CNN model with a skin lesion dataset, 

researchers started exploring ways to synthesize data to suffice the need for enormous data 

for training. Yi et al. [89] designed a generative adversarial network that worked on using 

the Wasserstein distance for learning optimization. This GAN would create 64 x 64 size 

samples of a particular data class. The model achieved decent precision with only 140 ISIC 

2016 data samples. Baur et al. [90] proposed a deeply discriminated GAN which could 

generate high-resolution images up to the size of 256 x 256 and performed a comparative 

analysis between their model and DCGAN [91] & LAPGAN [92]. Another study by 

authors [93] investigated generating samples of skin lesions of dimensions 1024 x 1024 

using progressive GAN (PGGAN) [94] and evaluated them using the Visual Turing Test 

and Sliced Wasserstein Distance. 

Bissoto et al. [95] deployed pix2pixHD GAN [96] model to synthesize images from 

semantic maps and instance maps using annotated dataset. Rashid et al. [97] implemented 

a GAN model, where the discriminator later serves to become a trained classifier for 

classifying skin tumors. The study compared their model and fine-tuned versions of 

DenseNet and ResNet on the ISIC 2018 dataset and aftermath, concluded that their model 

achieves significant accuracy and performance gains. 

Qin et al. [98] analyzed their model of the generative adversarial network, consisting of a 

generator and discriminator that was programmed to generate high-resolution images 

without any noisy artifacts observed in the original dataset, and later evaluation of the 

synthesized samples was performed to achieve maximum optimal classification results. 

Recently, Ding et al. [99] deployed a combination of segmentation masks and labels to 

generate a mapping of pathological markers of interest, and they later also utilized a novel 

technique of translating images to a numerical representation of matrix labels using 

conditional GAN (CGAN), thereby combining the shallow and deep features of lesion 

images. The study performed their analysis against several other GANs and found that their 

AUC values were significantly better for ISIC 2017 dataset.  
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Ahmad et al. [100] deployed a GAN that, instead of sampling noise from random noise 

Gaussian distribution, their model was trained by sampling noise vector from heavy-tailed 

student t-distribution. The authors showed that their model consisting of one VAE, two 

GANs, and one auxiliary classifier achieved an accuracy of 92.5%, attributing the success 

of their model to the increased diversity range of synthetic samples. The survey concludes 

that GANs have shown promising results in synthesizing realistic-looking data samples. 

The medical field needs such algorithms, so integrating data-hungry AI algorithms into the 

clinical diagnostic pipeline can be facilitated while maintaining the pace for early diagnosis 

of the lesion. 
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CHAPTER 3 

EVOLUTION OF GENERATIVE NETWORKS  

 

The immense potential of the Generative Adversarial Network to learn synthesizing images 

from random noise vector mapping has grabbed the attention of the deep learning 

community, and there has been an accelerated growth in the number of applications where 

GANs are deployed to achieve optimized results. The list of various domains where GANs 

are applied includes: 

• Computer Vision task [101]–[104] 

• Segmentation [105]–[107] 

• Time Series prediction [108]–[110] 

• Medical domain [111]–[114] 

• Speech & Language processing [115]–[117] 

While researching this thesis, an in-depth research analysis was performed to understand 

the underlying mathematical representation and architecture of existing generative models, 

which is elucidated at length in the following section. 

3.1 Generative Models in Deep Learning 

The spectacular growth in deep learning models deployed or integrated to achieve success 

in field-specific applications has inspired researchers to develop an algorithm that can 

synthesize data, which has replicated features of real-world information, later known as 

generative models. A couple of initial attempts at synthesizing images include the GLOW 

algorithm (flow-based generative model) [118] and even Variational Auto-encoder (VAE) 

[119]. Still, none of them were prominently successful in generating feature-rich images. 

The idea of generative adversarial models (GAN) was introduced by Ian Goodfellow [120] 

in 2014. The pioneering researchers proposed integrating a min-max two-player hostile 

game in an adversarial model that competes with itself to yield results. Recently, another 

type of generative model called diffusion models [121] has surprised the deep learning 

community by showing excellent results in a few generative tasks. An overview of the 
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different types of existing generative models predominantly in image synthesis 

applications is depicted in Figure 8, along with their brief functionality and limitations. 

 

Figure 8: Types of Generative models in deep learning [122] 
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Generative algorithms can be categorized into three main modeling techniques depending 

on how they depict their probability distribution: 1) Likelihood-based models: these 

algorithms understand their probability function of distribution using the approximate or 

maximum likelihood. These models include flow models [123], [124], energy-based 

models [125], [126], variational autoencoders (VAE) [119], [127] and autoregressive 

models [128]–[130]. 2) Implicit generative models [131]: These algorithms implicitly 

describe their probability distribution using their sampling process. GANs are an example 

of implicit generative models. 3) Score-based models [132]: these models reverse the 

stochastic process of diffusing data into noise to generate samples, which is learned by 

minimizing score-based matching losses without requiring any adversarial optimization 

like that in GANs. Diffusion models are examples of the score-based generative model. 

From this point, the thesis focuses exclusively on the Generative Adversarial Network. The 

initial research survey concluded that GANs are far more superior in generating superior 

results than other generative models in current times. 

3.2 Generative Adversarial Networks (GAN)  

3.2.1 Network Architecture 

A standard architecture of GAN (depicted in Figure 9) consists of two modules, namely 

the generator and discriminator. The discriminator (D) of the model consists of 

downsampling classifier layers, which take an input (real or fake sample) and yield a binary 

classification with a prediction value between 0 and 1. The generator (G) module comprises 

an upsampling path, where a fixed-length random noise is fed as input, and output of much 

higher resolution in the form of visual representation is expected. Vanilla GAN architecture 

is made from a stack of feed-forward neural network layers for both generator and 

discriminator modules [120]. 

After learning the generative process, the generator can map corresponding points from 

multidimensional noise vector space to unique feature vectors or visual entities in the target 

domain, thereby learning to form a compressed representation of problem data distribution. 

This compact vector space is defined as latent space, and the vector's dimensions are latent 
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variables. Each of these latent variables represents unique visual feature information. A 

batch of points can be drawn from this latent space and fed to a learned generator model to 

generate new fake samples.  

The operation of the discriminator is like that of a classifier network; it takes information 

as input and transforms it into features. This extracted feature becomes the deciding factor 

on which classification task is performed at the final layer. 

 

Figure 9: Vanilla Generative Adversarial Network Architecture [120] 

3.2.2 Design Ideology 

Both models (Generator and Discriminator) are targeted to learn simultaneously while 

achieving the optimization goal of Nash Equilibrium using the min-max game process. The 

individual objective functions of both segments of the model can be elucidated as follows: 

1. Generator G aims to generate samples from random noise while fooling the 

discriminator into believing that the generated image samples belong to the actual 

dataset.  
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2. The discriminator D is designed to detect whether the image presented as input is 

either real or a fake one generated by the generator, simultaneously also providing 

feedback to the learning curve of the generator.  

This training aims to optimize the model weights of both G & D networks while achieving 

a level of generalization ability and higher fidelity in generated images. The ideal state of 

the model after stable training would be such that the discriminator D identifies the realness 

of the generated samples of generator G with a probability of about 50%. 

For accommodating the min-max game between generator G and discriminator D, a loss 

function can be described in the form of Binary Cross-Entropy loss. The loss function is 

formulated as follows: 

𝐽(𝜃) = − (
1

𝑚
) ∑  

𝑚

𝑖=1

[𝑦(𝑖) 𝑙𝑜𝑔 (ℎ(𝑥(𝑖), 𝜃)) +                       (𝐼𝐼𝐼 − 1) 

(1 − 𝑦(𝑖)) 𝑙𝑜𝑔 (1 − ℎ(𝑥(𝑖), 𝜃))]                     

 

min𝐺 𝑚𝑎𝑥𝐷 𝐽(𝐷, 𝐺) = 𝐸𝑥∼Pdata (𝑥)[𝑙𝑜𝑔(𝐷(𝑥))] +

𝐸𝑧∼𝑃𝑧(𝑧)[𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧)))]
            (𝐼𝐼𝐼 − 2) 

Where 𝑥 is input data, 𝑚 is the number of samples in a mini-batch, 𝜃𝐺  is the generator 

model weights, 𝜃𝐷 is discriminator model weights, 𝐽(𝜃) is criterion or loss function with 

parameters, 𝑧 is the dimensionality of latent noise vector, 𝑃𝑑𝑎𝑡𝑎 is training data distribution 

and 𝑃𝑧 is synthetic data distribution generated using a noise vector. 

The equation (𝐼𝐼𝐼 − 1) describes the Binary Cross Entropy loss (BCE), and (𝐼𝐼𝐼 − 2) 

shows the transformed version of BCE loss for GANs. As seen in the equation, the loss 

function can be seen as two segments, one-part deals with original labels, and the second 

part deals with samples with fake labels. As depicted, the discriminator D is trying to 

maximize this loss function. In contrast, the generator G tries to minimize this function by 

fooling the discriminator D into yielding a value closer to one, making the second term in 

the equation approach negative infinity.  
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A subtle variation is introduced to the loss function. The original loss function tends to 

make GAN stuck early in training, especially when the discriminator has an easier task 

than the generator. Instead of the generator G trying to minimize the value of 

𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑧))) when target labels are zero, G is defined to maximize the value of 

𝑙𝑜𝑔 (𝐷(𝐺(𝑥))) while making the target label as 1. This modification is called the non-

saturating loss function. It eradicates the saturation region from the generator loss function 

in the early stage of training when high gradient values are much needed. 

Optimizer is the function devised to update the model weights using the gradients generated 

by the loss function. Stochastic gradient descent (SGD) or ascend is deployed as an 

optimizer in the vanilla GAN model. The equation for SGD used to update the parameters 

𝜃 is shown below in equation (𝐼𝐼𝐼 − 3), where 𝜂 is the learning rate (~0.0002): 

𝜃 = 𝜃 − 𝜂 ⋅ ∇𝜃𝐽(𝜃)                                    (𝐼𝐼𝐼 − 3) 

3.2.3 Training and Sampling Algorithm 

A subtle balance is required for training GAN, as it consists of scheduling the training of 

both networks, which have completely different tasks to achieve. For every epoch during 

training, firstly, a mini-batch of 𝑚  noise vectors is sampled from Gaussian noise 

distribution. These 𝑚 noise vectors of length 𝑧, are sent as input to the generator, which 

yields 𝑚 fake samples. For training the discriminator, 𝑚 samples of each fake and real data 

distribution are fed to the discriminator as input, along with their corresponding prediction 

label & weights are updated for optimization using stochastic gradient ascend. After 

finishing the training for the discriminator, the generator is trained for the batch of data. 

For generator training, 𝑚  samples of fake images are generated and sent to the 

discriminator for estimating prediction values while keeping the parameters of the 

discriminator frozen. The loss is calculated keeping the target label as 1, and weight 

updates are performed using stochastic gradient ascend. Note that the generator can only 

see the results of the fake part of the loss function while using only the feedback when the 

discriminator is fooled into yielding a value closer to 1. The loss function deployed here 

for training is the binary cross-entropy loss, also known as the BCE loss function. 
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This alternating simultaneous training is crucial. Otherwise, if either of the models (G or 

D) becomes far better than the other, the learning will curb and result in poorer generated 

results. Traditionally, for every epoch of the discriminator, the generator is trained for a 

couple of more epochs, as generator G has a much more challenging job to perform 

compared to discriminator D. After training, during inference, the discriminator module is 

detached, and sampling can be performed using only learned generator G to output samples 

close to the target domain, by feeding noise vector sampled from noise distribution. 

Algorithm 1 shows the pseudocode for training and inferencing a traditional GAN model 

Algorithm 1 Training and Inference on Vanilla generative adversarial network 

using backpropagation 

Input: 𝑃𝑑𝑎𝑡𝑎 , 𝑃𝑧 ,  𝑧 

Output: (of D) Scalar value (between 0 and 1) (of G) Image of target domain dimensions 

with appropriate channels 

Method: [Training] 

1: Initialization: 𝜃𝐺  (parameters of Generator module), 𝜃𝐷 (parameters of 

Discriminator module), 𝑂𝑆𝐺,  𝑧,  𝑒,  𝐽(𝜃) (BCE Loss). 

2: for the number of training epochs do 

3:      Sampling 𝑚 noise samples of size 𝑧 

4:      Sampling 𝑚 data samples from 𝑃𝑑𝑎𝑡𝑎   

5:      Generate 𝑚 images for 𝑃𝑧  using G 

6:      Forward pass real and fake samples through D 

7:      Update D by stochastic gradient ascend: 

∇𝜃𝐷

1

𝑚
∑  

𝑚

𝑖=1

[log 𝐷(𝑥(𝑖)) + log (1 − 𝐷 (𝐺(𝑧(𝑖))))] 

8:      Sampling 𝑚 noise samples of size 𝑧 

9:      Generate 𝑚 images for 𝑃𝑧 using G 

10:      Forward pass generated samples through D 

11:      Update the G by stochastic gradient ascend: 
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∇𝜃𝐺

1

𝑚
∑  

𝑚

𝑖=1

log (1 − 𝐷 (𝐺(𝑧(𝑖)))) 

12: end for 

Method: [Inference] 

1: Initialization: 𝑧 

2: Load: 𝜃𝐺    

3: Sampling desired 𝑚 noise samples of size 𝑧 

4: Generate 𝑚 images for 𝑃𝐺  using G  

3.2.4 Issues with Vanilla GAN 

A significant number of issues engender when the generative adversarial network is trained 

with the loss function mentioned in the previous section.  The list of the problems faced 

includes the following: 

• Gradient Disappearance while training 

• Mode Collapse due to unstable training 

• Poor Diversity of GAN generators 

• Uncontrollable Training 

The objective function of GAN is to optimize the weights in such a way that the two 

distributions of 𝑃𝑧 (distribution of generated data) and 𝑃𝑑𝑎𝑡𝑎  (distribution of actual data) 

coincide with each other. However, if the two distributions do not intersect or have a 

negligible intersection, it could lead to zero or disappearing gradients, thereby stopping the 

learning of the model. Another issue GAN faces is when the generator learns about a 

particular class that is miss-classified by the discriminator and is inclined to produce more 

and more examples of that class. Eventually, when the discriminator learns about the 

mistake of miss classification, the generator is left with no direction to learn anymore. This 

scenario affecting the diversity of the generated samples, caused by unstable training when 

the generator gets stuck in a local minimum, is called mode collapse. There are two types 

of mode collapse: 1) a subset of particular modes is present in the generated data 2) Almost 

none of the input data modes are learned by the generator to produce. 
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3.2.5 Evaluation metrics for image synthesis 

For evaluating visual results of generative adversarial networks, two crucial properties of 

generated distribution are considered: a) Fidelity: which deals with the amount of realism 

and quality of the generated samples, and b) Diversity: which deals with capturing the 

essence of every class from the actual data distribution and enabling that the generator 

produces variegated results, thereby making sure there is no mode collapse in the model. 

The three most effective evaluation metrics that have been used for benchmarking 

assessment are presented as follows: 

I. Comparing Images: 

a. Pixel Distance: An absolute difference between the authentic and generated images is 

taken in this method. It's not reliable as it hinders the creativity of the model. 

b. Feature Distance: This method looks at the features extracted from the generated data 

matching them with the features from the real data, thereby comparing the higher-level 

semantic information. For extracting features, an ImageNet pre-trained classifier has 

been deployed. The output vector will be taken from the final pooling layer for 

comparing the features, as it will have primitive feature information.  

II. Inception Score (IS): 

This technique [133] calculates the KL-Divergence metric for image quality inspection. 

This KL-Divergence means how different conditional distribution (Fidelity) is compared 

to the marginal distribution (Diversity), thereby estimating the relative entropy. Higher the 

KL-Divergence means a higher distance between the two distributions, and having a lower 

value means the quality of the generated images is better. The shortcoming of this 

technique is that it can be exploited by generating just a couple of realistic samples. The 

metric only works with the fake images, and no attention is provided to the actual authentic 

images. This metric also tends to miss out on the beneficial spatial relations among the 

features. The equation for calculating the Inception Score is elucidated below with �̂� & 𝑦 

representing generated data & labels, respectively: 
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IS (𝐺) = exp (𝐸�̂�∼𝑝𝑧
𝐷𝐾𝐿(𝑝(𝑦 ∣ �̂�) ∥ 𝑝(𝑦)))                    (𝐼𝐼𝐼 − 4) 

III.  Fréchet Inception Distance (FID): 

    FID [134] works on multivariate normal distributions of real and fake and functions as 

an improvement on the Inception score. FID calculates the distance between the statistics 

of the natural embedding distribution and that of the fake embedding distribution. Lower 

the FID means the closer the distributions are and the better results they produce. It has 

been observed that using a larger sample size has reduced noise and selection bias. An 

expression from [134] about Uni-variate Normal Distribution and Multi-variate Normal 

Distribution can be expressed below:  

𝐹𝐼𝐷(𝐺) = ∥∥𝜇𝑥 − 𝜇�̂�∥∥2 + 𝑇𝑟(𝐶𝑥 + 𝐶�̂� − 2√𝐶𝑥𝐶�̂�)      (𝐼𝐼𝐼 − 5) 

In the above expression, 𝑇𝑟 represents the Trace of the matrix, 𝜇 represents the mean and 

𝐶𝑥 denotes covariance matrix of real distribution, while 𝐶�̂� denotes the covariance matrix 

of synthetic distribution. One of the shortcomings of FID is that it uses the features captured 

by the inception model and misses out on any other. It cannot be helpful for data-specific 

applications. It usually requires a larger sample size and is comparatively slower in 

computation. A limited number of stats like mean and covariance are used while missing 

out on skewness. It performs a decent job of considering any Gaussian noise, gaussian blur, 

black rectangles, swirl, salt, and pepper noises.   

To overcome various issues presented in the vanilla GAN architecture, several solutions 

were proposed by the research community that can be summarized in Figure 10: 
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Figure 10: Taxonomy of Generative Adversarial Networks [135] 

3.3 Wasserstein GAN 

A solution was proposed to address the issue of the loss function, which deals with efforts 

to make generated distribution equal to the real distribution. The saturating nature of BCE 

loss causes the gradients to be close to zero if the two distributions are far apart. A unique 

distance is defined based on the analogy of dirt piles as distribution and distance to move 

those piles as Earth Mover's Distance. In this system, the loss function is defined so that 

the gradients keep on growing if the distance is more between the generated and natural 

distribution. This Earth Mover Distance (EMD), represented in equation (𝐼𝐼𝐼 − 6), is a 

function of the amount of distribution to be moved and the distance between them. 

𝑊(𝑃𝑑𝑎𝑡𝑎 , 𝑃𝑧) = 𝑖𝑛𝑓
𝛾∼∏(𝑃𝑑𝑎𝑡𝑎,𝑃𝑧)

 𝐸(𝑥,𝑦)∼𝛾[∥ 𝑥 − 𝑦 ∥]      (𝐼𝐼𝐼 − 6) 
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Where ∼ ∏(𝑃𝑑𝑎𝑡𝑎, 𝑃𝑧) is the set of all the joint distributions whose marginals are 𝑃𝑑𝑎𝑡𝑎 and 

𝑃𝑧. The generator in WGAN tries to minimize the distance between the distributions, and 

the critic is tasked with increasing the distance between the real and fake distribution. 

Unlike BCE loss which has its output bounded between 0 and 1, the outcome of the critic 

is not bounded and can result in any real output. This enables WGAN to solve the issue of 

mode collapse and vanishing gradients. WGAN deals with the evergrowing numerical 

value of weight by pruning the weights in the model. Although this makes the training 

more stable, there is a chance that gradients can explode or disappear and limit the model's 

ability to learn.  

 

Along with some significant advantages, there is one condition for WGAN to function 

properly, and that condition is defined as 1-Lipchitz Continuity. This condition requires 

the critic's function to be always 1-Lip continuous, meaning the gradient should be at most 

1 for every point. This L-continuous condition makes sure the training is stable and the W-

loss is valid. For enforcing the Lipchitz continuity, a gradient penalty term is introduced as 

proposed by [136]. This replaces the task of weight clipping to implement Lipchitz 

continuity by introducing a regularization term in the loss function. This regularization 

term penalizes the critic if the gradient is more than 1. It has been proven that WGAN GP 

(Wasserstein GAN with Gradient Penalty), whose equations are presented in (𝐼𝐼𝐼 − 7) and 

(𝐼𝐼𝐼 − 8) generates much better samples visually while making sure the training is stable 

and successful. Although, it has been observed that the time required for convergence is 

more with gradient penalty as there is an added computational overhead compared to the 

typical WGAN.   

𝐽(𝜃𝐷)  = −𝐸𝑥∼𝑝𝑑
[𝐷(𝑥)] + 𝐸�̂�∼𝑝𝑔

[𝐷(�̂�)] + 

𝜆𝐸�̂�∼𝑝𝑔
[(∥ ∇𝐷(𝛼𝑥 + (1 − 𝛼�̂�) ∥2− 1)2]       (𝐼𝐼𝐼 − 7) 

𝐽(𝜃𝐺) = −𝐸�̂�∼𝑝𝑔
[𝐷(�̂�)]  (𝐼𝐼𝐼 − 8) 
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3.4 Least Square GAN 

Another variant of modification in loss function is proposed by using least square metrics. 

This loss function, Least square GAN loss [137] described below, has proven to have more 

stable training gradients and is less prone to exploding or vanishing gradient problems: 

𝐽(𝜃𝐷) = −𝐸𝑥∼𝑝𝑑
[(𝐷(𝑥) − 1)2] + 𝐸�̂�∼𝑝𝑔

[𝐷(�̂�)2]                (𝐼𝐼𝐼 − 9) 

        𝐽(𝜃𝐺) = −𝐸�̂�∼𝑝𝑔
[(𝐷(�̂�−1))2]                                              (𝐼𝐼𝐼 − 10) 

3.5 Controllable and Conditional GAN 

The actual intuition behind conditional generation means that the class of examples 

sampled is based on some queries provided to the generator model. The usual task of 

training such a model requires labeled training data to be available. One easy way to 

implement conditional generation is by concatenating a one-hot vector where this vector 

encodes the information about the class. The discriminator of such a model is also provided 

with class information. This additional input data means that the information about data 

classes becomes significantly crucial for an accurate conditional generation. The 

discriminator will reject the input if there is a mismatch between the category of a particular 

sample and the actual sample from some other class. The information about the one-hot 

encoded vector can be incorporated with the sample by concatenating matrices of zero and 

one matrices with the input image in the discriminator. Typically, the size of one-hot 

vectors depends on the number of classes in the output domain. 

The researcher's community investigated the methods to change specific features in the 

visual output for a controllable generation by tweaking the input noise vector to get 

different visual artifacts in the desired output manner. Here, unlike conditional generation, 

the training does not require class labels. The objective of controllable generation is to 

nudge the training towards generation, which can be easily manipulated by changing the z 

noise vector. To achieve desirable output features, it is essential to understand how an 

image morphs while interpolating in the z-space. The goal is to find the right direction for 
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modifying the desired characteristics in the generated image. The main obstacle while 

performing controllable synthesis is that the z-space is entangled. The underlying features 

are often correlated, making it difficult to control one specific feature without changing the 

other one. For example, if the features are not correlated, then adding the beard should be 

easy, but as they are correlated, adding the beard adds masculinity to the image, which 

might not be the desired output, enforcing that the beard feature and masculinity feature 

are entangled. This entanglement results from z-space not having enough dimensions to 

provide individual mapping for every feature in the visual representation. One method to 

achieve controllable generation is by using classifier gradients. In this technique, the 

generator's weights are frozen, and the generator's output is sent to a pretrained classifier 

tasked with detecting specific features. This classifier provides gradients using softmax 

probabilities to the noise vector z and manipulates it. Although a classifier is deployed here 

to find directions in the z-space, the computational methodology seems lazy and messy.  

Another way to achieve controllable generation is by creating disentanglement in the z-

space. The latent factors of variations in the noise vector do not depict anything but impact 

the output image. If the z-space is disentangled, then it means that there will be a presence 

of specific indices on the noise vectors that can affect the features of the output image. 

Using class vectors during generation encourages disentangled z-space creation by 

supervision. Instead of using a one-hot encoder, these class vectors are deployed as 

embeddings in the noise vector. A different way to achieve disentanglement is by adding a 

regularization term that encourages the generator to associate each index of the noise vector 

with a distinct feature.   

3.6 High Fidelity Image Synthesis GAN 

Intending to achieve high fidelity and diversity in image synthesis tasks, researchers 

proposed a progressive, growing technique to implement an architecture called ProGAN 

[94]. The core idea of progressive growing is to gradually increase the more nuanced layers 

in the generator and discriminator by initially training with only low-resolution layers. The 

hypothesis behind the method was that this progressive growth (gradually doubling the 

image resolution after scheduled training intervals) would speed up the training and 
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increase the training stability. It had shortcomings like semantic sensitivity and constraint 

dependency of the dataset.  

Another attempt at achieving super-resolution was by [138], where the authors designed a 

large-scale architecture that was trained to generate high quality using ImageNet samples. 

This architecture named BigGAN has implemented orthogonal regularization in the 

generator model to tackle the instability caused due to such a scale and truncated latent 

space to achieve fidelity and diversity among samples.  

Recently, the crown of a most successful attempt at solving these issues and achieving the 

highest fidelity goes to StyleGAN architecture by authors from the Nvidia team [139]. The 

authors have reconfigured the generator architecture, so the model can generate a specific 

style of an image using latent space information in each convolution layer. The synthesis 

process starts with low-resolution images, which progressively grow towards higher 

resolution images. The input of every layer in the network is modified to achieve a handle 

over the visual features available in the actual data distribution. This technique implements 

automatic learning, unsupervised high-level attribute separation, and stochastic variation 

of generated images, thereby enabling intuitive, scale-specific control synthesis of 

composition. Figure 11 depicts the internal structure of the Generator module of the 

StyleGAN network consisting of a mapping & synthesizing network. 
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Figure 11:  StyleGAN architecture [139]   

This architecture works by feeding the noise input vector into a mapping network having 

learnable parameters, which transforms the input into an intermediate noise 𝑤  vector. 

Coarse information about image styles will be passed in the first initial layers, followed by 

more refined styles. These styles are extracted from multiple 𝑤 vector noise and inserted 

into various generator segments. Here, the 𝑤 noise vector determines the statistics of the 

image. It has been observed that this mapping network tends to improve disentanglement 

and provide more control over visual features. The mapping network usually comprises 

several fully connected layers. Along with progressive growth to improve the results, 

Adaptive Instance Normalization is implemented, in which 𝑤 vector, after generated from 
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𝑧 noise, is passed to a fully connected layer to engender scaling and bias adaptive styles. 

This step in the generator transfers the information about the style onto the generated 

sampled image. 

𝐴𝑑𝑎𝐼𝑁(𝑥𝑖, 𝑦) = 𝑦𝑠,𝑖

𝑥𝑖 − 𝜇(𝑥𝑖)

𝜎(𝑥𝑖)
+ 𝑦𝑏,𝑖         (𝐼𝐼𝐼 − 11) 

This StyleGAN architecture has more control over features by having a style mixing 

procedure. The noise samples from a normal distribution are concatenated to the 

convolution output before the Adaptive Instance normalization layer to enable the injection 

of stochastic variation. 

3.7 GAN for Data Augmentation & Privacy 

GAN has these excellent characteristics of an ideal candidate for data augmentation 

application. It can produce samples immensely close to the actual data distribution and 

supplement the real data for classification purposes. This can be crucial when the actual 

data is expensive and rare. The classic use case of this is in the domain of medical image 

analysis, like brain tumor or liver lesions diagnosis. The study presented in [140] has 

proposed a GAN-based method to synthesize medical images for data augmentation tasks 

in rare diseases.  

A study by [141] has designed an approach called fast AnoGAN, which can detect the 

anomalous nature of features in a variety of biomedical image datasets. Pros of this 

augmentation technique include better quality and highly refined images (compared to 

handcrafted examples). It can even generate labeled class sample sets, thereby improving 

the downstream task of generalization. The list of disadvantages of this method includes 

the diversity of the generated samples is limited to the diversity of the training examples. 

And if overfitting to actual data or highly prone mode collapse happens, GAN is rendered 

useless for augmentation. 

GAN can find its use case in privacy, as it can help mask the actual data by generating 

close to the natural distribution. Such GANs can enforce patient privacy in a clinical 

environment and encourage data sharing among esteemed institutions. Although, there is 
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the issue of data leakage, where the GAN sample is almost identical to the real data point 

but can be addressed by using a couple of postprocessing techniques. GAN can also help 

provide anonymity and ensure a safe environment for criminal case witnesses and assault 

victims. One colossal con of this application is Deepfakes, where media can be manipulated 

for wrongful intentions. 

3.8 GAN for Image-to-Image Translation 

For transforming styles, generative adversarial networks can be deployed for image/video, 

text, and facial landmarks to image translation. Recently, it has become a crucial 

application to deploy algorithms for image-to-image translation. The objective of this 

image translation task is to learn the mapping from the source image domain to the target 

domain. This method tries to keep the coarser feature or content of the image intact while 

changing just the properties of the target domain image to look like the objective domain.  

Many GAN variants are proposed, which achieve good results in image-to-image 

translation tasks. Typically, a style transfer method adopts an encoder-decoder 

discriminator (EDD) architecture and can produce diverse outputs. However, this 

architecture may tend to generate artifacts in the visually rendered samples. And usually, 

image-to-image translation GAN models are prone to unstable training, and mode collapses 

are frequent. Comparing the task of noise to image and image to image, the later model has 

a more onerous duty of generating an image, using the other image as a reference. 

Stochasticity is introduced in image-image models using dropout, which drops nodes 

randomly. Translation from image to image can be either paired or unpaired depending on 

the requirement and availability of data in a specific application. 

3.8.1 Pix-2-Pix 

In this model [142], the conditional generator structure is designed to be a U-Net 

architecture, and the discriminator structure is intended to be a PatchGAN network. The 

PatchGAN outputs a matrix of classification probabilities according to a patch while still 

incorporating BCE as a loss function. As a generator having an encoder and decoder 

framework, the U-Net structure transforms the information into a latent space embedding 
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using an encoder. Later, using transposed convolutions parses the instructions to generate 

an appropriate image at the output of the decoder. There is this presence of skip connections 

between encoder level layers and decoder level layers of the same resolution, which 

enables transmission of information during forward propagation and increases the flow of 

gradient during the backward pass while allowing deeper architectures. The input size of 

the encoder is 256 x 256 x 3, followed by eight encoder blocks, and each encoder block 

contains convolution, batch norm, and Leaky ReLU layers. This later outputs like a 

bottleneck layer with output dimensions of 1 x 1 x 512. The decoder segment of the model 

has eight decoder blocks, each comprising transposed convolution, batch norm, and ReLU 

layers, and outputs an image of dimensions: 256 x 256 x 3. Dropout is usually inculcated 

in the first three decoder blocks, which add noise to the network, enabling more diversity 

in the output. The layer of dropout is only present during training. In contrast, dropout is 

eliminated during inference, and to consider dropout during training, the inverse dropout 

probability scales neurons. For a paired image to image translation, pixel distance loss is 

formulated using L1 loss, which encourages the generator to be softly encouraged to 

produce more identical outputs to the target domain. For discriminator, loss gradients are 

generated by comparing the output classification matrix with the fake matrix (full of zeros) 

or the real matrix (full of ones). 

3.8.2 CycleGAN 

Often, there is no availability of paired datasets. However, unpaired translation can still be 

performed on an unpaired image pile of two domains, and still, a decent level of translation 

results can be achieved using a GAN variant. In this application of unpaired translation, 

mapping between two piles of datasets is performed. At the same time, the content is 

preserved, and only the stylistic features are modified to match the target domain images. 

Here, cycle consistency loss [143] is introduced to perform this task. The discriminator is 

a PatchGAN, and the generator combines U-Net, DCGAN (acting as a bottleneck), and a 

ResNet. 

In this model, two GANs are deployed simultaneously with reversible roles. One GAN is 

trying to learn the mapping function from the source domain to the target domain. The 
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second one is aimed to find the transformation between the target domain and the source 

domain again. There is no real target outputs in this application. In this CycleGAN model, 

each discriminator oversees one pile of images. Cycle-consistency loss is the sum of 

adversarial losses from both the directions of the two GANs, while there is the presence of 

only one optimizer, which is shared between both the GANs.   

𝐺∗, 𝐹∗ = arg 𝑚𝑖𝑛
𝐺,𝐹

 𝑚𝑎𝑥
𝐷𝑋,𝐷𝑌

   𝐿(𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌)

= 𝐿𝐺𝐴𝑁(𝐺, 𝐷𝑌, 𝑋, 𝑌)

+𝐿𝐺𝐴𝑁(𝐹, 𝐷𝑋, 𝑌, 𝑋)

+𝜆𝐿𝑐𝑦𝑐(𝐺, 𝐹)

         (𝐼𝐼𝐼 − 12) 

The authors of the papers conducted multiple ablation studies and concluded the following 

things: 1) using only Cycle loss did not result in good samples 2) using only GAN loss 

resulted in frequent mode collapse 3) Deploying a combination of GAN loss and Cycle 

loss helped CycleGAN model in transferring the unique style feature elements while 

maintaining a shared content between the images of both domains. They also found that 

using Least Square Loss as adversarial loss helped with vanishing gradients and refraining 

the model from going into mode collapse. Usually, the GAN loss functions are chosen 

empirically, and the decision depends on training time availability. An optional loss called 

identity loss is introduced to preserve color from the original data. This loss dictates that if 

an opposite generator is deployed, the output should remain almost like the input image 

when checked using pixel distance loss, thereby expecting identity mapping. One identity 

loss is introduced for each GAN in the architecture. The loss function will have the least 

square loss, cycle consistency loss, and identity loss while training a GAN structure. This 

innovative unsupervised image translation model works excellent without the requirement 

of aligned image pairs in the dataset while achieving incredible results on translation tasks 

involving color and texture but fails to translate when geometric changes are required. 

3.8.3 UNIT 

This technique of Unsupervised image-to-image Translation (UNIT) was proposed by 

[144], which deals with the concept of shared latent space. This architecture is inspired by 

a combination of generative adversarial networks and variational autoencoders. The 
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adversarial training objective interacts with weight-sharing constraints during the 

generation of images of the corresponding two domains to enforce the shared latent space. 

Using a variational autoencoder, the architecture connects the translated image to the input 

image in respective domains. The model efficiently generates street scene image translation 

and face image translation. There are two limitations of this architecture: a) the presence 

of saddle point searching problem, making the training unstable b) the translation model is 

unimodal because of the Gaussian latent space assumption. 

𝐿𝑜𝑠𝑠 (𝑈𝑁𝐼𝑇) =

𝑚𝑖𝑛
𝐸1,𝐸2,𝐺1,𝐺2

 𝑚𝑎𝑥
𝐷1,𝐷2

 𝐿𝑉𝐴𝐸1(𝐸1, 𝐺1) +

𝐿𝐺𝐴𝑁1(𝐸2, 𝐺1, 𝐷1) + 𝐿𝐶𝐶2(𝐸1, 𝐸2, 𝐺1, 𝐺2) + 
𝐿𝑉𝐴𝐸2(𝐸2, 𝐺2) + 𝐿𝐺𝐴𝑁2(𝐸1, 𝐺2, 𝐷2) +

𝐿𝐶𝐶2(𝐸1, 𝐸2, 𝐺1, 𝐺2)

         (𝐼𝐼𝐼 − 13) 

3.8.4 MUNIT 

To overcome the issues of unimodality present in UNIT architecture, researchers came up 

with a multimodal architecture [145], which produces diverse results from a multimodal 

conditional source distribution. In this technique, two autoencoders are trained 

simultaneously, while one encodes the image's content, which is domain invariant. The 

second is encoding the style of the image, which envisions the domain-specific properties. 

The model's objective is to recombine the content code with a random style code sampled 

from the style latent space of the output domain to translate. The method has successfully 

achieved high fidelity and diverse images while controlling the style of translation output. 

𝑚𝑖𝑛
𝐸1,𝐸2,𝐺1,𝐺2

 𝑚𝑎𝑥
𝐷1,𝐷2

 𝐿(𝐸1, 𝐸2, 𝐺1, 𝐺2, 𝐷1, 𝐷2)

= 𝐿𝑥1
𝐺𝐴𝑁 + 𝐿𝑥2

𝐺𝐴𝑁 + 𝜆𝑥(𝐿𝑥1
recon + 𝐿𝑥2

recon ) +

𝜆𝑐(𝐿𝑐1
recon + 𝐿𝑐2

recon ) + 𝜆𝑠(𝐿𝑠1
recon + 𝐿𝑠2

recon )

         (𝐼𝐼𝐼 − 14) 

3.9 Diffusion Model 

Diffusion models perform image generation by taking input of noisy images and 

conducting specifically trained denoising operations that gradually remove the noise and 

unveil the image close to the training data distribution. Recently two researchers from Open 
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AI [121] proposed their diffusion model, which beats the SOTA GANs with a much better 

FID score of 7.72 on ImageNet 512x512 [146] and requires fewer training epochs. They 

incorporated several upgrades to the existing diffusion model, like attention mechanism, 

adaptive group normalization, and class label conditioning. The concept of this model 

described in the paper is new, and more ablation studies are required to be performed to 

prove its potential in image synthesis 
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CHAPTER 4 

PROPOSED MODEL 

 

4.1 Design Objective and Intuition 

After conducting the literature survey, we identified several existing challenges in the state-

of-the-art models & pipelines. We took the existing architecture as the baseline while 

designing our pipeline. The challenges we aimed at tackling included a lack of proper focus 

mechanism that distinguishes skin lesion features from their surrounding less valuable 

features, lack of robustness and reproducibility while keeping the training time optimized, 

low diversity among generated samples, and limited dataset samples limiting the learning 

ability of the algorithm. Usually, deep convolutional models in our survey were trained 

without a decent augmentation technique and evaluated against a minimal sample size of 

data, leading to overfitting in the model. We designed a novel model pipeline that augments 

a synthetically generated dataset to increase the learned feature diversity and fidelity, 

enforces segmenting lesions from healthy skin and artifacts present in the lesion dataset, 

localizes features, and extracts them later used by the classifier to make its decision. This 

pipeline includes a generative adversarial network that can be trained in a few shot learning 

fashion. The pipeline is further followed by a deep learning architecture that can localize 

on the most critical features of the lesion. Before passing through various learning 

algorithms, the input database of images was preprocessed by noise removal, artifact 

removal techniques, and duplication removal. The thesis later investigates the impact of 

such preprocessing techniques on our pipeline.  

Traditional GAN networks were designed for images with continuous patterns in pixels 

with observable changes. But skin lesion images are visually different from face images 

because the patterns and styles are far less diversified and notable. To address these existing 

issues, the thesis modifies StyleGAN architecture. We propose a version of the style 

controlling technique designed specifically for medical lesion images with a more 

straightforward generator and discriminator modules. In our design, a custom StyleGAN2 

ADA architecture (SkinGAN) is deployed to synthesize samples of a skin lesion in a few 
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shots learning manners, to incorporate faster training time while also keeping the model 

size smaller for clinical server deployment. The SkinGAN model was able to generate 

highly diversified data while retaining its fidelity as close to the training data as possible. 

Next in our pipeline, the thesis investigated multiple deep learning architectures and 

concluded that DenseNet201 [147] architecture was most suitable for feature extraction. 

This DenseNet201 network was embedded with a novel soft attention module to enforce 

the model to focus on the input lesion image's salient and relevant region of interest. The 

soft attention module is better suited for this task than traditional complicated segmentation 

techniques, which can ignore important characteristics of lesion images. Thereby the hard 

attention might not end up using the full feature capability of the input dataset for learning, 

while even leading to misclassification during inference. We also proposed a custom loss 

function along with mini-batch logic specific to the skin lesion classification task. A unique 

augmentation pipeline is also introduced to help model in learning feature diversity and 

prepare itself better for unseen future samples by improving generalization capability. The 

model pipeline formulated and elucidated in the thesis is named SkinCAN AI. The model 

pipeline also incorporated features from the metadata of patients, and the thesis later 

investigates the impact of metadata on the learning process. 

4.2 Network Architecture 

4.2.1 SkinGAN architecture 

The proposed generative adversarial network SkinGAN closely follows StyleGAN2-ADA 

[44] network by Nvidia researchers but develops on it by modifying the pipeline in such a 

way that it becomes more suitable for the synthetic generation of skin lesions. Instead of 

using style mixing in the traditional StyleGAN network by combining two latent vectors, 

the proposed SkinGAN model only incorporates one latent vector used for synthetic 

generation to overcome any issues caused by unobservable similarities present in synthetic 

lesion images.  

The generator architecture of SkinGAN is a modified version, as the last layer module is 

required to generate a pixel dimension of 224, so it can be smoothly passed on to the final 
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deep learning classifier layer without any dedicated resizing step. The discriminator of 

SkinGAN is modified to make use of residual connections, along with the technique of 

Freeze-D (Freeze Discriminator) explained further in detail. The proposed discriminator 

comprises residual connections to enable faster optimization. We have kept residual 

connections only in the discriminator, as their presence in the generator has shown 

negligible to zero improvements in synthetic results, sometimes even leading to longer 

training times. The proposed model also implements techniques like weighted 

demodulation and adaptive discriminator augmentation and specialized regularization 

methods while eliminating any modules or practices that have been shown to hamper the 

performance that an ideal optimized generative adversarial pipeline can achieve. 

4.2.1.1 Adaptive Discriminator Augmentation 

In the presence of small training data such as skin lesion diagnosis one, the discriminator 

characteristically having an abundance of parameters will tend to statistically show poor 

performance by overfitting, which can be observed by plotting validation accuracy. One 

more concrete evidence of the overfitting of such a GAN model is that the discriminator 

shows similar poor performance on synthetic samples. Suppose this is the scenario 

observed in graphs during training. In that case, it becomes evident that the discriminator 

is not learning any underlying semantic features of the original data distribution, instead is 

lazily focusing only on high-frequency patterns in the dataset.  

In practice, to address the issue of overfitting, usually in the case of any computer vision 

application, augmentation transformations are introduced while preserving the label 

representing features in the image. This augmentation could be performed in several ways, 

including rotation, image scaling, random crops, or even color transformation. The research 

community has experimented with the number of techniques to implement this 

augmentation transformation in a pipeline of the generative network. Attempts to achieve 

this include contrastive loss or consistency regularization, but the most successful is the 

dynamic augmentation method. The simplest way to integrate the augmentation module in 

GAN is by sending the samples of the real dataset and synthetic ones alike in the 

augmentation pipeline and then letting the discriminator train on them. But this creates the 
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issue in the generator module, which is supposedly learning simultaneously, to start 

focusing on those augmented features and generating them with an intent to fool the 

discriminator. Eventually, the generator module becomes confused between natural 

semantic features and augmented features; later, after training for a longer time couldn’t 

distinguish between them.  

To prevent this issue, a strategy needs to be forged that implements augmentation for 

regularization in the discriminator but doesn’t end up leaking in the semantic features 

learned by the generator. This leads to the idea of invertible augmentation. These are the 

augmentations that the generator module can’t learn. However, it essentially retains the 

input data's contextual and overall semantic concept. Thereby avoiding leaking augmented 

features in the latent space of the generative network. An example of such non-leaking 

augmentation would include performing rotational transformation between {0°, 90°, 180°, 

270°} with a probability chosen from a uniform distribution. The generator would not have 

any way to distinguish between them, as their frequency is uniform, making the 

augmentation principally equally embedded in the input data. But the situation is changed 

if the same transform is happening with non-uniformly distributed probabilities, which 

might lead to a higher occurrence of one orientation in the data presented to the 

discriminator and end up confusing the generator later. 

In the deployment of SkinGAN architecture, a specialized augmentation pipeline is created 

consisting of 18 different types of transformation functions. These 18 augmentation 

techniques include pixel blitting, general geometric transformations, color transformations, 

image space filtering, and image space corruptions. The proposed model has modified the 

augmentation pipeline to include only pixel blitting and general geometric transformations. 

Any other augmentations like color transformation on the skin lesion dataset could 

completely distort the semantic features that the discriminator should learn. Pixel blitting 

comprises x-flip, 90° rotations, and integer translation, while geometric transformations 

consist of fractional translation, anisotropic scaling, arbitrary rotation, and isotropic 

scaling. These augmentations should be strictly differentiable during training, as it also 

affects the generator training. A probability scalar p (p ∈ [0,1]) is deployed to control the 

strength of augmentation. It can be observed that the chances of the discriminator observing 
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an image straight from the dataset is still unlikely even when the p-value is significantly 

low due to the presence of several augmentation techniques in the pipeline. At the same 

time, the generator can keep on yielding images close to the input dataset, given the 

condition that the value of p doesn’t cross any prescribed limits or does not enable leaking 

in the generator. Higher values of p, especially when they reach 1, can increase the leakage 

into the generator module because it allows for extra augmentations to be performed while 

feeding the discriminator. 

Stochastic Discriminator augmentation is performed using a technique called 

Discriminator Googles. In this technique, the discriminator sees the real and generated data 

as augmented, while the strength of that augmentation is controlled by parameter p. This 

parameter p enables recovering the semantic idea of original data distribution. The 

discriminator is guiding the generator while wearing goggles by seeing through the 

probability masks of each augmentation and is unable to see even a single true clean real 

data sample. 

4.2.1.2 Adaptive Control Scheme for parameter p 

The value of p is a crucial hyperparameter to guide the discriminator and generator module. 

Instead of keeping the p constant, a dynamic scheduling strategy is adopted. Usually, in 

the practice of computer applications, augmentation is only required when there is an issue 

of overfitting. So, the same principle is adopted to create a strategy in which the value of p 

is dynamically varied according to the detection of overfitting in the discriminator module. 

For measuring the overfitting in discriminator, a unique set of heuristics are deployed, 

which includes as shown in the equation below: 

𝑟𝑣 =
𝐸[𝐷train ] − 𝐸[𝐷validation ]

𝐸[𝐷train ] − 𝐸[𝐷generated ]
         (𝐼𝑉 − 1) 

𝑟𝑡 = 𝐸[sign(𝐷train )]         (𝐼𝑉 − 2) 

In the above equation, 𝐷train , 𝐷validation and 𝐷generated represents the output of the 

Discriminator module from training data, validation data, and generated datasets, 
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respectively. While E represents the mean taken over M consecutive mini-batches (M = 4 

in practice). Whenever the value of heuristics reaches zero, it depicts the absence of 

overfitting, while when their value moves closer to 1, that indicates overfitting. The value 

of heuristic 𝑟𝑣 represents the performance of discriminator on validation samples compared 

to when generator samples are fed to discriminator, with an assumption of the existence of 

a validation set. The second heuristic 𝑟𝑡 works on the principle that how many samples of 

the training set are considered a positive sample by the discriminator cause if almost all the 

training samples are considered positive by the discriminator, it becomes clear indicative 

of overfitting.  

In deployment, the value of p is initialized to a value of zero to ensure that no augmentation 

is implemented in the initial learning stage of the generator. Whenever the heuristic 

indicates overfitting, the value of p is increment by a constant value to counter that. It is 

crucial to note that parameter p is changed only once in every four mini-batches because if 

the value is changed at a much faster or slower rate, that could lead to unstable training and 

leaking. 

4.2.1.2 Freeze-D 

In the study [148], the discriminator is split into a feature extractor network and classifier 

network, focusing only on fine-tuning the classifier for a specific application (here, we will 

be focusing on skin lesion synthetic generation). This is implemented by freezing the high-

resolution lower layers of the discriminator and then performing transfer learning to fine-

tune the low-resolution application-specific layers. This has been found to significantly 

reduce the training time while providing an excellent prior to start from in discriminator, 

especially in medical applications where the dataset tends to be limited. 

4.2.1.3 Weight Demodulation 

The older normalization techniques like the adaptive instance normalization tend to embed 

noisy artifacts like water droplets and phase artifacts, where features are stuck in one local 

space during latent space interpolation. For reconstructing such a normalization technique, 
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the noise needs to be outside the style box. Otherwise, too much noise addition introduces 

speckle artifacts in the generated image, which couldn’t be allowed in feature-sensitive 

medical datasets like that of skin lesions. The process of weight demodulation is performed 

by scaling the weights in the convolution layers according to the latent vector. After 

demodulation is accomplished by forcing features to have unit variance. The weight 

demodulation is implemented using the equation described below: 

𝑤𝑖𝑗𝑘
′ = 𝑠𝑖 ⋅ 𝑤𝑖𝑗𝑘         (𝐼𝑉 − 3) 

𝑤𝑖𝑗𝑘
′′ =

𝑤𝑖𝑗𝑘
′

√∑  𝑖,𝑘 𝑤𝑖𝑗𝑘
′ 2

+ 𝜖

          (𝐼𝑉 − 4) 

Here, 𝑤 ,  𝑤′ , and 𝑤′′  are original, modulated, and demodulated weights, respectively,  

𝑖, 𝑗, and  𝑘 represent input feature map, output feature map, and spatial location during 

convolution, 𝑠𝑖  represents the scale decided by 𝑖 th input feature map, 𝜖  for numerical 

stability. 

Although the concept of replacing instance normalization with a version of weight 

normalization is not precisely similar from a mathematical point of view, this change 

achieves the target of high fidelity generated images with no deterioration of FID by 

normalizing using unit standard deviation. 

4.2.1.4 Perceptual Path Length Regularization 

In an ideal GAN network, it is crucial that subtle changes in the latent vector z should map 

to only slight smooth feature changes in the synthetic image, rather than causing drastic 

visual changes in the generated image. Perceptual path length regularization is 

implemented to enforce such requirements.  

Studies have established that metrics used for evaluating generative networks like FID 

score are biased towards generating correct texture rather than generating proper shape. 

This gap can also be addressed by using a specialized metric called the perceptual path 

length metric. It has been established that the lower the value of the perceptual path length 
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score, the better the results would be in maintaining the semantic shape information from 

the target dataset. The perceptual path length regularization term is introduced in the 

generator loss function to address mentioned issues. To implement perceptual path length 

regularization, the following equations are utilized: 

𝐽𝑤 =
∂𝑔(𝑤)

∂𝑤
         (𝐼𝑉 − 5) 

𝐽𝑤
𝑇 𝑦 = ∇𝑤(𝑔(𝑤) ⋅ 𝑦)         (𝐼𝑉 − 6) 

𝐸𝑤,𝑦∼𝑁(0,𝐼)(∥∥𝐽𝑤
𝑇 𝑦∥∥2

− 𝑎)
2

         (𝐼𝑉 − 7) 

Here, 𝑤 ∈ 𝑊is latent vector from latent space 𝑊 , 𝑔(𝑤): 𝑊 ↦ 𝑌 is the generator mapping 

from latent space 𝑊  to image space 𝑌 . 𝐽𝑤  is the Jacobian matrix describing the small 

changes, 𝑦  are synthetic images with normally distributed pixel intensities. 𝐽𝑤
𝑇 𝑦  is 

introduced to avoid heavy explicit computation. The constant 𝑎 depicts the long-running 

exponential moving average of the L2 norm of 𝐽𝑤
𝑇 𝑦 . Equation (𝐼𝑉 − 7) becomes the 

regularization term added to the generator loss function to enforce smooth mapping 

between latent space and image space. 

A study by [149] found that performing regularization using R1 regularization and 

previously mentioned path length regularization has proved to be a heavy computational 

burden while training the GAN network on a GPU and can even lead to high computation 

costs. So, the method proposed by the authors to counter this issue was to perform 

regularization only once in every 16 mini-batches for the discriminator and every 8 for the 

generator, as they found no significant impact on performance but decreased the training 

time and cost. Here in the SkinGAN model, the same methodology is adopted but modified. 

Both R1 and perceptual path length regularization are only performed every 16 mini-

batches for the generator, and 24 mini-batches for the discriminator, as the presence of 

adaptive augmentation is already significantly helpful in avoiding model overfitting. 
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4.2.1.5 Residual connections 

Progressive growth techniques introduced with the earlier StyleGAN model have produced 

phase artifacts in the resulting image while also causing a computational overhead during 

training. Inspired by investigations in a study [150], modifications in discriminator and 

generator modules are proposed by adding skip connections or residual connections to the 

architecture while abandoning progressive growth training.  

Although our investigation during the thesis found that allowing residual connections in 

the generator could lead to less knowledge distillation into the weights learned. So, we 

have implemented residual connections only in the discriminator module, allowing a better 

flow of information between the layers. The presence of residual links has shown 

significant improvement in the perceptual path length score while also benefiting the FID 

score. In a residual connection during implementation, two paths are created, one where 

the feature maps are upscaled and another is an identity transformation. Later these paths 

are combined to estimate the output by elementwise addition. 

4.2.2 Soft Attention Module 

While observing the skin lesion dataset, it becomes visually clear that only a specific 

portion of the dataset image is the pixels containing semantic feature information about the 

identity of the lesion. Looking through the data samples, it can be established that images 

are filled with artifacts such as veins, hair, or even grid-scale marking, which doesn’t serve 

any semantic knowledge for any AI network to learn from. We propose deploying an 

attention mechanism that addresses the problem of hard segmenting skin lesions before 

classification and helps eliminate artifacts that can introduce bias in the network. This 

attention mechanism is implemented with a soft logic, as we don’t want to discredit any 

useful diagnostic indicator while classifying. This is achieved by giving fewer weights to 

feature maps that correspond to areas in the skin lesion image with low to no semantic 

information. The equation for soft attention is given below: 
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𝑓𝑠 = 𝛽𝑓 (∑  

𝑁

𝑛=1

softmax (𝑊𝑛 ∗ 𝑓))         (𝐼𝑉 − 8) 

Here 𝑓 ∈ 𝑅𝑤×ℎ×𝑑 is a tensor which fed to a 3D convolution layer having weights 𝑊𝑛 ∈

𝑅𝑤×ℎ×𝑑×𝑁, 𝑁 in the above equation represents the number of attention maps or even the 

size of the 3D weights vector. The Soft Attention mechanism module is depicted in Figure 

12. 

 

Figure 12: Soft Attention Module 

The 3D convolution operations and the softmax layer yield the attention maps, which are 

concatenated to generate one single attention map. This aggregated attention map is then 

multiplied with the feature tensor 𝑓, to enable variable attention to each feature and scale 
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them accordingly. These attended features were later scaled by learnable parameter 𝛽. 

Then 𝑓𝑠 is concatenated with 𝑓 using a residual connection, allowing the network to train 

in an optimized way. Usually, in deployment practice, the value of 𝛽 is kept low at the start 

of training, but the network gradually learns to implement an attention map mechanism. 

This technique eliminates the use of methods like GradCAM [151], which has shown issues 

such as ignoring critical features in the lesion image or even, in some cases focusing on 

irrelevant areas. The soft attention mechanism inherently focuses on the classifier's 

sensitivity, allowing it to focus on correctly classifying positive ones. This is crucial 

because misclassifying a malignant patient as benign is far more severe than vice versa and 

could, unfortunately, lead to fatality or cancer metastases in a clinical environment. 

4.2.3 DenseNet201 

In our proposed methodology, we proposed integrating DenseNet over other networks such 

as ResNet because it uses the full learned feature map size, instead of using zero-padding 

like in ResNet where noise is introduced, or using stride 2 in the 1D convolution layer, 

which eventually loses a few critical learned features. According to investigations 

performed in study [152], it becomes evident that the list of good candidates for task of 

skin lesion classification include DenseNet201 [147], InceptionResNetV2 [153], and 

SE_ResNet150 [154]. But taking into consideration the AUC score and computational 

processing power utilized during training and inferencing, DenseNet201 proves to be an 

ideal deep learning architecture. 

This architecture was introduced to overcome issues of vanishing gradients caused by the 

increase in the depth of layers in the model. DenseNet architecture work on the principle 

that input of the current layer is the concatenation of feature map input of all the previous 

layer. Dense blocks are tiny modules having dense connections among them. A 

combination of a 1x1 convolution layer and pooling layer connects these Dense blocks. 

This 1x1 convolution layer allows shrinking the depth of the feature map while preserving 

the spatial dimensions. While pooling layers with stride 2 reduces both feature maps and 

half the spatial dimensions. DenseNet architecture has proven to be highly parameter 

efficient, as it doesn’t require extra parameters to preserve feature information while also 
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producing significantly diversified feature maps. It is critical to note that there is no change 

in feature map dimension inside the Dense block to allow easy concatenation among them. 

While transition layer connecting Dense blocks consists of a pooling layer only having the 

control to reduce the feature map dimensions.  

The architecture of the Dense block containing the non-linear transformation and 

bottleneck layer is depicted in Figure 13. The presence of a transition layer between the 

Dense blocks allows reducing feature map dimensions, which is illustrated in Figure 14. 

Advantages of DenseNet include a) strong gradient flow, b) parameter and computational 

efficiency, and c) maintaining low complexity features. The entire architecture of 

DenseNet201 is shown in Figure 15. 

 

 

Figure 13: Dense Block comprising of bottleneck layer and non-linear transformation 

[155] 

 

 

 

Figure 14: Transition Layer of DenseNet [155] 
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Figure 15: DenseNet201 Architecture along with Dense Connections [155] 

4.3 SkinCAN AI Model Setup 

This section explains how every module explained before is combined to form a pipeline. 

The proposed SkinGAN architecture would comprise of generator and discriminator 

module that allows the generation of high fidelity and high diversity synthetic samples of 

skin lesions. The generator module will contain a mapping network and synthesis network. 
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The mapping network transforms the latent vector z into an intermediate latent vector w 

through normalization and fully connected layers. The synthesis network consists of weight 

demodulation segments, convolution 3x3, and upsampling layers. The discriminator 

module includes an adaptive discriminator augmentation module, residual connections, 

and bilinear downsampling modules in every discriminator block. A minibatch standard 

deviation layer and a fully connected linear layer are added at the end of the discriminator. 

At the same time, the classifier deep learning network is identified to be DenseNet201 with 

a Soft Attention module embedded at the end to enable optimized skin lesion detection. 

The whole SkinCAN AI pipeline is depicted in Figure 16 at the end of this chapter. 

4.4 SkinCAN Loss Function 

In this thesis, we propose a modified and improved loss function designed specifically for 

the task of skin lesion diagnosis. Traditionally for any machine learning task of 

multiclassification, cross-entropy loss along with softmax is deployed. The softmax 

function derives the class probabilities of each class for the multiclassification job. The 

equation for the softmax function is given below: 

𝑓(𝑠)𝑖 =
𝑒𝑠𝑖

∑  𝐶
𝑗 𝑒𝑠𝑗

          (𝐼𝑉 − 9) 

Here the term 𝑠𝑗 denotes the scores of each class in 𝐶. It is crucial to note that the softmax 

activation value of a particular 𝑠𝑖 will depend on all the scores present in 𝑠. The equation 

of cross-entropy loss (CE) is given below: 

𝐶𝐸 = − ∑  

𝐶

𝑖

𝑠′
𝑖 log(𝑠𝑖)         (𝐼𝑉 − 10) 

Here 𝑠′𝑖 represents the actual value of class 𝑖 in 𝐶, while the 𝑠𝑖 depicts the predicted class 

score by the network. In practice, the softmax activation function is deployed before 

implementing cross-entropy loss. If the softmax function is deployed before deriving cross-

entropy loss, then the loss function is known as categorical cross-entropy loss (CCE) or 

Softmax loss. In this thesis, we deployed Focal loss, which is an extension of the cross-
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entropy loss function but does a better job when there is an imbalance in the class 

distribution of the training dataset. The focal loss enables a sense of freedom to model in 

giving a prediction for classes about which the model is not 100% sure. In cancer diagnosis, 

even the slightest chance of a positive case must be detected, even if it is a false positive. 

The focal loss is also functional when the information that will decide for classification is 

sparsely present, and most of the background information of pixels might not be helpful 

for classification. This situation is very relevant in the case of skin lesion diagnosis, as most 

pixel information surrounding the actual lesion features is not that useful. Focal loss is also 

beneficial to the model by making it focus on learning distinguishing features between 

difficult classes. The equation for implementing focal loss is given below: 

softmax(𝑦𝑖) =
𝑒𝑦𝑖

∑  𝐶
𝑖=1 𝑒𝑦𝑖

 

𝐿focal loss (𝑦, 𝑦′) = −
1

𝑛
∑  

𝑛

𝑖=1

𝑦′𝑖 ⋅ 𝛼𝑖(1 − softmax (𝑦𝑖))
𝛾

× log (softmax(𝑦𝑖))

          (𝐼𝑉 − 11) 

Here the term 𝑦 is the predicted label, while the term 𝑦′is the ground truth from the dataset. 

The term gamma 𝛾 is called the modulation factor. The higher the modulation factor, the 

lower the loss for well-classified samples. Thereby the learning model could focus more 

on the “difficult-to-classify” samples. The term 𝛼 is known as the equilibrium weighing 

factor. Higher weights could be assigned to classes with low samples and smaller weights 

to dominating categories. At the modulation factor equal to 0 and equilibrium weighing 

factor equal to 1, the equation of focal loss becomes the equation of cross-entropy loss. Our 

research experimented with softmax, weighted cross-entropy, angular softmax, and even a 

mix. Still, it concluded that the model achieves the best performance on the validation set 

with a focal loss function. With our experimentation, we found the best results with a 

gamma value of 2 and an alpha value of 0.75. 
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Figure 16: SkinCAN AI Pipeline  
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CHAPTER 5 

EXPERIMENTAL RESULTS & ANALYSIS 

 

5.1 Experimental Setup 

While developing this thesis, experiments were performed in the Jupyter notebook 

environment on Google Colab Pro using Python 3.6.9 with 16 GB P100 GPU with Pascal 

architecture accompanied with 2 x vCPU having 25 GB RAM and Intel® Xeon ® CPU @ 

2.30 GHz. To approach the challenge of diagnosing skin cancer, the experimentation 

pipeline adopted while designing the model is elucidated in Figure 17. 

 

Figure 17: Experimentation pipeline for developing deep learning AI model 
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5.1.1 Software libraries deployed 

The code for the experimentation is built using Pytorch open-source deep-learning library 

as it has shown significantly cleaner code and faster computation. Few earlier experiments 

in the study were also conducted using Keras API with Tensorflow-CPU. The software 

stack used for developing the code includes Rapids CUML, matplotlib, pandas, NumPy, 

SciPy, and sci-kit learn toolkit. For deep learning computations, libraries utilized for the 

proposed model have albumentations, hugging face, OpenCV, pretrainedmodels, and 

weights & biases. 

5.1.2 Dataset 

The dataset of ISIC 2020 [48] has a total of 33,123 training images, from which 32,542 

images are classified as benign, while only 584 samples are malignant melanoma. For the 

patient, the most critical information is early diagnosis, questioning if the cancer detection 

is malignant or not. As the dataset had such a skewed class imbalance with only 1.8% of 

positive cases, we explored external databases that could be amalgamated with this to 

improve the class ratio. For training our proposed model,  ISIC 2020 [48] (having total 

about 44k samples) along with external data from ISIC 2019  [18], [54], [55] & ISIC 2018 

[18], [58] (about 60k samples) datasets are combined (making in total of +100k) and 

utilized to train the SkinCAN AI pipeline. The older ISIC datasets (2019, 2018) have about 

over 5k samples in a total of positive cases. Having a much higher percentage of melanoma 

samples in the training dataset enabled the deep learning pipeline to learn more feature 

diversity and information. Therefore helps the algorithm to generalize better and prepare 

well for the real data distribution. The graph below in Figure 18 and Figure 19 shows the 

distribution of diagnosis classes in the dataset.  

As the categories of ISIC 2019 and ISIC 2020 were vastly different, a diagnosis mapping 

between their classes was established. The rare classes like seborrheic keratosis, lichenoid 

keratosis, solar lentigo, and lentigo NOS from ISIC 2020 are combined under one 

classification of benign keratosis, as they all had significantly lower data samples making 

it impossible to learn them. We also classified café-au-lait macule and atypical melanocytic 
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proliferation under unknown. At the same time, we were keeping all other classes as it is 

after processing a dataset with nine categories. 

 

Figure 18: Cases of Diagnosis in the ISIC 2020 dataset 

 

Figure 19: Cases of Diagnosis in the ISIC 2019 dataset 
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5.1.3 Evaluation Metrics deployed 

For evaluation of skin lesion detection from DenseNet201 architecture, the following 

metrics are deployed in practice: 

• True Positive: TP 

• False Positive: FP 

• True Negative: TN  

• False Negative: FN 

1) Accuracy (AC) 

𝐴𝐶 =  
𝑇𝑁 + 𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
         (𝑉 − 1) 

2) Specificity (SP) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
         (𝑉 − 2) 

3) Sensitivity (SE) 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
          (𝑉 − 3) 

4) Area under the curve (AUC) 

𝐴𝑈𝐶 =  ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

          (𝑉 − 4) 

 

While for evaluating the performance of the generative adversarial network, the FID score 

(discussed in the previous section) is utilized in this research. 

5.2 Implementation Details 

5.2.1 Preprocessing 

The dataset consists of images of multiple various resolutions. Some could even be as high 

as 4000-pixel dimensions and contain too much information about visual features than even 

needed for computation. In the preprocessing, all the lesion images were center square 

cropped to focus on the lesion image and then resized to 512 x 512. This step reduced to 
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overall memory requirement of the dataset from 32GB to 3GB, therefore lowering the 

budget allocation needed for computational storage.  

A triple stratified k-fold strategy was adopted to perform the cross-validation split and 

maintain the distribution in each split as close as possible to the actual data. The first 

stratification was that images from the same patient were preserved in the same fold. The 

second stratification was applied to maintain class distribution in each fold. This depicted 

strategy ensures that the classifier is not learning too much about a single class in one-fold, 

later leading to overfitting towards that specific class and causing unstable training steps. 

The third stratification was implemented to balance patients with more images and others 

with fewer images in every fold. We found that a plethora of images were duplicated when 

we combined ISIC of different years. We suspect this might cause a data peeking problem 

if the training is performed on a particular image and the same image is present in the 

validation set. We can’t simply perform pixel comparison to eliminate duplicates, as some 

duplicate photos might be slightly tilted or scaled. To address this, a principle was 

established that similar images would have similar numeric representation in the 

embedding space once passed through a feature extractor deep learning network. So, we 

fed all 100k+ images in a pretrained EfficientNet, and a numeric vector of 1000 length was 

yielded. This vector was reduced dimensionally and plotted on a t-SNE plot. Later, Rapids 

CUML KNN was deployed in embedding space to observe the duplicates and eliminate 

them. We found 493 duplicates in the training data, which were removed before further 

processing, as illustrated in Figure 20. 

 

Figure 20: Duplicates in the ISIC dataset 

ISIC_0079038 ISIC_8521950 ISIC_1323471

ISIC_8521950 ISIC_2783475 ISIC_6140773
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Another important preprocessing step involves removing the hair artifacts, as they might 

cause difficulty for the soft attention map mechanism to generate accurate maps. The image 

is passed through a sequence of morphological transformations to remove these hairlike 

features. Then, replacing the pixel values of hair artifacts with the closest neighboring 

pixels is implemented using an inpainting algorithm. The grayscale version of the image is 

passed through a specific black top-hat filter BH, which is yielded by subtracting the O 

skin lesion image with the C closing of the input skin lesion image. 

 Black Hat (𝑂) = 𝑂𝐵𝐻 = (𝑂 ⋅ 𝐶) − 𝑂         (𝑉 − 5) 

There has been the presence of missing data in metadata available for patients. These are 

imputed with the most frequent ones for age and sex. In contrast, the other missing data, 

like body part location, is set to be unknown. The categorical metadata was one-hot 

encoded and was combined with numeric metadata. This created an entire set of 14 

metadata on which computational training will be performed. 

The following preprocessing step is performed only during training DenseNet, which 

includes augmenting the input data point with multiple various transformation functions, 

enlisted below: 

1. Transpose 

2. Flip 

3. Rotate 

4. Random Brightness 

5. Random Contrast 

6. Motion Blur 

7. Median Blur 

8. Gaussian Blur 

9. Gaussian Noise 

10. Optical Distortion 

11. Grid Distortion 

12. Elastic Transform 

13. CLAHE 
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14. Hue Saturation Value 

15. Shift Scale Rotate 

16. Cutout 

17. Circular Crop 

These augmentations are performed to input data from the original and synthetic datasets 

alike. These augmentations were performed with specific tuning parameters like the 

probability of applying them, according to the need of the application, here for skin lesion 

detection. A library called albumentations was used in the code for deploying such 

augmentation functions. 

5.2.2 Training and Testing Strategy 

In our proposed SkinGAN AI pipeline, the generative adversarial network is initially 

trained to produce high fidelity and diverse set of images. In this step, multiple SkinGANs 

are deployed to learn the target distribution of each class in the dataset and the synthetic 

generation of 1000 images for each type of skin lesion diagnosis. This training segment of 

GAN involves performing adaptive discriminator augmentation while scheduling to 

change the value of the p parameter depending on the heuristics of overfitting. Also, the 

regularization of R1 and perceptual path length is performed only every 24 minibatch for 

the discriminator and 16 for the generator. The high-resolution layers of the discriminator 

are frozen during GAN training, and it is only fine-tuned in the fully connected layers to 

the task during training. Before the start of training, DenseNet201 is pretrained on ISIC 

2018 dataset. Later DenseNet is trained to classify the lesion correctly by learning the 

𝛽 parameter of the soft attention layer in this process while also using accurately defined 

soft attention maps on the feature space of the skin lesion. During deployment, all the input 

training data is preprocessed and transformed into 224 x 224 x 3 while also divided into a 

minibatch size of 32 [156]. The optimizer used for efficient training is ADAM, while 

activation chosen for default is ReLU in DenseNet201. Table 4 depicts the training details 

adopted for the SkinCAN AI pipeline 



 

68 

 

Table 4: Training Details 

Training Details 

Training Fold 5 Stratified Fold 

Optimizer ADAM with tuned learning rate 

Computation Mixed Precision 

Batch Size 32 

GPU deployed Single GPU training 

Epochs with learning schedule 1 Warmup Epoch with a minimal learning 

rate + Multiple Cosine decay-based L.R 

epochs 

Categories 9 Classes 

 

5.3 Results and Ablation Studies 

The results of SkinGAN AI performance under every diagnostic category are depicted in 

Table 5. Where AP represents Average Precision, AC represents Accuracy, SE represents 

Sensitivity, and SP represents Specificity.  

Table 5: Diagnosis classification result of the proposed model 

Classification Result of SkinCAN AI 

Metrics 

category 

Mean 

Value 
MEL NV BCC AK BKL DF VASC SCC UNK 

 

AC 0.949 0.959 0.945 0.949 0.923 0.953 0.985 0.989 0.991 0.851 

AP 0.602 0.750 0.936 0.744 0.440 0.606 0.592 0.594 0.354 0.408 

AUC 0.938 0.933 0.970 0.954 0.953 0.921 0.999 0.9753 0.971 0.768 
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AUC 

(SE >

80%) 

0.856 0.832 0.942 0.896 0.897 0.831 0.986 0.942 0.911 0.469 

SP 0.969 0.974 0.972 0.936 0.933 0.964 0.986 0.994 0.978 0.992 

SE 0.695 0.687 0.796 0.849 0.788 0.687 0.913 0.706 0.708 0.123 

 

We performed a comparative study between our model and the state of art models present 

in the classification tasks, and the results are shown in Table 6. 

Table 6: Comparative Analysis of performance with other skin lesion classification task 

models, keeping the same improved loss function 

Models AC AUC SE 

Inception-v3 0.857 0.737 0.555 

Transfer learning 0.866 0.804 0.620 

ResNet50 0.878 0.797 0.597 

Inception-v3-LSTM 0.889 0.847 0.630 

ResNet50-LSTM 0.867 0.870 0.641 

Faster RCNN 0.891 0.888 0.640 

DenseNet169 0.899 0.913 0.654 

DenseNet201 0.920 0.930 0.666 

SE ResNeXt101 32x4d 0.943 0.928 0.613 

SkinGAN AI 0.949 0.938 0.695 

 

Next step in our investigation, we analyzed the FID scores of our proposed generative 

network from other existing generative adversarial networks on combined data of ISIC 

2020 and 2019, shown in Table 7. 
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Table 7: FID score comparison between the generative adversarial networks on synthetic 

skin lesion image generation 

Method SkinGAN AI StyleGAN PGGAN DCGAN 

IS 2.13 3.56 4.72 7.91 

FID 0.62 3.55 5.34 10.41 

 

In our ablation studies, we performed an accuracy analysis to observe the impact of each 

module proposed by us involved in training, as shown in Table 8. 

Table 8: Impact of individual modules on the accuracy of the model 

Model 
Transfer 

learning 

StyleGAN2- 

ADA 

Improved loss 

function 

Soft 

Attention 
AC 

Model 1 - - - - 0.886 

Model 2 Yes Yes - - 0.905 

Model 3 Yes - Yes - 0.920 

Model 4 Yes Yes Yes - 0.927 

SkinGAN 

AI 
Yes Yes Yes Yes 0.949 

 

As depicted in Figure 21, the synthetically generated skin lesion samples from the 

SkinGAN generative pipeline are far superior in visual comparison with other models. 

Models like PGGAN and DCGAN tend to yield noise artifacts like blurriness, 

checkerboard patterns, or even hair features mesh. Thereby not only lacking in the fidelity 

of generated image but also in the diversity of samples synthesized. From the visual 

comparison, it can be quickly established that our proposed SkinGAN can capture the 

nuances of semantic features while keeping the training requirements minimal and optimal.  

Figure 22 illustrates the heatmaps generated by the pipeline’s soft attention module 

compared to the heatmaps of GradCAM, a well-established technique for lesion 

segmentation. GradCAM has failed to capture the attention map. In some cases, the 
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GradCAM maps are overshooting to capture irrelevant features, while in others, it can be 

observed to ignore some vital semantic features. 

 

Figure 21: Visual comparative analysis of generated samples of various GAN models 
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Figure 22: Comparison of heatmaps generated by soft attention module of pipeline and 

GradCAM 

Of course, we would like to accentuate that; the proposed model has its shortcomings as 

elucidated moving forward. The interpolated overlap in lesion latent space while 

generation can lead to misclassification error. Although our model is outperforming most 

models in practice, it doesn’t imply that the same result can be exactly expected from a 

completely unknown set. And more in-depth ablation studies are required to be performed 

before algorithms like such can be embedded in a clinical environment. 
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CHAPTER 6 

SIGNIFICANCE & FUTURE DIRECTION 

 

6.1 Significance 

GANs have several excellent characteristics to be an ideal candidate for the task of data 

augmentation.  GANs can produce synthetic samples close to the real data distribution, and 

those samples can supplement the real data for classification purposes. This can be crucial 

when accurate actual data is expensive and rare in nature.  The classical use case of this is 

in the domain of medical image analysis, like brain tumor or liver lesions diagnosis. In the 

past couple of years, significant communities of researchers have proposed their GAN-

based methods, which can synthesize medical images for data augmentation in various rare 

diseases classification tasks.  

The current existing state of art GAN network can synthesize high fidelity images with a 

decent FID score but is unsuitable for medical application, as training requires quite large 

training data, which are often scarce for rare diseases, specifically cancer. Even though the 

existing GAN models have low inference latency, the network still requires hefty training 

even on fast computing processors like GPU. GAN architecture requires a tuned loss 

function that, even at a lower training span and lower memory requirement, can capture 

the fidelity & diversity of training distribution. So, this is where the significance of our 

proposed model SkinCAN AI comes into the equation. The novelty of the proposed 

pipeline lies in the simplicity of the architecture deployed for the task and its ability to 

capture the essential features from an even smaller dataset, thereby surpassing the 

performance of the existing trained model. The training time requirement and model size 

make it more suitable for a clinical environment. 

6.2 Explainable Artificial Intelligence (XAI) 

The explainability, interpretability, or reasoning skill of artificially intelligent models are 

currently under many questionnaires. As it has become increasingly clear, humans need to 

address these trust issues on the black-box nature of deep learning if we as humans continue 
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finding new ways to augment AI in our daily lives. Existing XAI approaches are primarily 

developed to evaluate a situation where AI is dealing with much simpler tasks. Research is 

still lagging for properly evaluating computer-aided medical diagnosis tools' 

interpretability.  

One of the most commonly adopted methodologies for establishing confidence in AI 

models is visually observing saliency maps. A saliency map can be yielded by scoring 

which pixels influence the most in the decision-making process during the classification 

step. The pixel dependency value could be positive or even negative for deciding on critical 

semantic features. Several model explainers are being developed, including IntGrad [157] 

and GradCAM [158]. In our research, we have developed a module of soft attention to 

ensure that the classifier model focuses on the correct semantic feature segments. We tested 

our soft attention module maps with the segmentation masks provided during the ISIC 

2018 task and visually found a significantly high image similarity score. For future work 

to better understand the generative model's interpretability, we wish to explore latent space 

explainers [159] while also including field experts for judging individual skin lesion 

classes' semantic features learned by the generative model. 

 

6.3 Future Research Direction 

While investigating the literature survey and performing ablation studies for the thesis, we 

created an intensive list of open research challenges that we would like to present here. We 

hope that this list can be used as a reference for future research and wish to explore it in 

our subsequent future research. These open research challenges are enlisted below: 

• Long training periods: One of the significant challenges in training a neural network 

is quickly learning intricate skin lesion features in a few shots during training. This 

could be investigated by a Few Shot manner extensive network trained on multiple 

medical data, like CLIP [160] but for medical images. 

• Lack of observable visual features in early-stage skin tumors: Medical research has 

established that when a lesion is at an earlier stage of being malignant, it is much 
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more difficult to detect during diagnosis. Other indicators instead of visual 

characteristics should be explored to address this challenge. 

• Bias towards Caucasian population: Research community that investigates the bias 

in AI model has found a challenging bias in existing dermoscopic images towards 

light-skinned people, on which all state of the art medical algorithms is trained. 

These datasets are old, and not enough data is collected for dark-skinned people, 

making it more challenging for AI to detect or even learn such out-of-distribution 

lesion features. 

• Less interclass feature variation among variants of skin cancer: Limited visual 

variation between malignant and benign skin cancer and even among classes of skin 

cancer leaves a lot of room for error. Some lesions are even tricky for expertly 

skilled dermatologists to identify. For such lesion diagnosis, clinically prescribed 

biopsy techniques for diagnosis are the only way currently. 

• Lack of computational processing power: Usually, in a clinical environment, 

healthcare institutions are not willing to invest any budget in acquiring a dedicated 

GPU for deep learning diagnosis tasks. We believe that a central cloud computing 

service could be developed to address this. 

• Investigation with genetic and environmental factors: The experts in medical 

science have identified a strong correlation between genetic factors and the risk of 

an individual developing Melanoma skin cancer. But such factors are still yet to be 

implemented or explored to supplement computer-aided diagnosis tools for 

increasing their performance.  
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CHAPTER 7  CONCLUSION 

 

In this thesis, a novel pipeline called SkinCAN AI has been proposed to perform the 

challenging task of early detection of malignant skin lesions and create a soft segmentation 

mask to assist dermatologists in making critical decisions during skin tumor diagnosis. To 

address the current issue of limited availability of datasets, the proposed SkinGAN model 

enables the generation of synthetic data samples of skin lesions and improves the training 

metrics of the proposed DenseNet model for skin lesion classification. The previous 

attempts by the research community to embed generative adversarial networks have proven 

to have stability issues during training and end up requiring heavy computational resources, 

eventually making them not feasible to be deployed in the clinical environment. 

Overcoming these shortcomings, the proposed architecture was designed so that the 

algorithm can learn from a limited dataset without asking for high computational resources 

during both training and inference. The key feature of the SkinCAN AI pipeline is its ability 

to yield diagnostic results not only with high precision but also requiring less computational 

overhead, making it more suitable for early medical diagnosis in such a fast-paced clinical 

environment. The novel methodology of the SkinCAN AI adopts several proposed 

strategies like adaptive discriminator augmentation, weight demodulation, freeze D, soft 

attention module, and path length regularization to enable competitive results compared to 

other existing methods. Additionally, we trained our proposed pipeline with ISIC 2020 

dataset and investigated the design choices made during the formulation of the model. The 

satisfactory performance of SkinCAN AI on such an imbalanced dataset with only 2% 

malignant proves its capabilities to be deployed as a computer-aided diagnosis tool for a 

clinical environment. The novel technique of deploying soft attention described in the 

thesis could help alleviate issues caused in training caused by artifacts in the dataset and 

allow the classifier network to focus only on the relevant regions for semantic information 

about a skin lesion. In future research work, we would like to explore deploying such end-

to-end trained diagnosis pipelines for cellular-based applications or even test their 

performance on low-budget online cloud-based GPU for inference and testing its feasibility 

in-depth for the clinical environment. We wish to explore the possibility of deploying 

diffusion models or even self-supervised networks for skin lesion diagnosis.  
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