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ABSTRACT

Motivation: Recently, graph-structured data has become increasingly developed

in a variety of fields from biological networks to social networks. While link predic-

tion is one of the key problems in graph theory, cell-cell communication regulates

individual cell activities and is a crucial part of tissue structure and function. In

this regard, recent advances in single-cell RNA sequencing technologies have eased

routine analyses of intercellular signaling networks. Previous studies work on various

link prediction approaches. These approaches have certain assumptions about when

nodes are likely to interact, and thus, showing high performance for some specific

networks.Subgraph-based methods have solved this problem and outperformed other

approaches by extracting local subgraphs from a given network.

In this work, we present a novel method, called Subgraph Embedding of Gene ex-

pression matrix for prediction of CEll-cell COmmunication (SEGCECO), which uses

an attributed graph convolutional neural network to predict cell-cell communication

from single-cell RNA-seq data. SEGCECO captures the latent as well as explicit

attributes of undirected, attributed graphs constructed from gene expression profile

of individual cells. High-dimensional and sparse single-cell RNA-seq data make the

process of converting the data to a graphical format a daunting task. We successfully

overcome this limitation by applying SoptSC, a similarity-based optimization method

in which the cell-cell similarity matrix is learned from single-cell gene expression data.

The cell-cell communication network is then built using this similarity matrix.

Results: To evaluate our proposed method, we performed experiments on six scRNA-

seq datasets extracted from the human and mouse pancreas tissue. Our comparative

analysis shows that SEGCECO outperforms latent feature-based approaches, as well

as the state-of-the-art method for link prediction, WLNM, with 0.99 ROC area under

the curve and 99% prediction accuracy.

Keywords: cell-cell communication, link prediction, single-cell RNA seq, latent

feature approaches, graph convolutional neural network, subgraph embedding.
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CHAPTER 1

Introduction

1.1 Basics of Molecular Biology

Molecular biology refers to the study of biology at a molecular level. Genetics and

biochemistry are areas where the field intersects with biology and chemistry. The

focus of molecular biology is on understanding the relationships between the different

systems of a cell, such as the interactions between DNA (deoxyribonucleic acid),

RNA (ribonucleic acid), and protein biosynthesis, as well as how these interactions

are regulated [21].

1.1.1 Cell

A cell is the basic unit of living organisms capable of sustaining life and reproduction

in living creatures. Viruses are not cells because they are incapable of sustaining

life and reproducing on their own. A nerve cell or a red blood cell, for example,

are two kinds of cells. There are two types of cells: prokaryotic and eukaryotic

cells. In a prokaryotic cell, there is no nucleus. Every eukaryotic cell contains a

nucleus. Eukaryotes are organisms that are made up of eukaryotic cells. Protista,

fungi, animals, and plants are among them. Archaebacteria and eubacteria are two

types of prokaryotes. They are organisms with only one cell. Molecular biology

focusses on the study of the molecular foundations of the replication, transcription,

and translation of genetic material [21].

1



1. INTRODUCTION

1.1.2 Deoxyribonucleic acid and Ribonucleic acid

Deoxyribonucleic acid, or DNA, is the molecule that contains the majority of genetic

information in cells. A double helix structure, in which two individual DNA strands

twist around each other in a right-handed spiral, is the most common form of DNA

in a cell. To make the information written in the DNA usable, parts of it are tran-

scribed into another sort of biological information called Ribonucleic acid, or RNA

[15]. RNA is a molecule similar to DNA. Unlike DNA, RNA is single-stranded. RNA

delivers the DNA’s information out of the nucleus which is known as messenger RNA

(mRNA) [14].

Nucleotides are the basic building block of nucleic acids like DNA and RNA. Each

nucleotide subunit is made up of three components: a phosphate group, a deoxyribose

sugar ring and a nucleobase [21]. The four types of nucleobase in DNA are: adenine

(A), cytosine (C), guanine (G), and thymine (T). The nucleobases of RNA are also of

these four types, with the exception that the T in RNA is substituted by the uracil

(U). The structure of RNA and DNA is shown in Fig 1.10.1.

DNA is made up of two strands, each of which runs in the opposite direction.

The end of the DNA strand that contains the hydroxyl group is known as 3’ end of

the molecule. The end that has a phosphate group is known as 5’ end. Base A is

always paired with base T on the other strand while base G is paired with base C.

This is termed as base pairing. The base-pairing rule becomes A-U, T-A, G-C, and

C-G when an RNA strand pairs with a DNA strand [14]. An example of a segment

of double-strand DNA sequence is shown below:

5’- A C C G A C T T G C G A -3’

3’- T G G C T G A A C G C T -5’

2



1. INTRODUCTION

Fig. 1.1.1: Structure of RNA and DNA [7]

1.1.3 Gene

The parts of DNA that are transcribed into RNA are known as coding regions or genes

[15]. In a living organism, the gene is the basic unit of heredity. All living organisms

depends on genes. Genes include the information for constructing and maintaining

cells, as well as passing genetic features on to offspring. A gene is a piece of nucleic

acid that holds genetic information and specifies a trait [21].

1.2 Central Dogma of Molecular Biology

The central dogma in genetics outlines the typical mechanism by which information

encoded in DNA sequences is first passed on to a kind of RNA known as messen-

ger RNA (mRNA) through transcription process and subsequently to proteins via

translation process (Fig 1.2.1). The complementary base pairing rule governs tran-

scription between the DNA base and the transcribed RNA base. That is, an A in

DNA is transcribed to a U in RNA, a T to an A, a G to a C, and vice versa [14].

3



1. INTRODUCTION

Fig. 1.2.1: Central dogma of molecular biology [1]

Each protein is made up of a linear sequence of smaller molecules known as amino

acids. The constituent amino acids are connected by a ”backbone” made up of a

regularly repeated sequence of bonds. There are 20 different standard amino acids

that utilized in production of proteins. The number of amino acids that make up a

protein is commonly used to determine its size. Proteins can be anywhere between

20 and 5000 amino acids long, with the average protein being around 350 amino

acids long. Proteins are synthesized in a two-step process i.e. transcription and

translation. The combination of these two steps is referred to as gene expression [26].

The transcription and translation processes plays a critical role in determining what

proteins are present in a cell and in what amounts. Proteins are encoded by genes,

and cell function is dictated by proteins. As a result, the thousands of genes expressed

in a cell determine what that cell can do. Furthermore, each step in the information

flow from DNA to RNA to protein presents a possible control point for the cell to

self-regulate its functions by altering the number and type of proteins it produces.

The amounts and types of mRNA molecules in a cell represent the function of that

cell [9].

1.3 Next-generation sequencing

With ultra-high-throughput output and a huge cost reduction, next generation se-

quencing (NGS) has superseded the conventional Sanger sequencing approach to be-

come the preferred choice for large-scale, genome-wide sequencing studies. In the
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biological sciences, NGS technologies have had a significant impact on structural

and functional genomics research [19]. NGS applications are mostly used on DNA

and RNA molecules. We can detect DNA and RNA sequences as well as define

DNA–protein interactions and epigenetic DNA modifications by sequencing these

(DNA and RNA) molecules. Thus, the NGS output data provide a wealth of infor-

mation about the structural and functional properties of cells and tissues. Com-

monly used NGS applications are Expression analysis, DNA-protein interactions,

DNA methylation, whole genome sequencing, whole-exome sequencing, target se-

quencing, and de novo sequencing [15].

1.4 RNA-Sequencing

In recent years, RNA-seq has spurred a lot of medical discovery and innovation.

RNA-seq (RNA-sequencing) is a technology that uses NGS to analyze the quantity

and sequences of RNA in a sample. It examines the transcriptome to determine

which of the genes encoded in our DNA are active and to what extent. RNA-seq can

be used to examine and discover the transcriptome, the total cellular composition

of RNAs and cellular responses. Some of the most popular RNA-seq strategies in-

clude transcriptional profiling, single nucleotide polymorphism (SNP) identification,3

RNA editing, and differential gene expression analysis. It provides information to re-

searchers about the function of genes. Sanger sequencing technology, although being

innovative at the time had low throughput and was expensive, was earlier used by

RNA-seq technologies. With the advent and widespread of NGS technology, we have

lately been able to take full advantage of RNA-seq’s potential [22].

There are various steps in an RNA-seq workflow. The first stage in the process

is isolate the RNA and perform the reverse transcription which is to convert the

population of RNA to be sequenced into complementary DNA (cDNA) fragments (a

cDNA library). After that, the cDNA is fragmented, and adapters are attached to

each fragment’s end. These adapters have functional features that allow for sequenc-
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ing. They allow the sequencing machines to recognize the fragments, and allows us to

sequence different samples at the same time, since different samples can use different

adapters. Next, the library is PCR amplified. Only the fragments with adapters

are amplified; they are encriched. After amplification, size selection, clean-up and

quality check is performed. This step is known as cDNA library preparation. The

next stage in the workflow is cDNA sequencing. The cDNA library is then evaluated

by NGS, yielding short sequences that correspond to all or part of the fragment from

which it was produced. Sequencing can be done in one of two ways: single-end or

paired-end. Single-end sequencing is cheaper and faster as compared to paired-end

sequencing. These reads, by the end of workflow, can then be aligned to a refer-

ence genome or assembled de novo to produce genome-wide expression profile. In

addition to the currently known transcripts, de novo assembly will allow for the dis-

covery of new ones. After alignment stage, the last step is RNA-seq data analysis [22].

RNA-seq is regarded as superior compared to microarray technology. This is

because of several reasons. Microarray technology depends on already known genes,

whereas RNA-seq can detect transcripts from organisms with previously undetected

genomic sequences. This makes it far more effective in detecting novel transcripts,

SNPs (Single-nucleotide polymorphism), and other alterations. Also, RNA-seq data

is quantifiable, but microarray data is only ever displayed as values relative to other

signals discovered on the array. Microarrays have trouble detecting very high or very

low transcription levels, which RNA-seq avoids [22].
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Fig. 1.4.1: Overview of RNA-seq workflow [18].
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1.5 Single-cell RNA sequencing

In the last decade, bulk RNA-seq methods have been widely used to study gene expres-

sion patterns at the population level. The introduction of single-cell RNA sequencing

(scRNA-seq) has opened up opportunities for studying gene expression profiles at the

single-cell level. Since bulk RNA-seq generally represents the averaged gene expres-

sion across thousands of cells, scRNA-seq has become a popular choice for addressing

crucial biological questions of cell heterogeneity and the development of early em-

bryos (which only have a few cells) [6]. In comparison to existing profiling methods

that examine bulk populations, these single-cell assessments will allow researchers to

uncover new and perhaps unexpected biological discoveries. For example, scRNA-seq

can identify rare cell populations, reveal regulatory relationships between genes, and

track the trajectories of distinct cell lineages in development [13]. There has been a

growing interest in doing scRNA-seq studies since the first one was published in 2009.

One of the most compelling reasons is that scRNA-seq can describe RNA molecules

in individual cells at a genomic scale and with high resolution. scRNA-seq can pro-

vide crucial information regarding fundamental characteristics of gene expression in

addition to resolving cellular heterogeneity [12]. In recent years, scRNA-seq has been

used to study a variety of species, including human tissues (both healthy and cancer),

and these studies have revealed significant cell-to-cell gene expression heterogeneity

[6].

A scRNA-seq workflow is depicted in Fig. 1.5.1 which includes nine basic steps.

The first, and most important, step in conducting scRNA-seq is the successful isola-

tion of live, single cells from the tissue of interest. In the next step, isolated individual

cells are lysed in order to capture as many RNAmolecules as possible. Poly[T]-primers

are often used to selectively analyze polyadenylated mRNA molecules while avoiding

capturing ribosomal RNAs. Non-polyadenylated mRNA analysis is often more com-

plex and necessitates the use of specialist procedures. Next, a reverse transcriptase

converts poly[T]-primed mRNA to complementary DNA (cDNA). Other nucleotide
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sequences, such as adaptor sequences for detection on NGS platforms, unique molecu-

lar identifiers (UMIs) to mark unambiguously a single mRNA molecule, and sequences

to preserve information on cellular origin, will be added to the reverse-transcription

primers, depending on the scRNA-seq protocol. The minute amounts of cDNA are

subsequently amplified by PCR or, in certain cases, by in vitro transcription followed

by a second round of reverse transcription. Then, using library preparation methods,

sequencing platforms, and genomic-alignment tools, the amplified and tagged cDNA

from each cell is pooled and sequenced by NGS. Next, bioinformatic tools are used

to assess quality and variability. Lastly, the analysis and interpretation of the data is

done using bioinformatics and/or computational methods [12].
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Fig. 1.5.1: Overview of scRNA-seq workflow [12].
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1.6 Cell-cell communication

Cell-cell communication (CCC) or cell-cell interaction refers to the direct interactions

between cell surfaces that play a crucial role in the development and function of

multicellular organisms. It is an important aspect of tissue form and function which

regulates individual cell functions and intercellular connections [2]. The coordination

of cellular activity, which is dependent on cell–cell interactions (CCIs) across an

organism’s diverse cell types and tissues, is essential for multicellular life. Thus,

CCC plays an important role as the ability to send and receive signals is essential

for the survival of the cell and disease occurs when cells do not connect properly

or decode molecular messages incorrectly [3]. Cells use ligands, which are molecules

generated by sending cells to target cells that can detect them if they have the right

receptor. The binding of ligands to receptors causes a response, such as changes in

gene expression or the activation of cell division [4]. Cells can communicate with one

another in a variety of ways, including Juxtacrine, autocrine, endocrine, and paracrine

signaling [3]. The scheme of signalling is depicted in Fig. 1.6.1.

• Juxtacrine Juxtacrine cell–cell communication relies on gap junctions to trans-

mit signalling molecules directly between cells, without secretion into the ex-

tracellular space. It is contact-dependent communication between cells [3].

• Autocrine signalling Autocrine signalling is a type of intracellular commu-

nication in which cells release ligands that are employed to trigger cellular re-

sponses via corresponding receptors on the same cell [3].

• Endocrine signalling Endocrine cell–cell communication refers to intercellular

communication that includes the secretion of signaling molecules that travel long

distances through extracellular fluids like blood plasma [3].

• Paracrine signalling Paracrine cell–cell communication does not require cell–cell

contact; instead, signaling molecules spread from one cell to another after se-

cretion [3]. In this type of signaling, cells are typically close to one another. It

enables communication over short distances [4].
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Fig. 1.6.1: Schemes of signalling [4]

Due to the availability of single-cell transcriptomics, the study of single-cell tran-

scriptomics has shifted from focusing solely on what cells are there to focusing more

on the interactions between cells [2]. Recent advances in RNA sequencing technolo-

gies have made routine analysis of intercellular signaling from bulk and single-cell

gene expression data sets possible [3]. In this study, we focus on predicting CCC in

scRNA-seq data.

1.7 Graphs (Networks)

Graphs or networks are a universal language for describing a set of complex systems

[31]. Graphs or networks give us a way to explicitly and mathematically represent

this complex information, as well as the complex interactions that exist in today’s

data. It gives a visual representation of data which helps us gain actionable insights

and make better data driven decisions. For Example, the working of a social sys-

tem can be represented by considering the interactions between the pair of people.

Graphs can be used to simulate a wide range of relationships and processes in physi-

cal, biological, social, and information systems, and thus has a variety of applications

including Finding communities in network i.e. friends/connection recommendation

on social media, to discover uncommon patterns that aid in the prevention of fraud-

ulent transactions, GPS/Google maps to find the fastest route to home etc. There

are complex systems all around us: society is made up of around eight billion peo-

ple, communication systems bind electronic devices, information and knowledge are

organized and connected, thousands of genes and proteins interact to control life,

12
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and human thoughts are hidden in billions of neurons in our brain [10]. All of these

complex systems have a graph structure. We deal with undirected, attributed graphs.

A graph is defined as G = (V,E), where V is the finite set of vertices (or nodes)

and E is the finite set of edges (or links). Also, |V | = n, where n is the number of

vertices. |E| = m, where m is the number of edges.

Figure 1.7.1 illustrates a graph G with five vertices and five edges connecting

them, with V = {v1, v2, v3, v4, v5} and E = {e12, e23, e34, e14, e25}.

Fig. 1.7.1: Graph with five vertices and five edges connecting the vertices.

1.7.1 Adjacency Matrix

In a graph G = (V,E), let (vi, vj) ∈ V denote two vertices and eij = (vi, vj) ∈ E

denote an edge between vertices vi and vj. The adjacency matrix A = [aij] ∈ Rn×n

[20] is a (n×n) matrix, where n is the number of vertices. Each element aij represents

the element at ith row and jth column of the adjacency matrix. We define aij = 1 if

eij ∈ E and aij = 0 if eij /∈ E. In other words, the elements in the adjacency matrix

are 1 in position where the two vertices are connected by an edge and 0 otherwise.

Figure 1.7.2 shows a graph with its adjacency matrix.
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Fig. 1.7.2: Graph with four vertices and four edges and its adjacency matrix.

1.7.2 Directed Graphs

Directed graph is defined as a graph with all the edges of the graph having direc-

tion/orientation. The edges of the graph reflect a particular direction from one vertex

to the next. In the graph (Figure 1.7.3), vertex v1 connects to vertex v2 where node

v1 is the origin and node v2 is the destination. The direction is from v1 to v2.

Fig. 1.7.3: Example of Directed Graph with six vertices and six edges connecting the
vertices.
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1.7.3 Undirected Graphs

An undirected graph has an unordered pair of vertices. In other words, the edges are

not represented in any particular direction. The vertices connect by undirected arcs,

which are edges without arrows. Figure 1.7.1 shows an example of undirected graph

with five vertices and five edges connecting the vertices. An edge between vertex v1

and v2 would be identical to the edge from v2 to v1.

1.7.4 Attributed Graph

The graph that has attributes associated with vertices is known as attributed graph.

Attributes which describes the information/properties of the vertices are represented

in the form of matrix X and each row in X defines the attributes associated with that

particular vertex v which is represented as xv. Figure 1.7.4 shows an example of at-

tributed graph with five vertices and five edges. Each vertex has attributes associated

to it. For example, the vertex v2 of graph has attributes [x21, x22, x23, ..., x2d].

Fig. 1.7.4: Example of an attributed graph with five vertices and five edges. Each
vertex has d dimensional attribute vector associated with it.

An attributed graph is defined as G = (V,E,X) where X ∈Rn×d is a matrix of

attributes. xv ∈ Rd represents the attribute vector of vertex v, where d is the number

of attributes.
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Below is an example of an attribute matrix X. Each row in the X represents the

corresponding attribute vector of a vertex of graph. For example, the second row

of the attribute matrix [x21, x22, x23, ...., x2d] denotes the the attribute vector of the

second vertex v2 in the attributed graph.

x11 x12 x13 . . . x1d

x21 x22 x23 . . . x2d

x31 x32 x33 . . . x3d

...
. . . . . . . . .

...

xn1 xn2 xn3 . . . xnd


1.8 Types of Graph Data

Graphs are everywhere. So everything from state machines to molecular networks

to social networks all can be represented with graphs. Social networks, Biomedical

networks, economic networks, information networks - webs & citations, and logistic

networks are some of the types of graph data. In this section, several examples of

graph data have been introduced.

1.8.1 Social Network

A social graph is a graph that depicts the social relationships that exist between indi-

viduals. In the social network, nodes represent people or other entities embedded in

a social context, and edges represent connections, collaboration, or influence between

entities. Facebook ([27]) is one example of a social network. Figure 1.8.1 depicts an

example of a social network in which users are the vertices and the link between them

is the network’s edge. Each user has their collection of properties, such as the photos

they have uploaded, the details in their user profile, working together on a project,

or studying in the same school. We may suggest new friends to a user using machine
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learning algorithms based on their connections and properties such as age, interests,

region, and school or work [25].

Fig. 1.8.1: Example of a social network with nodes representing people and edges
representing their connections or interactions.

1.8.2 Citation Network

A citation graph (or citation network) is a graph that defines the citations inside a

series of documents. The vertices of the citation network are authors and research

articles, while the edges are citations, authorship, and co-authorship of the research

paper. Each research paper has its own set of attributes, including the text, authors,

title, publication date, and keywords. We may categorize research papers into var-
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ious groups using machine learning algorithms based on the content and attributes

of the research papers. CiteSeerX network ([17]) is one example of a citation net-

work. A citation network is depicted in Figure 1.8.2. The researchers and research

papers are the network’s vertices, while the relations between the researchers and

their publications are the network’s edges [25].

Fig. 1.8.2: Example of a co-citation network of 50 authors that were co-cited in more
than 50 publications [11].

1.8.3 Chemical Network

Molecules and atoms are the entities in a chemical network. The chemical network is

made up of atoms and molecules interacting with one another. Atoms and molecules,
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as well as their properties such as chemical formulas, serve as the network’s vertices,

while connections and bonds between them serve as the network’s edges. Figure 1.8.3

depicts a chemical network with atoms and molecules as vertices and chemical bonds

between them as edges [25].

Fig. 1.8.3: Example of a chemical network with molecules as nodes and chemical
reactions as edges [24].

1.8.4 Research Network

The researchers are the entities in a research network, and researchers interact with

other researchers who are colleagues, research students, partners, and followers to

create their network. The researchers serve as the network’s vertices, with the form
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of research interaction between two researchers serving as the network’s edge. Re-

searchGate [29] is one example of a Research Network. Figure 1.8.4 depicts a research

network with the professor, research students, collaborators as vertices, and connec-

tions among them as edges [25].

Fig. 1.8.4: Example of an academic research network with researchers as nodes and
relationships among them as edges [30].

1.9 Machine Learning Tasks in Network

Machine learning is a technique for improving system performance through the use

of computing algorithms that learn from experiences. Experience exists in the form

of data in computer systems, and machine learning’s major purpose is to construct

learning algorithms that generate models from data. We feed the learning algorithms

with experience data and create a model that can make predictions based on new

observations [32]. Learning or training is the process of using machine learning al-

gorithms to construct models from the data. The data used to train the model is

referred to as training data, while the data used to test the model, i.e. make predic-

tions, is referred to as testing data. The outcome information of a sample is known

as label. Machine learning can be used for prediction, classification, clustering, rec-

ommendation, image recognition, speech recognition, and a variety of other tasks.
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We divide machine learning tasks into two categories based on whether the dataset

is labeled or not: supervised learning (for example - classification and regression) and

unsupervised learning (for example - clustering) [32].

Supervised Learning is when you have input data x and output data y and the

goal is to learn a mapping function from input data to the output data. To train the

model, supervised learning requires supervision, similar to how a student learns in

the presence of a teacher. Unsupervised learning is when you only have input data

x but no corresponding output data. Unsupervised learning focuses on extracting

structure and patterns from unstructured data. Unsupervised learning does not re-

quire supervision. Instead, it searches the data for patterns on its own. Labeled data

is used to train supervised learning algorithms while unlabeled data is used to train

unsupervised learning algorithms. Semi-supervised learning is a hybrid approach (i.e.

combination of supervised and unsupervised approach) when you only have some la-

beled data.

In this work, we uses a supervised learning machine learning framework where

labeled data is available. Machine learning can be used to graph datasets in a variety

of ways. Classical machine learning tasks in networks are node classification, commu-

nity detection, graph classification and link prediction. These are explained below. In

this thesis, we focus on prediction of cell-cell interactions (i.e. link prediction task).

1.9.1 Node classification

Node classification, also known as vertex classification, is the problem of identifying

the unknown labels of the nodes in a network using machine learning approaches given

the labels are available for small subset of nodes [16] and [5]. Figure 1.9.1 depicts an

input graph with the orange and green class labels. The goal of machine learning is

to predict the class labels of the grey nodes marked with question mark.
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Fig. 1.9.1: Node Classification Example with an input graph with two known orange
and green class labels (Left) and the goal is to predict the labels of grey nodes as
either orange or green (Right).

1.9.2 Community Detection

Detecting communities is important in fields like sociology, biology, and computer

science [8]. Given the organization of vertices in clusters (i.e. communities), with

multiple edges joining vertices in the same cluster and relatively few links connecting

vertices from different clusters, the community detection problem is to predict the

community of vertices whose community is unknown [8]. Figure 1.9.2 depicts a graph

with four communities (green, red, yellow and grey), enclosed by the dashed circle.

1.9.3 Graph Classification

Given a dataset containing graphs in the form of (G, y) where G is a graph and y

is its class, the graph classification problem is to predict the label of the graph for

which labels are unknown [31]. Figure 1.9.3 depicts an input dataset of graphs with

known graph labels. The goal of machine learning is to learn a function f that can

predict the label of unknown graph.
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Fig. 1.9.2: Community Detection Example with a graph with four communities
(green, red, yellow and grey) enclosed by the dashed circle.

Fig. 1.9.3: Graph Classification Example with an input dataset of graphs with known
graph labels and the goal is to learn a function f that can predict the label of unknown
graph [25]
.
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1.9.4 Link Prediction

Link prediction, also known as edge prediction, is the problem of predicting the

missing links between vertices in a network using machine learning approaches given

the edges between some vertices [28]. Figure 1.9.4 depicts an input graph with certain

known and unknown edges. In Figure 1.9.4, unknown edges are denoted by question

marks. The goal of machine learning is to predict whether or not there is an edge

between the vertices.

Fig. 1.9.4: Link Prediction Example with an input graph with some known and
unknown edges; unknown edges are denoted by question marks (Left) and the goal is
to predict the existence of edge between two vertices (Right).

1.10 Performance Metrics

To evaluate our method, we have used the most widely used evaluation metrics,

including accuracy, precision, recall, and F1-score. Equation 1 refers to accuracy,

which accounts for the percentage of correctly classified test observations. Precision

is another measure that calculates the number of positive observations that are cor-

rectly predicted as positive from the total number of predicted positive observations.

Furthermore, recall measures the number of positive observations that are correctly

predicted as positive from a total number of original positive observations. Also,

the F1-score signifies average precision and recall. Precision, recall and F1-score are

calculated using the following equations:

Accuracy =
TP + TN

TP + FP + FN + TN
(1)
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Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1− score = 2.
(Precision.Recall)

(Precision+Recall)
(4)

where TP, TN, FP, and FN stands for True Positive (model correctly predicts the

positive interactions), True Negative (model correctly predicts the negative interac-

tions), False Positive (model incorrectly predicts the positive interactions), and False

Negative (model incorrectly predicts the negative interactions) respectively. Here,

positive means interacting cells and negative means non-interacting cells.

Apart from these performance measures, the model’s performance is evaluated us-

ing AUROC (Area Under the Receiver Operating Characteristics). The AUC (Area

Under The Curve) ROC (Receiver Operating Characteristics) curve is used to visu-

alize the results. The ROC curve shows the trade-off between True Positive Rate

(TPR) and False Positive Rate (FPR). TPR or Recall is the proportion of observa-

tions that were correctly predicted to be positive out of all positive observations. FPR

is the proportion of observations that are incorrectly predicted to be positive out of

all negative observations. The top left corner of the plot is the ideal point for ROC,

with 0% FPR and 100% TPR. AUC indicates how well the model can differentiate

between interacting and non-interacting cells. Higher the AUC, the better the model

is at predicting 0 as 0s and 1s as 1s where 0 means no interactions between cells and

1 means there is an interaction between cells.
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Fig. 1.10.1: Receiver Operating Characteristic (ROC) curve example [23]

1.11 Motivation

Data analysis in the form of graphs is gaining a lot of attention. It has become one

of the popular research topics and has gained popularity in a range of domains, rang-

ing from biomedical networks networks to social networks. Link prediction is one

of the most important research topics in the field of graphs (or networks). Cell-cell

communication play a crucial role in the development and function of multicellular or-

ganisms. Recent developments in single-cell RNA sequencing technologies have made

routine investigations of intercellular signaling networks much easier. We wanted to

do more research in this area of cell-cell communication in single-cell RNA sequencing

data. This leads to first converting the scRNA-seq data to graph format and then

predicting the cell-cell communication. With a more in-depth analysis of graphs, we

discovered that rather than studying the entire structure of a graph, it is important
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to create a new graph substructure that captures the high-level attributes by an-

alyzing the attributes of a node and its neighbors. Convolutional Neural Networks

(CNNs), for example, are good at capturing and representing data by aggregating the

attributes of its neighbors. CNNs perform well on data that is grid-structured, such

as images, sequences or text data, and has a well-defined spatial ordering. Graphs,

on the other hand, have an arbitrary size and complex topological structure, no fixed

ordering, and are also dynamic. Because of the complexity of graph-structured data,

replicating the design of a CNN that works effectively with fixed grid-structured data

to graph-structured data is a challenge. Our motivation for this thesis is to address

the challenging task of handling graph-structured data in the same way that fixed

grid-structured data is treated. This problem is addressed using Graph Convolutional

Networks (GCN), a class of neural networks explicitly designed for in-depth analysis

of graph-structured data [5]. GCN [16] is used to generalize convolution from tradi-

tional data (images or grids) to graph data. Given the complicated, high-dimensional

single-cell RNA-seq data, the study aims to provide a novel framework for predicting

cell-cell communication using GCN.

1.12 Problem Statement

Given complex, high-dimensional scRNA-seq data, we aim to predict cell-cell interac-

tions by creating a pipeline that analyzes single-cell data and converts it to a graph

format, performing the prediction using GNNs. We consider the gene expression pro-

file from scRNA-seq data by converting it to an undirected attributed graph, G, in

which cells and cell-cell interactions are represented by nodes and edges respectively.

More formally, given an undirected attributed graph G = (V,E,X) at a particular

time t, where V is a finite set of nodes (cells), E is a finite set of edges (cell-cell

interactions), in which eij = (vi, vj) ∈ E and xvi is the attribute vector associated

with the node vi ∈V.Also, A=(aij)N×N represents the adjacency matrix of graph G,

where aij = 1 if eij ∈ E and aij = 0 otherwise, and N is the number of nodes. We

aim to predict the likelihood of connection between vi and vj in the near future. In

27



1. INTRODUCTION

other words, link prediction can have a temporal aspect where the goal is to forecast

the links at time t′ (future) based on the collection of links at present time t.

1.13 Proposed Method

This thesis proposes a novel method, SEGCECO : Subgraph Embedding of Gene

expression matrix for prediction of CEll-cell COmmunication, for identifying cell-cell

communications in single-cell RNA-seq data via a gene expression attributed graph

convolutional network. The pipeline consists of three steps: Preprocessing step, Cell-

cell communication network (CCN) creation, and Applying the GCN. Before applying

GCN, the primary step is to preprocess the data to reduce the effects of noise in the

samples. This step includes basic filtering, normalization, log transformation and

scaling. Once the data is preprocessed, we create the CCN with nodes representing

cells in the CCN and edges representing cell-cell interactions. The last module of the

pipeline the proposed GCN for prediction, SEGCECO, which takes processed scRNA-

seq data and the CCN to create an attributed graph dataset, and then predict the

output. The proposed method is applied to six single-cell RNA-seq datasets extracted

from the human pancreas and mouse pancreas tissue. The performance of the method

is compared in terms of accuracy and AUC/ROC with other latent feature-based

approaches, as well as the state-of-the-art methods for cell-cell interaction prediction.

We experimentally demonstrate that our model outperforms other methods.

1.13.1 Contributions

• We propose a new pipeline by integrating methodologies from state-of-the-art

studies for cell-cell interaction prediction in scRNA-seq data.

• We introduce a statistically significant pooling layer that employs information

gain as an approach for coarsening graph attributes from the scRNA-seq data,

while preserving the global structure of the input graph.

• In the Node Information or Attribute matrix, we include explicit features from
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the single-cell gene expression matrix.

• We apply the proposed method on different datasets and obtain higher perfor-

mance compared to the state-of-the-art approaches.

• We have developed an open-source Github project for the proposed pipeline.
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CHAPTER 2

SEGCECO: Subgraph Embedding

of Gene expression matrix for

prediction of CEll-cell

COmmunication

2.1 Introduction

In the graph domain, link prediction is the problem of predicting the existence of a

connection between two entities in a network. Given a network with various nodes

connected to one another, we want to predict if two nodes are connected or are likely

to connect in the future. With graph neural networks (GNN), we use not only net-

work structural information, such as connections between nodes, but also individual

node characteristics including the feature set of the node. Predicting friendship links

among users in a social network, predicting co-authorship links in a citation network,

and predicting interactions between genes and proteins in a biological network are

some examples of link prediction.

On the other hand, cell-cell interactions regulate organism development by cell

functions. A disease may occur when cells do not interact properly or decode molec-

ular messages improperly. Thus, identifying and quantifying inter-cellular signaling

pathways has become a common analysis carried out across a variety of fields [4].
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With the rapid advancement of single-cell RNA sequencing technologies, researchers

are becoming more interested in inferring cell-cell communication from single-cell

(scRNA-seq) data. There are a variety of computational tools and resources in-

cluding ProximID [6], CellChat [13], CellTalker [8], iTalk [29], SingleCellSignalR [7],

CellPhoneDB [10], SpotSC [27], and scTensor [25], among others, which are available

to predict cell-cell communication (CCC) using gene expression profile obtained from

scRNA-seq data.

Generally, in scRNA-seq data analysis, cells are clustered based on their gene ex-

pression profiles, and cell types are determined and assigned to clusters based on the

known marker genes. CCC tools mostly predict the inter-cellular communications,

on the other hand, based on ligand-receptor interactions between pairs of clusters,

i.e., cell types, in which one cluster is the source and the other is the target. The

majority of the tools are made up of two main components: 1) a prior knowledge

resource of intercellular interactions and 2) a method for estimating CCC based on

known interactions and the present dataset. Each tool uses different methods, such as

permutation of cluster labels, differential combinations, regularizations, and scaling,

depending on the input datasets. These approaches result in a varied scoring system

which makes it difficult to compare and evaluate the performance of CCC methods.

Thus, selecting the appropriate tool to produce the best results is challenging [9]. A

recent review study [4] discusses several existing tools for measuring cell-cell commu-

nication.

In this work, to predict cell-cell communication, we resort to various approaches

that have been successfully used for other existing link prediction problems, such

as prediction of social connections between users in social networks [16]. Tradi-

tional approaches include heuristic methods such as common neighbors (CN) [18],

Adamic Adar (AA) [1], and Resource Allocation (RA) [36]. Heuristic link prediction

methods use network structure, i.e. network topology information, in the prediction
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process. Existing algorithms can be classified based on the maximum hop of neigh-

bors required to calculate the score [32]. Common neighbors (CN), for example, are

first-order heuristics that involve the target nodes’ one-hop neighbors. Also, some

supervised approaches are used for connection prediction, including support vector

machine (SVM), baggings, and naives bayes, which are used to model the problem as

a binary classification in which extraction of edge features is fundamental.

Moreover, recent methods are mostly built on top of node embedding methods

(e.g., DeepWalk [19], node2vec [11], and structural deep network embedding [26]),

with the edge representation constructed from the interaction between corresponding

node embeddings.

We discovered that some methods perform well on certain types of networks. For

instance, every heuristic technique is based on some assumptions and works based

on the extracted pattern from the network topology, which is why there is no single

heuristic method that works well for all types of networks. Thus, this is a significant

drawback in heuristic approaches. The same can be said about latent approaches,

which achieve high accuracy in some types of networks but low accuracy in others.

Thus, deciding on the best link prediction approach is usually a trial-and-error pro-

cess.

On the other hand, Weisfeiler-Lehman Neural Machine (WLNM) [33] is considered

as a state-of-the-art among link prediction methods based on its performance. It is a

new approach based on the subgraph extraction around both target nodes u and v.

The local enclosing subgraph for a node pair (u, v) is the subgraph induced from the

network by the union of u and v’s neighbors up to h hops. The hop is the maximum

distance that node features can travel. This approach gives higher accuracy than

heuristic and latent methods but requires additional computation time and memory.

In addition, SEAL (Learning from Subgraphs, Embeddings, and Attributes for
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Link Prediction) [32] is also a subgraphing method that addresses a number of weak-

nesses that WLNM has. To begin with, it enables learning not only from subgraph

structures but also from latent and explicit node attributes, allowing it to incorporate

a variety of information. Secondly, the fully-connected neural network in WLNM is

replaced by a GNN that enables graph feature learning improvement. SEAL derived

γ decaying theory and proved that a small number of hops is enough to extract high-

order heuristics and outperform WLNM. As a result, we choose SEAL as the baseline

for predicting links between cells in our proposed framework, SEGCECO. It is a novel

method that predicts cell-cell communication in scRNA-seq data via a gene expression

attributed graph convolutional network. To our knowledge, this is the first time that

graph-based methods are used for prediction of cell-cell communication prediction.

Also, to obtain more precise results, nodes in cell-cell communicating networks

(CCN) represent the cells instead of groups of cells, i.e., cell types in our pipeline.

Thus, the edges denote the connections (ligand-receptor interactions) between indi-

vidual cells.

Our study aims to discover cell interactions, with nodes representing cells in the

CCN and edges representing cell-cell interactions. Thus, we use similarity matrix-

based optimization for scRNA-seq data analysis tool (SpotSC) [27] to perform such a

task. Once the CCN network is constructed, our main goal is to predict links among

the cells.

2.2 PRELIMINARIES

2.2.1 k-order proximity or k-hop

Given a node v ∈ V the k− order proximity of v is defined as the set of q vertices at

an edge distance less than or equal to k from v and is denoted by Nk(v) [12].
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Fig. 2.2.1: k−hop proximity of target node marked in red and the neighbors of the
target node in the k−hop neighborhood within k = 0, 1, and 2.

It is also known as neighborhood of radius k or k−hop neighborhood or k−order

neighborhood.

2.2.2 Subgraph

Given a set of nodes V , the subgraph formed by S is a graph that has sv as its set of

vertices such that sv ∈ V , and contains every edge of a graph G whose endpoints are

in S.

2.2.3 Neighborhood Subgraph

The neighborhood subgraph of radius k of the target node v ∈ V is the subgraph

induced by the neighborhood of radius k of v, and v itself and is denoted by Sk
v [32].

Fig. 2.2.1 depicts k−order proximity of target node marked in red and the neigh-

bors of the target node in the k−hop neighborhood within radius k = 0, 1, and 2.

The subgraph S1
v is the graph with target node (marked in red) and its 1-hop (k = 1)

neighborhood shown in green; as well as the edges connecting them. Similarly, The

subgraph S2
v is the graph with target node (marked in red) and its 2-hop (k = 2)
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neighborhood shown in blue; as well as the edges connecting them.

2.2.4 Latent Feature Methods

Given a network G with a finite set of nodes (or vertices) V and finite set of edges

E, latent features are the features or representations of nodes V computed using

matrix factorization. The matrix can be the adjacency matrix or the Laplacian matrix

derived from the network G. For each node, low dimensional embedding is learned

by factorization [31]. Node2vec [11], LINE [22], and DeepWalk [19] are examples

of network embedding algorithms that learn low-dimensional embedding for nodes.

In [20], these network embedding methods were found to implicitly factorize some

network matrix representation. Thus, we use them as latent feature methods for

learning latent features through factorizing some matrices. Some of the latent feature

methods are summarized as follows:

• Node2Vec: The Node2vec [11] model for graph learning is an application of

the Word2vec paradigm. The latter is a framework for word embedding used

to learn continuous feature representations of nodes in networks. The skip-

gram model is used to learn continuous feature representations for words. Its

goal is to optimize a neighborhood-preserving likelihood objective in order to

learn these representations. As an extension of the skip-gram architecture of

networks, Node2vec is an embedding approach that works on neighbor nodes

and generates low dimensional embeddings, by converting graphs (or networks)

into numerical representations. A second-order random walk approach is used

to generate the numerical representation of the nodes in the graph. The idea

behind Node2Vec is to use flexible, biased random walks that can trade off

between local and global network views. This approach returns feature repre-

sentations that maximize the likelihood of preserving network neighborhoods of

nodes in a d-dimensional feature space [11].

• DeepWalk: DeepWalk [19] learns d- dimensional latent feature representa-
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tions using local information obtained from uniform random walks. To capture

network topology information, Deepwalk introduced an unsupervised strategy

that learns features that capture the graph structure independently of the labels’

distribution, rather than mixing the label space as part of the feature space [19].

• LINE: LINE [22] is a network embedding model designed for embedding very

large-scale information networks, which contain millions of nodes and billions

of edges. This method generates low-level embeddings by preserving both first-

order and second-order proximity of nodes. Furthermore, this method incorpo-

rates a novel edge-sampling technique that improves the efficiency of the model

[22].

• Spectral Clustering: Spectral Clustering, SC, is a matrix factorization [31]

technique that performs an eigen decomposition of graph G, more specifically,

the normalized Laplacian matrix L, and takes top k eigen vectors as the feature

representation of nodes, i.e., node embedding vectors, Z. The edge score is

calculated as the sigmoid function, Z × ZT .

• VGAE (Variational Graph Autoencoder): Graph Autoencoders [28] are

based on graph neural networks that use matrix factorization [31] to map graph

input onto a low-dimensional space. Variational Graph Autoencoder [15] is a

framework that uses the idea of Variational Autoencoders (VAE) to improve

prediction performance on graph-structured data. This model makes use of la-

tent variables and can learn interpretable graph latent embedding for graphs.

The model incorporates the node features by using a graph convolutional net-

work (GCN) [14] encoder and a simple inner product decoder.
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2.2.5 Subgraph-based Methods

• WLNM (Weisfeiler-Lehman Neural Machine): WLNM is a subgraph-

based link prediction method that extracts the enclosing subgraphs around the

target nodes to learn graph structure features for link prediction. The number

of nodes in the subgraph, which is denoted by the user-defined integer K, is

explicitly set. The Palette-WL algorithm, a variant of WL that is fast and order-

preserving, is used to label nodes. The enclosing subgraph is then represented

as an adjacency matrix by WLNM. A fully-connected neural network is trained

on these adjacency matrices, together with their labels, to learn the existence of

links. WLNM has three steps: enclosing subgraph extraction, subgraph pattern

encoding, and neural network training. WLNM has several drawbacks and lim-

itations [33], which is resolved by our proposed method. First, fully-connected

neural network in WLNM is replaced by GNN, which improves graph feature

learning capabilities. Second, SEGCECO enables to learn not just from sub-

graph structures, but also from latent and explicit node properties, allowing to

extract quite relevant of information.

• SEAL (Learning from Subgraphs, Embeddings and Attributes for

Link Prediction: SEAL framework for link prediction learns general graph

structure features from local subgraphs rather than complete networks. The

method takes as input the enclosing subgraphs around the links and returns

the likelihood that the links exist. SEAL consists of three steps: enclosing sub-

graph extraction, node information matrix creation, and GNN learning. The

default GNN used in SEAL is DGCNN (Deep Graph Convolutional Neural

Network) [Section 2.3.2.4] [32].
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2.2.6 SoptSC: Similarity-matrix based optimization for single-

cell data analysis

SoptSC successfully performs multiple inference tasks such as unsupervised clustering,

pseudotemporal ordering, lineage inference, and marker gene identification based on

a cell–cell similarity matrix. The cell-cell similarity matrix S is learned from original

scRNA-seq data matrix, i.e., gene expression matrix X of size m × n with m genes

and n cells, using a low-rank representation model [37]. The element Sij (=Sji) of

similarity matrix S measures the degree of similarity between cell i and cell j [27].

Also, a cell-cell communication graph G is constructed using adjacency matrix A,

which is derived from similarity matrix S, where Aij = 1 if Sij > 0, or Aij = 0

otherwise.

SoptSC is an R package available at: https://mkarikom.github.io/RSoptSC.

In this work, we constructed the cell-cell communication network using this method.

2.2.7 Information Gain

Information gain (IG), as a feature selection method, computes the reduction in

entropy by splitting the dataset based on a given value of a random variable and

measures how important or relevant the feature is. This is done by estimating the

information gain from each variable and choosing the one with the maximum value.

Based on Equation (1), the largest information gain is equal to the smallest entropy.

IG is calculated by subtracting the weighted entropy values from the original entropy

values by following Equation (2). In other words, IG measures how changes to the

dataset affect the distribution of the classes or target variables.

H(X) = −
∑

p(X) log p(X) , (1)

where for dataset X ={xi}, H(X) is the probability of randomly picking an element

of the class.
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I(X, a) = H(X)−H(X|a) , (2)

where I(X,a) represents the information gain in dataset X ={xi} for variable a, H(X)

is the original entropy of X and H(X|a) is the conditional entropy for the given

variable a.

2.3 Materials and Methods

Our proposed method consist of three main steps: 1) Preprocessing step (Fig. 2.3.1),

2) Cell-cell communication network (CCN) creation (Fig. 2.3.1), and 3) Applying the

GCN (Fig. 2.3.1). Before applying the GCN, the primary step is to preprocess the

data for downstream analysis (Section 2.3.1). Once the data is preprocessed, a CCN

is constructed using SoptSC (Section 2.2.6) in Step 2 (Fig. 2.3.1). The last module

of the pipeline the proposed GCN for prediction, SEGCECO, which takes processed

scRNA-seq data and the CCN to create an attributed graph dataset, and then predict

the output. The preprocessing and SEGCECO framework are explained in the next

sections.

2.3.1 Data Preprocessing

Prior to scRNA-seq data analysis, a critical step is to preprocess the data to reduce

the effects of noise in the samples. To this end, we followed a standard preprocessing

pipeline in scRNA-seq data analysis [17]. This step includes basic filtering, normal-

ization, log transformation and scaling, as shown in the first step of the pipeline

depicted in Fig. 2.3.1. Low-quality cells would hamper downstream analysis. These

cells may have been damaged or dead during processing, and are represented by the

low number of expressed genes. Based on the pipeline [17], cells with less than 200

expressed genes, and genes expressed in less than three cells are filtered out. For

example, in BHuman1, we filtered out 5,387 low-expressed genes that are detected in

41



2. SUBGRAPH EMBEDDING OF GENE EXPRESSION MATRIX FOR CELL-CELL COMMUNICATION

Fig. 2.3.1: Pipeline of the proposed framework for prediction of cell-cell communica-
tion.
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less than three cells and kept 14,739 genes. We further investigated the distribution

of the data, (Fig. 2.3.2, as a data-specific quality-control step to filter low-quality

cells. The number of genes expressed in the count matrix is typically between 500

and 4,000 genes, with a dense distribution of the number of expressed genes over the

total count per cell for less than 4,000 genes. As such, we filtered out seven cells

to remove low-quality ones. This step is performed to remove low quality cells and

poorly expressed genes.

Normalization is performed to balance the data by bringing it to a common scale

without changing any values or losing any information. The top genes in the dataset

are visualized before and after normalization in Fig. 2.3.3 and 2.3.4, respectively.

The Counts Per Million (CPM) normalization method is used to normalize the data.

Once normalization is performed, data matrices are log(x + 1) transformed to miti-

gates the mean-variance relationship in single-cell data. The differences in log-values

represent log-fold variations in expression which is the standard approach to measure

changes in expression. With the use of log transformation on the cells, it compresses

the variation into a less extreme range making relative differences between cells eas-

ier to observe [23]. Finally, log transformation minimizes the skewness of the data,

allowing many downstream analysis tools to approximate the assumption that the

data is normally distributed [17].

After per-gene quantification, we selected a subset of highly variable genes to

use in downstream analyses as they are informative of the variability in the data.

To achieve this, we chose a commonly used technique in [2] and defined the set of

highly variable genes given a normalized dispersion higher than 0.5 after normaliza-

tion, yielding 2,546 genes.

For preprocessing, we used Scanpy [30], a specifically designed package to ana-

lyze scRNA-seq datasets. Scanpy includes methods for preprocessing, visualization,

clustering, pseudotime and trajectory inference, differential expression testing, and
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Fig. 2.3.2: Distribution of the data (BHuman1).

simulation of gene regulatory networks. The frameworks like Seurat [21], Monocle

[24] and Cell ranger [35] do not scale to huge data sets with up to and above one mil-

lion cells. Therefore, a framework Scanpy addresses these issues while still allowing

similar analyses. It is an easy interface with advanced machine-learning packages [30].

Scanpy incorporates scalable canonical analysis methodologies. For example, it

provides preprocessing comparable to Seurat [21] and Cell ranger [35], visualization

through TSNE [3], and much more. It has been tested against other packages for

single-cell analysis. The result shows scanpy provides tools with speedups that allow

for interactive analysis of data sets with more than one million cells and run times

of the order of seconds for roughly 100,000 cells [30]. Due to the abovementioned

reasons, we used Scanpy for data preprocessing.

2.3.2 SEGCECO Framework

SEGCECO framework consists of four main phases: 1) Feature (gene) selection in

the pooling layer, 2) Subgraph extraction, 3) Node information matrix construction,
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Fig. 2.3.3: Highly variable genes before normalization (BHuman1).

Fig. 2.3.4: Highly variable genes after normalization (BHuman1).
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Fig. 2.3.5: 1-hop enclosing subgraphs for target nodes (A,B) and (C,D).

and 4) DGCNN learning. All these phases are explained in the next few sections.

2.3.2.1 Gene Selection in Pooling Layer

Downsampling is crucial in graph analysis, which is included in the pooling layer

of the SEGCECO framework. Downsampling here means reducing the number of

features (i.e., genes) of the nodes. The pooling layer consists of selecting genes (with

a threshold τ) by IG (Section 2.2.7) feature selection. This step provides the node

attribute information (side information) of each individual node, i.e., explicit features.

2.3.2.2 Enclosing Subgraph Extraction

Enclosing subgraph extraction involves extracting the local enclosing subgraphs around

the target nodes u and v. The subgraph induced from the network by the union of

u and v’s neighbors up to k− hops is called the enclosing subgraph for a node pair

(u, v). In the next phase, the enclosing subgraph is extracted from the training data,

which contains both positive (existent) and negative (non-existent) sets of sampled

links, based on h-hop neighbors for the target nodes u and v. Figure 2.3.5 depicts an

example of the 1-hop enclosing subgraphs for target nodes (A,B) and (C,D).

2.3.2.3 Node Information Matrix Construction

In the node information matrix, each row corresponds to the node’s feature vector,

which is represented as X. In the SEAL [32] approach, there are three components
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in the node information matrix:

• Node Labeling: The Double-Radius Node Labeling (DRNL) algorithm (ex-

plained in [32]) is used to label the nodes based on their structure. The main

purpose of this step is to label every node in the enclosing subgraph in order to

distinguish the target nodes between which a link should be expected.

Labels are assigned to nodes in such a way that the target nodes u and v

are labeled 1. Second, the radius of node i with respect to two target nodes,

namely (d(i, u), d(i, v)), can be used to define its position. Thus, nodes on the

same orbit are given the same label. In other words, larger labels are assigned

to nodes that have larger radius with respect to target nodes. This algorithm

can be better understood by following the diagram of Fig. 2.3.6, which satisfies

the following conditions:

1. if d(i, x)+d(i, y) ̸= d(j, x)+d(j, y), then d(i, x)+d(i, y) < d(j, x)+d(j, y) ⇔

fl(i) < fl(j);

2. if d(i, x) + d(i, y) = d(j, x) + d(j, y), then d(i, x)d(i, y) < d(j, x)d(j, y) ⇔

fl(i) < fl(j).

where fl(i) is the label assigned to node i and (d(i, x), d(i, y)) is the double

radius.

• Node Embedding: Trick negative injection, as explained in [32], is used

to generate the node embeddings. A trick consists of adding the negative (non-

existent) set of sampled links, En, to the positive (existent) set of sampled links,

E, and generate the embeddings on G′ = (V,E ∪ En). The node embedding

method used in our method is Node2vec [11].

• Node Attributes: Both latent and explicit features of each node are included

in the node information matrixX for its corresponding row inX. Latent feature
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Fig. 2.3.6: Node labeling approach.

methods learn low-dimensional latent representation or embedding for each node

using matrix factorization [31]. An adjacency or Laplacian matrix derived from

the graph can be used. Node embedding techniques such as Node2vec [11],

LINE [22] and DeepWalk [19] are some of the examples of latent feature methods

which we have used in this study. The explicit features contain side information

about the individual nodes, available in the form of node attributes. The SEAL

method [32] shows significant improvement in performance when combine both

latent and explicit features.

2.3.2.4 Deep Graph Convolutional Neural Networks

Deep Graph Convolutional Neural Networks (DGCNN) [34] is a deep learning archi-

tecture used for graph classification. DGCNN is divided into three main parts:

• Graph Convolutions: Localised graph convolutions are used to extract the

hidden feature information of nodes from the graph and produce a consistent

node ordering. DGCNN consists of four graph convolutional layers in which

the output of each convolutional layer is passed to a hyperbolic tangent (tanh)

non-activation function. A DGCNN architecture of four convolutional layers

is shown in Fig. 2.3.7. To extract multi-hop node features, DGCNN stacks

multiple graph convolution layers, and concatenates each layer’s node states to

the final node states [32].
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• SortPooling Layer: In the SortPooling layer, the unordered node attributes

of the graph from spatial graph convolutions layer are fed as the input. The

main purpose of this layer is to sort the feature descriptors, each of which rep-

resents a node. Rather than summing up these node features, SortPooling layer

arranges them in a consistent order and outputs a sorted graph representation

with a given size. Then, it can be read and trained by standard convolutional

neural networks. Nodes are sorted using graph labeling methods, based on their

structural roles, in descending order using the last layer’s output, Zh.

Once the feature of the nodes are sorted, the next step is to unify the sizes of

the output tensor. The main intention behind it is to unify the graph sizes to

k by deleting the last n− k rows if n > k, or adding k− n zero rows otherwise.

The output of SortPooling Layer is shown in Fig. 2.3.8

• Traditional Convolutional and Dense Layers: These layers are used to

make a prediction based on the sorted graph representations generated by the

SortPooling layer.

The architecture of DGCNN is shown in Fig. 2.3.9. Given the adjacency matrix

A ∈ {1, 0}nXn of graph G with n number of nodes and each node containing the

c dimensional feature vector as well as the node information matrix X ∈ RnXc of

an enclosing subgraph with each row representing the node, DGCNN employs the

following convolution layer:

Z = f( ˜D−1ÃXW ) . (3)

where Ã = A + I, I is the identity matrix, D̃ is the diagonal degree matrix with

D̃i,i =
∑

j Ãi,j, W is a trainable graph convolutional parameters, f is a non-linear

activation function, and Z ∈ RnXc′ is the output activation matrix.

The graph convolution incorporates each nodes’ hidden representation by aggre-

gating attribute information from its neighbors. The graph convolution can be split
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Fig. 2.3.7: Schematic view of DGCNN architecture with four graph convolutional
layers used in this work.

Fig. 2.3.8: Overview of the SortPooling layer’s output.

into four different steps:

1. Linear feature transformation is applied to the node information matrix X, by

multiplying it by W .

2. Node information is propagated to neighboring nodes as well as the node itself

by ÃXW .

3. Each row is normalized by multiplying it by D−1.

4. Non-linear activation function is applied to obtain the output.
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Fig. 2.3.9: Overview of the DGCNN architecture.

2.3.3 Datasets

The datasets used in this study are publicly available annotated scRNA-seq data

from human and mouse pancreas tissue, drawn from the NCBI’s Gene Expression

Omnibus, accession number GSE84133 [5]. The datasets were generated by following

the inDrop method under Illumina HiSeq 2500 to determine the transcriptomes of

over 12,000 individual pancreatic cells from four human donors and two mice strains.

We used the data taken from human donors with the accession numbers GSM2230757,

GSM2230758, GSM2230759, and GSM2230760, as well as mice strains with the ac-

cession numbers GSM2230761 and GSM2230762. Pancreatic cells are divided into 14

different clusters of previously characterized cell types: all endocrine cell types, includ-

ing rare ghrelin-expressing epsilon-cells, exocrine cell types, vascular cells, Schwann

cells, quiescent and activated pancreatic stellate cells, and four types of immune cells.

Table 2.3.1 depicts the details of datasets including tissue, the accession number, the

number of cell types, the number of cells, and the number of genes.

2.3.4 Performance Evaluation

The node embedding methods, i.e., Node2Vec, LINE and SC, give the feature rep-

resentation of nodes in a graph. Thus, an additional step is required to learn the

features of the edges from node embedding in order to predict links as a binary clas-

sification problem. To evaluate our method, we use the binary operator over the
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Table 2.3.1: Details of the datasets used in this work including tissue, the accession
number, the number of cell types, the number of cells, and the number of genes.

Dataset Tissue Accession # Cells # Genes

Baron-human1
(BHuman1)

Human-Pancreas GSM2230757 1,937 20,125

Baron-human2
(BHuman2)

Human-Pancreas GSM2230758 1,724 20,125

Baron-human3
(BHuman3)

Human-Pancreas GSM2230759 3,605 20,125

Baron-human4
(BHuman4)

Human-Pancreas GSM2230760 1,303 20,125

Baron-mouse1
(BMouse1)

Mouse-Pancreas GSM2230761 822 14,878

Baron-mouse2
(BMouse2)

Mouse-Pancreas GSM2230762 1,064 14,878

corresponding feature vectors of nodes u and v, i.e., f(u) and f(v), to generate the

edge embedding g(u, v) for edge e = (u, v), as used in [11].

• Average:

fx(u)⊞ f(v) =
f(u) + f(v)

2
. (4)

• Hadamard:

f(u)⊡ f(v) = f(u) ∗ f(v) . (5)

• Weighted-L1:

||f(u) · f(v)||1 = |f(u)− f(v)| . (6)

• Weighted-L2:

||f(u) · f(v)||2 = |f(u)− f(v)|2 . (7)
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2.4 Experimental Results

For performance comparison, we included WLNM, GAE and VGAE, as well as four

state-of-the-art latent feature methods including Node2Vec, LINE, Deepwalk and

SC. These methods are explained in Section 2.2.4 and 2.2.5. We used Area Under

Curve (AUC), accuracy, precision, recall, F1-score and receiver operating character-

istic curve (ROC curve) as evaluation metrics. To calculate the evaluation metrics,

we used training and testing data which consists of both positive (existent) and neg-

ative (non-existent) links. As a negative set, we randomly chose an equal number of

unconnected pairs of nodes from the network with no edge connection between them.

We arbitrarily remove 10% of links as testing data and the remaining 90% are used

as training data. The statistical information of the network extracted from datasets

(discussed in Section 2.3.3) is shown in Table 2.4.1.

Table 2.4.1: Statistical information from the Network of Datasets.

Dataset # Nodes # Edges Average Node Degree

Baron-human1 (BHuman1) 1,930 33,941 35.172

Baron-human2 (BHuman2) 1,724 30,223 35.0615

Baron-human3 (BHuman3) 3,597 62,850 34.9458

Baron-human4 (BHuman4) 1,282 22,729 35.4587

Baron-mouse1 (BMouse1) 821 14,774 35.9903

Baron-mouse2 (BMouse2) 1,061 18,791 35.4213

2.4.1 Implementation Details

We evaluated the latent feature methods supplied in this study using the authors’

original code for Node2vec, Deepwalk, and LINE.

Also, we used SC for evaluation. The node embeddings generated from these

methods are used to generate the link embeddings as explained in Section 2.2.4.
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Hyperparamaters for Node2vec

Dimension walk length No. of walks window size p q iteration worker

16 80 10 10 1 1 1 8

Hyperparamaters for DeepWalk

Representation-size walk length No. of walks window size workers

16 40 10 5 1

Hyperparamaters for LINE

size binary order negative rho threads

16 0 2 5 0.025 1

Hyperparameters for GAE & VGAE.

learning rate epochs Hidden Layer1 Units # Hidden Layer2 Units # features

0.01 200 32 16 0

Hyperparameters for DGCNN

GConv1 GConv2 GConv3 GConv4 k Conv 1D 1 Output Conv 1D 2 Output

32 32 32 1 60 16 32

Hyperparameters for SEGCECO

learning rate epochs dimension hop Pooling Layer (τ)

0.00001 100 16 1,2 300

Table 2.4.2: Summary of hyperparameters used by methods

Then, we used logistic regression as the classifier to predict the links. Ten-fold cross-

validation is used to test and train the model.

To evaluate the performance of other methods including GAE, VGAE, WLNM,

we used the default settings.

To implement the core of our method, SEGCECO, we used the base implementa-

tion of the SEAL method. Then, to evaluate the performance of the results, we used

90%-10% of data as training and testing set respectively. To generate FPR/TPR

distribution of the datasets, we have taken the mean of the corresponding values.

2.4.2 Hyperparameter Tuning

We used different hyperparameters for each method as described in Table 2.4.2.

2.4.3 Discussion

Overall, compared to other methods, SEGCECO achieves improvement in perfor-

mance in terms of AUC. Table 2.4.3 shows the performance (AUC) of SEGCECO and

latent methods. For all the datasets, Node2vec outperformed all other approaches for

three of the four operators. It means Node2vec excels in generating low-dimensional
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embeddings of nodes in networks and achieving a neighborhood-preserving objective.

Thus, we chose Node2vec as the node embedding method in our framework.

Table 2.4.4 depicts the performance (AUC) of SEGCECO with other GNN-based

methods, such as GAE, VGAE, WLNM and SEGCECO. Among them, SEGCECO

performs best with approximately 0.99 AUC. We anticipate that the improved per-

formance of SEGCECO is due to the proposed pooling layer in the framework, which

uses IG as the feature selection method to select the top τ attributes (i.e., genes) as

explicit features in the node information matrix, X, resulting in better prediction.

Moreover, Fig. 2.4.1 plots the ROC curve for DeepWalk, Node2vec, LINE, SC,

GAE, VGAE, WLNM, and SEGCECO on BHuman1 dataset. It is noticeable that

SEGCECO surpasses other approaches since the curve is closer to the top-left corner,

indicating better performance. Here, positive means interacting cells and negative

means non-interacting cells. By observing Fig. 2.4.2, reveals that SEGCECO ob-

tained the lowest FPR of 0.0135 among all the approaches, implying that there is a

very lower probability that SEGCECO will predict non-interacting cells as interact-

ing cells. This, in other words, means when the cells do not have interactions, the

chances of inaccurate predictions, i.e., the cells interacts, are minimal. Furthermore,

the SEGCECO performs best in predicting actual interactions, that is, when there

exist interactions between cells, the method predicts the same. The same behavior is

detected in other datasets as well. The ROC curves, FPR and TPR distribution on

other datasets can be found in the Section Appendix A (Figs. A.0.1-A.0.10). Thus,

it can be concluded that SEGCECO yields the best results for all datasets when it

regards to distinguishing between interacting and non-interacting cells and making

predictions.

Accuracy, Precision, Recall, and F1-score are the commonly used evaluation met-

rics to illustrate the performance of the the model. Recall evaluates the model for

correctly identifying the cell-cell communication. Precision shows the percentage of
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Table 2.4.3: Comparison of SEGCECO with latent methods for all datasets used in
this study.

Operator Method BHuman1 BHuman2 BHuman3 BHuman4 BMouse1 BMouse2

Average Node2vec 0.4999 0.5162 0.5035 0.5177 0.5049 0.5127

LINE 0.5061 0.5034 0.5053 0.4968 0.5142 0.5093

DeepWalk 0.5029 0.5052 0.5000 0.5148 0.5099 0.5130

SC 0.4728 0.5464 0.5361 0.5310 0.5043 0.5312

Hadamard Node2vec 0.9748 0.9766 0.9833 0.9711 0.9564 0.9726

LINE 0.7077 0.7908 0.5696 0.8279 0.8474 0.8494

DeepWalk 0.9560 0.9634 0.9514 0.9615 0.9558 0.9635

SC 0.9392 0.9625 0.9501 0.9623 0.9589 0.9648

Weighted
L1

Node2vec 0.9887 0.9885 0.9917 0.9851 0.9798 0.9846

LINE 0.7204 0.7474 0.5528 0.8421 0.8940 0.8848

DeepWalk 0.9867 0.9857 0.9859 0.9820 0.9813 0.9812

SC 0.9743 0.9757 0.9696 0.9716 0.9690 0.9694

Weighted
L2

Node2vec 0.9896 0.9895 0.9919 0.9862 0.9802 0.9846

LINE 0.7243 0.7474 0.5603 0.8487 0.8989 0.8865

DeepWalk 0.9869 0.9866 0.9857 0.9825 0.9823 0.9822

SC 0.9748 0.9752 0.9687 0.9736 0.9752 0.9729

SEGCECO 0.9985 0.9980 0.9989 0.9982 0.9975 0.9972

predictions accurately made by the model. Table 2.4.5 shows the AUC, accuracy, pre-

cision, recall, and F1-score of link prediction using SEGCECO framework on different

datasets. The SEGCECO shows a performance of around 99% for all measures, in-

dicating that our model can accurately predict cell-cell interactions and discriminate

interacting cells from non-interacting cells.

Based on the findings of the above-mentioned comparison, we conclude that

SEGCECO surpassed all other approaches with 99% AUC, accuracy, and other per-

formance measures across all datasets.
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Table 2.4.4: Comparison of SEGCECO with other methods for the datasets.

Datset GAE VGAE WLNM SEGCECO

BHuman1 0.9835 0.9852 0.9832 0.9985

BHuman2 0.9859 0.9805 0.9839 0.9980

BHuman3 0.9876 0.9869 0.9889 0.9989

BHuman4 0.9838 0.9764 0.9773 0.9982

BMouse1 0.9841 0.9764 0.9673 0.9975

BMouse2 0.9838 0.9829 0.9744 0.9972

Table 2.4.5: Performance metrics of SEGCECO for the datasets.

Datset AUC Accuracy Precision Recall F1-score

BHuman1 0.9985 0.9928 0.9872 0.9987 0.9929

BHuman2 0.9980 0.9903 0.9915 0.9891 0.9903

BHuman3 0.9989 0.9923 0.9925 0.9921 0.9923

BHuman4 0.9982 0.9886 0.9862 0.9913 0.9887

BMouse1 0.9975 0.9854 0.9800 0.9908 0.9854

BMouse2 0.9972 0.9878 0.9800 0.9954 0.9876
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Fig. 2.4.1: ROC Curve for BHuman1 dataset

Fig. 2.4.2: False Positive Rate and True Positive Rate distribution of BHuman1
dataset
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[36] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. “Predicting missing links via local

information”. In: The European Physical Journal B 71.4 (2009), pp. 623–630.

[37] Liansheng Zhuang et al. “Locality-preserving low-rank representation for graph

construction from nonlinear manifolds”. In: Neurocomputing 175 (2016), pp. 715–

722.

62



CHAPTER 3

Conclusion and Future Work

3.1 Conclusion

Data analysis in the form of graphs is gaining a lot of attention. It has become one

of the popular research topics. Link prediction is one of the most important research

topics in the field of graphs (or networks). However, although much effort has been

made, there is still a lot to do in this field. Cell–cell interaction refers to the direct

interactions between cell surfaces that play a crucial role in the development and

function of multicellular organisms.

In this study, we propose a pipeline for performing cell-cell interactions prediction

in scRNA-seq data using GCN. This article demonstrates how scRNA-seq data in the

form of a gene expression matrix is transformed into a graph representation, i.e., a

cell-cell communication network (CCN), in order to predict cell-cell interactions in

scRNA-seq datasets. To our knowledge, this is the first time that the cell-cell inter-

action problem is being solved using GCN.

SEGCECO works with undirected, attributed graphs created from individual cell

gene expression profiles. The architecture of SEGCECO includes a pooling layer that

coarsens the graph attributes from the scRNA-seq data while preserving the global

structure of the input graph using the Information Gain method. The pooling layer is

followed by the enclosing subgraph extraction, node information matrix construction,

and finally GCN that convolves over graphs to encode the representation of both local
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and global attributes. In our experiments, SEGCECO has been shown to outperform

previous state-of-the-art techniques. We evaluated SEGCECO using AUC, accuracy,

precision, recall, and F1-score evaluation metrics. SEGCECO shows a performance

of approximately 99% for all performance measures across the datasets. We empir-

ically proved that SEGCECO yields better results in terms of AUC relative to the

previously proposed latent and subgraph-based methods. Thus, we conclude that

SEGCECO outperforms other approaches in predicting cell-cell predictions and dis-

tinguishing interacting from non-interacting cells.

3.1.1 Contributions

The main contributions of this thesis can be summarized as follows:

• We propose a new pipeline by integrating methodologies from state-of-the-art

studies for cell-cell interaction prediction in scRNA-seq data.

• We introduce a statistically significant pooling layer that employs information

gain as an approach for coarsening graph attributes from the scRNA-seq data,

while preserving the global structure of the input graph.

• In the Node Information or Attribute matrix, we include explicit features from

the single-cell gene expression matrix.

• We apply the proposed method on different datasets and obtain higher perfor-

mance compared to the state-of-the-art approaches.

• We have developed an open-source Github project https://github.com/sheenahora/

SEGCECO for the proposed pipeline.

3.2 Future Work

Below are some tasks that researchers would like to perform in the future:
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• SEGCECO also opens up new research opportunities to work with networks in

which there is a special structure, for example, heterogeneous CCN, networks

with explicit domain features for nodes and edges, directed or multi-modal

graphs.

• The model we proposed uses the Information Gain feature selection method to

select features (i.e. genes) in the Pooling Layer. To conduct further experiments

in the future, we can use different feature selection algorithms and select more

features in the pooling layer.

• In addition to the application of SEGCECO on cell-cell prediction (i.e. link

prediction), we could apply the proposed method on node classification, node

clustering, graph partitioning, and graph classification.

• We would also foresee applying SEGCECO on domains such as disease-gene

or drug-target associations, knowledge graph completion, and recommendation

systems, among others.
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APPENDIX A

ROC curves as well as FPR and

TPR Distribution

The ROC curves as well as FPR and TPR distribution of BHuman2, BHuman3,

BHuman4, BMouse1 and BMouse2 datasets are depicted in Fig. A.0.1 - Fig. A.0.10.

Fig. A.0.1: ROC Curve for BHuman2 dataset

67
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Fig. A.0.2: False Positive Rate and True Positive Rate distribution of BHuman2
dataset
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Fig. A.0.3: ROC Curve for BHuman3 dataset
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Fig. A.0.4: False Positive Rate and True Positive Rate distribution of BHuman3
dataset
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Fig. A.0.5: ROC Curve for BHuman4 dataset
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A. ROC CURVES AS WELL AS FPR AND TPR DISTRIBUTION

Fig. A.0.6: False Positive Rate and True Positive Rate distribution of BHuman4
dataset
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A. ROC CURVES AS WELL AS FPR AND TPR DISTRIBUTION

Fig. A.0.7: ROC Curve for BMouse1 dataset
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A. ROC CURVES AS WELL AS FPR AND TPR DISTRIBUTION

Fig. A.0.8: False Positive Rate and True Positive Rate distribution of BMouse1
dataset
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A. ROC CURVES AS WELL AS FPR AND TPR DISTRIBUTION

Fig. A.0.9: ROC Curve for BMouse2 dataset
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A. ROC CURVES AS WELL AS FPR AND TPR DISTRIBUTION

Fig. A.0.10: False Positive Rate and True Positive Rate distribution of BMouse2
dataset
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