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Abstract 

The main aim of this research is to develop a new car-following model that realistically 

predicts the trajectories of speed, acceleration, jerk and spacing in congested and 

uncongested freeway conditions. The research has three objectives. First, the start time of 

driver reaction was investigated in various car-following conditions. Specifically, the 

assumption of a constant reaction time of the existing car-following models was 

investigated using the observed driver behaviour data collected from a driving simulator. 

Moreover, the perception limits and the process that drivers use to start reaction were also 

studied. Second, a new car-following model was developed to reproduce the observed 

driver’s intermittent start time of acceleration/deceleration and realistic ranges of 

magnitudes of speed, spacing, acceleration and jerk. For this task, the model adapted the 

Markkula’s Framework of Sensorimotor Control in Sustained Motion Tasks. Third, the 

effect of lead vehicle type (car and truck) and the effect of the lead vehicle brake lights on 

the start time of driver reaction in car-following conditions were studied. 

For this purpose, a total of 50 drivers’ car-following behaviour was observed in 4 

different scenarios using a driving simulator – reaction to a decelerating lead vehicle, 

reaction to a stopped lead vehicle, perception of a lead vehicle’s speed change, and 

perception of a slow-moving lead vehicle. It was found that the drivers neither reacted after 

a specific reaction time from the start of perception nor reacted at a specific value of a 

perceptual variable. Rather, the drivers generally reacted when the accumulation of 

evidence (e.g., perceptual variable) over time reached a threshold. This demonstrates that 

the evidence accumulation framework was a promising method of predicting the start time 

of driver reaction in car-following conditions.  



 

vii 

Therefore, a new car-following model called “Intermittent Intelligent Driver Model 

(IIDM)” was developed based on evidence accumulation to start driver reaction unlike the 

existing car-following models that use a constant reaction time parameter. Moreover, the 

IIDM uses the shape and duration of acceleration adjustments that accurately represents 

the actual shape and duration of acceleration maneuvers in the data. The prediction of 

accuracy of the new car-following model was evaluated using both the driving simulator 

data and real-world trajectory data.  

Compared to the three existing car-following models – the Gipps’ Model, the 

Wiedemann Model and the Intelligent Driver Model (IDM), the IIDM realistically 

reproduced trajectories of speed, acceleration, jerk and spacing for both types of data. 

Moreover, the estimated surrogate measures of safety from trajectories predicted using the 

IIDM were similar to the surrogate measures of safety estimated from the observed data. 

Furthermore, the IIDM can incorporate the effects of lead vehicle brake lights and lead 

vehicle type (car and truck) for more accurate estimation of the driver reaction time. This 

demonstrates that the IIDM can generate more realistic vehicle trajectories (start time of 

reaction and magnitude of reaction) in various car-following conditions, which can be used 

to predict vehicle speeds and assess safety.  
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1 

Chapter 1:  Introduction 

1.1 Motivation 

Car-following behaviour refers to the evolution of position, speed, and acceleration of a 

subject vehicle over time as it follows a lead vehicle in the same lane (Treiber and Kesting, 

2013). In the context of car-following, a subject vehicle interacts with a lead vehicle in 

various conditions. These conditions include free-driving, approaching a slow moving or 

stopped lead vehicle, and accelerating behind a faster lead vehicle. Understanding and 

modeling car-following behaviour is essential for proposing solutions to many traffic 

engineering problems. These include developing effective forward collision warning 

systems, estimating rear-end collision risk and vehicle emissions, improving adaptive 

cruise control technology, motion planning for self-driving cars by predicting motion of 

human-driven vehicles, etc. Most importantly, car-following models serve as one of the 

core algorithms of microscopic traffic simulation models. The traffic simulation models 

can be used to test various traffic scenarios in a virtual road network before actual 

implementation of the proposed solutions. 

Although several car-following models have been proposed since early 1950s, they have 

been of limited use in many practical applications described above due to various reasons 

(Saifuzzaman and Zheng, 2014; Aghabayk et al., 2015). Most existing car-following 

models can reasonably predict the driver behaviour only in close-following conditions, i.e., 

when the subject and lead vehicles are moving at near-identical speeds and keep a safe 

following distance. Only a few existing car-following models are considered to be complete 

- i.e., they can predict the speed or acceleration of a subject vehicle in all car-following 
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conditions. The limited practical application of the existing car-following models is mainly 

due to the model parsimony and the use of assumptions that are often too simple to 

represent actual driver behaviour (Treiber and Kesting, 2013).  

There are three key challenges in developing a car-following model for an accurate 

representation of actual driver behaviour – 1) start time of driver reaction, 2) magnitude 

and duration of acceleration adjustments and 3) effects of lead vehicle type and brake 

lights. These challenges and the corresponding modeling efforts and the research gaps are 

discussed as follows.  

1.1.1 Start time of driver reaction 

In general, car-following behaviour changes as the driver starts reaction to the lead 

vehicle - i.e., an acceleration/deceleration adjustment. Most car-following models assume 

that the driver instantly starts reaction (i.e., zero reaction time) or the driver starts reaction 

only after constant reaction time. These models assume that drivers continuously apply 

acceleration (no reaction time) or apply acceleration after regular intervals (constant 

reaction time) based on the speed difference and distance to lead vehicle (Khodayari et al., 

2012). However, constant or no reaction time generally results in a smooth speed trajectory 

which is more similar to the adaptive cruise control rather than human driver behaviour 

(Treiber and Kesting, 2013). 

Since driver characteristics and vehicle and environmental conditions significantly 

influence the reaction time (Shinar, 2017), the reaction time is assumed to follow a pre-

specified distribution - e.g., log-normal distribution (Triggs and Harris, 1982). This 
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distribution of reaction time is generally assumed to be independent of urgency and 

expectancy in different car-following conditions (Green, 2000).  

However, several studies have demonstrated that the reaction time is strongly correlated 

with urgency which is determined based on spacing, time-to-collision (TTC), and lead 

vehicle deceleration in close-following conditions (Wang et al., 2016; Elhenawy, El-

Shawarby and Rakha, 2017; Wu and Lin, 2019). Yet, there is a lack of studies that 

investigated the reaction time in low urgency or rapid transition from low to high urgency 

(Green, 2017b). These conditions are typical in high-speed driving on freeways when 

drivers approach a slow-moving or an unexpectedly stopped lead vehicle from a large 

spacing.  In these conditions, it is hard to define the start time of driver reaction since the 

lead vehicle brake lights are not visible.  

Instead of using a constant reaction time or the distribution of reaction time without 

considering urgency of reaction, many past studies investigated the driver’s start of reaction 

based on perceptual variables (Green, 2017a, 2017b; Markkula et al., 2020, 2021). As 

Gibson (1986) suggested, human visual perception depends on gradients of variation in 

environments (e.g., position, size, headlights luminance and distance of oncoming vehicle). 

Since perceptual variables capture these gradients of variation instead of absolute values, 

they reflect the driver’s capability of detecting the lead vehicle motion. However, no study 

has extensively estimated the reaction time for various car-following conditions based on 

perceptual variables. Particularly, the condition of approaching a slow moving or stopped 

lead vehicle from a large spacing has not been investigated in the past studies. 

Furthermore, past studies reported that drivers adjust to the lead vehicle speed changes 

intermittently, not continuously (Wiedemann and Reiter, 1992; Markkula, 2014). For 
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instance, Markkula (2014) found from naturalistic driving data that the rates of change of 

accelerator and brake pedal mostly stayed at zero and driver’s reactions occurred 

irregularly. These intermittent start times of driver reaction are assumed to occur either 

when the instantaneous value or the accumulated value of a perceptual variable exceeds a 

fixed threshold (Wiedemann and Reiter, 1992; Markkula, 2014). 

However, there is a lack of studies that experimentally tested if drivers react after a 

constant reaction time or at intermittent times after the instantaneous value or the 

accumulated value of perceptual variable exceeds a threshold. Thus, there is a need to 

investigate how to predict the start time of driver reaction in all car-following conditions 

more realistically. 

1.1.2 Magnitude and duration of acceleration adjustments 

Accurate representation of the magnitude and duration of acceleration/deceleration 

adjustment is an important component of car-following models. However, most car-

following models ignored the perception limits of drivers and acceleration limits of 

vehicles (Treiber and Kesting, 2013). Thus, these models assume that in close-following 

conditions, the drivers’ goal is to keep a safe spacing to the lead vehicle and zero speed 

difference. These models also assume that drivers have the perfect information on speed 

difference and spacing, and always apply the acceleration/deceleration such that the 

spacing becomes equal to the safe spacing and speed difference becomes zero (Treiber and 

Kesting, 2013). As the models predict the driver reaction in this manner at regular intervals 

(constant reaction time), the magnitude of acceleration is either too small or too large 

compared to the actual magnitude of acceleration. 
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Other car-following models assume that drivers always decelerate to safely stop behind 

a lead vehicle (Lee, 1976; Wiedemann and Reiter, 1992; Treiber and Kesting, 2013). This 

assumption leads to a hard deceleration followed by a gradual decrease in deceleration in 

all cases. However, this assumption is not valid when a driver approaches a slow lead 

vehicle from a large spacing. Unlike the assumption of an initial hard deceleration, the 

magnitude of deceleration is initially small while approaching a slow lead vehicle from a 

large spacing. 

Recent literature suggests that the magnitude of deceleration is strongly correlated with 

a perceptual variable at the start of deceleration adjustment in urgent braking conditions 

(Markkula et al., 2016). However, no study has investigated the correlation between the 

magnitude of deceleration and a perceptual variable in other car-following conditions. 

1.1.3 Effects of lead vehicle type and brake lights 

Driver’s reaction time in car-following varies among different drivers. This heterogeneity 

is due to various perceptual and symbolic cues that are only used by a proportion of driver 

population. For instance, since perceptual variables are correlated with the width and height 

of the lead vehicle, drivers can detect a large truck more easily than a car at a large spacing. 

Consequently, the reaction time is also likely to vary with the size of the lead vehicle even 

if the speed difference and spacing are the same. However, no study has analyzed the effect 

of the lead vehicle size on the driver’s perception and reaction in a car-following context.  

Also, lead vehicle brake lights provide a symbolic cue to the subject vehicle’s driver 

about the need to start deceleration. Recent studies suggested that driver’s reaction depends 

on the lead vehicle brake lights and the perceptual cues (Xue et al., 2018). Therefore, it is 
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important to include the effect of lead vehicle brake lights in car-following models. 

However, the existing car-following models have not considered the effect of the lead 

vehicle brake lights. 

1.2 Research Objectives 

The objectives of this research are 1) to investigate the start time of driver reaction in 

various car-following conditions, 2) to develop a car-following model that reproduces the 

observed car-following behaviour – i.e., intermittent start time of acceleration/deceleration 

and realistic ranges of variables such as speed, spacing, acceleration and jerk, and 3) to 

investigate the effects of lead vehicle type (car and truck) and the lead vehicle brake lights 

on driver reaction.  

1.3 Contributions 

This thesis has the following contributions: 

• This study demonstrates that drivers accumulate the evidence for acceleration and 

deceleration over time in various car-following conditions and react when the 

accumulated evidence reaches a threshold. This new finding is in contrast with the 

assumptions of a fixed reaction time or threshold in the conventional car-following 

models.  

• This study also develops a new-car-following model that adapts intermittent nature of 

the driver’s reaction to accurately reproduce the start and the magnitude of the driver 

reaction in different car-following conditions.  
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• The new car-following model can generate more realistic vehicle trajectories of speed, 

acceleration, jerk, and spacing, which are fundamental input data for the estimation of 

traffic delay, crash risk, and vehicle fuel consumption and emission.  

• The new car-following model can include various pieces of evidence available to a 

driver from a road scene. That includes the type of lead vehicle, leakage of evidence due 

to driver distraction, the effect of lead vehicle brake lights, the effect of the presence of 

a connected and autonomous vehicle, etc. 

1.4 Outline of Thesis  

This thesis includes 7 chapters. This chapter (Chapter 1) introduced the background and 

the research objectives of this study.  

Chapter 2 reviews the previous research on the car-following behaviour and the 

assumptions and limitations of various existing car-following models. This chapter also 

discusses the key requirements for developing a model for predicting more realistic car-

following behaviour. 

Chapter 3 explains the existing theoretical frameworks of developing driver behaviour 

models including car-following models. This chapter also explains the concepts and 

variables used in the development of models based on the driver perception system. 

Chapter 4 presents hypotheses on the start time of driver reaction in car-following 

condition. Three hypotheses were tested based on the assumptions of the reaction time in 

the existing car-following models and the current literature on driver perception abilities. 

The chapter describes the method of data collection using a driving simulator for testing 
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the described hypotheses and modeling the car-following behaviour. The chapter also 

explains real-world vehicle trajectory data for validating a new car-following model 

developed in this thesis. 

Chapter 5 develops a new car-following model and describes the functional 

specification and the characteristics of the model. The chapter also discusses the measures 

used to compare the performance among the existing and new car-following models. The 

chapter explains the methods of calibrating and validating the car-following models. 

Chapter 6 presents the results of hypothesis testing and the evaluation of the new car-

following model developed in Chapter 5. The chapter also extensively discusses the 

features and the applications (such as safety evaluation) of the new car-following model. 

Lastly, Chapter 7 draws conclusions based on the findings. The chapter also 

recommends future studies. 
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Chapter 2:  Literature review 

The purpose of traffic flow theory is to present models that can reliably predict the state of 

road traffic in refined time scales. Knowing the future state of traffic helps engineers devise 

the traffic control strategies for optimal and safe traffic flow. Macroscopic traffic flow 

models describe the behaviour of a traffic stream as fluid flow where all particles (vehicles) 

are assumed to be identical. With an increase in number of vehicles with different types 

and variation in driving styles over the last 70 years, macroscopic models are inadequate 

to characterize and understand the patterns in traffic flow and road incidents.  

In this regard, microscopic traffic flow models describe the combined behaviour of a 

driver-vehicle unit during longitudinal movement in a lane and lateral movement while 

changing lanes. The former is termed as ‘Car-following behaviour’ that predicts the speed 

or acceleration of a subject vehicle in a lane in different conditions. These conditions are 

driving in free-flow (“Free-driving”), approaching a slow or stopped lead vehicle 

(“Approaching”), following a lead vehicle at small distance but similar speed 

(“Following”), braking in urgent/non-urgent conditions (“Braking”) and accelerating 

behind an accelerating lead vehicle (Treiber and Kesting, 2013). A car-following model is 

considered to be a complete model only when it can predict the speed or acceleration of a 

subject vehicle in all of the conditions described above (Treiber and Kesting, 2013). 

Car-following models are used in microscopic traffic simulation software to simulate 

vehicle trajectories. These vehicle trajectories can be used for various applications such as 

the estimation of vehicle emissions and surrogate measures of safety. Furthermore, car-

following models can be used to simulate mixed traffic flow of large trucks and cars, as 

well as the mixed traffic flow of human-driven vehicles and self-driving vehicles. 
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Therefore, it is essential for a car-following model to realistically predict speed, 

acceleration, and distance (spacing) to the lead vehicle. If the physical properties of the 

subject vehicle and its lead vehicle are known, a descriptive equation can capture the car-

following behaviour. However, this modeling process becomes non-trivial when the 

complex human decision making process of a driver is taken into account (Hancock, 1999). 

Therefore, understanding a normative driver behaviour is important for the development 

of vehicle control and safety systems (Kim and Lovell, 2005). Hence, since early 1950s, 

many studies on understanding and modeling of car-following behaviour have been 

performed. This chapter describes these studies, models, and their limitations. The purpose 

of this chapter is to ascertain the main requirements for a car-following model to 

realistically reproduce the actual car-following behaviour of drivers. 

This chapter is structured as follows. Section 2.1 describes the studies on observed car-

following behaviour. Section 2.2 describes the existing car-following models developed on 

the basis of equations of motion. Section 2.3 explains the perception abilities of human 

drivers and how some studies incorporated them in car-following models. Finally, Section 

2.4 describes the car-following models developed based on drivers’ cognitive abilities. 

Each section lists the assumptions and limitations of these existing car-following models. 

2.1 Observed Car-following Behaviour 

This section describes various past studies on the car-following behaviour observed in the 

field and the laboratory. Section 2.1.1 discusses the stimuli that drivers use to perceive car-

following conditions. Sections 2.1.2 and 2.1.3 review the studies on the start time of driver 
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reaction and its magnitude, respectively. Finally, Section 2.1.4 discusses the studies on the 

effects of the subject and lead vehicle type on car-following behaviour.  

2.1.1 Stimuli in Car-following 

There is an unsettled debate in human visual system literature about what exactly a driver 

sees in a road scene to make car-following decisions (Green, 2017a). A driver encounters 

various stimuli while following a vehicle. These stimuli are classified into physical and 

perceptual categories (Green, 2017a).  

The physical stimuli include speed difference between the lead and subject vehicles, i.e., 

‘relative speed’ (subject vehicle speed minus lead vehicle speed), spacing (bumper to 

bumper distance to the lead vehicle), and the size of the lead vehicle. However, the 

information in the physical stimuli is often unknown or partially known to the driver. For 

example, drivers do not know the speed of the lead vehicle, the speed difference with the 

lead vehicle, and the spacing. 

However, drivers can indirectly perceive relative motion using the angle subtended by 

the rear of the lead vehicle’s width or height on a driver’s eye which is a perceptual 

stimulus called visual angle. An increase in visual angle over time indicates a decrease in 

spacing (Green, 2017a). Moreover, the speed of increase in visual angle, called angular 

velocity, indicates how fast the image of the lead vehicle grows on the driver’s retina – i.e., 

how fast a driver is approaching a slower lead vehicle. Similarly, the time-to-collision to a 

slower lead vehicle is also measured by a perceptual stimulus called tau () (Lee, 1976). 

These perceptual stimuli are available subconsciously at a driver’s eye and serve as indirect 

sources of car-following information. Tau is coincidentally equivalent to the time-to-
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collision (TTC) which can also be calculated using physical stimuli (i.e., spacing and 

relative speed). Therefore, using the perceptual stimuli in car-following modeling process, 

instead of physical stimuli, seem to be a better approach. 

Perception threshold of a stimulus is defined as the minimum detectable value of that 

stimulus by a driver. Thus, it is assumed that the driver’s control of gas/brake pedal is 

intermittent, i.e., a driver starts a reaction (acceleration/deceleration) only after a stimulus 

(e.g., angular velocity) exceeds the driver’s perception threshold of the stimulus.  

2.1.2 Start time of Driver Reaction 

Markkula (2014) argued that a driver does not always start a reaction at a fixed perception 

threshold in all car-following conditions. For instance, it has been found that in urgent 

conditions, drivers start deceleration at empirically measured perception thresholds, but in 

routine following, drivers reacted at much larger values of stimuli than the perception 

thresholds. For instance, past studies have reported a wide range of angular velocity 

thresholds - 0.0001 to 0.04 radians/s at which the drivers started their reaction in the field 

or the laboratory (Michales, 1963; Todosiev, 1963; Hoffman, 1994; Hoffman and 

Mortimer, 1996; Summala et al., 1998; Lamble et al., 1999; Brown et al., 2002; Maddox 

and Kiefer, 2012; Markkula et al., 2016). 

This difference in start times of driver reaction implies that the driver’s decision-making 

processes are different between following and urgent braking conditions. However, near-

accident conditions that require urgent braking are generally rare. Therefore, Markkula 

(2014) raised the question “from where does the, albeit limited, near-accident ability of 

handling pedals and steering wheel come, if not from routine driving experience?” 
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Therefore, Markkula (2014) proposed the evidence (stimulus) accumulation framework 

which assumes that driver’s brake reaction starts only after the accumulated stimulus 

exceeds the threshold, instead of an instantaneous stimulus that exceeds a fixed perception 

threshold. Markkula et al. (2021) concluded that the evidence accumulation framework can 

explain the start time of driver’s reaction more realistically than a fixed perception 

threshold. However, the evidence accumulation framework has not been evaluated to 

predict the start time of reaction in other car-following conditions such as approaching a 

slow or stopped lead vehicle.  

2.1.3 Magnitude of Acceleration 

In addition to determining the start time of driver reaction, it is critical to accurately 

estimate the magnitude of acceleration (positive or negative) in different conditions for a 

realistic modeling of the car-following behaviour. Lee (1976) proposed that a driver 

modulates the deceleration rate using ‘tau-dot’ (𝜏̇), i.e., the rate of change of time-to-

collision (= spacing divided by speed difference between lead and following vehicles) 

called tau (𝜏). 

According to Lee (1976), a driver needs to maintain a constant tau-dot of -0.5 to stop 

just behind the lead vehicle or a constant tau-dot of greater than -0.5 to follow the lead 

vehicle at a safe spacing. Past studies validated the assumption of constant tau-dot (Yilmaz 

and Warren, 1995). If tau-dot is constant, the deceleration rate is not constant (i.e., the 

brake force continuously varies). In this regard, Green (2017b) suggested that the driver 

“would brake hardest at first and then gradually ease off as he slows and nears the lead 

vehicle”. However, some studies found that drivers did not apply harder brake followed by 
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gradual ease-off unlike the assumption of constant tau-dot. For instance, Wang et al. (2016) 

found that drivers initially applied the brake moderately and then held the brake pedal. If 

the drivers perceived that they would not be able to avoid the hazard by moderate braking, 

they changed to full brake application (Wang et al., 2016).  

Another recent naturalistic driving study showed that in urgent braking conditions, the 

jerk (i.e., the rate of change in deceleration) was directly proportional to the magnitude of 

perceptual stimuli, i.e., angular velocity or tau, at the start of braking (Markkula et al., 

2016). Thus, there is a need to investigate whether drivers modulate deceleration rate at a 

constant tau-dot or apply deceleration proportional to the magnitude of stimulus. 

2.1.4 Types of Subject and Lead Vehicles 

Ossen and Hoogendoorn (2011) found that the variation in speeds during car-following 

was smaller for trucks than cars. Truck drivers drove mostly at a constant speed and were 

less likely to restore their desired spacing. However, passenger car drivers were more likely 

to keep their desired spacing by adjusting their speeds frequently. Furthermore, Sarvi and 

Ejtemai (2011) observed that truck drivers kept longer time headway (bumper-to-bumper 

time difference) and spacing than passenger car drivers on freeways. 

Similarly, the type of lead vehicle also influences car-following behaviour. Aghabayk 

et al. (2012) observed that a heavy-vehicle following the lead heavy-vehicle (H-H) had 

longer spacing and time headway than a car following the lead car (C-C). They also 

observed that for speeds lower than 30 km/h, both headway and spacing were higher for 

the car following heavy-vehicle (C-H) than the heavy-vehicle following car (H-C). 

However, the opposite was observed for speeds greater than 30 km/h. They also found that 
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the driver’s reaction time (time taken by the subject vehicle’s driver to react to the lead 

vehicle’s acceleration or deceleration) was longer for the H-H case (2.0 s) than the C-C 

case (1.8 s). The reaction times were the same between the C-H and H-C cases (1.9 s). 

2.2 Modelling Car-following Behaviour 

A car-following model is a microscopic traffic flow model that describes the dynamics of 

traffic in a lane from the perspective of individual driver-vehicle units (Treiber and 

Kesting, 2013). The term “driver-vehicle” unit emphasizes that car-following behaviour 

depends on both driver characteristics (estimation abilities, perception-reaction time, etc.) 

and vehicle dynamics such as acceleration and braking capabilities. The goal of the car-

following model is to accurately compute the speed/acceleration of a vehicle in any car-

following condition at a given time instance. Therefore, a model is complete only if it can 

describe the behaviour in all car-following conditions. 

Car-following model assumes that the following vehicle (subject vehicle) only responds 

to the movement of the lead vehicle in the current lane. Fig. 2-1 illustrates a car-following 

scenario in a single lane where the subject vehicle i follows the lead vehicle i-1. 

 

Fig. 2-1. A car-following scenario (adapted from Ni (2015)) 
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The variables in the figure at time t are defined as follows: 

𝑥𝑖 = position (m) of subject vehicle i; 

𝑥𝑖−1 = position (m) of lead vehicle i-1; 

𝑣𝑖 , 𝑎𝑖 = speed (m/s) and acceleration (m/s2) of vehicle i, respectively; 

𝑣𝑖−1, 𝑎𝑖−1 = speed (m/s) and acceleration (m/s2) of vehicle i-1, respectively; 

𝑙𝑖, 𝑙𝑖−1 = lengths (m) of vehicle i and i-1, respectively; 

𝑔𝑖
𝑥 = spacing (m) between rear bumper of vehicle i-1 and front bumper of 

vehicle i (front-to-rear spacing); 

𝑔𝑖
𝑡 = time headway (s) between rear bumper of vehicle i-1 and front bumper of 

vehicle i; 

𝑠𝑖 = spacing (m) between front bumper of vehicle i -1 and front bumper of 

vehicle i; 

ℎ𝑖 = time headway (s) between front bumper of vehicle i -1 and front bumper 

of vehicle i. 

 

There are several types of car-following models such as engineering models, 

psychophysical models, driver behaviour model in cognitive architecture, and artificial 

intelligence (AI) models. Some artificial intelligence models, based on fuzzy-logic and/or 

neural-nets, can mimic drivers’ perception abilities along with traffic dynamics. Although 

the AI models can predict driver behaviour well, they cannot identify the effects of driver 

characteristics or vehicle types on car-following behaviour because they are predictive 

rather than explanatory in nature (Aghabayk et al., 2015). Additionally, the models have a 

tendency to overfit the observed data and they are unable to predict car-following 
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behaviour for previously unobserved traffic conditions. Furthermore, they require a huge 

amount of data for training and prediction. Moreover, defining fuzzy sets is not a trivial 

task in context of car-following behaviour due to variance in human behaviour. Therefore, 

only first three types of car-following models will be discussed in this chapter.  

2.2.1 Engineering car-following models 

The engineering car-following models include stimulus-reaction, optimal velocity, 

collision-avoidance and desired-headway models (Saifuzzaman and Zheng, 2014). These 

models do not account for drivers’ perception abilities. However, these models are 

fundamental to understand the critical factors in car-following behaviour and provide basis 

for more advanced models. In general, these models use the equations of motion with 

suitable assumptions in car-following context. Different engineering car-following models 

are summarized in Table 2-1. The assumptions and limitations of these models are 

discussed as follows. 

Stimulus-reaction Models 

The stimulus-reaction models assume that the reaction (positive, negative or no 

acceleration) of a subject vehicle’s driver depends on input signals called “stimuli” – e.g., 

relative speed and spacing - and driver’s sensitivity to the stimuli. The model also assumes 

that driver’s reaction occurs after a perception-reaction time.  

For instance, the General Motors (GM) models (Chandler et al., 1958; Gazis et al., 1961) 

are the most commonly used stimulus-reaction models. The models have been developed 

after extensive field experiments and improvements. The non-linear GM model (Gazis et 

al. 1961) considered both relative speed and spacing as stimuli, and the driver’s response 
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to the stimuli depends on current speed of subject vehicle. The mathematical expression of 

GM model is shown in Table 2-1.  

Table 2-1. Engineering Car-following Models 

Model Equations 

General Motors 

Model (Gazis et 

al., 1961) 

𝑎𝑖(𝑡 + 𝜏𝑖) = 𝛼
𝑣𝑖(𝑡 + 𝜏𝑖)

𝑚. [𝑣𝑖−1(𝑡) − 𝑣𝑖(𝑡)]

[𝑥𝑖−1(𝑡) − 𝑥𝑖(𝑡)]𝑙
 

𝜏𝑖 = reaction time, 𝛼, m and l = the calibration parameters 

Optimal Velocity 

Model 

(Bando et al., 

1998) 

𝑎𝑖(𝑡 + 𝜏𝑖) =
𝑣𝑜𝑝𝑡(𝑡) − 𝑣𝑖(𝑡)

𝜏𝑎𝑑𝑎𝑝𝑡
 

𝑣𝑜𝑝𝑡(𝑡) = optimal velocity, 𝜏𝑎𝑑𝑎𝑝𝑡 = the time to adapt the current 

speed to optimal speed 

Full Velocity 

Difference Model 

(Jiang et. al., 

2001) 

𝑎𝑖(𝑡 + 𝜏𝑖) =
𝑣𝑜𝑝𝑡(𝑡) − 𝑣𝑖(𝑡)

𝜏𝑎𝑑𝑎𝑝𝑡
− 𝛾∆𝑣 

𝑣𝑜𝑝𝑡(𝑡) = max [0,min (𝑣0,
𝑔𝑥(𝑡) − 𝑔0

𝑥

𝜏𝑖
)] 

∆𝑣 = relative velocity, 𝛾 = a calibration parameter, 𝑣0 = the free-

flow speed, 𝑔𝑥 = the current front-to-rear spacing, and 𝑔0
𝑥 = the 

minimum standstill spacing 

Gipps Model 

(Gipps, 1981) 

𝑣𝑖(𝑡 + 𝜏𝑖) = 𝑚𝑖𝑛

{
  
 

  
 𝑣𝑖(𝑡) + 2.5𝐴𝑖𝜏𝑖 (1 −

𝑣𝑖(𝑡)

𝑣0
)√0.025 +

𝑣𝑖(𝑡)

𝑣0
    

if free driving

−𝑏𝑖𝜏𝑖 + √𝑏𝑖
2𝜏𝑖

2 − 𝑏𝑖 [−𝑣𝑖(𝑡)𝜏𝑖 −
𝑣𝑖−1
2 (𝑡)

𝐵𝑖−1
− 2𝑙𝑖−1 + 2𝑠𝑖(𝑡)] 

if following  

  

𝜏𝑖 = reaction time including safe buffer time 

𝐴𝑖 = the maximum desired acceleration starting from standstill 

𝑏𝑖 = the comfortable maximum deceleration of subject vehicle 

𝐵𝑖−1 = most severe lead vehicle deceleration that the following 

vehicle estimates, 𝑙𝑖−1 = the length of lead vehicle, 𝑠𝑖(𝑡) = the 

current front-to-front spacing 

Intelligent Driver 

Model (IDM) 

(Treiber and 

Kesting, 2013) 

𝑎𝑖(𝑡) = 𝐴𝑖 [1 − (
𝑣𝑖(𝑡)

𝑣0
)
𝛿

− (
𝑔𝑖
∗(𝑡)

𝑔𝑖
𝑥(𝑡)

)

2

 ] 

 

𝑔𝑖
∗(𝑡) = 𝑔0

𝑥 +max(0, 𝑣𝑖(𝑡)𝑔𝑖
𝑡(𝑡) +

𝑣𝑖(𝑡)𝛥𝑣(𝑡)

2√𝐴𝑖𝑏𝑖
) 

𝛿 = a calibration parameter, 𝑔𝑖
∗(𝑡) = the current desired front-to-

rear spacing, 𝑔𝑖
𝑡(𝑡) = the current front-to-rear time headway 
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However, the GM models have several limitations as follows. First, the values of the 

calibration parameters (m, l and 𝛼) which produce the best model performance are different 

in different conditions. For example, 𝑚 = 0 and 𝑙  = 1 performed well when the traffic flow 

was uncongested, but they did not perform well in congested conditions (Brackstone and 

McDonald, 1999). These results indicate that separate car-following models can be 

developed for congested and uncongested conditions.  

Second, the GM model does not consider driver’s desired spacing during the following 

condition (Aghabayk et al., 2015). This means that driver will not respond if the relative 

speed is zero regardless of the current spacing. However, this assumption is not realistic. 

Third, the GM model does not consider vehicle capabilities, i.e., maximum acceleration or 

deceleration. Therefore, the model cannot accurately predict the car-following behaviour 

of larger vehicles, particularly trucks. Fourth, the GM model assumes that the reaction time 

is the same for all drivers and drivers will respond to a small change in relative speed even 

at a very large spacing (Saifuzzaman and Zheng, 2014). These assumptions are also 

unrealistic because drivers have a limited capability of perceiving relative speed and 

spacing (Michaels, 1963). Finally, the GM model can only predict acceleration in the 

Following condition, but not in the other car-following conditions. 

Optimal Behaviour Models 

The optimal behaviour models assume that a subject vehicle’s driver always tries to adapt 

its current speed to an optimal velocity in a given traffic situation during some adaptation 

time. For instance, the Optimal Velocity Model (OVM) (Bando et al., 1998) assumes that 

drivers choose the optimal velocity based on their desired speed in free flow and minimum 
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front-to-rear spacing when the lead and following vehicles stop. The equation of the OVM 

is shown in Table 2-1. 

Treiber and Kesting (2013) tested the OVM for the traffic on highway and city streets, 

and concluded that predicted accelerations were unrealistic because the model does not 

consider relative speed. However, the model is unrealistically sensitive to driver’s reaction 

time (Saifuzzaman and Zheng, 2014). Moreover, the assumption of an ‘optimal velocity’ 

that a driver strives to achieve is questionable as driving is a satisficing task rather than an 

optimizing task.  

Jiang et al. (2001) extended the OVM to develop the Full Velocity Difference Model 

(FVDM) which considers both negative and positive relative speeds as shown in Table 2-

1. They found that the FVDM realistically predicted the subject vehicle’s accelerations 

based on relative speed. However, the model ignores the association of relative speed with 

spacing. For instance, the model assumes that a subject vehicle will decelerate even if a 

slow lead vehicle is very far ahead. So, even on a long road with no other vehicles, the 

subject vehicle does not reach free-flow speed. Moreover, the FVDM uses the same 

function for both acceleration and deceleration although driver behaviour is different in 

these circumstances (Saifuzzaman and Zheng, 2014). Moreover, similar to the stimulus-

reaction models, the OVM and FVDM do not incorporate the driver’s perception abilities 

and vehicle capabilities (e.g., maximum deceleration). 

Car-following Models based on Driving Strategies 

Some car-following models account for vehicle capabilities and drivers’ control strategies 

to overcome the limitations of the stimulus-reaction models and the optimal behaviour 

models. Gipps (1981) proposed two separate car-following models, one for free-driving 
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and other for the following condition as shown in Table 2-1. The Gipps’ model for the free-

driving condition assumes that the driver applies maximum acceleration to reach the 

desired free-flow speed. The Gipps’ model for the following condition assumes a safety 

rule - “The subject vehicle’s driver selects the speed to bring the vehicle to a safe stop when 

the lead vehicle comes to a sudden stop” (Gipps, 1981). For safe stopping, the Gipps’ model 

incorporates a safe buffer time equal to half of reaction time in addition to the braking time 

and perception-reaction time. For each time step, the minimum of the two speeds is selected 

as the subject vehicle’s speed. 

The Gipps’ model is the simplest car-following model that realistically predicts 

accelerations and assumes that vehicle collisions do not occur (Treiber and Kesting, 2013). 

However, the Gipps’ model underestimates the observed capacity and traffic volumes 

(Treiber and Kesting, 2013) because drivers do not always keep the safe distance (= current 

speed  a half of reaction time) as calculated in the model (Brackstone and McDonald, 

1999; Aghabayk et al., 2015). Moreover, the Gipps’ model does not consider the driver’s 

perception abilities similar to the other engineering car-following models discussed above. 

Therefore, the model assumes that the driver reacts to even very small changes in speed 

and spacing (Aghabayk et al., 2015).  

Similar to the Gipps’ model, the Intelligent Driver Model (IDM) also considers driving 

strategies (Treiber and Kesting, 2013). The IDM predicts the subject vehicle’s acceleration 

based on the desired front-to-rear spacing as shown in Table 2-1. The IDM compares the 

current speed to the desired speed and current spacing to the desired spacing to determine 

the acceleration. Similar to the Gipps’ model, the IDM produces realistic 

acceleration/deceleration rates based on maximum acceleration and comfortable 
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deceleration (Saifuzzaman and Zheng, 2014). However, unlike the Gipp’s model, the safe 

distance varies with not only current speed, but also the driver’s desired speed in the IDM. 

This assumption of the IDM is more realistic because the safe distance cannot be the same 

for all drivers. 

The term ‘intelligent’ in the IDM refers to the intelligent acceleration and braking 

strategy as expected by human drivers. The maximum acceleration that can be applied in 

free-flow is the term, 𝐴𝑖 [1 − (
𝑣𝑖

𝑣0
)
𝛿

], where the current speed is compared with the free-

flow speed and the acceleration decreases as the current speed increases. Higher value of 

the parameter 𝛿 implies higher maximum acceleration for the current speed. When the 

subject vehicle approaches a slow lead vehicle, the term, 
𝑣𝑖𝛥𝑣

2√𝐴𝑖𝑏𝑖
, is the deceleration required 

to reach the desired spacing (𝑔0
𝑥 + 𝑣𝑖𝑔𝑖

𝑡) in the following condition. 

The IDM has been modified several times to reflect the real-world traffic conditions and 

driver behaviour (Treiber and Kesting, 2013). An example of a modified IDM is the 2D-

IDM that considers the difference between the driving behaviors at high speeds and low 

speeds in the framework of three-phase traffic theory (Tian et al., 2016). The time headway 

parameter 𝑔𝑖
𝑡  in 2D-IDM is not a constant but a variable based on the range of time 

headway variation in the congested steady-state traffic. However, similar to the IDM, 2D-

IDM does not consider the driver reaction time. 

Although the IDM considers drivers’ control strategies, it does not incorporate their 

perception abilities. This results in smooth transition from one car-following state to 

another (e.g. free flow to approaching). However, this behaviour is not realistic since the 

driver’s acceleration behaviour drastically changes from one car-following state to another 
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(Treiber and Kesting, 2013). In fact, both IDM and Gipps’ model better represent the semi-

automated driving by Adaptive Cruise Control than human driving (Treiber and Kesting, 

2013) . 

In summary, the main limitation of the engineering car-following models is that the 

models do not consider the driver’s perception abilities. Moreover, the use of a fixed or no 

reaction time in these car-following models does not reproduce the intermittent start time 

of reaction as discussed in section 2.1.2. As a result, even when the predicted magnitudes 

of acceleration and jerk are within the range of actual magnitudes, the predicted trajectories 

of acceleration and jerk are drastically different from the actual trajectories. Specifically, 

the start time and duration of speed adjustments predicted by these models are significantly 

different from the observed start time and duration. Furthermore, the current model 

framework cannot explicitly consider the influence of type of lead vehicle (car/truck) on 

the subject vehicle.  

2.2.2 Psychophysical Car-following Models 

A common limitation of the engineering car-following models is that they assume drivers 

adjust their speed only based on physical stimuli such as relative speed and spacing. 

However, according to Boer (1999), this assumption is unrealistic as drivers cannot 

accurately perceive relative speed and spacing. Instead, drivers adjust their speed based on 

perceptual stimuli. These perceptual stimuli include visual angles subtended by objects 

(e.g., lead vehicle), tau (visual angle divided by rate of change in visual angle), etc. Fig. 

2-2 illustrates the horizontal visual angle subtended by the lead vehicle on the subject 

driver’s eyes during a car-following condition. This angle changes as both lead and 
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following vehicles move in the same lane. The perceptual stimuli are described in detail in 

Chapter 3. 

 

Fig. 2-2. Horizontal visual angle subtended by the lead vehicle 

 

 

Unlike the engineering car-following models, the psychophysical car-following models 

consider drivers’ perception abilities. Two different psychophysical car-following models, 

the Wiedemann model (Wiedemann and Reiter, 1992) and the Fritzche model (Fritzsche 

and Ag, 1994) have been used. These two models are different in terms of perception 

thresholds – the Wiedemann model uses the thresholds of relative speed and spacing 

whereas the Fritzsche model uses the thresholds of relative speed and time headway 

(instead of spacing). However, the acceleration equations of the Fritzsche model are not 

publicly available. 

Few past studies investigated the speed and acceleration patterns in multiple car-

following conditions such as free-driving, approaching a slow vehicle and following at the 

speed similar to the lead vehicle’s speed (Todosiev, 1963; Michaels, 1963; Hoefs, 1972). 

Wiedemann (1974) combined the observations in these studies to propose a theoretical 

framework for a psychophysical car-following model that captured driver’s perception 

limits and explained the corresponding reactions (accelerations) in a given car-following 

condition. The Wiedemann model incorporates the heterogeneity in driver estimation 
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abilities, safety needs and vehicle control using normally distributed random parameters. 

All random parameters range from 0 to 1 with a mean value of 0.5 and standard deviation 

of 0.1. Furthermore, the model assumes that drivers will always accelerate or decelerate 

whenever relative speed or spacing exceeds a threshold of relative speed or spacing 

(perception threshold). The thresholds and car-following states as defined in the 

Wiedemann model are described in detail in Chapter 3.  

Limitations in psychophysical car-following models  

Psychophysical car-following models account for driver’s perception, skills and needs 

using normally distributed random parameters in functions of perception thresholds and 

accelerations in different car-following conditions. However, these random parameters do 

not explicitly describe why the perception thresholds vary between drivers in the same 

conditions. There is a need for studies that test the hypothesis of a fixed perception 

threshold of a stimulus (e.g., angular velocity) and the hypothesis of the accumulation of a 

stimulus to a threshold based on the evidence accumulation framework proposed by 

Markkula (2014) (refer to section 2.1.2)). 

Similar to engineering car-following models, psychophysical car-following models do 

not distinguish the driver behaviour behind different types of lead vehicles. Peeta et al. 

(2005) found that passenger car drivers feel discomfort around a truck and they want to 

keep longer spacing behind the lead trucks. Moreover, a lead truck’s height is significantly 

larger than a lead car. However, there is a lack of research on how different stimuli could 

affect driver behaviour between a car driver following a lead car and a car driver following 

a lead truck. 
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2.2.3 Driver behaviour models in a cognitive architecture 

A few studies have modeled the actions (steering, accelerate, decelerate, etc.), rather 

than predicting the speed or acceleration, in a framework of a cognitive architecture 

(Salvucci, Boer and Liu, 2001; Salvucci, 2006). According to Salvucci et al. (2001), a 

“cognitive architecture is a theory of human cognition and perceptual-motor actions that 

provides a rigorous framework for building, running, and testing computational models of 

human behaviour”. The model is called the “driver behaviour model” because it mimics 

driver’s decision-making process and control actions. For instance, Salvucci et al. (2001) 

developed the models for steering and acceleration based on visual angle and headway in 

a cognitive architecture.  

The cognitive architecture can realistically capture driver behaviour - e.g., forgetfulness, 

error, attention-allocation, and eye and foot movements. A cognitive architecture, such as 

Adaptive Control of Thought-Rational (ACT-R), contains three main components: 1) 

knowledge representation, 2) performance and 3) learning (Salvucci, Boer and Liu, 2001; 

Carnegie Mellon University, 2002). These components are modelled as several 

independent modules that work together to perceive, decide and act to achieve a certain 

task (e.g., steer right, push accelerator pedal, etc.). 

Knowledge is represented in two aspects: factual knowledge and skill knowledge. 

Factual knowledge contains information about perception (e.g., location of lane markings), 

situation (e.g., a vehicle in blind spot), and navigation (e.g., destination is at exit 5). The 

perceptual module updates this knowledge for the current situation. Skill knowledge is 

specified by the analyst as condition-action rules (i.e., an action is taken when a condition 

is satisfied). For instance, “IF the current goal is to steer and all perceptual variables for 
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steering have been noted, THEN control steering according to these variables” (Salvucci 

et al. 2001). 

There are several advantages of the driver behaviour model in ACT-R. First, the 

perception limits and memory aspects of drivers are directly incorporated in the modules 

which are regularly updated in accordance with the latest research (Carnegie Mellon 

University 2002). Second, as the model is estimated for each driver separately, the model 

can be used to study heterogenity in driving control strategies due to drivers’ different 

driving needs.  

In the model, a condition-action rule is specified for all drivers and the coefficients  of 

independent parameters are estimated.  The driver behaviour model helps comprehensively 

understand the driver’s needs, strategies and behaviour. However, due to complexity of the 

model, it is computationally expensive to calibrate a number of condition-action rules for 

many individual drivers. Also, the calibration method is not currently available. Thus, 

researchers have assigned the values of parameters using their subjective judgments 

(Salvucci et al., 2001; Salvucci, 2006). Moreover, this driver behaviour model has not been 

applied to the prediction of car-following behaviour.  

2.2.4 Markkula framework of sensorimotor control in sustained motion tasks 

Markkula et al. (2018) proposed a general framework for sustained motion tasks that 

uses the human perception (“sensori-”) and movement (“motor”). Examples of sustained 

motion include using a mouse to track an object on a screen, steering, urgent braking, etc.  

The outputs of this framework are the prediction of the start time of reaction and the 

magnitude of the reaction. The required inputs are the evidence for the need of control. For 
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example, the evidence for the emergency braking condition is the perceptual stimulus in 

the form of angular velocity or tau-inverse (discussed in Chapter 3). However, unlike the 

psychophysical car-following models, Markkula framework does not compare only a 

single value of the evidence (angular velocity) with a threshold. Instead, Markkula 

framework assumes that driver accumulates the evidence over time and reacts only when 

that accumulated evidence reaches a pre-defined threshold (Markkula et al., 2018). 

Moreover, the magnitude of reaction - e.g., the brake pedal force - is assumed to be 

correlated with the evidence at the start of the reaction.  

Markkula framework has been successful in modeling of driver steering as well as 

urgent braking conditions (Markkula, 2014; Markkula et al., 2018). However, Markkula 

framework is not a complete car-following model as it does not currently predict the 

acceleration in all car-following conditions. The details of this framework are discussed in 

Chapter 3. 

 

2.3 Chapter Summary 

This chapter reviewed the empirically observed car-following behaviour and the existing 

car-following models which predict the subject vehicle behaviour based on the lead vehicle 

motion. The main findings from the literature review are summarized as follows: 

• Conventional car-following models use physical stimuli such as speed difference 

and distance to lead vehicle (spacing) to predict speed and acceleration of the 

subject vehicle. These models predict driver reaction even when the stimulus is 



 

29 

negligible. Thus, these models do not account for the limits in human perception 

abilities. 

• Some car-following models use perceptual stimuli to predict the subject vehicle 

behaviour. These models assume that drivers instantaneously react whenever the 

stimuli exceed a threshold. However, recent studies suggested that drivers react 

only when the accumulated perceptual stimuli over time reach a threshold. 

• In the existing car-following models, driver reaction in terms of acceleration and 

deceleration is assumed to be a function of physical stimuli or a heuristic such that 

a fixed value of rate of change in tau (perceptual stimulus which is mathematically 

equivalent to time-to-collision) is maintained while decelerating. However, recent 

studies suggests that deceleration rate in urgent braking condition is described as a 

function of perceptual stimuli at the start of braking. 

• Most car-following models are incomplete as they only predict speed and 

acceleration in the close following condition with a short spacing but not in the 

conditions when a driver approaches a slow or stopped vehicle with a large spacing. 

Moreover, car-following models do not differentiate the type of lead vehicle. 

• There is a lack of studies that predicted car-following behaviour based on the start 

time of reaction, the magnitude of reaction, and the effect of lead vehicle type in 

various car-following states. 
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Chapter 3:  Theoretical Frameworks 

This chapter comprehensively explains the theoretical frameworks used in this study to 

analyze and model the observed car-following behaviour. Specifically, the following 

discussion describes the sensory evidence that a driver is assumed to use to perceive and 

respond to a slow or decelerating lead vehicle. Subsequently, the theory behind the drivers’ 

use of the sensory evidence in the Wiedemann car-following model is described. 

Furthermore, the derivation of the acceleration equations in the Wiedemann model, that 

explain the driver response, is also presented. Lastly, an alternative theory of the use of 

sensory evidence that affects both start time and magnitude of the driver response is 

discussed. The next two chapters build on the theories presented in this chapter to explain 

the data collection procedures and the methods of analyses used in this study. 

3.1 Sensory Evidence in Car-following  

Chapter 2 provided a review of the engineering car-following models. These models 

assume that drivers use physical stimuli such as speed difference and spacing to 

continuously respond to a lead vehicle. However, in order to determine the speed difference 

and spacing, drivers need access to other physical stimuli such as the size and speed of the 

lead vehicle. Furthermore, drivers are unable to perceive the depth-in-motion (i.e., the 

spacing) because the design of the human eye could only form a two-dimensional image 

of a three-dimensional road scene. Thus, drivers must rely on their visual system for the 

perception of motion relative to a lead vehicle. Green (2017d) explained that this 

perception happens using the “sensory evidence” available at the eye of the driver, without 

any cognitive effort to mentally reconstruct the three-dimensional road scene and infer the 
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spacing and speed difference. The various available pieces of sensory evidence are 

explained below. 

3.1.1 Sensory evidence for the direction of motion 

When a driver in the subject vehicle looks at the rear of a lead vehicle, the image is 

projected on his/her eye. This is illustrated in Fig. 3-1. Visual angle subtended by a lead 

truck on a driver’s eye  (a). In this example, the subject vehicle (car) is moving faster than 

a lead truck which is moving at a uniform speed. Therefore, the front-to-rear spacing (𝑆) 

between them is decreasing with time. Note that there are three measurements of spacing 

in the car-following literature. The spacing between the front bumper of the subject vehicle 

and the rear bumper of the lead vehicle (𝑆), the front bumper-to-front bumper spacing 

(DX), and the spacing between the eye of the driver and the rear of the lead vehicle. 

Throughout this thesis, the term ‘spacing’ means the front-to-rear spacing (𝑆 ) unless 

otherwise noted. 

The rear of a lead truck with width 𝑊 and height 𝐻 subtends two visual angles, 𝜃𝑊 and 

𝜃𝐻, respectively. These visual angles are mathematically expressed as: 

 
𝜃𝑊 =

𝑊

𝑆
 

(3-1) 

   

 
𝜃𝐻 =

𝐻

𝑆
 

 

(3-2) 

Fig. 3-1. Visual angle subtended by a lead truck on a driver’s eye  (a) shows that these 

subtended visual angles make a two-dimensional image on the driver’s retina, with 𝜃𝑊 and 

𝜃𝐻 dimensions. As Eqs. (3-1) and (3-2) show, at any given time, a visual angle is computed 
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based on width (or height) of a lead vehicle and spacing with a lead vehicle. For instance, 

the same 𝜃𝑊 of 0.04 radians is subtended when a lead car with a width of 2.3 m is at a 

spacing of 57.5 m or a lead truck with a width of 2.6 m is at a spacing of 65.0 m from the 

subject vehicle. 

 

(a) Increase in the visual angles on retina during approaching a slow lead truck (not to scale) 

(Sources: Eye - https://youtu.be/Sqr6LKIR2b8,                                                                                           

Car- https://openclipart.org/image/2400px/svg_to_png/190175/SimpleOrangeCarTopView.png,            

Truck - https://www.remix3d.com/details/G009SXJ54BV3?section=other-models) 

 

(b) The increase in visual angle with time 

Fig. 3-1. Visual angle subtended by a lead truck on a driver’s eye 

https://youtu.be/Sqr6LKIR2b8
https://openclipart.org/image/2400px/svg_to_png/190175/SimpleOrangeCarTopView.png
https://www.remix3d.com/details/G009SXJ54BV3?section=other-models


 

33 

 

(c) Relationship between looming (angular velocity and inverse tau) and spacing 

 

Fig. 3-1. Visual angle subtended by a lead truck on a driver’s eye (Continued) 

 

Eqs. (3-1) and (3-2) further show that these visual angles increase as the spacing 

decreases with time. As illustrated in Fig. 3-1. Visual angle subtended by a lead truck on a 

driver’s eye  (a), at time instant T1, the spacing is 𝑆1and the subtended visual angles are 

𝜃𝑊1 and 𝜃𝐻1. At the next time instant T2, the spacing decreases to 𝑆2 and the visual angles 

increase to 𝜃𝑊2 and 𝜃𝐻2 (larger projected image). Fig. 3-1. Visual angle subtended by a 

lead truck on a driver’s eye  (b) shows the increase in the visual angle as the subject vehicle 

approaches the slow lead vehicle as the time progresses. The equation for spacing in Fig. 

3-1. Visual angle subtended by a lead truck on a driver’s eye  (b) is one of the equations of 

motion in Newtonian Physics. 

Psychology literature suggests that there is some minimum change in the visual angle 

(∆θ) that can be perceived by drivers which is called as Just Noticeable Difference (JND) 
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(Green, 2017d). According to the Weber’s Law, the ratio of JND to the original visual 

angle is a constant (Weber, 1905). This can be expressed as follows: 

 𝛥𝜃

𝜃
= 𝐾 

(3-3) 

where ∆θ is the JND in the visual angle, θ is the visual angle before the change, and 𝐾 is a 

constant. An increase in the visual angle indicates that the subject vehicle is moving 

towards the lead vehicle whereas a decrease in the visual angle indicates that the subject 

vehicle is moving away from the lead vehicle. However, the visual angle does not contain 

the information about the rate of motion. Furthermore, the JND in visual angle is correlated 

to the JND in spacing. For example, the change in visual angle due to the lead truck width 

is calculated as follows: 

           
∆𝜃𝑊
𝜃𝑊1

=
𝜃𝑊2 − 𝜃𝑊1

𝜃𝑊1
 

                   

                  =
[𝑊 𝑆2
⁄ ] − [ 𝑊 𝑆1

⁄ ]

[ 𝑊 𝑆1
⁄ ]

=
[𝑊 × (𝑆1 − 𝑆2)]

[ 𝑊 𝑆1
⁄ ] × 𝑆2 × 𝑆1

 

 

                  =
(𝑆1 − 𝑆2)

𝑆2
= −

∆𝑆

𝑆2
 

         (3-4) 

Eq. (3-4) suggests that a driver notices a decrease in spacing because of the increase in 

the visual angle on his/her eye. 

3.1.2 Sensory evidence for the rate of motion 

Besides the absolute changes in visual angle (or spacing), there is also the rate of change 

in visual angle over time. This rate of change is illustrated as the slope of the line tangent 
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to a visual angle curve at a given time as shown in Fig. 3-1. Visual angle subtended by a 

lead truck on a driver’s eye  (b). This indicates that the rate of increase in visual angle (also 

the rate of increase in the projected image size) is smaller at a larger spacing (time = 1 s in 

Fig. 3-1. Visual angle subtended by a lead truck on a driver’s eye  (b)) and larger at a 

smaller spacing (time = 2.5 s). The rate of motion or angular velocity is calculated as 

follows: 

𝑑

𝑑𝑡
(𝜃𝑊) =

𝑑

𝑑𝑡
(
𝑊

𝑆
) 

Using the quotient rule of differentiation, the angular velocity for the lead vehicle’s 

width (𝜃̇𝑊) is derived as follows: 

𝜃̇𝑊          =
𝑆 ×

𝑑
𝑑𝑡
(𝑊) −𝑊 ×

𝑑
𝑑𝑡
(𝑆)

𝑆2
 

𝜃̇𝑊         =
𝑆 × 0 −𝑊 ×

𝑑
𝑑𝑡
(𝑆)

𝑆2
 

𝜃̇𝑊         =
−𝑊

𝑆2
.
𝑑

𝑑𝑡
(𝑆) 

During approaching, the rate of change in spacing is negative as the spacing decreases. 

Also, the rate of change in spacing is the speed difference: ∆𝑉 = −
𝑑𝑆

𝑑𝑡
. It is negative 

because the spacing is decreasing. Therefore, the angular velocity for the lead vehicle’s 

width is expressed as follows: 
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𝜃̇𝑊=

𝑊∆𝑉

𝑆2
 

(3-5) 

Similarly, the angular velocity for the lead vehicle’s height (𝜃̇𝐻) is expressed as follows: 

 
𝜃̇𝐻=

𝐻∆𝑉

𝑆2
 

(3-6) 

where ∆𝑉 is the speed difference between the two vehicles (= the subject vehicle speed 

minus the lead vehicle speed). Fig. 3-1. Visual angle subtended by a lead truck on a driver’s 

eye  (c) and Eqs. (3-5) and (3-6) suggest that a driver is less likely to respond to a slow lead 

vehicle at a large spacing (say > 200 m) because the size of the lead vehicle’s image (visual 

angle) is small and grows very slowly (angular velocity). As the driver gets closer to the 

lead vehicle (say 40 m), the visual angle is large and it also grows rapidly, which prompts 

the driver to apply brake. Thus, when the spacing is very short (or the speed difference is 

very high due to the lead vehicle deceleration), the projected image of the lead vehicle’s 

rear looms over (fills) the retina, which indicates the urgency of the situation. For this 

reason, the angular velocity is also called as looming.  

On the other hand, when the angular velocity is very small (e.g., at a spacing > 200 m 

and speed difference < 1 m/s), the size of the projected image of the lead vehicle’s rear 

increases very slowly. Thus, the driver cannot perceive this change in the image. According 

to several past studies, the smallest angular velocity which the driver can perceive is called 

the perception limit or the threshold of angular velocity (Michaels, 1963; Wiedemann and 

Reiter, 1992). Thus, the driver can perceive the angular velocity only if the angular velocity 

exceeds the threshold of angular velocity. However, the threshold of angular velocity varies 
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among the drivers. Therefore, the threshold is described as a distribution rather than a 

constant value. 

Similar to visual angle and angular velocity, the inverse of Time-To-Collision (TTC) is 

a sensory evidence, which is also called as looming in the literature (Markkula, 2014). TTC 

is defined as the time remaining until a collision between two vehicles occurs, given that 

both vehicles maintain their current speeds. In engineering studies, TTC is expressed as 

follows: 

 
𝑇𝑇𝐶 =

𝑆

∆𝑉
 

(3-7) 

where 𝑆 is the front-to-rear spacing and ∆𝑉 is the speed difference. As the visual angle is 

the visual correlate of spacing and the angular velocity is the visual correlate of speed 

difference, TTC can also be expressed as the ratio of visual angle to angular velocity as 

follows: 

 
𝑇𝑇𝐶 = 𝜏 =  

𝜃

𝜃̇
 

(3-8) 

where 𝜏 (tau) is the visual correlate of TTC. The inverse of 𝜏 (𝜏−1) is expressed as follows: 

 

𝜏−1 = 
𝜃̇

𝜃
  

(3-9) 

As the subject vehicle gets closer to the lead vehicle, 𝜏 decreases and 𝜏−1 increases. Fig. 

3-1. Visual angle subtended by a lead truck on a driver’s eye  (c) shows that 𝜏−1 increases 
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as the spacing decreases similar to 𝜃̇. Therefore, both angular velocity (𝜃̇) and tau inverse 

(𝜏−1) can be used as looming variables.  

3.1.3 Sensory evidence for control of braking 

Angular velocity or tau inverse are the pieces of sensory evidence that a driver uses to 

perceive a slow or a decelerating lead vehicle. Thus, sufficiently large value of angular 

velocity or tau inverse prompts a driver to start braking. After drivers subconsciously 

determine the time of braking, they must also determine the magnitude of deceleration for 

safe car-following. Lee (1976) proposed that drivers use the rate of change of tau (𝜏) to 

modulate the pressure on the brake pedal to avoid a collision. The rate of change of tau, 

tau-dot (𝜏 ̇), is expressed as: 

𝑑

𝑑𝑡
(𝜏) =

𝑑

𝑑𝑡
(
𝜃

𝜃̇
) 

𝜏 ̇         =
𝑑

𝑑𝑡
(
𝜃

𝜃̇
) 

𝜏 ̇         =
𝑑

𝑑𝑡
(
𝑊

𝑆⁄

𝑊∆𝑉
𝑆2

) 

𝜏 ̇         =
𝑑

𝑑𝑡
(
𝑆

∆𝑉
) 

𝜏 ̇         =
∆𝑉 ×

𝑑
𝑑𝑡
(𝑆) − 𝑆 ×

𝑑
𝑑𝑡
(∆𝑉)

∆𝑉2
 

𝜏 ̇         =
∆𝑉 × (−∆𝑉) − 𝑆 × ∆𝐴

∆𝑉2
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𝜏 ̇         =
−∆𝑉2 − 𝑆 × ∆𝐴

∆𝑉2
 

 
  𝜏 ̇         = −1 −

𝑆 × ∆𝐴

∆𝑉2
 

              = −1 +
𝑆 × ∆𝐷

∆𝑉2
 

(3-10) 

 

where ∆𝐴 is the acceleration difference (= the subject vehicle acceleration minus the lead 

vehicle acceleration) and ∆𝐷 = −∆𝐴. According to Green (2017a), maintaining a constant 

𝜏 ̇ while braking would create the following possible outcomes: 

• 𝜏 ̇ < −0.5    → hit the lead vehicle 

• 𝜏 ̇ = −0.5   → stop right behind the lead vehicles 

• 𝜏 ̇ > −0.5 and 𝜏 ̇ ≤ 0  → stop before the lead vehicle 

• 𝜏 ̇ >     0     → move away from the lead vehicle (appropriate for 

following at steady-state speed) 

Maintaining a constant 𝜏 ̇ ≥ −0.5 means that TTC (or its visual correlate 𝜏) would 

decrease at a rate of 0.5 s/s or less. A constant 𝜏 ̇also means that the deceleration rate would 

not be constant - i.e., the brake pedal pressure must be continuously varied. Moreover, it 

means that the driver “would brake hardest at first and then gradually ease off as he slows 

and nears the lead vehicle” (Green, 2017a). 

The discussion above explained a set of sensory evidence available at the driver’s eye 

that helps him/her decide the start and control of braking. The next section describes two 

existing, but alternative modeling frameworks that use a few pieces of sensory evidence to 

model driver perception and reaction. 
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3.2 Theoretical Frameworks for Modeling Car-following Behaviour 

As discussed in Chapter 3.1, physical stimuli such as spacing and TTC are not directly 

accessible to a driver, rather a driver indirectly accesses them via the sensory evidence 

available at his/her eye. This section explains two different modeling approaches that use 

the available sensory evidence to predict driver reaction time and magnitude of acceleration 

in car-following. These two approaches are the Wiedemann’s model and the Markkula’s 

model. 

3.2.1 Wiedemann Model 

The Wiedemann (1974) car-following model is a psychophysical model that accounts for 

perception thresholds of angular velocity (psychology), capabilities of vehicle 

performance, and equations of motion (physics). The model provides equations for driver 

reaction (acceleration/deceleration) in different car-following conditions, once a driver 

perceives a certain car-following condition (Wiedemann and Reiter, 1992; Aghabayk et 

al., 2013). The model also provides the equations for estimating when drivers perceive 

different car-following conditions. Thus, unlike other car-following models, the 

Wiedemann model does not use a perception reaction time but rather uses perception 

thresholds to control the start time of driver reaction. The discussion in this section is a 

synthesis of the studies by Todosiev (1963), Hoefs (1972), Wiedemann and Reiter (1992), 

Aghabayk et al. (2013) and Pariota and Bifulco (2015). 

There are four car-following conditions as defined in the Wiedemann model. Fig. 3-2 

illustrates the model in a graph of the speed difference (= the subject vehicle speed – the 

lead vehicle speed) on x-axis and spacing on y-axis. The solid lines and curves represent 
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the boundaries of car-following conditions, and the dashed line segments (with colours) 

indicate the trajectory of a subject vehicle with respect to a slower moving lead vehicle 

(i.e., a positive speed difference).  

All four car-following conditions can be understood using the angular velocity formula 

(Eq. (3-5)) (Pariota and Bifulco, 2015). Note that the Wiedemann model only uses the 

angular velocity based on the width of lead vehicle (Eq. (3-5)) for defining driver 

perception thresholds – i.e., the angular velocity at which the driver first perceives a slow 

lead vehicle, as explained below. The model does not consider the effect of the lead 

vehicle’s height (Eq. (3-6)). This is because drivers are found to be more sensitive to the 

lead vehicle’s width rather than its height (Green, 2017a). 

The boundaries of various car-following conditions as shown in Fig. 3-2 are the 

perception thresholds. The Wiedemann model assumes that the driver reacts as soon as the 

speed difference exceeds the perception thresholds of speed difference (SDV, OPDV or 

CLDV) and the spacing exceeds the perception thresholds of spacing (ABX and SDX). Note 

that the Wiedemann model expresses the perception thresholds in terms of speed difference 

and spacing instead of angular velocity. 
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Fig. 3-2. Graphical representation of Wiedemann Car-following Model 

(Source: Pariota & Bifulco, 2015) 

Free driving 

Free driving occurs when the spacing to the lead vehicle is very large (e.g., > 200 m). 

It is clear from Eq. ((3-5) that at large spacing (S), the subject vehicle’s driver cannot 

perceive the speed difference from the slow-moving lead vehicle. This is because the 

instantaneous angular velocity at such a large spacing is much below the perception 

threshold of angular velocity. Even if the speed difference was known, the driver does not 

need to adjust the speed because the spacing is very large. Therefore, the driver accelerates 

until his/her speed reaches a desired speed or tries to maintain his/her desired speed. This 

was also observed from the data collected using a driving simulator as shown in Fig. 3-3. 

In this example, the driver started from a zero speed and accelerated to reach his desired 

speed. During the driver’s acceleration, a lead vehicle appeared at 600 m spacing in front 

of the subject vehicle. When the driver reached the desired speed of about 30 m/s, he tried 

to maintain the speed by keeping the accelerator at same position. 
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If the driver is starting from a zero speed, the maximum possible vehicle acceleration is 

available at the beginning. As the speed increases, the available acceleration decreases. 

Therefore, the Wiedemann model considers the maximum speed of the subject vehicle and 

the driver’s desired speed to express the functional relationship between the instantaneous 

speed and available acceleration as follows: 

 𝐵𝑀𝐴𝑋 = 𝐵𝑀𝐴𝑋𝑚𝑢𝑙𝑡 × (𝑉𝑀𝐴𝑋 − 𝑉 × 𝐹𝑎𝑘𝑡𝑜𝑟𝑉) (3-11) 

     𝐹𝑎𝑘𝑡𝑜𝑟𝑉 =  
𝑉𝑀𝐴𝑋

𝑉𝐷𝐸𝑆𝐼𝑅𝐸𝐷 + 𝐹𝐴𝐾𝑇𝑂𝑅𝑉𝑚𝑢𝑙𝑡 . (𝑉𝑀𝐴𝑋 − 𝑉𝐷𝐸𝑆𝐼𝑅𝐸𝐷)
 

where 𝑉𝑀𝐴𝑋, 𝑉𝐷𝐸𝑆𝐼𝑅𝐸𝐷, and 𝑉 are the maximum speed of the vehicle, the driver’s desired 

speed, and the instantaneous speed, respectively. 𝐵𝑀𝐴𝑋𝑚𝑢𝑙𝑡 and 𝐹𝐴𝐾𝑇𝑂𝑅𝑉𝑚𝑢𝑙𝑡 are the 

calibration parameters. Note that when 𝑉  = 0, 𝐵𝑀𝐴𝑋𝑚𝑢𝑙𝑡 × 𝑉𝑀𝐴𝑋  is the maximum 

acceleration available to the driver when starting from the zero speed. 

When the driver’s speed reaches 𝑉𝐷𝐸𝑆𝐼𝑅𝐸𝐷, he/she tries to maintain the desired speed. 

However, due to the driver’s imperfect accelerator control, the speed oscillates. This speed 

oscillation is expressed in the model using the acceleration 𝐵𝑁𝑈𝐿𝐿 as follows: 

 𝐵𝑁𝑈𝐿𝐿 = 𝐵𝑁𝑈𝐿𝐿𝑚𝑢𝑙𝑡 × (𝑅𝑁𝐷4(𝑖) + 𝑁𝑅𝑁𝐷) (3-12) 

 

where 𝐵𝑁𝑈𝐿𝐿𝑚𝑢𝑙𝑡 is the mean absolute constant acceleration that creates the oscillation 

in the desired speed and (𝑅𝑁𝐷4(𝑖) + 𝑁𝑅𝑁𝐷) is the combined variation due to the driver 

i’s ability to control acceleration (𝑅𝑁𝐷4(𝑖)) and the variation within the same driver 

(𝑁𝑅𝑁𝐷). These last two parameters are normally distributed with a mean of 0.5 and a 

standard deviation of 0.1. The value is in a range of 0-1. 
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Fig. 3-3 shows that when the driver maintains the desired speed behind a slow-moving 

lead vehicle, the speed difference is positive and the spacing decreases in the Free driving 

condition. As a result of the decrease in spacing, the driver starts to approach a slow lead 

vehicle. 

 

Fig. 3-3. Trajectories of the observed driver behaviour for one pair of vehicles  

(Source of data: Data from a driving simulator study by the author)  

The lead vehicle appeared 
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Approaching 

When the driver of a subject vehicle approaches a slow lead vehicle from a large 

spacing, the angular velocity increases as shown in Eq. (3-5). The equation is re-written 

below to calculate the speed difference as follows:  

∆𝑉=
𝑆2 × 𝜃̇𝑊
𝑊

 

The Wiedemann model uses the term ‘DV’ instead of ∆𝑉 . The speed difference 

perceived by the driver at large spacing is called SDV, which is expressed as follows: 

 

𝑆𝐷𝑉=
𝑆𝑇𝐻

2 × 𝜃̇𝑊(𝑇𝐻)

𝑊
 

(3-13) 

 

where 𝜃̇𝑊(𝑇𝐻) is the perception threshold of angular velocity and SDV and 𝑆𝑇𝐻  are the 

speed difference and the spacing, respectively, when 𝜃̇𝑊 ≥ 𝜃̇𝑊(𝑇𝐻) . Thus, a driver 

perceives the speed difference from the lead vehicle when the instantaneous angular 

velocity exceeds the perception threshold of angular velocity. This is illustrated in Fig. 

3-2(b) where the driver instantaneously relaxes the accelerator as the angular velocity is 

sufficiently large enough for the driver to perceive. 

Instead of considering the front-to-rear spacing to the lead vehicle (𝑆), the Wiedemann 

model assumes the front-to-front spacing (DX) minus the distance that the subject vehicle 

keeps with lead vehicle when both subject and lead vehicles stop (AX). Then Eq. (3-13) is 

re-written as follows: 

 

𝑆𝐷𝑉 = (𝐷𝑋 − 𝐴𝑋)2 ×
𝜃̇𝑊(𝑇𝐻)

𝑊
 

(3-14) 
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where 𝐷𝑋 is the front-to-front spacing and AX is the front-to-front standstill spacing. AX 

includes the length of the lead vehicle and the standstill front-to-rear spacing that a driver 

wants to keep as follows: 

 AX = L + AXadd + RND1(i)  AXmult (3-15) 

 

where L is the length of the lead vehicle, AXadd and AXmult are calibration parameters, 

and RND1(i) is a random parameter for the driver i’s safety need. The suggested values for 

AXadd and AXmult are 1.25 and 2.5, respectively (Li, 2017). RND1(i) is normally 

distributed with a mean of 0.5 and a standard deviation of 0.1. The value is in a range of 0-

1. 

In Eq. (3-14), the speed difference SDV is perceived when the angular velocity, 𝜃̇𝑊, 

exceeds the perception threshold of angular velocity, 𝜃̇𝑊(𝑇𝐻) . Since this perception 

threshold varies among drivers, 𝜃̇𝑊(𝑇𝐻) is not a constant. It is rather a distribution which is 

derived from the field observations for a given width of the lead vehicle. In the Wiedemann 

model, the term 
𝜃̇𝑊(𝑇𝐻)

𝑊
 is replaced by a parameter 1/CX2, and Eq. (3-14) is re-written as 

follows: 

 

𝑆𝐷𝑉 = (
𝐷𝑋 − 𝐴𝑋

𝐶𝑋
)
2

 
(3-16) 

 

The parameter CX is expressed as follows: 

 CX = CXconst  (CXadd + CXmult  (RND1(i) + RND2(i)))  (3-17) 

 



 

47 

where CXconst, CXadd and CXmult are calibration parameters; RND1(i) is the driver i’s 

safety need (higher value indicates higher safety need), and RND2(i) is the driver i’s 

estimation abilities (higher value indicates better estimation abilities). Similar to RND1(i), 

RND2(i) is also normally distributed with a mean of 0.5 and a standard deviation of 0.1 

and its range is 0-1.  

The field observations show that the range of CX is 25-75 (Wiedemann and Reiter, 

1992). A higher value of CX indicates that drivers can perceive lower angular velocity for 

a given width of the lead vehicle, which implies that drivers are more cautious. Similarly, 

a lower value of CX indicates that drivers are less cautious. From Eqs. (3-14) and (3-16), 

it is clear that 1/CX2 is expressed as follows: 

 1

𝐶𝑋2
=
𝜃̇𝑊(𝑇𝐻)

𝑊
 

(3-18) 

 

For instance, if the width of a lead vehicle is 1.8 m, the perception threshold of angular 

velocity 𝜃̇𝑊(𝑇𝐻) could be calculated as follows: 

 

For CX = 25   ; For CX = 75 

𝜃̇𝑊(𝑇𝐻) =
1.8

252
= 0.00290

𝑟𝑎𝑑

𝑠
 ; 𝜃̇𝑊(𝑇𝐻) =

1.8

752
= 0.00032

𝑟𝑎𝑑

𝑠
 

 

Thus, Eq. (3-16) in the Wiedemann model suggests an observed angular velocity 

threshold range of 0.0003 – 0.003 rad/s, for an assumed lead vehicle width of 1.8 m. This 

variation in the threshold was attributed to drivers’ safety need and estimation ability.  
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Fig. 3-2 shows that when the speed difference is equal to SDV, the vertical trajectory 

changes to a curve, indicating a deceleration. This deceleration is a result of the driver’s 

relaxation of the accelerator after consciously perceiving that the lead vehicle is slow. This 

continuously reduces the speed of the subject vehicle until it becomes equal to the speed 

of the lead vehicle. The equation for deceleration during the Approaching condition in the 

Wiedemann model can be derived from Eq. (3-10), with the assumption that 𝜏 ̇= -0.5, as 

shown below.  

𝜏 ̇         = −1 −
𝑆 × ∆𝐴

∆𝑉2
 

−0.5   = −1 −
𝑆 × ∆𝐴

∆𝑉2
 

∆𝐴       = −
0.5 × ∆𝑉2

𝑆
 

 
𝐵(𝑖) − 𝐵(𝑖 − 1) = −

0.5 × ∆𝑉2

𝑆
 

(3-19) 

 

where 𝐵(𝑖)  and 𝐵(𝑖 − 1)  are the acceleration rates of the subject and lead vehicles, 

respectively. 

The purpose of the deceleration during Approaching is to make the speed difference 

zero. Moreover, the driver wants to keep a safe distance from the lead vehicle when the 

speed difference becomes zero, to safely stop in case of an unexpected lead vehicle braking. 

This safe distance is a front-to-front spacing, called ABX in the Wiedemann model. 

Therefore, instead of using the complete front-to-rear spacing S, the difference between the 

front-to-front spacing DX and safe distance ABX is used in the denominator in the above 
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equation. Thus, the equation for deceleration after perceiving a slow lead vehicle (Eq. 

(3-19)) is re-written as follows: 

 
𝐵(𝑖) − 𝐵(𝑖 − 1) = −

0.5 × 𝐷𝑉2

𝐷𝑋 − 𝐴𝐵𝑋
 

 

 
𝐵(𝑖)   =

1

2
×

𝐷𝑉2

𝐴𝐵𝑋 − 𝐷𝑋
+ 𝐵(𝑖 − 1)       

(3-20) 

 

To capture the variation between drivers, additional parameters are included in Eq. 

(3-20) as follows: 

 
𝐵(𝑖)𝐴𝑝𝑝 = 

1

2
×

𝐷𝑉2

𝐴𝐵𝑋−𝐷𝑋
+ 𝐵(𝑖 − 1) +  

(1−𝑅𝑁𝐷2(𝑖)).(1−2 .𝑁𝑅𝑁𝐷)

𝑅(𝑖)
 

(3-21) 

 

where 𝐵(𝑖)𝐴𝑝𝑝 is the subject vehicle acceleration during Approaching, the first term on the 

right-hand side of Eq. (3-21) is the value of the minimum deceleration required to slow 

down behind a moving lead vehicle. The second term 𝐵(𝑖 − 1) is the lead vehicle i-1’s 

acceleration (or deceleration). The third term represents the variation in the subject vehicle 

i’s deceleration and 𝑅(𝑖) represents the driver i’s ability of estimating the angular velocity. 

ABX has its own equation as follows: 

 𝐴𝐵𝑋 =  𝐴𝑋 + (𝐵𝑋𝑎𝑑𝑑 +  𝐵𝑋𝑚𝑢𝑙𝑡 ∙ 𝑅𝑁𝐷1(𝑖))  × √𝑉 (3-22) 
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where 𝐵𝑋𝑎𝑑𝑑 and 𝐵𝑋𝑚𝑢𝑙𝑡 are calibration parameters, 𝑅𝑁𝐷1(𝑖) is a random parameter 

for the driver i’s safety need, and V is the minimum of the speeds of the subject vehicle and 

the lead vehicle. 

Following 

As the driver consciously approaches the slow-moving lead vehicle with constant 

deceleration, the speed difference decreases (i.e., both vehicles move at similar speeds). 

But as the spacing decreases, the driver is prompted to further slow down for safe vehicle 

control. The spacing at which the driver perceives the need of further slowing down is 

called ABX. At this point, the driver further releases the accelerator and slightly pushes the 

brake pedal. Fig. 3-2 shows that when the trajectory touches the ABX line, a new curve that 

moves left-upwards is generated.  

Due to the further decrease in subject vehicle speed, the speed difference becomes 

negative (i.e., the subject vehicle is slower than the lead vehicle) and the spacing between 

the vehicles starts increasing. At some point, the driver can perceive large speed difference 

because DV in Eq. (3-5) is sufficiently large (i.e., when the angular velocity exceeds the 

threshold of angular velocity). This speed difference in the “opening” process at a small 

spacing that a driver can perceive is called OPDV. Thus, the driver pushes the accelerator 

to increase the speed to follow the lead vehicle more closely and then the speed difference 

starts increasing.  

As a result of this acceleration, the subject vehicle speed starts increasing. Initially, the 

spacing continues decreasing at a smaller rate. Fig. 3-2 shows this as the trajectory curve 

which moves upward. But as the subject vehicle speed increases, the spacing starts 

decreasing and the speed difference becomes positive. Then, this positive speed difference 
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becomes sufficiently large to stimulate the driver. This speed difference in the “closing” 

process at small spacing that a driver can perceive is called CLDV. Consequently, the driver 

relaxes the accelerator or pushes the brake pedal. The equations for OPDV and CLDV are 

as follows: 

 CLDV = SDV  EX2
 (3-23) 

 

 𝐸𝑋 = 𝐸𝑋𝑎𝑑𝑑 + 𝐸𝑋𝑚𝑢𝑙𝑡   (𝑁𝑅𝑁𝐷 − 𝑅𝑁𝐷2(𝑖)) (3-24) 

 

 𝑂𝑃𝐷𝑉 =  𝐶𝐿𝐷𝑉   (−𝑂𝑃𝐷𝑉𝑎𝑑𝑑 –  𝑂𝑃𝐷𝑉𝑚𝑢𝑙𝑡  𝑁𝑅𝑁𝐷) (3-25) 

 

where SDV, CLDV and OPDV are perception thresholds of speed difference, NRND is the 

variation within the same driver, and EX, EXadd, EXmult, OPDVadd and OPDVmult are 

calibration parameters. 

Again, the spacing decreases to ABX, which prompts the driver to further reduce the 

speed. Therefore, the trajectory continues moving back and forth between OPDV and 

CLDV - i.e., the driver continuously transitions between pushing the accelerator and 

relaxing the accelerator/pushing the brake pedal. This process of adjusting speed to 

maintain the speed difference to near zero at small spacing is called Following. Fig. 3-2 

shows that after approaching the slow lead vehicle, the driver tries to maintain the speed 

but oscillates around a zero speed difference. 

Empirical evidence shows that the speed differences OPDV and CLDV are not equal - 

i.e., a driver is stimulated differently by negative and positive speed differences (Michaels, 

1963). This is because it is more critical to respond when the lead vehicle speed is slower 

(positive speed difference) than when the lead vehicle is faster (negative speed difference) 
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from a safety perspective. As a result of these differences in the perceived speed 

differences, the spacing between the vehicles significantly increases after several cycles of 

transitions between positive and negative speed differences. Then, the driver perceives this 

increase in spacing. The spacing at which the driver perceives the increase in the spacing 

from his/her desired safety distance (ABX) is called SDX. When the spacing is equal to 

SDX, the driver is prompted to push the accelerator pedal. This is shown in Fig. 3-2 as the 

trajectory curve which moves right-downwards after touching the SDX line due to the 

acceleration. SDX equation is shown as follows: 

 𝑆𝐷𝑋 = 𝐴𝑋 + 𝐸𝑋(𝐵𝑋𝑎𝑑𝑑 +  𝐵𝑋𝑚𝑢𝑙𝑡   𝑅𝑁𝐷1(𝑖)). √𝑉 (3-26) 

 

Emergency braking 

The emergency braking condition occurs if the lead vehicle suddenly applies hard brake. 

This decreases the spacing from ABX and the driver must apply a large deceleration as 

follows:  

 
𝐵(𝑖)𝐸𝑚𝑔= 

𝐷𝑉2

2(𝐴𝑋−𝐷𝑋)
+ 𝐵(𝑖 − 1) + 𝐵𝑀𝐼𝑁

(𝐴𝐵𝑋−𝐷𝑋)

(𝐴𝐵𝑋−𝐴𝑋)
+ 
(1−𝑅𝑁𝐷2(𝑖))∙(1−2 .𝑁𝑅𝑁𝐷)

𝑅(𝑖)
 

 

(3-27) 

 BMIN = -BMINadd – BMINmult  RND3(i) + BMINVmult  V  

 

where 𝐵(𝑖)𝐸𝑚𝑔 is the subject vehicle deceleration during Emergency braking, BMIN is the 

maximum possible deceleration when the spacing is equal to AX, RND3(i) is driver i’s 

capability of deceleration, and BMINadd and BMINmult are calibration parameters.The 

first term in Eq. (3-27) is similar to Eq. (3-21) with the difference that the minimum 

acceptable spacing to avoid collision is AX instead of ABX because the spacing is already 
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shorter than ABX. The third term represents the reduction in spacing from the safe distance 

which is estimated based on the difference between the current spacing DX and the safe 

distance ABX. If the current spacing at the sudden deceleration of the lead vehicle equals 

ABX (i.e., ABX = DX), then the third term is zero. This is because the maximum 

deceleration BMIN is not required when the current spacing is at the driver’s safe distance. 

This third term linearly increases up to the maximum value, BMIN, as the spacing decreases 

to AX. The collision occurs if the spacing is shorter than AX. 

Summary and Limitations of Wiedemann Car-following Model 

The main assumption in the Wiedemann model is that a driver reacts as soon as the 

instantaneous angular velocity exceeds the driver’s perception threshold of angular 

velocity. Thus, the model uses speed difference and spacing thresholds based on the 

perception threshold of angular velocity and does not consider a perception reaction time. 

However, according to the signal detection theory, perception thresholds may not exist 

since driver perception is shaped by past experiences and payoffs (Green, 2017a). For 

instance, drivers do not always decelerate as soon as they notice that a lead vehicle is slow 

(perception threshold in Approaching condition) as the situation does not warrant an urgent 

reaction. Although the Wiedemann model accounts for heterogeneity between and within 

drivers’ perception thresholds (and consequently the reaction time) by using the RND and 

NRND parameters, but it does not explain what controls this heterogeneity. The 

understanding of this variation in perception thresholds is important for understanding the 

relationship between reaction time and collision causation. Recent literature suggests that 

the accumulation of sensory evidence (angular velocity/tau-inverse), instead of the 



 

54 

perception thresholds, is the underlying neurobiological mechanism that controls driver 

reaction time (Markkula et al., 2020). 

Furthermore, the Wiedemann model assumes an identical braking pattern for all drivers. 

As shown in Eq. (3-19), these braking equations were derived based on the assumption that 

𝜏 ̇ = −0.5. Markkula et al. (2016) observed from the naturalistic driving data that drivers’ 

start of braking depends on the situation urgency characterized by the spacing, speed 

difference and the deceleration rate of the lead vehicle. This implies that instead of using a 

fixed 𝜏 ̇ as in the Wiedemann model, the use of 𝜏 ̇as the model parameter might predict 

braking response more accurately. 

In this regard, Markkula and his colleagues proposed an alternative theory to explain 

how the sensory evidence is used to predict the start time and magnitude of driver reaction 

(Markkula, 2014; Markkula et al., 2016; Svärd et al., 2017; Xue et al., 2018). Thus, the 

theory of Markkula model is explained in the next section. 

3.2.2 Markkula Model 

Markkula model is a general framework of sensorimotor control in sustained motion tasks 

such as steering, longitudinal acceleration, etc. (Markkula et al., 2018). Since these tasks 

involve control by using perception and motor action (brake/accelerator control), they are 

considered as “sensorimotor” control. The model can predict the start time as well as the 

magnitude of reaction in a given task. Theoretically, the Markkula model can predict both 

acceleration and deceleration in all car-following conditions but the model has only been 

evaluated in emergency braking conditions (Svärd et al., 2017).  
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Conceptual Framework  

Perceptual cues such as angular velocity and tau-inverse indicate a need for control 

called control error, 𝑃(𝑡). The Wiedemann model assumes that a driver starts a control 

adjustment (e.g., acceleration and deceleration) when the instantaneous value of the control 

error is equal to or larger than a threshold (e.g., 𝜃̇𝑇𝐻 ). However, the Markkula model 

assumes that a driver starts a control adjustment when the accumulated control error with 

noise reaches the threshold 𝐴𝑇𝐻. 

At this threshold, a control adjustment is initiated in the form of a motor primitive. A 

motor primitive is defined as “patterns of motion without regard to force or mass, e.g. 

strokes […] or cycles […]” (p. 156, Giszter, 2015). Motor primitives are the building 

blocks of human body movement that characterize the magnitude of control adjustment i, 

𝑔𝑖 and its shape 𝐺(𝑡) (Markkula et al., 2018). For instance, brake pedal rate and brake 

pedal position represent the magnitude and the shape of brake control, respectively.  

Any new motor primitive is superpositioned to the ongoing motor primitives, e.g., a new 

braking maneuver is superpositioned onto the previously applied brake control. 

Importantly, the magnitude 𝑔𝑖  is correlated and scaled by the control error 𝑃(𝑡).  

As a motor primitive is initiated, a driver predicts how the control error (e.g., angular 

velocity) will be reduced due to the control adjustment (e.g., braking). This is called a 

predicted control error, 𝑃𝑝(𝑡).  This prediction is superpositioned onto the previous 

predictions. The shape of the prediction 𝐻(𝑡) is based on the gradual decrease in control 

error after a control adjustment is made. The predicted control error 𝑃𝑝(𝑡) is subtracted 

from the actual control error 𝑃(𝑡), and this quantity is called control error prediction error, 
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𝜖(𝑡𝑖). The time 𝑡𝑖 is the start time of control adjustment i. The Markkula model assumes 

that the accumulation and magnitude of control adjustment depend on the control error 

prediction error 𝜖(𝑡𝑖) instead of the control error 𝑃(𝑡). 

As discussed in Chapter 2: , 3.1, and 3.2.1, engineering car-following models are either 

continuous with no reaction time, or discrete with a constant reaction time. Thus, these 

models do not consider the intermittent nature of human control behaviour. The Markkula 

model can convert continuous sensorimotor control models into intermittent sensorimotor 

control models. The rate of change of control adjustment to be applied, 𝐶̇(𝑡), is specified 

in a continuous model as follows: 

 𝐶̇(𝑡) = 𝐾 ∙ 𝑃(𝑡 − 𝜏𝑑) (3-28) 

 

where 𝐾 is the control gain, 𝑃(𝑡) is control error, and  𝜏𝑑 = 𝜏𝑝 + 𝜏𝑐 + 𝜏𝑚 where 𝜏𝑝, 𝜏𝑐 , 𝜏𝑚 

are delays at perceptual, control decision, and motor stages, respectively (Markkula et al., 

2018). The delay at motor stage occurs because it takes time for vehicle response (e.g., 

deceleration) after the human body movement (e.g., pressing brake pedal). Then the 

objective of control adjustment 𝐶(𝑡) is to make control error 𝑃(𝑡) to be zero by applying 

the rate of change 𝐶̇(𝑡). For example, brake pedal rate can be considered as 𝐶̇(𝑡) when the 

control error 𝑃(𝑡) is tau-inverse in braking conditions and 𝐶(𝑡) = brake pedal position 

(Markkula, 2014).  

Fig. 3-4 shows the complete framework of the Markkula Model that converts Eq. (3-28) 

into an intermittent model. The following sections explain Fig. 3-4 and discuss the 

modifications in Eq. (3-28) to convert it into an intermittent model. 
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Fig. 3-4. Markkula Model of Sustained Sensorimotor Intermittent Control 

(Source: Markkula et al., 2018) 

Control Error 𝑃(𝑡) 

Consider tracking a moving object in one dimension on a computer screen as an example 

of sustained sensorimotor control. The control error 𝑃(𝑡) quantifies the evidence for the 

need of control. Therefore, 𝑃(𝑡)  is estimated as the distance 𝐷(𝑡)  between the 

instantaneous cursor position 𝐶(𝑡) and the moving target position 𝐶𝑇(𝑡) (Powers, 2008; 

Markkula et al., 2018). This control error 𝐷(𝑡) = 𝐶𝑇(𝑡) − 𝐶(𝑡) can be reduced to zero by 

applying the rate of mouse cursor movement 𝐶̇(𝑡) such that 𝐶(𝑡) = 𝐶𝑇(𝑡). Consequently, 

Eq. (3-28) can be re-written as the following continuous model of tracking an on-screen 

moving target: 

 𝐶̇(𝑡) = 𝐾 ∙ 𝐷(𝑡 − 𝜏𝑑) (3-29) 

 

Thus, 𝑃(𝑡) = 𝐷(𝑡) for the task of tracking the on-screen target. Note that 𝑃(𝑡) is input to 

the Markkula model before a perceptual delay 𝜏𝑝 as shown in Fig. 3-4. This delayed control 
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error is 𝑃𝑟(𝑡) = 𝑃(𝑡 − 𝜏𝑝).  Similarly, the continuous model for the task of lane-keeping 

is as follows: 

 𝑃(𝑡) = 𝑘𝑛𝐼𝜃𝑛(𝑡) + 𝑘𝑛𝑃𝜃̇𝑛(𝑡) + 𝑘𝑓𝜃̇𝑓(𝑡) (3-30) 

 𝐶̇(𝑡) = 𝑃(𝑡 − 𝜏𝑑)  

 

where 𝜃𝑛(𝑡) and 𝜃𝑓(𝑡) are the visual angles at ‘near’ and ‘far’ reference points as described 

in Salvucci and Gray (2004). Since 𝑘𝑛𝐼, 𝑘𝑛𝑃 and 𝑘𝑓 represent control gain, the control gain 

𝐾 in  Eq. (3-28) is not required. Therefore, 𝐾 is fixed to 1. Moreover, 𝐶̇(𝑡) is the rate of 

change of steering wheel angle, and 𝐶(𝑡) is the steering wheel angle. 

The continuous model of emergency braking can also be expressed as follows 

(Markkula, 2014): 

 𝑃(𝑡) = 𝜏−1 (3-31) 

 𝐶̇(𝑡) = 𝐾 ∙ 𝑃(𝑡 − 𝜏𝑑)  

 

where 𝜏−1 is the inverse of time to collision, 𝐶̇(𝑡) is the rate of change of brake pedal 

position, and 𝐶(𝑡) is the brake pedal position. 

Evidence Accumulation 

According to the Wiedemann’s model, a driver initiates a brake adjustment as soon as 

the evidence for braking, i.e., 𝑃(𝑡) = 𝜃̇𝑊(𝑡) (instantaneous angular velocity), exceeds the 

threshold of angular velocity. This is illustrated as follows: 

 𝑃(𝑡) ≥ 1
𝑘⁄  (3-32) 
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where 1 𝑘⁄  is the threshold of angular velocity, and 𝑘 is the accumulator gain. However, 

the signal detection theory of human behaviour suggests that the signal (i.e., 𝑃(𝑡)) is 

always accompanied by noise (Green, 2017c). The most common source of noise is the 

“natural fluctuations in neural activity” which occurs even if there is no signal (Markkula 

et al., 2016). Thus, the driver must differentiate the signal from the noise to react. For 

instance, when the angular velocity is very small at a large spacing from the lead vehicle, 

it is hard for the driver to perceive that the lead vehicle speed is lower than his/her own 

speed. In this case, the signal of angular velocity is so weak that it is hard to detect the 

signal with the background noise. For example, in car-following, vehicles in other lanes 

could be the background noise in a road scene. 

As the spacing decreases, the signal becomes stronger. Eventually when the signal 

becomes sufficiently strong, the driver can easily differentiate the signal from the 

background noise, which might prompt the driver to start braking. In this regard, Xue et al. 

(2018) expressed the control error as a stochastic measure by adding a noise term as 

follows: 

 𝑃(𝑡) + 𝜀(𝑡) ≥ 1
𝑘⁄  (3-33) 

where 𝜀(𝑡) is noise;  𝜀(𝑡) ~ 𝑁(0, 𝜎𝑎). Eq. (3-33) is re-written as follows: 

 𝑘 × (𝑃(𝑡) + 𝜀(𝑡)) ≥ 1 (3-34) 

In contrast to Eq. (3-34), Markkula (2014) proposed that the driver starts braking based 

on the accumulation of the evidence rather than an instantaneous value of the evidence. 

This part of the Markkula model is highlighted as ‘Evidence accumulation decision on need 

for control adjustment’ in Fig. 3-4. It is also called the accumulator model. The 
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accumulator model can estimate the start time of any control adjustment. The model is 

described below in the context of the braking task.  

Evidence from control error can be variable (e.g., angular velocity and tau-inverse) or 

static (e.g., lead vehicle brake light). The control error with noise is accumulated over time 

until it reaches a threshold of 𝐴𝑇𝐻. Note that 𝐴𝑇𝐻 is a combined threshold of accumulated 

sensory evidence for braking and noise. Moreover, as Fig. 3-4 shows, the prediction 𝑃𝑝(𝑡) 

is subtracted from control error 𝑃(𝑡)  at each time 𝑡 , which yields the control error 

prediction error 𝜖(𝑡) (= 𝑃(𝑡) − 𝑃𝑝(𝑡)). Therefore, before incorporating the accumulation 

process, Eq. (3-34) is re-written as follows: 

 𝑘 × (𝜖(𝑡) + 𝜀(𝑡)) ≥ 1 (3-35) 

The prediction 𝑃𝑝(𝑡) is the subconscious prediction of how a driver’s control adjustment 

would change the control error over time. Typically, drivers expect that all vehicles ahead 

of them are driving at the same speed as their speed. Therefore, the control error must be 

close to or equal to zero and the prediction 𝑃𝑝(𝑡) is also zero as no control adjustment is 

required. However, 𝑃𝑝(𝑡) is non-zero after the accumulated value of control error and noise 

reaches the threshold 𝐴𝑇𝐻. The prediction 𝑃𝑝(𝑡) is discussed in detail later in this section. 

After incorporating the accumulation process in Eq. (3-35), the accumulator model is 

formulated as below (Markkula et al., 2018): 

 𝑑𝐴(𝑡)

𝑑𝑡
= 𝛾[𝜂(𝜖(𝑡))] − 𝜆𝐴(𝑡) +  𝜀(𝑡) 

𝜖(𝑡) = 𝑃𝑟(𝑡) − 𝑃𝑝(𝑡) 

𝑃𝑟(𝑡) = 𝑃(𝑡 − 𝜏𝑝) 

(3-36) 
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where 𝐴(𝑡) is the activation, i.e., the accumulated evidence, −𝜆𝐴(𝑡) represents the leakage 

in the evidence (e.g., leakage due to distraction), 𝜖(𝑡) is the control error prediction error, 

𝜏𝑝 is the perceptual delay, and 𝜀(𝑡) is the noise. Moreover, 𝜂(𝜖) is an activation function 

which can be sigmoidal or simply 𝜂(𝜖) = 𝑘𝜖 and 𝛾 is a gating function defined as below: 

 𝛾(𝜂) = 𝑠𝑖𝑔𝑛(𝜂) × max (0, |𝜂| − 𝑀) (3-37) 

where 𝑠𝑖𝑔𝑛(𝜂) = 1 if 𝜂(𝜖) > 0 , 𝑠𝑖𝑔𝑛(𝜂) = −1 if 𝜂(𝜖) < 0, and 𝑠𝑖𝑔𝑛(𝜂) = 0 if 𝜂(𝜖) =

0 . The accumulator model predicts the start time as the time when 𝐴(𝑡) exceeds the 

threshold 𝐴𝑇𝐻. 

An accumulator model with no leakage in the evidence (𝜆 = 0) and 𝜂(𝜖) = 𝑘𝜖   is 

expressed as follows: 

 𝑑𝐴(𝑡)

𝑑𝑡
= 𝑘 × 𝜖(𝑡) − 𝑀 +  𝜀(𝑡) 

(3-38) 

where 𝑀 is the negative gating, i.e., the minimum evidence below which the accumulation 

does not start. Note that 𝜖(𝑡) could be positive (the lead vehicle is slower than the subject 

vehicle) or negative (the lead vehicle is faster than the subject vehicle) that would require 

a deceleration or acceleration, respectively. Therefore, the activation can be fixed as 𝐴𝑇𝐻 =

𝐴+ = +1 which represents the accumulated evidence for a slower lead vehicle and 𝐴𝑇𝐻 =

𝐴− = −1 for a faster lead vehicle.  

The algorithm of the Accumulator model shown in Eq. (3-38) is described in Fig. 3-5. 

This algorithm is explained using an example scenario where a lead car decelerates at -8 

m/s2 from an initial speed of 25 m/s. At the onset of the lead car’s deceleration, the speed 

difference was zero, i.e., the subject car speed was also 25 m/s. In this example, the tau-
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inverse due to the width of the lead car (𝜏𝑊
−1) is used as the control error. The prediction 

𝑃𝑝(𝑡) is assumed to be zero in this simple example. Therefore, 𝜖(𝑡) = 𝑃(𝑡). 

 

Fig. 3-5. Algorithm of Accumulator model 
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Fig. 3-6 illustrates the variation in control error (𝑃(𝑡) = 𝜏𝑊
−1) over time from the start 

of the lead car’s deceleration. The figure shows that the control error increases over time 

due to the lead car’s deceleration. This is because the lead car deceleration increases the 

speed difference, which increases both angular velocity (Eq. (3-5)) and tau-inverse (Eq. 

(3-9)).  

Due to this increase in control error, the driver in the subject car is expected to detect 

the deceleration of the lead car after a few seconds, which would prompt a braking 

response. The algorithm described in Fig. 3-5 predicts the time when the subject driver 

would start applying the brake after the lead vehicle’s deceleration. Therefore, the part of 

the observed data which corresponds to the actual times of the subject driver’s release of 

the accelerator pedal and braking should not be used as input data in the algorithm. This is 

because the actual time of braking will be predicted using the algorithm. Moreover, the 

driver’s release of the accelerator pedal and braking alters the increasing values of control 

error to decreasing values of control error. The decreasing values of control error would 

not accumulate to a threshold as the control error in this task is positive (i.e., the 

accumulated evidence for a slower lead vehicle). Hence, the actual control error, i.e., tau-

inverse, is replaced with the tau-inverse estimated based on the assumption that the subject 

car would maintain the current speed (25 m/s in this example). This provides enough input 

control error data to accurately predict the start time of brake application. Thus, the input 

tau-inverse trajectory in Fig. 3-6 is the predicted tau-inverse, not the observed tau-inverse.  

Moreover, as shown in Fig. 3-6, the time between the lead car brake onset and the 

subject car brake onset (as predicted by the algorithm) is called Perception-Reaction Time 

(PRT). The algorithm is run in the following steps: 
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Fig. 3-6. Example of Accumulator Model  

 

Step 1: Import Control Error 

In the beginning of the algorithm (top-left of Fig. 3-5), the control error at time 𝑡, 𝑃(𝑡), 

is provided as an input. The time 𝑡 ranges from 0 to 5 seconds and the values of k, M and 

𝜎𝑎 are assumed to be 3.6, 0.05 s-1 and 0.3, respectively. Note that the values of these three 

parameters are arbitrarily selected for the illustrative purpose in this example (Fig. 3-6). 

These three parameters of the model need to be calibrated. The method of calibrating these 

parameters is described in Chapter 5: .  

Step 2: Estimate the noise and 𝑑𝐴(𝑡)/𝑑𝑡  

The length of each time frame (dt) is pre-specified in the input time 𝑡 and the total length 

of time frames (N) is set based on the number of data points in 𝑡 (Fig. 3-5, left). The length 

1.8 s 

Lead car brake onset 

Subject car brake onset 

Perception-Reaction Time 
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of time frame dt is subjectively determined – a smaller dt results in higher accuracy of 

results but it requires longer calculation time. In this example, dt = 0.025 s and N = 5 s. 

Thus, there are a total of 201 values of t (= 5 s / 0.025 s + 1 (including the initial value at 

t1 = 0)).  

In each iteration, 𝑑𝐴(𝑡)/𝑑𝑡 at time t is calculated using Eq. (3-38). In the first iteration, 

the initial value of time t is set to zero, t1= 0. The noise term 𝜀(𝑡) at t1 is then estimated 

as a random number drawn from a normal distribution with a mean of 0 and 𝜎𝑎 of 0.3 (see 

CALCULATE, Fig. 3-5, left). Thus, 𝑑𝐴(𝑡)/𝑑𝑡 at t1 is calculated using 𝜏𝑊
−1 as control 

error 𝑃(𝑡), k = 3.6 and M = 0.05, and 𝜀(𝑡) at t1. Simultaneously, 𝐴(𝑡) at t1 is set to zero. 

At the end of each iteration, time is incremented by time frame dt = 0.025 s. In this manner, 

𝑑𝐴(𝑡)/𝑑𝑡 and 𝐴(𝑡) at each time frame t are calculated from t = 0 to 5 s (top-right of Fig. 

3-5). At this point, 𝐴(𝑡) are zero for all time frames. The calculated 𝜀(𝑡), Eq. (3-38) 

without 𝜀(𝑡), and the complete Eq. (3-38) are shown in Fig. 3-6 as the grey dashed line, 

red dot-dash line and blue solid line, respectively. 

Step 3: Estimate the accumulation of control error and predict PRT 

The final step in the algorithm is to accumulate 𝐴(𝑡) over all time frames 𝑡 as follows 

(also see CALCULATE in Fig. 3-5, right):  

𝐴(𝑡 + 𝑑𝑡) = 𝐴(𝑡) +
𝑑𝐴(𝑡+𝑑𝑡)

𝑑𝑡
   

For instance, at time t2 = 0.025 s: 

𝐴(0.025) = 𝐴(0) +
𝑑𝐴(0.025)

𝑑𝑡
 = 𝐴(0) + 𝑘 × 𝑃(0.025) − 𝑀 +  𝜀(0.025) 

𝐴(0.025) = 0 + 3.6 × 0.01 − 0.05 +  𝑁(0, 𝜎𝑎 = 0.3) 
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𝐴(0.025) = 0 + 0.036 − 0.05 + (−0.25) 

𝐴(0.025) = −0.264 

At the end of each iteration, time is incremented by time frame dt = 0.025 s. In the first 

few time frames, the accumulated looming 𝐴(𝑡) was a negative value because the noise 

term 𝜀(𝑡) and 𝑘 × 𝑃(𝑡) − 𝑀 in Eq. (3-38) are negative. The control error 𝑃(𝑡) is generally 

small at a large spacing. A negative value of 𝐴(𝑡) means that the accumulation has not 

started yet because the signal is weaker than the noise. Therefore, if 𝐴(𝑡) is negative, it is 

reset to zero. Without this reset step, the initial few negative values of 
𝑑𝐴(𝑡+𝑑𝑡)

𝑑𝑡
 would add 

up to higher negative values and delay the accumulation process. If 𝐴(𝑡) is positive, 𝐴(𝑡) 

is continuously accumulated until 𝐴(𝑡) is equal to or greater than 1 (i.e., the threshold 𝐴𝑇𝐻 

in this example) (see the bottom-right of Fig. 3-5).  

Initially, 𝐴(𝑡) is reset to zero several times due to small control error relative to the noise 

at a large spacing. But as the signal becomes stronger (i.e., the control error increases), 

𝐴(𝑡) rapidly increases as shown in Fig. 3-6. Lastly, the algorithm determines the time t 

immediately after 𝐴(𝑡)  equals or exceeds 1 when the driver starts braking (see the 

OUTPUT at the bottom of Fig. 3-5). Thus, the length of time from the start of the lead 

vehicle’s deceleration to this time t is the perception-reaction time (PRT) predicted by the 

model. Fig. 3-6 shows that 𝐴(𝑡) equals 1 at t = 1.8 s. This indicate that the driver would 

start braking 1.8 seconds after the start of the lead vehicle’s deceleration.  
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Accumulator Model with lead vehicle’s brake light 

If the lead vehicle’s brake light is considered as extra evidence for braking, then Eq. 

(3-38) is modified as follows: 

 𝑑𝐴(𝑡)

𝑑𝑡
= 𝑘 × 𝜖(𝑡) − 𝑀 + 𝑎𝐵𝐿 +  𝜀(𝑡) 

(3-39) 

where 𝑎𝐵𝐿 is the “evidence supported by the lead vehicle’s brake light that can help drivers 

take brake action” (Xue et al., 2018). However, not all drivers consider the lead vehicle’s 

brake light as the extra evidence to decide for braking. The probability that the driver uses 

the lead vehicle brake light as an additional stimulus is 𝑝𝐵𝐿 . The probability 𝑝𝐵𝐿  is 

associated with the use of the term 𝑎𝐵𝐿 in the model. 

 Eq. (3-39) can be accumulated using the algorithm described in the Fig. 3-5 with the 

Eq. (3-39) instead of Eq. (3-38) at the calculation step. The suggested input values for 𝑎𝐵𝐿 

are 0 to 2 with an interval of 0.25, and the suggested input values for 𝑝𝐵𝐿 are 0 to 1 with 

an interval of 0.025 (Markkula et al., 2016). The parameters for both Eq. (3-38) and Eq. 

(3-39) are selected using a genetic algorithm search. The search of parameters is discussed 

in detail in Chapter 5: . 

 

Magnitude and shape of control adjustment 

Markkula model assumes that a control adjustment is triggered whenever the 

accumulated evidence is greater than or equal to the threshold, i.e., 𝐴(𝑡) ≥ |𝐴𝑇𝐻| (see ‘trig’ 

in Fig. 3-4). This control adjustment is pressing a brake pedal when the accumulated 

evidence is positive (control error is positive: 𝐴(𝑡) ≥ 𝐴+) or pressing an accelerator pedal 

when the accumulated evidence is negative (control error is negative: 𝐴(𝑡) ≤ 𝐴− ).  
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Moreover, the accumulated evidence is reset to zero 𝐴(𝑡) = 0 (see ‘reset’ in Fig. 3-4) at 

the same time when the control adjustment is made.  

Furthermore, the Markkula model assumes that the magnitude and shape of the control 

adjustment are based on the motor primitives – a neurobiological concept of human body 

movement. In this concept, any human body movement can be constructed from a 

collection of pulses of muscle activation (Giszter, 2015). The amplitude of these muscle 

activations can be scaled based on the required magnitude of response. For example, the 

magnitude of deceleration can be increased to reduce a large tau-inverse (evidence or 

control error).  

Markkula et al. (2016) found that in naturalistic driving, the deceleration and the rate of 

change of deceleration (jerk) linearly varied with the magnitude of tau-inverse at the start 

of braking. Thus, when the control error is large (e.g., due to a lead vehicle deceleration), 

the following driver would apply a large jerk. Therefore, deceleration did not increase 

smoothly and continuously, but it rather rapidly increased in a short time period as shown 

in the observed control adjustment in naturalistic driving as shown in Fig. 3-7. 

 

Fig. 3-7. Driver’s brake pedal use in car-following and braking conditions in real 

traffic (Source: Markkula, 2014) 

Bell shaped 
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In Fig. 3-7, the top figure shows the positions of brake and accelerator pedals (throttle). 

A pedal position of 100% means that the pedal is fully pressed and 0% means that the pedal 

is not pressed at all. The bottom figure shows the corresponding rate of change in pedal 

positions (pedal rate). It was observed that the driver rapidly pressed the accelerator pedal 

and then held the same pedal position (top figure of Fig. 3-7). It was also found that the 

pedal rate in the bottom figure of Fig. 3-7 follows a bell-shaped distribution which captures 

a rapid increase in acceleration in a very short time. According to Svärd et al. (2017), the 

duration of an individual control ajustment, ∆𝑇, is constant for a driver. 

Based on this assumption and empirical evidence from naturalistic driving studies, 

Markkula et al. (2014) proposed that the expected magnitude of the ith control adjustment 

(𝑔𝑖) is described as a function of control error prediction error as follows: 

 𝑔𝑖 = 𝐾∆𝑇 𝜖(𝑡𝑖) 

 

With 𝐾′ = 𝐾∆𝑇 and 𝜖(𝑡) = 𝑃𝑟(𝑡) − 𝑃𝑝(𝑡): 

 

𝑔𝑖 = 𝐾
′(𝑃𝑟(𝑡𝑖) − 𝑃𝑝(𝑡𝑖)) 

 

 

 

 

 

(3-40) 

where 𝐾 is the control gain in the continuous model (Eq. (3-28)), 𝐾′ is the control gain in 

the intermittent model, ∆𝑇 is the duration of the control adjustment (e.g., the time elapsed 

between the start and stop pushing the brake pedal), and 𝑡𝑖 is the start time of the ith control 

adjustment. As discussed in the previous section, the start time of control adjustment 𝑡𝑖 is 

predicted based on the accumulator model.  

To illustrate the difference between the control gain of continuous model 𝐾 and the 

control gain of intermittent model 𝐾′, consider a situation where  𝑃𝑝 = 0,⇒ 𝜖 = 𝑃𝑟 ≈ 𝑃. 
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The intermittent control model will respond to the control error 𝑃 by applying a magnitude 

of 𝑔𝑖 = 𝐾′𝑃 in a time duration ∆𝑇. Thus, the average rate of change of control by the 

intermittent model is 𝐾′𝑃/∆𝑇, which is also the control rate 𝐾𝑃 applied by the continuous 

model (= (𝐾∆𝑇)𝑃/∆𝑇 = 𝐾𝑃). 

Larger control adjustments can lead to inaccuracies in the targeted adjustment (e.g., 

larger deceleration than the intended deceleration). This is called motor noise. The motor 

noise is also considered in Eq. (3-40). Therefore, the actual control adjustment magnitude 

(𝑔̃𝑖) is as follows (Markkula et al., 2018): 

 𝑔̃𝑖 = 𝑘 ∙ 𝜖𝑖̃ 

𝜖𝑖̃ = (1 +𝑚𝑖) × 𝜖(𝑡𝑖) 

(3-41) 

 

where 𝑚𝑖 is the motor noise which is normally distributed with zero mean and variance 

𝜎𝑚
2. The actual magnitude 𝑔̃𝑖 considers the human error in applying the control adjustment 

by using the motor noise 𝑚𝑖 in the applied motor primitive. For example, a driver might 

apply a slightly larger/smaller brake pedal rate than the required brake pedal rate as per Eq. 

(3-40). 

To replicate the shape of control adjustment as shown in Fig. 3-7, the function 𝐺(𝑡) is 

defined as follows: 

 
𝐺(𝑡) = {

0  for 𝑡 ≤ 𝜏𝑚
      1  for 𝑡 ≥ 𝜏𝑚 + ∆𝑇

 
(3-42) 

 

where 𝑡 = 0 is the time when the accumulator model reaches the threshold, and 𝑡 = 𝜏𝑚 is 

the start time of the control adjustment that occurs after the motor delay of 𝜏𝑚. The motor 
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delay occurs due to the time it takes between the human body movement and vehicle 

response. Moreover, ∆𝑇 is the duration of the control adjustment. 𝐺(𝑡) corresponds to the 

shape in the top figure of Fig. 3-7 (shape of pedal position). 𝐺(𝑡) is assumed to be an 

increasing function between 𝑡 = 𝜏𝑚 and 𝑡 = 𝜏𝑚 + ∆𝑇. Eq. (3-42) is described as follows: 

• An individual control adjustment starts at 𝑡 = 𝜏𝑚  and ends at 𝑡 = 𝜏𝑚 + ∆𝑇. An 

actual adjustment can start at any time, so 𝑡 = 𝜏𝑚 refers to the start time of the ith 

control adjustment (𝑡𝑖). 

• At 𝑡 ≤ 𝜏𝑚, 𝐺(𝑡) = 0 as no control adjustment is made. 

• 𝐺(𝑡) increases from 𝐺(𝜏𝑚) = 0 to 𝐺(𝜏𝑚 + ∆𝑇) = 1. 

• At 𝑡 ≥ 𝜏𝑚 + ∆𝑇, 𝐺(𝑡) = 1 (i.e., the current pedal position is maintained). If the 

accumulated evidence (𝐴(𝑡) ) reaches to a threshold again, a new control 

adjustment is made. 

Eq. (3-42) is illustrated with an example of brake pedal use as control adjustment with 

the assumed 𝜏𝑚 = 0 (Fig. 3-8). The top figure of Fig. 3-8 (a) shows that the pedal position 

increased from 0 to 1 during 𝑡 = 8.933 - 10.933 s (∆𝑇 = 2 s). The bottom figure of Fig. 3-8 

(a) shows 𝐺(𝑡) during the control adjustment. Note that 𝑡 = 0 in this example refers to the 

start time of the 1st control adjustment (𝑡1 = 8.933 𝑠).  

Fig. 3-8 (b) shows the rate of change in 𝐺(𝑡) which represents the shape of pedal rate. 

The rate of change in 𝐺(𝑡) replicates the bell-shaped distribution of pedal rate as observed 

in Fig. 3-7. 𝐺(𝑡) increases between 𝑡 = 0 and 𝑡 = ∆𝑇 if it meets the requirements in Eq. 

(3-42). Markkula used a skewed truncated Gaussian distribution for the rate of change of 
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𝐺(𝑡) (Fig. 3-8 (b)) and integrated it to determine the shape of function 𝐺(𝑡) (Fig. 3-8 (a)) 

(Markkula, 2020). 

 

(a) Shape of the brake pedal position described in function 𝑮(𝒕) 

 

(b) Rate of change of 𝑮(𝒕) 

 

Fig. 3-8. Example of shape of control adjustment 
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Once the magnitude of control adjustment reaches 𝑔̃𝑖 after the ith control adjustment, the 

driver is assumed to keep the adjustment at that magnitude until the evidence accumulates 

again, and a further control adjustment is required. Thus, the total pedal position 𝐶(𝑡) is a 

sum of all individual control adjustments as follows: 

 
𝐶(𝑡) = 𝐶0 +∑ 𝑔̃𝑖 ∙ 𝐺(𝑡 − 𝑡𝑖) 

𝑁

𝑖=1
 

(3-43) 

 

where N is the number of control adjustments during  𝑡𝑖 < 𝑡 and 𝐶0 is the initial value of 

the control. 

 

Prediction of Control Error 

When a driver makes a control adjustment (e.g., braking) at 𝑡𝑖, the driver also makes a 

prediction 𝑃𝑝(𝑡) of how the control error will decrease over time (Markkula et al., 2018). 

For instance, if the evidence accumulates at a speed difference of 10 m/s and a spacing of 

100 m, the instantaneous control error 𝑃(𝑡𝑖) is 𝜏−1(𝑡𝑖) =
∆𝑉

𝑆⁄ = 10
100⁄ = 0.1 𝑠−1. As 

a result of the accumulated evidence, a driver now knows the current magnitude of control 

error and starts braking. Therefore, the driver would predict that the control error just after 

the start of braking is equal to the observed control error (Svärd et al., 2017). To reduce 

this large control error, the driver decelerates at 5 m/s2 and expects that the speed difference 

(and control error) will gradually decrease to zero in the next few seconds. Therefore, 𝑃𝑝(𝑡) 

becomes equal to the actual control error just after braking starts (i.e., in the next time 

frame). However, since the speed does not decrease immediately after deceleration because 
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of inertia, the driver expects that the control error will start to decrease after some time. 

This expected behaviour is modeled by setting 𝑃𝑝(𝑡) equal to the observed control error for 

a duration ∆𝑇𝑝0. Once the speed starts to decrease, it is expected to take a few seconds to 

decrease the control error to zero. Therefore, after ∆𝑇𝑝0, the gradual decrease in control 

error to zero is modeled by decreasing 𝑃𝑝(𝑡) to zero during the time ∆𝑇𝑝1. The durations 

∆𝑇𝑝0 and ∆𝑇𝑝1 are explained later in this section.  

However, the actual control error 𝑃(𝑡)  might not decrease as predicted by 𝑃𝑝(𝑡) . 

Therefore, the evidence is not only the control error, but a difference between the control 

error and the prediction [ 𝑃𝑟(𝑡) − 𝑃𝑝(𝑡)].  This difference is called the control error 

prediction error. The magnitude of the predicted control error is directly proportional to the 

control error prediction error. The prediction function is defined as the sum of individual 

predictions as follows (Svärd et al., 2017): 

 
𝑃𝑝(𝑡)  =∑ [𝜖𝑖̃ ∙ 𝐻(𝑡 − 𝑡𝑖)]   

𝑁

𝑖=1
 

(3-44) 

where 𝐻(𝑡) 𝑖𝑠 the shape of the prediction which is defined as follows: 

 

𝐻(𝑡) = {

= 0, 𝑓𝑜𝑟 𝑡 ≤ 0 𝑎𝑛𝑑 𝑡 ≥ ∆𝑇𝑝
→ 1, 𝑓𝑜𝑟 𝑡 → 0+

→ 0, 𝑓𝑜𝑟 𝑡 → ∆𝑇𝑝

 

(3-45) 

 

where ∆𝑇𝑝 is a model parameter which controls the duration of the predicted control error 

𝑃𝑝(𝑡).  At 𝑡𝑖 ,  a driver makes the prediction 𝑃𝑝(𝑡𝑖)  and the control adjustment 

simultaneously (see ‘trig’ in the ‘Superposition of predictive primitives’ section of Fig. 
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3-4). The time 𝑡 = 0 represents the start time of control adjustment 𝑡𝑖 in Eq. (3-45). Eqs. 

(3-44) and (3-45) are explained as follows: 

• During the periods 𝑡 ≤ 0 and 𝑡 ≥ ∆𝑇𝑝 , 𝐻(𝑡) = 0 as a driver does not make the 

prediction and control adjustment.  

• ∆𝑇𝑝 = ∆𝑇𝑝0 + ∆𝑇𝑝1  

• During 0 < 𝑡 ≤ ∆𝑇𝑝0
, 𝐻(𝑡) = 1. This means that just after the control adjustment 

is made, 𝑃𝑝(𝑡) is equal to the control error and remains equal to the same error 

during ∆𝑇𝑝0. 

• During ∆𝑇𝑝0 < 𝑡 ≤ ∆𝑇𝑝, 𝐻(𝑡) decreases from 1 to zero. This is the duration ∆𝑇𝑝1. 

• 𝐻(𝑡) → 1, 𝑓𝑜𝑟 𝑡 → 0+ indicates that 𝐻(𝑡) approaches 1 when time 𝑡 approaches 0 

from positive values. 

• 𝐻(𝑡) → 0, 𝑓𝑜𝑟 𝑡 → ∆𝑇𝑝 indicates that 𝐻(𝑡) approaches 0 when time 𝑡 approaches 

∆𝑇𝑝. 

Fig. 3-9 illustrates 𝐻(𝑡) for an example of the prediction using assumed values of all 

parameters. The top figure shows that the prediction begins at 8.933 s (𝑡 = 0) and 𝐻(𝑡) 

increases to 1 at 8.95 s. During ∆𝑇𝑝0 = 0.5 𝑠, 𝐻(𝑡) = 1 as a driver predicts that it will take 

some time for the control adjustment to start reducing the control error. Afterwards, 𝐻(𝑡) 

gradually decreases to zero during ∆𝑇𝑝1 = 8.5 𝑠. Thus, the Markkula model predicts that 

as a result of a control adjustment, the control error prediction error will decrease to zero 

at 17.95 s (= 8.95 + 0.5 + 8.5). 
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Fig. 3-9. Shape of Prediction of looming 

 

Fig. 3-10 shows an example of driver braking behaviour predicted by the Markkula 

model. Fig. 3-10 (a) shows the observed lead vehicle and subject vehicle deceleration over 

time. Tau-inverse is the estimated control error 𝑃(𝑡) with the assumption that the initial 

speed difference is zero. Since this example was used to illustrate the model prediction, the 

parameters were not calibrated. It was assumed that 𝜀(𝑡) = 0, M = 0.01, 𝜏𝑝 = 𝜏𝑚 = 0, 

𝑚𝑖 = 0, and the threshold 𝐴𝑇𝐻 = 0.03.  

As shown in Fig. 3-10 (b) and (c), when the control error accumulates to the threshold 

at 𝑡1 = 8.933 s (i.e., when the accumulated evidence 𝐴(𝑡) reaches the threshold 𝐴𝑇𝐻 =

0.03 ), the Markkula model predicts the start time of control adjustment (i.e., brake 

application) as shown in Fig. 3-10 (d). Simultaneously, a prediction 𝑃𝑝(𝑡) of how the 

control error would decrease over time (due to the braking) is also calculated using Eqs. 

(3-44) and (3-45) as shown in Fig. 3-10 (b). The red vertical dashed lines in Fig. 3-10 

8.95   9.45                                                                            17.95 
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indicate the start times of individual control adjustments. Moreover, the accumulator is 

reset at 𝑡𝑖 , i.e., the activity 𝐴(𝑡) is reduced from the threshold 𝐴𝑇𝐻  to a reset value 𝐴𝑟 

which needs to be calibrated. In this example, 𝐴𝑟 was assumed to be 60% of the threshold 

(= 𝐴𝑇𝐻 × 0.6 = 0.018). 

The figure to the left of Fig. 3-10 (b) shows the zoomed-in part of 𝑃𝑝(𝑡) around the time 

when 𝑡𝑖 = 𝑡1, i.e., when the first control adjustment started. As per the function 𝐻(𝑡) (Eq. 

(3-45)), the prediction 𝑃𝑝(𝑡)  starts increasing from zero at 𝑡𝑖 = 𝑡1 = 8.933 s i.e. when 

𝐴(𝑡) reaches the threshold. Then it starts to approach the value of the observed control 

error until it becomes equal to the observed control error at 8.95 s. 𝑃𝑝(𝑡) remains equal to 

the observed control error (𝐻(𝑡) = 1) for a duration of ∆𝑇𝑝0 = 0.5 𝑠 i.e., until 9.45 s. 

Afterwards, 𝑃𝑝(𝑡) starts decreasing to zero. 𝑃𝑝(𝑡) becomes zero at 𝑡 = 17.95 s as ∆𝑇𝑝1 =

8.5 𝑠 (9.45 + 8.5 = 17.95 s). However, as 𝐴(𝑡) reaches its threshold a second time at 𝑡𝑖 =

𝑡2 = 11.33 s, 𝑃𝑝(𝑡) increases again as a result of the second control adjustment. 

Subsequently, the accumulated evidence  𝐴(𝑡)  reaches the threshold again and the 

second control adjustment and the prediction are made at about 11.33 s as shown in Fig. 

3-10 (b). As a result, the model replicates the observed step-wise pattern of deceleration as 

shown in the dashed line in Fig. 3-10 (a). 
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Fig. 3-10. Prediction of braking behaviour using Markkula Model. 

(Note: Subject vehicle and lead vehicle decelerations were observed from a driving simulator study 

conducted by the author) 
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3.2.3. Differences between Wiedemann and Markkula Models 

The differences between the Wiedemann and Markkula models are summarized as 

follows: 

Driver Perception and Reaction Time 

Both models consider sensory evidence such as angular velocity and tau-inverse to 

estimate the start time of driver reaction. Wiedemann model assumes a single value of 

sensory evidence as a driver-specific perception threshold, while the Markkula model 

assumes the accumulation of multiple values of the sensory evidence as a reaction 

threshold. Furthermore, the Markkula model accounts for the noise and other factors such 

as lead vehicle brake lights. As a result, the Markkula model can account for the variation 

in the reaction time for the same drivers in different driving conditions. Although the 

Wiedemann model also accounts for the variation in reaction time using random 

parameters, it does not explain how the variation occurs. 

The Markkula model can also account for other factors that can potentially influence 

driver perception and reaction time. For instance, higher level of discomfort with following 

a lead truck compared to a lead car (in addition to a larger width of a lead truck) can 

potentially decrease reaction time. This factor can be incorporated in the Markkula model 

in the same manner as the lead vehicle brake light (see Eq. (3-39)). However, the 

Wiedemann model only accounts for the width of the lead vehicle, but not the type of lead 

vehicle. 
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Driver Reaction 

The Wiedemann model provides equations for acceleration and deceleration as a 

function of spatiotemporal variables such as speed difference and spacing. The limitation 

of the Wiedemann model is that it does not account for the observed step-wise deceleration 

behaviour (see Fig. 3-10 (a)), but rather produces a continuous deceleration profile (see 

Chapter 3.2.1). Moreover, since the deceleration and acceleration equations are switched 

whenever the sensory evidence reaches a perception threshold, the jerk (rate of change of 

acceleration) predicted by the Wiedemann model can be unrealistically large (Lu, Song 

and Yu, 2018). For instance, when the driving condition changes from the free driving 

condition to the emergency braking condition, the model predicts a large acceleration in 

one second but a large deceleration in the next second, which leads to a severe and 

unrealistic jerk. 

The Markkula model predicts deceleration behaviour based on the concepts from 

neurobiology and empirical evidence and predicts realistic jerk and step-wise deceleration 

behaviour. However, the Markkula model is not a complete car-following model in the 

current form as it cannot predict the acceleration in Free-driving and Following conditions. 

Moreover, in non-emergency situations, drivers generally first release the accelerator and 

then apply brakes after some time lag. This is the typical behaviour while approaching a 

slow lead vehicle or braking in non-emergency situations. But Markkula model does not 

account for this behaviour as it was designed for only emergency deceleration.  

The main objective of this thesis is to extend the Markkula model so that it can account 

for the influence of lead truck on the driver’s reaction time and acceleration behaviour in 

all car-following conditions. To this end, Chapter 4 describes the research hypotheses, 
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experiment design, and data collection to compare the assumptions of the Wiedemann and 

Markkula models. Chapter 5 explains the methods to analyze the data and the modifications 

of the Wiedemann and Markkula models to create a car-following model which 

realistically predicts the speed, spacing and acceleration in all conditions.  
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Chapter 4:  Research Hypotheses and Data Collection 

The discussions in the previous chapters elaborated two alternative frameworks of 

developing car-following models. Chapter 2:  explained the engineering car-following 

models that use spatiotemporal variables - e.g., spacing and speed difference. Chapter 3: 

provided the theoretical background of the Wiedemann and Markkula models that use 

sensory evidence such as angular velocity and tau-inverse. Both spatiotemporal variables 

and sensory evidence are used in the respective models to predict the time of driver reaction 

(using either Perception-Reaction Time (PRT) or threshold of sensory evidence) and the 

magnitude of acceleration.  

To develop a car-following model that realistically predicts the start time of drivers’ 

reaction and acceleration rate, it is important to compare the alternative frameworks against 

the observed behaviour in car-following. Therefore, three hypotheses on PRT were 

developed to compare the assumptions in the engineering car-following models, 

Wiedemann model and Markkula model. The next two sections explain these hypotheses 

and the final section presents the procedures for collecting car-following data which was 

used for testing the hypotheses. 

4.1 Hypotheses on the Start Time of Reaction 

The time at which a driver starts deceleration (or acceleration) is assumed to be either a 

function of PRT or a function of a threshold of some sensory evidence. Therefore, in this 

study, three hypotheses about the definition of PRT were examined. To test these 

hypotheses, four driving simulator scenarios were tested to measure the driver’s perception 

and reaction thresholds – i.e., minimum detectable tau-inverse or angular velocity - in 
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approaching and lead vehicle braking conditions. In two of the four scenarios, the drivers 

were instructed to stop as soon as they felt that the lead vehicle was slow or braking in the 

absence of lead vehicle brake lights. These “perception scenarios” are called Perception-

in-approaching and Perception-in-following scenarios, respectively. In the other two 

scenarios, the drivers were instructed to release accelerator or apply brake as they 

approached the moving or stopped lead vehicle. These “reaction scenarios” are called 

Moving-lead-vehicle (LV) and Stopped-LV, respectively.  

However, some drivers tend to react immediately when they see the lead vehicle brake 

lights regardless of spacing and speed difference (Xue et al., 2018). In this case, the drivers 

are not likely to react based on the visual variables. To test the effect of lead vehicle brake 

lights on driver reaction in the Moving-LV scenario, equal proportions (50%) of drivers 

were randomly assigned to lead vehicle brake lights turned ON and OFF cases. However, 

as some drivers did not complete the experiments, 54% of the experiments were completed 

with the lead vehicle brake lights turned ON and 46% with the lead vehicle brake lights 

turned OFF. Each hypothesis of PRT is explained as follows: 

4.1.1  Hypothesis 1 (H1): Perception and reaction occur at the perception threshold 

In this hypothesis, a driver is assumed to release the accelerator or brake as soon as 

the visual variable reaches the driver’s perception threshold. Thus, there is zero or 

negligible time lag between the perception threshold and the release of the accelerator in 

approaching condition (or the start of braking in braking condition). This hypothesis was 

defined as follows: 
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• For a given driver, tau-inverse or angular velocity at the time of accelerator 

release/braking is the same in the perception and reaction scenarios. 

 

Therefore, the total PRT can be measured as the time between the first appearance of 

the lead vehicle (or the start of the lead vehicle deceleration) and the perception threshold 

(release of accelerator or braking). In this study, tau-inverse was used for the analysis 

because it normalizes the angular velocity by the visual angle subtended by the lead vehicle 

width. Also, as truck’s width is larger than the car’s width, tau-inverse is a better measure 

for comparison between the lead car and truck cases than angular velocity. 

4.1.2 Hypothesis 2 (H2): Perception occurs at the perception threshold and the 

reaction occurs after a reaction time 

In this hypothesis, perception occurs when tau-inverse or angular velocity reaches the 

driver’s perception threshold but there is a time lag between perception and reaction 

(release of the accelerator/braking). This time lag is measured as reaction time. The 

hypothesis was defined in the following two sub-hypotheses: 

 

• Tau-inverse or angular velocity is significantly higher in the reaction scenarios than the 

perception scenarios.  

H2-1: The time lag between the perception threshold (measured in the perception 

scenarios) and accelerator release or braking (measured in the reaction scenarios) is the 

reaction time.  
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H2-2: The time lag between perception threshold and accelerator release or braking is 

dependent on the reaction threshold, instead of the reaction time. Reaction threshold is 

also measured by tau-inverse or angular velocity in the reaction scenarios. 

 

Therefore, the PRT consists of the following two components: 1) Perception Time: the 

time between the first appearance of the lead vehicle or the start of lead vehicle deceleration 

and the time when tau-inverse or angular velocity reaches the driver’s perception threshold, 

and 2) Reaction Time: the time between the perception threshold and the release of the 

accelerator/ braking (H2-1) or the reaction threshold (H2-2). 

4.1.3 Hypothesis 3 (H3): Reaction occurs as a result of the evidence accumulation 

process 

In this hypothesis, the driver’s reaction is more important to characterize the driver 

behaviour than the driver’s perception. Thus, it is hypothesized that a driver reacts after the 

evidence for the need of slowing down (e.g., angular velocity, tau-inverse) is accumulated 

over time. The evidence will be accumulated faster if the rate of increase in tau-inverse or 

angular velocity is higher - e.g., due to a decelerating lead vehicle at a short spacing. 

Consequently, a driver will react faster when the evidence accumulates faster. In this case, 

the start of reaction is attributed to the rate of accumulation of evidence rather than a 

driver’s perception/reaction thresholds. This hypothesis was defined as follows: 

 

• Tau-inverse or angular velocity at which the driver releases accelerator or brakes is 

dependent on the accumulation of evidence over time. Therefore, the areas under the 
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curves of tau-inverse or angular velocity over time is the same for the same driver in 

the perception and reaction scenarios. 

4.2 Data Collection 

Two sources of data were used in this thesis: 1) driving simulator scenarios and 2) real-

world vehicle trajectory data. Driving simulator scenarios were developed by the author. 

The data obtained from these scenarios were used for testing the hypotheses described 

above, as well as developing and calibrating a new car-following model. Vehicle trajectory 

data on a US highway was sourced from an online repository. These trajectory data were 

used to calibrate and validate the new car-following model developed in this thesis. Both 

data sources are described in detail as follows. 

4.2.1 Description of Driving Simulator Scenarios 

Two perception scenarios and two reaction scenarios were tested using a driving simulator. 

For each driver, the reaction scenarios were conducted first because they were normal 

driving conditions where the driver could control the speed. In the perception scenarios, 

the speed was controlled by the driving simulator and the drivers were instructed to respond 

only when they perceived a stimulus. In each scenario, the time, spacing and speed 

difference at driver response (accelerator push/release or braking) were recorded. Using 

these data, the angular velocity and tau-inverse were calculated using Eqs. (3-1) and (3-9), 

respectively. 

A total of 50 drivers (33 males and 17 females) participated in this driving simulator 

study in April and May 2019. The range of their age was 18 to 70 years with 31 participants 

in the 18-25 years age group. There were 5, 7, 4, 1, and 2 participants in 26-30 years, 31-
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40 years, 41-50 years, 51-60 years, and 61-70 years age groups, respectively. Their driving 

experience varied between 2 to more than 10 years. This study was conducted using the 

MiniSim ¼ cab driving simulator at the University of Windsor. All drivers drove BMW 

330i model to follow a lead vehicle in the simulator scenarios. The simulator experiment 

was cleared by the University of Windsor Research Ethics Board. 

All scenarios were conducted on a 2-lane unidirectional highway with no curve. Drivers 

were instructed to stay in the right lane only and were prohibited from changing the lane. 

Drivers did a test run before each scenario until they verbally confirmed that they were 

comfortable in proceeding. At the start of all scenarios, the subject vehicle was stopped 

and there was no other vehicle or object nearby. To examine the effect of the lead vehicle 

size on drivers’ perception and reaction, drivers followed either a lead car or a lead truck 

in two separate scenarios. To avoid any unexpected learning effect, the number of drivers 

who started with a lead car scenario were balanced with the number of drivers who started 

with a lead truck scenario. 

The order of testing Moving-LV (S1) and Stopped-LV (S2) scenarios was different for 

different drivers. However, the drivers always first tested Perception-in-following scenario 

(S3) and then Perception-in-approaching scenario (S4). All scenarios were conducted with  

daytime conditions and low traffic density (only 2 vehicles). The duration of each scenario 

varied due to different speed of the driver, but it was no more than 7 minutes. Each scenario 

is explained as follows:  

S1: Moving-LV  

The driver accelerated from a stationary position and drove freely until the speed 

reached his/her desired speed (>100 km/h in most cases). During free-driving, as soon as 
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the driver passed a fixed location in the scenario, a lead vehicle with a uniform speed of 90 

km/h appeared in the same lane at 600 m spacing. As the driver approached the lead 

vehicle, he/she had to reduce speed to follow the lead vehicle at a safe spacing. After 

following the lead vehicle for several seconds, the lead vehicle abruptly decelerated at -4 

m/s2 and stopped. The lead vehicle started decelerating at the same fixed location for all 

drivers. Consequently, the driver was further required to decelerate and stop behind the 

lead vehicle. For example, the speeds of subject and lead vehicles varied over time in this 

scenario as shown in Fig. 4-1.  

 

 

Fig. 4-1. Temporal variation in speed in the Moving-LV scenario 

 

As some drivers withdrew (e.g., due to simulator sickness), a total of 49 drivers tested 

the lead car scenario (26 with the lead vehicle brake lights on and 23 with brake lights off) 

and a total of 48 drivers tested the lead truck scenario (26 with brake lights on and 22 with 

brake lights off). Some drivers were influenced by the sudden appearance of the lead 

vehicle or did not interact with the lead vehicle due to small desired speed (< 90 km/h). 

Therefore, the data for only 58 cases (29 drivers for lead car/lead truck) were used for the 
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analysis. Due to the difference in driver’s desired speeds, the spacing when the lead vehicle 

decelerated varied from 15 m to 200 m. This variation in spacing influenced the start time 

of braking when the lead vehicle decelerated. 

S2: Stopped-LV 

In this scenario, the subject vehicle was approaching the stopped lead vehicle with the 

brake light off at an initial spacing of 1,200 m and had to reduce speed to stop behind the 

lead vehicle. Thus, this scenario was designed to capture the driver behaviour when he/she 

unexpectedly encountered the stopped lead vehicle on a highway. A total of 48 and 49 

drivers completed the lead car and lead truck scenarios, respectively. 

S3: Perception-in-following 

The purpose of this scenario was to determine when the drivers perceived that the lead 

vehicle was slower than the subject vehicle while they were following the lead vehicle at 

small to medium spacing (50-500 m). The drivers were instructed to increase speed from 

0 to 100 km/h. When the speed reached 100 km/h, the cruise control was automatically 

activated and the drivers were instructed to release the accelerator. Then, a lead car or a 

lead truck appeared at approximately 50 m, 100 m, or 500 m ahead of the subject vehicle 

in the same lane.  

The lead vehicle initially moved at the same speed as the subject vehicle (100 km/h). 

Then the drivers were instructed to observe the lead vehicle speed for a few seconds (the 

“Observe” message was displayed on the screen). At this moment, the lead vehicle started 

decelerating or accelerating. After the observation of the lead vehicle speed change, the 

drivers were asked to change their speed (the “Change Speed” message was displayed on 
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the screen). They could either accelerate by pressing the accelerator if they perceived that 

the lead vehicle accelerated or decelerate by pressing the brake pedal if they perceived that 

the lead vehicle decelerated. They could also respond even before the “Change Speed” 

message was displayed if they perceived the change in the lead vehicle speed. They were 

required to change speed by the “Change speed” message even if they could not clearly 

perceive the change in the lead vehicle speed. However, if the drivers pushed the brake or 

accelerator pedals before the “Observe” message was displayed, the response was 

discarded, and the experiment was repeated. 

In this scenario, the lead vehicle changed speed at an average rate of ±0.15 m/s2 (max.: 

±0.5 m/s2) for either 1 s (max. speed difference of ±0.5 m/s), 2 s (max. speed difference: 

±1 m/s), 4 s (max. speed difference: ±2 m/s) or 6 s (max. speed difference: ±3 m/s). Four 

seconds after the lead vehicle reached the new speed, the “Change Speed” message was 

displayed. The driver accelerated or decelerated based on his/her perceived change in the 

lead vehicle speed within or at 4 s after the change in speed. The three stages in this scenario 

are illustrated in Fig. 4-2. 
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Fig. 4-2. Illustration of Perception-in-following scenario (initial spacing = 50 m, 

maximum speed difference = -3 m/s) 

Source: Truck - https://www.dreamstime.com/stock-illustration-truck-top-view-flat-style-vector-icon-lorry-

container-illustration-isolated-white-background-cargo-transportation-image86583281 

Car - http://www.clipartpanda.com/categories/truck-clipart-top-view 

There were a total of 48 cases of car-following (= 3 spacing × 8 speed differences × 2 

lead vehicle types). However, testing 48 cases for each driver was not desirable due to 

driver fatigue. To reduce the number of cases for each driver, the driver was tested for 3 

spacings and both lead vehicle types but 6 speed differences only (i.e., 36 cases per driver). 

A set of cases for each driver was randomly selected in the manner that each combination 

of spacing and speed difference for each lead vehicle type was run for at least 4 different 

https://www.dreamstime.com/stock-illustration-truck-top-view-flat-style-vector-icon-lorry-container-illustration-isolated-white-background-cargo-transportation-image86583281
https://www.dreamstime.com/stock-illustration-truck-top-view-flat-style-vector-icon-lorry-container-illustration-isolated-white-background-cargo-transportation-image86583281
http://www.clipartpanda.com/categories/truck-clipart-top-view
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drivers. A total of 46 drivers completed both lead car and lead truck scenarios. Each driver 

tested both lead vehicle acceleration/deceleration because he or she might be able to easily 

anticipate changes in the lead vehicle speed if the lead vehicle consistently accelerates or 

decelerates in multiple runs. 

S4: Perception-in-approaching 

The purpose of this scenario was to determine when the drivers first perceived that the 

lead vehicle was slower than the subjective vehicle while they were approaching the lead 

vehicle at a larger spacing. The drivers accelerated from zero speed to 100 km/h, at which 

the cruise control was automatically activated, and they released the accelerator. Then, a 

lead car or a lead truck which was moving at the speed of 70 km/h appeared at a spacing 

of 1,000 m in the same lane. If the drivers perceived that the lead vehicle was slower than 

the subject vehicle, they were instructed to press the brake pedal to indicate their 

perception. Otherwise, they could continue driving without any response. A few drivers 

were removed from the data because they mistakenly pressed the accelerator during this 

scenario. Thus, a total of 90 cases (44 drivers for the lead car scenario and 46 drivers for 

the lead truck scenario) were used for the analysis.  

The PRTs were estimated according to the hypotheses 1 and 2 using the data collected 

from the four scenarios in the driving simulator experiment. The start and end points of 

PRT in approaching and braking conditions are explained in Table 4-1. 
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Table 4-1. Definitions of PRT in Hypotheses 1 and 2 

Hypothe

-sis 

Car-following 

Condition 
Scenario Definition of PRT 

H1 Approaching Approaching 

part in both 

reaction 

scenarios (S1 

and S2) 

Start: time when driver first sees the lead vehicle in the 

same lane (i.e., time when the lead vehicle appears) 

End: time when driver releases the accelerator (the tau-

inverse at this point must be similar to the tau-inverse at 

the accelerator release in the Perception-in-approaching 

scenario (S4)). 

Braking Braking to a 

decelerating 

LV (Braking 

part of S1) 

Start: time at the start of lead vehicle braking 

End: time when driver starts braking (the tau-inverse at 

this point must be similar to the tau-inverse at braking in 

the Perception-in-following scenario (S3)) 

Braking to a 

stopped LV 

(S2) 

Start: time when driver released the accelerator to reduce 

speed during approaching 

End: time at start of braking (the tau-inverse at this point 

must be similar to the tau-inverse at braking in the 

Perception-in-following scenario (S3)) 

H2 Approaching Approaching 

part in both 

reaction 

scenarios (S1 

and S2) 

Perception Time: 

Start: time when driver first sees the lead vehicle in the 

same lane 

(i.e., time when the lead vehicle appears) 

End: time when tau-inverse reaches the driver’s perception 

threshold (i.e., the value of tau-inverse estimated in the 

Perception-in-approaching scenario (S4)) 

Reaction Time: 

Start: time when tau-inverse reaches the driver’s 

perception threshold 

End: time when driver releases the accelerator 

PRT = Perception Time + Reaction Time 

Braking Braking to a 

decelerating 

LV (Braking 

part of S1) 

Perception Time: 

Start: time at the start of lead vehicle braking 

End: time when tau-inverse reaches the driver’s perception 

threshold (i.e., the value of tau-inverse at the accelerator 

release in the Perception-in-following scenario (S3)) 

Reaction Time: 

Start: time when tau-inverse reaches the driver’s 

perception threshold 

End: time when driver starts braking 

PRT = Perception Time + Reaction Time 

Braking to a 

stopped LV 

(S2) 

Perception Time: 

Start: time when driver released the accelerator to reduce 

speed during approaching 

End: time when tau-inverse reaches the driver’s perception 

threshold 

Reaction Time: 

Start: time when tau-inverse reaches the driver’s 

perception threshold 

End: time when driver starts braking 

PRT = Perception Time + Reaction Time 



 

94 

4.2.2 Description of Vehicle Trajectory Data 

In addition to the vehicle trajectory data from the driving simulator, real-world vehicle 

trajectory data were also used for the calibration and validation of the new car-following 

model. Vehicle trajectory data were obtained from a segment of the Interstate-80 (I-80) in 

San Francisco, California on April 13, 2005. The data were collected under Federal 

Highway Administration’s Next Generation Simulation  (NGSIM) project which aims at 

developing behavioural algorithms for microsimulation modeling and validation (FHWA, 

2015). The original data are available in the Research Data Exchange (RDE) website 

(FHWA, 2016).  

Seven cameras mounted on a high-rise building captured vehicle movements and the 

resulting images were transcribed into data at the resolution of one tenth of a second. The 

raw data sets consisted of lead and following vehicle IDs, longitudinal and lateral positions, 

velocities, accelerations, vehicle types, lane numbers, headway and spacing. However, the 

original NGSIM data had significant positional measurement errors which yielded 

unrealistic distributions of velocities and accelerations (Montanino and Punzo, 2015). 

Consequently, they used a four-step method to remove the errors and reconstructed the data 

collected during 4:00-4:15 pm. These data are available from Montanino and Punzo (2015). 

Therefore, only the reconstructed dataset for the duration 4:00 - 4:15 pm was used in this 

thesis, instead of the original data.  
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Chapter 5:  Methods 

This chapter describes the development of a new car-following model that reflects the 

intermittent nature of driver reaction as discussed in the previous chapters. The chapter also 

describes the methods of calibration and validation of the new and existing car-following 

models using the driving simulator data and the Interstate-80 data. 

5.1 New Car-Following Model: Intermittent Intelligent Driver Model 

The proposed new car-following model – the Intermittent Intelligent Driver Model 

(IIDM) – was developed based on the Markkula’s Framework of Sensorimotor Control in 

Sustained Motion Tasks. as explained in Chapter 3.2.2. Following sections describe the 

new model in detail. 

5.1.1 Control Error 𝑷(𝒕) 

The control error 𝑃(𝑡) represents the need for control in each car-following condition. 

Car-following conditions include free-driving, approaching a slow lead vehicle, following 

closely, and braking. Previous studies have demonstrated 𝑃(𝑡) = 𝜏−1 as an appropriate 

control error for the braking condition (Markkula, 2014). However, using 𝜏−1  as the 

control error 𝑃(𝑡) only represents the need for deceleration while approaching a slow lead 

vehicle and braking. Therefore, 𝜏−1  is insufficient to represent the need for control in 

maintaining a desired distance with the lead vehicle in the following condition. Separate 

models are required to represent the need for acceleration in the free-driving and the 

following conditions. However, calibrating the model for two different conditions is not 

practical.  
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Therefore, 𝑃(𝑡) must include a combination of speed difference and spacing with a 

desired time gap or a desired spacing to represent the need for control (acceleration or 

deceleration) in all car-following conditions. Thus, a complete car-following model which 

predicts acceleration (positive and negative) in all car-following conditions was used to 

define the control error 𝑃(𝑡) . An example of a complete car-following model is the 

Intelligent Driver Model (IDM) (Treiber and Kesting, 2013).  

The IDM was used as the control error because the model does not have any existing 

parameter for reaction time. Therefore, the start time of reaction can be predicted using the 

accumulator model in this framework (explained in the next section), while the IDM only 

predicts the required acceleration/deceleration. Other complete car-following models such 

as the Gipps Model and the Wiedemann Model were not used because the models predict 

the start time of reaction either by using a constant reaction time (Gipps Model) or a 

constant perception threshold (Wiedemann Model). Thus, the Accumulator model cannot 

be incorporated into the Gipps Model and the Wiedemann model without significant 

modification of the original model specifications. 

The acceleration, 𝑎𝐼𝐷𝑀, is calculated using the equation of IDM as follows: 

 

𝑎𝐼𝐷𝑀 = 𝐴𝑖 [1 − (
𝑣

𝑣0
)
𝛿

− (
𝑠∗

𝑠
)
2

 ] 
(5-1) 

 
𝑠∗ = 𝑠0 +max(0, 𝑣𝑇 +

𝑣𝛥𝑣

2√𝐴𝑖𝑏
) 

 

 

where 𝐴𝑖  is the maximum acceleration when starting from zero speed, 𝑣 is the subject 

vehicle speed, 𝑣0 is the desired speed of subject vehicle in free-driving, 𝑠 is the spacing 
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between rear bumper of the lead vehicle and front bumper of the subject vehicle, 𝑠0 is the 

standstill spacing, 𝑇 is the time gap in following, 𝛥𝑣 is the relative speed (subject vehicle 

speed minus lead vehicle speed), 𝑏 is the comfortable deceleration, and 𝑠∗ is the desired 

spacing in the following condition. Note that there is no reaction time term in the IDM.  

Fig. 5-1 shows the speed, spacing, acceleration and jerk predicted using the calibrated 

IDM for a single run of Moving-LV scenario (as described in Chapter 4: ). 

 

Fig. 5-1. Predicted trajectories of the calibrated Intelligent Driver Model (IDM) 

 

Following 

Approaching 
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The IDM predicts the acceleration in each car-following condition as follows: 

Free-driving 

The term 𝐴𝑖 [1 − (
𝑣

𝑣0
)
𝛿

 ]  in Eq. (5-1) controls the acceleration in free-driving. The 

maximum acceleration 𝐴𝑖  is used when the speed 𝑣 of the subject vehicle is zero. The 

acceleration generally decreases as the speed approaches the desired speed 𝑣0. The rate of 

decrease in acceleration is regulated by the parameter 𝛿 (smaller values of 𝛿 such as 1 lead 

to smoother acceleration profiles). The acceleration is zero when the speed reaches the 

desired speed 𝑣0. Fig. 5-1 shows that the IDM predicts an initial acceleration of 2.5 m/s2 

when starting from zero speed and the acceleration reduces to zero after the speed reaches 

the desired speed of 32 m/s. 

Following 

Drivers generally maintain a minimum spacing while following a lead vehicle in the 

steady-state traffic (all vehicles have nearly identical speeds). The IDM models this 

minimum spacing using a standstill spacing 𝑠0 and a desired time gap 𝑇 in the desired 

distance expression (𝑠0 +  𝑣𝑇) in Eq. (5-1). Thus, in the steady-state condition, the IDM 

predicts acceleration when the desired distance (𝑠0 +  𝑣𝑇) is less than the current spacing 

𝑠 or deceleration when the desired distance is longer than the current spacing. 

Approaching and Braking 

The IDM uses an “intelligent braking strategy” for predicting deceleration in approaching 

and braking conditions (Treiber and Kesting, 2013). This braking strategy depends on the 

kinematic deceleration, 
𝑣2

2𝑠
, i.e., the minimum deceleration required to avoid a collision. To 
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focus on the use of the kinematic deceleration in the IDM, the desired distance (𝑠0 +  𝑣𝑇) 

and the free-driving acceleration (𝐴𝑖 [1 − (
𝑣

𝑣0
)
𝛿

 ]) terms are set to zero. Moreover, as the 

lead vehicle is assumed to stop, 𝛥𝑣 = 𝑣 (Treiber and Kesting, 2013). Then the deceleration 

is calculated based on the intelligent braking strategy using the following equation: 

 

𝑎𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑡 = −𝐴𝑖 [(
𝑠∗

𝑠
)
2

 ] 
 

 

𝑎𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑡 = −𝐴𝑖 [(
𝑣𝑣

2√𝐴𝑖𝑏𝑠
)

2

 ] 
 

 
𝑎𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑡 = −𝐴𝑖 [

𝑣4

4𝐴𝑖𝑏𝑠2
 ] 

 

 

𝑎𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑡 = −(
𝑣2

2𝑠
)

2

×
1

𝑏
  

(5-2) 

 

Deceleration in approaching and braking conditions (urgent and non-urgent) is 

determined using Eq. (5-2). In non-urgent braking or approaching condition, the required 

deceleration to avoid collision, (
𝑣2

2𝑠
), is smaller than the comfortable deceleration (𝑏). 

Therefore, Eq. (5-2) predicts 𝑎𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑡 which is less than the kinematic deceleration (
𝑣2

2𝑠
). 

In the urgent braking situation, the required deceleration to avoid collision (
𝑣2

2𝑠
)  is 

greater than the comfortable deceleration. Therefore, the predicted deceleration 𝑎𝑖𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑡 

is greater than the required deceleration to overcompensate for the urgent situation and 

regain control of the situation (Treiber and Kesting, 2013). 
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Fig. 5-1 shows the IDM deceleration in approaching and braking conditions (non-

urgent). Compared to the observed deceleration, the IDM predicted early deceleration due 

to no reaction time in the model. This means that IDM continuously predicted acceleration 

and deceleration (and jerk) with smaller magnitude than the actual magnitude of 

acceleration/deceleration. The actual magnitude of deceleration was larger due to the delay 

caused by the accumulation of evidence by the driver (discussed in the next section). 

 Therefore, implementing the IDM in the intermittent framework by Markkula can lead 

to a realistic car-following behaviour where the start time of reaction is predicted by the 

accumulator model and acceleration/deceleration are predicted by the IDM at the start of 

reaction. This can be done by including 𝑎𝐼𝐷𝑀 in the control error 𝑃(𝑡). 

Based on the moving target tracking example discussed in Chapter 3.2.2, the control 

error 𝑃(𝑡) for car-following was defined as the difference between the target acceleration 

𝑎𝐼𝐷𝑀(𝑡) (Eq. (5-1)) and the current acceleration 𝑎(𝑡) as follows: 

 
 𝑃(𝑡) = 𝐶𝑇(𝑡) − 𝐶(𝑡) = 𝑎𝐼𝐷𝑀(𝑡) − 𝑎(𝑡) 

 

(5-3) 

 

𝑃(𝑡) = 𝐴𝑖 [1 − (
𝑣(𝑡)

𝑣0
)
𝛿

− (
𝑠∗(𝑡)

𝑠(𝑡)
)
2

 ] − 𝑎(𝑡) 
 

 

where 𝐶𝑇(𝑡) is the target control and 𝐶(𝑡) is the actual control represented as 𝑎𝐼𝐷𝑀(𝑡) and 

𝑎(𝑡), respectively. Using Eq. (5-3), the model applies a control rate 𝑎̇(𝑡) (i.e., rate of 

change of acceleration) such that 𝑎(𝑡) equals 𝑎𝐼𝐷𝑀(𝑡) or the control error equals zero. 

Then Eq. (3-28) is re-written as follows: 

 
 𝑎̇(𝑡) = 𝐾 ∙ 𝑃(𝑡 − 𝜏𝑑) (5-4) 
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where 𝐾 is control gain and 𝜏𝑑 is the sum of delays at perceptual, control decision and 

motor stages as discussed in Chapter 3.2.2.  

5.1.2 Start Time of Driver Reaction 

The continuous model of Eq. (5-4) does not reflect human drivers’ intermittent time of 

reaction (i.e., drivers do not continuously change acceleration over time). Therefore, the 

accumulator model was used to predict the start time of reaction at intermittent time 

intervals - i.e., the driver reacts only when the accumulated evidence 𝐴(𝑡) exceeds the 

threshold 𝐴𝑇𝐻. The instantaneous evidence 𝜖(𝑡) or ‘control error prediction error’ is: 

 𝜖(𝑡) = 𝑃𝑟(𝑡) − 𝑃𝑝(𝑡) 

𝑃𝑟(𝑡) = 𝑃(𝑡 − 𝜏𝑝) 

(5-5)  

where 𝑃𝑝(𝑡) is the brain-predicted control error and 𝜏𝑝 is the perceptual delay (see Chapter 

3.2.2 for details). The accumulator model is expressed as follows: 

 𝑑𝐴(𝑡)

𝑑𝑡
= 𝛾[𝜂(𝜖(𝑡))] − 𝜆𝐴(𝑡) + 𝑎𝐵𝐿 + 𝜀(𝑡) 

(5-6) 

where 𝐴(𝑡) is the accumulated evidence, −𝜆𝐴(𝑡) represents the leakage of evidence, 𝑘 is 

the accumulator gain, 𝑎𝐵𝐿  is the effect of lead vehicle brake lights, and 𝜀(𝑡) is random 

background noise. Moreover, 𝜂(𝜖) = 𝑘𝜖, and 𝛾(𝜂) is defined as follows (refer to Eq. (3-

38)): 

 𝛾(𝜂) = 𝑠𝑖𝑔𝑛(𝜂) × max (0, |𝜂| − 𝑀) (5-7) 

where 𝑀 is the minimum gating below which accumulation does not start, and 𝑠𝑖𝑔𝑛(𝜂) is 

+1, -1 or 0 when 𝜂 is positive, negative or zero, respectively.  
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Since deceleration condition is more critical than the acceleration condition, the 

threshold 𝐴𝑇𝐻 is not the same for both conditions, but rather two thresholds 𝐴− and 𝐴+ for 

negative and positive accumulated evidence in Eq. (5-6), respectively. 

5.1.3 Acceleration Rate and Predicted Control Error 

The magnitude of the ith control adjustment (acceleration or deceleration) (𝑔𝑖 ) is 

expressed as follows (refer to Eq. (3-40)): 

 𝑔𝑖 = 𝐾
′𝜖(𝑡𝑖) (5-8) 

where 𝐾 ′represents the control gains in the intermittent model. Similar to the control error 

for the steering wheel angle rate model described in Chapter 3.2.2 (Eq. (3-30)), 𝑃(𝑡) 

described in Eq. (5-3) contains its own calibration parameters (e.g., 𝐴, 𝑏, etc.). Therefore, 

the control gain 𝐾′ is set to 1 and Eq. (5-8) is expressed as follows: 

 𝑔𝑖 = 𝜖(𝑡𝑖) 

𝑔𝑖 = 𝑃𝑟(𝑡𝑖) − 𝑃𝑝(𝑡𝑖) 

𝑔𝑖 = 𝐴𝑖 [1 − (
𝑣(𝑡𝑖 − 𝜏𝑝)

𝑣0
)

𝛿

− (
𝑠∗(𝑡𝑖 − 𝜏𝑝)

𝑠(𝑡𝑖 − 𝜏𝑝)
)

2

 ] − 𝑎(𝑡𝑖 − 𝜏𝑝) − 𝑃𝑝(𝑡𝑖) 

(5-9) 

Adding the motor noise 𝑚𝑖 to Eq. (5-9) yields: 

 𝑔̃𝑖 = 𝜖𝑖̃ 

𝜖𝑖̃ = (1 +𝑚𝑖) × 𝜖(𝑡𝑖) 

(5-10) 

where 𝑚𝑖 is the motor noise which is normally distributed with zero mean and variance 

𝜎𝑚
2. The shape of the control adjustment is provided by the function 𝐺(𝑡) (refer to Eq. 

(3-42)) is as follows: 
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𝐺(𝑡) = {

0  for 𝑡 ≤ 𝜏𝑚
      1  for 𝑡 ≥ 𝜏𝑚 + ∆𝑇

 
(5-11) 

where 𝑡 = 0 is the time when 𝐴(𝑡) ≥ 𝐴+ or 𝐴(𝑡) ≤ 𝐴−,  𝑡 = 𝑡𝑖 = 𝜏𝑚 is the time of the ith 

control adjustment,  𝜏𝑚 is the motor delay, and ∆𝑇 is duration of acceleration/deceleration. 

As discussed in Chapter 3.2.2, the prediction of control error 𝑃𝑝(𝑡) is defined as follows 

(refer to Eqs. (3-44) and (3-45)): 

 
𝑃𝑝(𝑡)  =∑ [𝜖𝑖̃ ∙ 𝐻(𝑡 − 𝑡𝑖)]   

𝑁

𝑖=1
 

𝐻(𝑡) = {

= 0, 𝑓𝑜𝑟 𝑡 ≤ 0 𝑎𝑛𝑑 𝑡 ≥ ∆𝑇𝑝
→ 1, 𝑓𝑜𝑟 𝑡 → 0+

→ 0, 𝑓𝑜𝑟 𝑡 → ∆𝑇𝑝

 

(5-12) 

where 𝐻(𝑡) is the shape of prediction.  

Based on the magnitude and shape functions, each acceleration/deceleration adjustment 

is controlled by the following intermittent control rate as follows: 

 
𝑎̇(𝑡) =∑ 𝑔̃𝑖 ∙ 𝐺̇(𝑡 − 𝑡𝑖) 

𝑁

𝑖=1
 

(5-13) 

 

where 𝑁  is the total number of acceleration and deceleration adjustments. The IIDM 

predicts the acceleration 𝑎(𝑡) in all car-following conditions as follows (refer to Eq. (3-

43)): 

 
𝑎(𝑡) = 𝑎0 +∑ 𝑔̃𝑖 ∙ 𝐺(𝑡 − 𝑡𝑖) 

𝑁

𝑖=1
 

        (5-14) 

where 𝑎0 is the initial acceleration,  𝑔̃𝑖 is the magnitude of control adjustment, 𝐺(𝑡) is the 

shape of control adjustment, and 𝑁 is the total number of adjustments.  
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Fig. 5-2 illustrates how the IIDM uses the control error and the accumulator model to 

make predictions on a single scenario run from the Moving-LV scenario. Fig. 5-2 (e) show 

the times when the model reaches the positive and negative thresholds. At these times, the 

model predicts acceleration or deceleration as shown in Fig. 5-2 (b). Fig. 5-2 (d) shows a 

zoomed-in part of Fig. 5-2 (c) for the duration 130 – 150 s to illustrate samples of control 

error 𝑃(𝑡) and its prediction 𝑃𝑝(𝑡) for both acceleration and deceleration adjustments. 
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Fig. 5-2. Prediction of Car-following Behaviour using the Intermittent IDM 
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5.2 Assessment of Model Performance 

The new car-following model, IIDM, was evaluated to assess if it can better predict car-

following behaviour than the three existing car-following models that are most frequently 

used for microscopic simulation – 1) the Gipps Model (Gipps, 1981), 2) the Intelligent 

Driver Model (IDM) (Treiber and Kesting, 2013), and 3) the original Wiedemann Model 

(Wiedemann and Reiter, 1992). 

Since two different types of data were used in this thesis, the models were calibrated at 

different levels of granularity. The driving simulator data consisted of individual scenario 

runs as opposed to the same traffic in the I-80 dataset. Therefore, each scenario run from 

the driving simulator data was individually used to calibrate the car-following models. The 

model performance was then assessed by visually comparing the predicted and observed 

speed, acceleration, jerk, and spacing. Moreover, the model performance was also 

quantitatively assessed by comparing the distributions of the above variables, as well as 

the minimum Time to Collision (TTC) and Deceleration Required to Avoid Crash (DRAC). 

For the I-80 dataset, only the trajectory data for a pair of vehicles longer than 70 s were 

used. There were 60 car-following-car pairs which satisfy this requirement (pairs with 

heavy-vehicles were shorter than 70 s). Seventy and 30 percents of these 60 pairs were 

randomly assigned to the calibration data set (42 pairs) and the validation data set (18 

pairs), respectively. The car-following models were calibrated using the calibration data. 

Thus, a single set of optimal parameters was determined for each model. The optimal 

parameters were then used to predict the car-following behaviour using the validation data. 

The predicted trajectories were then assessed qualitatively and quantitatively as described 
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above. The methods of calibrating the car-following models for both datasets are explained 

in the next section. 

5.3 Model Calibration 

5.3.1 Driving Simulator Data 

Fig. 5-3 shows the procedure of calibration of the car-following models. The models 

were calibrated using the data collected from the Moving-LV and Stopped-LV scenarios as 

described in Chapter 4: Each step of the calibration is explained in details as follows. 

 

 

Fig. 5-3. Procedure for calibration of car-following models for driving simulator 

data 
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Data Pre-processing   

In some cases, drivers reduced their speeds when they first saw the lead vehicle in the 

scenario, but later maintained or increased their speeds to drive at their desired speeds in 

Free-driving. Since Free-driving condition is not the focus of this study, the data collected 

during initial speed reduction and acceleration to reach the desired speed were not used.  

Each run of a scenario was labelled as a ‘file ID’ which is described in terms of the 

driver, lead vehicle type and the reaction scenario type. For example, a driver who drove 

the Moving-LV scenario with the lead car was labelled as the file ID 

‘car_following_<driver_name>’. 

Calibration 

The calibration process was divided into two steps as shown in Fig. 5-3. First, most of 

the parameters of Gipps model, IDM, Wiedemann model, and IIDM were estimated from 

the driving simulator data. Other parameters of the models could not be directly estimated 

from the data. These were called “hyperparameters”. After a preliminary investigation of 

these hyperparameters, the ranges of both model parameters and hyperparameters were 

provided as an input to the genetic algorithm with a fitness function. Second, the genetic 

algorithm determined the optimal set of parameters for a given file ID (combination of 

driver, lead vehicle type, reaction scenario type). Other approaches such as grid testing 

were also used to determine the optimal parameters but the genetic algorithm provided 

results faster. Each calibration step is described in detail below. 
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Estimation of Model Parameters from Calibration Data 

The equations of Gipps model, IDM, Wiedemann model, and IIDM with their 

calibration parameters (marked in grey) are listed in Table 5-1. The equations of the 

Wiedemann model do not include the random parameters as they were not required to 

calibrate the model for individual file IDs. This methodology was based on Higgs, Abbas 

and Medina (2011) study that removed the random parameters (RND and NRND) to 

analyze the Wiedemann model for different individual drivers’ speeds. Following sections 

discuss the calibration procedure in different car-following conditions. 

Table 5-1. Calibration Parameters in Gipps Model, IDM, Wiedemann Model, and 

IIDM 

Models / 

Thresholds 
Equations (parameters for calibration are marked in grey) 

Definition of 

calibration 

parameters 

Gipps 

Model 

𝑣𝑖(𝑡 + 𝜏𝑖)

= 𝑚𝑖𝑛

{
 
 
 
 

 
 
 
 

𝑣𝑖(𝑡) + 2.5𝐴𝑖𝜏𝑖 (1 −
𝑣𝑖(𝑡)

𝑣0
)√0.025 +

𝑣𝑖(𝑡)

𝑣0
    

𝑖𝑓 𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤

−𝑏𝑖𝜏𝑖 + √𝑏𝑖
2𝜏𝑖

2 − 𝑏𝑖 [−𝑣𝑖(𝑡)𝜏𝑖 −
𝑣𝑖−1
2 (𝑡)

𝐵𝑖−1
− 2𝑙𝑖−1 + 2𝑠𝑖(𝑡)] 

𝑖𝑓 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔  

 

𝐴𝑖 is the maximum 

desired acceleration 

starting from 

standstill, 𝜏𝑖 is 

reaction time 

(hyperparameter), 

𝑣0 is the desired 

speed, 𝑏𝑖 is the 

comfortable 

maximum 

deceleration of 

subject vehicle, 

𝐵𝑖−1 is the 

deceleration of lead 

vehicle, 𝑙𝑖−1 is the 

length of lead 

vehicle and 𝑠𝑖 is the 

front-to-front 

spacing 

Intelligent 

Driver 

Model 

(IDM) 

𝑎𝑖 = 𝐴𝑖 [1 − (
𝑣𝑖
𝑣0
)
𝛿

− (
𝑠∗

𝑠
)
2

 ] 

𝑠∗ = 𝑠0 +max(0, 𝑣𝑇 +
𝑣𝛥𝑣

2√𝐴𝑖𝑏
) 

𝛿 is a 

hyperparameter, 𝑠∗ 
is the desired front-

to-rear spacing, 𝑠0 

is the minimum 

standstill spacing, 

and 𝑇 is the front-

to-rear time 

headway.  
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Table 5-1. Calibration Parameters in Gipps Model, IDM, Wiedemann Model, and 

IIDM (Continued) 

Models / 

Thresholds 
Equations (parameters for calibration are marked in grey) 

Definition of 

calibration 

parameters 

 

Wiedemann Model 

Perception 

thresholds of 

spacing in 

Following 

AX = L + AXadd 

ABX = AX + (𝐵𝑋𝑎𝑑𝑑 × √𝑉) 
𝐸𝑋 = 𝐸𝑋𝑎𝑑𝑑 

𝑆𝐷𝑋 = 𝐴𝑋 + (𝐸𝑋 × 𝐵𝑋𝑎𝑑𝑑 × √𝑉) 

AXadd is the 
minimum 

standstill front-to-

rear spacing, 

𝐵𝑋𝑎𝑑𝑑 is the 

effect of speed on 

the following 

distance ABX, and 

𝐸𝑋𝑎𝑑𝑑 is a 

hyperparameter. 

Perception 

thresholds of 

speed difference 

in Approaching 

𝑆𝐷𝑉 = (
𝐷𝑋 − 𝐴𝑋

𝐶𝑋
)
2

, 𝐶𝑋 = √
𝑊

𝜃̇𝑊(𝑇𝐻)
 

𝜃̇𝑊(𝑇𝐻) is the 

angular velocity 

threshold in 

Approaching. 

Perception 

thresholds of 

speed difference 

in Following 

CLDV = SDV  EX2 

𝑂𝑃𝐷𝑉 =  𝐶𝐿𝐷𝑉  × (−𝑂𝑃𝐷𝑉𝑎𝑑𝑑 ) 

𝑂𝑃𝐷𝑉𝑎𝑑𝑑 is a 
hyperparameter. 

Acceleration to 

reach desired 

speed in Free-

driving 

𝐵𝑀𝐴𝑋 = 𝐵𝑀𝐴𝑋𝑚𝑢𝑙𝑡 × (𝑉𝑀𝐴𝑋 − 𝑉 × 𝐹𝑎𝑘𝑡𝑜𝑟𝑉) 

𝐹𝑎𝑘𝑡𝑜𝑟𝑉 =  
𝑉𝑀𝐴𝑋

𝑉𝐷𝐸𝑆𝐼𝑅𝐸𝐷 + 𝐹𝐴𝐾𝑇𝑂𝑅𝑉𝑚𝑢𝑙𝑡 . (𝑉𝑀𝐴𝑋 − 𝑉𝐷𝐸𝑆𝐼𝑅𝐸𝐷)
 

𝑉𝑀𝐴𝑋 = 44 m/s is the maximum speed of the following 

vehicle. 

𝐵𝑀𝐴𝑋𝑚𝑢𝑙𝑡 is a 

function of max. 

acceleration when 

starting from zero 

speed, 𝑉𝐷𝐸𝑆𝐼𝑅𝐸𝐷 is 

the drivers’ 

desired speed, and 

𝐹𝐴𝐾𝑇𝑂𝑅𝑉𝑚𝑢𝑙𝑡 
is a 

hyperparameter. 

Acceleration and 

deceleration to 

maintain speed in 

Following 

𝐵𝑁𝑈𝐿𝐿 = 𝐵𝑁𝑈𝐿𝐿𝑚𝑢𝑙𝑡 

𝐵𝑁𝑈𝐿𝐿𝑚𝑢𝑙𝑡 is 

the absolute 

acceleration that 

controls the 

unintended 

oscillation in 

speed. 

Deceleration in 

Approaching 
𝐵(𝑖)𝐴𝑝𝑝 =

1

2
×

𝐷𝑉2

𝐴𝐵𝑋 − 𝐷𝑋
+ 𝐵(𝑖 − 1)  

Deceleration in 

Emergency 

Braking 

𝐵(𝑖)𝐸𝑚𝑔= 
1

2
×

𝐷𝑉2

𝐴𝑋−𝐷𝑋
+ 𝐵(𝑖 − 1)   + 𝐵𝑀𝐼𝑁

(𝐴𝐵𝑋−𝐷𝑋)

(𝐴𝐵𝑋−𝐴𝑋)
 

𝐵𝑀𝐼𝑁 = -8 m/s2 

𝐵𝑀𝐼𝑁 = -8 m/s2 

based on the 

observed 

maximum 

deceleration in the 

data. 

 

  



 

111 

Table 5-1. Calibration Parameters in Gipps Model, IDM, Wiedemann Model, and 

IIDM (Continued) 

Models / 

Thresholds 

Equations (parameters for calibration are marked 

in grey) 

Definition of 

calibration parameters 

 

Intermittent Intelligent Driver Model (IIDM) 

Control Error 

𝑃(𝑡) = 𝐴𝑖 [1 − (
𝑣(𝑡)

𝑣0
)

𝛿

− (
𝑠∗(𝑡)

𝑠(𝑡)
)

2

 ] − 𝑎(𝑡) 

𝑠∗ = 𝑠0 +max (0, 𝑣𝑇 +
𝑣𝛥𝑣

2√𝐴𝑖𝑏
) 

All parameters defined 

for IDM above 

Control Error 

Prediction Error 

𝜖(𝑡) = 𝑃𝑟(𝑡) − 𝑃𝑝(𝑡) 

𝑃𝑟(𝑡) = 𝑃(𝑡 − 𝜏𝑝) 
𝜏𝑝 is the perceptual delay 

Accumulator 

Model 

𝑑𝐴(𝑡)

𝑑𝑡
= 𝑘 × 𝜖(𝑡) − 𝑀 − 𝜆𝐴(𝑡) + 𝑎𝐵𝐿 + 𝜀(𝑡) 

𝐴+ and 𝐴− are the thresholds of the accumulator model 

𝑎𝐵𝐿  is used with a probability 𝑝𝐵𝐿  

𝜀(𝑡) ~ 𝑁(0, 𝜎𝑎) 

𝑘 is the accumulator gain, 

𝜆  controls the evidence 

leakage, 𝑎𝐵𝐿  is the effect 

of the lead vehicle brake 

light, 𝑀  is the minimum 

gating below which the 

accumulation does not 

start, and 𝜎𝑎  is the 

standard deviation of the 

noise term 𝜀(𝑡) 

Magnitude of 

Acceleration 

𝑔̃𝑖 = 𝜖𝑖̃ 
𝜖𝑖̃ = (1 + 𝑚𝑖) × 𝜖(𝑡𝑖) 

𝑚𝑖  ~ 𝑁(0, 𝜎𝑚) 

𝑚𝑖  is normally 

distributed motor noise 

with a standard deviation 

of 𝜎𝑚 

Shape of Control 

Adjustment 
𝐺(𝑡) = {

0  for 𝑡 ≤ 𝜏𝑚
      1  for 𝑡 ≥ 𝜏𝑚 + ∆𝑇

 
𝜏𝑚  is the motor delay, 

and ∆𝑇 is the duration of 

the control adjustment  

Shape of 

Predicted Control 

Error  

𝐻(𝑡) = {

= 0, 𝑓𝑜𝑟 𝑡 ≤ 0 𝑎𝑛𝑑 𝑡 ≥ ∆𝑇𝑝
→ 1, 𝑓𝑜𝑟 𝑡 → 0+

→ 0, 𝑓𝑜𝑟 𝑡 → ∆𝑇𝑝

 

∆𝑇𝑝  is the total duration 

of predicted control error 

per adjustment. It consists 

of ∆𝑇𝑝0  and ∆𝑇𝑝1  as 

explained above  

 

Free-driving 

Desired speed in Free-driving is expressed as 𝑣0 or 𝑉𝐷𝐸𝑆𝐼𝑅𝐸𝐷 in different models (see Table 

5-1). The data contained two parts of Free-driving. In the first part, the speed increases 

from a zero speed to a driver-specific desired speed. In the second part, the speed becomes 

stable at the desired speed with minor variation. These two parts of Free-driving were 
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identified using a changepoint algorithm in the R programming language (Killick and 

Eckley, 2014). The changepoint algorithm detects the change in the mean and variance of 

the distribution of a time-dependent variable. Since the variance of the speed significantly 

decreases after the driver reaches the desired speed, the changepoint algorithm can 

determine the time when the desired speed is achieved. 

Fig. 5-4 shows the estimated desired speed from Free-driving data of a single driver 

using the changepoint method. The changepoint detected with this method indicated that 

there was no significant change in the mean and variance of speed after the desired speed 

was achieved. Thus, the driver had maintained his/her desired speed after the changepoint. 

The median value of the speeds after the changepoint was estimated as the desired speed 

for a given file ID. 

 

Fig. 5-4. Estimation of Desired Speed from Free-driving part of the Calibration 

Data  
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The acceleration when starting from zero speed was expressed as 𝐴𝑖 or (𝐵𝑀𝐴𝑋𝑚𝑢𝑙𝑡 ×

𝑉𝑀𝐴𝑋) in different models. Therefore, the maximum acceleration 𝐴𝑖 for each file ID was 

obtained as the maximum acceleration in the Free-driving data. Then 𝐵𝑀𝐴𝑋𝑚𝑢𝑙𝑡 was 

estimated as the maximum acceleration divided by 𝑉𝑀𝐴𝑋  (the maximum speed of the 

subject vehicle). Since all drivers used the same car model in the driving simulator, 𝑉𝑀𝐴𝑋 = 

44 m/s. Fig. 5-5 shows the distributions of the parameters for all file IDs in the Free-driving 

data. 

𝐹𝑎𝑘𝑡𝑜𝑟𝑉  depends on 𝑉𝐷𝐸𝑆𝐼𝑅𝐸𝐷 , 𝑉𝑀𝐴𝑋  and 𝐹𝐴𝐾𝑇𝑂𝑅𝑉𝑚𝑢𝑙𝑡 in the Wiedemann model. 

Since 𝐹𝐴𝐾𝑇𝑂𝑅𝑉𝑚𝑢𝑙𝑡 and 𝛿 in the IDM and IIDM could not be estimated from the data, 

a range of values was tested by randomly selecting a few values. This range was then 

provided to genetic algorithm in the next step. 
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Fig. 5-5. Distributions of Parameters in Free-driving Condition 

 

Approaching and Following 

Gipps model and IDM do not have a perception threshold of Approaching condition. But 

the Wiedemann model considers the angular velocity threshold 𝜃̇𝑊(𝑇𝐻)  as the start of 

Approaching condition. Therefore, 𝜃̇𝑊(𝑇𝐻)  was estimated as the value of 𝜃̇𝑊  when the 

driver first released the accelerator while approaching from a large spacing. The parameter 

CX depends on 𝜃̇𝑊(𝑇𝐻) as shown in Table 5-1.  

The deceleration due to accelerator release is modeled as 𝐵(𝑖)𝐴𝑝𝑝 in the 

Wiedemann model, which is a function of the following distance ABX. The 
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following distance is the spacing kept by the following vehicle when both 

vehicles are moving at the same speed. Therefore, ABX = L + AXadd + (BXadd 

×√V) depends on the front-to-rear standstill spacing AXadd, and BXadd is the 

effect of speed on ABX. The following distance in the IDM is  

𝑠∗ = 𝑠0 +max (0, 𝑣𝑇 +
𝑣𝛥𝑣

2√𝐴𝑏
), where 𝑠0 = 𝐴𝑋𝑎𝑑𝑑 and 𝑇 = the effect of speed 

on 𝑠∗.   

AXadd and 𝑠0  were estimated as the front-to-rear spacing when the speeds of both 

vehicles were less than 0.5 m/s, as not all drivers completely stopped at the end of 

scenarios. 𝐵𝑋𝑎𝑑𝑑 and 𝑇 were calculated for each file ID using the estimated AXadd and 

𝑠0 in the above equations. The data used for calculating 𝐵𝑋𝑎𝑑𝑑 and 𝑇 were only from the 

Following condition, i.e., when the speeds of lead and following vehicles were almost the 

same (22-28 m/s). CX was then estimated based on the above estimated parameters. Fig. 

5-6 shows the distributions of the parameters for Approaching and Following conditions 

obtained from the data. 
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Fig. 5-6. Distributions of Parameters in Approaching Condition 

 

The hyperparameters, 𝜏𝑖, 𝐸𝑋𝑎𝑑𝑑 and 𝑂𝑃𝐷𝑉𝑎𝑑𝑑, were optimized in the next step. The 

suggested values are 0.1-2.5 s for 𝜏𝑖 , 2 for 𝐸𝑋𝑎𝑑𝑑 , and larger than 1 for 𝑂𝑃𝐷𝑉𝑎𝑑𝑑 

(Wiedemann and Reiter, 1992; Treiber and Kesting, 2013).  

The thresholds 𝐴+ and 𝐴− in the IIDM were also hyperparameters. The initial absolute 

values for the threshold were 0.001 to 5000. The leakage parameter and the noise terms 

had the initial ranges of 0 - 1 and 0 – 0.5 respectively, 𝑎𝐵𝐿 0 – 2, 𝑝𝐵𝐿 0 – 1, 𝑀 0 – 5, 𝜏𝑝 and 

𝜏𝑚 0 – 0.05, ∆𝑇 0.1 – 5, ∆𝑇𝑝0 0 – 0.9, and ∆𝑇𝑝11 – 10.  
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Braking 

The maximum comfortable deceleration is a function of vehicle model and drivers’ desire 

to use it. It is represented as 𝑏𝑖 in the Gipps model, and 𝑏 in the IDM and the IIDM. In the 

Wiedemann model, 𝐵(𝑖)𝐸𝑚𝑔 is used in a more urgent situation when the following distance 

ABX is violated. The upper bound of deceleration in braking, BMIN, was -10 m/s2 based 

on the observed data. Fig. 5-7 shows the distribution of deceleration in the data. Based on 

this distribution, an initial absolute range of 1 – 10 was used for 𝑏𝑖 and 𝑏. 

 

Fig. 5-7. Distribution of b  

 

Optimization of Parameters using Genetic Algorithm 

Genetic algorithm was used for the non-linear optimization of the acceleration and speed 

functions of the models described in Table 5-1. As shown in Fig. 5-3, the optimal 

parameters were determined for each file ID using genetic algorithm. The package GA in 

the R programming language was used for the optimization of parameters in this study 

(Scrucca, 2013). The procedure of optimization is briefly explained below. Fig. 5-8 shows 

an example of using genetic algorithm for determining the optimal parameters of the Gipps 
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model. More details of the procedure can be found in Chapter 16 of Treiber and Kesting 

(2013).  

 

Fig. 5-8. Procedure of Estimating Optimal Parameters using the Genetic Algorithm 

 

Initialization:   

Create Np parameter sets for a given car-following model. For example, for Gipps model, 

Np sets of four calibration parameters {𝐴𝑖 , 𝜏𝑖 , 𝑣0, 𝑏𝑖} were created. The value of each 

parameter was randomly selected from the observed range of values in the previous step. 

In this study, the number of parameter sets, Np, was set to 50. As an example, Fig. 5-8 

shows the initialization of Np = 3 parameter sets (a, b, c) for the Gipps model in step 1. 
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Evaluation of Fitness 

For each parameter, the sum of squared errors (SSE) for each file ID was calculated as 

follows: 

 

𝑆𝑆𝐸 =
∑ (𝑦̂𝑖 − 𝑦𝑖

𝑑𝑎𝑡𝑎)2 𝑦𝑖
𝑑𝑎𝑡𝑎⁄𝑛

𝑖=1

∑ 𝑦𝑖
𝑑𝑎𝑡𝑎𝑛

𝑖=1

 
(5-15) 

 

where 𝑖 = 1 to 𝑛 represents the time frames (second) 𝑖 = 1, 2, 3, … , 𝑛 with n as the last 

time frame per file ID. 𝑦̂𝑖 and 𝑦𝑖
𝑑𝑎𝑡𝑎 are the simulated and observed front-to-rear spacing, 

respectively. This SSE can account for both large and small front-to-rear spacing because 

it is a combination of absolute and relative errors which are sensitive to large and small 

spacing, respectively (Kesting and Treiber, 2008).  

Moreover, optimizing the parameters with respect to front-to-rear spacing can also 

reduce the differences between the simulated and observed speed. However, “this does not 

hold the other way round, as the error in the front-to-rear spacing may incrementally grow 

when optimizing with respect to differences in simulated and observed speed” (Kesting 

and Treiber, 2008).  

At the end of this step, N values of SSE were obtained for a given car-following model 

and file ID. This is illustrated in the example shown in Fig. 5-8 where the SSE for the 

parameter set c was the lowest (most fit) in step 2. 
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Selection  

Np-1 pairs of parameter sets were selected from the population of Np, such that the 

parameter sets with lower SSE were chosen with a higher probability (lower SSE = higher 

fitness). A pair consisted of 2 parameter sets (parents), and a given parameter set could be 

part of more than one pair. The fittest parameter set from the evaluation step was also added 

to this selection. 

The example in Fig. 5-8 illustrates the selection procedure in step 3 where the Np-1 = 2 

selected pairs were made of parameter sets c-a and c-b. Since parameter set c had the lowest 

SSE in step 2, it was also selected. 

Mating and Offspring 

New parameter sets (offspring) were created per pair by randomly combining the 

parameters from each parent. For instance, a pair of {𝐴𝑖1, 𝜏𝑖1, 𝑣01, 𝑏𝑖1} and {𝐴𝑖2, 𝜏𝑖2, 𝑣02, 

𝑏𝑖2} was randomly combined to create {𝐴𝑖1, 𝜏𝑖2, 𝑣01, 𝑏𝑖2}. The offspring of the fittest 

parameter set was itself. Then SSE was estimated for each offspring. This procedure is 

illustrated in step 4 of Fig. 5-8 where pairs of parameter sets c-a and c-b generated new 

offspring parameter sets d and e. Parameter set c was its own offspring. 

Mutations 

Since the car-following model equations are non-linear functions, the optimization 

procedure can lead to local minima of SSE instead of reaching a global minimum. To avoid 

this issue, some of the parameters of all offspring were randomly varied and SSE was 

estimated. The example in Fig. 5-8 shows random variation in two out of the three 
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parameter sets (d and c) that led to new parameter sets f and g. The randomly varied 

parameters are highlighted. Parameter set g produced the lowest SSE among the three 

parameter sets.  

Termination 

The previous steps were repeated for a fixed maximum number of generations (100 in 

this study) to obtain the minimum possible SSE. The algorithm stopped when no further 

improvements in SSE were found for a few consecutive generations. This is shown in Fig. 

5-8 where parameter g was the fittest and no further reduction in SSE was observed after 

running the steps 2-5 several times. 

5.3.2 Calibration and Validation of the Interstate-80 (I-80) Vehicle Trajectory 

Data 

Previous section described the calibration with individual scenario runs. This individual-

run calibration procedure is useful in understanding the model performance by visually 

comparing the predicted trajectories among different models and the observed trajectories. 

However, this method is time-intensive and not useful practically when calibrating traffic 

trajectories. Therefore, for the I-80 data, the complete data were used for calibration as 

described below. 

Fig. 5-9 shows the procedure for calibrating and validating the car-following models 

using the I-80 data. This procedure is similar to the one described for the driving simulator 

data. But unlike the driving simulator data, the calibration of models was performed 

simultaneously on all the car-following vehicles in the calibration data (42 pairs). This was 

done by providing a given set of parameters (chosen by the genetic algorithm from the 
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initial ranges provided) to a given model (Fig. 5-9 top-right). This same set of the 

parameters was then used to generate the speed, acceleration and spacing trajectories for 

all 42 car-following-car pairs. Then, the following fitness function was evaluated: 

 

𝑆𝑆𝐸 =
∑ (𝑦̂𝑖 − 𝑦𝑖

𝑑𝑎𝑡𝑎)2 𝑦𝑖
𝑑𝑎𝑡𝑎⁄𝑛

𝑖=1

∑ 𝑦𝑖
𝑑𝑎𝑡𝑎𝑛

𝑖=1

 
(5-16) 

 

where 𝑖 = 1 to 𝑛 represents the time frames (second) 𝑖 = 1, 2, 3, … , 𝑛 with n as the last 

time frame. 𝑦̂𝑖 and 𝑦𝑖
𝑑𝑎𝑡𝑎 are the simulated and observed front-to-rear spacing, respectively 

of the 42 pairs in the calibration data, stacked by rows. The remaining procedure was the 

same as discussed in the previous section. 

The optimal parameter set per model was then used to evaluate the model performance 

on the validation data (18 pairs). 
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Fig. 5-9. Procedure for calibration of car-following models for I-80 data 

 

5.4 Effect of Lead Vehicle Type on the Start Time of Driver Reaction 

Previous sections discussed the development of the Intermittent Intelligent Driver Model 

(IIDM) and the methods of calibrating the model. The IIDM adapts the IDM with the 

Accumulator Model which reflects the driver’s intermittent reactions. However, the IDM 

does not explicitly consider the effects of the lead vehicle types on car-following 

behaviour. It is expected that drivers initiate the deceleration earlier when they follow a 

larger lead vehicle than following a smaller lead vehicle.  
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Since the IDM does not consider the lead vehicle size, the effect on the start time of 

driver reaction can be estimated using perceptual cues such as the angular velocity and tau-

inverse in the Accumulator Model only. The Accumulator Model was calibrated separately 

for approaching and braking conditions, scenario type (Moving-LV and Stopped-LV), and 

each vehicle type (car and truck). Since the height of lead truck is larger than its width and 

it potentially has more influence on drivers, angular velocity due to the LV height (𝜃̇𝐻) was 

also considered as a looming variable for the lead truck case. The equation and parameters 

of the Accumulator Model were explained in section 3.2.2. 

The data from the Moving-LV and Stopped-LV scenarios were combined to build the 

calibration data (87 runs only). The Accumulator model was run 100 times for each file ID 

in the calibration data with a given set of parameters chosen by genetic algorithm. The 

fitness function for genetic algorithm was based on the likelihood of obtaining the observed 

reaction time for given model parameters (Xue et al., 2018). The observed reaction times 

in approaching and braking conditions were defined in Table 4-1. The log-likelihood 

function is shown as follows: 

 Log-Likelihood(𝜃)

= log [p(𝑅𝑇𝑂𝐵𝑆1|𝜃)] + log [p(𝑅𝑇𝑂𝐵𝑆2|𝜃)] + ⋯

+ log [p(𝑅𝑇𝑂𝐵𝑆𝑁|𝜃)] 

(5-17) 

 

  



 

125 

Table 5-2. Equations of Accumulator Model 

Model 
Equations (parameters for 

calibration are marked in grey) 

Definition of calibration parameters and the 

range of values 

Base 

𝑑𝐴(𝑡)

𝑑𝑡
= 𝐾 × 𝐿(𝑡) − 𝑀 +  𝜀(𝑡) 

𝐿(𝑡) is looming (𝜃̇ or 𝜏−1) 

A(t) is activation 

 

𝜀(𝑡) ~ 𝑁(0, 𝜎𝑎) 

 Approach 
Brake (LV brake 

lights OFF) 

𝐾 

(𝐿(𝑡) = 𝜃̇) 
{50, 13000} {5, 6000} 

𝐾 

(𝐿(𝑡) = 𝜏−1) 
{1, 300} {1, 300} 

𝑀 {0, 0.5} {0, 0.5} 

𝜎𝑎 {0, 0.5} {0, 0.5} 

Brake 

Light 

 
𝑑𝐴(𝑡)

𝑑𝑡
= 𝐾 × 𝐿(𝑡) − 𝑀 + 𝑎𝐵𝐿 +  𝜀(𝑡) 

used with a probability 𝑝𝐵𝐿  

 

 
Brake (LV brake 

lights ON) 

𝐾 

(𝐿(𝑡) = 𝜃̇) 
{10, 1000} 

𝐾 

(𝐿(𝑡) = 𝜏−1) 
{1, 100} 

𝑀 {0, 0.5} 

𝜎𝑎 {0, 0.5} 

𝑎𝐵𝐿  {0.5, 5} 

𝑝𝐵𝐿  {0.6, 1} 

 

In the calibration process, the optimal model parameters in all conditions were 

determined. The goodness-of-fit of the models was evaluated based on Akaike Information 

Criterion (AIC) which is estimated as follows: 

 𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿̂)  (5-18) 

 

where 𝑘 is the number of parameters in the model and 𝐿̂ is the likelihood. Smaller AIC 

values indicate better model fit.  
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Chapter 6:  Results and Discussion 

6.1 Hypotheses on Start Time of Reaction 

Chapter 4: presented three hypotheses on the start time of deceleration in approaching and 

braking conditions. These three hypotheses were tested using the data collected from the 

four driving simulator scenarios also discussed in Chapter 4. These scenarios were 

Perception-in-approaching, Perception-in-following, Moving-LV and Stopped-LV. The 

former two scenarios are referred to as perception scenarios while the latter two are referred 

to as reaction scenarios in the discussion of the results as follows. 

6.1.1 Perception and reaction in approaching condition 

Fig. 6-1 shows the distribution of tau-inverse at the times when drivers released 

accelerator in Perception-in-approaching and reaction scenarios while approaching a slow 

or stopped lead car (left figure) and truck (right figure) from a large spacing. Each data 

point in Fig. 6-1 represents the value of tau-inverse in a scenario run by a driver. The values 

of tau-inverse for the same driver were connected using straight lines. The darker lines 

correspond to the data within the inter-quartile range (IQR) (= 75th percentile – 25th 

percentile) of the perception scenario, which eliminates outliers. 
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Fig. 6-1. Distribution of tau-inverse at the time of accelerator release in approaching 

condition  

 

The three hypotheses were evaluated to understand the driver behaviour in approaching 

a slow or stopped lead vehicle. In the hypothesis H1, a driver is assumed to release 

accelerator as soon as tau-inverse reaches the driver’s perception threshold. This 

assumption was used in psychophysical car-following models such as the Wiedemann car-

following model (Wiedemann and Reiter, 1992). Therefore, if this assumption were 

correct, the distributions of tau-inverse values must have been similar in the perception and 

reaction scenarios. However, Fig. 6-1 shows that the tau-inverse values are generally higher 

for the reaction scenarios than the perception scenario. The result of Mann-Whitney U Test 

shows that the distributions of tau-inverse were statistically different between perception 

and reaction scenarios at a 95% confidence level. Thus, the hypothesis H1was rejected. 

In the hypothesis 2, a driver is assumed to detect the lead vehicle motion when tau-

inverse reaches the driver’s perception threshold and then react after a driver-specific 
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reaction time. Because of the reaction time, the tau-inverse at the time of releasing 

accelerator (i.e., the reaction threshold) will be greater than the perception threshold. 

Higher values of tau-inverse for the reaction scenarios than the perception scenario in Fig. 

6-1 supports this hypothesis. The distributions of perception time and reaction time 

determined to according to the definitions in Table 1 were compared in Fig. 6-2. The figure 

only shows the data in the inter-quartile range in the Perception-in-approaching scenario. 

 

Fig. 6-2. Perception time and reaction time in approaching condition in hypothesis 

H2 

 

To accept the hypothesis H2-1, the perception time and the reaction time should be 

similar for the same driver in different approaching conditions. However, Fig. 6-2 clearly 

shows that the perception time and the reaction time varied significantly between the 

Moving-LV and Stopped LV scenarios. Also, the values of PRT (= perception time + 

reaction time) were greatly larger than the typical values of 1.5-2.5 s in the literature 

(Green, 2017b).  To accept the hypothesis H2-2, drivers must react at the reaction threshold 

rather than after the reaction time. However, Fig. 6-1 shows that the distributions of tau-
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inverse are different between the two reaction scenarios. These results imply that driver 

reaction is not dependent on the reaction time or reaction threshold. Therefore, the 

hypothesis H2 (both H2-1 and H2-2) was also rejected. 

The hypothesis H3 assumes that drivers react based on the accumulation of the evidence 

(represented by tau-inverse) over time. Fig. 6-3 shows the increase in tau-inverse over time 

(illustrated in the accumulation curve) in the perception and reaction scenarios of 

approaching condition for 3 drivers. It was found that the areas under the accumulation 

curves for different drivers were generally similar across all three scenarios for a given lead 

vehicle type (car/truck). The areas under the accumulation curves were estimated using the 

trapezoidal rule implemented in the “bayestestR” package in the R programming language 

(Makowski et al., 2019). 

 

Fig. 6-3. Increase in tau-inverse over time in approaching condition 

Note: The numbers inside the boxes denote the area under the curves. 
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In general, tau-inverse increased rapidly in the Reaction-to-stopped-LV scenario due to 

a large speed difference. This leads to a faster accumulation of evidence for reaction to 

slow down. In contrast, tau-inverse accumulated more slowly in the Perception-in-

approaching scenario, which resulted in slower response. Therefore, the evidence 

accumulation process seems to be the best hypothesis to explain the driver behaviour in 

approaching condition. The evidence accumulation framework has been implemented as a 

model and tested on braking condition in previous studies (Xue et al., 2018). Thus, this 

study demonstrated that the evidence accumulation framework can also explain the driver 

behaviour in approaching a lead vehicle from a large spacing. 

Fig. 6-3 also shows that the lead truck has larger influence on driver reaction than the 

lead car as indicated by smaller areas under the curves in the lead truck case. This indicates 

that drivers reacted earlier to the lead truck potentially because of either larger height of 

trucks or driver’s discomfort with following the truck. 

6.1.2 Perception and reaction in braking condition 

Fig. 6-4 shows the perception thresholds in braking condition (i.e., the value of tau-

inverse at the start of braking) in the Perception-in-following scenario. This figure includes 

the data for the speed differences of 2 and 3 m/s in the spacing of 20-100 m only because 

over 80% of drivers correctly judged the speed difference in this spacing range. The data 

from the drivers who did not correctly judge speed differences were discarded. Fig. 6-4 

shows that the drivers generally detected the lead vehicle at a smaller tau-inverse in longer 

spacing. Also, they detected the lead truck at a smaller tau-inverse than the lead car. Thus, 

driver behaviour in braking condition is dependent on speed difference and spacing. 
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Fig. 6-4. Perception threshold in Perception-in-following scenario (speed difference 

of 2-3 m/s) 

 

Fig. 6-5 shows the distributions of tau-inverse at the start of braking behind a 

decelerating or stopped lead car and lead truck. The Moving-LV data were further divided 

into the drivers who saw the lead vehicle brake lights (triangle markers) and the drivers 

who did not (circle markers). The lead vehicle brake lights were always turned off in the 

Stopped LV scenario.  

 

Fig. 6-5. Distribution of tau-inverse at the start of braking in braking condition 

Note: Circle markers and triangle markers represent the lead vehicle brake lights off and brake lights on 

conditions, respectively. 
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It is evident from Fig. 6-5 that when the drivers did not see the lead vehicle brake lights, 

they relied on the visual variables and applied brakes at higher tau-inverse. Since the tau-

inverse at the start of braking (Fig. 6-5) was greater than the tau-inverse in the Perception-

in-following scenario (Fig. 6-4), the hypothesis H1 (a driver perceives and reacts at the 

same threshold) was rejected. 

Fig. 6-5 also shows that tau-inverse was slightly greater in the Stopped-LV scenario 

than the Moving-LV scenario (lines were connected for the lead vehicle brake lights off 

cases only). But these distributions of tau-inverse were not statistically different between 

the two scenarios at a 95% confidence level. However, when the lead vehicle brake lights 

on cases were included, the distributions were statistically different at a 95% confidence 

level. If the drivers indeed reacted after a reaction time or at a specific value of tau-inverse, 

their reaction threshold must have been similar in both lead vehicle brake lights on and off 

cases. However, the values of tau-inverse at the start of braking were generally higher in 

the lead vehicle brake lights off case than the lead vehicle brake lights on case in the 

Moving-LV scenario as shown in Fig. 6-5. Therefore, the hypothesis H2 (driver reacts after 

a reaction time or at a reaction threshold) was also rejected. 

Fig. 6-6 shows the increase in tau-inverse in braking conditions of reaction scenarios 

for three drivers (lead vehicle brake lights off cases). The areas under the accumulation 

curves were not similar between the Moving-LV (labelled as Decelerating_LV) and 

Stopped-LV scenarios because of the different start time of accumulation for each scenario. 

The time starts when drivers released accelerator in the Stopped-LV scenario whereas the 

time starts when the lead vehicle started braking in the Moving-LV scenario. 
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Fig. 6-6. Increase in tau-inverse over time in braking condition 

 

Moreover, unlike the approaching condition, the areas under the curves were not 

consistently smaller for the lead truck case than the lead car case. This is because the initial 

speed difference and/or spacing were not necessarily the same in both lead car and lead 

truck cases for the same driver. For this reason, the values of tau-inverse when the lead 

vehicle started braking were different between the two cases.  

Nevertheless, the patterns of increase in tau-inverse were similar to the approaching 

condition (Fig. 6-3). A slower increase in tau-inverse over a longer time results in a slower 

start of braking whereas a faster increase in tau-inverse over a shorter time results in a 

faster start of braking. 
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In summary, the theoretical concept of the evidence accumulation framework provides 

plausible explanation on the time of releasing accelerator and applying brakes in both 

approaching and braking conditions for different types of lead vehicle (car and truck). This 

demonstrates that the time of driver reaction can be better predicted based on the evidence 

accumulation of control error (e.g., tau-inverse) rather than the fixed value of PRT or the 

PRT value randomly drawn from a situation-independent empirical distribution, as used in 

the engineering car-following models. Thus, the assumption of the Wiedemann model that 

the driver reaction starts when a perceptual variable reaches a fixed threshold, does not 

reflect the actual driver behaviour.  

These findings suggest that a car-following model needs to account for the variation in 

the start time of reaction based on the evidence accumulation of an appropriate control 

error. In this regard, the Intermittent Intelligent Driver Model (IIDM) proposed in this study 

is a better alternative to the conventional car-following models.  

6.2 Calibration of Accumulator Model 

To predict the driver’s start time of reaction based on the evidence accumulation, the IIDM 

incorporates the Accumulator model (see Chapter 3.2.2) in the model framework. The 

parameters of the Accumulator model were calibrated as follows. 

The Accumulator model accounts for the effect of the type of the lead vehicle as a 

parameter 𝑎𝑇 which represents the effect of lead truck in Eq. (5-6). This parameter 𝑎𝑇 does 

not only represent the effect of larger size of truck, but also the effect of driver’s discomfort 

and/or unsafe feeling associated with following a large truck (Peeta et al., 2005). However, 

𝑎𝑇  did not result in any improvement in model results.  Instead, the effect of the lead 
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vehicle type was captured using different perceptual variables for different lead vehicle 

type – e.g., the angular velocity due to the height of lead vehicle for the lead truck case.  

Fig. 6-7 shows the AIC values for the Accumulator model with different perceptual 

variables. The minimum AIC (i.e., the best model fit) in each case is also shown in dark 

bars. Fig. 6-7 (a) shows that angular velocity due to the width of lead vehicle produced the 

best model for the approach reaction time in the Moving-LV scenario (left figures). 

However, tau-inverse produced the best model fit in the lead car case of the Stopped-LV 

scenario (top right figures of Fig. 6-7). This is potentially because the drivers are more 

sensitive to the tau-inverse in more urgent condition when approaching a stopped LV than 

approaching a moving LV. Interestingly, the angular velocity due to the height produced 

the best model fit in the lead truck case of the Stopped-LV scenario (bottom right figure of 

Fig. 6-7). This is in contrast with the assumption in the literature that drivers are more 

sensitive to horizontal dimension (width) than vertical dimension (height) (Green, 2017a) 

In case of the brake reaction time, tau-inverse produced the best model fits for the 

Moving-LV scenario (left figures of Fig. 6-7 (b)) while angular velocity produced best 

model fits for the Stopped-LV scenario (right figures of Fig. 6-7 (b)) when LV brake lights 

were off. This contradicts the best model fit of the approach reaction time with angular 

velocity in the lead car case. This indicates that the drivers are more sensitive to tau-inverse 

in more urgent condition of braking than approaching a moving LV. Similarly, previous 

studies found that in urgent braking conditions, tau-inverse produced better model fit than 

angular velocity due to the width (Maddox and Kiefer, 2012). Again, angular velocity due 

to the height produced the best model fit in the lead truck case of the Stopped-LV scenario. 
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Fig. 6-7. Akaike Information Criterion (AIC) of Accumulator models with different 

perceptual variables and the lead vehicle brake light parameter 

 

When lead brake lights were on, the Accumulator Model with angular velocity due to 

the width and the LV brake light parameter produced the best model fit in the lead car case 

as shown in Fig. 6-7 (c). However, the lead vehicle brake lights parameter did not improve 

the model fit. This is because the lead vehicle brake lights helped the drivers detect the lead 
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car’s deceleration, which prompted their early brake application. In the lead truck case, the 

drivers did not apply brakes earlier even if they could better detect the lead vehicle with 

brake lights on because they released the accelerator earlier and they had more time to 

brake.  

Based on the comparison of AIC, the values of calibrated parameters which produced 

the best fitted Accumulator models were determined as shown in Table 6-1. These results 

indicate that a control error in the IIDM which incorporates the perceptual cues for both 

acceleration and deceleration adjustments can help predict the start time of driver reaction 

more realistically. 

Table 6-1. Calibrated Parameter Values of Accumulator Model 

Condition 
Scenario 

type 

Lead 

vehicle 

type 

Lead 

vehicle  

brake lights 

Best 

fit 

with 

Parameters 

Approaching 

Moving-LV 
Car Off 𝜃̇𝑊 𝐾 = 2057, 𝑀 = 0.34, 𝜎𝑎 = 0.19 

Truck Off 𝜃̇𝑊 𝐾 = 1407, 𝑀 = 0.34, 𝜎𝑎 = 0.16 

Stopped-LV 
Car Off 𝜏−1 𝐾 = 9, 𝑀 = 0.35, 𝜎𝑎 = 0.11 

Truck Off 𝜃̇𝐻 𝐾 = 1587, 𝑀 = 0.36, 𝜎𝑎 = 0.10 

Braking 

Moving-LV 

Car Off 𝜏−1 𝐾 = 11, 𝑀 = 0.34, 𝜎𝑎 = 0.24 

Car On 𝜃̇𝑊 
𝐾 = 391, 𝑀 = 0.33, 𝜎𝑎 = 0.10, 
𝑎𝐵𝐿 = 0.97,  𝑝𝐵𝐿 = 0.71 

Truck Off 𝜏−1 𝐾 = 9, 𝑀 = 0.43, 𝜎𝑎 = 0.20 

Truck On 𝜏−1 𝐾 = 11, 𝑀 = 0.35, 𝜎𝑎 = 0.44 

Stopped-LV 
Car Off 𝜃̇𝑊 𝐾 = 666, 𝑀 = 0.36, 𝜎𝑎 = 0.24 

Truck Off 𝜃̇𝐻 𝐾 = 223, 𝑀 = 0.19, 𝜎𝑎 = 0.17 

 

6.3 Comparison of Car-Following Model Performance 

To evaluate the performance of the IIDM, four car-following models – the Gipps Model, 

the IDM, the Wiedemann Model, and the IIDM (with and without the lead vehicle brake 

lights (BL)) – were fit to the driving simulator data (Moving-LV and Stopped-LV 

scenarios) as well as the Interstate-80 (I-80) data. Optimal values of model parameters were 
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obtained using a fitness function in a genetic algorithm such that the error between the 

observed and predicted spacing is minimized. Each model was fit to an individual driving 

simulator run to estimate the optimal parameter set for each individual run. This generates 

the distributions of optimal parameters obtained from the individual runs. 

To validate the performance of these models, the real-world trajectory data from the I-

80 was used. The data were divided into calibration and validation data. Each model was 

fit to car-following-car pairs in the complete calibration data instead of individual pairs of 

lead and following vehicles. Then a single set of optimal parameters was determined for 

each car-following model. This optimal parameter set was used to evaluate the model 

performance with the validation data. 

The following sections compare the model performance both quantitatively and 

qualitatively. The last subsection compares the model parameter values between the lead 

car and lead truck cases in the driving simulator data. 

6.3.1 Speed Distribution 

Fig. 6-8. Observed and Predicted Speed Distributions  shows the distributions of observed 

and predicted speeds in the three datasets. Fig. 6-8 (a) shows that the IIDM with and 

without BL has the best fit for the Moving-LV data compared to the Wiedemann Model, 

the Gipps Model and the IDM which overestimated the speeds around 21-22 m/s and 

underestimated the speeds around 25 m/s. The speed of 25 m/s was the speed of the lead 

vehicle. This means that these models generally predicted lower speeds while following 

the lead vehicle. This will be discussed further in the qualitative comparison of the models 

in the next section. 
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(a) Moving-LV scenario 

 

(b) Stopped-LV scenario 

Fig. 6-8. Observed and Predicted Speed Distributions 
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(c) I-80 data 

Fig. 6-8. Observed and Predicted Speed Distributions (Continued) 

 

However, for the Stopped-LV data, the predicted speed distribution from the 

Wiedemann model also provided a good fit to the observed speed distribution as the IIDM 

(Fig. 6-8. Observed and Predicted Speed Distributions  (b)). The IIDM with BL was not 

used as the brake lights of the stopped lead vehicle were turned off.   

In case of the I-80 data, all models provided similar fit to the observed speed distribution 

as shown in Fig. 6-8. Observed and Predicted Speed Distributions (c). Overall, the IIDM 

predicted the speed distributions more accurately than the other models in all the datasets. 
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6.3.2 Acceleration Distribution 

Fig. 6-9 compares the acceleration distributions among different models. For the Moving-

LV and the Stopped-LV scenarios, the IIDM with and without BL predicted the 

accelerations (positive, negative, and zero) more accurately than the other models as shown 

in Fig. 6-9 (a) and (b).  

 

(a) Moving-LV Acceleration Distributions 

Fig. 6-9. Observed and Predicted Acceleration Distributions 
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(b) Stopped-LV Acceleration Distributions 

 

(c) I-80 Acceleration Distributions 

Fig. 6-9. Observed and Predicted Acceleration Distributions (Continued) 
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For the I-80 data, the Gipps Model and the IDM produced more similar acceleration 

distributions to the observed acceleration distributions than the other models as shown in 

Fig. 6-9 (c)). The Gipps Model and the IDM also provided good fits for predicting speed 

as shown in Fig. 6-8 (c). However, although the Wiedemann Model, the Gipps Model and 

the IDM predicted the accelerations closer to zero similar to the observed data, they 

underestimated the accelerations greater or less than zero. On the other hand, the IIDM 

predicted the acceleration in this range more accurately than the Wiedemann Model and 

the Gipps Model. 

6.3.3 Trajectory-level Comparison 

The distributions of speed and acceleration in the previous section compared the 

aggregated performance of the car-following models. However, they did not reveal the 

model performance at the individual subject vehicle level. For instance, the acceleration 

distributions in Fig. 6-9 do not show how the observed and predicted acceleration varied 

for individual runs/vehicles. Thus, the observed and predicted trajectories of speed, 

acceleration, jerk and spacing were also compared among different car-following models. 

Examples of the observed vehicle trajectories for one run in each driving simulator 

scenario and one pair in the I-80 data are shown in Fig. 6-10. The ranges of acceleration 

and jerk trajectories in the observed data (Fig. 6-10). The acceleration varied between +4 

to -5 m/s2 while the jerk varied between +5 to -5 m/s3 with an outlier at -10 m/s3 in I-80 

data. To clearly show the patterns of vehicle trajectories with different ranges of value for 

the Moving-LV, Stopped-LV, and I-80 data, different scales were used in Fig. 6-10. 
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The following figures compare the trajectories predicted using individual car-following 

models to the observed trajectories for one run in each driving simulator scenario and one 

pair in the I-80 data. A total of 178 trajectories generated by the four car-following models 

were compared for each driving simulator scenario or pair. A sample of 15 trajectories are 

shown in Appendix A.  

 

Fig. 6-10. Example of Observed Trajectories of Speed, Acceleration, Jerk and 

Spacing  

 

Fig. 6-11 compares the trajectories predicted using the Wiedemann Model to the 

observed trajectories. Although the predicted speed profiles from the Wiedemann model 

were closer to the observed speed profiles, the acceleration and jerk profiles were 
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significantly different. The reason for large spikes in the predicted acceleration and jerk is 

that the Wiedemann Model does not assume the driver’s continuous reaction to the lead 

vehicle motion. As discussed in Chapter 3.2.1, the Wiedemann Model determines the car-

following condition in a given instance by comparing the instantaneous speed difference 

and spacing with the estimated perception thresholds. As a result, the predicted acceleration 

abruptly changed whenever the driving conditions switched between free-driving and 

following as well as following and emergency-braking conditions. Since jerk is the rate of 

change of acceleration, this large variation in acceleration resulted in unrealistically large 

jerk of -10 m/s3. According to Lu et al. (2018), the “discrete regime [conditions] structure” 

of the Wiedemann Model also creates the steep decrease in acceleration (“acceleration 

cliff”), which produced large estimation errors of vehicle emissions (Lu et al., 2018).  

Furthermore, the predicted spacing was generally larger than the observed spacing due to 

large deceleration. This means that the Wiedemann Model predicted unrealistically safer 

driving behaviours (i.e., keep larger spacing).  
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Fig. 6-11. Observed and Predicted Trajectories (Wiedemann Model) 

 

Fig. 6-12 shows the trajectories predicted using the Gipps Model. The Gipps Model 

assumes a “true reaction time” and a “safety reaction time” that is equal to the half of the 

true reaction time (Gipps, 1981). Due to this assumption, the model predicts that the subject 

vehicle starts deceleration earlier to avoid a collision with a slow or stopped lead vehicle. 

The Gipps Model generally predicted smoother speed and acceleration and smaller jerk 

than the observed data. This is because the Gipps Model assumes that the driver 
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continuously react to the lead vehicle motion instead of irregularly reacting based on 

perception thresholds unlike the Wiedemann Model. 

 

Fig. 6-12. Observed and Predicted Trajectories (Gipps Model) 

 

Similar to the Gipps Model, the IDM produced reasonable trajectories compared to the 

observed trajectories as shown in Fig. 6-13. However, the IDM also predicted smooth 

speed and acceleration profiles and mostly zero jerk for the driving simulator data (left and 

middle figures in Fig. 6-13). This is because the IDM also assumes the driver’s continuous 

reaction similar to the Gipps Model. The difference between the two models is that the 

IDM assumes that the driver reacts with zero delay (no reaction time) and the Gipps Model 

assumes that the driver reacts after fixed-time delay. However, human drivers adjust 



 

148 

acceleration and deceleration after intermittent time delays, i.e., only after the evidence for 

those adjustments accumulates to a threshold (Markkula, 2014). 

 

Fig. 6-13. Observed and Predicted Trajectories (Intelligent Driver Model) 

 

On the other hand, the IIDM assumes that the driver adjusts acceleration and 

deceleration only after the accumulated evidence over time exceeds a threshold and thereby 

captures the intermittent time delay for reaction.  

As a result, the IIDM with and without BL reasonably reproduced the observed vehicle 

trajectories as shown in Fig. 6-14 and Fig. 6-15, respectively. The figures demonstrate that 

the IIDM better predicted the observed car-following behaviours than the Wiedemann 
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Model, the Gipps Model, and the IDM for all car-following conditions in both free-flow 

and congested conditions.  

 

Fig. 6-14. Observed and Predicted Trajectories (Intermittent Intelligent Driver 

Model without Lead Vehicle Brake Lights) 
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Fig. 6-15. Observed and predicted trajectories (Intermittent Intelligent Driver 

Model with Lead Vehicle Brake Lights) 

 

More accurate prediction of the IIDM than the other models is also because the IIDM 

uses more realistic shape and duration of acceleration adjustments. For instance, Fig. 6-16 

compares speed, acceleration, and jerk among the four car-following models for a time 

interval of 40 – 45 seconds. As shown in the enlarged figures in the right, the IIDM 

predicted the shapes of the acceleration and jerk profiles as the function 𝐺(𝑡) and its rate 

of change, respectively, as discussed in Chapter 5.1.3. Due to this specification of the shape 

and duration, the IIDM produced acceleration and jerk profiles more similar to the 

observed profiles than the other car-following models. 
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Fig. 6-16. Observed and predicted shape and duration of acceleration and jerk for 

different car-following models 

 

Table 6-2 shows the calibrated parameters of the IIDM with and without BL for the 

Stopped-LV and Moving-LV scenarios. These values are the mean ± standard deviation 

of all the calibrated values for individual scenario runs. The first six parameters ( 

𝑇 , 𝐴𝑖 , 𝑏 ,  𝑣0 ,  𝛿 , and  𝑠0) were generally similar in both Stopped-LV and Moving-LV 

scenarios. However, the accumulator gain 𝑘  was smaller in the Stopped-LV scenario 

compared to the Moving-LV scenario. The absolute values of the thresholds (𝐴+ and 𝐴−) 

were also larger in the Stopped-LV scenario than the Moving-LV scenario. These 

differences are due to different requirement of deceleration between the scenarios. In the 

Moving-LV scenario, the parameter values were also generally similar between the IIDM 

without BL than the IIDM with BL. The value of 𝑝𝐵𝐿 = 0.40 indicates that drivers were 

likely to use the additional effect of lead vehicle brake lights with a probability of 0.40 on 

average. 
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Table 6-2. Calibrated parameters of the IIDM for different datasets 

Parameter 

Stopped-

LV 

scenario* 

Moving-LV 

scenario* I-80 

Without LV 

Brake 

Lights 

Without LV 

Brake 

Lights 

With LV Brake 

Lights 

Without LV 

Brake Lights 

With LV 

Brake 

Lights 

𝑻 5.32
± 3.02 

3.03 ± 1.83 3.25 ± 2.19 
1.04 0.97 

𝑨𝒊 2.78
± 0.43 

2.45 ± 0.47 2.29 ± 0.61 
1.43 3.83 

𝒃 5.87
± 1.28 

7.33 ± 3.69 6.78 ± 4.20 
2.66 2.83 

𝒗𝟎 30.42
± 3.16 

31.83
± 2.82 

31.81 ± 2.75 
28 28 

𝜹 2.88 ± 0.90 3.56 ± 0.89 3.54 ± 0.93 3.13 1.29 
𝒔𝟎 26.58

± 11.89 

24.39
± 10.92 

23.04 ± 8.90 
1.19 1.07 

𝒌 25.76
± 7.63 

31.89
± 6.55 

30.78 ± 7.69 
2,724.91 2,626.37 

𝑨+ 24.73
± 6.70 

20.96
± 8.27 

20.14 ± 10.55 
22.96 32.36 

𝑨− −26.03
± 7.54 

−21.00
± 9.97 

−21.21 ± 9.06 
-29.84 -10.37 

𝝀 0.52
± 0.16 

0.41 ± 0.17 0.94 ± 0.32 
0.55 0.47 

𝒂𝑩𝑳 - - 0.51 ± 0.14 - 1.2 
𝒑𝑩𝑳 - - 0.40 ± 0.18 - 0.23 
𝑴 2.47

± 0.69 
2.14 ± 0.87 2.40 ± 0.82 

2.26 2.19 

𝝉𝒑 0.03
± 0.01 

0.02 ± 0.01 0.03 ± 0.01 
0.02 0.02 

𝝉𝒎 0.02
± 0.01 

0.03 ± 0.01 0.02 ± 0.01 
0.02 0.02 

𝝈𝒏 0.25
± 0.07 

0.24 ± 0.07 0.23 ± 0.08 
0.15 0.34 

𝝈𝒎 0.26
± 0.08 

0.26 ± 0.08 0.24 ± 0.07 
0.17 0.31 

𝚫𝑻 2.57
± 0.99 

3.13 ± 1.39 3.25 ± 1.47 
0.74 0.36 

𝚫𝑻𝒑𝟎 0.44
± 0.14 

0.46 ± 0.14 0.45 ± 0.12 
0.28 0.08 

𝚫𝑻𝒑𝟏 5.82
± 1.61 

5.79 ± 1.06 5.33 ± 1.70 
2.16 1.26 

* The values are mean ± standard deviation. 
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Furthermore, the calibrated parameters from the I-80 data are also listed in Table 6-2. 

Some of the parameter values for the I-80 data were significantly different from those for 

the driving simulator data. This was due the difference in traffic conditions. The driving 

simulator scenarios were run for individual drivers with only one lead vehicle several 

hundred meters away in the beginning. However, in the I-80 data, there were many vehicles 

and traffic conditions were mostly congested. The calibrated value of the accumulator gain 

𝑘 was significantly higher in the I-80 data than the driving simulator data because the 

evidence was accumulated faster in congested traffic. Moreover, the duration parameters, 

Δ𝑇, Δ𝑇𝑝0, and Δ𝑇𝑝1, were smaller in the I-80 data than the driving simulator data due to 

faster adjustment of acceleration and deceleration in congested traffic. 

6.3.4 Estimated Surrogate Measures of Safety  

This section compares the combination of two trajectories, speed difference and spacing, 

in the form of two surrogate measures of safety, Time-to-Collision (TTC) and Deceleration 

to Avoid Crash (DRAC) to evaluate model performance. TTC is the time remaining until 

a faster subject vehicle collides with a lead vehicle when both vehicles maintain their speed. 

TTC is estimated in each time instant as the ratio of the front-to-rear spacing to the speed 

difference from the lead vehicle. Therefore, the minimum value of TTC in each car-

following segment indicates highest risk of rear-end collision throughout the car-following. 

DRAC is the minimum deceleration rate required to come to a complete stop behind a 

slow/stopped lead vehicle. According to American Association of State Highway and 

Transportation Officials (AASHTO), DRAC greater than 3.4 m/s2 indicates a conflict 
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(AASHTO, 2001). DRAC is estimated by dividing the square of speed difference by front-

to-rear spacing. 

Start Time and Pattern of Deceleration in Crash Cases 

One of the objectives of using car-following models in a microscopic simulation is to 

use the predicted trajectories for evaluating traffic safety. Various past studies have 

indicated a long reaction time and/or an insufficient deceleration rate lead to rear-end crash 

and near-crashes (Green, 2017b). Therefore, this section discusses the start time, pattern of 

deceleration, TTC and DRAC in two crash cases from the Moving-LV (lead car) and 

Stopped-LV (lead truck) scenarios.  

Fig. 6-17 (a) and (b) show trajectories of speed, acceleration, spacing, TTC, and DRAC 

for the approaching condition and the braking condition, respectively, for the same driver. 

The points on the trajectories indicate the start of deceleration. Since DRAC is deceleration 

or negative acceleration, the sign of values of DRAC in Fig. 6-17 is negative (i.e., higher 

deceleration denotes higher absolute value of DRAC).  
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(a) Trajectories in Approaching Condition 

 

Fig. 6-17. Observed and Predicted Trajectories of a Crash Case from Moving-LV 

Scenario 

Predicted start 

of deceleration 
Observed start 
of deceleration 
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(b) Trajectories in Braking Condition 

Fig. 6-17. Observed and Predicted Trajectories of a Crash Case from Moving-LV 

Scenario (Continued) 

 

In the approaching condition, it is expected that the driver reduces speed from his/her 

desired speed to the lead vehicle speed. In the scenario in Fig. 6-17 (a), the lead vehicle 

speed was 25 m/s. The predicted speed of the Wiedemann Model and the Gipps Model 

Observed start 
of deceleration 

Predicted start 

of deceleration 

Time of crash  

(last observed time 

on all plots) 
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were most similar to the observed speed. However, the predicted deceleration occurred 

much earlier than the observed deceleration, and it also decreased more abruptly which 

produced unrealistically high predicted jerk (not shown). As a result, the minimum TTC 

and the maximum DRAC predicted by the Wiedemann Model and the Gipps Model 

occurred earlier than the observed values in time. This earlier occurrence of high crash risk 

also results in earlier drivers’ deceleration which reduces the predicted crash risk compared 

to the actual crash risk (i.e., higher TTC and lower DRAC). 

Furthermore, since the IDM does not have a reaction time, defining the start of reaction 

is not always possible. This is clear from the trajectories of the IDM in Fig. 6-17 (a). As 

the IDM produced very smooth trajectory profiles, the deceleration started much earlier 

than the actual start time of deceleration. Therefore, the predicted minimum TTC never 

decreased to the actual minimum TTC, and the predicted DRAC remained mostly constant 

and was less than the actual DRAC (i.e., lower deceleration). Thus, the IDM predicted 

lower crash risk than the actual crash risk. 

Although the IIDM did not produce similar initial speed trajectory in free-driving 

condition, the start time and pattern of deceleration was the most similar to the observed 

data. Therefore, the time and magnitude of the predicted minimum TTC and maximum 

DRAC of the IIDM were closest to the observed data compared to the other models. 

Fig. 6-17 (b) shows the trajectories in the braking condition when the actual crash 

occurred for the same driver discussed above. In the Moving-LV scenario, the driver was 

required to decelerate to stop behind a decelerating lead car. Compared to the observed 

data, the Wiedemann Model predicted a delayed start of deceleration. This resulted in a 
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large DRAC and higher crash risk initially. However, later, the Wiedemann model 

produced an abrupt and large deceleration with an unrealistically large jerk that reduced 

DRAC. Consequently, the minimum TTC was larger and the required DRAC was smaller. 

The predicted spacing by the Wiedemann model was 6.2 m when the actual spacing was 0 

(i.e., when the crash occurred).  

In contrast, the Gipps Model and the IDM predicted earlier start of deceleration than the 

actual start of the deceleration, which results in lower crash risk than the actual crash risk 

as shown in Fig. 6-17 (b). The predicted spacing by the Gipps Model and IDM at the time 

of crash were 21 m and 6.5 m, respectively. 

As in the approaching condition, the IIDM predicted the start time and pattern of 

deceleration most similar to the observed deceleration in the braking condition (Fig. 6-17 

(b)). Although the IIDM did not predict a crash (i.e., zero or negative spacing), it predicted 

a smaller spacing of 3.7 m at the time of actual crash.  

Similar results were obtained in the crash in the Stopped-LV scenario as shown in Fig. 

6-18. In this scenario, the Wiedemann model produced unrealistically large jerk to reach a 

large required deceleration after a delayed start of deceleration. The Gipps Model and the 

IDM produced similar magnitudes of deceleration compared to the observed deceleration. 

However, the Gipps model produced unrealistically abrupt change in deceleration and the 

IDM predicted significantly earlier start of deceleration than the observed deceleration. 

The IIDM initially predicted similar deceleration compared to the observed 

deceleration, but later higher deceleration due to higher speed difference and desired 

spacing. However, the large predicted deceleration was insufficient to avoid a crash similar 
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to the observed deceleration. Therefore, the IIDM predicted a crash unlike the other models 

although the predicted crash occurred a few seconds earlier than the actual crash. Note that 

the other models predicted a spacing greater than 20 m at the time of actual crash. These 

examples demonstrate that the IIDM can predict the crash risk more realistically than the 

other models. 

 

Fig. 6-18. Observed and Predicted Trajectories of a Crash Case from Stopped-LV 

Scenario 

Observed start 

of deceleration 

Predicted start 
of deceleration 

Time of crash  

(last observed time 

on all plots) 
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Comparison of Predicted Minimum Time-to-Collision (TTC) among Models 

The minimum TTC was estimated for each run (the driving simulator data) or subject 

vehicle (the I-80 data) using both observed and predicted trajectory data. The negative 

values of minimum TTC were discarded as they indicated a crash. Fig. 6-19 compares the 

observed and predicted minimum TTC and the Root Mean Squared Error (RMSE).  

In all datasets, the minimum TTC values estimated using the Wiedemann model were 

generally larger than the observed values. Therefore, the RMSE was the highest for the 

Wiedemann model in the Moving-LV scenario and second-highest in the Stopped-LV 

scenario. Higher predicted minimum TTC by the Wiedemann Model than the observed 

value is because the predicted deceleration increased faster than the observed deceleration 

as shown in Fig. 6-11. Thus, the Wiedemann Model generally underestimates actual crash 

risk (i.e., longer minimum TTC).  

 
(a) Minimum TTC per run in the Moving-LV Scenario 

Fig. 6-19. Observed and Predicted Minimum Time-to-Collision (TTC) 
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(b) Minimum TTC per run in the Stopped-LV Scenario 

 

(c) Minimum TTC per Subject Vehicle in the I-80 data 

Fig. 6-19. Observed and Predicted Minimum Time-to-Collision (TTC) (Continued) 
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The Gipps Model generally predicted lower minimum TTC than the observed value in 

the driving simulator data (second-highest RMSE) as shown in Fig. 6-19 (a) and (b), but 

only higher minimum TTC in the I-80 data (Fig. 6-19 (c)). The Gipps Model frequently 

predicted very small spacing or negative spacing due to crashes in the driving simulator 

data as shown in Fig. 6-12. This was because the Gipps Model assumes a constant reaction 

time which works well in close-following conditions but this assumption was invalid when 

the model was used in a mix of large and small spacing conditions. 

The minimum TTC values estimated using the IDM were generally similar to the 

observed minimum TTC values in the driving simulator data. On other hand, IIDM 

consistently showed similar values of TTC to the observed values in all data sets. Although 

the IIDM predicted lower minimum TTC than the observed value, RMSE values of the 

IIDM were lower than the other models except for the Moving-LV scenario.  

Fig. 6-20 shows the distributions of observed and predicted DRAC greater than 3.4 m/s2 

(i.e., the threshold of conflict) in the driving simulator data. The median DRAC is also 

labelled on the distributions and the number of data points are noted underneath the data 

label on x-axis. There were no instances where DRAC was greater than 3.4 m/s2 in the I-

80 data. A pairwise comparison of DRAC was not possible because some values of DRAC 

were very large as they were estimated from the predicted and observed trajectories which 

significantly fluctuated over time. 

As shown in Fig. 6-20, the IIDM produced the distributions of DRAC most similar to 

the observed distributions of DRAC. These results demonstrate that the IIDM can better 
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predict the start of deceleration and the magnitude of deceleration in the approach and 

braking conditions, and thereby produce more realistic surrogate measures of safety. 

 

Fig. 6-20. Distributions of Deceleration to Avoid Crash (DRAC) greater than 3.4 

m/s2 

 

6.4 Chapter Summary 

The major findings of the hypothesis testing and modeling efforts conducted in this thesis 

are summarized below: 
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1. The theoretical concept of the evidence accumulation framework provides plausible 

explanation on the time of releasing accelerator and applying brakes in both 

approaching and braking conditions for different types of lead vehicle (car and truck). 

This is because drivers did not react at a specific threshold of evidence (tau-

inverse/angular velocity) or after a fixed reaction time. Drivers generally reacted when 

the accumulation of evidence over time reached a threshold. 

2. The Accumulator model predicted the start time of deceleration more accurately based 

on the accumulation of evidence. The model showed good prediction accuracy using 

not only angular velocity due to the width of lead vehicle or tau-inverse, but also other 

perceptual and symbolic cues such as angular velocity due to the height of the lead 

truck and the lead vehicle brake lights.  

3. The Intermittent Intelligent Driver Model (IIDM) developed in this thesis incorporated 

the Accumulator model and a realistic shape and duration of acceleration adjustments, 

which were adapted from the Markkula’s Framework of Sensorimotor Control in 

Sustained Motion Tasks. As a result, the IIDM predicted more realistic vehicle 

trajectories than the three conventional car-following models – the Wiedemann Model, 

the Gipps Model, and the IDM. Moreover, the IIDM produced the smallest error in 

spacing, time-to-collision and deceleration required to avoid crash in driving simulator 

scenarios as well as empirical vehicle trajectory data. 
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Chapter 7:  Conclusions and Recommendations 

7.1 Conclusions 

The findings and conclusions are summarized below in light of the research objectives 

discussed in Chapter 1. 

Prediction of start time of driver reaction 

Three hypotheses were tested to determine how the driver deceleration starts while 

following a slow lead vehicle or approaching a stopped vehicle. The key findings are as 

follows. First, the drivers perceived and reacted (e.g., released the accelerator pedal or 

applied the brake pedal) when the perceptual variable (tau-inverse) reaches different 

values. This is not consistent with the assumption of the Wiedemann’s car-following model 

that drivers perceive and react when the perceptual variable reaches the same perception 

threshold. Second, the drivers did not react after a specific reaction time from the start of 

perception. These findings indicate that driver reaction cannot be realistically predicted 

using the absolute values of perception and reaction thresholds, and the fixed reaction time. 

Third, the drivers who followed the lead car and truck generally reacted when the 

accumulation of evidence (tau-inverse) over time – i.e., the areas under accumulation 

curves of perceptual variable - reached a threshold. Thus, the theoretical concept of the 

evidence accumulation framework provides plausible explanation on the start time of 

reaction in both approaching and braking conditions for different types of lead vehicle (car 

and truck). 
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Identification of new perceptual and symbolic cues for predicting driver reaction 

Various perceptual and symbolic cues such as angular velocity (width and height), tau-

inverse, and the lead vehicle brake lights were found to be closely related to the start time 

of driver reaction. In particular, the cues affecting the driver reaction were different for 

different types of lead vehicle (car and truck). The model that predicts the start time of 

reaction (Accumulator model) has a better fit when the angular velocity due to the height 

of the lead truck and lead vehicle brake lights were used instead of tau-inverse and angular 

velocity due to the width of the lead vehicle. This finding is in contrast with the assumption 

in the existing car-following model (Wiedemann model) that the driver starts reaction when 

the angular velocity due to the width of the lead vehicle reaches a fixed threshold. Thus, 

angular velocity due to the height of the lead truck and the lead vehicle brake lights are 

important factors in predicting the start time of deceleration in approaching and braking 

conditions.   

Development of a new car-following model  

To predict the start time of reaction and the magnitude of reaction more realistically, a 

new car-following called the Intermittent Intelligent Driver Model (IIDM) was developed 

based on the Markkula’s Framework of Sensorimotor Control in Sustained Motion Tasks. 

The IIDM uses the evidence accumulation process to estimate the start time of driver 

reaction. The model also uses the shape and duration of acceleration adjustments based on 

the observed data. The performance of the IIDM was evaluated with the comparison with 

the three existing car-following models – the Wiedemann Model, the Gipps Model and the 

Intelligent Driver Model (IDM) – using the observed car-following data from a driving 
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simulator (uncongested conditions) as well as the vehicle trajectory data from Interstate-

80 (I-80) highway (congested conditions).  

The results showed that the IIDM with and without lead vehicle brake lights generated 

more realistic trajectories of speed, acceleration, jerk and spacing in both congested and 

uncongested conditions compared to the other three car-following models. Consequently, 

the IIDM also predicted surrogate measures of safety such as the minimum time-to-

collision and deceleration to avoid crash more accurately. Thus, the IIDM can be used to 

simulate the driver’s car-following behaviour and produce more reliable estimate of rear-

end crash risk in car-following conditions.  

In summary, the main contribution of this study is the development of a new car-

following model that adapts intermittent nature of the driver’s reaction to accurately 

reproduce the start and the magnitude of the driver reaction in different car-following 

conditions. The new car-following model can generate more realistic vehicle trajectories 

of speed, acceleration, jerk, and spacing, which are fundamental input data for the 

estimation of traffic delay, crash risk, and vehicle fuel consumption and emission. Thus, 

the proposed car-following model can be used in various traffic engineering applications 

such as the prediction of vehicle speeds, the assessment of traffic safety, and the evaluation 

of environmental impacts of traffic control strategy.  

However, there are a few limitations in this study. First, the sample size of drivers in the 

driving simulator experiment was relatively small (50) and most drivers were young (18-

25 years old). Thus, the findings in this study require further validation for more 

representative driver group using large scale data such as naturalistic driving data. Second, 

the performance of the IIDM can be degraded if the calibration of model parameters is 
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inadequate. The IIDM can occasionally produce unrealistically large jerk if the model is 

not properly calibrated. Third, the IIDM can occasionally produce large oscillation in speed 

profile, i.e., very rapid acceleration and deceleration, although the fitness function of 

spacing produces a very small error. Thus, it is important to ensure that the IIDM can 

realistically reflect the actual number and start times of acceleration/deceleration 

adjustments, and reproduce speed, acceleration and jerk profiles in short time intervals at 

trajectory level. 

7.2 Recommendations for Future Work 

In the future studies, it is recommended to consider other evidence for driver’s reaction, 

not only the lead vehicle motion, such as road width (perceived based on the distance 

between lane markings), roadside objects and environmental conditions. These factors can 

potentially affect driver’s car-following behaviour (e.g., more cautious driving in a 

narrower road, poor visibility in adverse weather). In particular, drivers can also collect 

this additional evidence via vehicle-to-vehicle communication with the lead connected and 

autonomous vehicles (CAV). Moreover, although CAV does not require manual driving, 

drivers are required to take over the control of vehicle when CAV can no longer perform 

automated driving (e.g., Level 3 automation). In this case, the evidence accumulated during 

the take-over process following the warning will affect driver’s car-following behaviour 

after take-over. This way, the proposed IIDM can be applied to the prediction of car-

following behaviour in CAV environment. Similarly, not only different size of the lead 

vehicle (car or truck), but also driving patterns can be considered as additional evidence. 

For instance, drivers are more likely to follow the lead vehicle more closely if the lead 

vehicle motion is more stable (e.g., constant speed) for a longer period. Within the 
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proposed car-following model framework, this evidence can be included in addition to 

perceptual variables for more accurate prediction of the start time and magnitude of 

reaction in different road geometric conditions and driving patterns of the lead vehicle. 

It is also recommended to investigate the driver reaction time and the acceleration, not 

only deceleration, particularly when the lead vehicle accelerates. Unlike the deceleration 

which is required to avoid a crash in close following and braking conditions, the driver is 

not likely to initiate acceleration immediately after the lead vehicle starts accelerating. This 

behavioural difference between acceleration and deceleration conditions may require 

different model functional specification. For instance, positive (acceleration) and negative 

(deceleration) control errors can be separately considered for prediction of acceleration and 

deceleration adjustments.  

Lastly, it is recommended to incorporate the other existing car-following models, 

instead of the Intelligent Driver Model, in the new car-following model framework and 

evaluate the model performance. For instance, those existing car-following models that use 

information in driver visual system such as the visual angle models can be integrated into 

the new car-following model framework. The visual angle models could be more useful 

than the conventional car-following models as they use perceptual variables such as visual 

angle and angular velocity that are perceived by a driver’s visual system. However, these 

models were not used in this study as they contain a reaction time parameter. Thus, it is 

recommended to modify the visual angle models to predict the start time of driver reaction 

using the Accumulator model instead of a fixed reaction time. 
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Appendix A. Predicted Trajectories of Different Car-following Models 

The trajectories of the four car-following models were compared for a sample of 15 drivers 

or subject vehicles. The driver number and lead vehicle type are shown at the top of all 

figures for the driving simulator data. Similarly, the vehicle ID (vid) and the preceding 

vehicle ID (precid) are shown on top of all the figures for the I-80 data. 
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