
 

  

 

Aalborg Universitet

Data-Driven Controllability of Power Electronics Under Boundary Conditions – A
Physics-Informed Neural Network Based Approach

Sahoo, Subham; Blaabjerg, Frede

Published in:
2023 IEEE Applied Power Electronics Conference and Exposition (APEC)

Creative Commons License
CC BY 4.0

Publication date:
2023

Document Version
Early version, also known as pre-print

Link to publication from Aalborg University

Citation for published version (APA):
Sahoo, S., & Blaabjerg, F. (2023). Data-Driven Controllability of Power Electronics Under Boundary Conditions –
A Physics-Informed Neural Network Based Approach. In 2023 IEEE Applied Power Electronics Conference and
Exposition (APEC)

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://vbn.aau.dk/en/publications/7e4017d3-f7cb-4a3e-8a0a-04e041b5a227


Data-Driven Controllability of Power Electronics
Under Boundary Conditions – A Physics-Informed

Neural Network Based Approach
Subham Sahoo, Member, IEEE and Frede Blaabjerg, Fellow, IEEE

Abstract—This paper introduces physics-informed neural net-
work (PINN) for control of grid connected converter by fusing its
underlying equations into the training process, thereby reducing
the requirement of qualitative training data. In comparison to the
traditional data-driven methods, which either incur a significant
computational burden, or use overly conservative surrogate
models, it is explored that PINN can be easily optimized as
per the performance requirements and is significantly superior
in terms of computation time, data requirements (trained using
only 3000 datapoints), and prediction accuracy (an average of
98.76%). As a result, PINN unravels new modeling orientation for
power electronics, and is well-suited for commercial applications.
Finally, its robustness under various grid disturbances has been
validated under experimental conditions.

Index Terms—Power electronics, Artificial intelligence,
Physics-informed machine learning, Grid-tied inverter.

I. INTRODUCTION

Accurate modeling and control of grid-tied converters re-

quires the evaluation of a large number of possible distur-

bances related to different active and reactive set-points under

different voltage variations [1]. However, its behavior un-

der boundary operating conditions introduces non-linearities,

which makes it difficult to obtain an unified model. To tackle

this issue, some traditional methods have been used [2], [3],

which either carry a significant computational burden, require

model simplifications, or use overly conservative surrogate

models. Conventional neural networks (NNs) [4] can circum-

vent these limitations but are faced with high demand of

high-quality training datasets, while they ignore the underlying

governing equations. In addition, NNs suffer from lack of trust

due to their black-box nature and them being agnostic to the

well-studied physical models [5]. Yet, a high quality dataset

can rarely be achieved from data collected from real-world

systems. That is because the available real data is usually

not enough and most importantly, it can not accommodate

different non-linear events, as such events tend to be rare [6],

[7].

To address these issues, physics-informed neural network

(PINN) is used in this paper to generalize data-driven con-

trol of power electronics using minimal data without any

compromise in precision. To provide a good balance of its

estimation capabilities, the PINN training process is weighted
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Fig. 1. Overall schematic of a grid-tied converter with its sampling circuit and
control models Model 1 and Model 2, which will serve as as the baseline
models for training and design of NNs in this paper.

in accordance with the underlying physics and operational

boundaries for control of grid-tied converters only using only

3000 datapoints with an average accuracy of 98.76%. Not

only the computational burden is reduced, PINN facilitates

an analytical representation and enhances the explainability of

the conventional NNs.

II. DATA-DRIVEN ESTIMATION PROBLEMS UNDER

BOUNDARY CONDITIONS

Considering a grid-following converter connected to strong

grid (as shown in Fig. 1(a)), its dynamic equation in dq0 frame

can be given by [9]:

ẋ = Ax + Bu (1)

where, x = [id iq vd vq vdc], with the dq variables from

measured AC voltages vabc, AC currents iabc and DC voltage

vdc, respectively. Furthermore, u = [vdref vqref vdcref ] denote

a set of control inputs.

We now emphasize on the design of cascaded controllers for

grid-tied converter. As shown in Fig. 1, Model 1 ensures that



the current commands idref and iqref are tracked simultane-

ously. To provide protection against overloading and external

faults, the output of the compensators ud, uq in Model 1
is limited by [amin,amax] for dq frame, respectively. The

current-control scheme is designed based on the following

dynamics:

Lf
did
dt

= −Rf id + ud (2)

Lf
diq
dt

= −Rf iq + uq. (3)

Upon decoupling and linearizing the Model 1 output dynam-

ics, we obtain:

md =
2

vdc
(ud − Lfωiq + vd) (4)

mq =
2

vdc
(uq + Lfωid + vq). (5)

Using the preliminary bounds of Model 1, we design its

reference commands using Model 2 (in Fig. 1) governing

equations:

idref = Gv(s)(vdcref − vdc) (6)

iqref = Gv(s)(vdref − vd) (7)

where, (8)-(9) are bounded by [imin,imax] in dq frame,

respectively. As a result, the convoluted bounds in Model
2 complicates the estimation problem under boundary con-

ditions. The compensator outputs in Model 1 & Model 2
can attain values between finite range, which will lead it into

roll over. Such undesirable condition can arise when the error

is beyond particular limits, such as voltage sags, faults, large

change in active/reactive power references. To limit the output,

a saturation block can be used such that the new output can

be expressed as:

y′ =

⎧⎪⎨
⎪⎩
y if Ymax > y > Ymin

Ymax if y > Ymax

Ymin else

(8)

However, the limiting approach would lead to a convergence

problem if the error remains non-zero for long and during that

period the integrator output keeps on accumulating. As shown

in Fig. 2, this either introduces delay in response when the

input error changes or can even lead to roll over of the PI

output.

As a result, some of the key challenges with the model-

driven controllability for grid-tied converters are as follows:

1) Inaccurate estimation under boundary operating condi-

tions;

2) Varying reactive power response as mandated by LVRT

compliance requiremments complicates the dynamic be-

havior.

This is where the trend has shifted towards data-driven control-

lability using neural networks (NNs), wherein the estimation

is driven by the historic behavior and underlying dynamics

based learning and approximation [8]. As shown in Fig. 3(b),

the sampled data is collected and trained against non-linear

activation functions for mapping the input-output relationship.

However, the mapping accuracy is highly dependent on the

Fig. 2. Performance deviation between PI output and integrator output
under boundary conditions – the problem aggravates under varying size of
disturbances.
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Fig. 3. (a) Experimental setup of the grid-tied inverter, (b) Overall schematic
of the PINN based control strategy with new augmented terms for loss function
of differential equation and boundary conditions of its predicted output.

quality of data. Data-driven estimation/regression accuracy has

been largely attributed to the quantity of data, whereas it is

prone to failure with absence of data representing particular

operating conditions.

To ascertain the problem behind conventional NNs, the

states x and inputs u dataset D3000001×5 were obtained from a

2-level grid-tied converter of 10 kVA (as shown in Fig. 3(a)) to

design a multi-layer feedforward NN with Nk hidden layers

and NL neurons per layer as a function approximator. The

conventional NN (highlighted in Fig. 3(b)) using the defined



variables in x and u can be formulated by:

[t, x0, u] = z0 (9)

zk+1 = φ(Wk+1zk + bk) ∀ k = 0, 1, . . . ,K − 1 (10)

x̂ = Wk+1zk + bk+1 (11)

where, Wk and bk denote the set of weights and biases in

the kth layer. Basically, these weights are updated in every

iteration by minimizing the loss Li
x = 1

Nx

∑Nx

j=1(x
i
j − x̂i

j) in

a supervised manner. Upon evaluating this loss separately for

each dynamic state (indicated by superscript i), the training

process is formalized by:

min
W,b

∑
i

λi
xLi

x (12)

subject to (9)-(11), where λi
x provides weighting of the loss

terms. However, even in a large dataset with numerous set-

points in D, it can be seen in Fig. 4 that conventional NNs

fail to estimate accurately during boundary conditions. In Fig.

4(a), when the active power reference is changed from 0.6

pu to 0.65 pu at t = 0.08 sec, the system goes unstable with

high frequency oscillations in the modulation index mdq . A

similar performance can also be seen initially in Fig. 4(b)

where the dataset is reduced to D2500001×5. However, due

to reduced data as compared to the case studied in Fig.

4(a), a clear setback in performance can be observed in Fig.

4(b), where the system goes out of synchrony after t = 0.15

sec. Hence, the quality of data plays an important role in

orchestrating conventional NN’s performance, which anyway

remains computationally expensive. In fact, the idea of using

NNs to solve PDEs is not new and can date back to the

last century [10]. These early works rely on the function

approximation capabilities of a feedforward fully-connected

neural networks to solve initial/boundary value problems. The

solution to the system of equations can be obtained through

minimization of the network’s loss function, which typically

consists of the residual error of the governing equations

along with initial/boundary values. More recently, Raissi et al.

[11], [12] has inherited and extended this concept, leveraged

the strong expressibility of NNs, and developed the general

physics-informed neural network (PINN) framework to solve

the forward and inverse problems involving the system of

nonlinear PDEs with small datasets or even without any

labeled data. Furthermore, authors in [13] have also concluded

that the global approximations can be easily calculated using

the knot theory using physics-informed spline learning strategy

for cybersecurity investigation in power electronics.

III. PHYSICS-INFORMED NEURAL NETWORK FOR POWER

ELECTRONICS

A. Design of PINN

To address the inefficacy of conventional NNs in Section

II, a physics-informed neural network (PINN) is designed to

enforce that the updates from governing differential equations

matches the temporal derivative of the NN’s approximation
d
dt x̂. d

dt x̂ is calculated by applying automatic differentiation

(AD) [14] on the NN’s output x̂ with respect to time to yield

a new loss term Li
ẋ. Considering the dynamic equations of idq

from the current control scheme, we validate the NN output

îdq for Model 1 using AD of:

Lf
dîd
dt

= −Rf îd + Lfωîq +
vdc
2

md − vd (13)

Lf
dîq
dt

= −Rf îq − Lfωîd +
vdc
2

mq − vq (14)

Similarly, the dynamics of other states in (1) can be validated

using DC capacitor, line and load dynamics to apprehend the

governing equations of Model 2 [9]. Finally, its estimation

abilities are also enhanced by introducing another loss term

to account a bounded optimization behavior of the NNs using

another loss term Li
b. Finally, these loss terms are added to

provide with the overall loss function (as highlighted in Fig.

3(b)), which can then be trained using:

min
W,b

∑
i

λi
xLi

x + λi
ẋ

1

Nx

Nx∑
j=1

(f i(tj , xj , uj)− d

dt
x̂i
j)

2

︸ ︷︷ ︸
Li

ẋ

(15)

+ λi
b

1

Nx

Nx∑
j=1

(f i(tj , xj , uj)− x̄i
j)

2

︸ ︷︷ ︸
Li

b

+ λi
in

1

Nx

Nx∑
j=1

(f i(tj , xj , uj)− xi
jin)

2

︸ ︷︷ ︸
Li

in

subject to (9)-(11), where x̄i
j and xi

jin
denote the boundary and

initial condition of the corresponding states, respectively. The

intuition behind (15) is that the prediction of the NN output

x̂ and its derivative d
dt x̂ can be probed if they are consistent

with the governing equations and can be optimized within the

defined boundaries x̄.

B. Generalization of PINN under boundary conditions

PINN reinforces design of a new approach with qualitative
data, which would comply replacement of the existing model-

driven/NN deployed in the system. This will not only incur

increase in the replacement cost, but will also add uncertainty.

In this paper, we also generalize the design process of PINN on

a pre-trained NN structure by convoluting the distance param-

eter function based NN to make the overall control structure

more robust to any given initial or boundary condition in the

spatiotemporal space.

As shown in Fig. 6, an distance function based NN is de-

ployed on top of the general pre-trained NN by convoluting it

to structure the estimated output accordingly. This mechanism

can be used to augment the general NN (which is not pre-

trained using initial/boundary conditions data) with trained

data properties that confer to only initial/boundary conditions.

Finally to improve the overall performance, the weights Wk

and biases bk are optimized using automatic differentiation via

governing equations of grid-tied converter, as shown in Fig. 6.

The essence behind newly constructed solution is that, at the

initial time or boundaries where the distance function evaluates
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Fig. 4. Inefficacy of conventional NNs to provide good prediction under boundary conditions of iabc without enough data leading to: (a) high frequency
oscillations for the dataset with D3000001×5 setpoints, (b) asynchrony after t = 0.15 sec for reduced setpoints in the dataset D2500001×6.
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Fig. 5. Generalization of PINN design for plug and play augmentation into a pre-trained NN for hardly enforced initial/boundary conditions.

Fig. 6. Generalization of PINN by augmenting a pre-trained NN with a
distance function based NN to accelerate its performance particularly around
boundary conditions – this can be a plug-and-play approach of handling
complex dynamics around boundary conditions for a pre-trained NN missing
that capability.

to zero, the solution degrades to the particular solution so that

the boundary conditions will be imposed forcibly. This type

of hard initial/boundary condition enforcement strategy can be

generalized as follows:

û(x, t) = D(x, t)� up(x, t) (16)

where, û(◦) denotes the final estimated output, D being the

u(t)

x(t)

1
2
3
4

5
6

7

Reduced Search 
Space – PINN

Fig. 7. PINN inherently incurs reduction in the dimensionality of dataset
and computation burden, as the reduced search space is considerably small in
comparison with the conventional NN due to underlying governing equations.

distance function and up(◦) denotes the estimated output

of the pre-trained NN. Furthermore, � denote element-wise

multiplication. To train the distance function D(x, t), we can

sample the points (xi, ti)ni=1 and compute the distance D to

the spatiotemporal boundaries for voltages and reactive power,

shown as follows:{
Dv = min(distance to the spatiotemporal boundary ρv)

DQ = min(distance to the spatiotemporal boundary ρQ)
(17)

where, ρv & ρQ denote the distance element between the



(a)

(b)

Fig. 8. (a) Performance of PINN for a light dataset D3000×5 – Case 2 with equal weighting policies provide a better harmonic performance than Case 1
with a lower value of λi

ẋ, (b) Comparative evaluation of PINN with a dataset D3000×5 against a conventional NN with a dataset D3000001×5 – the dynamic
performance is clearly better in PINN with a smaller settling time and overshoot.

boundary and measured value of voltages and reactive power,

respectively. After D(x, t) is pre-trained and fixed, the com-

posite PINN in Fig. 5 will be finally trained as a whole to make

sure the remaining constraint, residual of governing PDEs, is

satisfied. In the final training of the composite PINN, only the

weights and biases of up(x, t) will be the trainable variables

exposed to the optimizer.

As a result, the computation time and resources are sig-

nificantly reduced owing to the fact that the search space is

optimized particularly (as shown in Fig. 7) for the uncertain

parameters with the rest assisted by the physics governed

equations. It can be seen in Fig. 7 that the search plane is only

a limited portion of the region generated for conventional NN.

C. Data collection policy

The major challenge behind designing an high fidelity PINN

is on collection of qualitative data. Although we discuss

about the generalization of PINN and enforce plug-and-play

augmentation into a pre-trained PINN, the desired performance

will only be possible provided significant data reflecting the

spectral properties around initial/boundary conditions are ob-

tained. Hence, we provide a state-dependent threshold based

data collection policy, which saves data when:

||ρv|| > β||ρQ|| (18)

is satisfied. It should be noted that β denote the LVRT gain as

per the LVRT compliances and regulations [15]. More theo-

retical details about sampling and performance with different

noise levels will be covered as a future scope of work.

IV. RESULTS

In Fig. 8, the performance of PINN for a dataset D3000×5

is verified on the system shown in Fig. 3. It should be noted

that the disturbances considered for the dataset of conventional

NN remains uniform for a legitimate comparison. It can be

seen in Fig. 8(a) for Case 1 that the PINN estimation still

contains high frequency ripples in the current waveform, which

necessitate prioritization of scaling of λi
ẋ in (15). Finally, when

Fig. 9. Performance of PINN under a voltage sag of 0.6 p.u. at t = 2.5
sec – without PINN, the active power component increases invariably to
the boundary condition, whereas PINN keep Id restricted as per the LVRT
regulations [15].

the weights are scaled equally in (15), it can be seen in Fig.

8(a) for Case 2 that the performance of PINN deems better

tracking and dynamic performance than Case 1. The error plots

plotted with respect to the corresponding reference values also

clarify that the error (in %) is significantly lower for Case 2

than Case 1, which establishes new weight scaling policies to

optimize PINN for power electronic converters. A comparative

evaluation of PINN with a dataset D3000×5 is carried out

against a conventional NN with a dataset D3000001×5 in Fig.

8(b). It can be seen that due to the additional loss functions

Li
ẋ and Li

b in (15), better dynamic performance can be

formally guaranteed with low settling time and overshoot for

the proposed PINN scheme.

In Fig. 9, a comparative evaluation is carried out with

and without PINN under a grid voltage sag of 0.6 p.u. at

t = 2.5 sec. As per the established problem in Section II,



general PINN fails to estimate its operation around boundary

conditions subject to the mandatory reactive power injection

as per the regulations. This can be explained owing to the lack

of qualitative training data around such boundary conditions.

Furthermore without PINN, Id saturates to the maximum

active power injection capability, which compromises the ride-

through operation and protection settings of grid-connected

converter. However, when PINN is deployed as per the design

policy shown in Fig. 5, the active component Id is well

restricted with the pre-fault operation point under boundary

conditions. As a result, the proposed optimization process

of NNs using PINN can not only reduce the dimensionality

of data using the proposed data collection policy but also

advances on highly cognitive and computationally efficient

learning abilities of NNs under boundary conditions.

V. CONCLUSIONS AND FUTURE SCOPE OF WORK

This paper proposes a physics-informed neural network

(PINN) based control of grid-tied converters for the first time

only using minimal data of 3000 setpoints with an average

accuracy of 98.76%. In this work, it has been shown that

the usage of the governing physical equations fundamentally

changes the workflow of applying NNs. Apart from obtaining

a data-efficient training process, PINNs also offer the upside

of providing easily computable metrics to identify areas of

inaccuracy based on the agreement of the prediction with the

physical equations. As a future scope of work, optimal sclaing

policies of PINN weights in (15) with more theoretical analysis

on its stability evaluation will be provided.

Appendix

An experimental prototype (as shown in Fig. 3) of two-level

three-phase grid-tied converter of 10 kVA is connected to the

grid simulator via an interfacing filter Lf .

System: Lf= 1.5 mH, Rf = 0.3 Ω, Vn = 230 V/50 Hz, fsw
= 10 kHz

PINN: λi
ẋ = λi

x = λi
b = 0.4, training dataset D3000×5 setpoints

with a sampling rate of 10 kHz.
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