

Aalborg Universitet

Distributed Channel Allocation for Mobile 6G Subnetworks via Multi-Agent Deep Q-
Learning

Adeogun, Ramoni Ojekunle; Berardinelli, Gilberto

Published in:
IEEE WCNC

Publication date:
2023

Document Version
Accepted author manuscript, peer reviewed version

Link to publication from Aalborg University

Citation for published version (APA):
Adeogun, R. O., & Berardinelli, G. (Accepted/In press). Distributed Channel Allocation for Mobile 6G
Subnetworks via Multi-Agent Deep Q-Learning. In IEEE WCNC

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://vbn.aau.dk/en/publications/3f479b08-e599-4471-950a-8bc32b1ceb7b

Distributed Channel Allocation for Mobile 6G
Subnetworks via Multi-Agent Deep Q-Learning

Ramoni Adeogun, Gilberto Berardinelli
Department of Electronic Systems, Aalborg University, Denmark

E-mail:{ra, gb}@es.aau.dk

Abstract—Sixth generation (6G) in-X subnetworks are recently
proposed as short-range low-power radio cells for supporting
localized extreme wireless connectivity inside entities such as
industrial robots, vehicles, and the human body. The deployment
of in-X subnetworks in these entities may lead to fast changes in
the interference level and hence, varying risks of communication
failure. In this paper, we investigate fully distributed resource
allocation for interference mitigation in dense deployments of
6G in-X subnetworks. Resource allocation is cast as a multi-
agent reinforcement learning problem and agents are trained in a
simulated environment to perform channel selection with the goal
of maximizing the per-subnetwork rate subject to a target rate
constraint for each device. To overcome the slow convergence and
performance degradation issues associated with fully distributed
learning, we adopt a centralized training procedure involving
local training of a deep Q-network (DQN) at a central location
with measurements obtained at all subnetworks. The policy
is implemented using Double Deep Q-Network (DDQN) due
to its ability to enhance training stability and convergence.
Performance evaluation results in an in-factory environment
indicated that the proposed method can achieve up to 19% rate
increase relative to random allocation and is only marginally
worse than complex centralized benchmarks.

Index Terms—Machine learning, reinforcement learning, inter-
ference management, beyond 5G networks, resource allocation

I. INTRODUCTION

The proliferation of more demanding applications clearly in-
dicates that wireless networks beyond 5G must be designed to
cope with more stringent performance requirements in denser
environments than current systems. Recent publications on
sixth generation (6G) [1]–[3] networks have identified short-
range wireless communication for replacing wired connectivity
in applications such as industrial control at the sensor-actuator
level, augmented- or virtual reality, and intra-vehicle control.
Replacing wired connectivity with wireless offers the inherent
benefits of higher scalability, lower equipment weight, en-
hanced flexibility, and lower maintenance cost among others.
Clearly, some of these examples are life-critical use cases
requiring performance guarantees at all times. Such use cases
can also lead to dense scenarios (e.g., in-body subnetworks
in a crowded environment) leading to potentially high and
dynamic interference footprint. In order to achieve the above
requirements, mechanisms for mitigating the adverse effects
of interference are important.

Radio resource allocation has been an important component
of wireless research for several years as a key framework
for interference mitigation. The goal of resource allocation
is to optimize specified performance metric(s) (subject to

practical constraints on resource availability) by adjusting the
utilization of the limited radio resources such as transmit
power, frequency channel, and time. Resource allocation typ-
ically involves non-convex objective function and is known
to be NP-hard with no universal optimal solution [4]. To
overcome this limitation, algorithms for resource allocation
have been traditionally based on hard-coded heuristics [5] or
using optimization techniques such as game theory [6], genetic
algorithm [7] and geometric programming [8]. Over the last
few years, the focus appears to have shifted towards machine
learning-based algorithms [4] resulting in a large number
of published works applying supervised [9], unsupervised
[10] and reinforcement learning techniques [11] for resource
allocation in different types of wireless systems.

While several solutions have been proposed for resource
allocation in different wireless systems over the years, works
targeting the peculiar nature of short-range low-power 6G
in-X subnetworks are still rather limited. In our previous
works, we have proposed distributed rule-based heuristics [5],
[12] and a supervised learning method [13] in which a deep
neural network (DNN) is trained with data generated using
centralized graph coloring for channel allocation in scenarios
with dense deployment of 6G in-X subnetworks. In a recent
work [14], a Q-learning method for joint power and channel
allocation using quantized state information is proposed. While
the results in this paper highlight the potential of Q-learning
for resource allocation, the method suffers from non-scalability
to large problem dimensions as well as the effect of state
quantization on the performance of Q-learning algorithms. The
authors of [15] presented a complex architecture referred to
as GA-Net which combines graph attention (GAT) networks,
graph neural networks (GNN), and multi-agent reinforcement
learning (MARL) for channel allocation in 6G subnetworks.
The introduction of multi-head attention for feature extraction
allows for only centralized training which requires the trans-
mission of sensing measurements from all subnetworks to a
central location translating to high communication overhead
and potential security threats. The lack of possibility for
distributed training limits the usability of GA-Net in practical
applications where connection to a central network may be
impossible. Moreover, relying solely on centralized training
is not feasible for in-X subnetworks applications (such as
in-vehicle or in-body) where privacy constraints may hinder
the transmission of raw sensing data to a central server for
training. In such cases, methods that are amenable to both

distributed and centralized training are desired.
In this paper, we propose a simple, scalable, and robust

multi-agent double deep Q-network (MADDQN) method for
channel allocation using sensing measurements of the aggre-
gate interference power collected at each subnetwork. The
proposed method can be applied for distributed channel allo-
cation with or without the exchange of measurements between
subnetworks and is amenable to centralized, distributed, or fed-
erated training. We perform extensive simulations to evaluate
the performance of the proposed using parameters defined for
the in-factory environment. The performance and complexity
analysis results show that the MADDQN method can achieve
significant performance improvement relative to random al-
location and has low computation complexity. The proposed
method is also scalable and generalizes well to scenarios with
parameters different from those used for training.

The remaining part of this paper is organized as follows.
The system model, the distributed channel allocation problem,
and a short overview of DQN are presented in Section II. In
III, we present the proposed method. Performance evaluation
and complexity analysis results are presented in Section IV.
Finally, we draw conclusions in Section V.

II. PROBLEM FORMULATION

A. System Model

We consider a network with N mobile subnetworks each
serving M devices. Each subnetwork has a single access point
(AP) that coordinates transmission for its associated devices.
We index the subnetworks (and hence, APs) with n ∈ N =
{1, 2, · · · , N} and the devices in each subnetwork with m ∈
M = {1, 2, · · · ,M}. We assume that a total bandwidth, B,
which is partitioned into K equal-sized channels is available
in the system and that each subnetwork operates on a single
channel at each time slot. We index the channels with k ∈
{1, 2, · · · ,K}. Denoting the transmit power as ptx, the power
received on the link between the nth AP from the mth device
in the zth subnetwork is defined as:

gkn,z,m[t] = ptx|hkn,z,m[t]|2Γkn,z,mψn,z,m, (1)

where hkn,z,m[t], Γkn,z,m and ψn,z,m are the Rayleigh dis-
tributed complex small scale gain, path-loss, and log-normal
shadowing, respectively. By considering Jakes model, the
small scale gain, hkn,z,m[t], is defined as

hkn,z,m[t] = ρhkn,z,m[t− 1] +
√

1− ρ2εkn,z,m, (2)

where εkn,z,m is an iid complex Gaussian variable and ρ is
the lag-1 temporal autocorrelation coefficient. The temporal
autocorrelation coefficient is modeled as ρ = J0(2πfdTs),
where J0(·), fd and Ts are the zeroth order Bessel function
of the first kind, the maximum Doppler frequency, and slot-
duration, respectively.

Denoting the corresponding distance as dn,z,m, the
path-loss component, Γkn,z,m is expressed as Γkn,z,m =
c2d−βn,z,m/16π2f2k , where c ≈ 3 × 108 ms−1 is the speed of
light, fk and α are the center frequency of channel k and the

path-loss exponent, respectively. We compute the log-normal
shadowing using [16]

ψn,z,m = ln

 1− e
(
− dn,z,m

dc

)
√

2

√
1 + e

(
− dn,z,m

dc

) (Sn + Sz,m)

 , (3)

where Sx is the value of a two-dimensional Gaussian random
process with exponential covariance at the location of the
device or AP, and dc denotes the de-correlation distance.

At slot, t, the signal-to-noise-plus-interference ratio (SINR)
on the link between the AP in subnetwork n and its mth device
can be expressed as

γknm[t] =
gkn,n,m[t]∑

n′∈Inn′ g
k
n,n′,m′ [t] + σ2

(4)

where Inn′ denotes the set of all other subnetworks that
are operating on the same channel as the nth subnetwork
and σ2 = 10(−174+nf+10 log10(BW))/10 is the noise power
with nf and BW denoting the noise figure and channel
bandwidth, respectively. Assuming single antenna at both the
APs and devices and considering the Shannon approximation,
the achieved rate at slot t can then be written as

ζnm[t] ≈ log2(1 + γnm[t]). (5)

B. Distributed Resource Allocation Problem

We consider a resource allocation problem involving fully
distributed selection of frequency channels. We consider in-
X subnetworks supporting applications that require high data
rates with or without minimum rate constraints. The resource
optimization problem can then be defined as a constrained
multi-objective task involving the maximization of N objective
functions, one for each subnetwork. To support the require-
ment, we take the objective function as the per subnetwork
sum-rate subject to a minimum rate per device constraint. The
problem can be formally expressed as:

P :

{
max
{ct}

M∑
m=1

ζnm(ct)

}N

n=1

st: ζnm ≥ ζtarget ∀n,m (6)

where ct = [ct1 · · · ctN]; ctn ∈ {1, 2, · · · ,K} ∀n denotes the
vector of indices of the channel selected by all subnetworks at
time, t and ζtarget is the target minimum rate which is assumed
equal for all subnetworks. The problem in (6) involves joint
optimization of N conflicting non-convex objective functions
and is known to be difficult to solve. A multi-agent reinforce-
ment learning method for solving the problem is proposed in
this paper.

C. Deep Q-Learning Fundamentals

In deep Q-learning, a deep neural network often called Deep
Q-Network (DQN) is used to approximate the Q-function.
The DQN circumvents the limitations associated with its
table-based counterpart and has been shown to provide better
performance. The DQN can be expressed as

Q̂(s, a) = f(s, a,θ), (7)

Fig. 1: Illustration of the MADDQN-based channel allocation.

where f is a function determined by the DQN architecture and
θ is a vector of the DQN parameters. The Q-value estimation
is now reduced to optimization of θ. This optimization is
typically performed using standard gradient descent algorithms
with the Huber loss defined as [17]

L(θ) =

{
(Γ(θ))2 if |Γ(θ)| ≤ δ
δ|Γ(θ)| − 1

2δ
2 otherwise

(8)

where Γ = r(st, a) + γmaxa′ Q
′
(st+1, a

′
; θ)−Q(st, a; θ) is

the difference between expected and predicted Q-values and δ
is the discriminating parameter of the loss function.

III. MULTI-AGENT DDQN FOR CHANNEL ALLOCATION

We cast the resource selection described above in a MARL
framework in which each subnetwork has an agent at the
AP whose goal is to learn a policy for selecting a frequency
channel such that its communication requirements are met via
interaction with the wireless environment as shown in Fig. 1a.
As with other RL techniques, MARL requires the definition
of the environment, state (or feature) space, action space, and
reward signal as well appropriate model for the policy. As
described in section II-A, a wireless environment with N
mobile subnetworks each serving M devices is considered.
The other components are described below.
A. State space

We consider two cases viz: fully independent resource
selection and resource selection with limited cooperation. In
the former, no communication is possible among subnetworks.
Each subnetwork, therefore, makes resource selection deci-
sions based solely on its local sensing information. The latter
allows communication of only sensing measurement between
a subnetwork and others in its neighbour set, denoted as Dn
for the nth subnetwork. The feature set of subnetwork n is
represented as

Sn = {Iz,1, Iz,2, · · · , Iz,K} ∀z ∈ {n,Dn} (9)

where Iz,k is the measured aggregate interference power on
channel k at the zth subnetwork. Note that the dimension of
the neighbour set, |Dn| can be varied between 0 and N −1 to
control the number of neighbours from which each subnetwork
receives state information. If |Dn| = 0, we have the fully

independent learning case. With |Dn| < N − 1, the strongest
interfering subnetworks are included |Dn|.

B. Action space

The action space is the set of all possible actions that
the agent can choose from at each time. While the method
presented here can be applied to the selection of any wireless
resource, we consider the allocation of frequency channels.

The action space for each subnetwork is therefore the set
of all available frequency channels defined as

A = {c1, c2, · · · , cK}, (10)

where ck denotes the k channel. At each time, the nth
subnetwork’s action is denoted atn; atn ∈ A.

C. Reward signal

As stated in section II-B, the goal of each agent is to
maximize the achieved rate while also ensuring that a target
rate, rtarget is achieved. To guide the agent towards achieving
this goal, we define the reward function considering the
optimization problem defined in (6). The reward for the nth
subnetwork at time, t is defined as

rn =

{
ζn if ζnm ≥ ζtarget,∀n,m
ζn − λ∆ζn otherwise

, (11)

where ζn =
∑M
m=1 ζnm is the sum rate achieved by all

devices in subnetwork n, ∆ζn =
∑M
m=1(ζtarget − ζnm) and

λ is a control parameter which is set to ensure a balance
between maximizing the achieved rate and guaranteeing that
the minimum rate is at least equal to ζtarget.

D. Policy Representation

Motivated by the work in [18] where it was shown that a
DQN-variant referred to as Double DQN (DDQN) offered up
to 2-fold performance improvement and better training stabil-
ity than classic DQN, we adapt the DDQN with experience
replay [19] in a multi-agent version for channel selection. The
considered DDQN architecture is shown in Fig. 1. The DDQN
comprises two networks viz:
• Main Network: The main network acts as the action-

value function approximator which maps the features to
actions. This mapping for the nth subnetwork is denoted
as Q(st, ak; θt) : st → {q(a|st, θt)|a ∈ A}, where
q(a|st, θt) denotes the expected cumulative rewards for
taking action a at state, st.

• Target Network: In DDQN, the target network is used
for estimating expected returns from choosing an action
at a given state as shown in Fig. 1. Estimates of the
expected reward are then used to compute the Q-value
approximation error while performing optimization of
the main network. We denote the target network as
Q̃(st, ak; θ̃t). The target network has the same structure
as the main network but its weights are only updated after
a specified number of steps, Tupdate, i.e., θ̃t := θt every
Tupdate steps.

Algorithm 1 Training of MADDQN-based channel allocation

1: Input: Learning rate, α, discount factor, γ, number of
episodes, T , number of episode steps, Ne, batch size, Nb,
target network update interval, Tup, switching delay, τdelay

2: Compute initial states, {s1n}Nn=1

3: Initialize replay memory, {Dn}Nn=1, main network param-
eters, {θn}Nn=1, target network parameters θ̃n = θn

4: for t = 1 to T do
5: Generate random switching index, {τn}Nn=1

6: for i = 1 to Ne do
7: for n = 1 to N do
8: if i modulo τdelay == τn then
9: subnetwork n obtain feature vector, stn

10: subnetwork n select atn using ε-greedy strategy
11: end if
12: end for
13: The joint resource selection of all subnetworks yield
14: transitions into next states, {st+1

n }Nn=1 and
15: immediate rewards, {rn(st,a)}Nn=1

16: if i modulo τdelay == τn then
17: Store experience samples (stn, a

t
n, r

t
n, s

t+1
n) in replay

18: memory Dn;∀n ∈ {1, · · · , N}
19: end if
20: Decay exploration probability as in (12).
21: if t modulo Nb == 0 then
22: for n = 1 to N do
23: Randomly choose a mini-batch, (sτn, a

τ
n, r

τ
n, s

τ+1
n)

24: Perform gradient descent to minimize (8)
25: end for
26: end if
27: if t modulo Tup == 0 then
28: Update target networks: θ̃n = θn;∀n ∈ {1, · · · , N}
29: end if
30: end for
31: end for
32: Output: Trained DQNs, {Qn}Nn=1

E. Action Selection

During the training, resource selection decision is made
by each agent via the ε-greedy strategy [17], where ε is the
exploration probability, i.e., the probability that the agent takes
random action. During the training, ε is decayed according to

ε = max (εmin, (εmax − εmin)/εstep) , (12)

where εmin and εmax denote the minimum and maximum
exploration probability, respectively, and εstep is the number
of exploration steps. The multi-agent training procedure is
described in Algorithm 1.

IV. PERFORMANCE EVALUATION

A. Simulation settings

We consider a network with N = 25 subnetworks each
with a single controller serving as the AP for a sensor-
actuator pair. Subnetworks are uniformly distributed in a

TABLE I: Default simulation parameters.

Parameter Value Parameter Value

Deployment area [m2] 40 × 40 Number of subnetworks, N 25
subnetwork radius [m] 3.0 Velocity, v [m/s] 2.0
Number of frequency channels, |A| 4 Pathloss exponent, γ 2.7
Shadowing standard deviation, σs [dB] 5 Carrier frequency [GHz] 6
Transmit power [dBm] 0 Noise figure [dB] 10
Channel bandwidth [MHz] 10 Network structure |S| − 24− 24− |A|
Optimizer Adam Learning rate 0.001
Batch size 500 Number of training episodes 2000
Initial/final Epsilon 1/0.01 Discount factor, γ 0.99

40 m × 40 m rectangular area leading to a deployment
density of 15625 subnetworks/km2. Each subnetwork moves
according to a restricted random direction mobility with a
velocity, v = 2 m/s translating to a Doppler frequency,
fd = 40 Hz. We assume that transmissions occur over a
bandwidth, B = 10 MHz. Except where stated otherwise, we
set the number of frequency channels, K = 4, and the transmit
power, Ptx = 0 dBm. Without loss of generality, we consider
a single device per subnetwork, i.e., M = 1. Other simulation
parameters are listed in Tab. I.

B. DDQN Design and Training Procedure

The main and the target DDQN policy are implemented as
fully connected neural network (FCNN) architectures with two
hidden layers each with 24 neurons in MATLAB1.

We studied both distributed training and execution ap-
proaches in which N agents are trained simultaneously and the
centralized training with distributed execution which involves
training a single agent and copying its weights to other agents
either during the training or at convergence. The goal is to
understand the potential of both training mechanisms for the
channel selection problem. Our initial results showed that
distributed training results in excessively long training time.
With N = 25 subnetworks, it took approximately 12× longer
(time to convergence of about 44 hours) on a quad-core laptop
with 8 GB RAM to train the agents in a distributed version
compared to centralized training which took about 3.8 hours
on the same machine. The distributed training procedure is
summarized in Algorithm 1. The centralized approach follows
the same procedure except that only a single agent is applied
at all subnetworks during training.

To achieve stability and improve convergence, experience
replay technique is used to store previous experiences in a
replay buffer. Samples for updating the DDQN weights are
then drawn randomly from the buffer thereby eliminating cor-
relations between successive samples. The agents are trained
using the reward function in (11) with ζtarget = 0 bps/Hz.

Similar to the works in [5], [12], we utilized random
switching delays to minimize the impact of ping-pong effects
resulting from simultaneous switching by multiple subnet-
works to the same channel. The delay is generated for all
subnetworks at the beginning of each snapshot as a random
integer factor of the transmission interval with a maximum
value of 10. A subnetwork is then allowed to perform channel
switching at time instants determined by its assigned delay
value.

1The implementation are available via the GitHub repository available via
https://github.com/MADDQN-based-subnetwork-channel-allocation.git

0 500 1000 1500 2000

Episode

4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

R
ew

ar
d

[b
ps

/H
z]

Reward: jDj = 0
Averaged Reward: jDj = 0
Reward: jDj = 3
Averaged Reward: jDj = 3
Reward: jDj = 7
Averaged Reward: jDj = 7

(a) Averaged reward versus episode with N = 25.

0 2 4 6 8 10

Per device rate [bps/Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Surogate Optimizer
Centralized Coloring
MADDQN: : jDj = 0
MADDQN: : jDj = 3
MADDQN: : jDj = 7
Random

(b) CDF of per device rate with N = 25.

2 2.5 3 3.5 4 4.5 5 5.5 6

Average rate [bps/Hz]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
D

F

Surogate Optimizer
Centralized Coloring
MADDQN: : jDj = 0
MADDQN: : jDj = 3
MADDQN: : jDj = 7
Random

(c) CDF of average rate.

5 10 15 20 25 30 35 40 45

Number of subnetworks

0

5

10

15

20

A
ve

ra
ge

 ra
te

 [b
ps

/H
z]

Random
MADDQN: jDj = 3
Centralized Coloring

(d) Sensitivity to the number of subnetworks.

1 2 3 4 5 6 7 8 9

Shadowing standard deviation [dB]

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 ra
te

 [b
ps

/H
z]

Random
MADDQN: jDj = 3
Centralized Coloring

(e) Sensitivity to shadowing standard deviation

5 10 15 20 25 30 35 40 45

Number of subnetworks

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

M
ea

n
ru

nn
in

g
tim

e
es

tim
at

e
fo

r
C

en
tra

liz
ed

 c
ol

or
in

g
an

d
M

A
D

D
Q

N
 [

s]

10

20

30

40

50

60

70

80

M
ea

n
ru

nn
in

g
tim

e
es

tim
at

e
fo

r
S

ur
ro

ga
te

 o
pt

im
iz

er
 [s

]

MADDQN: : jDj = 0
Centralized Coloring
Surogate Optimizer

(f) Running time estimates

Fig. 2: Plots of the learning curves (a), performance (b-C) and sensitivity evaluation (d-e) results, and running time estimates (f).

C. Simulation Results
1) Training: Fig. 2a shows the averaged reward over suc-

cessive episodes with no target rate constraint, i.e., ζtarget =
0 bps/Hz and size of neighbor set for each subnetwork,
|D| = [0, 3, 7]. The averaging is performed over all steps
within each episode and all subnetworks. The figure shows
that convergence is achieved at approximately 1000 episodes
with fully independent, i.e., |D| = 0 and 1600 episodes with
|D| = 3 and |D| = 7. This indicates that an agent requires
longer training to learn the feature-to-action mapping function
using sensing measurements from multiple subnetworks than
using only local measurements. At convergence, averaged
reward of about 4.60 bps/Hz, 4.75 bps/Hz and 4.70 bps/Hz
is achieved with |D| = 0, |D| = 3 and |D| = 7, respectively,
indicating marginal improvement of 3.3% with |D| = 3 and
2.2% with |D| = 7 compared to the fully independent case,
i.e. |D| = 0.

2) Execution: The trained DDQN agents are deployed for
distributed channel allocation and performance compared with
three benchmark algorithms viz:

1) Random: assign frequency channels randomly to all
subnetworks at the start of a snapshot.

2) Mixed Integer Surrogate Optimizer: the surrogate opti-
mization method [20] is applied in a centralized version
to the mixed integer problem involving maximization of
the network sum rate. This method is implemented using
the surrogateopt function in MATLAB with default
parameters except for the number of iterations which
is set to 400.

3) Centralized coloring: Greedy graph coloring is applied
to the interference graph, G created from the matrix of
mutual interference power between subnetworks with a
K − 1 strongest interfering neighbours edge constraint.
To guarantee colorability G, the successive graph spar-
sification involving removal of the weakest edges until
no more than K colors are required [12] is used in the
simulations.

Fig. 2b shows the empirical Cumulative Distribution Func-
tion (CDF) of the per-device rate for the different methods.
The proposed MADDQN scheme performs better than the
random channel allocation, similar to centralized coloring,
and only marginally worse compared to the iterative surrogate
optimization technique.

The averaged rate (or equivalently sum rate) performance
of the different channel allocation methods is shown in
Fig. 2c where we plot the CDF of the rate averaged over all
subnetworks. Compared to random allocation, the proposed
MADDQN method offers between ∼ 15% (with |D| = 0)
and ∼ 19% (with |D| = 3) improvement at the median of
the average rate distribution and is only about ∼ 6% below
the median average rate achieved by the centralized benchmark
schemes, i.e., centralized coloring and surrogate optimizer. We
remark here that the proposed method offers the advantage
of much lower signaling overhead since only a very limited
exchange of information is required.

3) Sensitivity Evaluation: We study the robustness of the
proposed method to changes in the wireless environment than
those used during the training. Due to its high computation

complexity, the iterative surrogate optimizer is not included in
the sensitivity evaluation. The MADDQN model trained with
N = 25 subnetworks and shadowing standard deviation of
σs = 5 dB is evaluated with values of N between 5 and 45
in the same 40 m × 40 m and σs between 1 dB and 9 dB.
We plot the mean and standard deviation of the average rate
as a function of the number of subnetworks in Fig. 2d and
shadowing standard deviation in Fig. 2e. In both cases, the
MADDQN method shows a similar trend as well as relative
performance to the centralized coloring and random allocation
benchmarks indicating that all schemes are equally affected
by the changes in the number of subnetworks and shadowing
standard deviation. It is therefore reasonable to conclude that
the proposed scheme is robust to changes in the considered
wireless parameters.

4) Complexity Analysis: We compare the computational
complexity of the proposed MADDQN method with the
benchmark algorithms by estimating the total time required
to perform channel allocation for all subnetworks at each
transmission instant. In Fig. 2f, we plot the averaged total
running time per step as a function of the number of subnet-
works. The figure shows that the proposed MADDQN and our
implementation of greedy coloring can provide up to a factor
of 2000 reduction in time complexity relative to the iterative
surrogate optimizer. While the running time for centralized
coloring is marginally lower than that of MADDQN for values
of N between 5 and 35, the linear growth achieved by the latter
makes it more attractive for deployments with higher number
of subnetworks, i.e., N ≥ 40.

Note that the distributed MADDQN method has mini-
mal signaling overhead compared to the centralized bench-
marks. Assuming a constant time cost for exchanging sensing
measurement between any pair of subnetworks or from a
subnetwork to the central resource manager, the signaling
complexity for MADDQN and centralized benchmarks (i.e.,
centralized coloring and surrogate optimizer) is upper bounded
by O(N |Dn|) and O(N2), respectively. As observed from
the training curves in Fig. 2a and the mean rate performance
in Fig. 2c, no performance improvement is achieved with
values of |Dn| > K − 1. In practical interference-limited
scenarios, the number of available channels, K is much less
than the number of subnetworks. i.e., N << K and hence the
signalling cost complexity for MADDQN reduces to O(N).

V. CONCLUSION

A simple multi-agent DDQN (MADDQN) approach is pro-
posed for fully distributed dynamic channel allocation in dense
deployments of 6G in-X subnetworks. The access point in each
subnetwork act as the DDQN agent which dynamically makes
channel selection decisions based on aggregate interference
power per channel measurements obtained via sensing. The
presented performance results indicated that DDQN agents for
channel allocation can be trained with reasonably fast con-
vergence. The MADDQN approach yields a median average
rate that is up to 19% higher than baseline random allocation
and only about 6% lower than the computational intensive

surrogate optimizer as well as the centralized graph coloring
with high signaling overhead. Our results further indicated that
the proposed method is robust to changes in the deployment
density as well as propagation parameters.

REFERENCES

[1] V. Ziegler, H. Viswanathan, H. Flinck, M. Hoffmann, V. Räisänen, and
K. Hätönen, “6G architecture to connect the worlds,” IEEE Access,
vol. 8, pp. 173 508–173 520, 2020.

[2] H. Viswanathan and P. E. Mogensen, “Communications in the 6G Era,”
IEEE Access, vol. 8, pp. 57 063–57 074, 2020.

[3] G. Berardinelli, P. Baracca, R. Adeogun, S. Khosravirad, F. Schaich,
K. Upadhya, D. Li, T. B. Tao, H. Viswanathan, and P. E. Mogensen,
“Extreme Communication in 6G: Vision and Challenges for ‘in-X’
Subnetworks,” IEEE OJCOM, 2021.

[4] F. Hussain, S. A. Hassan, R. Hussain, and E. Hossain, “Machine
Learning for Resource Management in Cellular and IoT Networks:
Potentials, Current Solutions, and Open Challenges,” IEEE Commun.
Surveys Tuts., vol. 22, no. 2, pp. 1251–1275, 2020.

[5] R. Adeogun, G. Berardinelli, I. Rodriguez, and P. E. Mogensen, “Dis-
tributed Dynamic Channel Allocation in 6G in-X Subnetworks for
Industrial Automation,” in IEEE Globecom Workshops, 2020.

[6] R. O. Adeogun, “A novel game theoretic method for efficient downlink
resource allocation in dual band 5G heterogeneous network,” Wireless
Personal Communications, vol. 101, no. 1, pp. 119–141, Jul 2018.

[7] U. Mehboob, J. Qadir, S. Ali, and A. Vasilakos, “Genetic algorithms in
wireless networking: techniques, applications, and issues,” Soft Comput-
ing, vol. 20, no. 6, pp. 2467–2501, 2016.

[8] K. T. Phan, T. Le-Ngoc, S. A. Vorobyov, and C. Tellambura, “Power
allocation in wireless relay networks: A geometric programming-based
approach,” in IEEE GLOBECOM 2008 - 2008 IEEE Global Telecom-
munications Conference, 2008, pp. 1–5.

[9] H. Sun, X. Chen, Q. Shi, M. Hong, X. Fu, and N. D. Sidiropoulos,
“Learning to Optimize: Training Deep Neural Networks for Interference
Management,” IEEE Transactions on Signal Processing, vol. 66, no. 20,
pp. 5438–5453, 2018.

[10] C. Sun and C. Yang, “Learning to Optimize with Unsupervised Learning:
Training Deep Neural Networks for URLLC,” in IEEE PIMRC, 2019,
pp. 1–7.

[11] J. Burgueno, R. Adeogun, R. L. Bruun, C. S. M. Garcı́a, I. de-la Bandera,
and R. Barco, “Distributed Deep Reinforcement Learning Resource
Allocation Scheme For Industry 4.0 Device-To-Device Scenarios,” in
IEEE VTC-Fall). IEEE, 2021, pp. 1–7.

[12] R. Adeogun, G. Berardinelli, and P. E. Mogensen, “Enhanced interfer-
ence management for 6G in-X subnetworks,” IEEE Access, vol. 10, pp.
45 784–45 798, 2022.

[13] R. O. Adeogun, G. Berardinelli, and P. E. Mogensen, “Learning to Dy-
namically Allocate Radio Resources in Mobile 6G in-X Subnetworks,”
in IEEE PIMRC, 2021.

[14] R. Adeogun and G. Berardinelli, “Multi-agent dynamic resource alloca-
tion in 6G in-X subnetworks with limited sensing information,” Sensors,
vol. 22, no. 13, p. 5062, 2022.

[15] X. Du, T. Wang, Q. Feng, C. Ye, T. Tao, L. Wang, Y. Shi, and
M. Chen, “Multi-agent reinforcement learning for dynamic resource
management in 6G in-X subnetworks,” IEEE Transactions on Wireless
Communications, pp. 1–1, 2022.

[16] S. Lu, J. May, and R. J. Haines, “Effects of correlated shadowing
modeling on performance evaluation of wireless sensor networks,” in
IEEE Vehicular Technology Conference, 2015, pp. 1–5.

[17] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[18] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” CoRR, vol. abs/1509.06461, 2015. [Online].
Available: http://arxiv.org/abs/1509.06461

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep reinforcement learn-
ing,” 2013.

[20] H.-M. Gutmann, “A radial basis function method for global optimiza-
tion,” Journal of global optimization, vol. 19, no. 3, pp. 201–227, 2001.

