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a b s t r a c t 

Background and objective: Chronic neuropathic pain (NP) is a chronic pain condition that severely impacts 

a patient’s life. Pain management has proved to be inefficient due to a lack of a simple clinical tool that 

may identify and monitor NP. A low-cost, noninvasive tool that provides relevant information on NP is the 

electroencephalogram (EEG). However, the commonly used linear EEG features have proved to be limited 

in characterizing NP pathophysiology. This study sought to determine whether nonlinear EEG features 

such as approximate entropy (ApEn) would better differentiate pain severity than absolute band power. 

Methods: A non-parametric statistical approach based on the Brief Pain Inventory (BPI), along with linear 

and nonlinear EEG features, is proposed in this study. For this purpose, thirty-six chronic NP patients 

were recruited, and 22 channels were registered. Additionally, a control database of 13 participants with 

no NP was used as a reference, where 19 channels were registered. For both groups, EEG was recorded 

for 10 min in a resting state: 5 min with eyes open (EO) and 5 min with eyes closed (EC). Absolute band 

power and ApEn EEG features in the five clinical frequency bands (delta, theta, alpha, beta, and gamma) 

were estimated for all channels in both groups. As a result, 220-dimensional and 190-dimensional feature 

vectors were obtained for experimental and control classes respectively. For the experimental class, NP 

patients were grouped according to their BPI evaluation in three groups: low, moderate, and high pain. 

Finally, feature vectors were compared between groups using Kruskal Wallis and post-hoc Dunn’s tests. 

Results: ApEn revealed significant statistical difference ( p < = 0.0 0 01) in most frequency bands and con- 

ditions among the groups. In contrast, power had less significant differences between groups, particularly 

with EO. Furthermore, NP groups were notably clustered using only ApEn in theta, alpha, and beta bands. 

Conclusions: The results indicate that ApEn effectively characterizes the different severities of chronic 

NP rather than the commonly used linear features. ApEn and other nonlinear techniques (e.g., spectral 

entropy, Shannon entropy) might be a more suitable methodology to monitor chronic NP experience. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Neuropathic pain (NP) is a direct consequence of a lesion or dis- 

ase affecting the somatosensory system. NP is classified as chronic 

hen its duration is longer than three months [1] . Throughout this 

ourse, the spinal cord and the brain respond with neuroplastic 
Abbreviations: NP, Neuropathic Pain; EEG, Electroencephalogram; CNS, Central 

ervous System; BPI, Brief Pain Inventory; PDQ, Pain Detect Questionnaire; ApEn, 

pproximate Entropy; EC, Eyes Closed; EO, Eyes Open. 
∗ Corresponding author at: Department of Health Science and Technology, Center 

or Neuroplasticity and Pain (CNAP), Aalborg University, Selma Lagerlöfs Vej 249, 

260 Gistrup, Denmark. 

E-mail address: dmz@hst.aau.dk (D.M. Zolezzi) . 
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hanges, which could progressively affect the quality of life of NP 

atients. Unfortunately, clinical pharmacological trials have failed 

o relieve pain effectively [2] . A reason might be the poor charac- 

erization and stratification of NP [2] . 

Furthermore, NP characterization has almost exclusively relied 

n subjective perception, which has hindered advances in clini- 

al management [3] . The fundamental problem for characteriza- 

ion depends on the complexity of NP [4] , given that neuroplas- 

icity is dynamic and unpredictable. Nonetheless, the spontaneous 

omponent of NP has mainly been analyzed with linear method- 

logies using power as the standard technique to extract neuro- 

hysiological correlates from EEG signals [5–7] . The limitation of 

inear methods is that they assume a relatively simple behavior 

rom the cerebral cortex. For instance, linearity assumes that the 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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espective output (i.e., the power amplitude from neuronal activ- 

ty) is the sum of two or more inputs (i.e., the sum of action po-

entials of thousands of neurons). In some instances, however, the 

rain does not behave as a linear system. The dynamics of the 

rain constantly shift from complex (nonlinear systems) to pre- 

ictable synchronicity (linear systems). This inherent shifting of 

euronal dynamics is the most efficient way for the brain to detect 

hanges in the internal and external environment while preserving 

ts autonomous internal organization [8] . Some characteristic prop- 

rties of complex systems can be observed in NP pathophysiology, 

uch as (1) simple agents, (2) nonlinear interactions among compo- 

ents, (3) no central control, and (4) emergent behavior. Regarding 

he first property, neurons are simple relative to the system (i.e., 

NS), and neurons are the principal agents of maladaptive plas- 

icity, where changes include: an altered sensibility of receptors, 

ctopic generation of action potentials and reduced inhibition [9] . 

econd, nonlinear effects in NP emerge from amplifying and damp- 

ng feedbacks and long-term depression of GABAergic interneurons 

10] , which have been proposed as a gateway for pain transmission 

o higher brain areas. In addition, synaptic connections between 

eurons are stochastic, meaning they may signal along a particular 

athway once but not another [11] . Third, there is essentially no 

entral control over the system because the components (i.e., neu- 

ons, neuronal networks, or frequency bands) control each other’s 

ctivity. 

Finally, neurons display emergent behavior in NP, which refers 

o the collective outcomes of the whole system which cannot be 

bserved from a small group of neurons. When subject to NP, neu- 

ons have no predefined meaning: they specialize during the learn- 

ng phase in an often unexpected manner [2] . Furthermore, emer- 

ent behavior displays a hierarchical organization in the perception 

f NP. In other words, a neuron cannot perceive pain. Perception is 

nly possible from the collective dynamics of the system. Conse- 

uently, the pain percept emerges not as a direct one-to-one cor- 

elate of sensory input but as a dynamic state formed by various 

sychosocial factors (e.g., learning, expectation, affective state) [12] . 

n sum, considering the nonlinearity of NP, this study proposed to 

alculate the randomness of the brain measured with entropy in 

he EEG signals. 

.1. Related work 

Pain classification has been sought in several studies without 

onsistent results. Previous studies have focused on identifying the 

egree of pain sensitivity from EEG data of healthy subjects by in- 

ucing pain [13] and some have included nonlinear methods in 

heir classifier [14–17] . In addition to the results of this classifier 

hat were published elsewhere [ 17 ] and achieved 96% accuracy us- 

ng a support vector machine, only two other studies have tried to 

ifferentiate three levels of pain [ 14 , 16 ]. They reached 88.67%, and

3% accuracy, respectively; one study [16] used fractal dimension, 

hannon entropy, ApEn, and spectral entropy, whereas [14] used 

etrics from functional connectivity (including nonlinear features). 

espite their performance, the computational demand for connec- 

ivity is exceptionally high, and of the 12 features extracted by 

16] none of the features could discriminate between the three 

lasses. Different types of entropy have been applied to character- 

ze the chaotic behavior of the human system in time series data, 

uch as approximate entropy (ApEn), sample entropy, and multi- 

cale entropy. The development of ApEn was founded on limita- 

ions of data length and noise commonly found in EEG datasets 

18] . In addition, ApEn detects underlying episodic behavior unde- 

ected by peak amplitudes and preserves order in composite sys- 

ems [19] . Thus, ApEn was chosen because it has been proven to 

haracterize pathological states in Alzheimer’s [20] , major depres- 

ive disorder [21] and epilepsy [22] . 
2 
Moreover, EEG signals of chronic low back pain patients (where 

ow back pain was not NP) had a significantly reduced ApEn in 

elta (1–3 Hz), theta (4–7 Hz), alpha (8–13 Hz), and beta (14–

0 Hz) bands after a massage therapy [23] . Currently, there is no 

ther nonlinear EEG analysis in patients with NP. 

Based on the unpredictable pathophysiology of NP, the present 

tudy aimed to determine whether ApEn band features would pro- 

ide a better characterization than the commonly used band power 

eatures by differentiating frequency bands between NP severi- 

ies and a control group. In addition, the efficacy of both mod- 

ls of neuronal dynamics to characterize NP with an unsupervised 

ethod is explored in this study. Patients were stratified based on 

he severity of pain (low, moderate, and high) according to the 

rief Pain Inventory (BPI) questionnaire. 

. Methods 

.1. Neuropathic pain patients dataset 

Thirty-six patients suffering from chronic NP were recruited 

or this study. The resulting database is publicly available in [24] . 

or a patient-specific feature analysis, the complete details for all 

hronic NP patients are stated in Table 1 . More information, such 

s inclusion and exclusion criteria, surgical or psychological treat- 

ent, and time with pharmacological treatment, are indicated in 

he repository files [24] . Sample size calculation was computed be- 

ore the study (See supplementary data for details, Section 1). It 

as calculated that to have a power between 0.8 and 0.9, 32–43 

atients with chronic NP were needed. Thirty-six chronic NP pa- 

ients (8 men and 28 women) with a mean age of 44 ±13.98 were 

ecruited. The questionnaires used in this study were Pain Detect 

uestionnaire (PDQ) and Brief Pain Inventory (BPI), both validated 

or the Spanish language [ 25 , 26 ]. To characterize the different neu- 

onal dynamics by the severity of NP, the proposed stratification 

or the groups depended on the severity of pain marked in the 

actual pain” question of the BPI. The PDQ and BPI actual pain 

cores are depicted in Fig. 1 and 2 of the Supplementary Mate- 

ial, Section 5. Three classes were considered: (a) low pain = 0–3, 

b) moderate pain (Mod) = 4–6, and (c) high pain = 7–10. Table 2

hows the demographic characteristics of the three NP groups by 

everity. Before the experiment, all patients provided written in- 

ormed consent according to the World Association Declaration 

f Helsinki. This study was approved by the Clinical Investigation 

thics Committee of Tecnológico de Monterrey (number: P0 0 0369- 

N-RespElectro-CI-CR005). 

.2. Control sample dataset 

For the control group, a database from the Hospital Univer- 

iti Sains Malaysia (HUSM), Kelantan, Malaysia [27] was used with 

0 min EEG raw recordings of 13 individuals with no NP (mean 

ge = 38.277 ± 15.64). The authors recorded 19 individuals in 

he complete dataset, of which 10 were women, and 9 were men. 

ue to missing data in the repository, only 13 subjects were suc- 

essfully imported; thus, the exact number of men and women 

n this sample is unknown [28] . Control subjects were diagnosed 

s healthy condition after a psychiatric evaluation based on clini- 

al questionnaires such as the Beck Depression Inventory-II (BDI-II) 

nd Hospital Anxiety and Depression Scale (HADS) [28] . 

.3. EEG recordings 

The NP dataset includes 22 EEG channels (Fp1, Fp2, AFz, F7, 

3, Fz, F4, F8, T7, C3, Cz, C4, T8, CPz, P7, P3, Pz, P4, P8, POz,

1, O2) with two earlobe references (M1 and M2) at a sampling 

ate of 250 Hz and a bandwidth of 0.1–100 Hz, recorded with the 
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Table 1 

Dataset description for chronic NP patients. 

ID Age Sex Etiology of NP Time with NP Medical treatment for NP 

0 25 F Central Nervous System Disorder More than 2 years Pregabalin, Amitriptyline 

1 57 F Diabetes More than 2 years Tramadol 

2 20 F Painful peripheral neuropathy More than 2 years Ketorolac 

3 34 F Spinal cord or nerve root injury More than 2 years Tramadol 

4 77 M Spinal cord or nerve root injury More than 2 years None 

5 51 F Other (NP in the head and surrounding areas) More than 2 years None 

6 42 M Diabetes 3 - 6 months Pentoxifylline, Diclofenac 

7 23 F Central Nervous System Disorder (CRPS or Lyme) 1 - 2 years Gabapentin, Tramadol 

8 58 F Painful peripheral neuropathy More than 2 years Pregabalin, Gabapentin 

9 24 M Trigeminal neuralgia More than 2 years None 

10 55 M Diabetes 1 - 2 years Pregabalin 

11 48 M Diabetes More than 2 years Gabapentin 

13 50 F Spinal cord or nerve root injury More than 2 years None 

14 33 F Spinal cord or nerve root injury More than 2 years Pregabalin, Tramadol, CBD derivatives, Acetaminophen 

15 68 F Painful peripheral neuropathy 1 - 2 years Pregabalin, Tramadol 

16 53 F Other (NP irradiating from lower back, right arm, and left hip) More than 2 years Occasionally Ketorolac, mostly none 

18 53 F Diabetes 1 - 2 years Acetaminophen 

19 63 M Diabetes More than 2 years Pregabalin 

20 42 F Spinal cord or nerve root injury 1 - 2 years Pregabalin 

21 27 F Other (NP radiating from right hip to right glute and right leg) More than 2 years Tramadol, Methocarbamol 

22 42 M Spinal cord or nerve root injury More than 2 years CBD Derivatives 

23 55 F Trigeminal neuralgia More than 2 years Amitriptyline, Topiramate, Erenumab 

24 32 M Spinal cord or nerve root injury 6 months - 1 year Pregabalin, Diclofenac 

25 46 F Spinal cord or nerve root injury More than 2 years Amitriptyline, Tramadol, Rivotril 

26 60 F Spinal cord or nerve root injury More than 2 years Gabapentin, Acemetacin 

27 53 F Painful peripheral neuropathy More than 2 years None 

30 28 F Painful peripheral neuropathy 6 months - 1 year Amitriptyline 

31 47 F Spinal cord or nerve root injury More than 2 years Duloxetine 

33 58 F Painful peripheral neuropathy More than 2 years Occasionally Flanax or Robaxisal, mostly none 

35 29 F Painful peripheral neuropathy More than 2 years None 

37 32 F Trigeminal neuralgia More than 2 years None 

38 50 F Painful peripheral neuropathy More than 2 years Tramadol, Dexketoprofen 

39 40 F Central Nervous System Disorder ∗ More than 2 years Pregabalin, CBD derivatives, rarely Ketamine 

40 55 F Painful peripheral neuropathy More than 2 years None 

41 51 F Painful peripheral neuropathy More than 2 years Occasionally Duloxine, mostly none 

43 31 F Spinal cord or nerve root injury 1 - 2 years Occasionally CBD derivatives, mostly none 

∗Complex Regional Pain Syndrome or Lyme Disease. 

Fig. 1. Pipeline of signal analysis and feature extraction. The resulting feature vectors were: 220 × 360 for the NP group and 190 × 130 for the control group. 

Table 2 

Demographic characteristics for the three groups of chronic NP. 

Group Females Males Age 

High pain 9 5 44.9 ± 14.6 

Moderate pain 9 2 45.3 ± 13.8 

Low pain 10 1 44.8 ± 14 
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Brain amplifier. The control group dataset includes 19 EEG chan- 

els (Fp1, F3, C3, P3, O1, F7, T3, T5, Fz, Fp2, F4, C4, P4, O2, F8,

4, T6, Cz, and Pz) with standard link-ear (LE) reference, recorded 

ith the Brain Discovery amplifier at 256 Hz and within a band- 

idth of 0.1–100 Hz [28] . For both datasets, EEG recordings were 

onducted during eyes closed (EC) and eyes open (EO) conditions 

or 5 min each. During EO, participants were instructed to sit re- 

axed with minimum eye movements [ 28 ]. Several similarities vali- 
3 
ate the comparison between the control database and the chronic 

P sample from this study: (1) age and sex were similar; (2) the 

ecording conditions were 5 min EO and EC, (3) the sampling rate 

as 256 Hz, while for NP was 250 Hz, and (4) channel number 

19 vs. 22) location (10/20 international system) and reference (ear- 

obe) were comparable. 

.4. Data analysis 

This section describes the signal analysis methods used for 

reprocessing, feature extraction, and data processing. All signal 

reprocessing and processing described below were performed in 

ATLAB R2020a (The Mathworks, Inc., Natick, MA, USA). 

.4.1. Preprocessing of raw EEG signals 

Raw EEG signals were preprocessed using the EEGLAB toolbox 

v.19.1.1) for MATLAB (R2020a) software. Signals were first filtered 
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Fig. 2. Feature vector representation for chronic NP group. The first 110 features in the feature vector corresponded to the value of ApEn of 22 electrodes for each band, 

while the second 110 features corresponded to the value of absolute band power of 22 electrodes for each band. Each subject contributed to 10 observations. 
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t 0.1 Hz (6th-order Butterworth high-pass filter) to remove low- 

requency artifacts. Then, transitory artifacts were rejected using 

he Artifact Subspace Reconstruction [29] . Muscular, ocular, car- 

iac, line noise or channel noise artifacts were removed by Inde- 

endent Component Analysis supported by ICLabel [30] . Five filters 

ere designed to filter segments into five clinical bands. The filters 

ere 8th-order Butterworth bandpass filters with lower and higher 

requencies of each band specified in the following section. 

.4.2. Feature extraction 

A linear and nonlinear method were applied to estimate the 

ynamics in neuronal frequency bands, as illustrated in Fig. 1 . All 

unctions and programs used in this study are available for down- 

oad [31] . The Main.m function in [31] calls each subject according 
Algorithm 1 

Absolute Power per Frequency Band Algorithm for Chroni

% ∗∗∗ Absolute Power per Frequency Band ∗∗∗

% – Power per band and electrodes 

power = zeros(110,10);%110 corresponds 5 bands x22 e

1) Segment the signal in 1-minute segments 

start = (5 ∗fs):(fs ∗60):length(signals); 

minute = (60 ∗fs); 

2) Position of the vector for every band – 22 electrode

delta_pwr = 1:22; 

.. 

gamma_pwr = 89:110; 

3) For each filtered signal in the specific band, comput

for i = 1:10 

fin = start(i) + minute;%Itinerate on the same elect

if i == 10% When segment = 10, next channel is 

fin = length(signals); 

end 

power(delta_pwr,i) = mean((Iddelta(:,(start(i):fin))).

disp(’delta’) 

4) After 22nd electrode, next frequency band starts iti

…

power(gamma_pwr,i) = mean((Idgamma(:,(start(i):fi

disp(‘gamma’) 

end 

4) Save power features in the individual subject vector

individual(111:end,:):) = power; 

end 

4 
o ID number and applies the custom-made function FeatureExtrac- 

ion_NP.m (e.g., for the NP group), where features are extracted and 

eturned to the main program to be stored in the main features 

ector. Of note, EEG signals were divided into 1 min segments be- 

ore feature estimation, as seen in Algorithms 1 and 2 . Features 

rom 1 min segments might be more representative of the NP 

tate, given the variability of brain signals. Subsequently, ApEn and 

bsolute band power were estimated per segment for the 22 elec- 

rodes for five frequency bands: delta (0.1–4 Hz), theta (4–8 Hz), 

lpha (8–12 Hz), beta (12–30 Hz), and gamma (30–100 Hz). 

.4.3. Linear computation: absolute band power 

Based on previous literature, the first feature chosen to study 

euronal dynamics was absolute band power [ 5 , 6 , 32 , 33 ]. Absolute
c NP sample. 

lectrodes and 10 segments 

s 

e the absolute band power for each electrode 

rode for every segment 

computed 

 ̂ 2,2); 

nerating 

n))). ̂ 2,2); 

 to later export in general features vector 
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Algorithm 2 

Approximate entropy computation algorithm. 

function [ap_total,i] = ENTROPY(a) 

%Function with only one output: the ApEn of the signal in each channel. 

1) IMPORTANT: Signal must be preprocessed 

elag_total = []; 

2) Dimension was defined before iterating 

dim = 3; 

for i = 1:22%22 channels for chronic NP 

3) Lag is computed for every channel and condition 

[ ∼,lag] = phaseSpaceReconstruction(a(i,:),[],dim); 

elag_total = [ elag _ total lag ]; 

end 

ap_total = []; 

for i = 1:22%22 channels for chronic NP 

4) ApEn is computed with dim = 3, the previously calculated lag, and the tolerance factor r (0.2 ∗variance(x)), which is the default in the function 

ap = approximateEntropy(a(i,:),elag_total(i),dim); 

ap_total = [ap_total ap]; 

end 

end 
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and power was calculated to estimate the level of neuronal syn- 

hrony according to the Eq. (1) , 

 x = 

1 

N 

N ∑ 

n =1 

x 2 n (1) 

here n refers to each sample of the signal x, N is the total num-

er of samples of the signal x, and P x is the mean power of the

ignal x. Absolute band power was extracted per frequency band 

sing two custom-made functions, FeatureExtraction_NP.m (for NP 

roup) and FeatureExtraction_control.m (control group) [31] . The 

ection for the computation of absolute band power of this func- 

ion is displayed in Algorithm 1 . 

.4.4. Nonlinear computation: ApEN algorithm 

ApEn quantifies the randomness in a time series, by measur- 

ng the likelihood that runs of patterns close to m observations re- 

ain close to the subsequent incremental comparisons. The signal 

s more predictable if more repetitive patterns are detected. As a 

esult, ApEn yields a value from 0 to 2, where 2 corresponds to a 

andom time series and 0 to a perfectly regular time series [34] . 

he custom-made function ENTROPY used for computing ApEn in 

his study is available [31] and it is shown in Algorithm 2 . 

As seen in Algorithm 2 , before the computation of ApEn, three 

nput parameters must be defined: m (i.e., the pattern length) , lag 

(i.e., the delay), and the tolerance factor or tuning parameter r 

i.e., similarity criterion). First, the dimension m was calculated us- 

ng the False Nearest Neighbor algorithm [35] . The dimension was 

 = 3 for the control group and NP patients for EO and EC in most

hannels. Previous references held that the EO condition has an in- 

reased dimension than EC [36] , but it was not the case for this

tudy. The optimal number of previous values used to predict the 

ubsequent value m depends on the number of data points [37] . 

onetheless, the value for m is typically chosen as m = 2 or m = 3,

hich follows the theoretical implications of [38] . 

Second, the lag τ was calculated for each channel and condi- 

ion using the Average Mutual Information algorithm [39] . Notably, 

f the lag is too small, the state vectors would be reconstructed 

rom lagging on nearly identical data points. Third, the number of 

ithin-range points at point n was calculated using Eq. (2) : 

 n = 

N ∑ 

n =1 ,n � = k 
1(‖ Y n − Y k ‖ ∞ 

< R ) (2) 

here 1 is the indicator function and R is the radius of similarity 

 r, the similarity criterion). The similarity criterion r was calculated 

s 0.2 ∗variance(x), where x is the one-minute segment of a specific 
5 
hannel and subject in either EC or EO. These values have pro- 

uced good statistical reproducibility for a time series of N > 60 

18] . In this way, ApEn calculates the logarithmic likelihood that 

he time series would repeat itself within the tolerance factor r 

oth for m and for m + 1 samples. Finally, ApEn was calculated as 

pproxEnt = φm 

− φm + 1 in line with Eq. (3) using the Predictive 

aintenance Toolbox [40] , 

m 

= ( N − m + 1 ) 
−1 

N−m +1 ∑ 

n =1 

log ( N n ) (3) 

here n refers to each sample of signal x, N is the total number 

f samples of N, and m is the segment of x wherefrom entropy is 

eing calculated (see Algorithm 2 ). 

.4.5. Feature vectors 

As a result, for the NP group, 220 features ([22 electrodes × 5 

ands] + [22 electrodes × 5 bands]) were extracted, yielding 360 

bservations (36 patients × 10 EEG segments). For the control 

roup, 190 features ([19 electrodes × 5 bands] + [19 electrodes × 5 

ands]) were extracted, yielding 130 observations (13 patients × 10 

EG segments). This process has been summarized in Fig. 2 , which 

rovides a feature vector representation for this study. Before sta- 

istical analysis, data was normalized in the z-score scale with a 

enter of 0 and a standard deviation of 1. 

.4.6. Statistical analysis 

All computations for the statistical analysis were performed in 

Studio (1.2.5033). ApEn and absolute band power from all elec- 

rodes and severities were grouped according to the EO and EC 

onditions from the resulting feature vectors. Second, a Shapiro- 

ilk normality test was performed to test normality. ApEn and 

bsolute band power estimates were non-normal; therefore, the 

on-parametric Kruskal Wallis test was applied for each band in 

C and EO. Finally, Dunn’s Kruskal-Wallis test was performed to 

ompare the groups. See Supplementary Material for more details 

Section 4). 

. Results 

.1. Statistical comparison by frequency bands 

In this section, the ApEn of each electrode and the band power 

cross regions are displayed in boxplots. Fig. 3 presents the delta, 

heta, and alpha band, and Fig. 4 illustrates the beta and gamma 

ands. Boxplots show the mean ApEn and absolute band power 

er severity level for each electrode (22 for NP and 19 for control) 
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Fig. 3. Boxplots for ApEn and Power in delta, theta, and alpha band. ApEn in delta was most differentiable in EC, while only Low-Mod was insignificant in EO. For power, 

all groups showed a significant difference in EC, while for EO, only Control-Low and Control-Mod. For ApEn in theta EC, all groups showed a significant difference, while 

for EO, all groups except Low-Mod; in power EC, all groups were significant, whereas for EO, only Control-High, Control-Low, and Control-Mod. ApEn in alpha showed a 

significant difference for all groups in both conditions; in power, all groups in EC had a significant difference, while for EO, only Control-Low and Low-Mod. OA = Eyes Open, 

OC = Eyes Closed. Mod represents moderate severity. Circles over or under boxplots represent outliers. Data was normalized in a z-score scale with a center of 0 and a 

standard deviation of 1. Ns: P > 0.05, ∗: P < = 0.05, ∗∗: P < = 0.01, ∗∗∗: P < = 0.001, ∗∗∗∗: P < = 0.0 0 01. 

6 
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Fig. 4. Boxplots for ApEn and power in beta and gamma band. In beta ApEn all groups were significant in both EC and EO. For beta power in EO, only the control groups 

showed significant differences (Control-High, Control-Low, and Control-Mod), whereas, for EC, all groups were significant. In gamma ApEn, both conditions (EC and EO) had 

a significant difference for all groups. For power in EC, all groups were significant, but for EO, only Control-Low and Control-High. OA = Eyes Open, OC = Eyes Closed. Mod 

represents moderate severity. Circles over or under boxplots represent outliers. Data was normalized in a z-score scale with a center of 0 and a standard deviation of 1. Ns: 

P > 0.05, ∗: P < = 0.05, ∗∗: P < = 0.01, ∗∗∗: P < = 0.001, ∗∗∗∗: P < = 0.0 0 01. 

a

o

E

3

g  

d

s  

p

4

w

l

s

t

t

s

fi

i

m

v  

a

v

f

b

p

i  

t

a

g

e

p  

b

[

n

E

p

p

p

u

nd each of the five frequency bands in both conditions. ApEn had 

verall significance in both conditions between the groups (EO and 

C), while power had more non-significant groups in EO. 

.2. Topographical and spatial distribution of features 

Given the significance of ApEn to significantly differentiate 

roups, theta ( Fig. 5 ), alpha ( Fig. 6 ), and beta ( Fig. 7 ) bands are

isplayed topographically to visualize the changes between pain 

everity and state (EC and EO). In Fig. 8 , scatterplots show an ap-

ropriate clustering for all groups in ApEn for both conditions. 

. Discussion 

This study sought to determine whether nonlinear features 

ould provide a better characterization than the commonly used 

inear features of EEG analysis for differentiating between NP 

everities, considering its unpredictable pathophysiology. In addi- 

ion, to explore if neuronal frequency bands could characterize 

he same pathology with nonlinear analysis without the need for 

everity labels (i.e., as an unsupervised method). The results con- 

rmed the relevance of ApEn as a nonlinear method that signif- 
7 
cantly differentiates most severities in both EO and EC. Further- 

ore, groups were clustered when the data was divided using only 

alues of ApEn in theta, alpha, and beta ( Fig. 8 ). The latter provides

 preliminary foundation for exploring the application of unsuper- 

ised and supervised methods for monitoring NP with nonlinear 

eatures, especially ApEn. The nonlinear findings for each band will 

e discussed briefly concerning previous studies. The increased 

ower of delta for the NP groups compared to the control group 

s in accordance with previous studies [ 6 , 32 , 33 ] and is related to

he thalamocortical dysrhythmia mechanism, which enhances the 

mplitude of delta oscillations and serves as a means for the on- 

oing subconscious percept of pain [33] . ApEn could also differ- 

ntiate NP severities in the theta band, as reported by others for 

ower analysis in NP [ 6 , 41 ]. The slowing of the alpha band to theta

and in NP patients is also driven by thalamocortical dysrhythmia 

42] . This slowing may also explain the enhanced signal random- 

ess in the theta band as pain severity increases, particularly in 

C for moderate pain in the occipital lobe and the central and 

arietal electrodes for high pain ( Fig. 5 ). Alpha has been reported 

reviously as an “idling rhythm”, measuring the decrease in alpha 

ower upon task performance. For instance, watching painful sit- 

ations suppresses alpha oscillations in the somatosensory cortex 
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Fig. 5. ApEn for theta band in control and NP groups. There is increased ApEn for the control group in EO compared to EC. The slight increase of ApEn in the control group 

occurs over frontal and central electrodes bilaterally. Alternatively, the maximum changes for the NP group are observed in EC. There is decreased ApEn in low pain, whereas 

there is an enhanced ApEn in moderate pain for occipital (POz, O1, O2) and right parietal electrodes (Pz, P4, P8). High pain has a generalized enhanced ApEn as compared 

to other severities. Data was normalized in a z-score scale with a center of 0 and a standard deviation of 1. All groups were significantly different, ∗∗∗∗: P < = 0.0 0 01. 

Fig. 6. ApEn for alpha band in control and NP groups. ApEn for the control group is enhanced in EO in some frontal (Fp1, F3, Fz), parietal (P3, P7, and P8), and occipital 

(O1) electrodes; in EC, increased ApEn is observed over left central (C3, Cz) and parietal (P7, P3, Pz) electrodes. Low and moderate pain in EO have a notable generalized 

increase in ApEn. High pain has a decreased ApEn for central and parietal electrodes (C3, Cz, C4, CPz, P3, Pz, P4). For all severities in EC, there is an overall decrease in 

ApEn compared to the control group. Data was normalized in a z-score scale with a center of 0 and a standard deviation of 1. All groups were significantly different, ∗∗∗∗: 

P < = 0.0 0 01. 

Fig. 7. ApEn for the beta band in the control and NP groups. Beta band for the control group showed an overall increase in ApEn in EO compared to EC. Similarly, ApEn 

was increased for all pain severities in EO. Relevantly, low and high pain in EO had an increased ApEn in the prefrontal (Fp1, Fp2, AFz) and frontal (F7, F3, Fz, F4, F8) 

electrodes. Moderate pain in EO slightly increases over temporal, parietal, and central electrodes. Moderate pain in EC slightly decreases ApEn in the prefrontal and frontal 

electrodes compared to the control group. Data was normalized in a z-score scale with a center of 0 and a standard deviation of 1. All groups were significantly different, 
∗∗∗∗: P < = 0.0 0 01. 
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Fig. 8. 3D Spatial distribution of ApEn and power in theta, alpha, and beta band. ApEn clusters the 22 electrodes of NP severities and control group, whereas power does 

not. Data was normalized in a z-score scale with a center of 0 and a standard deviation of 1. Mod represents moderate severity. 
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43] . Thus, attention toward constant NP may deactivate the cor- 

ex as if it were performing a task, suppressing alpha oscillations. 

lternatively, alpha synchronization in the central/parietal region 

eflects top-down control during the perception of painful stimuli 

44] , whereas alpha desynchronization reflects the bottom-up re- 

ease of this inhibitory control [45] . This increased desynchroniza- 

ion can be seen in the boxplots of Fig. 3 for EC, where power is

ecreased compared to the control group in the alpha band. There 

s also a substantial increase in randomness in NP ( Fig. 6 ) for low

nd moderate pain. This enhanced randomness in the alpha band 

ay reflect the bottom-up release of inhibitory control (desynchro- 

ization) and the allowance for the perception of NP. However, al- 

ha has reduced randomness for high pain, which could reflect 

ore top-down control or synchronization in high pain than in 

ther pain severities. Also, the decreased power of NP severities 

n alpha could be attributed to lower attentional spans [46] . 

Beta is a prominent signal in the human sensorimotor cortex, 

orrelated with GABA concentrations at rest as an index of pain 

47] . Previous studies [ 5 , 32 , 33 ] report an increase in beta activity

n neurogenic pain (i.e., NP) which is in line with the results of this 

tudy in EO. The lower beta power in EC ( Fig. 4 ) may be explained

y brain inhibition that is a consequence of deficiency of GABA, 

hich leads to NP [48] . On the other hand, ApEn increased consid- 

rably for high pain severity compared to the other groups in both 

C and EO, particularly for the frontal area ( Fig. 7 ). This frontal

elevance of beta supports previous results concerning the beta 

and in the frontal region as an optimal feature to predict central 

P [5] . 
9 
Conversely, lower gamma oscillations have been found in pain- 

elevant areas [49] . This lower activity in gamma oscillations can 

e observed in Fig. 4 for both EC and EO in power for the NP

everities compared to the control state. However, for both condi- 

ions (EC and EO), high pain increased ApEn and power compared 

o the other NP severities. The latter supports the results of [ 50 , 51 ]

hich describe higher pain ratings associated with stronger frontal 

nd prefrontal gamma oscillations. These results support the previ- 

us report on nonlinear features for classification [15] , namely that 

onlinear features might be more robust for disease identification 

han spectral domain features alone. 

.1. Limitations of the study and future directions 

The limitations of this study are as follows. First, the study 

as a relatively small sample size. Second, other physiological pro- 

esses that occur in the brain besides NP could also be responsi- 

le for the randomness observed in the EEG, including hemispheric 

ifferences [52] or alertness [53] . Third, despite the essential simi- 

arities between the control database and the recorded NP patients, 

he recording system was not the same, which could alter the sig- 

al recording quality. Fourth, the scatterplots show group cluster- 

ng by using the mean of the segments in each electrode for ev- 

ry group, but the complete feature distribution would be needed 

o confirm patient-specific clustering. In addition, data for effec- 

ive clustering and statistical differences were found given a long 

EG recording for each state (5 min), which may not be optimal 

n clinical practice. Finally, although clinical history, pain specialist 
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[  
riteria, and the PDQ were used to include patients with chronic 

P, patients with widespread brain disorders (e.g., CRPS and Lyme 

isease) are not classified anymore as chronic NP in the updated 

nternational Classification of Diseases-11 (ICD-11)[ 1 ]. 

Nonetheless, these patients still have NP mechanisms and NP 

ymptoms [ 54 , 55 ]. Thus, all patients that were included in this

tudy had NP pathophysiology. Future work should address these 

imitations by (1) a larger sample size of NP patients and control 

articipants, (2) an exploration of other nonlinear features (besides 

pEn) that could cluster NP severities by using individual obser- 

ations, (3) a study of nonlinear correlation in each of the bands 

etween power and ApEn (since the residuals of the linear corre- 

ation were not normal), (4) the exploration of the minimum time 

equired for an EEG recording to differentiate NP severities effec- 

ively. 

. Conclusion 

The present study investigated the application of nonlinear 

eatures compared to linear features for the characterization of 

hronic NP. The results confirm the relevance of ApEn as a non- 

inear method for EEG analysis that significantly differentiates con- 

rol and chronic NP severities in both EO and EC. In addition, ApEn 

lusters NP severities without labels, proposing an alternative path 

or NP characterization using nonlinear methods. Although more 

tudies in chronic NP are needed to confirm the efficacy of nonlin- 

ar analysis, this approach is promising in aiding clinicians and re- 

earchers in better pain management. This methodology could ad- 

ress the need for a simple clinical tool that may stratify chronic 

P patients in clinical trials and develop pain experience monitor- 

ng systems in the clinical environment. 
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