
 

  

 

Aalborg Universitet

From programming to computational perspectives in higher educations for humanities
students

Møller, Anders Kalsgaard; Kaup, Camilla Finsterbach; Brooks, Eva; Gnaur, Dorina; Schürer,
Maja Højslet; Lyngbye, Marie Charlotte
Published in:
Acta Didactica Norden

DOI (link to publication from Publisher):
10.5617/adno.9183

Creative Commons License
CC BY-NC-ND 4.0

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Møller, A. K., Kaup, C. F., Brooks, E., Gnaur, D., Schürer, M. H., & Lyngbye, M. C. (2022). From programming to
computational perspectives in higher educations for humanities students. Acta Didactica Norden, 16(4), [9183].
https://doi.org/10.5617/adno.9183

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            - You may not further distribute the material or use it for any profit-making activity or commercial gain
            - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.5617/adno.9183
https://vbn.aau.dk/en/publications/0438e1b0-c45e-4d2f-a16e-cc013b6b84c4
https://doi.org/10.5617/adno.9183


Anders Kalsgaard Møller 
 Aalborg University 
Camilla Finsterbach Kaup 
 Aalborg University 
Eva Brooks 
 Aalborg University 
Dorina Gnaur 
 Aalborg University 
Maja Højslet Schürer 
 Aalborg University 
Marie Charlotte Lyngbye 
 Aalborg University 
 
DOI: https://doi.org/10.5617/adno.9183  
 
 
From programming to computational perspectives in higher 
educations for humanities students 
 

Abstract 
Due to the increasing need for IT competencies, university humanities programs have 
started introducing courses to strengthen students’ understanding of informatics. This 
paper studies how students in a master’s program in IT at a humanities faculty developed 
skills in programming and computational thinking. All students had a compulsory 
course in Programming and Prototyping, and some of the students had electives in 
Computational Thinking. Data consisted of observations from the courses, assessment 
of students’ assignments, and four focus group interviews (two groups – one with Com-
putational Thinking and the other with Programming and Prototyping only). We held 
interviews before and after the courses for both groups to uncover how the students’ 
views changed. Both groups of students saw themselves in coordinating roles where 
they would collaborate with programmers and other software developers. The students 
who took the electives in computational thinking showed a richer vocabulary when 
describing computational concepts, practices, and perspectives. The ability to reflect on 
the practical tasks, including concepts, practices, and perspectives, seems essential for 
students’ future careers, as humanity students working with technology. The results 
show how students can develop their understanding of computational thinking through 
scaffolding for computational empowerment. In the process, we saw how students 
achieved a computational understanding through working with concepts and practices 
and where perspectives emerged from combining the computational understanding with 
information and practices from other disciplines. 
 
Keywords: computational thinking, higher education, humanities, programming 

 
 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 1/19

https://doi.org/10.5617/adno.9183


Fra programmering til perspektiver for computationel 
tankegang for humanistiske, videregående uddannelser 
 

Sammendrag 
Med udgangspunkt i det stigende behov for IT-kompetencer er de humanistiske uni-
versitetsuddannelser begyndt at indføre kurser, der skal styrke de studerendes forståelse 
for informatik. Denne artikel undersøger, hvordan studerende på en masteruddannelse i 
IT på et humanistisk fakultet udvikler kompetencer i programmering og computationel 
tankegang. De studerende havde alle et obligatorisk kursus i Programmering og Proto-
typing, og nogle af dem havde valgfag i Computational Thinking. Data består af obser-
vationer fra kurserne, vurdering af de studerendes opgaver og fire fokusgruppe-
interviews. (De studerende var delt i to grupper – en med Computational Thinking og 
den anden med kun Programmering og Prototyping.) Vi afholdt interviews før og efter 
kurserne for begge grupper for at afdække, hvordan elevernes synspunkter havde ændret 
sig. Begge grupper af studerende ser sig selv i koordinerende roller, hvor de samarbejder 
med programmører og andre softwareudviklere. De studerende der valgte valgfaget i 
Computational Thinking, viste et rigere ordforråd, når de beskrev computationel tanke-
gangs begreber, praksisser og perspektiver. Evnen til at reflektere over de praktiske 
opgaver, herunder begreber, praksisser og perspektiver, synes essentiel for de 
studerendes fremtidige karriere, som humanister, der arbejder med teknologi. Resul-
taterne viser, hvordan studerende kan udvikle deres forståelse af computationel tanke-
gang med stilladsering mod computational empowerment. I processen så vi, hvordan 
studerende opnår en forståelse af computationel tankegang gennem arbejde med kon-
cepter og praksisser, og hvor der opstod perspektiver ved at kombinere computationel 
tankegang med information og praksis fra andre discipliner. 
 
Nøgleord: computationel tankegang, videregående uddannelse, humaniora, 
programmering 

 
 
Introduction: Computational thinking in higher education 
 
Informatics has become an important subject in the Danish educational system 
and can be seen as a discipline for understanding technology more profoundly and 
the knowledge behind computer programs (Caspersen et al., 2018). To be 
prepared for the jobs of the 21st century, students at higher educations (HE) in 
humanities must not only be digitally literate but also understand key concepts 
related to informatics. 

Computational thinking (CT) has been on the agenda when preparing students 
for a digital reality in both K–12 and in HE. CT can be seen as a thought process, 
used in formulating a problem where the solution(s) is expressed in such a way 
that a computer, human or machine can solve it (Wing, 2006). Brennan and 
Resnick (2012) have further suggested that CT could be divided into three 
dimensions: concepts (the concepts designers engage with as they program), 
practices (the practices designers develop as they engage with the concepts), and 
perspectives (the perspectives designers form about the world around them and 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 2/19



about themselves). In research on CT in education, most attention has been given 
to K–12, especially Science, Technology, Engineering, and Mathematics (STEM 
disciplines) (Barr & Stephenson, 2011). According to Wing (2020), scientific 
environments in general have put a lot of emphasis on CT, whereas the field of 
humanities, however, have not to the same extent been empirically substantiated. 
CT should, according to Wing (2006), be a formative skill such as reading, writing 
and arithmetic. In this perspective, CT should help to process information and 
tasks systematically and efficiently (Lu & Fletcher, 2009). 

According to Lu and Fletcher (2009), pedagogical challenges exist, such as 
how to teach CT or if programming is required to learn CT: “… teaching CT 
should focus on establishing vocabularies and symbols that can be used to 
annotate and describe computation and abstraction, suggest information and 
execution, and provide notation around which mental models of processes can be 
built” (Lu & Fletcher, 2009, p. 1). However, students must also understand CT as 
a thinking process throughout their education to better prepare for learning 
programming, career opportunities, and intellectual content. In line with that, 
Jonasen and Gram-Hansen (2019) have examined the potential of problem-based 
learning (PBL) as a pedagogical framework for developing CT skills in HE. The 
study included 20 students in a pre- and post-design, where CT was introduced at 
the conceptual level. The CT skills should provide the students with reflections 
and a vocabulary to explain their skills. The study aimed to look at differences in 
the students’ CT skills after completing a PBL process. In the first benchmark, a 
few students could reflect and relate CT skills to their bachelor project. The 
second benchmark showed that the students had developed a deeper under-
standing of their problem-solving process. The students’ competencies revealed 
rich means of expression in terms of CT skills. Students related, e.g., specific 
methods to the process of decomposition. The study found that the PBL approach 
had increased the students’ understanding of the different CT skills to the extent 
that they could relate them to their practices. This increase was interesting because 
CT had not been a distinct theme, but a perspective brought for the students’ 
reflection. 
 
Humanities and CT 
There is not much research regarding how and why to teach humanity students 
about CT. A study that does address the topic shows how humanities students 
(hybrid Humanities/ICT) at HE enrolled in a programming-related course are 
most interested in learning to program and use it as a tool rather than an ability 
(Chongtay, 2019). Chongtay has conducted three years of surveys applied to 
eighty-three humanities students; almost a third expressed interest in being 
directly involved in future programming jobs. According to the survey, almost 
half of the students expected to learn programming at a basic level. In contrast, a 
little less than a half expected to learn up to an intermediate level, and just a few 
wished to learn to a high proficiency level. As stated by Chongtay, students’ 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 3/19



motives for choosing a HE program that combines humanities and ICT fall into 
four categories: 
 

• Improving existing skills in both humanities and ICT 
• Finding the combination exciting and relevant for businesses 
• Expanding job possibilities 
• Learning ICT skills (Chongtay, 2019, p. 166) 

 

Those categories are relevant to be aware of when designing learning activities at 
HE programs that combine their interest in CT and programming (Chongtay, 
2019). 
 
Our scope 
In this paper, we enlighten how students at a master’s program in IT at a faculty 
of humanities develop programming and CT skills through a PBL approach to 
learning. Based on empirical findings from the study of courses in programming 
and CT, we explore the ways in which students develop their understanding of 
CT, and how this affects their own professional digital competencies. We apply 
Brennan and Resnick’s (2012) framework to examine how students develop their 
computational concepts, practices, and perspectives. While we find the division 
between concepts, practices, and perspectives useful, we believe that the overall 
framework is too narrowly focused on understanding the concept of computing, 
programming, and software development. Thus, we further broaden the frame-
work to also include computational empowerment (CE), defined as: 
 

the process in which [people], as individuals and groups, develop the skills, insights and 
reflexivity needed to understand digital technology and its effect on their lives and 
society at large, and their capacity to engage critically, curiously, and constructively 
with the construction and deconstruction of technology. (Iversen et al., 2018, p. 1) 

 

With the addition of CE, the perspectives are no longer limited to programming 
skills but also include other perspectives that are better suited to refer to the future 
multivarious job roles that humanities students partake in. Some of these roles or 
knowledge areas are made explicit in a course in “technology comprehension” 
developed by the Danish Ministry of Education (Ministry of Education, 2018) for 
teaching at elementary schools in Denmark. However, we argue that graduate 
students need similar knowledge or skills, though, on a different level. The course 
focuses on four different topics. For transparency, we use the same translation as 
Dindler et al. (2020, p. 75): 
 

• Digital empowerment: Focus on how digital artifacts shape our lives and 
society and promote an analytical and critical approach to digital artifacts 
and transformation 

• Digital design and design processes: Focus on the process and the choices 
the designer makes in the process of designing digital artifacts 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 4/19



• Computational thinking: The ability to analyze, model and structure situ-
ations with the purpose of understanding or designing digital artifacts 

• Technological ability: The ability to express computational ideas in digital 
artifacts. The ability to make informed choices about the use of tech-
nologies 

 

These topics do not represent an exhaustive list of perspectives but show some of 
the overlapping areas that at least partly cover the perspectives. Students may need 
to mix knowledge and competencies in other ways than the ones mentioned above. 
Furthermore, Dindler et al. (2020) argue that the above topics are still too 
narrowly focused on the development of technology and to a lesser extent raise 
questions about how technology affects us. This is an important part of CE and 
lead to questions such as how digital technology challenges our democratic rights, 
how it alters our personal relations and practices, and how we interpret intentions 
embedded in everyday technology (Iversen et al., 2018). 

As our focus is on humanities in HE and how we, as an education, can prepare 
students for a professional life after graduation, we believe that a broader defi-
nition of especially the perspectives better reflects the different roles that 
humanities students engage in after they graduate. In this article, we seek to 
answer the following research questions: 
 

1. How do humanities students in higher education develop their program-
ming and computational skills? 

2. What should humanities students learn from programming and computa-
tional thinking to meet the requirements for their future careers? 

3. How do we best support the humanities students’ learning and development 
of these competencies? 

 

In the following section, we present previous studies that address CT and learning. 
That section also introduces different forms of scaffolding used in the analysis of 
the empirical data. 
 
 
CT and learning activities 
 
Czerkawski and Lyman (2015) conducted a literature review to discuss whether 
CT is relevant in HE outside of STEM fields. The authors found that experts 
conceptualize CT within the field of computer science (CS) and that engaging 
humanities students in CT projects requires a field-appropriate introduction to CT 
principles. However, spreading CT to other academic areas requires adapting the 
existing CT theory to match the needs of novices and other non-specialists outside 
the CS field. They further identified that the use of CT in the humanities field can 
expand the range of human creativity by including CT. CT requires other, and 
more specific instructional design strategies. However, teaching CT is often 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 5/19



included as an element of other thinking skills, similar to teaching general critical 
thinking or problem-solving skills. Czerkawski and Lyman (2015) recommend 
further studies to establish a better connection between CT and HE outside the CS 
field. On the contrary, Romero et al. (2017) define CT as a skill transferable to 
other fields than just CS. The interactive nature of computer programs allows 
students outside CS to represent and test models of a phenomenon, supported by 
a prototype-oriented approach. According to that, programming should be a part 
of a pedagogical strategy and not only a technical tool to learn coding techniques. 

Romero et al. (2017) investigated how a total of 120 undergraduate students 
were engaged in a story2code creative challenge. Story2code consists of short 
text-based stories that engage learners in analyzing, modelling, and creating a 
Scratch project to represent a story. Scratch is a block-based programming 
language (https://scratch.mit.edu/). The result indicated that the learning design 
should include the students’ Zone of Proximal Development (ZPD) (Vygotsky, 
1978) and refers to and offers the students an appropriate degree of newness, a 
certain ambiguity, or ill-definition problems to engage the students in a creative 
learning process. The learning design should not be too guided or structured; 
otherwise, it loses creativity, and the students’ ill-definition problems become 
easy to solve. 

One of the learning components to support the students through the ZPD is 
scaffolding. Scaffolding has been emphasized as crucial for learning program-
ming (Zhang et al., 2021). Zhang et al. introduced a step-by-step scaffolding 
approach to improving HE students’ CT and academic outcome in a programming 
course. They used feedback and flowcharts to scaffold students’ programming 
and CT skills. In a quasi-experiment by Zang et al. (2021), students used flow-
charts to help decompose programming tasks and support their problem-solving 
process. The experimental group that used flowcharts showed a higher level of 
CT skills. According to Lye and Koh (2014), scaffolding and reflection activities 
can help to foster computational practices and perspectives. 
 
Scaffolding  
Scaffolding is typically linked to Vygotsky’s social theory of learning (Vygotsky, 
1978). Wood et al. (1976) utilized a scaffolding metaphor to explain how a more 
expert individual assists in joint problem-solving activities with students. The 
metaphor refers to the direction and assistance given to students to make them 
able to perform at a level that is higher than students ordinarily could sustain by 
themselves. Scaffolding supports the creation of higher-order actions so that 
students can perform the required acts of internalization, appropriation, or recon-
struction that eventually bring development changes (Wood et al., 1976; Mascolo, 
2005). Mascolo (2005) emphasizes that scaffolding as a metaphor describes the 
development as a social process. However, the concept of scaffolding provided 
by Wood et al. (1976) focuses primarily on construction activities carried out by 
an expert. Fundamentally, the scaffolding metaphor fails to consider how the 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 6/19

https://scratch.mit.edu/


students contribute to the scaffolding process (Mascolo, 2005). In this regard, 
Mascolo suggests that scaffolding should imply a coactive dimension. Coactive 
scaffolding involves “any process outside of an individual’s direct control that 
functions to direct individual action toward novel or higher-order forms” 
(Mascolo, 2005, p. 187). There are three broad categories of coactive scaffolding 
proposed and illustrated: ecological, social, and self-scaffolding. In this paper, we 
draw on the concepts of self-scaffolding concerning the students’ development of 
CT skills. 

The traditional understanding of scaffolding is defined by the effects an expert 
has on a student’s action. By involving the student’s development in the scaf-
folding process, the understanding of the student’s activity increases, and the 
student becomes coactive in the process by self-scaffolding. Self-scaffolding 
relates to students’ previous actions creating preconditions and helps guide and 
support new forms of actions and meaning in other contexts. Mascolo (2005) 
highlights three forms of self-scaffolding: 
 

• Cognitive self-scaffolding occurs when a student performs actions that 
directly or indirectly change behaviors that create new opinions or changes 
in the cognitive structure. 

• Bridging refers to how the student uses partial knowledge to create a 
structure that helps to bridge old and new knowledge. This bridging is due 
to an ability to function at two levels of development towards an acquired 
competency. 

• Analogical mappings are closely related to bridging. Using analogical 
scaffolding, the students draw on past action experiences from similar 
problems and transfer them into new structures to help solve the new 
problem. The use of analogies in connection with self-scaffolding works 
best when the student is aware of the connections between existing strate-
gies and new problems.  

 

By involving the student’s development in a scaffolding process, the under-
standing of the student’s activity increases. The student becomes coactive in the 
learning process through the learning design, which guides the student to do self-
scaffolding. 
 
 
Research design, data, and methods 
 
In this section, we first describe the context of our study – the education and 
courses from which we collected our data. This is followed by the data collection 
methods and finally our data analysis approach. 
 
 
 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 7/19



Research context 
This study’s empirical data comes from observations, interviews, and assignments 
from students in the second semester of a humanities master’s program. In that 
semester, the students have a mandatory course in Programming and Prototyping; 
in addition, they can choose to follow an elective in Computational Thinking. The 
students in this program follow a PBL approach to teaching and learning. The 
education includes different IT-oriented modules as well as modules focusing on 
learning and organizational change. Due to the COVID-19 pandemic, all teaching 
was conducted online on Zoom. 
 
Programming and Prototyping (PP) 
72 students participated in this course. The students learned the basic concepts of 
software programming, software development and built prototypes using a 
micro:bit (https://microbit.org/) and different electronic components and design 
artifacts. We provided each student with a micro:bit kit including a board and 
electronic components which they could use during the course. Before each 
lecture, we made a preparation video that introduced the students to different 
concepts along with different training exercises with micro:bit using block-code 
in the micro:bit Makecode environment. This way the students could learn the 
basic concepts at their own pace. During the actual lectures, we introduced new 
concepts, answered questions, and did different exercises such as pair program-
ming. We also introduced a programming project, inspired by a design-based 
learning approach (Puente et al., 2013) and similar to the suggestions in Romero 
et al. (2017) concerning a more open learning following a design process. The 
students were tasked with creating a design vision for a programming project of 
their choosing. The students would work on the project throughout the course. 
After each lecture they had to report on the process of the project, e.g., what 
problems that they had, if their design vision had changed etc. 
 
Computational Thinking (CT) 
31 students participated in this course. The teaching related to the CT course con-
sisted, among other things, of traditional lectures over Zoom, flipped classroom 
lectures, and peer discussions. Three times during the elective course, the students 
were given an assignment that consisted of analyzing a technology or a software 
program, related to concepts of CT and the literature from the lectures. This could 
for instance be Beebots or Scratch. The teaching consisted of five teaching 
sessions of 4 hours duration each. The teaching was structured so that it started 
with a presentation from the teachers, then the students had to discuss the 
presentation and the literature for the course in smaller breakout rooms in Zoom. 
After discussions, the students worked on their assignments with assistance from 
the teachers of the course. The students could thus get help and assistance if 
needed during their assignments. 
 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 8/19

https://microbit.org/


Data collection 
Before and after the two courses, we held focus group interviews through Zoom 
to uncover how the students’ views on the two topics had changed. The 
participants in the focus groups consisted of four students from PP and three 
students who selected the CT elective. Brennan and Resnick’s (2012) framework 
of concepts, practices, and perspectives informed the interview guide. We 
observed all students (n=72) during the classes and analyzed their assignments 
and course activities. The students who participated in the focus group interviews 
were recruited from the pool of the 72 students. We asked all students if they 
wanted to participate, and those who accepted participated. All students who 
participated in the study gave informed consent. 
 
Data analysis 
We have used a multiple data approach to analyze different components using 
both deductive and inductive coding following a thematic approach to data 
analysis inspired by Braun and Clarke (2006). The first step in the data analysis 
was to transcribe the interviews and start initial coding (Ravitch & Carl, 2021) 
using an open coding approach. To get a broader picture of the students’ develop-
ment of CT, we used Brennan and Resnick’s (2012) framework to create the 
themes of concept, practices, and perspectives; this made it possible to analyze 
the different components of the students’ learning from PP and CT. We compared 
the two different groups of students regarding their development of CT to look 
for alternative explanations and differences between the groups. During the 
coding, new themes would also emerge from the data. To validate the coded data, 
two of the authors have coded the same data to look for shared understanding, and 
they developed, refined, and codified the data in an iterative process to create a 
more complex sense of it (Ravitch & Carl, 2021; Creswell & Cresswell, 2018). In 
the end, it was decided to include the themes of scaffolding and employment 
competencies in the analysis along with the deductive coding themes. The 
selected quotes for the data analysis were translated from Danish to English and 
reproduced to capture their meaning rather than a literal translation. The analysis 
in the paper shares a rich example of quotes to contextualize the context of 
humanities students’ development in the PP and CT courses. 
 
 
Results and analysis 
 
In this section we present the results and analysis of the empirical data. First, we 
analyze how the students build their programming and computational thinking 
skills using different scaffolding techniques (research question 1). In this process 
they first develop a computational understanding and then use the computational 
understanding to learn new perspectives. We then proceed to analyze the 
knowledge and competencies needed for future careers (research question 2). 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 9/19



Finally, we present a model of how the students develop these competencies and 
how the learning process can be supported (research question 3). 
 
Concepts and practices 
The PP course design conceived programming as a tool, where students learned 
the basic theoretical and practical principles through a mini-project. The PP 
course worked as a scaffolding where students developed concepts and practices 
when working with the micro:bit. The low-level programming language based on 
block programming enabled the teachers to scaffold the students’ learning by 
working in small steps. “I like to learn the basics first, like what a loop is. What 
are these things? So, the teaching has worked well for me.” (Student A, PP) 

Our observations and the students’ comments during the interview indicated 
that the students learned the concepts and practices in three steps. First, they 
worked with understanding the different components. By components, the 
students referred to both the concepts and the electronic components such as 
sensors, LED, motors etc. Second, the students started to learn how to put the 
different components together, e.g., how to make different input and output 
devices work, using different concepts. Last, they applied this knowledge to 
explore different ideas and to code their programs. 
 

… It was first to get a basic understanding of what all these different components can 
do and how you put the blocks together, what happens then? After that, you put them 
together and try something, an idea or program. (Student D, PP) 

 

In the process, the students expressed that they used a trial-and-error inquiry 
approach or a learning-by-doing approach (Dewey, 1923). 
 

… To try a lot of things and find out what the different components can and get an idea 
of what happens when I do this? What happens when I do this? (Student A, PP) 
 
For me it helped a lot to get it hands-on and test it out and try and fail a bit and try and 
redo it. (Student A, PP) 

 

According to Wood et al. (1976), students need to be supported in their learning 
process, and both groups of students felt supported by the learning design. 
Especially, the recorded videos worked as a scaffold that led the students to work 
at their own speed and to develop their computational understanding. 
 

I think it has been nice to have been able to sit with it myself. And by that been able to 
nerd a little and look at it at all times of the day. So, if I get an idea, I try it out. (Student 
G, CT) 

 

The learning design enabled students to develop concepts by themselves related 
to programming and do it asynchronously. The scaffold broke up the learning into 
smaller pieces and provided a tool and a structure that guided the students’ 
learning. Through the work with programming, the students worked with practical 
actions and hands-on activities, which gave them proficiency in the work with 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 10/19



micro:bit. Peer discussions were also a part of the learning design, and students 
used them as a part of their scaffolding to discuss essential vocabulary and get 
help if they needed that in an activity: “... discuss with each other or something? 
When we discuss it in the groups, or when we have these forums where we can 
talk and get wiser.” (Student F, CT) 

Both groups of students used peer discussions to become wiser and develop 
their understanding. Some of the students used peer discussions to learn from each 
other. 
 

I think it is an advantage to be at different levels. Both because I can learn something 
from someone who knows a little more than me, and the person that knows a little less 
can learn from me. And it just means a lot more if you have to tell someone how to do 
it. As I see it, it makes good sense to be on different levels. (Student G, CT) 

 

The students used a scaffolding strategy where they primarily made use of 
cognitive self-scaffolding to learn the different components and concepts through 
working with the content of the course with a learning-by-doing process. Later 
the scaffolding strategy changed towards a more analogical mapping-based 
process as they applied their previous experience with the concepts in a new way 
when creating programs from their ideas as part of the mini-project. Working with 
concepts and practices, the students gained what we refer to here as their 
computational understanding. Brennan and Resnick (2012) refer to this as “The 
intersection of computational thinking concepts and computational thinking 
practices” and give examples such as “Is the learner able to analyze and critique 
their own and others’ code?” and “Is the learner able to meaningfully put the 
concept to use in design?” While we did not see any difference between the 
students who took the elective in CT and the students who did not, in terms of 
their computational understanding, we did see a difference in how they articulated 
it. For example, the students from PP used examples from the programming 
classes, while students from CT would more often refer to the actual practices, 
e.g., talking about decomposition, debugging etc. in a broader perspective. Thus, 
they were showing a deeper understanding of what they were doing on a meta-
reflective level. 
 
From computational understanding to perspectives 
The PP course gave the students a vocabulary to explain concepts and practices 
to develop their understanding of CT. Nevertheless, the students also used CT to 
reflect on their computational understanding in PP. 
 

I think programming has given you something, so for example, you may have learned 
some expressions like this. At least I used it for the task in IFDTT (CT course). Like 
booleans and conditions, it comes from literature in PP; there was nothing like this in 
the CT literature. I think they (the two courses) have been able to spar a little with each 
other. (Student F, CT) 

 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 11/19



The CT students used partial knowledge to grasp the computational understanding 
and made it into perspectives. The students used concepts from the computational 
understanding to explain their knowledge because the idea of CT was too hard to 
grasp: “... it is difficult to concretize. I think that’s why I use programming to 
explain it.” (Student F, CT) 

The computational understanding also clearly opened new perspectives for the 
students. In the quote below, the student provided an example of what Brennan 
and Resnick (2012) refer to as questioning: 
 

If I encounter some small problem in everyday life or such, then I will automatically 
think about how I could solve it by programming myself, and I think, it is knowledge 
you can apply almost no matter what situation you are in, so to think the technology a 
little more into everyday problems, how it can be solved by something, i.e., by simple 
programming. I think that is at least the knowledge I will take with me in the future. 
(Student D, PP) 

 

Concepts and practices became tools that students could use to bridge between 
earlier learned knowledge and perspectives in utilizing this knowledge in another 
context. When addressing perspectives, the students combined the computational 
understanding with their previous experiences to understand different 
perspectives. 
 

Well, if you just start with kindergartens and then these curriculum themes you have to 
work with, then there is this science aspect, it is something the authorities have decided, 
and you can always be skeptical about implementing technology in kindergarten. 
(Student A, PP) 

 
It is also about the understanding of technology. What exactly can technology do? Many 
believe that iPads are not something that children should have in their hands. It is better 
that they come out and get some mud in their face, and I agree with that to a large extent. 
However, if you start to think a little about what exactly technology can do that is 
otherwise not achievable for children, then technology becomes important. (Student A, 
PP) 

 

The above examples indicate digital empowerment where the student can criti-
cally reflect on the use of technology. The second example also includes aspects 
of technological ability. Both groups of students scaffold knowledge from their 
computational understanding and their knowledge from other domains through 
bridging to create perspectives. Depending on the different knowledge they com-
bine with their computational understanding, different perspectives emerge. The 
students that only have PP were able to see some perspectives but were not able 
to make distinctions between computational understanding and computational 
perspectives. The missing link between understanding and perspectives indicated 
that students with the elective in CT have a deeper understanding of the processes 
they had been engaged in and a richer vocabulary to describe CT processes, hence, 
the CT students again showed the ability to meta-reflect on their own processes 
and learning. 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 12/19



Knowledge and competencies for future careers 
In the previous sections, we have seen how the students develop their under-
standing of concepts, practices, and perspectives. In this section, we analyze how 
the students see this knowledge and these competencies being used in their future 
careers. 

The students recognized that technology today is ubiquitous and that they need 
to be able to understand and be able to work with technology. They further argue 
that CT competencies would make them more attractive on the job market. 

Rather than being hired as programmers, the students see themselves as 
collaborating with programmers and in other ways working with technology in 
situations where they can apply their knowledge from CT. 
 

I am constantly thinking about future work. It’s not going to be programming. There is 
always going to be someone who’s better than me at programming. (Student E, CT) 

 
The PP course is necessary, so we get a vocabulary to talk to someone [a programmer] 
who knows how to program … We can also do a little… We understand when they say 
words like functions and stuff like that. And if they want to change something, then I 
have a fair overview of the CT. (Student F, CT) 

 

They see themselves as “a link between, e.g., traditional humanities students and 
programmers” (Student F, CT). In this role, they need a computational 
understanding that enables them to make decisions and realistically consider 
options and time frames for specific tasks such as software development or 
implementation. To do so, it is important for them to be able to communicate with 
programmers and “be able to speak different languages” (Student G, CT) when 
talking with different people with various competencies and job roles. The 
following example shows how the understanding of concepts helps the students 
to communicate. 
 

… so, I discussed something with my husband who has an IT background and he said 
something like that, well you just have to have some Booleans and some loops and 
something like that, where I actually understood the words, he said. It was an eye opener 
for me. I did not expect that. (Student G, CT) 

 

There is also a need to understand the different practices when planning IT 
projects such as being able to decompose the problems into smaller tasks to 
estimate the time frame and understand how programmers work in terms of 
iterations and increments, testing and debugging etc. In the interview, some of the 
CT students explained how they also used practices in situations not related to 
technology such as decomposition, breaking down a problem into smaller prob-
lems, when working with “wicked problems” (Rittel, 1984). Thus, the practices 
are not only usable to learn for students working with technology but can also be 
applied to other domains. 

With the current ubiquity of technology and the graduate students’ diverse 
roles as a link in technology development, implementation, and teaching etc., we 
argue that CT should not only be taught with the aim of learning to program but 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 13/19



calls for a wider range of perspectives when working with technology. Thus, it is 
important for the students to develop their computational empowerment to be able 
to both analyze, discuss, and reflect on the use of technology in diverse settings 
and domains while we consider the perspectives the most important aspect to learn 
for humanities students in HE. 
 
Development of knowledge and required competencies overview 
Figure 1 shows an overview of how the students developed their CT skills through 
different scaffolding processes. The bottom of the model shows that students build 
a computational understanding by working on concepts and practices in relation 
to Brennan and Resnick’s (2012) conceptual framework using cognitive scaf-
folding and analogical mapping. 

When the computational understanding is combined with information and 
practices from other disciplines (interdisciplinary knowledge), through bridging, 
different perspectives emerge. Depending on the interdisciplinary knowledge 
combined with the computational understanding, we see different perspectives 
arise. The sizes of the concept box, practice box, and perspective box in Figure 1 
indicate the relative importance for future job roles where the perspectives play 
the most important role followed by practices and concepts. 
 
Figure 1. Overview of the development of knowledge and the required competencies for hu-
manities students 
 

 
 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 14/19



Discussion 
 
In this study, we examined how humanities students developed their under-
standing of CT. The students gained a computational understanding through a 
PBL-oriented learning-by-doing process when working with the concepts and 
practices where they applied cognitive self-scaffolding and analogical mapping 
(Mascolo, 2005). The perspectives emerge from bridging the CT with the 
students’ interdisciplinary knowledge. We argue that for humanities students the 
perspectives are of more importance than practices and concepts. However, both 
concepts and practices are needed and used to scaffold the learning of perspec-
tives. We are aware that students enter very diverse careers, where the importance 
of CT competencies will vary from student to student. Obviously, there will be 
cases where concepts and practices will play a greater role; however, when we 
argue that perspectives play a larger role, it is from a general viewpoint where the 
development of CT competencies should not only be used for programming and 
development, consistent with Lu and Fletcher (2009), Dindler et al. (2020), and 
Chongtay (2019). According to the students, CT must be related to the field where 
they can find employment after graduation. In other words, it is crucial that CT 
teaching is aligned with students’ field of study so that they can acquire an 
appropriate CT understanding (Czerkawski & Lyman, 2015). The way the 
students build their CT competencies will largely reflect the way they are taught, 
why other ways of learning may arise from different approaches to teaching (Lu 
& Fletcher, 2009). This raises the question of how to teach programming and CT 
in HE is moving forward and what the content should be. Should it be a course 
for meta-reflection, or should it support the construction of different perspectives? 
According to Lu and Fletcher (2009), CT should be something that all students 
are taught from lower level to HE, and it will thus become a skill they can use in 
their professional career and everyday life. Lu and Fletcher (2009) raised a 
question: whether programming must be part of CT to make the students’ CT 
proficient; for them, CT can be taught through practices and repeated meetings in 
the school’s regular subjects without using programming. 

In our process of teaching CT, the students start with programming and 
thereby build an understanding of concepts and practices followed by the course 
in CT where they build on this knowledge and create the meta-reflection; we see 
the students achieve and become more aware of the processes. In this way, we 
experience that they gain a stronger computational understanding. We argue in 
our study that the students not only gain perspectives through the CT course, but 
through the interdisciplinary knowledge they gain from, among other things, other 
courses. However, we see, in line with Czerkawski and Lyman (2015), that CT 
can support other competencies such as critical thinking or problem-solving skills, 
which are part of their computational empowerment (Dindler et al., 2020). This 
can be compared to the systemic PBL pedagogy at our university, which prepares 
students for adopting various knowledge and problem modes, different 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 15/19



approaches to problem-solving while drawing on interdisciplinary curriculum, 
and a plethora of PBL and CT skills (Kolmos et al., 2021; Jonasen & Gram-
Hansen, 2019). In this way, students develop meta-competencies in choosing 
among various perspectives on emergent problems and select concepts and tools 
accordingly. Similarly, the students in our study reach for the necessary under-
standing and tools to substantiate their sense of perspective. 
 
 
Concluding remarks 
 
In this study, we have presented our findings regarding how humanities students 
in HE develop the CT competencies that students require for their further careers. 
It implies that students in HE develop their computational understanding through 
programming and prototyping. The study, however, also indicates that students 
need CT competencies to enroll in their future career. We provided an example of 
how lower-level programming with micro:bit provided a scaffolding teaching 
approach. The teachers used the scaffold to teach students concepts and practices. 
The students used this computational understanding to grasp and bridge the 
abstraction of CT and develop computational skills. To develop perspectives, 
students were drawing from their interdisciplinary knowledge, and through self-
scaffolding improved their understanding of CT. It should be noticed that a 
scaffolding approach facilitates students’ development of CT understanding and 
thereby helps students to provide and create self-scaffolding and let students be 
coactive in their learning process. This indicates that students of HE need 
computational understanding to meta-reflect on CT. 

The presented study contributes to the literature in HE of humanities and 
enriches the empirical studies of CT. This research introduced a model of the 
development of knowledge and the required competencies for humanities 
students. The model can be used as a tool to increase the general understanding 
of how students in HE develop CT. However, other studies should investigate the 
model further to grasp the potential of humanities development of CT in HE. 
 
 
About the authors 
 
Anders Kalsgaard Møller is an Associate Professor in IT-based Design, Learning 
and Innovation at Aalborg University. His research focuses on participatory 
design processes, virtual reality, learning and digital technologies. 
Institutional affiliation: Aalborg University, Faculty of Social Studies and 
Humanities, Department of Culture and learning, Kroghstræde 3, 9220 Aalborg, 
Denmark. 
Email: Ankm@learning.aau.dk  
 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 16/19

mailto:Ankm@learning.aau.dk


Camilla Finsterbach Kaup is a Ph.D. student in IT-based Design, Learning and 
Innovation at Aalborg University. Her research focuses on students’ development 
of computational thinking regarding mathematics at the primary level. 
Institutional affiliation: Aalborg University, Faculty of Social Studies and 
Humanities, Department of Culture and learning, Kroghstræde 3, 9220 Aalborg, 
Denmark. 
Email: cfk@learning.aau.dk  
 
Eva Brooks is a Professor in IT-based Design, Learning and Innovation at Aalborg 
University. Her research focuses on the use of digital technology and its impli-
cations for teaching and learning. 
Institutional affiliation: Aalborg University, Faculty of Social Studies and 
Humanities, Department of Culture and learning, Kroghstræde 3, 9220 Aalborg, 
Denmark. 
Email: eb@learning.aau.dk  
 
Dorina Gnaur is an Associate Professor of learning with technologies at Aalborg 
University. She received her Ph.D. in e-supported workplace learning from 
Aarhus University in 2010. Her main research areas are technology-enhanced 
learning in context and innovative approaches to education. 
Institutional affiliation: Aalborg University, Faculty of Social Studies and 
Humanities, Department of Culture and learning, Kroghstræde 3, 9220 Aalborg, 
Denmark. 
Email: dgn@learning.aau.dk  
 
Maja Højslet Schürer is a Ph.D. fellow in IT-based Design, Learning and 
Innovation and a research assistant at Aalborg University. Her research interest is 
in digital play, participation, children’s perspective, and transition. 
Institutional affiliation: Aalborg University, Faculty of Social Studies and 
Humanities, Department of Culture and learning, Kroghstræde 3, 9220 Aalborg, 
Denmark. 
Email: mhsc@learning.aau.dk  
 
Marie Charlotte Lyngbye is a research assistant at Aalborg University. Her main 
research areas are computational thinking, virtual reality and health. 
Institutional affiliation: Aalborg University, Faculty of Social Studies and 
Humanities, Department of Culture and learning, Kroghstræde 3, 9220 Aalborg, 
Denmark. 
Email: marielyngbye@gmail.com  
 
 
 
 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 17/19

mailto:cfk@learning.aau.dk
mailto:eb@learning.aau.dk
mailto:dgn@learning.aau.dk
mailto:mhsc@learning.aau.dk
mailto:marielyngbye@gmail.com


References 
 
Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is 

involved and what is the role of the computer science education community? ACM 
Inroads, 2(1), 48–54. https://doi.org/10.1145/1929887.1929905  

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research 
in Psychology, 3(2), 77–101. https://doi.org/10.1191/1478088706qp063oa  

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the 
development of computational thinking. In Proceedings of the 2012 annual meeting of the 
American educational research association, Vancouver, Canada (Vol. 1, p. 1–25). 

Caspersen, M. E., Gal-Ezer, J., McGettrick, A., & Nardelli, E. (2018). Informatics for all: The 
strategy.Technical Report. ACM Europe & Informatics Europe. 
https://doi.org/10.1145/3185594  

Chongtay, R. (2019). Computational Literacy skill set – an incremental approach. In N. B. 
Dohn (Ed.), Designing for Learning in a Networked World (pp. 156–174). Routledge. 
https://doi.org/10.4324/9781351232357-9  

Creswell, J. W., & Creswell, J. D. (2018). Research Design: Qualitative, Quantitative, and 
Mixed Methods Approaches. Sage, Los Angeles. 

Czerkawski, B. C., & Lyman, E. W. (2015). Exploring issues about computational thinking in 
higher education. TechTrends, 59(2), 57–65. https://doi.org/10.1007/s11528-015-0840-3  

Dewey, J. (1923). Democracy and education: An introduction to the philosophy of education. 
Macmillan. 

Dindler, C., Smith, R., & Iversen, O. S. (2020). Computational empowerment: participatory 
design in education. CoDesign, 16(1), 66–80. 
https://doi.org/10.1080/15710882.2020.1722173  

Iversen, O. S., Smith, R. C., & Dindler, C. (2018). From computational thinking to 
computational empowerment: A 21st century PD agenda. In Proceedings of the 15th 
Participatory Design Conference: Full Papers (Volume 1, pp. 1–11). ACM, New York. 
https://doi.org/10.1145/3210586.3210592  

Jonasen, T. S., & Gram-Hansen, S. B. (2019). Problem Based Learning: A facilitator of 
Computational Thinking. In R. Ørngreen, B. Meyer, & M. Buhl (Eds.), ECEL 2019: 18th 
European Conference on e-Learning (pp. 260–267). Academic Conferences and 
publishing limited. 

Kolmos, A., Holgaard, J. E., & Clausen, N. R. (2021). Progression of student self-assessed 
learning outcomes in systemic PBL. European Journal of Engineering Education, 46(1), 
67–89. https://doi.org/10.1080/03043797.2020.1789070  

Lu, J. J., & Fletcher, G. H. L. (2009). Thinking about computational thinking. In Proceedings 
of the 40th ACM technical symposium on Computer science education (pp. 260-264). 
https://doi.org/10.1145/1508865.1508959  

Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational 
thinking through programming: What is next for K-12? Computers in Human Behavior, 
41, 51–61. https://doi.org/10.1016/j.chb.2014.09.012  

Mascolo, M. F. (2005). Change processes in development: The concept of coactive 
scaffolding. New Ideas in Psychology, 23(3), 185–196. 

Ministry of Education (2018). Læseplan for forsøgsfaget teknologiforståelse [Curriculum for 
the experiment about Technology Comprehension]. Copenhagen, Denmark. 
https://www.uvm.dk/-/media/filer/uvm/aktuelt/pdf18/181221-laeseplan-
teknologiforstaaelse.pdf  

 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 18/19

https://doi.org/10.1145/1929887.1929905
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1145/3185594
https://doi.org/10.4324/9781351232357-9
https://doi.org/10.1007/s11528-015-0840-3
https://doi.org/10.1080/15710882.2020.1722173
https://doi.org/10.1145/3210586.3210592
https://doi.org/10.1080/03043797.2020.1789070
https://doi.org/10.1145/1508865.1508959
https://doi.org/10.1016/j.chb.2014.09.012
https://www.uvm.dk/-/media/filer/uvm/aktuelt/pdf18/181221-laeseplan-teknologiforstaaelse.pdf
https://www.uvm.dk/-/media/filer/uvm/aktuelt/pdf18/181221-laeseplan-teknologiforstaaelse.pdf


Puente, S. M. G., van Eijck, M., & Jochems, W. (2013). A sampled literature review of 
design-based learning approaches: a search for key characteristics. International Journal 
of Technology and Design Education, 23(3), 717–732. https://doi.org/10.1007/s10798-
012-9212-x  

Ravitch, S. M., & Carl, N. M. (2021). Qualitative research: Bridging the conceptual, 
theoretical, and methodological. Thousand Oaks, CA: Sage Publications. 

Rittel, H. W., & Webber, M. M. (1984). Planning problems are wicked. Developments in 
design methodology (pp. 135–144). John Wiley & Sons, New York. 

Romero, M., Lepage, A., & Lille, B. (2017). Computational thinking development through 
creative programming in higher education. International Journal of Educational 
Technology in Higher Education, 14, Art. 42. https://doi.org/10.1186/s41239-017-0080-z  

Vygotsky, L. S. (1978). Mind in society: The development of higher psychological processes. 
(M. Cole, V. Jolm-Steiner, S. Scribner, & E. Souberman, Eds.) Harvard University Press. 
https://doi.org/10.2307/j.ctvjf9vz4  

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35. 
https://doi.org/10.1145/1118178.1118215  

Wing. J. M. (2020). A conversation about computational thinking. NSW Government website  
https://education.nsw.gov.au/teaching-and-learning/education-for-a-changing-
world/resource-library/a-conversation-about-computational-thinking  

Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal 
of child psychology and psychiatry, 17(2), 89–100. https://doi.org/10.1111/j.1469-
7610.1976.tb00381.x  

Zhang, J.-H., Meng, B., Zou, L.-C., Zhu, Y., & Hwang, G.-J. (2021). Progressive flowchart 
development scaffolding to improve university students’computational thinking and 
programming self-efficacy. Interactive Learning Environments. 
https://doi.org/10.1080/10494820.2021.1943687  

 

Acta Didactica Norden Vol. 16, Nr. 4, Art. 5

Anders Kalsgaard Møllet et al 19/19

https://doi.org/10.1007/s10798-012-9212-x
https://doi.org/10.1007/s10798-012-9212-x
https://doi.org/10.1186/s41239-017-0080-z
https://doi.org/10.2307/j.ctvjf9vz4
https://doi.org/10.1145/1118178.1118215
https://education.nsw.gov.au/teaching-and-learning/education-for-a-changing-world/resource-library/a-conversation-about-computational-thinking
https://education.nsw.gov.au/teaching-and-learning/education-for-a-changing-world/resource-library/a-conversation-about-computational-thinking
https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
https://doi.org/10.1111/j.1469-7610.1976.tb00381.x
https://doi.org/10.1080/10494820.2021.1943687



