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Abstract

Infinite games with incomplete information are common in practice. First-price, sealed-bid auctions are a prototypical

example. To solve this kind of infinite game, a heuristic approach is to discretize the strategy spaces and enumerate

to approximate the equilibrium strategies. However, an approximate algorithm might not be guaranteed to converge.

This paper discusses the utilization of a best response algorithm in solving infinite games with incomplete information.

We show the constraints of the valuation distributions define the necessary conditions of the convergence of the best

response algorithm for several classes of infinite games, including auctions. A salient feature of the necessary convergence

conditions lies in that they can be employed to compute the exact Nash equilibria without discretizing the strategy space

if the best response algorithm converges.

Keywords: auctions, infinite game, e-commerce, decision support systems, best response, necessary conditions,

valuation distribution.

1 Introduction

Game models, including auctions, have been extensively applied in value chain management (Vulcano et al., 2002). A

great deal of literature concerns itself with computing equilibria in games (see McKelvey and McLennan (1996); Yang

(1999)). Scarf’s algorithm was the first algorithm developed for approximating a fixed point, and can be used to compute

a Nash equilibrium of a game (Scarf, 1967). This was followedby several other algorithms for solving finite games, such

as simplicial subdivisition algorithms for finding a sampleequilibrium (Talman and Yang, 1994) and semi-algebraic set

algorithms for solving all equilibria (McKelvey and McLennan, 1996). However, the computational complexity of these

algorithms, in the worst case, is exponential in the dimension and the number of digits of accuracy (Hirsch et al., 1989;

McKelvey and McLennan, 1996). Moreover, these algorithms are not applicable to solving infinite games.

Infinite games include games with infinite possible strategies, such as those which have a continuous strategy space.1

In this paper, we focus on games with a continuous strategy space. To motivate this class of infinite games, researchers

have explored game models such as auctions (Klemperer, 2000; Reeves and Wellman, 2004). A heuristic approach is to

discretize the strategy space and then to apply existing algorithms for solving finite games to approximate the equilibrium

strategies. However, an approximate algorithm might not result in an optimal solution. In the worst case, a discretization

algorithm may not converge.

Best response algorithms have been utilized in providing solutions to auctions and supply chain problems (Reeves

1Infinite games also include games with infinite agents/players.
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and Wellman, 2004). Reeves and Wellman (2004) propose a piece-wise linear strategy function for the best response

algorithm and show how their algorithm solves the supply-chain game, first-price sealed-bid auctions, and other games.

In this paper, we discuss a similar best response algorithm for two classes of multi-agent symmetric games and a class of

2-agent asymmetric games. We provide the necessary convergence conditions for these classes of games and show how

to compute the exact Nash equilibrium strategies in an immediate manner. This approach does not need to discretize the

strategy space.

In the next section, we provide the model. In Section 3, the best response algorithm is provided. In Section 4, we

further discuss the convergence conditions for both symmetric and asymmetric games. Section 5 illustrates some examples

and shows how the computation can be done analytically. We offer some concluding remarks in Section 6.

2 The Model

We assume that there areN agents, each with incomplete information. That is, each agent knows its own true valuation;

however, it knows only a distribution function of other agents’ valuations. To single out a random agent, we letx be the

true valuation of our agent, which we refer to as Agent0. Letn = N −1. The other agents are indexed from1 to n. Letvi

be agenti’s valuation. LetYk be the(n− k + 1)-st order statistic of{v1, ..., vn}. Thus, we haveY1 ≤ Y2 ≤ ... ≤ Yn. We

assume thatYj is a random independent observation of a continuous and differentiable distributionFj and its associated

probability density functionfj . We letCk, k = 1, 2, ..., be a constant real number.

We assume that the strategy function of agenti, βi, is a linear function of the agent’s true valuation. That is,agenti

hasβi = αivi + γi, whereαi andγi are two coefficients. When a Nash equilibrium to the game is symmetric, in which

agents use the same strategy function,αi andγi are the same across all agents, and we useα andγ instead. When the

game is asymmetric, we have two sets of coefficients,Γ = {γ0, γ1, ..., γn} andΞ = {α0, α1, ..., αn}. We assume that the

agent having the highest action wins the game, a rule which iscompatible with many auction games.

This linear strategy function is a very strong assumption. However, the assumption is reasonable for some special

games, including first price sealed bid (FPSB) auctions. Previous work also adopts this similar assumption to approximate

the strategies for FPSB auctions (Turocy, 2001). For the sake of comparison, our work follows the same assumption, but

aims at deriving the convergence conditions for best response dynamics in infinite games.

In this work, we discuss two different utility functions. The first one is a linear function,ui = θivi − (αivi + γi),

wherevi is the true valuation of agenti andθi is the coefficient ofvi, if agenti is the winner. The second one is more
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general and is expressed asui(vi, Γ, Ξ, {Yi}), where the utility is a function of our agent’s valuation, the other agents’

valuations, our agent’s action, and the other agents’ actions. Although the strategy function,βi = αivi + γi, is linear,

the utility function may be non-linear. While the first utility function is a special case of the one proposed by Reeves and

Wellman (2004), the second utility function is more generalthan the first one.

3 The Best Response Algorithm

The best response analysis for infinite games with incomplete information is pre-play reasoning, like fictitious play in

games with complete information. While strategies in fictitious play are determined by the frequency of other agents’

strategies in the history, strategies in best response analysis are based on the previous step.

The best response algorithm for solving infinite games with incomplete information works as follows.

1. Initiate start seeds of strategies for all agents;

2. For each agent,

(a) Fix the current strategies of other agents;

(b) Find the optimal strategy for our agent;

3. Compare new strategies and previous strategies;

(a) If new strategies are the same as, or close enough to, previous strategies, then stop;

(b) Otherwise, use the new optimal strategy for our agent to update the strategies for the other agents, and go to

Step 2;

In Step 1, we randomly select a pair of{α
{1}
i , γ

{1}
i } for agenti. Step 2 is the core of this best response algorithm. In

this work, we do not discretize the strategy space. In the next two sections, we show that we can find the exact best response

strategy analytically without going through discretization and enumeration. Step 3 specifies the algorithm’s stopping rule.

Whether this step will stop is determined by whether the bestresponse procedure converges, the determination of which

is the other main topic of this paper.

We discuss two different models: one symmetric and one asymmetric. In the symmetric model, all agents share the

common distribution function and use the same strategy function, (i.e.,αi = αj andγi = γj), which enable us to simplify

the best response procedure. In the first round, the initial strategies for other agents areβ = α{1}vi + γ{1}. Our agent
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will find an optimal strategy,(α{2}, γ{2}), given other agents’ valuation, and their current strategies. In the second round,

because we are assuming symmetric strategies, we update theother agents’ strategies to(α{2}, γ{2}), and then find a new

optimal strategy for our agent. This process continues until (α{k}, γ{k}) converges to(α, γ).

If this best response procedure converges, according to thedefinition of Nash equilibrium, the focal point is a Nash

equilibrium. However, this best response procedure may notconverge. The assumption ofFi plays an important role in

solving incomplete information games. Most results in thisarea are based on assumptions of a particular distribution,such

as the uniform distribution used in some examples Reeves andWellman (2004). It is reasonable to suspect that the form

of distribution could impact the convergence of the best response algorithm. In the next section, we focus on the analysis

of the necessary convergence conditions by using this best response algorithm and their relations with the distribution

functions.

4 Necessary Conditions for the Convergence

In this section, we first discuss the convergence conditionsof the best response algorithm for three different classes of

infinite games and then show how the necessary conditions forthe convergence constrain the valuation functions. The

first class is symmetric games with linear strategy functions and linear utility functions. The second class of games is

symmetric games with linear strategy functions and generalutility functions. The third class is asymmetric games with

linear strategy functions and linear utility functions. The discussions of the first two classes of games are applied to

multi-agent games, while the discussion of the third class of games is limited to two-agent games.

We start with the symmetric cases with linear utility functions. In thek-th round of the best response procedure, agent

i uses the strategyβ{k}(vi) = α{k}vi + γ{k}. We assumeui = θvi − (αvi + γ). The probability that our agent has a

higher actionβ{k+1}(x) in thek +1-th round, which is higher than thek-th round strategies of the restN − 1 agents, and

wins the game is given byPr
(

β{k+1}(x) > β{k}(Yn)
)

. Thus, our agent’s total surplus can be written

Π = Pr(β{k+1}(x) > β{k}(Yn))[θx − (α{k+1}x + γ{k+1})]

= Pr(α{k+1}x + γ{k+1} > α{k}Yn + γ{k})[θx − (α{k+1}x + γ{k+1})]

= Pr(Yn <
α{k+1}x + γ{k+1} − γ{k}

α{k}
)[θx − (α{k+1}x + γ{k+1})]

= Fn(
α{k+1}x + γ{k+1} − γ{k}

α{k}
)[θx − α{k+1}x − γ{k+1}]. (1)

5



By deriving the first order partial differential of equation(1) with respect toα{k+1} andγ{k+1}, respectively, we obtain

the following necessary condition for finding an optimal converging strategy using the best response algorithm.

F(z) = C2

[

n(θ − α)

α
z −

nγ

α

]

α

n(θ−α)

, (2)

where we use the transferring functionz =
α{k+1}x+γ{k+1}−γ{k}

α{k} or x =
α{k}z−γ{k+1}+γ{k}

α{k+1} . This leads to the following

theorem.

Theorem 4.1 In a class of symmetric games, in whichβ(vi) = αvi +γ andui = θix− (αix+γi), a necessary condition

that the best response procedure converges to a fixed point isthat the valuation distribution function must satisfy equation

(2).

Proof: See Appendix.3

The common first-price, sealed-bid (FPSB) auction is a game to which Theorem 4.1 can be applied. In fact,ui =

θix− (αix + γi) is a more general payoff function than is typically studied in the literature. Various strategic solutions to

FPSB auctions can be found in a large body of research (Klemperer, 1999; Krishna, 2002; McAfee and McMillan, 1987;

Milgrom and Weber, 1982; Milgrom, 1989; Vickrey, 1961). Thus, Theorem 4.1 does not provide any new solutions to the

traditional FPSB auction, or its extensions, but points outthe limitation of the best response algorithm when applied to

continuous versions of FPSB games. To ensure the best response algorithm converges, the valuation distribution function

is constrained to equation (2).

In symmetric cases with general utility functions, we adopta more general utility function,ui(vi, Γ, Ξ, {Yi}), while

using the same linear strategy function. As in equation (1),we obtain a new surplus function as follows.

Π = Fn(
α{k+1}x + γ{k+1} − γ{k}

α{k}
)u(x, Γ, Ξ, {Yi}). (3)

Similar to Theorem 4.1, in order for the best response algorithm to converge, the necessary conditions are given by:

F (1)(z) = C3e
R

x
−∞

[

−
α

nx

∂ln u(x,Γ,Ξ,{Yi})

∂α

]

dx
, (4)

or

F (2)(z) = C4e
R

x
−∞

[

−
α

n

∂ln u(x,Γ,Ξ,{Yi})

∂γ

]

dx
, (5)
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and,

α

n

∫ x

−∞

Ψdx = C5, (6)

whereΨ = 1
x

∂ln u(x,Γ,Ξ,{Yi})
∂α

−
∂lnu(x,Γ,Ξ,{Yi})

∂γ
andz =

α{k+1}x+γ{k+1}−γ{k}

α{k} . The Hessian matrix ofΠ for an optimal

best response solution{α∗, γ∗} is given by

H(α∗, γ∗) =









∂2Π
∂(α{k+1})2

∂2Π
∂α{k+1}γ{k+1}

∂2Π
∂γ{k+1}α{k+1}

∂2Π
∂(γ{k+1})2









(α∗,γ∗)

. (7)

Thus, we have the following theorem.

Theorem 4.2 In a class of symmetric games, in whichβ(vi) = αvi + γ andu(x, Γ, Ξ, {Yi}), the necessary condition

that the best response procedure converges to a fixed point requires the valuation function must be constrained by equation

(4) or (5), equation (6), and that equation (7) is negative.

Proof: See Appendix.3

Theorem 4.2 applies to symmetric game with more general utility functions than does Theorem 4.1. The valuation

distribution functions are constrained by equations (4) or(5). Further, when equation (7) is negative, it guarantees that a

converging best response solution maximizes agents’ payoffs.

Now we discuss the two-agent asymmetric case with linear utility functions. Suppose that we have two agents,1 and

2. Agent1 and Agent2 have true valuationsx andy, which are drawn from two different valuation distributionfunctions

F1 andF2 respectively. We continue to assumeui = θix − (αix + γi). Thus, the surplus functions of both agents are

given by the following:

Π1 = Pr(β1(x) > β2(Y))[θ1x − (α
{k+1}
1 x + γ

{k+1}
1 )]

= Pr(α
{k+1}
1 x + γ

{k+1}
1 > α

{k}
2 Y + γ

{k}
2 )[θ1x − (α

{k+1}
1 x + γ

{k+1}
1 )]

= Pr(Y <
α
{k+1}
1 x + γ

{k+1}
1 − γ

{k}
2

α
{k}
2

)[θ1x − (α
{k+1}
1 x + γ

{k+1}
1 )]

= F2(
α
{k+1}
1 x + γ

{k+1}
1 − γ

{k}
2

α
{k}
2

)[θ1x − α
{k+1}
1 x − γ

{k+1}
1 ] (8)
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and

Π2 = Pr(β2(y) > β1(X))[θ2y − (α
{k}
2 y + γ

{k}
2 )]

= Pr(α
{k}
2 y + γ

{k}
2 > α

{k+1}
1 X + γ

{k+1}
1 )[θ2y − (α

{k}
2 y + γ

{k}
2 )]

= Pr(X <
α
{k}
2 y + γ

{k}
2 − γ

{k+1}
1

α
{k+1}
1

)[θ2y − (α
{k}
2 y + γ

{k}
2 )]

= F1(
α
{k}
2 y + γ

{k}
2 − γ

{k+1}
1

α
{k+1}
1

)[θ2y − α
{k}
2 y − γ

{k}
2 ]. (9)

Similarly, the necessary conditions that the best responsealgorithm obtains its converging optimal solutions are

F2(z) = C6

[

(θ1 − α1)

α1

z −
[θ1(γ1 − γ2) + α1γ2]

α2α1

]

α1
(θ1−α1)

, (10)

and

F1(z) = C7

[

(θ2 − α2)

α2

z −
[θ2(γ2 − γ1) + α2γ1]

α1α2

]

α2
(θ

2
−α

2
)

. (11)

These relations lay the foundation for the following theorem.

Theorem 4.3 In a class of asymmetric games with two agents, in whichβ(vi) = αvi + γ andui = θix − (αix + γi),

the necessary condition that the best response procedure converges to a fixed point requires the valuation function must

be constrained to equations (10) and (11).

Proof: See Appendix.3

Theorem 4.3 discusses a two-agent asymmetric case. We expect a multi-agent version of this result to be much

more complicated. Equations (10) and (11) are similar in structure but have differentiated parameters in the distribution

functions.

5 Computation and Examples

The above discussions focus on the conditions necessary forconvergence when applying a best response algorithm. These

conditions are necessary, but not sufficient, to guarantee convergence. However, if the procedure does converge, we may

use the conditions to compute the equilibrium in an immediate manner.

To see how, first, examine the valuation distribution function and the necessary conditions for the best response algo-

8



rithms. If the valuation distribution functions do not satisfy the necessary conditions, the best response algorithm cannot

converge. If the necessary conditions are satisfied, we consider two situations. First, consider the symmetric case with

linear utility function. If we do not know whether the best response algorithm converges or not, we may use equation

(A-4) to compute the series of{αk} step by step until it satisfies the stopping rule. If the best response algorithm does

converge, we may directly use equation (2) to compute the converging parameters. We illustrate the computation process

with the following examples in a symmetric case with a linearstrategy function and a linear utility function.

Example 5.1 In this example, we consider a case in which the necessary conditions of best response are satisfied. Let the

game be a two-person FPSB auction andβ(vi) = αvi + γ andui = x − (αix + γi). LetYi be a random variable of a

commonly distributed uniform function,U [5, 20].

Fyi
=











































0 yi ≤ 5

yi−5
15 5 ≤ yi ≤ 20

1 yi ≥ 20

(12)

Suppose we do not know whether the best response algorithm converges. We first compareFyi
to equation (A-4). We

find1 =
α{2}

1−α{2} and obtainα{2} = 1
2 . Since in the index part

( α{k+1}

n(θ−α{k+1})

)

of equation (A-4), there is only one unknown

parameterα{k+1}, we can get the convergent value ofα∗ within one step.

To find the value ofγ∗, we have a relationshipγ{k+1} = 5
2α{k} +

γ{k}

2 when matching the prior CDF and the

necessary condition required by equation (A-4). To see the procedure, without loss of generality, we suppose a start seed

{α{1} = 1, γ{1} = −1}. The convergence procedure is given as following.
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α{1} = 1 γ{1} = −1

α{2} = 1
2 γ{2} = 2

α{3} = 1
2 γ{3} = 9

4

α{4} = 1
2 γ{4} = 19

8

α{5} = 1
2 γ{5} = 39

16

α{6} = 1
2 γ{6} = 79

32

...

α{∞} = 1
2 γ{∞} = 5

2

As shown by the above procedure, the best response algorithmconverges in this example. If so, we may compute the

value directly by comparing equation (2) to equation (12). To see how, we work on the same example.

Example 5.2 As before, we immediately get the value forα∗ = 1
2 . As for the value ofγ∗, we haveγ∗ = 5

2α∗ +
γ∗

2 from

the prior CDF and equation (2). Substitute12 for α∗, and solveγ∗. We obtainγ∗ = 5
2 . We can also obtain the same value

by settingF(0) = 0 and have the equation5 =
γ∗

1−α∗ .

6 Conclusion

Game theory is a useful tool in analyzing value chains. In this paper, we develop the constraints on valuation distributions

that provide the necessary conditions for convergence of the best response algorithm for three different classes of infinite

games under incomplete information. We discuss the symmetric case with a linear utility function, the symmetric case

with a general utility function, and the asymmetric case with a linear utility function. When the best response procedure

converges, we show that we can compute the Nash equilibrium directly from the necessary conditions analytically without

going through any simulation or discretization of the strategy space.

The assumption of a linear strategy function is a strong assumption. A relaxation of the assumption of linear strategy

function is necessary to enable a wider application of best response algorithms in solving infinite games. A possible

direction is to use Taylor expansion to replace a general strategy function. However, the computational complexity would
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become overwhelming due to the large set of coefficients.
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Appendix

Proof of Theorem 4.1: Given the CDF is continuous and differentiable, the surplus function is also continuous and

differentiable. The first order condition that a new combination {α{k+1}, γ{k+1}} is optimal requires

∂Π

∂α{k+1}
= 0,

∂Π

∂γ{k+1}
= 0. (A-1)

By deriving the first order partial differential of equation(1) with respect toα{k+1} andγ{k+1} respectively, we obtain

the following two equations.

∂Π

∂α{k+1}
=

nx

α{k}
Fn−1(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)f(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)[θx − α{k+1}x − γ{k+1}]

−xFn(
α{k+1}x + γ{k+1} − γ{k}

α{k}
),

and

∂Π

∂γ{k+1}
=

n

α{k}
Fn−1(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)f(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)[θx − α{k+1}x − γ{k+1}]

−Fn(
α{k+1}x + γ{k+1} − γ{k}

α{k}
).

From the above two equations, we observe that∂Π
∂α{k+1} = x ∂Π

∂γ{k+1} . Thus, we get

0 =
n

α{k}
Fn−1(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)f(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)[θx − α{k+1}x − γ{k+1}]

−Fn(
α{k+1}x + γ{k+1} − γ{k}

α{k}
).
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By removing the common itemFn−1(
α{k+1}x+γ{k+1}−γ{k}

α{k} ) and moving the second part to the right hand side, we get

the following:

1

n
θx−α{k+1}x−γ{k+1}

α{k}

=
f(

α{k+1}x+γ{k+1}−γ{k}

α{k} )

F(
α{k+1}x+γ{k+1}−γ{k}

α{k} )
. (A-2)

To simplify, substitutez for α{k+1}x+γ{k+1}−γ{k}

α{k} , which results inx =
α{k}z−γ{k+1}+γ{k}

α{k+1} . Thus, equation (A-2) can

be rewritten as

f(z)

F(z)
=

1
n(θ−α{k+1})

α{k+1} z −
n[θ(γ{k+1}−γ{k})+α{k+1}γ{k}]

α{k}α{k+1}

.

The above equation is equivalent to

d(ln F(z))

dz
=

α{k+1}

n(θ−α{k+1})

z

d
(

ln(
n(θ−α{k+1})

α{k+1} z −
n[θ(γ{k+1}−γ{k})+α{k+1}γ{k}]

α{k}α{k+1} )
)

dz
. (A-3)

By integrating equation (A-3), we obtain the following:

lnF(z) =
α{k+1}

n(θ − α{k+1})
ln

(n(θ − α{k+1})

α{k+1}
z −

n[θ(γ{k+1} − γ{k}) + α{k+1}γ{k}]

α{k}α{k+1}

)

+ C1,

This equation can be further refined into the following:

F(z) = C2Φ
α{k+1}

n(θ−α{k+1}) , (A-4)

whereΦ =
n(θ−α{k+1})

α{k+1} z −
n[θ(γ{k+1}−γ{k})+α{k+1}γ{k}]

α{k}α{k+1} .

We conclude that equation (A-4) is a necessary condition forfinding an optimal best response strategy given other

agents’ strategies.F(z) is the CDF of an agent’s valuation distribution function. Thus, the CDF must be restricted to the

class of functions specified by equation (A-4).

Since{α{k}, γ{k}} is not specified before we obtain the above conclusion, this pair of values can either be a random

start seed or be a best response seed obtained in a previous round. If this best response process converges, we will have
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γ{k} = γ{k+1} andα{k} = α{k+1} in equation (A-4). As a result, equation (A-4) can be rewritten as the following:

F(z) = C2

[

n(θ − α)

α
z −

nγ

α

]

α

n(θ−α)

.

This proves Theorem 4.1.3

Proof of Theorem 4.2: By taking the partial, first-order differential of this equation with respect toα{k+1} and

γ{k+1}, we obtain

∂Π

∂α{k+1}
=

nx

α{k}
Fn−1(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)f(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)u(x, Γ, Ξ, {Yi})

+Fn(
α{k+1}x + γ{k+1} − γ{k}

α{k}
)
∂u(x, Γ, Ξ, {Yi})

∂α{k+1}
,

and

∂Π

∂γ{k+1}
=

n

α{k}
Fn−1(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)f(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)u(x, Γ, Ξ, {Yi})

+Fn(
α{k+1}x + γ{k+1} − γ{k}

α{k}
)
∂u(x, Γ, Ξ, {Yi})

∂γ{k+1}
.

We set these two equations to zero and obtain:

−
nx

α{k}
f(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)u(x, Γ, Ξ, {Yi}) = F(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)
∂u(x, Γ, Ξ, {Yi})

∂α{k+1}
,

and

−
n

α{k}
f(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)u(x, Γ, Ξ, {Yi}) = F(

α{k+1}x + γ{k+1} − γ{k}

α{k}
)
∂u(x, Γ, Ξ, {Yi})

∂γ{k+1}
.

Further, we have:

f(
α{k+1}x+γ{k+1}−γ{k}

α{k} )

F(
α{k+1}x+γ{k+1}−γ{k}

α{k} )
= −

α{k}

nx

1

u(x, Γ, Ξ, {Yi})

∂u(x, Γ, Ξ, {Yi})

∂α{k+1}
,
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and

f(
α{k+1}x+γ{k+1}−γ{k}

α{k} )

F(
α{k+1}x+γ{k+1}−γ{k}

α{k} )
= −

α{k}

n

1

u(x, Γ, Ξ, {Yi})

∂u(x, Γ, Ξ, {Yi})

∂γ{k+1}
.

Let z =
α{k+1}x+γ{k+1}−γ{k}

α{k} . The above two equations are equivalent to

d lnF {k}(z)/dz = −
α{k}

nx

∂lnu(x, Γ, Ξ, {Yi})

∂α{k+1}
,

and

d lnF {k+1}(z)/dz = −
α{k}

n

∂lnu(x, Γ, Ξ, {Yi})

∂γ{k+1}
.

Thus, we can derive two necessary conditions that the pair{α{k+1}, γ{k+1}} is a best response as following:

F {k}(z) = C3e

R
x
−∞

[

−
α{k}

nx

∂ln u(x,Γ,Ξ,{Yi})

∂α{k+1}

]

dx
, (A-5)

and

F {k+1}(z) = C4e

R
x
−∞

[

−
α{k}

n

∂ln u(x,Γ,Ξ,{Yi})

∂γ{k+1}

]

dx
. (A-6)

As we know, the valuation distribution function is known prior. Thus, equation (A-5) should be equivalent to equation

(A-6). As a result, we have

C3e

R
z
−∞

[

−
α{k}

nx

∂ln u(x,Γ,Ξ,{Yi})

∂α{k+1}

]

dx
= C4e

R
z
−∞

[

−
α{k}

n

∂ln u(x,Γ,Ξ,{Yi})

∂γ{k+1}

]

dx
.

The above equation can be converted to the following:

α{k}

n

∫ x

−∞

Ψ{k+1}dx = C5, (A-7)

whereΨ{k+1} = 1
x

∂ln u(x,Γ,Ξ,{Yi})

∂α{k+1} −
∂ln u(x,Γ,Ξ,{Yi})

∂γ{k+1} .

To make sure that we obtain the maximum surplus, we should have a negative Hessian matrix. Suppose we obtain an
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optimal best response{α∗, γ∗}, the Hessian matrix ofΠ at point{α∗, γ∗} is given by

H(α∗, γ∗) =









∂2Π
∂(α{k+1})2

∂2Π
∂α{k+1}γ{k+1}

∂2Π
∂γ{k+1}α{k+1}

∂2Π
∂(γ{k+1})2









(α∗,γ∗)

.

If the best response algorithm converges, equations (A-5) and (A-6) become

F (1)(z) = C3e
R

x

−∞

[

−
α

nx

∂ln u(x,Γ,Ξ,{Yi})

∂α

]

dx
,

and

F (2)(z) = C4e
R

x
−∞

[

−
α

n

∂ln u(x,Γ,Ξ,{Yi})

∂γ

]

dx
,

And, equation (A-7) becomes

α

n

∫ x

−∞

Ψdx = C5,

whereΨ = 1
x

∂ln u(x,Γ,Ξ,{Yi})
∂α

−
∂ln u(x,Γ,Ξ,{Yi})

∂γ
. Thus, we obtain the theorem.3

Proof of Theorem 4.3: From equations (8) and (9) and following the proof of Theorem 4.1, we obtain the

necessary conditions as following.

F2(z) = C6∆{k+1}

α
{k+1}
1

(θ1−α
{k+1}
1 ) , (A-8)

and

F1(z) = C7∆{k}

α
{k}
2

(θ2−α
{k}
2 ) , (A-9)

where

∆{k+1} =
(θ1−α

{k+1}
1 )

α
{k+1}
1

z −
[θ1(γ

{k+1}
1 −γ

{k}
2 )+α

{k+1}
1 γ

{k}
2 ]

α
{k}
2 α

{k+1}
1

,

and

∆{k} =
(θ2−α

{k}
2 )

α
{k}
2

z −
[θ2(γ

{k}
2 −γ

{k+1}
1 )+α

{k}
2 γ

{k+1}
1 ]

α
{k+1}
1 α

{k}
2

.
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If the best response algorithm converges, equations (A-8) and (A-9) become

F2(z) = C6

[

(θ1 − α1)

α1

z −
[θ1(γ1 − γ2) + α1γ2]

α2α1

]

α1
(θ1−α1)

,

and

F1(z) = C7

[

(θ2 − α2)

α2

z −
[θ2(γ2 − γ1) + α2γ1]

α1α2

]

α2
(θ

2
−α

2
)

.

This proves Theorem 4.3.3
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