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 Optimal Policy for Production Systems with Two Flexible Resources and Two 

Products 

 

Abstract  

Manufacturing companies are facing increasing volatility in demand. As a result, there has been an emerging 

need for a flexible multi-period manufacturing system that uses multiple resources to produce multiple 

products with stochastic demands. To manage such multi-product, multi-resource systems, manufacturers 

need to make two decisions simultaneously: setting a production quantity for each product and allocating the 

limited resources dynamically among the products. Unfortunately, although the flexibility design and 

investment have been extensively studied, the literature has been muted on how to make production and 

allocation decisions optimally from an operational perspective. This paper attempts to fill this literature gap by 

investigating a multi-period system using multiple flexible resources to produce two products. We identify the 

structural property of the cost functions, namely  - differential monotone. Based on this property, the 

optimal production and allocation policy can be characterized by switching curves, which divide the state 

space into eight or nine sub-regions based on the segmentation of decision rules. We analyze different cases in 

terms of production costs and resource utilization ratios, and show how they affect the optimal production and 

allocation decisions. Finally, we compare three heuristic policies to the optimal one to display the advantage 

of resource flexibility and the effectiveness of a heuristic policy. Supplementary materials are available for 

this article. Go to the publisher’s online edition of IIE Transaction, datasets, additional tables, detailed proofs, 

etc. 

 

Keywords: Production/inventory control; manufacturing flexibility; resource flexibility; optimal 

allocation policy; dynamic programming 
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1 Introduction 

Most manufacturing companies are facing increasing volatility in demand and demand growth in emerging 

economies due to increased global competition, shorter business cycles and broader product ranges. To 

survive in this competitive and fast-changing environment, it is critical to enhance flexibility in adjusting 

productions to manage supply and demand uncertainty. Manufacturing flexibility is widely recognized as an 

essential component to achieve competitive advantages in the market place (Jain et al., 2013). According to 

Chauhan and Singh (2014), manufacturing flexibility that can only be achieved with flexible resources, such 

as machines and workforce, or capacity and inventory (Chod and Rudi, 2005), is termed resource flexibility. 

Other types of flexibilities, such as process, operation and product flexibility, depend on flexibility of 

resources (Karuppan and Ganster, 2004). With the arrival of the big data era, production customization is 

becoming a popular trend, and hence, poses more challenges to manufacturers. Therefore, improving resource 

flexibility has been regarded as an effective and efficient method to boost a firm’s ability to match supply with 

demand and escalate the firm’s competitiveness. 

One of the industries that rely heavily on a flexible production capacity is car manufacturing (Chod and 

Rudi, 2005). An auto manufacturer usually operates many different assembly plants and produces many 

different vehicles (Jordon and Graves, 1995). Assembly capacity is essentially fixed over a substantial time 

horizon due to rigid labor contracts and capital requirements. However, the demand for individual vehicles 

fluctuates. To deal with this uncertainty and better match supply with demand, the manufacturer strives for 

more manufacturing flexibility, that is, the ability to produce more than one vehicle type with the same 

capacity. Thus, resource flexibility, whereby a production facility can produce multiple products, is a vital 

design consideration in multiproduct supply chains facing uncertain demand. 

As an example, Honda has invested flexible manufacturing capacity in its North American and global 

production facilities to more quickly and efficiently respond to changes in market demand. This flexible 

manufacturing system provides a competitive advantage for Honda due to the efficient utilization of global 

production resources and increased stability of local manufacturing operations and employment. Honda has 

nine North American auto assembly lines at seven plant sites, producing 16 distinct Honda and Acura models. 

All of Honda's North American assembly lines produce multiple vehicles on each line. By designing 

flexibility into each line, Honda can balance consumer demand with production. Additional benefits include 

workforce stability and efficient use of resources (Honda, 2015). 

        One increased pressure that managers face is to generating more revenue with fewer workers and 

resources, as well as ensuring that the company has sufficient staff with flexible skills, especially when the 

workforce is limited. This encourages managers to strategically analyze their employees’ expertise and apply 

cross-training, which uses employees to satisfy labor needs beyond their primary skill, thereby creating 

scheduling and staffing flexibility. With cross-training, firms are better equipped to recover quickly from 
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disruptions and handle transitions gracefully because they do not need a dedicated staff person for each type 

of job. Instead, they have a well-rounded team of individuals who can use their varied skills for whatever 

purpose currently is most urgent, by filling in for each other. For example, if a firm receives a big order 

unexpectedly, it can shift personnel to augment its production team. This allows a manager to better handle 

varying product demands with more flexible labor resources.  

         The application of resource flexibility can also be found in reconfigurable manufacturing systems 

(RMS), which emphasize the ability to change and evolve rapidly to adjust the production capacity and 

functionality. Due to competition and the wide range of applications of new technology, manufacturers need 

to produce a variety of generic or custom-made products to meet customer requirements. These products have 

a wide range including cellular phones, electronic parts, automobiles, mechanical modules, and others. Such 

manufacturing systems must meet various customer-dependent requirements, producing specific product 

variants in small quantities to reduce the stock of finished products. When a sudden change occurs in the 

market, the RMS changes in response, allowing the company to produce products or goods in an efficient 

manner. Two main characteristics of RMS are modularity and Customization. These attributes enable the 

design of a system for the producing a part family rather than a single part. A part family is defined as all parts 

(or products) that have similar geometric features and shapes and the same tolerance level, require the same 

processes, and are within the same cost range. Because of the linkage between part families, the manufacturer 

needs to plan its capacity for producing multiple products simultaneously. However, finding the right capacity 

level for all products at the same time is a challenging problem. A manufacturer, therefore, would benefit from 

efficient and practical algorithms designed for solving capacity planning and allocation problems. 

 

1.1 Our Main Results and Contributions 

Although the management of flexible resources has received significant attention in the operations 

literature (Chod and Rudi, 2005), very few analytical results have been obtained regarding how to optimally 

make production and resource allocation decisions in a multiple-period setting. This research seeks to provide 

theoretical results and managerial insights that answer the following important questions to minimize 

operation-related costs: What is the optimal production quantity for each product? Given limited resource 

capacities and different resource utilization ratios, which are defined as the amount of resource needed to 

produce one unit of a particular type of product, how can resources be efficiently allocated between two 

products? How do cost parameters or resource utilization ratios affect the optimal policy? Are there simple 

and efficient heuristic policies for the purpose of implementation?  

To address the above research questions, we investigate the optimal production and resource allocation 

policy for manufacturing systems with flexible resources. Our results are not limited to any specific type of 

resource. Therefore, throughout the paper we employ a broad definition of resource flexibility that reflects 

many different type of pooling, or grouping together of resources to maximize advantage or minimize risk, 
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such as flexible process, capacity, inventory, product, raw material, labor or service. More specifically, we 

consider operational decisions for a finite horizon, periodic review manufacturing system that uses multiple 

flexible resources to produce two finished products. Each resource can be used to produce both products, but 

has a limited capacity. Resource utilization ratios might be resource and product specific. The two-product 

case is interesting in itself with a number of practical applications (Li and Tirupati,1995) and is considered a 

sub-system in a number of papers, for example, Graves and Tomlin (2003), Kulkarni et al. (2004), and Iravani 

et al. (2005). Furthermore, as Li and Tirupati (1995) mentioned, the two-product case is more tractable and 

can be considered a building block for developing more general models. It is useful to note that each product 

could represent a family of items with similar manufacturing characteristics. This type of aggregation is 

common in hierarchical approaches to capacity and production planning. Thus, a two-product model could 

reasonably approximate facilities producing several similar products. 

We develop an analytic model using dynamic programming and characterize the system’s structural 

properties, which are helpful to investigate the optimal production and allocation policy. The optimal policy 

has a very complex structure, and depends on cost and resource utilization ratios. To the best of our 

knowledge, our work is the first to fully characterize the optimal production and allocation policy for systems 

with multiple flexible resources and two products in multiple periods dynamically.  

We demonstrate that optimal production and allocation can be determined by six monotone switching 

curves and hedging points. We analyze the structure of the optimal policy for two cases in terms of cost 

parameters. In the first case, each resource is a primary resource for one particular product and it is more cost-

effective to produce this product but more expensive to produce the other product. In the second case, one 

resource is more cost-effective than the other to produce both products. For both cases, the optimal policies 

have the following important properties: 

⚫ The state space of inventory levels can be segmented into eight (for the first case) or nine (for the 

second case) regions. Depending on which region the initial state is in, the production and allocation 

decisions vary accordingly (see Theorems 1 and 2 for additional details).  

⚫ There is a threshold for each product such that the product will be produced only if its inventory level 

does not exceed its threshold. 

⚫ For both cases, there exist allocation thresholds that determine whether one resource should be used to 

produce both products or one particular product. The thresholds are state and cost specific, and thus 

are defined differently for the two cases. 

Our results provide managerial insights on how the optimal policy is affected by cost parameters, and 

how resource allocation depends on the resource utilization ratio of each resource to produce a specific 

product. Furthermore, we extend our results to a case with two product-dedicated resources and one flexible 

resource (see Van Mieghem, 1998), as well as a case where multiple flexible resources are used to produce 

two products. Finally, based on the theoretical results obtained, we develop simple heuristic policies for 

practice and demonstrate the significance of resource flexibility.  
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1.2 Literature Review 

Manufacturing flexibility is a multi-dimensional concept and there is no general agreement on its 

definition. Jain et al. (2013) summarize the various levels of manufacturing flexibility classified by Sethi and 

Sethi (1990) and Koste and Malhotra (1999) and different dimensions, which include machine flexibility, 

operation flexibility, process flexibility, and product flexibility, among others. For a comprehensive literature 

review of manufacturing flexibility, we refer readers to Sethi and Sethi (1990), Beach et al. (2000), and Jain et 

al. (2013). 

There is an extensive body of literature on the various forms of resource flexibility. Jordon and Graves 

(1995) develop principles on the benefits of process flexibility. They show that a sparse flexibility design, 

which they called the long chain, yields most of the benefits of the total flexibility, and flexibility 

configurations with the longest and fewest chains for a given number of links that perform the best. They also 

develop a simple measure for the flexibility in a given product-plant configuration. Graves and Tomlin (2003) 

present a framework for analyzing the benefits of flexibility in multistage supply chains. They find two 

phenomena, stage-spanning bottlenecks and floating bottlenecks, which reduce the effectiveness of a 

flexibility configuration. They identify flexibility guidelines that perform very well for multistage supply 

chains. These guidelines employ and adapt Jordan and Graves’ (1995) single-stage chaining strategy to 

multistage supply chains. Iravani et al. (2005) present a new perspective on flexibility in manufacturing and 

service operations by exploring a type of operational flexibility using the concept of ‘structural flexibility’. 

They focus on strategic-level issues of how flexibility can be created by using multipurpose resources such as 

cross-training labor, flexible machines, or flexible factories. However, these papers present limited analytical 

results. 

Some papers establish theoretical results to explain the effectiveness of flexibility. For example, Chou et 

al. (2010) provide theoretical results of the performance of the well-known chaining strategy, and identify 

conditions to guarantee that a sparse process structure can perform nearly as well as a dense full flexibility 

system. Chou et al. (2011) use the concept of graph expansion to examine how to design a flexible process 

structure for manufacturing systems. They analyze the worst-case performance of the flexible structure design 

problem and prove that when demands are bounded by a constant, there exists sparse flexibility with a graph 

expansion property that achieves sales close to that of full flexibility. Aksin and Karaesmen (2007) identify 

preferred flexibility structures in service or manufacturing systems. They provide analytical comparison 

results on flexibility structure and establish certain flexibility design principles for service and manufacturing 

systems. Simchi-Levi and Wei (2012) also study the structural properties of long chains. They develop a 

theory that explains the effectiveness of long chain designs for finite size systems. They uncover the 

supermodularity property of long chains, which shows marginal benefit and shows that the performances of 

the long chain is characterized by the difference between the performances of two open chains.  

Whereas the existing literature on resource flexibility has focused on the determination of a cost-effective 

flexibility configuration that is likely to meet demand, operational related issues, such as how to allocate 
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flexible resources and how much product to produce by using each resource, are not well studied. In this paper 

we investigate optimal operational decisions for specific manufacturing systems that use multiple flexible 

resources to produce two products. Our work is an extension of papers that study the production control of 

systems that use a single flexible resource to produce multiple products. For periodic review systems, DeCroix 

and Arreola-Risa (1998) study multiple-product infinite horizon systems where demand is uncertain and the 

products share a finite resource every period. They characterize the optimal policy for the special case of 

homogeneous products when all product inventory levels are below the corresponding base-stock levels. 

Ceryan et al. (2013) consider a firm producing two products with uncertain demands utilizing limited product-

dedicated and flexible resources and characterize the structure and sensitivity of the optimal production and 

pricing decisions. Gong and Chao (2013) study the optimal control policy for capacitated periodic-review 

inventory systems with remanufacturing, where the serviceable products can be either manufactured from raw 

materials or remanufactured from returned products, and the system has finite capacities. Many published 

studies focus on systems in the context of continuous time formulated as a multiclass make-to-stock queue, 

such as Zheng and Zipkin (1990), Wein (1992), Veatch and Wein (1996), Ha (1997), and Vericourt et al. 

(2000). 

One closely related paper is Chen (2004), who studies stochastic two-item, single-facility, flexible 

manufacturing systems. He proves that the hedging point policy is generally optimal for systems involving 

both finite and infinite horizon cases of the problems. Feng et al. (2015) extend Chen (2004) by considering a 

capacitated multiple-product system where stochastic demand distribution, production rate, unit production 

cost and periodic expected inventory cost are the same for all the various products. We use production settings 

similar to Chen (2004) but extend his work by considering two flexible resources, which can be extended to 

multiple resources that are used to produce two products. Similar to Chen (2004), we use structural properties, 

called  -difference monotone, to characterize the optimal production and allocation policy. Despite the 

similarity, our work is significantly different with Chen (2004) in the following ways: First, Chen (2004) is 

limited to a single-machine problem so his results do not address ways to allocate resources and make 

production plan for flexible manufacturing systems with multiple resources. Our work focused on systems 

with two flexible resources but it can be extended to multiple resources. Second, as we will see, multi-

resource problems, even only for two flexible resources, will cause significant complexity for both analysis 

and results. When considering two or more flexible resources, the availability of each resource, its 

productivity and cost-effectiveness to produce a specific product must be considered. The interaction among 

these issues does not occur in the single-machine systems. Technically, we show that even for two-resource 

systems, the optimal production and resource allocation policy is very complex: it is characterized by eight or 

nine sub-regions of the state space, which are determined by a set of switching curves and three hedging 

points. For multiple-resource problems, we indicate that the same rule as in the two-resource problems could 

apply. However, increasing resources will cause significant complexity and characterizing the optimal policy 

becomes impractical. Third, we shed lights on how the productivity and costs of each resource used to 
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produce different products will affect resource allocation and production decisions. We believe this is an 

important issue in practice, although it does not appear in the study of the single-machine problems, and is 

ignored in the resource-flexibility literature due to its technical complexity. Fourth, we propose three heuristic 

policies and numerically test their performance by comparing them with the optimal policy.  

Some papers study capacity allocation problems for two-resource, two-product capacitated 

manufacturing systems. For instance, Kulkarni et al. (2004) study the optimization of network configuration 

decisions including strategic choices of allocating manufacturing activity and process competence to a set of 

plants. They show that process plant networks offer significant risk pooling advantages in a wide range of 

conditions. Bish et al. (2005) investigate capacity allocation for a stylized two-plant, two-product capacitated 

manufacturing system. They study the performance of two capacity flexibility configurations: nonflexible, 

where each plant is dedicated to a single product, and fully flexible, where both plants can make both products. 

They show that the performance of the system depends heavily on the allocation mechanism used to assign 

products to the available capacity. Unlike Kulkarni et al. (2004) who study single-period, two-stage stochastic 

optimization problems, and Bish et al. (2005) who study easily-implementable static policies, we investigate 

optimal allocation and production policies for multiple-resource, two-product systems dynamically in a finite 

horizon.  

More recently, Attia et al. (2012) presents the workforce planning and scheduling problem, with two 

levers of flexibility at a time, one related to the working time modulation, and the other to the various tasks 

that can be performed by a given resource. Iravani et al. (2014) study the joint control of production in a 

flexible process and inventory management via the one-way product substitution of finished goods. They 

model a dynamically controlled two-product, make-to-stock system with stochastic processing times, and 

characterize a complex joint optimal production and post-production policy for a special case. Kouvelis and 

Tian (2014) study a a three-stage sequential decision model regarding investing in flexible capacity, capacity 

allocation to individual products, and eventual production quantities and pricing in meeting uncertain demand. 

Jakubovskis (2017) presents a robust optimization model in the context of optimal choices of product-

dedicated and flexible capacities in a spatial setting. The paper examines the impact of three critical factors 

that lead to different capacity utilization and resource flexibility outcomes. Lian et al. (2018) investigate a 

multi-skilled worker assignment problem in the context of seru production systems, in which differences in 

workers’ skill sets and proficiency levels are considered. They develop a meta-heuristic algorithm to solve the 

problem. 

The remainder of this paper is organized as follows. In Section 2, we introduce the problem and develop 

the analytical model. In Section 3, we study the structural properties of the optimal production and allocation 

policy. In Section 4, we propose heuristic policies and conduct numerical study to evaluate the heuristics’ 

performance. We extend our discussions in Section 5 and conclude in Section 6. Proofs are included in the 

Appendix. 
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2 Model Formulation 

We consider a finite horizon, periodic-review production system with two products, which are referred to 

as product P1 and product P2, respectively. Two types of resources, namely R1 and R2, are used to produce the 

two products. In each period, the firm purchases resource Ri from a capacitated supplier with a maximum 

procurement cost , 1,2.iM i = ij  is the amount of Ri required to produce one unit of Pj, , 1, 2.i j = Since we 

use a broad definition of resource, the meaning of ij  could be different when the interpretation of the 

resource is different. For example, the resource could be the amount of raw material/component i used to 

produce product j, or it could be the time required for a cross-trained worker i to finish task j, or 
1

ij
−

 could be 

the production rate if machine i is used to produce product j. We assume that products and resources can be 

real numbers, and fractional production is permitted if producing a whole unit of a product is impossible due 

to limited resources or is not cost effective. 

Define 11 12/   (
21 22/  ) as the comparative resource utilization ratio of R1 (R2) to produce the two 

products, and 11 21/   (
12 22/  ) as the comparative resource utilization ratio of R1 and R2 to produce 

product 1 (2). It is obvious that an 11 12/   smaller than 1 means we need to assign fewer R1 to produce one 

unit P1 than to produce one unit P2, and an 11 21/   smaller than 1 means that if only one type of resource is 

used to produce one unit P1, then fewer R1 is needed than R2..In practice the resource utilization ratio can be 

determined by the production complexity of the two products or merely their physical features, such as 

product size. For example, two machines that have similar functions are used to produce two products. 

Machine 1 is more efficient so its production time for each product is less than that of machine 2. Product 1 is 

a high-end product, so its production process is more complex and requires more production time than product 

2 when using the same machine. In this case ij  is interpreted as the production time using machine i to 

produce product j, and we have that 1 2j j   and 1 2i i  , , 1,2i j = . Since 1 2/i i  , 1,2i = , is mainly 

determined by products’ features, it is meaningful to assume that this ratio is identical, regardless of which 

resource is used. Similarly, since 1 2/j j  , 1,2j = , is mainly determined by the comparative efficiency of 

the two resource to produce the same product, it is meaningful to assume that the ratio is identical for the two 

products. Therefore, throughout the paper we assume that 11 12 21 22/ /   = .  

It is worth noting that a general ij  will lead to technical complexity. In fact, for tractability, most papers 

in the related literature assume identical ij  for any i and j (i.e., =1ij ): see for example, Ha  (1997), Graves 

and Tomlin (2003), Chou et al. (2010), and Simchi-Levi and Wei (2012). We relax this assumption by 

allowing a general ij  subject to the constraint that 11 12 21 22/ /   = . To the best of our knowledge, this 
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paper is the first to assume a general ij  and investigates the impact of the resource utilization ratio on 

production and resource allocation. Theoretically, this assumption ensures the structural properties that are 

critical to characterizing the optimal policy can be preserved throughout the time horizon. 

The demand for both products, denoted by jD  ( 1,2j = ), are stochastic, independently and identically 

distributed (i.i.d.) from period to period with a mean j . At the beginning of each period, the management 

decides the production quantities of each product, and the amount of each resource assigned to produce each 

product, which is subject to the available capacity of this resource. We assume there is no production lead 

time, which means products will be available in the same period. Unmet demands are backlogged and will be 

satisfied in the upcoming periods.  

The system incurs the following costs: (1) ijc : the production cost for using Ri to produce one unit of Pj 

( , 1,2i j = ). The interpretation of the production cost could be different depending on the resource type. It 

may refer to, but is not limited to, one or more of the following costs: raw material, manufacturing, and labor. 

ijc
 
could be different over i and j, because, for example, producing with a more efficient machine might be 

more expensive, or a high-end product might require a more complex and costly manufacturing process. (2) 

1( )L x  and 2( )L y : the one-period inventory holding and backordering cost functions for products 1 and 2, 

given their inventory levels are x and y, respectively. We assume 1( )L x  and 2( )L y  are convex functions, and 

non-decreasing in the amount of stock on-hand or backorders.  

Our objective is to identify the optimal resource allocation and production policy over a time horizon of 

T periods, such that the total expected discounted cost is minimized. Let  ( 0 1  ) be the discount factor. 

Define ( , )tf x y  as the minimum expected discounted cost in period t given the inventory levels of the two 

products are x and y, respectively, at the beginning of period t. The problem can be formulated using the 

following optimality equation for 1,...,t T= : 

11 12 1

21 22 2

11 12 21 22
( ' ) ( ' )

( ') ( ')
' , '

1 2 1 1 2

( , ) min { ( ' ) ( ' ) ( ') ( ')

                                            ( ) ( ) ( , )},

t
x x y y M

X x Y y M
X x x Y y y

t

f x y c x x c y y c X x c Y y

L X L Y Ef X D Y D

 

 



− + − 

− + − 
   

+

= − + − + − + −

+ + + − −

 

which can be equivalently written as  

11 12 1

11 12
( ' ) ( ' )

' , '

( , ) min { ( ' ) ( ' ) ( ', ')},t t
x x y y M

x x y y

f x y c x x c y y J x y
 − + − 
 

= − + − +                     (1) 

where  

21 22 2

21 22
( ') ( ')

', '

1 2 1 1 2

( ', ') min { ( ') ( ')

                                  ( ) ( ) ( , )}.

t
X x Y y M

X x Y y

t

J x y c X x c Y y

L X L Y Ef X D Y D

 



− + − 
 

+

= − + −

+ + + − −                        (2) 
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'x , 'y , X and Y are four decision variables, where 'x  and 'y  represent updated inventory levels of the two 

products after only R1 is used, while X and Y are inventory levels of the two products, respectively, after R1 

and R2 are used but before demand is realized. Although we reformulate the problem as a sequential 

optimization problem, allocation decisions regarding the two resources and productions decisions regarding 

the two products are made simultaneously. At the end of the time horizon, we assume that 1( , ) 0Tf x y+ = . 

Define 11 12( , ) ( , )t tf x y c x c y f x y= + +  and 21 22( ', ') ' ' ( ', ')t tJ x y c x c y J x y= + + , Eq. (1) and (2) can be 

written as 

11 12 1

11 21 12 22
( ' ) ( ' )

' , '

( , ) min {( ) ' ( ) ' ( ', ')}t t
x x y y M

x x y y

f x y c c x c c y J x y
 − + − 
 

= − + − + ,                (3) 

21 22 2

21 11 22 12 1
( ') ( ')

', '

2 1 1 2 11 1 12 2

( ', ') min {( ) ( ) ( )

                     ( ) [ ( , )]} .

t
X x Y y M

X x Y y

t

J x y c c X c c Y L X

L Y E f X D Y D c c

 
 

    

− + − 
 

+

= − + − +

+ + − − + +                     (4) 

By defining 11 21 12 22( , ) ( ) ( ) ( , )t tG x y c c x c c y J x y= − + − +  and 

21 11 22 12 1 2

1 1 2 11 1 12 2

( , ) ( ) ( ) ( ) ( )

                [ ( , )] ,

t

t

G x y c c x c c y L x L y

E f x D y D c c

 

    +

= − + − + +

+ − − + +
 

we can rewrite Eq. (1) and (2) as 

11 12 1( ' ) ( ' )
' , '

( , ) min { ( ', ')},t t
x x y y M

x x y y

f x y G x y
 − + − 
 

=                  (5) 

and 

      
21 22 2( ') ( ')

', '

( ', ') min { ( , )}.t t
X x Y y M

X x Y y

J x y G X Y
 − + − 
 

=                  (6)

 

Throughout this paper, we denote the partial derivative of a generic function ( , )v x y  with respect to the 

ith variable as ( , )iv x y , 1,2i = . We use   and   to denote non-decreasing and non-increasing, respectively. 

We list all notations in Table 1.  

 

3 Characterization of the Optimal Policy 

For a special case with only one resource and two products, Chen (2004) characterizes the optimal 

resource allocation and production policy as a hedging point policy. A hedging point represents a global 

minimization point. In the single resource case, three monotone curves interact at the hedging point, dividing 

the state space into three regions. The optimal production policy is completely determined by the hedging 

point and the three curves (please refer to Appendix A for a review of this policy). In this section, we will 

show how the hedging point policy is helpful when studying the optimal policy for this model based on 

discussions of different cases in terms of production costs. 
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Table 1: List of Notation. 

Notation  Description 

T Time period, 1,...,t T=  

Pj Product j, 1,2j =  

Ri Resource i, 1,2i =  

iM  Capacity of resource i 

ij  The amount of Ri used to produce one unit of Pj, , 1,2i j =  

jD  Demand of product j in a period, a random variable,  

j  Mean of jD  

ijc  Unit cost if Ri is used to produce one unit of Pj, , 1,2i j =  

( )jL   One period inventory holding and backordering cost functions for product j 

  Discount factor, 0 1   
* ( , )ijq x y  The optimal production quantity of Pj by using Ri, , 1,2i j = , given inventory levels 

of the two products are x and y, respectively 

( , )tf x y  The minimum expected discounted cost in period t given inventory levels of the two 

products at the beginning of period t are x and y, respectively 

3.1  - differential Monotone Properties and Switching Curves 

We investigate how the hedging point policy can be applied to characterize the resource allocation and 

production policy for a general production system with two types of capacitated resources (e.g., raw materials, 

facilities).  It is easy to check that Eq. (5) and (6) have exactly the same format as Eq. (7). Therefore, with the 

assumption of 11 12 21 22/ /   = , we can use the same method in the single-machine model to prove 

inductively that cost functions can preserve the  - differential monotone properties through the whole time 

horizon. Thus, we have the following results. 

Lemma 1. For 1,...,t T= , ( , )tG x y  and ( , )tG x y  are  - differential monotone, that is, 

(I)
1 1( , ) ,  ( , )  ;t tG x y x y G x y x y    (II) 

2 2( , ) ,   ( , ) ;t tG x y x y G x y x y     

(III) 
1 1 1 2 1 1 1 2

11 12 21 22( , ) ( , ) ,   ( , ) ( , )t t t tG x y G x y x y G x y G x y x y   − − − −−   −   . 

By the same token, there are monotone switching curves for ( , )tG x y  and ( , )tG x y  that could help 

characterize the optimal policy. Define 

1

1( ) sup{ : ( , ) 0},tS y x G x y=   

2

2 ( ) sup{ : ( , ) 0},tS x y G x y=   

1 1 1 2

0 11 12( ) sup{ : ( , ) ( , ) 0},t tS y x G x y G x y − −= − 
 

1

1( ) sup{ : ( , ) 0},tS y x G x y=   
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2

2( ) sup{ : ( , ) 0},tS x y G x y=   

1 1 1 2

0 21 22( ) sup{ : ( , ) ( , ) 0}.t tS y x G x y G x y − −= −   

The first three functions and the last three functions represent three switching curves for ( , )tG x y  and 

( , )tG x y , respectively, which can be interpreted similarly as 1( )S y  , 2( )S x  and 0( )S y  in the single-resource 

model. We can show that these curves have similar monotone properties as in Chen (2004). Consider 

( , )tG x y ; for example, 1( )S y  is a non-increasing function of y and the non-increasing rate does not exceed 

the changing rate of y, 2 ( )S x  is a non-increasing function of x and the non-increasing rate does not exceed the 

changing rate of x, and 0 ( )S y  is a non-decreasing function of y. The three curves interact at a hedging point, 

namely (
* *,x y ). We use (

* *,x y ) to represent the hedging point; or the interaction of the three curves of 

( , )tG x y . By definition, 
1 * * 2 * *( , ) ( , ) 0t tG x y G x y= = and 

1 * * 2 * *( , ) ( , ) 0t tG x y G x y= = . Therefore, 

1 * *

21 11( , )tJ x y c c= −  and 
2 * *

22 12( , )tJ x y c c= − . 

From Eq. (3) and (4), we can see that the optimal production quantities using R1 depend on the optimal 

production quantities using R2, and vice versa. Unlike the single-resource model, in the two-resource model 

we must consider the interaction of the production quantities from the two resources, which complicates the 

optimal policy. Indeed, to the end of this section, we will show that to characterize the optimal policy, we 

need to use the six switching curves, some auxiliary curves/line segments, and three hedging points in the 

following subsections. Based on these curves/line segments and hedging points, the state space can be 

segmented into at least eight regions, each of which represents a set of states that follow the same production 

and allocation rule (e.g., using R1 only to produce both products). These curves/line segments and hedging 

points are also useful to determine the production quantities from each resource analytically.  

In addition to the complete characterization of the optimal production and allocation policy, another key 

feature of our model, which is important in practice but is not well studied in the literature, is the investigation 

of the impact of product/resource specific costs and resource utilization ratios on the optimal policy. Again, 

the impact of these costs and ratios can be visualized and identified by the switching curves/line segments and 

hedging points.  

Based on different values of ( , 1,2)ijc i j = , we investigate the optimal policy for the following two cases: 

(1) 
11 21c c  and 

22 12c c , and (2) 11 21c c  and 
12 22c c . Other cases, such as 11 21 22 12,c c c c  , can be 

classified into one of the above two cases by simply converting the indices of the two resources. Furthermore, 

in a special case where 11 12c c=  and 21 22c c= , we can consider the two resources as the same (rescaling if 

necessary), which is not the interest of this research. Therefore, for the remainder of the paper, we assume at 

least one of 11 21c c  and 12 22c c  is true. 
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3.2 Case (1):
11 21c c  and 

22 12c c  

In this case, Ri is the primary resource used to produce Pi with a lower cost, while the other resource is 

considered a substitute with a higher production cost. Next, we use the switching curves to characterize the 

optimal production policy.   

Consider  (
* *,x y ), which is the hedging point of ( , )tG x y . By the definition, it is the optimal solution of 

,
( ', ') min{ ( , )}t t

X Y
J x y G X Y= , the uncapacitated problem of Eq. (6). Hence, 

1 * * 2 * *( , ) ( , ) 0t tJ x y J x y= = , and 

consequently, 
1 * *

11 21( , ) 0tG x y c c= −   and 
2 * *

12 22( , ) 0tG x y c c= −  . By the definition of (
* *,x y ), the 

hedging point of ( , )tG x y , we have 
1 * * 2 * *( , ) ( , ) 0t tG x y G x y= = . In view of convexity of the cost functions, 

* *x x  and 
* *y y . Compare the two curves 1( )S y  and 1( )S y . Since 

1

1( ( ), ) 0tJ S y y =  while 

1 1

1 1 11 21( ( ), ) ( ( ), ) 0t tG S y y J S y y c c= + − = , we obtain that 
1

1 21 11( ( ), ) 0tJ S y y c c= −  , ensuring that 

1 1( ) ( )S y S y . Similarly, we have that 0 0( ) ( )S y S y
 
and 2 2( ) ( )S x S x . The curves are illustrated in the 

following figure. Each curve is divided into two parts by its corresponding hedging point. A solid curve 

represents the part of the curve that will be used to determine the resource allocation and production decisions, 

while a dashed curve represents the inactive parts in decision processes. 

1( )S y

y

x

1( )S y

2 ( )S x

0 ( )S y

0 ( )S y

2 ( )S x

* *( , )x y

* *( , )x y

0

1 * * 2 * *( , ) 0, ( , ) 0t tG x y G x y 

1 * * 2 * *( , ) ( , ) 0t tG x y G x y= =

 

Figure 1. Switching curves for the case 11 21 22 12,c c c c  . 

The six curves provide simple rules to determine the allocation of resources and production decisions. 

We divide the decision process into two steps, although, as we have mentioned, all the decisions are actually 

made simultaneously. In the first step, allocation of R1 is considered. If the initial state ( , )x y  is on the right 

side of 1( )S y  and above 2 ( )S x , neither producing P1 nor P2 can reduce cost; thus R1 is not used for 

production. On the left side of 1 0( ) ( )S y S y , producing P1 is more cost-effective; thus R1 is used to produce 

P1 until R1 is exhausted or the inventory of P1 reaches either 1( )S y  or 0 ( )S y . Below the curves 2 ( )S x  and 
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0 ( )S y ，only producing P2 is cost-effective, thus R1 is used to produce P2 until R1 is exhausted or the 

inventory of P2 reaches either 2 ( )S x
 
or 0 ( )S y . If the state is on 0 ( )S y , producing P1 and P2 has the same cost 

margin; thus, P1 and P2 are produced simultaneously so the state moves upwards along 0 ( )S y  until R1 is 

exhausted or (
* *,x y ) is reached, above which producing more is not cost-effective. In the second step, R2 is 

considered. Using the same logic, the production rule can be simply determined by the three curves of 

( , )tG x y : If the updated state after the first step is on the right side of 1( )S y  and above 2 ( )S x , neither 

producing P1 nor P2 can reduce the cost; thus, R2 is not used for production. On the left side of 1 0( ) ( )S y S y , 

producing P1 is more cost-effective, thus R2 is used to produce P1 until R2 is exhausted or the inventory of P1 

reaches either 1( )S y  or 0( )S y . Below the curves 2 ( )S x  and 0( )S y ，only producing P2 is cost-effective; 

thus, R2 is used to produce P2 only until R2 is exhausted or the inventory of P2 reaches either 2 ( )S x  or 0( )S y . 

Again, if the state reaches 0( )S y  and it is below (
* *,x y ), P1 and P2 are produced simultaneously along 

0( )S y  until (
* *,x y ) is reached or R2 is exhausted.  

Let 
* ( , )ijq x y

 
represent the optimal production quantity of Pj by using Ri, , 1,2i j = . The optimal 

policy has the following properties: 

Lemma 2. (i) If 
* *

11 11 12 12 1q q M +  and 
* *

21 21 22 22 2q q M +  , then all products are manufactured by their 

sole primary resource; that is,
* *

12 21 0q q= = . (ii) 
* *

12 21 0q q = . (iii) If 12 22c c ,  then 
* *

2 2 22( ) /S x y M −   

and 2 2 2 22( ) ( ) /S x S x M −   for 
*x x . 

Property (i) states that if neither of the two resources is exhausted, then all products are produced by their 

primary resource without using the substitute. This outcome is reasonable since production costs are cheaper 

when the primary resource is used than when the substitute resource is used. Property (ii) indicates that if one 

resource primarily used for one product is used to produce the other product, the other resource will not be 

used to produce this product. Intuitively, if both primary resources are used to produce the other product, then 

the total cost can be further reduced by using the primary resource to produce more of its own product and 

less of the other product. Property (iii) ensures that if 12 22c c  then 
* * * *

2 2 22( ) /y y S x y M −  −  . The 

implication is that when the production cost by using the substitute resource is strictly higher than using the 

primary resource, then the difference of the corresponding inventory levels of the product at the two hedging 

points is at least the maximal quantity of this product can be produced if only and all of this resource is used. 

To understand this, consider a special case where 1ij = , Property (iii) and the monotonicity of 2 ( )S x  imply 

that the difference of 
*y  and 

*y  is not less than 
2M . 
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1 1( ) ( )S y S y=

y

x

2 ( )S x

0 ( )S y

0 ( )S y

2 ( )S x

* *( , )x y

* *( , )x y

1( )S y

y

x

1( )S y

0 ( )S y

0 ( )S y

2 2( ) ( )S x S x=

* *( , )x y

* *( , )x y

00

1 * * 2 * *( , ) 0, ( , ) 0t tG x y G x y= 
1 * * 2 * *( , ) ( , ) 0t tG x y G x y= =

1 * * 2 * *( , ) 0, ( , ) 0t tG x y G x y =
1 * * 2 * *( , ) ( , ) 0t tG x y G x y= =

 

Figure 2. Switching curves for cases (a) 11 21c c=  (left), and (b) 12 22c c=  (right). 

There are two special cases: (a) 11 21c c= , and (b) 12 22c c= . In case (a), it is easy to verify that 1( )S y  

and 1( )S y  merge to one curve, and in case (b), 2 ( )S x  and 2 ( )S x  merge to one curve. The switching curves 

for the two cases are illustrated in Figure 2. When both 11 21c c= and 12 22c c=  hold, the corresponding pair 

curves of ( , )tG x y  and ( , )tG x y  merge and the two hedging points, (
* *,x y ) and (

* *,x y ), overlap. In this 

special case the optimal policy becomes the same as the one obtained by Chen (2004). 

Let 
* *( , )x y  be the intersection of 1( )S y  and 2 ( )S x . We call 

* *( , )x y  the global hedging point of the 

system. By the definitions of the curves, it is easy to check that when 
*x x and 

*y y , it is optimal not to 

produce. From Lemma 2, we know that when both inventory levels are lower than 
*x  or 

*y , respectively, but 

Ri is sufficient to produce Pi for 1,2i =  up to 
* *( , )x y , then each Ri is only used to produce Pi up to 

*x  or 
*y , 

respectively. 

Lemma 3 .(i) 

* *
* *

2

x x
x x

+
  and 

* *
* *

2

y y
y y

+
  ; (ii) For 

* *

2 22/y M y y−   , 
*

1( )S y x= . 

The property (i) of Lemma 3 provides lower and upper bounds of *x and *y , and specifies the 

approximate location of * *( , )x y ; that is, it should be below but close to * *( , )x y . Property (ii) states 

that below *y  within the range that *y is reachable by producing P2 using R2 solely, the monotone 

curve 1( )S y  becomes a constant *x  within this range. These properties can be derived from the 

monotonicity of 1( )S y  and 2 ( )S x .  

Based on Lemmas 2 and 3 and the above analysis, we are now ready to characterize the optimal 

resource allocation and production policy. Our method is based on the following ideas. First, the six 

switching curves and three hedging points are determined analytically by cost parameters, resource capacities 

and utilization ratios. Some auxiliary curves, line segments and critical points can be derived accordingly (see 
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Figure 3). Following the two-step decisions we have introduced (even though they are made simultaneously), 

we decide the production quantities by using R1, depending on the location of the updated inventory levels to 

the three switching curves of ( , )tG x y , then decide the production quantities by using R2, depending on the 

location of the updated inventory levels to the three switching curves of ( , )tG x y . Finally, the coordinate 

plane of ( , )x y  can be segmented into eight regions, depending on the different product-resource 

combinations of the optimal policy, for example, Ri is the only resource used to produce Pi, R1 is the only 

resource used to produce both products, or R1 is the only resource used to produce P1 and P2 is not produced  

(see Figure 3). Detailed results are presented formally in Theorem 1. Based on our method, optimal 

decisions can be determined analytically. Mathematical definitions of the regions for this case and 

subsequent cases can be found in Appendix E. The borders of the regions are highlighted in bold (red). 

Dashed curves are additional curves that are not boundaries but are important in determining the optimal 

decisions. Arrow signs are used to describe which resource is used to produce which products. For example, 

R1 -> P1 & P2 means R1 is used to produce both products. Other arrow signs can be interpreted accordingly.  

We also note that the hedging point 
* *( , )x y  is not on the boundaries. Rather, another critical point 

* *

1 11( / , )x M y− , together with the other two hedging points 
* *( , )x y  and 

* *( , )x y  are vertices of the 

regions. We present the optimal policy in the next theorem. 

* *( , )x y

* *( , )x y
* *( , )x y

0 ( )S y

0 ( )S y

1( )S y
1( )S y

2 ( )S x

2 ( )S x

I: No production

VIII: R1->P2

R2->P2

III: R2->P2

II: R1->P1

IV: R1->P1

R2->P1

V: R1->P1

R2->P1 & P2 VI: R1->P1

R2->P2

VII: R1->P1 & P2

R2->P2

0 2 12( / )S y M +

0 2 22( / )S y M +

0 1 11( ) /S y M −

0 1 11 2 21( ) / /S y M M − −

* *

1 11( / , )x M y−

0 1 11( ) /S y M −

0 2 22 1 11( / ) /S y M M + −

1 1 11( ) /S y M −
y

x
0

Ri->P1 & P2: 

use Ri to 

produce P1 

and P2, 

Ri->Pj: use Ri 

to produce Pj, 

i, j=1, 2.

 

Figure 3. Optimal policy for the case 11 21 22 12,c c c c  . 

Theorem 1. The optimal allocation and production decisions depend on which of the eight regions the initial 

state ( , )x y  is located. Specifically, (1) for ( , )x y I , do not produce; (2) for ( , )x y II , use R1 to produce 

P1 until R1 is exhausted or up to the base-stock level 1( )S y ; (3) for ( , )x y III , use R2 to produce P2 until R2 

is exhausted or up to the base-stock level 2 ( )S x ; (4) for ( , )x y IV , use all of R1 and all or part of R2 to 

produce P1 until R2 is exhausted or P1 is produced up to 1( )S y  if
*y y , and use all of R1 and R2 to produce 
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P1 if 
*y y ; (5) for ( , )x y V , use all of R1 to produce P1 and all or part of R2 to produce both products 

until R2 is exhausted or the state reaches 
* *( , )x y ; (6) for ( , )x y VI , use R1 to produce P1 until R1 is 

exhausted or up to the base-stock level 1( )S y , use R2 to produce P2 until R2 is exhausted or up to the base-

stock level 2 ( )S x ; (7) for ( , )x y VII , use R1 to produce P1 and P2 until R1 is exhausted or the state reaches 

* *( , )x y , and use all of R2 to produce P2; and (8) for ( , )x y VIII ,  use all of R1 to produce P2, or part of R1 

to produce P2 until P2 is produced up to 2 ( )S x  and then use all of R2 to produce P2. 

Theorem 1 shows how the decision depends on the initial state and the complexity of the optimal 

structure. Region I represents the area where both inventory levels are high, hence there is no need to produce. 

In region II, P2 has sufficient inventory, but P1 needs more, while it is still not cost-effective to use R2 to 

produce P1 due to the high cost. In region IV, P2 has sufficient inventory, but P1’s inventory is so low that it is 

desirable to use R2 to produce P1 even after all the R1 are used to produce P1. In region V, both products need 

more inventory, but P1 is more deficient than P2, so all R1 will be used to produce P1, whereas R2 will be used 

to produce both. VI is a more balanced area where both products use the primary resource to produce, and 

after that either the inventories are sufficient or the resource is exhausted. Regions III, VII and VIII are 

symmetric to II, IV and V, respectively, so they can be explained similarly.  

Some important aspects of Theorem 1 warrant additional comments. First, the left boundaries of regions I, 

III and VIII are a threshold for producing product 1. We can see from Figure 3 that it is desirable to produce 

product 1 if the state is on the left side of the boundaries, and not to produce product 1 otherwise. Second, the 

bottom boundaries of regions I, II and IV are a threshold for producing product 2 (i.e., it is only desirable to 

produce product 2 when the state is below the boundaries). Third, the lower the inventory level of a product, 

the more desirable it is to use its primary resource to produce this product, given it is profitable to produce 

more of this product and the inventory level of the other product is fixed. Fourth, in the regions where it is 

desirable to produce both products, there are two thresholds that determines whether one resource should be 

allocated to the production of the other product (i.e., one consists of the boundaries between regions V and VI) 

and the second one consists of the boundaries between regions VI and VII. Furthermore, both the thresholds 

are non-decreasing in each inventory level. Fifth, region II and region III are not symmetric, since the left 

boundary of region II is not 1( )S y  but an auxiliary curve 1 1 11( ) /S y M − . This is because, the curves in 

Figure 3 correspond to the two production decisions (using two resources, respectively) sequentially. In region 

II, after production using R1 the state will be on the right side of 1( )S y , ensuring that R2 will not be used for 

production. In region III, however, R1 is not considered, so an auxiliary curve is not necessary. Sixth, in region 

IV, R2 is partially (fully) used if the state is on the right (left) side of 1 1 11 2 21( ) / /S y M M − − . Similarly, 

in region VIII, R1 is partially (fully) used if the state is on top of (below) 2 1 12( ) /S x M − . 
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From Figure 3, we can also see how the optimal decision is affected by production costs, resource 

capacities and resource utilization ratios. As we have discussed, the distance between 
* *( , )x y  

and 

* *( , )x y depends on the production costs. Specifically, 
* *x x−  is increasing in 

21 11c c−  and * *y y−  is 

increasing in 
12 22c c− . Additionally, it is evident that the distances between boundary curves further depend 

on resource capacities and resource utilization ratios. For example, if 
1M is extremely large, implying that R1 

is uncapacitated, then II and VI will expand to the left areas of the coordinate plane and IV and V will 

disappear, since there is always sufficient R1, it is not necessary to use R2 to produce P1.  

Furthermore, it can also be seen that using substitute resource to produce only occurs in regions V and 

VII, if the state reaches 0 ( )S y  when R1 is used for production, or 0( )S y  when R2 is used for production. 

Moreover, it is worth noting that when 
2 22/M   is sufficiently large, 0 2 22 1 11( / ) /S y M M + −  might be 

below 0 1 11( ) /S y M −  or even 0 2 12( / )S y M + . That will cause an overlap of regions V and VII (or even 

V and VIII). In this case, we can verify whether VII (or VIII) dominates in the overlapped area; thus, we only 

need to modify the bottom boundary of V while the boundaries of VII and VIII remain the same. 

It is worth mentioning that the monotone properties in Lemma 1 are critical to characterize the optimal 

policy. The assumption 11 12 21 22/ /   =  is sufficient to ensure that these monotone properties can be 

preserved throughout the time horizon. If this assumption is not met, 
1 1 1 2

11 12( , ) ( , ) t tG x y G x y − −− or 

1 1 1 2

21 22( , ) ( , )t tG x y G x y − −−  may have opposite monotone properties in terms of x or y. In that case, whether 

the optimal policy holds or not is unknown. 

 

3.3 Case (2): 11 21c c  and 
12 22c c  

In this case, resource R1 is more cost-effective than R2 to produce both products. This setting may arise in 

a production environment where R1 is used for regular production while producing with R2 needs additional 

technology. Similar to Section 3.2, next we use switching curves to characterize the optimal policy.   

We consider (
* *,x y ), the hedging point of ( , )tG x y . By definition, 

1 * * 2 * *( , ) ( , ) 0t tJ x y J x y= = , and 

consequently, 
1 * *

11 21( , ) 0tG x y c c= −   and 
2 * *

12 22( , ) 0tG x y c c= −  . By the definition of (
* *,x y ), the 

hedging point of ( , )tG x y , we have 
1 * * 2 * *( , ) ( , ) 0t tG x y G x y= = . In view of the cost functions’ convexity, 

* *x x and 
* *y y . As in Section 3.2, we can obtain 1 1( ) ( )S y S y  and 2 2( ) ( )S x S x .  For 0( )S y  and 

0 ( )S y , in view of the definition of ( , )tG x y  and the assumption 11 12 21 22/ /   = , it is easy to verify that 

0 0( ) ( )S y S y  if 
11 12

1 1

11 21 12 22( ) ( )c c c c − −−  −  and 0 0( ) ( )S y S y  otherwise. The curves for the two cases 
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can thus be illustrated in the following figure. Different locations of 0 ( )S y  in terms of 0 ( )S y  may change the 

optimal decision regions. Next we will discuss the two cases in more details. 

1( )S y

y

x

1( )S y

2 ( )S x

0 ( )S y
0 ( )S y

2 ( )S x

* *( , )x y

* *( , )x y

0

1 * * 2 * *( , ) 0, ( , ) 0t tG x y G x y 
1 * * 2 * *( , ) ( , ) 0t tG x y G x y− 

1( )S y
y

x

1( )S y

2 ( )S x

0 ( )S y

0 ( )S y

2 ( )S x

* *( , )x y

* *( , )x y

0

1 * * 2 * *( , ) 0, ( , ) 0t tG x y G x y 
1 * * 2 * *( , ) ( , ) 0t tG x y G x y− 

 

Figure 4. Switching curves for the case 11 21 12 22,c c c c   (left when
11 12

1 1

11 21 12 22( ) ( )c c c c − −−  − , and right 

when
11 12

1 1

11 21 12 22( ) ( )c c c c − −−  − ). 

The economic meaning of 
11

1

11 21( )c c− −  (
12

1

12 22( )c c − − ) is the rescaled difference of production costs 

for product 1 (product 2) by using the two resources. As illustrated in Figure 4, the locations of 0 ( )S y  and 

0 ( )S y depend on the values of 
11

1

11 21( )c c− − and 
12

1

12 22( )c c − − . When 
11

1

11 21( )c c− − is larger than 

12

1

12 22( )c c − − , it implies that using R1 to produce P1 creates more cost reduction than producing P2. This 

explains why 0 ( )S y  is located on the left of 0 ( )S y , resulting in more P1 being produced by R1. To see this, 

consider a simple example where 
11 12 = , 

11 1,c = 12 2,c = 21 2,c =  and 
22 4c = . Due to the high cost of 

22c , it is desirable to use more R1 to produce P2. So at the area where production of P2 is needed (say 

below 0 ( )S y
 
and 0 ( )S y ), R1 will be first used to produce P2 as long as the state does not arrive at 0 ( )S y  

from the below. Since 0 ( )S y  is above or on the left of 0 ( )S y , it ensures that more of P2 will be produced by 

R1. Cases in which 
11

1

11 21( )c c− −
 
is smaller than 

12

1

12 22( )c c − −  can be explained similarly. 

Despite the curves’ different locations, the same decision rules for the allocation of resources and 

production based on the six curves discussed in Section 3.2 can be applied in this case. Again, let 
* ( , )ijq x y  

represent the optimal production quantity of Pj by using Ri, , 1,2i j = . The optimal policy has the following 

properties: 

Lemma 4. If 
* *

11 11 12 12 1q q M +  , then 
* *

21 22 0q q= = .  
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Unlike Section 3.2, in this case it is possible that both 
*

12q
 
and 

*

21q  are positive. The intuitive reason is 

that, R1 is the primary resource used to produce both products, and R2 will be used for either production if R1 

is not sufficient. Of course, the optimal solutions might not be unique. To illustrate this, consider a special 

case where ij  is identical for all , 1,2i j = , and 
21 11 22 12c c c c− = − . Supposing that the optimal solution 

11 12 21 22

* * * *( , , , )q q q q
 
satisfies 

12 21

* *0 q q  , it is easy to verify that an alternative solution 

11 12 21 12 22 12

* * * * * *( ,0, , )q q q q q q+ − +  is also optimal. Therefore, for the remainder of this section, we will discuss 

only one optimal allocation and production policy although alternative optimal solutions might exist. 

According to the values of 
1

11 11 21( )c c − −
 
and 

12

1

12 22( )c c − − , the study of the optimal policy can be 

classified as follows: Case 2.1. 
11 12

1 1

11 21 12 22( ) ( )c c c c − −− = − ; Case 2.2. 
11 12

1 1

11 21 12 22( ) ( )c c c c − −−  − ; and 

Case 2.3. 
12

1 1

11 11 21 12 22( ) ( )c c c c − −−  − . The optimal policies for the three cases are similar but have 

different aspects. For conciseness sake, we next present the results for Case 2.1. As a comparison, the results 

for Case 2.2 are provided in Appendix C. Case 2.3 is symmetric to Case 2.2, thus is omitted.  

3.3.1 Case 2.1:
11 12

1 1

11 21 12 22( ) ( )c c c c − −− = −  

When the unit cost of using R2 (after rescaling by  ) is the same for the two products, it can be easily 

verified that 0 0( ) ( )S y S y= . The switching curves can thus be shown in the following figure. This is a special 

case of Figure 4, so can be explained similarly.  

1( )S y

y

x

1( )S y

2 ( )S x

0 0( ) ( )S y S y=

2 ( )S x

* *( , )x y

* *( , )x y

0

1 * * 2 * *( , ) 0, ( , ) 0t tG x y G x y 
1 * * 2 * *( , ) ( , ) 0t tG x y G x y− =

 

Figure 5. Switching curves for the case 11 21 12 22,c c c c  and
11 12

1 1

11 21 12 22( ) ( )c c c c − −− = − . 

We segment the coordinate plane of ( , )x y  into nine regions based on the optimal decisions made at the state. 

The segmentation is illustrated in Figure 6. We present the optimal policy in the next theorem. 
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Theorem 2. When 11 21 12 22,c c c c  and
11 12

1 1

11 21 12 22( ) ( )c c c c − −− = − , the optimal allocation and 

production decisions depend on which of the nine regions the initial state ( , )x y  is in. Specifically, (1) for 

( , )x y I , the optimal decision is not to produce; (2) for ( , )x y II , use R1 to produce P1 until R1 is 

exhausted or produced up to the base-stock level 1( )S y ; (3) for ( , )x y III , use R1 to produce P1 (P2) first if 

0 ( )x S y  ( 0 ( )x S y ), then produce both and update the state along 0 ( )S y  until R1 is exhausted or the 

state reaches 
* *( , )x y ; (4) for ( , )x y IV , use R2 to produce P2 until R2 is exhausted or produced up to the 

base-stock level 2 ( )S x ; (5) for ( , )x y V , use all of R1 to produce P1 and all or part of R2 to produce P1 

until R2 is exhausted or P1 is produced up to the base-stock level 1( )S y  if 
*y y , or use all of R1 and R2 to 

produce P1 if 
*y y ; (6) for ( , )x y VI , use all of R1 to produce P1, use R2 to produce both products until 

R2 is exhausted or the state reaches 
* *( , )x y ; (7)  for ( , )x y VII , use all R1 to produce P1 and P2, and use 

all or part of R2 to produce both products until R2 is exhausted or the state reaches
* *( , )x y ; (8) for 

( , )x y VIII , use all of R1 to produce P2 , and all or part of R2 to produce both products until R2 is exhausted 

or the state reaches
* *( , )x y ; (9) for ( , )x y IX , use all of R1, all or part of R2 to produce P2 until R2 is 

exhausted or up to the base-stock level 2 ( )S x . 

* *( , )x y

* *( , )x y

0 0( ) ( )S y S y=

1( )S y 1( )S y

2 ( )S x

2 ( )S x

I: No production

IX: R1->P2

R2->P2

IV: R1->P2

II: R1->P1

III: R1->P1 & P2

V: R1->P1

R2->P1 

VI: R1->P1

R2->P1 & P2

0 1 11( ) /S y M −

VII: R1->P1 & P2

R2->P1 & P2

VIII: R1->P2

R2->P1 & P2

2 1 12( ) /S x M −

0 1 12( / )S y M +

0 1 12 2 22( / / )S y M M + +

0 1 11 2 21( ) / /S y M M − −

1 1 11( ) /S y M −y

x
0

Ri->P1 & P2: use 

Ri to produce P1 

and P2, 

Ri->Pj: use Ri to 

produce Pj, i, 

j=1, 2.

 

Figure 6. Optimal policy for the case 11 21 12 22,c c c c   and 
11 12

1 1

11 21 12 22( ) ( )c c c c − −− = − . 

Four points are worth mentioning. First, for all the cases in Theorem 2, using one resource to produce 

both products (states in regions III, VI, VII and VIII) only occurs when the state reaches 0 ( )S y . The simple 

rule always holds when the state is not on 0 ( )S y : if production is desirable, then produce P1 (P2) only if 

0 ( )x S y  ( 0 ( )x S y ). Second, similar to Section 3.2, there exist thresholds that determine whether to 

produce product 1 (i.e., the left boundaries of regions I, IV and IX), and whether to produce product 2 (i.e., the 
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bottom boundaries of regions I, II and V). Third, because R1 is more cost-effective than R2 to produce both 

products, it is always beneficial to give priority to R1 and consider R2 only if R1 is exhausted. We can see that 

it is possible here but is impossible for the case 
11 21c c  and 

22 12c c  shown in Figure 3, to use both Ri to 

produce Pj, , 1,2,i j i j=  . Additionally, in Figure 6, there is no region in which R2 is only used for 

production, but this may occur in Figure 3. Fourth, for the same reason, the hedging points 
* *( , )x y  appeared 

in Figure 3 has merged with 
* *( , )x y ; thus in this case there are only two hedging points: 

* *( , )x y  and  

* *( , )x y . 

In summary, our analysis of different cases shows that the optimal production and resource allocation 

policy depends significantly on cost parameters and resource utilization ratios. However, their impact on the 

optimal decisions has been underemphasized or ignored in the literature due to the technical complexity. Our 

results also show that although we could derive analytical solutions for two-resource, two-product systems, 

the optimal policy is too complicated to be implemented. It might be interesting to find implementable 

heuristics that are close to optimal. 

 

4 Heuristic Policies 

As we can see in Section 3, the optimal policy is very complicated, so implementing it in practice is 

challenging. Therefore, a natural question to ask from a managerial viewpoint is whether a simpler heuristic 

policy is acceptable for practical purposes. To address this question, we perform a series of numerical studies 

where the total cost in various policies is compared. Using the optimal policy as a benchmark, we will 

evaluate three heuristic policies: H1, H2 and H3. H1 is a policy without resource flexibility, and thus the gap 

between it and the optimal policy represents the value of resource flexibility. Similar heuristic policies have 

been used in the literature (see, e.g., Bish et al., 2005). H2 is a heuristic based on the analytical results we 

obtained in Section 3 but we simplify some rules so the computational complexity could be reduced. H3 is a 

myopic policy based on optimal decisions for a one-period problem. The purpose of studying H3 is to 

demostrate the gap between a static policy and the optimal dynamic policy. Specifically, they are defined as 

follows: 

H1: Modified base-stock policy (which follows a base-stock policy when possible, and when the 

prescribed production quantity would exceed the capacity, produce the capacity) for an inflexible system, in 

which there is no resource flexibility; (i.e., each resource can only produce one product) and thus, the two 

products could separate and each product follows a modified base-stock policy.  
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H2: This heuristic is described as follows: We first assume there is no flexibility in the system, and 

calculate the optimal base-stock levels as in H1) (suppose they are 
*x̂  and 

*ŷ , respectively). Consider two 

cases: 

⚫ If 11 21 22 12,c c c c  , (1) use Ri to produce Pi , 1,2,i =  based on a modified base-stock policy: 

produce P1  (P2) up to 
*x̂ (

*ŷ ) if 
* *

1 11
ˆ ˆ/x M x x−   (

* *

2 22
ˆ ˆ/y M y y−   ), use all of R1 (R2) 

to produce P1  (P2) if 
*

1 11
ˆ /x x M  −  (

*

2 22
ˆ /y y M  − ), and do not produce P1  (P2) if 

*ˆx x  

(
*ˆy y ); (2) If the inventory level of P1 (P2) does not reach its base-stock level 

*x̂ (
*ŷ ), check if 

there is still R2 (R1) available. If so use the unused R2 (R1) to produce P1 (P2) until it reaches its base-

stock level or as close as possible.  

⚫ If 11 21 12 22,c c c c  , (1) use R1 to produce both products simultaneously. Each is based on a modified 

base-stock policy: the production of P1 (P2) continues until its inventory level reaches 
*x̂ (

*ŷ ) or R1 

is exhausted. (2) use R2 to continue production until each product reaches its base-stock level or R2  

is exhausted. 

  H3: We calculate the optimal decisions for a one-period problem, and then repeat the optimal decisions in 

each period.  

Note that both H1 and H2 simplify the computation dramatically in the way that the base-stock of each 

product is obtained from H1, which is now state-independent. Additionally, in the second case of H2, an 

allocation of which product to be produced is also needed. We simplify this rule by producing both products 

simultaneously if both inventory levels are lower than their base-stock levels and resource is available. H3 

simplifies the computational complexity by only calculating optimal decisions for one period then follows the 

same decisions in each period. 

To compare the described policies, we compute the percentage difference in cost between the optimal 

solution and each heuristic policy for each state, taking the maximum and average values, respectively, over 

all of the state space, which is truncated to { 10 10, 10 10}x y−   −   . We use the following experiments 

to test the heuristics. For all our examples, we assume that 10T =  and 0.95 = . We test the following two 

groups of distributions. (I) 
1D  and 

2D  are discrete and uniformly distributed between 1 and 10; (II) 
1D  and 

2D  are approximately normally distributed with a mean of 5 and variance of 4. Here, ‘approximately’ means 

the normal distribution is discretized by only considering integer values, and is truncated to ensure the demand 

is non-negative. In each group, we consider different values of 
ih , 

ib , ijc  and /k ijM   ( , , 1, 2i j k = ) , and 

then we vary each parameter value and analyze the impact of the change on policy effectiveness.  

Furthermore, to make the optimal decisions in different periods more stationary, we revise the terminal 

function by assuming there is a penalty cost if the inventory level of a product is negative in period 1T +  or 

there is a salvage value if the inventory level is positive. Specifically, we change 
1( , ) 0Tf x y+ =  to 
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1 11 21 12 22( , ) ( ) ( )Tf x y c c x c c y+ = −  −   where min( , )a b a b = . Since it is unknown if a leftover is 

produced by which resource or a backorder will be filled by which resource, we assume the salvage value or 

cost is based on the smaller product cost of the two resources. It is worth noting this change does not affect the 

theoretical analysis and structural properties we obtained in Section 3.  

For case (1) where 11 21 22 12,c c c c  , the numerical results for distributions I and II are reported in 

Tables 2 and 3, respectively. Results in each table are classified into three sub-groups, depending on the 

parameter values. Specifically, we only change ijc  ( i j ) in group 1, /k ijM   in group 2, 
ih , or 

ib in group 

3. 

Table 2. Distributions I for case 11 21 22 12,c c c c  . 

  Parameters  Error  

1h  2h  1b  
2b  

11c

 

12c  
21c  

22c  1

11

M


 1

12

M

  
2

21

M

  
2

22

M


 

 H1 H2 H3 

 Max Aver

age 

Max Aver

age 

Max Aver

age 

0.1 0.1 0.3 0.3 0.5 0.5 0.5 0.5 6 6 6 6  25% 8% 7% 2% 7% 1% 

0.1 0.1 0.3 0.3 0.5 0.6 0.6 0.5 6 6 6 6  21% 6% 5% 2% 6% 2% 

0.1 0.1 0.3 0.3 0.5 0.7 0.7 0.5 6 6 6 6  19% 5% 5% 2% 6% 3% 

0.1 0.1 0.3 0.3 0.5 0.8 0.8 0.5 6 6 6 6  16% 4% 5% 2% 18% 5% 

0.1 0.1 0.3 0.3 0.5 0.9 0.9 0.5 6 6 6 6  14% 3% 5% 3% 16% 4% 

0.1 0.1 0.3 0.3 0.5 1.0 1.0 0.5 6 6 6 6  13% 3% 7% 3% 14% 4% 

0.1 0.1 0.3 0.3 0.5 0.5 0.5 0.5 8 8 4 4  61% 23% 9% 4% 9% 2% 

0.1 0.1 0.3 0.3 0.5 0.6 0.6 0.5 8 8 4 4  55% 20% 7% 4% 7% 2% 

0.1 0.1 0.3 0.3 0.5 0.7 0.7 0.5 8 8 4 4  49% 17% 9% 4% 9% 5% 

0.1 0.1 0.3 0.3 0.5 0.8 0.8 0.5 8 8 4 4  44% 15% 11% 5% 41% 16% 

0.1 0.1 0.3 0.3 0.5 0.9 0.9 0.5 8 8 4 4  39% 13% 12% 5% 36% 14% 

0.1 0.1 0.3 0.3 0.5 1.0 1.0 0.5 8 8 4 4  35% 11% 14% 6% 32% 12% 

0.15 0.1 0.3 0.3 0.5 0.7 0.7 0.5 6 6 6 6  20% 7% 4% 1% 4% 1% 

0.2 0.1 0.3 0.3 0.5 0.7 0.7 0.5 6 6 6 6  18% 5% 5% 2% 5% 2% 

0.25 0.1 0.3 0.3 0.5 0.7 0.7 0.5 6 6 6 6  18% 5% 5% 2% 6% 3% 

0.1 0.1 0.35 0.3 0.5 0.7 0.7 0.5 6 6 6 6  23% 5% 7% 2% 7% 3% 

0.1 0.1 0.4 0.3 0.5 0.7 0.7 0.5 6 6 6 6  27% 6% 9% 2% 9% 3% 

0.1 0.1 0.45 0.3 0.5 0.7 0.7 0.5 6 6 6 6  32% 7% 11% 3% 11% 3% 

 

We see that for all of our numerical examples in Table 2, the cost gaps between the optimal policy and 

H1 are substantial: the maximum value ranges from 13% to 61% and the average value over the possible 

states ranges from 3% to 23%. This implies that resource flexibility could dramatically decrease the 

production cost. For all the examples H2 could improve the performance significantly. For cases with 

identical /k ijM   (groups 1 and 3), the maximum difference ranges from 4% to 11% and the average 

difference over the possible states ranges is within 3%; for cases with non-identical /k ijM   (group 2), the 

gap is larger, with the maximum difference ranging from 7% to 14% and the average difference over the 

possible states ranges is within 6%. It is evident that although a base-stock policy is common in practice, it is 

not efficient in systems with multiple flexible resources, and developing more sophisticated heuristics is 

necessary. In most of the cases, the performance of H3 is similar to that of H2. In several cases H3 performs 

even slightly better than H2 (when ( , 1,2)ijc i j =  have identical or similar values). However, in cases when 
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ijc have different values, the performance of H3 is much worse (it may be worse than H1), implying that 

although a static policy like H3 could perform well (compared to H2), H2 is more robust in general. 

There are some interesting observations. First, H1 performs better when ijc ( i j ) is much larger than 

iic . In this case it is more desirable to use its primary resource to produce each product. Thus, a separate base-

stock policy without pooling is closer to the optimal policy. However, H2 shows the opposite pattern. For 

example, in the second sub-group in Table 2, the average gap increases from 4% to 6% when 
12c

 
and 

21c  

increase from 0.5 to 1.0. This observation is reasonable because a large disparity between ijc  and 
iic  implies 

that the cost of resource pooling is also high. With the increase of ijc ( i j ), H3’s performance first decreases, 

but slightly increases when ijc  increases further. Second, for most of the numerical examples, the 

performance in sub-group 1 is better than the corresponding average performance in sub-group 2. Third, the 

gap between H1 and the optimal policy is more sensitive to the backordering cost than to the holding cost. The 

higher the backorder cost, the larger the gap is, implying flexibility from resource pooling is more important. 

Table 3. Distributions II for case 11 21 22 12,c c c c  . 

  Parameters  Error  

1h  2h  1b  
2b  

11c

 

12c  
21c  

22c  1

11

M


 1

12

M

  
2

21

M

  
2

22

M


 

 H1 H2 H3 

 Max Aver

age 

Max Aver

age 

Max Aver

age 

0.1 0.1 0.3 0.3 0.5 0.5 0.5 0.5 6 6 6 6  26% 9% 5% 1% 5% 0% 

0.1 0.1 0.3 0.3 0.5 0.6 0.6 0.5 6 6 6 6  23% 8% 4% 1% 4% 0% 

0.1 0.1 0.3 0.3 0.5 0.7 0.7 0.5 6 6 6 6  20% 7% 4% 1% 4% 1% 

0.1 0.1 0.3 0.3 0.5 0.8 0.8 0.5 6 6 6 6  18% 6% 3% 2% 14% 2% 

0.1 0.1 0.3 0.3 0.5 0.9 0.9 0.5 6 6 6 6  16% 6% 4% 2% 12% 2% 

0.1 0.1 0.3 0.3 0.5 1.0 1.0 0.5 6 6 6 6  14% 5% 5% 3% 10% 1% 

0.1 0.1 0.3 0.3 0.5 0.5 0.5 0.5 8 8 4 4  70% 27% 9% 4% 9% 1% 

0.1 0.1 0.3 0.3 0.5 0.6 0.6 0.5 8 8 4 4  63% 24% 8% 4% 7% 1% 

0.1 0.1 0.3 0.3 0.5 0.7 0.7 0.5 8 8 4 4  56% 21% 8% 4% 6% 3% 

0.1 0.1 0.3 0.3 0.5 0.8 0.8 0.5 8 8 4 4  51% 19% 10% 5% 44% 15% 

0.1 0.1 0.3 0.3 0.5 0.9 0.9 0.5 8 8 4 4  46% 17% 12% 6% 39% 13% 

0.1 0.1 0.3 0.3 0.5 1.0 1.0 0.5 8 8 4 4  41% 15% 13% 6% 36% 12% 

0.15 0.1 0.3 0.3 0.5 0.7 0.7 0.5 6 6 6 6  20% 7% 4% 1% 4% 1% 

0.2 0.1 0.3 0.3 0.5 0.7 0.7 0.5 6 6 6 6  20% 7% 3% 1% 3% 1% 

0.25 0.1 0.3 0.3 0.5 0.7 0.7 0.5 6 6 6 6  20% 7% 3% 1% 3% 1% 

0.1 0.1 0.35 0.3 0.5 0.7 0.7 0.5 6 6 6 6  24% 8% 5% 1% 5% 1% 

0.1 0.1 0.4 0.3 0.5 0.7 0.7 0.5 6 6 6 6  28% 8% 6% 1% 6% 1% 

0.1 0.1 0.45 0.3 0.5 0.7 0.7 0.5 6 6 6 6  32% 9% 8% 2% 8% 1% 

 

The numerical results for distribution II of Case 11 21 22 12,c c c c   are reported in Table 3. Similar to 

distribution I, we see that for all of our numerical examples, the cost gaps between the optimal policy and H1 

are still substantial: the maximum value ranges from 14% to 70% and the average value over the possible 

states ranges from 5% to 27%. H2 and H3 show similar patterns as of distribution I. The performance of H3 is 

quite good except for the cases when ijc ( i j ) is much larger than 
iic  in sub-group 2. In Table 2 and 3, the 

performance of H3 gets much worse when ijc  increases to 0.8. The possible reason is, since H3 is based on a 
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single-period problem, once ijc  is 0.8 or larger, using resource i to produce product j incurs a high production 

cost that cannot cover the backordering cost reduction (noting in this case - 0.3ij iic c =  and 0.3iib = ); thus, 

the optimal decision will be not to use resource i to produce product j. However, for multi-period problems, 

the optimal decision might be quite different, since using resource i to produce product j is more desirable to 

cover backordering costs for multiple periods. This explains why the performance of H3 starts getting much 

worse when ijc  increases to 0.8 but may not be worse when we further increase ijc . 

For case (2) where 11 21 12 22,c c c c  , the numerical results for distributions I and II are reported in 

Tables 4 and 5, respectively. We can see that the performance of H2 is worse than that in the case 11 21c c  

and 
22 12c c ; now, the maximum gap for distribution I ranges from 8% to 38% and the average gap over the 

possible states ranges from 4% to 10%. The underlying reason is that in Case 2 we need to allocate each type 

of resource between the two products, which is not the case for Case 1. To simplify the allocation rule, we 

balance the two products based on their inventory levels and order-up-to levels. This allocation will cause 

more errors between the optimal policy and H2. In Case 1 the primary resource has clear priority over the 

substitute resource, thus this allocation rule is not needed. 

H3 may work well when ijc ( i j ) and 
iic  have similar values. However, in some cases especially when 

ijc ( i j ) is much larger than 
iic , H3 performs even worse than that in Case 1. The possible reason is, in Case 

2 one resource is prioritized to produce both products, so ijc  is more used to calculate the total expected cost. 

Since H3 is based on a single-period problem, when ijc  is larger (compared to iic ), H3 tries to avoid using 

resource i to produce product j.  This makes H3 deviate from the optimal policy. In cases where =1ijc , H3 

even performs much worse than H1. 

Table 4. Distributions I for the case 11 21 12 22,c c c c  . 

  Parameters  Error  

1h  2h  1b  
2b  

11c

 

12c  
21c  

22c  1

11

M


 1

12

M

  
2

21

M

  
2

22

M


 

 H1 H2 H3 

 Max Aver

age 

Max Aver

age 

Max Aver

age 

0.1 0.1 0.3 0.3 0.5 0.5 0.6 0.6 6 6 6 6  25% 8% 11% 5% 11% 3% 

0.1 0.1 0.3 0.3 0.5 0.5 0.7 0.7 6 6 6 6  25% 8% 11% 5% 10% 7% 

0.1 0.1 0.3 0.3 0.5 0.5 0.8 0.8 6 6 6 6  26% 19% 11% 5% 31% 21% 

0.1 0.1 0.3 0.3 0.5 0.5 0.9 0.9 6 6 6 6  27% 10% 11% 6% 28% 18% 

0.1 0.1 0.3 0.3 0.5 0.5 1.0 1.0 6 6 6 6  28% 11% 12% 7% 51% 20% 

0.1 0.1 0.3 0.3 0.5 0.5 0.6 0.6 8 8 4 4  63% 25% 19% 7% 19% 3% 

0.1 0.1 0.3 0.3 0.5 0.5 0.7 0.7 8 8 4 4  64% 27% 38% 7% 38% 22% 

0.1 0.1 0.3 0.3 0.5 0.5 0.8 0.8 8 8 4 4  66% 30% 38% 8% 33% 22% 

0.1 0.1 0.3 0.3 0.5 0.5 0.9 0.9 8 8 4 4  68% 32% 38% 9% 33% 23% 

0.1 0.1 0.3 0.3 0.5 0.5 1.0 1.0 8 8 4 4  70% 35% 21% 10% 93% 44% 

0.15 0.1 0.3 0.3 0.5 0.7 0.7 0.5 8 8 4 4  48% 17% 9% 4% 8% 5% 

0.2 0.1 0.3 0.3 0.5 0.7 0.7 0.5 8 8 4 4  48% 17% 9% 4% 8% 5% 

0.25 0.1 0.3 0.3 0.5 0.7 0.7 0.5 8 8 4 4  47% 17% 9% 4% 9% 5% 

0.1 0.1 0.35 0.3 0.5 0.7 0.7 0.5 8 8 4 4  48% 17% 9% 4% 8% 5% 

0.1 0.1 0.4 0.3 0.5 0.7 0.7 0.5 8 8 4 4  48% 16% 9% 4% 9% 4% 

0.1 0.1 0.45 0.3 0.5 0.7 0.7 0.5 8 8 4 4  47% 16% 8% 4% 9% 5% 



27 

 

In the first sub-group, we increase production costs by changing R2 from 0.6 to 1.0. Unlike that in 

Tables 2 and 3, here the performance of H1 is not sensitive to this change. This insensitivity might be 

due to R2 only being used if R1 is insufficient for the production requirement. The average performance 

of H2 is slightly increased in production costs by using R2. Comparing the first and second sub-groups, 

for most of the cases the average gaps for both heuristics in the second sub-groups are slightly higher. 

From the third sub-group, we can again see that H1 is more sensitive to the backordering cost. 

In summary, in all our numerical experiments there are big gaps between the individual base-stock policy 

and the optimal policy, implying that the individual base-stock policy is inefficient in systems with multiple 

flexible resources. In particular, the value of resource flexibility is more significant when the resource is 

limited. When resources have sufficiently large quantities, we can expect the gap to be much smaller. A 

myopic policy based on single-period optimal decisions works well when unit production costs using different 

resources are similar. However, it may perform poorly when production costs using different resources are 

significantly different; and may perform worse when one resource is prioritized to produce both products. A 

more sophisticated but practical heuristic is developed.  It performs very well in case 11 21 22 12,c c c c  . In 

case 11 21 12 22,c c c c  , it could reduce the gap dramatically, but still has space to improve. There is a tradeoff 

between performance and implementation complexity. 

Table 5. Distributions II for the case 11 21 12 22,c c c c  . 

  Parameters  Error  

1h  2h  1b  
2b  

11c

 

12c  
21c  

22c  1

11

M


 1

12

M

  
2

21

M

  
2

22

M


 

 H1 H2 H3 

 Max Aver

age 

Max Aver

age 

Max Aver

age 

0.1 0.1 0.3 0.3 0.5 0.5 0.6 0.6 6 6 6 6  27% 10% 10% 4% 4% 1% 

0.1 0.1 0.3 0.3 0.5 0.5 0.7 0.7 6 6 6 6  29% 12% 10% 4% 9% 4% 

0.1 0.1 0.3 0.3 0.5 0.5 0.8 0.8 6 6 6 6  31% 13% 10% 5% 37% 26% 

0.1 0.1 0.3 0.3 0.5 0.5 0.9 0.9 6 6 6 6  32% 14% 10% 6% 33% 23% 

0.1 0.1 0.3 0.3 0.5 0.5 1.0 1.0 6 6 6 6  34% 16% 12% 7% 69% 28% 

0.1 0.1 0.3 0.3 0.5 0.5 0.6 0.6 8 8 4 4  73% 31% 18% 9% 18% 2% 

0.1 0.1 0.3 0.3 0.5 0.5 0.7 0.7 8 8 4 4  76% 34% 18% 9% 18% 2% 

0.1 0.1 0.3 0.3 0.5 0.5 0.8 0.8 8 8 4 4  79% 37% 18% 11% 41% 21% 

0.1 0.1 0.3 0.3 0.5 0.5 0.9 0.9 8 8 4 4  83% 41% 21% 12% 43% 25% 

0.1 0.1 0.3 0.3 0.5 0.5 1.0 1.0 8 8 4 4  86% 45% 24% 13% 124% 61% 

0.15 0.1 0.3 0.3 0.5 0.7 0.7 0.5 8 8 4 4  55% 21% 9% 5% 6% 3% 

0.2 0.1 0.3 0.3 0.5 0.7 0.7 0.5 8 8 4 4  55% 21% 8% 4% 6% 3% 

0.25 0.1 0.3 0.3 0.5 0.7 0.7 0.5 8 8 4 4  55% 21% 8% 4% 6% 3% 

0.1 0.1 0.35 0.3 0.5 0.7 0.7 0.5 8 8 4 4  56% 21% 9% 4% 7% 3% 

0.1 0.1 0.4 0.3 0.5 0.7 0.7 0.5 8 8 4 4  56% 21% 9% 4% 7% 3% 

0.1 0.1 0.45 0.3 0.5 0.7 0.7 0.5 8 8 4 4  56% 21% 9% 4% 8% 3% 

 

5 Discussions and Extensions 

This section discusses partial resource flexibility to only one resource and extends our model to two 

different cases with multiple resources. 
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5.1 Flexibility with Only One Resource   

Consider a special case where R1 can be used to produce both products while R2 can only be used to 

produce P2. This setting may arise in an environment where P1 can be produced by only a particular resource 

while P2  accepts both resources. 

If 11 21 22 12,c c c c  , it is equivalent to assuming that 21c = + . Hence, the results shown in Figures 2 

and 3 still hold. The difference is since 21c  is infinitely large, 1( )S y  and 0( )S y  become infinitely small. 

Therefore, 1( )S y  and 0( )S y  will disappear from Figure 2. Accordingly, for the optimal policy shown in 

Figure 3, regions IV and V will disappear and the void will be filled by regions II and VI, while the other 

regions remain similar shapes.  

For Case 11 21 12 22,c c c c   and 
12

1 1

11 11 21 12 22( ) ( )c c c c − −−  − , we refer to Figure 4 (left) for the 

switching curves and Figure A2 (see Appendix C) for the optimal policy. In Figure 4 (left), 1( )S y  and 0( )S y  

become infinitely small, thus they will disappear from the figure. We can also characterize the optimal policy 

by modifying Figure A2 in the following way: regions II, V, VI and VII merge to one region, and in region 

VIII, R2 is only used to produce P2. All the others are the same as described in Corollary 1. 

A more special case is that each Ri can only produce Pi, ( 1,2i = ). In such a setting, we can apply the 

results in Appendix A. Only 1( )S y  and 2 ( )S x  appear in Figure A1. Since the two productions are produced 

separately, the two curves become two lines. The optimal policy for each product is a base-stock policy. 

5.2 Production with Multiple Flexible and Inflexible Resources 

Consider a system that uses three types of resources (Ri, 0,1,2i = ) to produce two products (Pi, 1,2i = ). 

Ri can be used to only produce Pi, 1,2i = , while R0 is flexible and can be used to produce both products; see 

Figure 7. Van Mieghem (1998) studies a similar system but focuses on the optimal investment in flexible 

manufacturing capacity. Let ij  denote the amount of Ri that is needed to produce one unit of Pj and iM  the 

available resource of Ri for 0,1,2i =  and 1,2j = . As in Section 3, we assume that 11 22 01 02/ /   = . All 

other notations are the same as in Section 2. We can formulate the problem by revising Eq. (5) and (6) as 

11 1

22 2

0 ( ' )

0 ( ' )

( , ) min { ( ', ')},t t
x x M

y y M

f x y G x y




 − 

 − 

=  

and 

01 02 0( ') ( ')
', '

( ', ') min { ( , )}.t t
X x Y y M

X x Y y

J x y G X Y
 − + − 
 

=

 

Note the only difference between these equations and (5) and (6) is their constraints. Following the 

approach in Section 3, it can be shown that with the revised constraints, all the cost functions are  - 
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differential monotone. Therefore, the optimal policy can be characterized by the switching curves, and the 

results obtained in Section 3 hold.  

1P

2P

1R

2R

0R

11

22

02

01

 

Figure 7. A two-resource, two-product flexible system 

This model can be also applied to a flexible manufacturing system. Ri, 1,2i = , is considered a machine 

without flexibility, and R0 is a machine with flexibility. ij
 
represents the capacity of machine i to produce 

product j.  

5.3 Systems with Multiple Flexible Resources 

Consider the general case when multiple flexible resources can be used to produce two products. 

Suppose there are n types of resources, which are denoted by Ri, 1,2,...i n= . The available amount of Ri in 

each period is iM . Each Ri can be used to produce P1 and P2. ij  of Ri is needed to produce one unit of Pj, 

1,2j = . ij
 
might be different for the same j and different i, although the ratio 1 2/i i   is the same for all 

1,2,...i n= . ijc  is the unit production cost if Ri is used to produce Pj. Similarly, as in Section 2, we can 

formulate the problem sequentially. In the first step we decide how much of R1 is used to produce P1 and P2, 

assuming the optimal decisions for the other resources are embedded. Then we consider the optimal decision 

control for R2 assuming the optimal decisions for Ri, 3,...i n=  have been made, and so on until the optimal 

control for Rn. The optimal control for each Ri has the same format as Eq. (7). Therefore, there exist a hedging 

point and three switching curves for each Ri, 1,...i n= . The curves have monotone properties as we have 

discussed. The locations of hedging points and switching curves for different resources are dependent on the 

cost ijc . To characterize the optimal policy, we can just repeatedly apply the decision rules based on the three 

switching curves for each Ri. However, the segmentation of the decision regions will be much more 

complicated compared with that of the two-resource case presented in Section 3.  

 

6 Conclusions 

This paper studies a finite horizon, periodic review production system that uses flexible resources to 

produce two products with stochastic demands. Each resource has a limited capacity and can be used to 

produce both products with a resource/product specified production rate. We investigate the optimal 



30 

 

production quantity for each product and the optimal policy to allocate the limited resources dynamically 

between the products. We show that cost functions are  - differential monotone, which is helpful to 

characterize the optimal production and allocation policy. The optimal policy can be characterized by hedging 

points and state-dependent switching curves. Comparing the optimal solution to heuristic policies reveals that 

the resource flexibility creates substantial value in the production system. 

       There are several possible directions for future research. First, we consider systems with two products. A 

more general and more challenging problem is to study whether similar structural properties and optimal 

policy can be extended to cases with multiple products. Second, to simplify our analysis, we have assumed 

that there is no production lead time. It will be interesting to relax this assumption and extend our work to the 

case with lead times. Third, we proposed a heuristic for multi-resource and two-product systems without 

considering the impact of the resource utilization ratio. It will be interesting to develop a more sophisticated 

policy and use numerical studies to test different scenarios in details. Finally, the two-resource system we 

study in this paper is just a special case of the more complicated flexible manufacturing systems mentioned in 

the literature, for example, Graves and Tomlin (2003), and Chou et al. (2010). Due to technical complexity, 

the optimal allocation and production rules are still unclear. It will be interesting to investigate the optimal 

rules for systems with these flexible structures. 
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