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Abstract
Neoclassical properties in quasi-axisymmetric (QA) stellarators are analogous to these in
tokamaks. Consequently, a substantial bootstrap current could significantly modify the MHD
equilibrium properties of a QA stellarator, which is an important characteristic in this type of
stellarator. This paper is dedicated to systemically investigate the effects of bootstrap current on
the magnetic configuration in Chinese first quasi-axisymmetric stellarator (CFQS). For the first
time, self-consistent bootstrap currents in free-boundary equilibria are calculated with an
accurate Fokker–Planck neoclassical numerical mode in CFQS. Several important results are
achieved: (a) as the bootstrap current grows with increasing volume-averaged normalized
pressure β, magnetic shear develops in the bulk plasma and meanwhile, a deep magnetic well is
robustly sustained, which leads to improved stabilization of interchange modes up to β ∼ 2.0%.
(b) In the analysis of global ideal MHD instability, as the bootstrap current rises to 39 kA
(β ∼ 1.3%), external kink modes become destabilized and the unstable mode with m/n = 2/1 is
dominant. (c) From β = 0 to 1.5%, the bootstrap current hardly changes the QA property and a
low neoclassical transport is maintained. However, as β is enhanced beyond 2.0%, the
substantial bootstrap current gives rise to an increase of non-QA magnetic field components,
which weakens the neoclassical transport properties. (d) An increase of the negative magnetic
shear at the core region by the bootstrap currents has a favorable effect on the properties of J
(second adiabatic invariant). The maximum-J region can be extended by raising bootstrap
currents.

Keywords: quasi-axisymmetric stellarator, bootstrap current, MHD stabilities,
neoclassical transport, micro-instability
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1. Introduction

An essential optimization strategy for a stellarator is to achieve
omnigenity [1], meaning the particle radial drift vanishes on a
time average [2]. In quasi-symmetric configurations the omni-
genious property can be realized. The quasi-symmetric config-
urations include quasi-axisymmetric (QA), quasi-helical sym-
metric and quasi-poloidal symmetricmagnetic field topologies
[3]. To date, the QA configuration has been accomplished in
many physics designs e.g. CHS-qa [4], NCSX [5], ESTELL
[6], etc, none of which, however, has been successfully fab-
ricated and operated. The Chinese first quasi-axisymmetric
stellarator (CFQS) will represent the first operational quasi-
axially symmetric stellarator in the world, which has been con-
structed as a collaborative project between the National Insti-
tute for Fusion Science and Southwest Jiaotong University to
prove the intrinsic advantages of quasi-axisymmetry [7–11].
The principal parameters of CFQS are as follows: the major
radius is 1.0 m, the magnetic field strength is 1.0 T, the aspect
ratio is 4.0, and the toroidal periodic number is 2 [7]. A mag-
netic field coil system consists of 16 modular coils (MCs), 12
toroidal field coils (TFCs), and 4 poloidal field coils (PFCs).
It has been designed to possess a number of advanced features
in fixed and free-boundary equilibria. The MHD equilibrium
of the CFQS configuration is stable up to β ∼ 1.1% in the
plasma-current-free scenario [9]. Rotational transform profiles
with weak magnetic shear were always sustained, which did
not contribute to stabilization of Mercier modes. The resist-
ive ballooning modes were simulated in CFQS equilibria with
magnetic islands [10]. For the high-resistivity regimes, the
modes were unstable, whereas in the low-resistivity regimes,
the modes were stabilized. With bootstrap current effects, in
β ∼ 1.0% plasma the low-order islands (2/4) were generated,
which may lead to a stochastization of magnetic field lines
[10]. Moreover, the effects of the bootstrap current on neoclas-
sical transport were investigated and a satisfactory neoclas-
sical transport maintained up to β = 1.5% [11]. Now the fab-
rication of the CFQS device is steadily progressing to achieve
its first plasma [12]. It is noted in previous work [9–12], that
the bootstrap current was estimated with the BOOTSJ code,
which uses a semi-analytic formula in the collision-less limit
[13]. The bootstrap current density predicted with this code is
usually noisy or has ‘spikes’ near the rational surfaces [10, 14],
which results from the shortcoming of the low-collisionality
bootstrap analytical formula. Even though these spikes can be
smoothed over with a damping parameter, the current profile
still does not closely match the accurate Fokker–Planck neo-
classical numerical results in high β plasma [14].

The bootstrap current is a net toroidal current driven by
the temperature and density gradients, which was predicted
and calculated in tokamak geometry five decades ago by
Galeev [15] and Bickerton, Connor, and Taylor [16]. A proper
estimation of the bootstrap current in a stellarator configur-
ation was first done by Shaing and Callen [17], using the
Hirshman-Sigmar moment method, which was improved by
a more direct calculation by Boozer and Gardner [18]. Both

in tokamaks and stellarators the bootstrap current has been
observed experimentally [19, 20]. Since then, it has proven
to be of great importance to both tokamaks and stellarators
[21, 22], especially in QA stellarators [10, 23]. A new analytic
expression of bootstrap current in a low-collisionality stellar-
ator plasma was given by Helander [24], which was suitable
for all low-collisionality regimes. The QA configuration has
neoclassical properties that are similar to those in tokamaks
[25], since the physics of the bootstrap current is the same in
the Boozer coordinates, which indicates this current may sig-
nificantly change the equilibrium properties in a QA configur-
ation. Previous studies in NCSX [26, 27] and CHS-qa [28, 29]
had shown that large bootstrap currents dramatically impacted
the rotational transform profile, magnetic shear, MHD modes,
etc. Recently, a magnetic configuration (a 1 Tesla mean field)
with precise QA for plasma confinement has been achieved in
which the axisymmetry-breaking fields throughout the torus
of aspect ratio 6 are as small as the 50 µT geomagnetic field
[30].

In addition, a discrepancy between accurate Fokker–Planck
neoclassical numerical results and the analytical model, for
higher collisionality, was identified in the studies by Koh et al
[31] and Landreman and Ernst [32]. InW7-X experiments, the
neoclassical effects were frequently observed and studied [33],
which could be precisely predicted with the code SFINCS
(the Stellarator Fokker–Planck Iterative Neoclassical Conser-
vative Solver). This code solves the steady-state drift-kinetic
equation for multiple species, allowing arbitrary collisionality,
and using the full linearized Fokker–Planck–Landau collision
operator. In this paper, we use the SFINCS code to accurately
calculate bootstrap currents in CFQS and systematically study
bootstrap current effects on MHD instabilities and plasma
transport behaviors.

2. MHD equilibria with bootstrap currents

The simulation of 3D ideal MHD equilibria is executed using
the free-boundary VMEC code [34]. The code approaches
an equilibrium state by minimization of the plasma energy.
The bootstrap current is estimated with the SFINCS code. A
convergent iteration operation between VMEC and SFINCS
codes is performed to self-consistently calculate the boot-
strap current in CFQS. After several iterations a self-consistent
equilibrium state is obtained. The plasma β is scanned from
0% to 2.03%. Problems of convergence towards an equi-
librium state with VMEC arise partially due to the large
Shafranov shift for β > 2.03%. The plasma temperature
and density profiles are assumed as T = T0 (1 − ρ2) and
ne = ni = n0 (1 − ρ2), respectively and set Te0 /T i0 = 3/2.
ρ represents the normalized minor radius. n0 is scanned form
0 to 4.5× 1019m−3 and T i0 is fixed at 1.3 keV. The depend-
ence of rotational transform (ι) on bootstrap currents and boot-
strap current density as a function of the normalized minor
radius are shown in figures 1(a) and (b), respectively. As the
plasma β increases to 2.03% the bootstrap current is enhanced
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Figure 1. Profiles of (a) rotational transform and (b) bootstrap current density for β = 0.00%, 0.50 %, 1.00 %, 1.50% and 2.03% with
plasma bootstrap current = 0, 15, 30, 42 and 54 kA, respectively. These results are obtained with the self-consistent iterations between
SFINCS and VMEC codes.

to 54 kA. In the regions with ρ from 0.4 to 0.6 a peak exists
in the profile of the bootstrap current density, which results in
generation of magnetic shear in the bulk plasma. This could
be beneficial for the stabilization of MHD modes, e.g. inter-
change modes. Meanwhile, the rotational transform crosses
the low-order rational surfaces with n/m = 1/2 as β increases
to 1.0%, which may lead to the generation of magnetic islands.

The impact of increasing β and bootstrap currents on the
equilibria is shown in figure 2 which displays cross sections
of magnetic flux surfaces with the bean shape in equilibrium
states with various bootstrap currents and corresponding mag-
netic field strength spectra Bm,n normalized by B0,0 in the
Boozer coordinates. In order to demonstrate clearly the emer-
gence of non-axisymmetric magnetic field components, the
dominant component B1,0 with a large amplitude is not shown.
Figures 2(a)–(c) show as β is increased, that the magnetic axis
is shifted horizontally by the net toroidal current because the
effective vertical field is changed. Meanwhile, the flux sur-
faces become deformed and compressed towards the outside of
the torus. The core region develops a B0,1 symmetry breaking
component from β > 1% in figure 2(e) and from β > 2% the
B2,1 term becomes significant in figure 2( f ), which indicates
as β increases beyond 2.0%, the deformation of magnetic flux
surfaces may degrade the quasi-axisymmetry of the magnetic
configuration in the core. This phenomenon is further studied
in section 4.

3. Effects of bootstrap current on MHD stability

The Mercier criterion and global linear MHD stability are
estimatedwith theVMECandTERPSICHORE codes[34, 35].
The Mercier criterion for the stable interchange modes is

expressed byDmerc =Dshear +Dwell +Dcurr +Dgeod> 0where
they represent magnetic shear term, magnetic well term, cur-
rent term and geodesic curvature term, respectively [36]. At
three different radial positions, the variations of Mercier sta-
bilities with β are given in figure 3(a), which illustrates that the
interchange modes are stable up to β = 2.03% at least. What is
interesting is that in the equilibria with bootstrap currents the
stabilization of interchange modes is attributed to the enhance-
ment of magnetic shear and the magnetic well, as shown in
figure 3(b). These two stabilization effects enable to robustly
suppress the destabilization effect of the geodesic curvature
term. The previous study [10] found that free boundary equi-
libria without bootstrap currents, they were also stable when
β ⩽ 2.0% in CFQS. However in that case, a flat ι profile was
well sustained as β increased. Thus, interchange modes were
merely stabilized by magnetic well structures. In addition, the
stabilization effect of a net toroidal current on interchange
modes in heliotron plasmas was also observed [37]. The res-
istive ballooning mode was also studied in CFQS [10] and its
stability is dependent on the MHD resistivity. If the resistivity
is not large, the ballooning modes can be stabilized well.

A global linear MHD stability analysis of CFQS equilib-
ria is computed with respect to n = 1 and n = 2 family of
modes with the TERPSICHORE code, which evaluates the
variational energy principle. Figure 4 displays bootstrap cur-
rents as a function of β and it is approximately proportional
to β. The ranges of Fourier modes for the global MHD sta-
bility analysis are m < 49 and n < 14 for the poloidal and
toroidal modes, respectively. The typical marginal stability is
represented by a threshold value of λ = −1 × 10−4 and more
negative eigenvalues than this crucial number are thought to be
more unstable [38]. The simulation results reveal that a global
MHD stability is obtained for β up to 1.35% (Ibc = 38 kA).

3



Nucl. Fusion 63 (2023) 026018 H. Liu et al

Figure 2. Cross sections of magnetic flux surfaces with the bean shape and magnetic field strength spectra with n ̸= 0 normalized by B0,0 in
the Boozer coordinates for three of the cases: (a) and (d) for β = 0.00%, (b) and (d) for β = 1.00% with a 30 kA bootstrap current, and
(c) and ( f ) for β = 2.03% with a 54 kA bootstrap current.

Figure 3. (a) Mercier stabilities versus β at three different radial positions ρ = 0.57, 0.75 and 0.91 respectively; (b) magnetic shear,
magnetic well, current and geodesic curvature terms versus β at ρ = 0.91 in various free-boundary equilibria with bootstrap currents.

The stability is determined by the rotational transform at
the edge, i.e. the iota value higher than 0.5 is unstable. As
β increases beyond 1.35%, global instabilities arise. As an
instance, the Fourier amplitudes of the radial component of the

displacement vector (ξs) profiles are displayed in figure 5(a).
In this equilibrium the plasma β and bootstrap current are
1.75% and 46 kA, respectively. The unstable mode struc-
ture is dominated by the m/n = 2/1 term with the eigenvalue
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Figure 4. Bootstrap currents versus β in CFQS, calculated with the self-consistent iterations between SFINCS and VMEC codes.

Figure 5. Fourier amplitudes of the radial component of the displacement vector ξs(a) and surface-averaged plasma potential energy δWp,
ballooning mode driven energy δWp,κs and kink modes driven energy δWj∥κ

s (b) as a function of ρfor β = 1.75% and Ibc = 46 kA. These
results are calculated with TERPSICHORE.

λ=−3.8724× 10−4. In order to identify the category of these
unstable modes, figure 5(b) shows radial profiles of surface-
averaged plasma potential energy δWp which mainly includes
two instability drive terms, δWp,κs and δWj∥κ

s [38, 39]. The
former drive term associates with ballooning modes in which
the plasma pressure gradient interacts with the curvature of
magnetic field lines. The latter describes kink modes which
are caused by the parallel current density interacting with the
local magnetic shear. In the unstable regions with δWp < 0,
the second term completely exceeds the first term. Hence, the
2/1 mode is mainly current-driven external kink mode.

4. Effects of bootstrap current on neoclassical
transport and J

The neoclassical transport study of the quasiaxisymmetric
stellarator is implemented to evaluate how close it is to a
axisymmetric configuration during increasing plasma boot-
strap currents. The estimation of the neoclassical transport can
be characterized by the effective helical ripple strength εeff[40]
and neoclassical transport matrix [41]. In the 1/ν regime the
neoclassical diffusion coefficient is proportional to ε3/2eff which
is investigated with the NEO code [40]. The NEO code solves
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Figure 6. Radial profiles of effective helical ripple calculated with
NEO for various β in the free-boundary equilibria with bootstrap
currents. The CHS result is shown as a reference, plotted by a black
dashed curve.

for the radial profile of ε3/2eff using an analytic solution of the
banana kinetic equation. Figure 6 shows the radial profiles
of ε3/2eff in the free boundary equilibria with various β. As a

comparison with CFQS, the ε3/2eff profile in the fixed bound-
ary equilibrium of CHS [42] is given by a black dashed curve.
From β = 0 to 1.50%, the ε3/2eff in the CFQS configurations is
approximately two orders lower than that in CHS, which is in
good agreement with A.Shimizu’s, et.al results [11]. In their
study, they used a flatter density profile to estimate the boot-

strap current. However, as β increases beyond 2.0% theε3/2eff
gets enhanced notably in the core region due to an increase of
non-axisymmetric components of B, e.g. B0,1, B2,1, etc, which
results from the deformation of magnetic flux surfaces by high
β and bootstrap currents, as displayed in figures 2(c) and ( f ).

Furthermore, in order to reveal impacts of bootstrap cur-
rents on neoclassical transport in various plasma collisional
regimes, the transport matrix is computed with the SFINCS
code with the full linearized Fokker–Planck–Landau colli-
sion operator. In this collision operator, the momentum con-
servation property is adequately sustained, which can more
accurately describe the collisional effects than the pitch-angle
scattering collision operator [43]. Figure 7 shows two trans-
port matrix elements L1,1 and L1,2 as a function of ν∗ for
the CFQS and CHS geometries at half-radius. The quantities
L1,1, L1,2 and ν∗ are defined by formula 40 and 41 in [43],
which represent the radial particle and heat transport coef-
ficients and normalized collisionality, respectively. Here the
ambipolar electric field on transport coefficients is not con-
sidered. At high collisionality ν∗ > 10◦, L1,1 and L1,2 are
quite low and basically independent of the toroidal current in
CFQS. The neoclassical transport in CHS is comparable with

that in CFQS. In the rare collision regime ν∗ < 10−1, how-
ever, as the current increases to 54 kA (β ∼ 2.0%) these two
coefficients are approximately one order of magnitude higher
than that in low bootstrap current equilibria in CFQS, which
indicate a degradation of neoclassical transport properties in
high bootstrap current equilibria. Overall, when β1.5% the
neoclassical transport in CFQS is much lower than that in
CHS and the quasi-axisymmetry is robustly sustained. This
is in good agreement with the results from NEO in figure 6.
The operational parameters of CFQS were estimated using
the ISS95 scaling law [9, 12]. With a heating power of
1.0 MW, the β ranged from 1.0% to 2.0% in high-density
plasmas. Our results are also consistent with the expected
operation.

Quasi-axisymmetry makes a stellarator as analogous as
possible to a tokamak, in some sense, which is not an essen-
tial condition for achieving good plasma confinement. Math-
ematically, the necessary condition is to require parallel adia-
batic invariant J=

¸
mv∥dl to be (approximately) constant on

flux surfaces for trapped particle orbits [2]. If the magnetic
field has been written as B = ∇ψ × ∇α and ψ measures
the toroidal flux and α= θ− ιζ labels the different field lines
on each flux surface, a configuration with vanishing bounce-
averaged drift, ∂J/∂α = 0, is called omnigenous. Meanwhile,
J decreases away from the center, i.e. ∂J/∂ψ < 0, it is the
so-called the maximum-J condition [44], which is very bene-
ficial for stabilizing trapped-particle-driven micro-instability
modes [45, 46]. The perfectly omnigenous configurations with
the maximum-J property cannot be exactly achieved. Altern-
atively, the wave vector perpendicular to the magnetic field
is expressed by k⊥ = kψ∇ψ + kα∇α and if kψ is very
small, ∂J/∂ψ < 0 is able to suppress these micro instabilit-
ies in incompletely omnigenous configurations at least [46,
47]. The maximum-J capability has been broadly investig-
ated in QA and quasi-isodynamic configurations [29, 45, 48].
It is of importance to evaluate the maximum-J capability in
CFQS.

To obtain the distribution of J, the guiding center traject-
ories of tracer particles are calculated in Boozer coordinates,
which are reflected at the same B. The motion equations used
in the simulation were expressed in [49]. The tracing particle
energy is W = 10 eV and set the magnetic field strength at
the bounce point equal to 0.95 T. The initial positions of these
particles are distributed in the (ρ,ζ,θ = 0) plane. The J con-
tours on the (ρ,ζ/π) plane are calculated in various equilibria,
as shown in figure 8. The J contour values are normalized to
the largest J. The color bar represents the normalized J values.
The areas on the left side of the red solid curve represent the
maximum-J criterion satisfied. In low bootstrap current equi-
libria with β = 0.3%, the maximum-J region can hardly be
generated in figure 8(a). As the bootstrap current increases,
the negative magnetic shear in the core region is enhanced in
figure 1(a), leading to a decrease of J away from the cen-
ter, which is to extend maximum-J regions in figures 8(b)
and (c). A similar result was also observed in reversed shear
tokamaks [50] that the maximum-J region coincides with the
region of the reversed q profile (negative shear). Meanwhile,
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Figure 7. The radial particle and heat transport coefficients L1,1 and L2,1 as a function of the normalized collisionality in CFQS for various β
in the free-boundary equilibria with bootstrap current. The CHS result is shown as a reference, plotted by a black curve. These results are
calculated with SFINCS.

Figure 8. Contours of normalized J on the (ρ,ζ/π) plane for (β, Ibc) = (0.30%, 11 kA) (a), (0.75%, 24 kA) (b) and (1.50%, 42 kA) (c) in
CFQS configurations, respectively. The J is normalized to the largest J. The areas on the left side of the red solid curve represent the
maximum-J criterion satisfied.

with increasing β, it is found that dB00/dψ decreases mono-
tonicallywith radius, which couldmake poloidal drift decrease
with radius. This process is also beneficial for obtaining
∂J/∂ψ < 0. Notably, an inhomogeneity of maximum-J
regions in the ζ direction arises due to the existence of the
non-axisymmetry of B.

To assess the capability of the maximum-J in CFQS, lin-
ear gyrokinetic simulations using the GENE code [51] are
performed to explore electrostatic trapped electron modes
(TEMs) in these equilibria. The code GENE solves the
gyrokinetic equation along with Maxwell’s equations. In this
study, both electrons and ions are kinetically treated with a res-
olution of nx × nky × nz × nv × nw = 30× 1× 128× 64× 16.
The wave number kyρi (ky = kαB0 (dρ/dψ)/

√
2) is scanned

from 0.5 to 2.0 with an interval = 0.1. The local flux-tube is
fixed at the position at (ρ, α) = (0.5,0). The stability study
is simulated with the same temperature for ions and elec-
trons T i = Te, while setting the ion–temperature normalized

gradient a/LTi and the density normalized gradient a/Ln to zero
and the electron–temperature normalized gradient a/LTe = 7.
Figure 9 shows the growth rate spectrum of electrostatic TEMs
in three equilibria with β = 0.0%, 0.75%, and 1.50%, respect-
ively. The propagating direction of these modes is the elec-
tron diamagnetic drift direction. In the plasma-pressure-free
equilibrium, the TEMs are significantly excited, displayed by
the blue curve. As β increases to 0.75%, weak maximum-
J regions are produced in the core, which slightly mitig-
ate the TEMs, denoted by the red curve. In the equilibrium
with β = 1.50%, the development of the core maximum-J
becomes prominent, which remarkably suppresses the TEMs,
as shown by the black curve. This numerical result is con-
sistent with the above analytical analysis that even though
the perfect omnigeneity is not achieved in CFQS, the TEMs
in maximum-J regions can be effectively mitigated. In addi-
tion, in low β plasmas a stability-valley-like structure was
found along the transition boundary of the ion temperature

7
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Figure 9. The growth rates of electrostatic TEM modes as a
function of kyρi in three equilibra with β = 0.0%, β = 0.75% and
1.50%, respectively.

gradient mode and TEM, where the growth rate is quite
low [52].

The magnetic islands and chaos could modify the proper-
ties of MHD equilibria, which may result in enhanced radial
transport [53]. In CFQS the magnetic islands emerge in edge
plasma region at β ∼ 1.0%. This is due to the rotational trans-
form crossing the rational surface with ι= 2/4= 1/2. An equi-
librium with 2/4 magnetic islands was found in the simulation
results with the HINT code [10]. 12 planar TFC have been
designed to adjust the rotational transform profile [54], heal-
ing magnetic islands. Moreover, active control of islands is
also available by electron cyclotron heating and tailoring the
pressure profile [55, 56]. In the appendix we give a case that
in the equilibrium with β = 1.0%, the 2/4 magnetic islands
are fully suppressed by TFC. How to control magnetic islands
is an interesting and important research topic, which will be
further studied in future work.

5. Conclusion

Characteristics of MHD activities and plasma transport
affected by self-consistent bootstrap currents are studied in
free boundary equilibria of CFQS. The bootstrap currents are
calculated accurately with the SFINCS code. The volume-
averaged normalized pressure is scanned from 0.00% to 2.03%
and the bootstrap current is enhanced to 54 kA.

The interchange modes are stabilized by the magnetic shear
and magnetic well effects, which are able to suppress the unfa-
vorable effect of the geodesic curvature till β = 2.03%. In

the free boundary equilibria without bootstrap currents, inter-
change modes were also stable up to β = 2.0% in CFQS
[9]. However, the magnetic shear has not been produced
as β increased and these modes were merely stabilized by
a magnetic well structure. Furthermore, with β exceeding
1.35%, the current-driven kink modes become unstable and
the dominant mode is m/n = 2/1. This instability is sensitive
to the rotational transform at the edge and as the iota value is
higher than 0.5, this instability arises. Such a dependence was
also found in the CHS-qa configuration [29].

From β = 0 to 1.5%, the ε3/2eff , L1,1 and L1,2 in the CFQS
configurations are quite low and the QA property is sustained
well. Whereas, as plasma β increases to 2.0%, these neo-
classical transport coefficients grow significantly in the core
regions, which result from an increase of non-axisymmetric
magnetic field components due to unfavorable deformations
of the QA configuration.

Additionally, the extension of maximum-J regions can be
achieved by increasing bootstrap currents, which is beneficial
for mitigating trapped-electron-driven microinstabilities. The
numerical result is consistent with the analytical studies.

In conclusion, a stable plasmawith good confinement prop-
erties in β ∼ 1.35% equilibria is expected to be experimentally
accomplishable in CFQS.
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Appendix

In order to assess the possible formation of magnetic islands
and chaotic magnetic fields in CFQS, we apply the multi-
region relaxed MHD (MRXMHD) framework based on
the Taylor’s relaxation theory [57] to develop MHD equi-
libria with the stepped-pressure equilibrium code (SPEC)
[58]. SPEC allows the plasma to undergo possible mag-
netic reconnection events that would minimize the plasma
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Figure A1. (a) Without and (b) with considering TFC, Poincaré plots of the poloidal cross section with the bean shape in the MHD
equilibria with β = 1.0%. The ratio of the current in TFC to that in MC ITFC/ IMC = 15%.

potential energy. In this work, we consider two interfaces
so that the entire plasma volume is divided into three
distinct sub-volumes in CFQS equilibria. Given that both
relaxed regions and ideal interfaces exist in MRXMHD, two
types of toroidal currents coexist, namely currents flowing
in sub-volumes and current sheets in ideal interfaces [59].
Meanwhile, the spatially distributed current density in each
sub-volume can change self-consistently with variations of
magnetic islands and stochasticities. The stepped pressure pro-
file is interpolated from the VMEC output. Figure A1 dis-
plays Poincaré sections of the equilibrium magnetic fields
calculated from the SPEC code with increasing values of β
and self-consistent bootstrap currents. The magnetic islands
emerge in the edge plasma domain at around β = 1.0% in
figure A1(a). This is due to the rotational transform crossing
the rational surface with ι = 2/4 = 1/2 (see figure 1). In the
CFQS device, 12 planar TFC have been designed to adjust the
rotational transform profile, healingmagnetic islands.With the
ratio of the current in TFC to that in MC, ITFC/ IMC = 15%, a
strong resilience against magnetic islands and chaos is pro-
duced and the 2/4 magnetic islands are well suppressed in
figure A1(b).
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