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Theoretical models of the evolution of parasites and their hosts have shaped
our understanding of infectious disease dynamics for over 40 years. Many
theoreticalmodels assume that the underlying ecological dynamics are at equi-
librium or constant, yet we know that in a great many systems there are
fluctuations in the ecological dynamics owing to a variety of intrinsic or extrin-
sic factors. Here, we discuss the challenges presented when modelling
evolution in systems with fluctuating ecological dynamics and summarize
the main approaches that have been developed to study host–parasite evol-
ution in such systems. We provide an in-depth guide to one of the methods
by applying it to two worked examples of host evolution that have not pre-
viously been studied in the literature: when cycles occur owing to seasonal
forcing in competition, and when the presence of a free-living parasite
causes cycles, with accompanying interactive Python code provided. We
review the findings of studies that have explored host–parasite evolution
when ecological dynamics fluctuate, and point to areas of future research.
Throughout we stress the importance of feedbacks between the ecological
and evolutionary dynamics in driving the outcomes of infectious disease
systems.

This article is part of the theme issue ‘Infectious disease ecology and
evolution in a changing world’.
1. Introduction
There is now a vast literature of theory on the evolution of hosts and their para-
sites [1,2]. A wide range of questions about the evolutionary dynamics of host–
parasite relationships have been explored, including the nature and role of
infection genetics [3–10], the distinction between host tolerance and resistance
[11–16], the impacts of spatial structure [17–24], the effect of predation
[25–29], the impacts of co-infection and superinfection [30–35] and more
besides. The study of fluctuating dynamics in the host–parasite literature has
primarily focused on either epidemiological cycles [36–38] or fluctuating selec-
tion in the context of host–parasite coevolution (e.g. so-called ‘Red Queen
dynamics’ induced by negative frequency-dependent selection; [39]). However,
few studies have considered how fluctuating ecological dynamics affect host or
parasite evolution. Yet the ecological world is not constant. Whether owing to
extrinsic factors such as seasonality or intrinsic factors such as time lags, eco-
logical dynamics may fluctuate over time [40]. In particular, variation in
population sizes is likely to affect contact rates between hosts and parasites,
and hence the strength of selection for traits such as resistance and virulence
[41]. It is, therefore, important to understand how fluctuating population
sizes impact selection on host and parasite traits.

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2022.0006&domain=pdf&date_stamp=2023-02-06
http://dx.doi.org/10.1098/rstb/378/1873
http://dx.doi.org/10.1098/rstb/378/1873
mailto:a.best@sheffield.ac.uk
http://orcid.org/
http://orcid.org/0000-0001-6260-6516
http://orcid.org/0000-0001-5588-7081
http://creativecommons.org/licenses/by/4.0/
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Many theoretical models assume that host and parasite
population sizes are constant or infinite or that the population
dynamics are uncoupled from evolutionary dynamics (see
[41]), in which case fluctuating population dynamics either
are prohibited by model design or are assumed to have no
impact on selection. ‘Eco-evolutionary’ models, on the other
hand, incorporate population dynamics from the outset and
therefore naturally capture feedbacks between ecological and
evolutionary processes, which may or may not feature fluctu-
ations in population sizes. Population dynamics can play a
major role in host and parasite evolution, with several recent
studies showing how feedbacks between ecological and evol-
utionary processes cause qualitative shifts in evolutionary
outcomes [41–44]. However, the effects of fluctuating popu-
lation dynamics on evolution are rarely studied in these
systems. In particular, while models of host–parasite coevolu-
tion often exhibit fluctuating ecological dynamics, most
studies instead focus on fluctuations in allele frequencies or
in trait values.

To capture the effects of eco-evolutionary feedbacks, which
invariably complicate matters, theoreticians often use tech-
niques such as evolutionary invasion analysis, also known as
‘adaptive dynamics’ [45–48], which make simplifying assump-
tions about the underlying genetics (i.e. quantitative traits) and
mutational process (i.e. mutations are rare with small pheno-
typic effects) to facilitate model analysis (this is of course just
one modelling approach and alternative frameworks can also
be used). In practice, the adaptive dynamics approach requires
a separation of timescales between ecological and evolutionary
dynamics, while still maintaining critical feedbacks between
these processes, which means that we only need to consider
the invasion fitness of a rare mutant in a resident population
at its ‘dynamic attractor’. In other words, one assumes that
the ecological dynamics of the resident population settle into
their long-term pattern of behaviour before a new mutant
arises. In most studies, the resident population tends to a
stable equilibrium, which conveniently makes the invasion
analysis relatively straightforward (see below). While non-
equilibrium population dynamics in host–parasite systems are
rarer, they can be generated by diverse factors, including free-
living parasite stages [36], parasitic castration [17], seasonality
[49], time lags [50] and stochasticity [51]. The techniques for
analysing models with non-equilibrium population dynamics
are more complicated, and therefore few host–parasite models
in the literature consider scenarios that lead to non-equilibrium
population dynamics [52–60].

Here, we focus on ‘deterministic fluctuations’, or more
mathematically speaking, limit cycles, in ecological dynamics
induced by extrinsic or intrinsic factors. Some of the
approaches we discuss would be equally applicable to chao-
tic and/or discrete fluctuations, but more likely these may
require alternative methods [61,62]. We begin by outlining
why modelling evolution with fluctuating population
dynamics is challenging, and then discuss possible modelling
approaches to overcome these challenges. We then examine
two previously unstudied worked examples of how we
could model host evolution in fluctuating environments.
Our two novel applications are (i) when fluctuations occur
owing to seasonally varying resources (as opposed to season-
ally varying births used in previous models [54,55]) and
(ii) when fluctuations occur intrinsically owing to free-
living parasite stages rather than to external forcing. We
then summarize the existing literature on host–parasite
evolution with fluctuating population dynamics, and finish
by discussing possible future directions for research in this
area.
2. Why is it challenging to model evolution with
fluctuating ecological dynamics?

To answer this question let us consider a relatively simple
model of host defence evolution. The dynamics of resident sus-
ceptible (S) and infected (I) hosts are given by the following
ordinary differential equations (ODEs),

dS
dt

¼ ða� qðSþ IÞÞS� bS� bSI þ gI ð2:1Þ

and

dI
dt

¼ bSI � ðbþ aþ gÞI: ð2:2Þ

Susceptible hosts reproduce at rate a, with a reduction
owing to crowding by q. All hosts die at natural mortality
rate b, while infected hosts have additional mortality caused
by parasite virulence at rate α. Infection is a density-dependent
process with parameter β and infected hosts can recover to
being susceptible again at rate γ. In this system, provided the
parasite’s basic reproductive ratio, R0 = βSdfe/(b + α + γ) > 1,
where Sdfe is the disease-free equilibrium, the resident popu-
lation reaches an equilibrium—a key point to remember—
with the equilibrium densities given by

S� ¼ bþ aþ g

b
, I� ¼ ða� qS� � bÞS�

ðqþ bÞS� þ g
:

We will apply the framework of adaptive dynamics to
model evolution [45–48]. We assume a rare mutant host
arises which has a small difference in the transmission rate,
with lower β meaning a better defended host (owing to
decreased susceptibility to infection). We will also assume
that there is a cost to defence through a lowered reproduction
rate, such that a = a(β). Given that the mutant is rare we can
assume mutant–mutant interactions do not impact its
dynamics at early time points. Let us initially take the simpli-
fying assumption that there is no recovery, i.e. γ = 0. This
means the mutant’s initial dynamics can be given by

dSm
dt

¼ ðaðbmÞ � qðS� þ I�ÞÞSm � bSm � bmSmI
�: ð2:3Þ

In this simple example where we assumed γ = 0, infected
hosts make no direct contribution to fitness, and the invasion
fitness is simply the exponential growth rate of mutant sus-
ceptible hosts, that is,

sðbm, bÞ ¼ aðbmÞ � qðS� þ I�Þ � b� bmI
�: ð2:4Þ

Since all parameter values here are constants, S* and I* are
equilibria, and a(β) is some specific function, this yields a
simple numeric value for any value βm, and thus the fitness
of an invading mutant can be easily determined. If s(βm,
β) > s(β, β), then the mutant can invade.

In the case where γ > 0 the mutant host fitness is no longer
simply the exponential growth rate of susceptible hosts since
infected hosts are directly contributing to fitness. In this case,
the fitness would be given by the dominant eigenvalue
of the mutant’s part of the system at the resident–mutant
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Figure 1. Example early time mutant trajectories, with envelopes created by the Floquet multipliers plotted as dashed lines. Example dynamics of mutant sus-
ceptible densities from the first example model, equations (3.1)–(3.3).
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equilibrium. In practice this fitness can be found through a
number of methods, including direct determination of the
eigenvalues, the next-generation matrix [63] or a sign-equiv-
alent proxy by finding the determinant of the mutant’s part
of the system [64]. For example, by the next-generation
method the fitness in our model when γ > 0 would be,

sðbm, bÞ¼
aðbmÞ�qðS� þ I�Þ

bþ bmI�
þ gbI�

ðbþ bmI�Þðaþ bþgÞ�1: ð2:5Þ

While more complicated than the case where there is no
recovery (γ = 0), all values in this expression—including the
densities S* and I* are still constants, yielding a simple
numeric value and a straightforward criterion for invasion:
s(βm, β) > s(β, β). Given that a strain invading itself will have
0 fitness, this equates to s(βm, β) > 0.

Let us now assume that instead of an equilibrium, the
resident ecological dynamics reach a stable cycle. This may
be due to intrinsic cycles in the system or due to extrinsic
‘seasonal forcing’ of parameters. For example, let us
take our model above but where we assume the birth rate
fluctuates over the course of a year, with

aðb, tÞ ¼ a0ðbÞ � ð1þ d sinð2ptÞÞ,

where a0 is the average birth rate (and is still involved in a
trade-off with β), δ∈ [0, 1] is the amplitude of the oscillations
and the term 2πt ensures a period of 1 year. Now the resident
populations are no longer at equilibrium, but will vary
depending on the time point. This means we can no longer
substitute a single value into our expressions for invasion fit-
ness above. In the previous scenario, the timing of a mutation
did not matter as the resident population was assumed to
be at equilibrium. But if the resident population densities
fluctuate, then the invasion fitness will also fluctuate, and
so a mutant may be more fit than the resident at certain
time points, and less fit at others. This point is demonstrated
in figure 1, where the early time dynamics of the mutant den-
sities are plotted, in the first case for an ultimately successful
mutant and in the second for one that fails to invade. In both
cases, however, we see that the mutant density may be higher
or lower than its starting value (meaning a point estimate of
the density is unreliable as a fitness measure) and moreover
the densities may be increasing or decreasing depending on
when the densities are examined (meaning a point estimate
of the gradient is also unreliable as a fitness measure).
How, then, can we handle situations where the population
densities are time-dependent, and hence the timing of a
mutation matters? A number of methods have been used,
which we summarize below.
(a) Running numerical simulations
A relatively simple approach is to run numerical simulations
of the evolutionary process. A multi-strain system is estab-
lished with initially only one strain present. The dynamics
are then run using numerical ODE solvers for some fixed
time. At this point any strains below some threshold density
are taken as extinct, and a mutant strain is chosen to be adja-
cent to the current dominant resident. This routine is then
repeated multiple times, and by recording all strains present
at each mutation step the evolutionary trajectory can be visu-
alized. This approach is used in a number of studies of
standard models as a visual confirmation of the analytic
results (for example [64,65]). Alternatively, a stochastic simu-
lation algorithm could be used where numerical ODE solvers
are not required and the mutation rate is a parameter of the
model. Such simulation approaches are relatively simple
since there is no need to derive any expressions for fitness.
Of course, this itself comes at a cost to understanding of
the outcomes. Moreover, such simulations may take some
time to reach an evolutionary attractor, as the nature of the
cycles may mean that what should be a dominant strain
happens to have a low density at the mutation step and is
thus made extinct.

(b) Deriving the fitness algebraically
The formal groundwork for considering evolution in variable
environments was laid by Metz et al. [62], who noted that the
fitness of a mutant in a variable environment is given by its
dominant Lyapunov exponent. For a system where the attrac-
tor of the population dynamics is an equilibrium, this is
simply the largest eigenvalue. However, for a system with
regular cycles, as we have discussed, this is more complex.

If the population is unstructured, and so the mutant
dynamics are given by a single ODE, we can still calculate
the fitness as being the average growth rate of a rare mutant
over one cycle period. That is, we write dXm/dt = r(t)Xm, and
find the expression for r(t). For our example system, if there
were no recovery and the cycles run from time P0 to P1 with
period T, we could, therefore, write

r ¼ 1
T

ðP1

P0

rðtÞdt

¼ 1
T

ðP1

P0

ðaðbm, tÞ � qðS�ðtÞ þ I�ðtÞÞ � bmI
�ðtÞÞdt� b: ð2:6Þ

In some cases, we can obtain algebraic expressions for all
of the time-dependent variables and parameters, allowing us
to continue with a full evolutionary analysis much as we
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would have in an equilibrium system. Often, however, the
integral of the variables cannot be simply expressed, and
we would need to numerically calculate those values for a
given parameter set. Studies taking this approach in host–
parasite systems include Donnelly et al. [53] and Hite &
Cressler [57].

(c) Deriving the fitness numerically
Generally, host–parasite systems are structured, however, and
the mutant’s growth rate is not a simple linearized
expression. In these cases, we can instead use a numerical
routine to calculate the Lyapunov exponents, which for fluc-
tuating systems are generally referred to as ‘Floquet
exponents’. In vector notation, if X(t) = (Sm(t), Im(t)) and the
period of the cycles is T, then the early time dynamics can
be given by

Xðtþ TÞ ¼ PðtÞ emiT :

Since P(t) is a periodic function, whether the population
grows or shrinks ultimately depends on the values of μi,
which are the Floquet exponents. We can think of the term
emiT (the Floquet multiplier) as creating an envelope from
which the dynamics cannot escape. Therefore, if μi < 0 for all
i, the envelope shrinks asymptotically towards zero and so
must the mutant densities. By contrast, if μi > 0 for any i then
the envelope grows and the density will grow asymptotically.
Examples of this can be seen in figure 1, with the Floquet mul-
tipliers shown as the dashed lines creating the envelopes that
indicate the overall trajectory (after some initial transitory be-
haviour), even though there are short time periods where the
densities are in the opposite direction—causing the problems
with simulation approaches outlined above.

This leaves the question of how we go about finding the
values of μ. As we show below using two worked examples,
we write our system as

Xðtþ TÞ ¼ XðtÞC,
calculating the values of the matrix C through a numerical
routine. The eigenvalues of this matrix are ri ¼ emiT , and we
can, therefore, calculate the values of μi. This approach has
been applied to a different ecological model by Klausmeier
[66] and to host–parasite systems by Ferris & Best [54,55]
and Ferris et al. [56].

(d) Deriving an approximate selection gradient
In recent work, Lion & Gandon [59] built on methods from
constant environments where contributions to fitness are cal-
culated as a product of a mutant’s quantity and its quality
[67,68]. In a fluctuating environment, this selection gradient
is again averaged over one period of a cycle, similarly to cal-
culating the Floquet exponent directly as above. Using this
method, while the resulting expression is only approxi-
mate—in particular requiring evolutionary and convergence
stability to be numerically checked separately—we can gain
a biologically meaningful expression for the fitness even in
a structured population.
3. Two worked examples
Here, we will demonstrate the method developed by Ferris &
Best [54] with two worked examples that have not previously
been examined in the literature. In both cases we will consider
the evolution of host avoidance of parasitism (i.e. lowered
transmission rates) at a cost to reproduction. The underlying
epidemiological model is as given above. Python code to
accompany both examples is available as a fully functional,
interactive Jupyter Notebook (https://mybinder.org/v2/gh/
abestshef/fluctuating/HEAD?labpath=evo_flux.ipynb) and
can also be downloaded from GitHub (https://github.com/
abestshef/fluctuating).
(a) Example 1. Seasonally varying resources
In our first case, we assume the amount of resources available
to hosts varies seasonally over the course of a year. This is
incorporated into the model by making the competition term,
q, a sinusoidal function of time, completing one cycle each
year. Our epidemiological model could then be updated to

dS
dt

¼ ða� qðtÞðSþ IÞÞS� bS� bSI þ gI ð3:1Þ

and

dI
dt

¼ bSI � ðbþ aþ gÞI ð3:2Þ

with q(t) = q0(1 + δsin(2πt)). The amplitude of the variation, i.e.
the ‘size’ of the effect is given by δ∈ [0, 1].

Considering the growth of a rare mutant host type, and
using the ’next generation’ approach as outlined above, the
fitness of the mutant can be given by

sðbm, bÞ ¼
aðbmÞ � qðtÞðS�ðtÞ þ I�ðtÞÞ

bþ bmI�ðtÞ

þ gbI�ðtÞ
ðbþ bmI�ðtÞÞðaþ bþ gÞ � 1, ð3:3Þ

where S*(t), I*(t) represent the stable limit cycles of the resi-
dent populations. Given the period of our varying function
is 1 year we may well expect the dynamics to vary yearly
as well. However, it is well known that such systems can
give rise to period-doubling bifurcations, leading to multi-
annual cycles (and even chaotic dynamics), so the period
should be checked. We find in this model only annual
cycles occur for the parameter ranges presented.

How can we gain a measure of host fitness in this case
given that the population densities are never at equilibrium?
Thankfully we have centuries of mathematical theory to rely
on, principally that known as Floquet theory. The method
developed by Ferris & Best [54] takes advantage of these clas-
sic results. In particular we can find the Floquet exponent
as follows:

1. Run the resident dynamics using a numerical solver for
ODEs for such time that they have reached their dynamic
attractor, i.e. their annual limit cycle in this case.

(a) A useful trick to speed up this step when looping
through parameter values is to set the initial condition
as the final value of the previous run.

(b) Seasonal models are often ‘stiff’, where the dynamics
follow two very different timescales. In these cases, stan-
dard numerical ODE solvers tend to perform poorly.
A solution is to use a numerical solver built for such
stiff systems (for example in the accompanying
Python code we use the optional argument,
method=‘Randau’).

https://mybinder.org/v2/gh/abestshef/fluctuating/HEAD?labpath=evo_flux.ipynb
https://mybinder.org/v2/gh/abestshef/fluctuating/HEAD?labpath=evo_flux.ipynb
https://github.com/abestshef/fluctuating
https://github.com/abestshef/fluctuating
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2. Run two numerical simulations of the resident–mutant
dynamics—with an assumption of rare mutants—for
just a single cycle period (or multiple periods if it is
known that period-doubling may occur). The two runs
should have initial conditions for the residents given by
the last values found in step 1; for the mutants the two
runs should have ‘linearly independent’ initial con-
ditions, and we can simply take [0,1] and [1,0] for ease.

3. Form the square matrix C that consists of the values of
the mutant Sm and Im densities at the end of the runs
in step 2.

4. Calculate the largest eigenvalue of C, and take its natural
logarithm to find the value of the Floquet exponent, and
hence the fitness.

This approach allows us to compute pairwise invasion
plots (PIPs), and/or further numerical routines to find the
local fitness gradient, and therefore find the location and
nature of singular strategies.

Figure 2 shows the resident dynamics for a fixed par-
ameter set and two example PIPs. PIPs are a commonly
used plot in adaptive dynamics, with the colours denoting
whether a mutant–resident pair results in the mutant invad-
ing (black) or not (grey) [46]. Through small evolutionary
steps the population will evolve up or down the main diag-
onal, as shown by the arrows, until a singular point is
reached where there is a crossing point. In this first case,
the dashed vertical line through the singular point lies
entirely in a region of negative fitness, meaning that strategy
cannot be invaded. As it is both attracting (convergence
stable) and uninvadable (evolutionarily stable) we call this
a continuously stable strategy (CSS). In the second PIP, we
identify the potential for evolutionary branching, where the
population is attracted to the singular point (convergence
stable), but once there any other mutant can invade (evolutio-
narily unstable). This means the population will undergo
disruptive selection and branch into two coexisting resident
types [46]. While this is a known result for host resistance
evolution in standard models, especially when trade-offs
are weakly decelerating [69], it is notable that it remains in
a system with fluctuating densities.

In figure 3, we focus on how optimal investment in avoid-
ance at a CSS varies with model parameters. First we directly
assess the impact of seasonality by varying the amplitude of
the oscillations. In figure 3a, we clearly see the effect of introdu-
cing fluctuations, as the location of the CSS varies substantially
when there are large-amplitude seasonal oscillations compared
with when the amplitude is 0 (i.e. no seasonality). Moreover,
we see that the direction in which the CSS changes depends
on the level of competition, with high amplitudes leading to
higher transmission (lower resistance) when baseline compe-
tition is low, but lower transmission (higher resistance) if
baseline competition is high. Why does this result arise? The
answer can be found by exploring the population dynamics
as both competition and amplitude vary, and considering
how these might affect selection. If baseline competition is
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In (a), a = 10 and β = 0.1. In (b), we take a trade-off given by a ¼ 10� ðt21=t2Þð1� expððb� 0:1Þt2=t1ÞÞ, with τ1 = 75 and τ2 =−400. Default
parameter values: b = 1, α = 1, γ = 0.1, q0 = 0.1, μ = 0.1, θ = 5. (Online version in colour.)
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low (e.g. q0 = 0.1), infected densities are higher than if compe-
tition is high (e.g. q0 = 0.5). Increasing the amplitude of
oscillations increases both the average and maximum infected
densities over a cycle. For low competition, this leads to extre-
mely high infected densities at large amplitudes, meaning
infection becomes almost inevitable for a host, limiting the
benefit of evolving costly resistance. As such, the CSS shifts
to higher transmission and births (since infected hosts recover,
infected hostsmay yet be able to contribute to reproduction at a
later point). By contrast, for high competition, even at high
amplitudes the average and maximum infected densities are
not too large (in fact now the susceptible densities become
much larger). In this case, the relatively small increase in infec-
tionwith increasing amplitude is worthmitigating by evolving
lowered transmission, and the high susceptible densities mean
the effect on overall reproduction is not too large.

In figure 3b, we do not directly examine the effect of
oscillations per se, but instead examine whether a well-
known result from non-fluctuating models—that resistance is
maximized at lowest virulence when there is no recovery, but at
intermediate virulence when there is—is maintained when oscil-
lations are introduced. We see that increased virulence selects for
higher transmission (lower resistance)when there is little recovery,
but that higher recovery rates lead to a ‘U-shaped’ investment
with virulence, in accordance with non-seasonal models [70,71].
This is because if hosts can return tobeing susceptible—and there-
fore to reproduce—selection to avoid infection is weakened.

(b) Example 2. Free-living parasite stages
In our second case, we do not extrinsically ‘force’ fluctuations
on the system, but instead note that in certain model formu-
lations limit cycles intrinsically arise as an outcome. In host–
parasite systems, a well-known example of this is when there
are free-living parasite stages that drive transmission. Such a
population could be modelled as follows:

dS
dt

¼ ða� qðSþ IÞÞS� bS� bSPþ gI, ð3:4Þ
dI
dt

¼ bSP� ðbþ aþ gÞI ð3:5Þ

and
dP
dt

¼ uI � dP: ð3:6Þ

Now infection is not through direct contact of susceptible
and infected individuals but through susceptible hosts picking
up free-livingparasite stages. Therearemanyways thedynamics
of the free-living stages can be modelled; here we assume that
stages are shed at a constant rate, θ, by infected hosts, that
these stages decay at rate δ and that loss of these stages due to
infection is negligible. The dynamics of this system can be both
equilibria and cycles depending on the parameter values.

It is common for the dynamics of this system to be suffi-
ciently stiff that even the specialist numerical ODE solvers
struggle to run for long time periods. In this case, we rec-
ommend log-transforming the model. This involves taking
new variables, X = ln(S), Y = ln(I ) and Z = ln(P). This leads
to a transformed model given by

dX
dt

¼ a� qð eX þ eYÞ � b� b eZ þ g eY�X ð3:7Þ
dY
dt

¼ b eXþZ�Y � ðbþ aþ gÞ ð3:8Þ

and
dZ
dt

¼ u eY�Z � d: ð3:9Þ

A simple reverse transformation of, e.g. I = eY can then be
used to plot or record the densities as in figure 4a.

The fitness of a mutant host in this system looks relatively
similar to above,

sðbm, bÞ ¼
a� qðS�ðtÞ þ I�ðtÞÞ

bþ bmP�ðtÞ

þ gbP�ðtÞ
ðbþ bmP�ðtÞÞðaþ bþ gÞ � 1: ð3:10Þ

While it is not explicit that there are fluctuations present,
it is known that for a wide range of parameter space the
attractor of the resident dynamics, and hence the densities
S*(t), I*(t) and P*(t) are limit cycles. We, therefore, must
again explore how to attain fitness in this case.

The method is in fact identical to that above, but with one
added complication. Previously we could assume that the
period of the fluctuations was the same as the forcing
period (taken to be 1 above), or perhaps some simple multiple
of it in case of period-doublings. In the case where there are
intrinsic limit cycles it is unlikely to even be an integer
value. While in simple models we can calculate the period
explicitly from details of the model, in general we must add
a stage between steps 1 and 2 above to calculate the period
numerically. This can be done by finding peaks at later time
points in the resident dynamics and calculating the time
between them. Most programming languages have such a
built-in function—in our accompanying Python code we use
the ‘find_peaks’ function in the SciPy library. We can then
continue as we did above. Figure 4 shows the resident
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dynamics, with the peaks identified by the find_peaks
function picked out with ‘X’ marks. For the example used
here we find that now the period of the dynamics is 10.13
time-units (to two decimal places). Moreover the PIP demon-
strates that the method continues to work with the numerical
estimate of the period.

In figure 5, we highlight how the CSS investment changes
as model parameters are varied. In this case, we show these
CSS points against a colourmap of the period of the underlying
cycles that are present. In both cases, it is notable that the trend
of the CSS is different depending on whether the underlying
population dynamics are cycles (lighter colours) or equilibria
(dark-blue). For low levels of competition the dynamics are
cycles, and the CSS transmission rate rapidly drops as compe-
tition increases, but once it moves to a region of equilibria the
CSS transmission gradually increases. This effect is mirrored
by varying the rate of parasite production; for low production
levels the dynamics are equilibria and there is a slight down-
ward trend, but as production increases cycles emerge and
the CSS transmission increases. Why dowe see these patterns?
Focusing on competition, in the equilibrium region, increasing
competition leads to higher transmission (lower resistance).
Similarly to the high competition case in figure 3a, selection
to avoid infection is greatest at low competition when the
infected and parasite densities are highest, because the force
of infection is never too high. However, when cycles emerge,
the infected and parasite densities increase dramatically,
especially at their maximum value on a cycle. This means
that hosts are now facing extremely high probability of infec-
tion, and there becomes limited benefit to evolving costly
resistance. These plots highlight how the existence of popu-
lation cycles creates a fundamental, qualitative change to the
evolutionary dynamics, highlighting that there is a two-way
feedback between ecology and evolution.
4. What have existing theoretical models told
us?

To our knowledge, the first theoretical study to consider the
evolutionary impact of ecological oscillations in a host–para-
site system was Koelle et al. [58]. They included a seasonal
driver causing annual fluctuations in transmission, but
assuming a constant population size. The parasite was
assumed to have a trade-off between sensitivity to this cli-
mate driver and maximum transmission. Primarily using
numerical simulations, they found that increased climate
variability would lead to parasites evolving reduced
sensitivity to those fluctuations.

Following this a number of studies have examined para-
site evolution with fluctuating ecological dynamics. Sorrell
et al. [60] included a seasonally forced reproduction rate in
a study of covert parasitism with superinfection, where cov-
ertly infected hosts do not transmit horizontally (but can
transmit vertically) but can become overt at a later stage.
They found that when the amplitude of seasonality is small
there is no selection for covert infections, but once a threshold
is passed a degree of covert infection will be selected for. This
is because covertly infected hosts survive longer than those
overtly infected (as they do not suffer from virulence), creat-
ing a reservoir of infection that better copes with the drops in
population densities during a cycle. Donnelly et al. [53]
explored a more classic transmission–virulence trade-off
with seasonally forced host reproduction. Under standard
assumptions the parasite fitness could be found analytically
(since the average host density over one period is constant),
and they found that parasite fitness was in fact unaffected
by the amplitude or period of the seasonal forcing. However,
if virulence is density-dependent then parasite fitness
depends on the average total population density, which is
not constant over a period. Numerically calculating the aver-
age densities and substituting into the fitness, they found
parasites were selected to evolve higher virulence and infec-
tivity at higher amplitudes of seasonality as increased
amplitude with density-dependent virulence leads to lower
susceptible densities, requiring greater exploitation by the
parasite to survive. Hite & Cressler [57] also examined a clas-
sic transmisison–virulence trade-off, but where host growth
depends directly on resources, with fluctuations emerging
intrinsically. They found that in regions where fluctuations
occurred, there can be evolutionary bistability such that the
parasite is driven to either extremely high or extremely low
levels of virulence, but that when the high-virulence type
occurred it partially stabilized the cyclic dynamics.

Recently, Lion & Gandon [59] applied their approach (see
§2) to three case studies of parasite evolution. They found
(i) unlike in constant environments, longer-lived parasites
can become more virulent in fluctuating environments, (ii)
pathogens can evolve a preference for hosts more damaged
by infection, in opposition to standard results in constant
environments, and (iii) fluctuations reduce selection for
more virulent parasites in the presence of imperfect vaccines.

Studies have also examined the evolution of host defences
in variable environments. Best et al. [52] examined the
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evolution of immune priming, for which the underlying popu-
lation dynamics can exhibit intrinsic limit cycles in the absence
of seasonal forcing. Using a numerical approach (somewhat
more ad hoc than the method discussed above) they showed
how hosts may evolve from equilibrium dynamics to a CSS
in a region of limit cycles, particularly when host lifespan
and sterility of infected are high. Studies including seasonal
reproduction in classic host defence evolution models were
then developed, through first avoidance (lowered trans-
mission; [54]) and then tolerance (lowered mortality; [55]). In
these studies, the formal numerical routine described above
was developed. These studies showed that increased ampli-
tude selects for lower avoidance but higher tolerance owing
to the change in infected densities as amplitude increases,
and how evolution towards a CSS may cause hosts to evolve
through different underlying population dynamic regimes,
for example from period-1 to period-2 cycles. Most recently,
Ferris et al. [56] developed the first coevolutionary invasion
analysis of a host–parasite model with fluctuating ecological
dynamics, finding that when growth rates are parameterized
by experimental data, both host defence and parasite virulence
evolve to the highest levels at intermediate amplitudes of fluc-
tuations owing to non-monotonic changes in host birth rate
under the experimental conditions.

While our focus is on evolution in host–parasite systems,
models of evolution with fluctuating ecological dynamics
have been studied in other ecological scenarios. Notably
these include models of preadator–prey systems [72–74]
and discrete-time models of intraspecific competition [61,75].
5. Key trends and future questions
While there are relatively few studies in this area, there
appear clear trends in results from models with fluctuating
ecological dynamics. The first and most fundamental is that
fluctuating ecological dynamics often significantly alter evol-
utionary outcomes. In host–parasite systems it has been
shown that increased amplitude of seasonal forcing can
lead to higher virulence in parasites [53] and lower avoidance
in hosts [54], suggesting environments with greater fluctu-
ations may be expected to lead to more prevalent, severe
infections, though a full coevolutionary model would be
required to confirm this.

These models also highlight the two-way feedbacks
between ecological and evolutionary dynamics. For example,
in their model of host defence, Ferris & Best [54] showed that
increasing the amplitude of seasonal birth rate increases the
infected density such that, when there are sufficient rates of
recovery, hosts will be selected to lower their defence (as
seen in our first model here). The combination of these effects
can move the system from a region of period-1 cycles to a
region of period-2 cycles, fundamentally altering the ecologi-
cal environment of the host and parasite. Similarly, we have
shown in this study how evolution can lead the system
across the boundary between ecological equilibria and
cycles. For parasite evolution, Sorrell et al. [60] showed that
when environmental oscillations are small there could be
no selection for covert parasite infections, but increasing
the amplitude allowed covert infections to emerge, again
substantially changing the ecological background.

There remain a raft of open questions to be considered
using these methods. As already mentioned, one important
direction is to explore coevolutionary dynamics in a fluctuating
ecological environment. Previous coevolutionary models have
highlighted how coevolutionary cycles can emerge without
being driven by ecological cycles [42], yet the impact of ecologi-
cal cycles on coevolutionary cycles has received relatively little
attention [43,44]. In models of sexual versus asexual reproduc-
tion, coevolutionary cycles are often (but not always, e.g. [76]),
crucial for the evolutionary maintenance of sex by parasitism.
Hence, understanding how ecological cycles impact on coevo-
lutionary cycles may shed new light on the Red Queen
hypothesis for sex, which has been studied in depth for over
40 years [39,77]. Similarly, while examples of evolutionary
branching when ecological dynamics are cycling have been
found ([54], and herein), including one of the few examples
of branching in host tolerance [55], it is not yet known whether
ecological cycles increase or decrease diversification in general.
Furthermore, it is unknown whether evolution differs when
fluctuations are due to external forcing ([53–56,58–60], and
our first model) or due to intrinsic factors ([52,57], and our
second model). In particular, when cycles occur intrinsically
we can compare the period and amplitude of the cycles with
and without evolution to assess whether evolution is amplify-
ing or suppressing ecological cycles.

While the basic tools discussed herein can be applied fairly
broadly, an important methodological development will be to
apply similar techniques tomodelswith chaotic cycles, ormore
generally cycles without a fixed period.While numerical simu-
lations of such systems could readily be carried out, any of the
more formal techniques—including the one covered in detail in
this study—require calculation of the eigenvalues, which cur-
rently requires integrating over a known time period of a
cycle. While we can calculate the Lyapunov exponent for a
chaotic system, placing this in the context of resident–invader
dynamics is more challenging [61,62,78].

Exploring how the feedbacks between ecology and evol-
ution impact host–parasite interactions remains a key
direction for theoretical research. The work summarized in
our study stresses this importance even further, showing
that fluctuations in the ecological dynamics can alter selection
on hosts and parasites, and that in turn the evolutionary tra-
jectory can move the ecological dynamics of host–parasite
systems into different qualitative as well as quantitative
regimes. Much work in this area remains to be conducted,
and this will give us much greater insight into a wide
range of real biological systems.
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