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Abstract

Currently, the only effect size prior that is routinely implemented in a

Bayesian fine‐mapping multi‐single‐nucleotide polymorphism (SNP) analysis

is the Gaussian prior. Here, we show how the Laplace prior can be deployed in

Bayesian multi‐SNP fine mapping studies. We compare the ranking

performance of the posterior inclusion probability (PIP) using a Laplace prior

with the ranking performance of the corresponding Gaussian prior and

FINEMAP. Our results indicate that, for the simulation scenarios we consider

here, the Laplace prior can lead to higher PIPs than either the Gaussian prior

or FINEMAP, particularly for moderately sized fine‐mapping studies. The

Laplace prior also appears to have better worst‐case scenario properties. We

reanalyse the iCOGS case–control data from the CASP8 region on Chromo-

some 2. Even though this study has a total sample size of nearly

90,000 individuals, there are still some differences in the top few ranked

SNPs if the Laplace prior is used rather than the Gaussian prior. R code to

implement the Laplace (and Gaussian) prior is available at https://github.com/

Kevin‐walters/lapmapr.
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1 | INTRODUCTION

The Gaussian distribution is the most frequently used

effect size (log odds ratio) prior in Bayesian fine‐mapping

studies (Benner et al., 2016; Chen et al., 2015; Spencer

et al., 2016; Wakefield, 2009). This distribution is deemed

appropriate as an effect size prior because it is symmetric

around zero and has quickly decaying tails. The appeal of

the Gaussian prior is that, when used alongside

a Gaussian likelihood (Wakefield, 2009), it yields a

Gaussian posterior distribution for the effect size. As a

result of the tractability of the marginal likelihood, Bayes

factors are easily calculated with a zero mean Gaussian

effect size prior. In the univariate case, this gives the so‐

called Wakefield Bayes factor or other tractable Bayes

factor that use a hierarchical Gaussian prior (Spencer

et al., 2015). For a review of genetic fine‐mapping

that includes Bayesian approaches, see Hutchinson

et al. (2020).

The Gaussian distribution is not the only distribution

that has been considered for the effect size prior in

univariate analyses. The t distribution (Marchini & Howie,

2010), the normal‐gamma distribution (Alenazi et al.,

2019; Boggis et al., 2016) and the Laplace distribution
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(Hoggart et al., 2008; Walters et al., 2021) have all been

considered. Walters et al. (2019) assessed the fit of the

Gaussian and Laplace priors using Bayesian model

selection. They analysed the estimated effect sizes of a

large number of independent breast cancer genome‐wide

association study (GWAS) top hits and found that the

Laplace prior gave a higher model posterior probability

than the Gaussian prior. Following on from the findings of

Walters et al. (2019), Walters et al. (2021) explored the

performance of the Laplace prior (compared to the

Gaussian prior) in Bayesian fine mapping. They only

considered univariate analyses and examined the causal

SNP ranks via receiver‐operating characteristic (ROC)

curves and credible set sizes. They found that there are

many scenarios where the Laplace prior outperformed

the Gaussian prior in terms of causal SNP rank, although

the differences were often not large. The downside of the

Laplace prior was that it lead to larger credible set sizes

than the Gaussian prior. To the best of our knowledge, no

consideration has been given to the use of non‐Gaussian

priors in a fully Bayesian multi‐SNP fine mapping

analysis. This may be because of the lack of tractability

of the posterior distribution when non‐Gaussian priors

are used. Calculating the marginal likelihood with a

Laplace prior requires either numerical integration or a

Monte Carlo approach, which will make it slower than

implementing the Gaussian prior. The question of interest

is to what extent this increase in computing time is made

up for by gains in fine‐mapping performance.

Several authors have implemented multi‐SNP fine

mapping approaches using the Gaussian prior (Benner

et al., 2016; Bottolo, 2010; Chen et al., 2015). There are two

main approaches used in multi‐SNP fine mapping. The first

is to enumerate over all possible models, usually with a

restriction on the maximum number of causal SNPs

allowed in the model (Chen et al., 2015). The second is to

use a stochastic search algorithm to explore the model

space (Benner et al., 2016; Bottolo, 2010). The latter

approach gives an approximation to the former, at

considerable computational savings, making it possible to

consider a larger number of causal SNPs than is possible

with enumerative methods. We consider modest numbers

of causal SNPs in the region to be fine‐mapped and so the

exhaustive approach is an acceptable approach.

We compare the performance of both Gaussian and

Laplace priors in multi‐SNP Bayesian fine‐mapping via

ranking of SNP marginal posterior inclusion probabilities

(PIPs). The PIP was recommended by Chen et al. (2015)

as a suitable measure because selecting SNPs using

marginal PIPs maximises the expected number of causal

SNPs for a fixed number of SNPs selected. We provide

detailed calculations of the marginal likelihood needed to

obtain the model posterior probability with the Laplace

prior. The calculations for the Gaussian prior are similar

to those in Chen et al. (2015). We also compare our

results with those of FINEMAP (Benner et al., 2016).

Benner et al. (2016) showed that FINEMAP yielded

single SNP PIPs that were generally very similar to those

of CAVIARBF Chen et al. (2015). The results of

CAVIARBF should be almost identical to our Gaussian

prior approach because they both enumerate over all

possible models (up to a maximum model size) with the

same Gaussian prior. For these reasons, we do not

include the CAVIARBF performance.

2 | MATERIALS AND METHODS

We need to calculate the posterior probability for a

specific model for both the Gaussian and Laplace prior

case. We start by detailing all the components that are

common to the two priors and then show how to

calculate the posterior probability for a specific model for

the Laplace case. We associate an indicator vector, c,

with each model, Mc , where c = 1j if SNP j is causal and

c = 0j otherwise. With p SNPs there are 2p possible

models. Let  cd = 1, where ⋅ 1 is the L1 norm. Thus, d

is the number of causal SNPs in model Mc . For

computational reasons, we restrict the model space to

at most K causal SNPs. This is equivalent to those models

Mc with ≤d K . For notational simplicity, we assume

that, given Mc , the SNPs have been reordered so that the

d causal SNPs are labelled SNPs 1 to d (this allows us to

use simpler subscripts). Let β̂ represent the column

vector of length p of estimates of the effect sizes. Then,

the posterior probability of model Mc is

  M β M βM
M βM

P
P f

P f
( ˆ ) =

( ) ( ˆ )

( ) ( ˆ )
,c

c c

M c cc

(1)

where MP ( )c is the prior probability of the model andβMf ( ˆ )c is the model marginal likelihood. Typically, we

would include an intercept in our model. Wakefield (2009)

showed that this was not necessary in a univariate analysis.

He showed that it was possible to reparameterise the model

so that the joint distribution of the likelihood factorised into

a term involving the intercept and a term involving the effect

size parameter. As a consequence, the marginal likelihood

for each model considered is multiplied by the same

constant term (coming from integrating the intercept out

of the joint distribution). As a result, these constant terms

cancel in Equation (1). In the Appendix, we show that this

factorisation property extends to the multivariate case. We
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also show that the variance of β̂ in the model where we

include an intercept is the same as the variance of β̂ in the

reparameterised model. Essentially the Appendix shows that

we can ignore the intercept in multivariate models when the

interest is in the marginal likelihoods.

2.1 | Prior probability of the model

When analysing the simulated data we assume that each

of the p SNPs is causal with probability q. The prior

probability of model Mc with d causal SNPs is therefore

q q(1 − )d p d− . We also assume that the number of causal

SNPs is K or fewer ( ≤d K ). For the simulated data

analyses, we assume that there is at least one causal SNP

because regions are fine‐mapped because of the presence

of a statistically significant GWAS association. Thus, the

prior probability for model Mc is given by

≤ ( )
MP

q q

q q
d K( ) =

(1 − )

(1 − )
for ,c

d p d

k
K p

k
k p k

−

=0
−

(2)

where the denominator acts as a normalising constant. A

good starting point for specifying q is to equate a guess at

the prior expected number of causal SNPs with pq, the

binomial expected value. We suggest that the user

undertakes a sensitivity analysis if they have any doubts

about an appropriate value of q or want to assess the

sensitivity of the results to the value of q. Note that an

alternative approach is to specify an arbitrary truncated

discrete prior probability distribution on the number of

causal SNPs and then calculate the prior probability of

model Mc by assuming that each model with d causal

SNPs is equally likely, for ≤d K .

2.2 | The likelihood

Let βc be a column vector of the effect sizes of the d causal

SNPs in model Mc . Let βN be a column vector of p d−
zeroes representing the effect sizes of the noncausal SNPs. In

fine‐mapping we have large samples of case–control data, so

we assume that the likelihood is distributed as


  

   β β
β β

β
N

0

ˆ

ˆ
~ , Ω ,c c

N N

c

where Ω is the p p× covariance matrix of β̂ . We let

 Ω =
Σ Σ
Σ Σ ,
c

T
N

−1 (3)

where Σc is a d d× covariance matrix of the causal SNPs,

ΣN is a p d p d( − ) × ( − ) covariance matrix of the

noncausal SNPs and Σ is the d p d× ( − ) matrix of

covariances between causal and noncausal SNPs. The

likelihood probability density function (pdf) can be

written as

∕     ( )

β β β β

β β β

f π

δ

( ˆ ) = ((2 ) Ω ) exp − 1

2
Σ

− 2 ˆ Σ + ˆ Σ + ,

c c

c N c

p T
c

T
c

T T

−1 2

(4)

where β βδ = ˆ Ω ˆT −1 .

2.3 | Effect size priors

Given the model, the prior effect sizes are independent.

Noncausal SNPs necessarily have effect sizes of zero. The

joint prior of the d causal SNP effect sizes is given by βf M f β( ) = ( )c i
d

jc =1 , where f β( )j is either the pdf of

the N w(0, ) distribution or the pdf of the Laplace

distribution with rate parameter λ, denoted by La λ( ) . For

the La λ( ) prior this gives

  β ψ βf M
λ λ( ) =
2

exp(− ),c c

d
T

c (5)

where ψ is a length d column vector with jth element

given by

≥ψ
β
β=

−1, if < 0,

1, if 0.j

j

j

(6)

2.4 | Model marginal likelihood with
a Laplace prior

The marginal likelihood is evaluated by integrating out

βc . We have   β β β β βf M f M f d( ˆ ) = ( ) ( ˆ ) .

β
c cc c

c

(7)

Using the Laplace prior in Equation (5) and

the likelihood in Equation (4), the integrand in

Equation (7) is
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∕      ( )

β β

β β ψ β

λ π

λ δ

2
((2 ) Ω ) exp − 1

2
Σ

− 2 ˆ Σ + ˆ Σ − +

c c

c N c

d
p T

c

T
c

T T T

−1 2

(8)

        β μ β μ

λ π ϕ π=
2

((2 ) ΩΣ ) exp
−
2

(2 ) Σ

exp − 1

2
( − ) Σ ( − ) ,c c

d
p d

c
d

c

T
c

− − 1
2 −

(9)

where μ α= Σc T−1 , α αϕ δ= − Σc T−1 and α β β ψλ= ˆ Σ + ˆ Σ −c N

T
c

T T T .

The integral in Equation (7) is over d but the integrand

here is a function of ψ, which depends on the signs of

β β, …, d1 . As a consequence, we need to break the integral

down over the 2d combinations of ψ and use appropriate

limits. For ψ = 1j , the integration is over ∈ ∞β [0, )j , while

for ψ = −1j , the integration is over ∞(− , 0) . Thus, the

marginal likelihood is

⋯ ⋯
∈

∈ ∈      
 

βMf
λ π

ϕ γdβ dβ

( ˆ ) =
2

[(2 ) ΩΣ ] exp

−
2

,

c
ψ

d
p d

c

β θ β θ
d

− − 1
2

{−1,1}

1

d

d d1 1

(10)

where γ is the pdf of a multivariate normal distribution

with mean vector μ and covariance matrix Σc−1 and

∞∞θ
ψ
ψ

=
(− , 0), if = −1,

[0, ), if = 1.
j

j

j

There is no closed form expression for the integral in

Equation (10) but it can be evaluated using the

pmvnorm function in the mvtnorm package (Genz

& Bretz, 2009) in R (R Core Team, 2021). Because some

of our integral limits are not finite, we chose to use the

Monte Carlo approach to evaluating the integrals as

described in Genz and Bretz (2009). Mi et al. (2009)

examined the accuracy of the probability approximations

used in the mvtnorm package. For the cases they

considered (where the truncated multidimensional inte-

gral values were known), the approximations were more

than accurate enough for the number of decimal places

of accuracy we considered necessary for the PIP

calculations. The marginal PIP for SNP i is then the

sum of the posterior probability of all models that include

SNP i. The Gaussian prior leads to a tractable closed‐form

expression for the posterior model probability. The

calculations are similar to the Laplace case and are

presented in the Appendix.

2.5 | Choice of K

K limits the maximum number of causal SNPs allowed and

the user needs to specify K in our approach. Keeping K

small, while considering all reasonably plausible models, will

keep computing time down. One approach to deciding on a

value for K uses the marginal likelihood with K causal SNPs

or fewer. The marginal likelihood is given by

∈ β βM Mf f P( ˆ ) = ( ˆ ) ( ),
M

c cK
Qc

(11)

where MP ( )c and βMf ( ˆ )c are given in Equations

(2) and (10), respectively, and Q is the set of all models

with no more than K causal SNPs, that

is, ≤ M cQ K= { : }c 1 . The method is to start with

K = 1 and compare β βf f( ˆ )/ ( ˆ )2 1 . This ratio must be at

least one because allowing larger numbers of causal SNPs

must increase the marginal likelihood. If it is much

larger than 1, then increment K by 1, calculate

β βf f( ˆ )/ ( ˆ )3 2 , and make the same assessment. Stop

incrementing K once the ratio is close enough to 1

(subjectively defined). This method stops increasing K

once the multiplicative increase in the marginal likeli-

hood is small enough. We give an example of imple-

menting this for simulated data Scenario 1 to illustrate

typical values of these ratios of marginal likelihoods.

2.6 | Gaussian and Laplace priors and
FINEMAP settings

We assume, a priori, that the effect size of causal SNPs

follows a N (0, 0. 2 )2 distribution, which is a common

assumption in fine‐mapping studies. To ensure a fair

comparison between the Gaussian and Laplace prior, we

equate the prior variances which leads to λ w= 2/ ,

where w = 0. 22 is the Gaussian prior effect size

variance. This value of w gives λ = 7.1. For the prior

distribution on the number of causal SNPs, we set

q = 0.04 and K = 2, which gives prior probabilities of

one and two causal SNPs of 0.37 and 0.63, respectively

(assuming 82 SNPs, which is representative of the

number of SNPs included in our simulations).

We compared the ranking performance of the shot-

gun search approach of FINEMAP (Benner et al., 2016)

with those of the Laplace and Gaussian priors. To ensure

identical effect size prior variances in all analyses, we

specified a N (0, 0. 2 )2 effect size prior in the FINEMAP

analysis. The prior probabilities of the number of causal

SNPs in the FINEMAP analysis were the same as for the
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Laplace and Gaussian prior analysis. All other FINEMAP

settings were set to their default value.

2.7 | Simulation details

We simulated haplotypes from the CASP8 region between

base pairs 201,666,128 and 201,866,128 of the Hg19 build of

chromosome 2 using Hapgen2 (Su et al., 2011). We used the

European haplotypes of the August 2010 release of the 1000

Genomes Project as the reference data. We simulated

haplotypes containing two causal SNPs with different minor

allele frequencies (MAFs), effect sizes and levels of linkage

disequilibrium (LD). For each simulation scenario we

considered, we simulated 50 case–control data sets. Hapgen2

identified 412 SNPs in this region. We removed SNPs with

MAF less than 0.01 and also retained just one SNP from each

cluster of SNPs in high LD (r > 0.992 ), making sure to retain

the causal SNP if it was in a high LD cluster. Finally, we

removed all SNPs with a univariate Bayes factor of less than

1 in all 50 data sets. This left between 77 and 87 SNPs in the

simulated data sets. We considered six scenarios. In all

scenarios, we fixed the odds ratio and MAF of the first

(second) causal SNP to be 1.15 (1.25) and 0.3 (0.09),

respectively. In all scenarios, we simulated equal numbers

of case and control haplotypes. We considered total sample

sizes of 8000, 14,000 and 18,000 individuals. These give

univariate power to reject the null hypothesis of no

association of approximately 8%, 46% and 73%, respectively,

for each causal SNP. VanLiere and Rosenberg (2008) showed

that if the MAFs of two SNPs satisfy MAF > MAF1 2 , then

the maximum r2 value between two SNPs is given by

r =
(1 − MAF ) × MAF

(1 − MAF ) × MAF
.max

2 1 2

2 1
(12)

We report r r/2
max
2 along with the other simulation

parameters in Table 1

2.8 | SNP prioritisation

We used ROC curves and area under the ROC curves

(AUC) to compare the performance of the PIP as a

ranking statistic. We used the ROCR package (Sing

et al., 2005) to plot the curves and calculate the AUCs.

Because we are really interested in the true‐positive

rates (TPRs) at low false‐positive rates (FPRs), we

report the partial AUC on FPRs <0.05 given as an

integer percentage. The partial AUC for FPRs less

than some maximum FPR value can be calculated

using the ROCR package by setting the fpr.stop

argument to this maximum FPR. For example, a

reported partial AUC of 80 means that the AUC for

FPR <0.05 was 0.04 (compared to a maximum possible

partial AUC in this region of 0.05). We chose to use

vertical averaging (Fawcett, 2006) to aggregate results

over the multiple ROC curves. For a given FPR,

vertical averaging averages TPRs across ROC curves

and hence gives an average TPR at each FPR. For

completeness, we report the AUCs on FPRs ≤1 in

Supporting Information: File 1 and show the corre-

sponding ROC curves.

As well as comparing the average ranking per-

formance across data sets by scenario, we were also

interested in comparing the tails of the PIP sampling

distribution for the Laplace and Gaussian priors for

the simulated data in Scenario 1 in Table 1. The

question of interest is how the worst‐case scenarios

across simulations differ by type of prior. We report

the actual PIPs and the PIP ranks for both causal SNPs

for both priors, where a rank of one corresponds to

the highest PIP. In each analysis, we set the prior

probability that a SNP is causal at 0.04, regardless of

K . We report the prior and posterior expected number

of causal SNPs for each value of K for both priors.

Finally, we illustrate how to choose the user‐specified

value K for the Gaussian prior in simulated scenario 1.

TABLE 1 Simulation scenarios used

to compare the Gaussian and Laplace

priors and FINEMAP

Scenario

number

Causal

SNP1 MAF

Causal

SNP2 MAF

Total sample

size (1000s) r r/2 max
2

1 0.33 0.08 8 0.03

2 0.33 0.08 14 0.03

3 0.33 0.08 18 0.03

4 0.28 0.10 8 0.92

5 0.28 0.10 14 0.92

6 0.28 0.10 18 0.92

Abbreviations: MAF, minor allele frequenc; SNP, single‐nulceotide polymorphism.
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2.9 | iCOGS analysis

We compared the PPIs using the Gaussian and Laplace

priors in fine‐mapping the CASP8 region between base

positions 201,500,074 and 202,569,992 on Chromosome

2. The data comes from a custom‐built iCOGS array

developed by the Collaborative Oncological Gene‐

Environment Study (COGS) Consortium (Michailidou

et al., 2013). Of the 1733 variants, 501 were genotyped

and 1232 were imputed using Impute2 (Marchini &

Howie, 2010); they were genotyped in 42,600 controls

and 46,450 breast cancer cases. We report the top 10 PIP‐

ranked SNPs for K = 1, 2 and 3 for both the Gaussian

and Laplace priors. We applied a similar filtering to that

used in the analysis of the simulated data. We removed

all iCOGS SNPs that had a MAF less than 0.05 and all

SNPs that had a Wakefield Bayes factor less than 2. We

choose a more stringent Bayes factor threshold in the

iCOGS analysis than in the simulated data analysis

simply to reduce the number of eligible SNPs. This left 90

SNPs in the CASP8 region. We provide the SNP number

from 1 to 1733 (rather than 1 to 90) for the top 10 ranked

SNPs. This is for ease of comparison with Walters et al.

(2021). The prior probabilities of the number of causal

SNPs used in this analysis are provided in Table 2.

3 | RESULTS

3.1 | SNP prioritisation

Figure 1 compares the performance of the Laplace prior,

the Gaussian prior and FINEMAP as the sample size

varies for the scenarios described in Table 1. The partial

AUCs are also provided in the figure legends. As might

be expected, the performance of the Laplace and

Gaussian priors equalises as the sample size increases.

In all six scenarios, the Laplace prior gave the highest

partial AUC, generally followed by the Gaussian prior.

FINEMAP was not the best performing in any of the

scenarios we considered. FINEMAP performed particu-

larly badly in the high LD case. This might reflect the fact

that FINEMAP is selecting SNPs in high LD with the

causal SNPs in its shotgun search strategy, rather than

the causal SNPs themselves. If we redefined the target

SNPs as the causal SNPs and those in very high LD with

them, we would expect the performance of FINEMAP to

improve considerably. These ROC curves show that the

Laplace prior can give higher PIP ranks than both the

Gaussian prior and FINEMAP across a range of

simulation scenarios.

Table 3 also shows the posterior expected number of

causal SNPs by K , along with the prior expected number

of causal SNPs. We see that as the prior expected number

increases, so does the posterior number of causal SNPs,

although the posterior is always higher than the prior.

There is not much difference in the posterior number

between the Laplace and Gaussian priors. Table 3 also

shows values from the tails of the PIP sampling

distribution across simulations (and also from the

sampling distribution of ranks). Here, we are interested

in comparing low percentiles of the PIP distribution that

correspond to poor performance. For each causal SNP,

the 10th percentile of the 50 PIP values is never less for

the Laplace prior than for the Gaussian prior (although

the differences are relatively modest), except for the case

K = 1 for the rare causal SNP (causal SNP 2). This

exception is not identifiable given the number of decimal

places presented in the table but can be seen in the 90th

percentile of the ranks. The most stark difference

between the two priors occurs in the worst rank seen

across the 50 simulations. These can be quite marked,

particularly for higher values of K , but even at K = 2, the

worst rank for the common causal SNP is 8 for the

Laplace prior and 10 for the Gaussian. These results

show that not only can the Laplace prior perform better,

on average, than the Gaussian prior in terms of causal

SNP ranks, but also gives the causal SNPs higher ranks in

the event of an extreme set of sampled genotypes.

Figure 2 shows the performance of the Laplace prior

by maximum number of causal SNPs allowed in the

model (K ) for the Scenario 1 in Table 1. As might be

expected, there is a marked improvement in performance

as K increases from one to two, with an increase in

partial AUC of nearly 50%. As K increases further the

improvement in AUC becomes increasingly modest.

Table 3 shows the median PIPs for the two causal SNPs.

We see a similar levelling‐off of the median PIP beyond

k = 2 for the common causal SNP but this effect is less

apparent for the rarer causal SNP, where there are still

improvements up to and including K = 4.

Table 4 presents the prior probabilities of the number

of causal SNPs and multiplicative increases in the

TABLE 2 Prior probability distributions of the number of

causal SNPs implemented in the iCOGS analysis.

Maximum

number of

causal

SNPs allowed

Prior probability of k causal SNPs

k = 0 k = 1 k = 2 k = 3

1 0.50 0.50 0 0

2 0.45 0.45 0.10 0

3 0.35 0.35 0.20 0.10

Abbreviation: SNP, single‐nuceotide polymorphism.
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marginal likelihoods for different K as a function of the

prior probability that each SNP is causal (q) for the first

simulated data set of Scenario 1 (see Table 1) with a N(0,

0.04) effect size prior. As q increases, we observe greater

probability of 3, 4 and 5 causal SNPs. The sensitivity of

the marginal likelihoods ratios to q can also be observed.

For q = 0.04 we can see that there are large multiplica-

tive increases in the marginal likelihood as K increases.

For q = 0.04 the marginal likelihood with a maximum of

five causal SNPs is 1.31 times the marginal likelihood

with a maximum of four causal SNPs. It is difficult to

interpret these numbers directly, but by using Figure 2

we can see how the various marginal likelihood ratios in

Table 4 relate to the ROC curves for simulated Scenario 1

data (where q = 0.04). Increasing K from 1 to 2 increases

the partial AUC considerably (the marginal likelihood

ratio for this change is 4.93). Changing from K = 3 to 4

yields a small increase in partial AUC (the marginal

likelihood ratio for this change is 1.64). So, it seems that

multiplicative increases in the marginal likelihood of

around 1.5 or less might not warrant increasing K . Note

that with 80 SNPs, the code took less than a minute to

run for K = 3 but 100 min for K = 5.

3.2 | iCOGS analysis

Table 5 compares the top PIP‐ranked iCOGS SNPs for the

Gaussian and Laplace prior by maximum number of

causal SNPs allowed. The table shows that the results for

the two priors are very similar. It is not until the sixth

ranked SNP that there is any disagreement between the

two analyses. This strong similarity is not unexpected

because the sample size analysed here is very large

(a total sample size of nearly 90,000) compared to those

used in the simulations. There is a marked difference in

the top two ranked SNPs as the maximum allowed

number of causal SNPs increases from 1 to 2 for both the

FIGURE 1 Receiver‐operating characteristic (ROC) curves comparing the ranking performance of the posterior inclusion probability

for the Laplace and Gaussian prior and FINEMAP. Each ROC curve shows the average true‐positive rate (TPR) for a given

false‐positive rate (FPR), averaged over 50 data sets, simulated from Hapgen2. The simulation parameters are given in Table 1. We allowed

models with a maximum of two causal SNPs. The plots on the left are for Scenarios 1–3 (top left is Scenario 1) and the plots on the

right are for Scenarios 4–6 (top right is Scenario 4). Partial area under the ROC curves are given in the figure legends.
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TABLE 3 Percentiles of the distributions of the PIP and the PIP ranks for the two causal SNPs in Scenario 1 in Table 1.

K = 1 K = 2 K = 3 K = 4

L G L G L G L G

Prior expected number of causal SNPs 1.00 1.00 1.61 1.61 2.15 2.15 2.58 2.58

Posterior expected number of causal SNPs 1.00 1.00 1.77 1.76 2.39 2.42 2.86 2.95

Causal SNP 1 PIP 50th percentile 0.36 0.36 0.50 0.47 0.52 0.48 0.53 0.49

PIP 10th percentile 0.07 0.06 0.12 0.11 0.13 0.11 0.14 0.11

PIP rank 50th percentile 1.0 1.5 1.0 2.0 1.0 1.5 1.5 1.5

PIP rank 90th percentile 3.0 3.0 3.1 4.0 4.0 4.0 4.0 5.0

PIP rank maximum 6 6 8 10 10 12 13 19

Causal SNP 2 PIP 50th percentile 0.00 0.00 0.26 0.21 0.37 0.31 0.42 0.38

PIP 10th percentile 0.00 0.00 0.06 0.05 0.09 0.07 0.11 0.09

PIP rank 50th percentile 5 5 2 3 2 2 2 2

PIP rank 90th percentile 13.0 10.1 5.0 5.0 4.0 5.0 4.0 5.0

PIP rank maximum 25 25 27 38 26 39 26 37

Note: Results are presented according to the maximum number of causal SNPs allowed in the model (K) and prior type (L is Laplace, G is Gaussian). Prior and

posterior expected numbers of causal SNPs are also presented.

Abbreviations: PIP, posterior inclusion probability; SNP, single‐nuceotide polymorphism.

FIGURE 2 Receiver‐operating characteristic (ROC) curves

comparing the ranking performance of the posterior inclusion

probability for the Laplace prior for Scenario 1 in Table 1 by

maximum number of causal SNPs allowed in the model (K ). Each

ROC curve shows the average true‐positive rate (TPR) for a given

false‐positive rate (FPR), averaged over 50 data sets, simulated from

Hapgen2. Partial area under the ROC curves are given in the figure

legends.

Gaussian and Laplace priors. SNP 1639 is ranked 18 for

K = 1 for both priors with PIPs less than 5 × 10−7. For

K = 2, SNP 1639 is ranked 2 with PIPs greater than 0.09

for both priors. For K = 3, the PIPs for SNP 1639 jump to

0.094 and 0.167 for the Laplace and Gaussian priors,

respectively. SNP 31 is clearly the top ranked SNP in all

six analyses in Table 5 but there are differences in the

PIPs of this SNP across the six analyses. For the Gaussian

prior the PIPs vary between 0.650 and 0.733, whereas for

the Laplace prior, they vary between 0.696 and 0.715

across the three values of K . The Laplace prior therefore

yields PIPs for the top ranking SNP with a smaller range

than for the Gaussian prior. Note that SNP 31 was also

the top ranked SNP in the univariate iCOGs analysis

undertaken in Walters et al. (2021) which used two

different values of λ in the Laplace prior.

4 | DISCUSSION

The results in this paper concur somewhat with the

results of the univariate Laplace analysis undertaken in

Walters et al. (2021): utilising a Laplace prior in a

Bayesian fine‐mapping multi‐SNP analysis can lead to

better causal SNP prioritisation than using a Gaussian

prior, although it depends on the actual causal SNP effect

sizes and allele frequencies. The results demonstrate that,

as expected, differences in causal SNP ranks using

different priors decrease with sample size.

A clear drawback of the Laplace prior approach is

that it leads to an increase in computing time and

realistically limits the number of causal SNPs considered

to three for most analyses, as is the case for most of the

methods that enumerate over all possible models. There

8 | WALTERS and YAACOB
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are several ways that the computing time could be

reduced. The first approach would be to implement

parallel computing where the calculations for the

different models are partitioned over different PC cores.

This would approximately reduce the computing time

pro rata to the number of cores. A second approach is to

attempt to restrict the number of regions of Rk that need

to be integrated over. There are 2K different regions,

where K is the maximum number of causal SNPs

allowed in the model. Some of these will contribute very

little to the model marginal likelihood. It seems that it

should be possible to use information from the eigenva-

lues/vectors of the β̂ covariance matrix, along with the

estimated SNP effect sizes, to inform which regions could

be be ignored. A third approach is to only consider sets of

k + 1 SNPs for SNPs, which appear in at least one k‐SNP

model with high posterior probability. This has the

potential for large computational savings but the

probability threshold would need to be chosen carefully,

and this approach risks removing the causal SNP from

further inclusion. A final approach is to avoid using

Monte Carlo methods to perform the low‐dimensional

integration. Because the problem is low‐dimensional, it is

possible to accurately use numerical approximations,

for example, quadrature methods or a Laplace

approximation.

Our analysis assumes that the covariance matrix of β̂
is available. This can be obtained by running a logistic

regression model on the genotype/phenotype data if it is

available. As in other methods (Benner et al., 2016), it is

possible to approximate this matrix if the standard errors

of each SNP effect size estimate are available because the

square of these values give the leading diagonals of the

covariance matrix. These standard errors are available

from a univariate SNP analysis and are frequently

reported, or can be inferred if the effect size estimate

and the p value are reported. The other covariances in

this matrix (off‐diagonals) can be approximated using the

SNP correlation estimate from a reference panel, and

using the relationship between the correlation and

covariance.
A key question for the method proposed here is the

choice of K . We suggested selecting K based on

comparing marginal likelihoods but there are other

simple strategies that could be employed. For simulated

data, it is possible to compare the partial AUCs but this is

clearly only possible when the causal SNPs are known.

For real data, like the iCOGS data we analysed, there are

a few approaches the user could take. The simplest

approach is to increase K and assess the change in the

SNP PIPs or ranks. This could be done across all SNPs

but is probably more usefully done only for the top

ranked SNPs because these are the ones of interest. For

example, if the intention is to further investigate 10 SNPs

via functional studies, then K could be incrementally

increased and the effect on the top 10 ranked SNPs

assessed. If the set of the 10 top‐ranked SNPs remains

TABLE 4 Prior probabilities of the number of causal SNPs and multiplicative increase in the marginal likelihood as K increments by 1

by the prior probability that each SNP is causal (q) for the first simulated data set of Scenario 1 in Table 1 with a N(0, 0.04) effect size prior.

q

Prior probability of d causal SNPs

f β f β̂( ˆ )/ ( )2 1 f β f β̂( ˆ )/ ( )3 2 f β f β̂( ˆ )/ ( )4 3 f β f β̂( ˆ )/ ( )5 4d = 1 d = 2 d = 3 d = 4 d = 5

0.04 0.17 0.26 0.26 0.20 0.11 4.93 2.40 1.64 1.31

0.03 0.27 0.31 0.23 0.13 0.06 3.92 1.97 1.40 1.17

0.02 0.43 0.33 0.16 0.06 0.02 2.92 1.57 1.20 1.06

0.01 0.67 0.25 0.06 0.01 0.01 1.95 1.21 1.05 1.01

Abbreviation: SNP, single‐nuceotide polymorphism.

TABLE 5 SNP number (from 1 to 1733) of the top 10 ranked

iCOGS SNPs using Gaussian and Laplace priors by maximum

number of causal SNPs allowed (K )

Rank

Gaussian prior Laplace prior

K = 1 K = 2 K = 3 K = 1 K = 2 K = 3

1 31 31 31 31 31 31

2 2 1639 1639 2 1639 1639

3 1 2 602 1 2 602

4 3 1 2 3 1 2

5 16 3 1 16 3 1

6 24 602 1056 24 602 3

7 7 16 3 7 16 681

8 29 811 1038 29 681 1671

9 27 816 1043 27 811 1056

10 602 812 681 602 816 1656

Abbreviation: SNP, single‐nuceotide polymorphism.
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stable as K increases from say two to three, then there

seems little to be gained increasing K any further.

The results of fine‐mapping are likely to be sensitive

to the choice of the hyperparameter λ in all but the

largest of fine‐mapping studies. There are several ways

that λ could be selected. One is to use expert elicitation.

This is a common approach to subjective prior formation

in Bayesian analysis that involves eliciting quantiles from

experts and using these to infer priors (Morris et al.,

2014). An alternative approach is to use the effect sizes of

disease‐specific GWAS top hits (Walters et al., 2019). In

this paper, the authors derived the maximum‐likelihood

estimator of λ based on the estimated effect sizes of

GWAS top hits and an estimate of the number of yet‐to‐

be‐discovered top hits.
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SUPPORTING INFORMATION

Additional supporting information can be found online

in the Supporting Information section at the end of this

article.

How to cite this article: Walters, K., & Yaacob,

H. (2023). Bayesian multivariant fine mapping

using the laplace prior. Genet Epidemiol, 1–12.

https://doi.org/10.1002/gepi.22517

APPENDIX A: JUSTIFICATION FOR NOT

INCLUDING THE INTERCEPT IN THE

MODEL

Let ρ and β represent the intercept and the SNP effect

size vector, and let ρ̂ and β̂ represent their estimators.

Further, let V represent
 βρvar

ˆ

ˆ
and let

 DD C
V

A
= ,

T
−1 (A1)

where A is a scalar, D is a p1 × matrix and C is a p p×

matrix. The variance matrix V can be found using a

standard result (see, e.g., Lu & Shiou, 2002) about

inverses of 2 × 2 block matrices. This gives





( )C

V =
* *

* − ,D D

A

−1T (A2)

where * represent some matrices not of interest. It

follows that the variance of β̂ is β C
D D

A
Cov( ˆ ) = − .

T −1

(A3)

We now consider reparameterisng the model. Ignor-

ing additive constant terms, the log‐likelihood (l)

including the intercept is

   β β β β

β β D

β β C β β

l
ρ ρ

V
ρ ρ

ρ ρ A ρ ρ

=−
− ˆ

− ˆ

− ˆ

− ˆ

= − [( − ˆ) + 2( − ˆ) ( − ˆ )

+ ( − ˆ) ( − ˆ )].

T

T T

T

1

2
−1

1

2
2

We reparameterise via the transformation γ β= and

βα ρ= +
D

A
. The likelihood under the new parameter-

isation (l*) is 
   


Dγ γ γ D

Dγ γ γ C γ γ

l α
A

α A

α
A

α

* = − 1

2
− − ˆ + 2( − ˆ)

− − ˆ + ( − ˆ) ( − ˆ ) .

T T

T

2

Three of the second derivatives are

∂∂∂∂ ∂ ∂∂ ∂    γ γ
D

D

l

α
A

l

α
l

α
A

A
1 1 0

*
= − ,

*
=

*
= − 1

2
2 − + 2 = ,p p

T T

2

2

2 2

where 1p is p × 1 vector of 1s. To find the second

derivative of the log‐likelihood with respect to γ , we

first rewrite l* by separating second‐order terms in γ
and other terms. Because Dγ is a scalar we have

Dγ γ D= T T . Therefore,

 
  




Dγ γ D Dγ γ Cγ

γ D D γ

l
A A

C
A

* = − 1

2

( ) − 2
+ +

other terms

=− 1

2
− + other terms .

T T
T

T
T

2

(A4)

This gives

∂∂γ D D
C

l

A

*
= − .

T2

2
(A5)

The expected information matrix under the new

parameterisation is, therefore,







C

D DI

A

A

0

0
=

−
.

p

p
T

Tnew (A6)

Inverting this matrix gives the covariance matrix

  



D DV

A

C
A

0

0
=

−
.

p

p
T

Tnew

−1

−1 (A7)
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It is clear that the variance of the SNP effect size

estimators is the same in the original model and the

reparameterised model. The result demonstrates that

we do not need to include the intercept in the

likelihood (because the likelihood will factorise into

an intercept term and other terms) and we can use the

variance matrix of the estimated SNP effect sizes

calculated when fitting a logistic regression model

that includes an intercept.

Marginal likelihood for the Gaussian prior

The marginal likelihood is

  βM β β β βf f M f d( ˆ ) = ( ) ( ˆ ) .c
β c cc
c

(A8)

If the effect size prior is given byβ M N W0~ ( , ),c c d

whereW w w w= diag( , , …, )d1 2 , then the pdf is

∕    β M β βf π W W( ) = [(2 ) ] exp − 1

2
.c c c c

d T−1 2 −1

Let

ν β β
η ν

ν ν

W

χ δ
,

Γ = + Σ ,

= ˆ Σ + ˆ Σ ,

= Γ
= − Γ .

c N

c

T
c

T T

T

T

−1

−1

−1

Using these definitions and the definitions in the main

text, the integrand in Equation (A8) can be written as

∕

∕

     
( )β β β β β

β η

β η

π W

δ

π W

χ

((2 ) Σ )

exp − 1

2
Γ − 2 ˆ Σ + ˆ Σ +

= ((2 ) Σ ) exp − 1

2
[( − )

Γ ( − ) + ] .

c c c N c

c

c

p d

T T
c

T T

p d T

+ −1 2

+ −1 2

It follows that

∕    βMf π W
χ

( ˆ ) = ((2 ) Γ Ω ) exp −
2

.c
p −1 2
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