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The interface between different quantum phases of matter can give rise to novel physics, such as exotic
topological phases or nonunitary conformal field theories. Here we investigate the interface between two
spin chains in different chiral phases. Surprisingly, the mean field theory approximation of this interacting
composite system is given in terms of Dirac fermions in a curved space-time geometry. In particular, the
interface between the two phases represents a black hole horizon. We demonstrate that this representation is
faithful both analytically, by employing bosonization to obtain a Luttinger liquid model, and numerically,
by employing matrix product state methods. A striking prediction from the black hole equivalence emerges
when a quench, at one side of the interface between two opposite chiralities, causes the other side to
thermalize with the Hawking temperature for a wide range of parameters and initial conditions.
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Many quantum lattice models exhibit emergent relativ-
istic physics in their continuum limit. The celebrated
example is graphene whose low-energy regime is described
by the Dirac equation [1,2]. Other examples admitting
relativistic descriptions are Kitaev’s honeycomb model
[3,4], superconductors [5,6], and the XX model [7,8].
The relativistic description of these systems opens up the
possibility to simulate curved spacetimes in the laboratory.
Here we modify the 1D spin-1=2 XX model with a three-

spin chiral interaction, making the system interacting. Such
chiral systems exhibit a rich spectrum of quantum corre-
lations [9] and give rise to skyrmionic configurations [10].
We show these chiral systems are effectively modeled by
the Dirac equation on a curved spacetime. This gives the
possibility to realize a black hole background.
The emergent black hole is revealed by applying the

mean field (MF) approximation. We test the validity of this
approximation through a detailed analysis of the phase
diagram and a comparison with the full spin model. We
model the spin model numerically with matrix product state
(MPS) techniques, and analytically through bosonization.
We find the MF approximation faithfully predicts a
phase transition between a chiral and nonchiral phase.
Remarkably, the emergent event horizon aligns precisely
with chiral phase interfaces. The inside of the black hole
corresponds to a chiral region with a central charge of
c ¼ 2, while the outside corresponds to a nonchiral region
with a central charge of c ¼ 1.
To verify the emergent black hole, we investigate

whether it can reproduce the Hawking effect. Hawking
radiation is generated by vacuum fluctuations of quantum
fields near the horizon of a black hole, which causes the
black hole to evaporate [11,12]. Here, we simulate a
Hawking-like effect by quenching the MF system. This
causes a wave packet to tunnel across the horizon and

escape into the outer region, with a thermal distribution at
the Hawking temperature. This alternative mechanism was
originally derived in Ref. [13] and is used to simulate
Hawking radiation in fermionic lattice models [14–29]. We
demonstrate this for a variety of quenches. As the emergent
geometry is generated from the couplings, it is fixed with
no black hole evaporation or backreaction of matter on the
geometry.
Our investigation shows horizon physics can model

chiral interfaces and accurately predicts the evolution of
interacting chiral phases across a phase interface. We
envision that the geometry provides an elegant formalism
to model strongly interacting systems and their interfaces in
higher dimensions.
Consider a periodic chain of N spin-1=2 particles with

Hamiltonian

H ¼
XN
n¼1

�
−
u
2
ðσxnσxnþ1 þ σynσ

y
nþ1Þ þ

v
4
χn

�
; ð1Þ

where u, v ∈ R, fσxn; σyn; σzng are the Pauli matrices of the
nth spin and χn is the spin chirality given by the three-spin
interaction

χn ¼ σn · σnþ1 × σnþ2; ð2Þ
where σn is the vector of Pauli matrices of the nth spin
[9,30]. The chirality operator is a measure of the solid angle
spanned by three neighboring spins.
The model of Eq. (1) can be mapped to an interacting

fermionic Hamiltonian via a Jordan-Wigner transformation.
After application of self-consistent MF theory to Eq. (1)
(see Supplemental Material [31]) we obtain

HMF ¼
XN
n¼1

�
−uc†ncnþ1 −

iv
2
c†ncnþ2

�
þ H:c: ð3Þ
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This free Hamiltonian is diagonalized exactly with a
Fourier transform giving a gapless dispersion with unequal
left- and right-moving Fermi velocities.
By introducing two sublattices, A and B, as shown in

Fig. 1(a), the Brillouin zone folds giving two bands as
shown in Fig. 1(c). There is a Dirac cone located at p0 ¼ π,
which tilts as v is increased. For jvj < juj we have a type-I
Weyl fermion with a single Fermi point; for juj ¼ jvj we
have critical tilting giving rise to a type-III Weyl fermion,
with one flat band; and for jvj > juj the cone overtilts,
corresponding to type-II Weyl fermions [14–16]. For
jvj > juj, additional Fermi points appear due to the
Nielsen-Ninomiya theorem [32,33]. This reveals the emer-
gent relativistic dispersion at low energy.
To reveal the geometric description we derive the

corresponding continuum limit. The continuum limit is
found by Taylor expandingHMF in momentum space about
p0, the Fermi point where Eðp0Þ ¼ 0, to first order in p
[4,6,34]. This yields a Dirac Hamiltonian on a ð1þ 1ÞD
spacetime with metric

ds2 ¼
�
1 −

v2

u2

�
dt2 −

2v
u2

dtdx −
1

u2
dx2; ð4Þ

which is the Gullstrand-Painlevé metric of a black hole
[35]. If v is upgraded to a sufficiently slowly varying
function vðxÞ, such as in Fig. 1(b), then this continuum
description remains valid and an event horizon is located at
the critical point xh, where jvðxhÞj ¼ juj, which corre-
sponds to the location of critical tilt in Fig. 1(c). This is a
background metric fixed by the couplings, with no back-
reaction of the field on the spacetime. From the metric, the
corresponding Hawking temperature is [16]

TH ¼ 1

2π

���� dvðxhÞdx

����: ð5Þ

Therefore, the original spin model of Eq. (1) with inho-
mogeneous couplings is effectively described by free
fermions on a fixed ð1þ 1ÞD black hole background
[14–16,35].
Before proceeding with the black hole analogy, we first

establish how accurate the MF approximation is by study-
ing the phase diagram of Eq. (1) for homogeneous u and v.
The MF Hamiltonian Eq. (3) reveals that for v < u the
system is in a disordered, gapless, XX phase, while as v
increases it passes through a second-order phase transition
into a gapless chiral phase, corresponding to a nonzero
ground state chirality hχni, as Fig. 2(a) shows, so chirality is
an order parameter. The MF chiral phase transition is
located at jvj ¼ juj, coinciding with the critical tilting of the
Dirac cones and the appearance of additional Fermi points,
as Fig. 1(c) shows. Near the critical point,

hχni ∼ ðv − vcÞγ; ð6Þ

with critical point vc ¼ u and critical exponent γ ¼ 1.
Moreover, using finite density matrix renormalization
group (DMRG) [36] we estimate the critical point of the
spin model of Eq. (1) is at vc ≈ 1.12u with a critical
exponent γ ≈ 0.39. A comparison between the chirality of
the spin model and the MF model for inhomogeneous and
homogeneous couplings can be seen in Figs. 1(b) and 2(a),
respectively, revealing the effectiveness of MF.
To gain further insight into the chiral phase transition, we

consider the behavior of the entanglement entropy as v is
increased. As the model is gapless for all v, it can be
described by a conformal field theory (CFT). Therefore, the
ground state entanglement entropy of a partition of L ≪ N
spins should follow

SL ¼ c
3
lnLþ S0; ð7Þ

where c ∈ Z is the central charge of the CFT and S0 is a
constant [37]. Using this formula, we estimate c as a func-
tion of v for the full spin model and the MF. In Fig. 2(b) we

FIG. 1. (a) The couplings of the Hamiltonian of Eq. (3) with
diatomic coloring, A and B. The chirality operator, χn, is defined
for each triangular plaquette. (b) An example of interface profile
for the couplings u and v with the corresponding ground state
chirality, hχni. The system changes from a chiral phase, hχni ≠ 0,
when jvj > juj, to nonchiral phase, hχni ¼ 0, when jvj < juj,
across the interface, nh, corresponding to the event horizon in the
continuum theory. The chirality is determined by mean field (MF)
theory and by numerical modeling of the spin chain (DMRG with
bond dimension D ¼ 400) for system size N ¼ 200. (c) The
mean field dispersion relations are obtained from a diatomic
representation (see Supplemental Material). The sign of v
determines the direction the cones tilt.
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see that c ≈ 1 in the XX phase and c ≈ 2 in the chiral phase,
with good agreement between the MPS and MF results. We
can clearly interpret this in the MF model: the additional
Fermi points appearing when jvj > juj, as Fig. 1(c) shows,
cause the model to transition from a c ¼ 1 CFT with a
single Dirac fermion to a c ¼ 2 ¼ 1þ 1 CFT with two
Dirac fermions, as each zero-energy crossing contributes
one half of a Dirac fermion. This can also be understood
from the lattice structure of the MF model, as Fig. 1(a)
shows, where for jvj ≪ juj a single zigzag fermionic chain
dominates (c ¼ 1) while for jvj ≫ juj two fermionic chains
dominate, corresponding to the edges of the ladder, thus
effectively doubling the degrees of freedom (c ¼ 2).
The MF faithfully reproduces many features of the full

model, especially for jvj < juj suggesting the interactions
are not significant here. We now investigate the validity of
the MF analytically by bosonizing the spin Hamiltonian for
the jvj < juj phase, and employing Luttinger liquid theory
as an alternative derivation of the Fermi velocities of the
model [38–40]. After a Jordan-Wigner transformation, the
spin Hamiltonian takes the form H ¼ HMF þHint, where
HMF is the quadratic MF Hamiltonian of Eq. (3) and Hint is
an interaction term containing quartic terms. For jvj < juj,
the single-band dispersion of the MF Hamiltonian Eq. (3)
suggests the spin model has two Fermi points located at
pR;L ¼ �π=2, with Fermi velocities vR;L ¼ 2ð�u − vÞ. By
expanding around these Fermi points and bosonizing the
interaction terms using the methods of [38–40], the fully
interacting Hamiltonian is mapped to the free boson
Hamiltonian

H ¼ u
Z

dx½Π2 þ ð∂xΦÞ2�; ð8Þ

where the fields obey the canonical commutation rela-
tions ½ΦðxÞ;ΠðyÞ� ¼ iδðx − yÞ. The interactions rescale
the Fermi velocities vR;L → v0R;L ¼ 2½�u − vð1 − 2=πÞ�,
but leave the Luttinger parameter unchanged at K ¼ 1
(see Supplemental Material), suggesting the model remains
a noninteracting free fermion model.
The dispersion of the spin model as a function of v for

jvj < juj can be calculated using the MPS excitation ansatz
working in the thermodynamic limit [41]. This dispersion
features unequal left- and right-moving Fermi velocities
whose magnitudes change oppositely with v which is
the signature of tilting of the cones similar to the MF.
In Figs. 2(c) and 2(d), the Fermi velocities vL;R obtained
from the MF, the Luttinger liquid model and the spin
Hamiltonian are compared. The Luttinger liquid model is
more accurate than MF. We expect the disagreement to be
lifted at higher order in perturbation theory.
We now study the emergent black hole. It has been

shown that many analogue gravitational systems will
exhibit a Hawking-like effect, whereby emission of radi-
ation is described by scattering events following a thermal
distribution at the Hawking temperature [14–28] which is
the definition of the Hawking effect we use. Reversing the
argument, we investigate whether the Hawking effect can
describe quenched time evolutions across the chiral inter-
face. To simulate large system sizes and long evolution
times, we resort to the MF of Eq. (3) rather than the full spin
model. Consider an open, inhomogeneous system with
couplings uðxÞ ¼ 1 and

vðxÞ ¼ α tanh½βðx − xhÞ�; ð9Þ

where α; β ∈ R and xh is in the center of the system. Here,
x is the unit cell coordinate in order to align with our
continuum conventions (see Supplemental Material). This
produces a positive and negative chiral region separated by
a small zero-chirality region in between. In the continuum
limit, this corresponds to a black hole–white hole interface.
This is a common setup used in the literature, see
Refs. [19,25,42].
Following the method of Ref. [17], we initialize a single-

particle state jn0i ¼ c†n0 j0i on the n0th lattice site inside the
left half of the system, and let the wave function evolve
across the interface into the other half with the Hamiltonian
HMF, as shown in Fig. 3(a). We measure the wave function
overlap with energy modes that exist only on the other side
of the interface as

Pðk; tÞ ¼ jhkje−iHtjn0ij2; ð10Þ

where jki are single-particle eigenstates ofHout, whereHout
is the Hamiltonian of Eq. (3) truncated to the outside
region. This method utilizes the result that Hawking
radiation can be viewed as quantum tunneling [13], differ-
ing from the usual interpretation as vacuum fluctuations.

FIG. 2. (a) The average ground state chirality,
hχi ¼ P

nhχni=N, for the mean field (MF) model (N ¼ 500)
and spin model found using DMRG (N ¼ 200, D ¼ 300) where
u ¼ 1. (b) The central charge, c, obtained for the MF model
(N ¼ 500) and the spin model found using DMRG (v ≤ u:
N ¼ 200, D ¼ 300 and v > u: N ¼ 160, D ¼ 800). (c),(d) The
Fermi velocities, vL and vR, respectively, (u ¼ 1) derived from
the mean field (MF) and Luttinger liquid descriptions compared
to the numerical results of the MPS excitation ansatz for the spin
model at bond dimension D ¼ 36 in the thermodynamic limit.
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This process will not cause the black hole to evaporate as
the effective metric is fixed by the couplings.
We find numerically that interfaces between the two

chiral phases thermalize the wave function: shortly after the
wave function evolves across the interface, the external
distribution takes the form Pðk; tÞ ∝ e−EðkÞ=T , where T is
some effective temperature. Figure 3(b) shows Pðk; tÞ at
time t ¼ 4.5 for a system with parameters N ¼ 500,
nh ¼ 250, α ¼ 20 and β ¼ 0.1, where we prepared the
particle at n0 ¼ 230. The value β ¼ 0.1 is taken to suppress
lattice and finite size effects. We see Pðk; tÞ strongly
thermalizes to a Boltzmann distribution at temperature
T. In Fig. 3(c), we present the dependence of T on α.
We see it closely follows the Hawking formula
Th ¼ αβ=2π, obtained from Eqs. (5) and Eq. (9), for a
wide range of couplings, α, thus accurately modeling the
physics of the chiral interface. The thermalization to Th
breaks down when α < 4 as the couplings are not sharp
enough to provide a sufficient interface, whereas for large α
the couplings vary too fast for the continuum approxima-
tion to be valid, which is where the black hole physics
emerges.
We observe strong thermalization for the chiral-

nonchiral interface, corresponding to a single horizon, such

as in Fig. 1. However, this system does not thermalize to the
Hawking temperature as closely as the black hole–white
hole interface as it requires larger system sizes and times
than we had numerical access too [18]. Nevertheless, the
system only thermalizes if it contains a phase interface, or
equivalently an event horizon (see Supplemental Material).
The Hawking temperature TH ¼ αβ=2π is a simple

formula that describes a complex thermalization process.
It does not depend on the position of the quench, n0, nor the
horizon location, nh. To verify this numerically, we study
the dependence of T on n0 [Fig. 4(a)] and nh [Fig. 4(b)]. We
see T is largely insensitive to the initial conditions and only
fails if n0 is too close or too far away from the interface, or
when the interface nh is too close to the system edges. In all
these cases boundary effects contribute and the exterior
region which the overlap Pðk; tÞ is measured in becomes
too small. These observations show that the thermalization
is robust, aiding in any potential experimental realization.
We stress this thermalization is not an equilibration to a
thermal state as t → ∞, but instead is an effective therma-
lization due to short time-scale scattering events [18].
As the MF is integrable, it equilibrates to a generalized
Gibbs ensemble instead in the t → ∞ limit [43–47] (see
Supplemental Material).
In this Letter, we demonstrated that the low-energy

behavior of a chiral spin chain can be described by
Dirac fermions on a black hole background, where the
event horizons are aligned with phase interfaces. To
demonstrate the faithfulness of this we employed mean
field, matrix product states and bosonization to probe the
phase diagram. We simulated the Hawking effect by
quenching a system containing a phase interface for a
variety of quenches, interface positions, and couplings. We
envision this bridge between chiral systems and event
horizons can facilitate quantum simulations of Hawking
radiation, e.g., with cold atom technology [24,26,48].

FIG. 3. (a) The lattice wave function ψn on the right half of the
system (n ∈ ½nh; N�) transmitted through the horizon, for the
couplings u ¼ 1 and v given by Eq. (9) with α ¼ 20, β ¼ 0.1, and
the horizon at nh ¼ N=2 with N ¼ 500. The particle tunnels
across at t ≈ 2 and a wave packet escapes which we interpret as
Hawking radiation. (b) A snapshot of the overlap − lnP vs the
energy of the state E at time t ¼ 4.5. The system thermalizes
shortly after the particle passes through the interface, displaying a
linear dependence on E, where the gradient is given by 1=T.
(c) The temperature T of the radiation vs α extracted after time
t ¼ 4.5. T grows linearly with α close to the predictions of the
Hawking formula TH ≈ αβ=2π.

FIG. 4. (a) Themeasured temperatureT vs the distance jn0 − nhj
from the event horizon that the particle is released for the mean
field (MF) system of size N ¼ 500, α ¼ 15, β ¼ 0.1, and
nh ¼ N=2. We see the temperature is insensitive to the initial
position n0 of the particle. This effect breaks down if n0 is very
close to the horizon or too far away, near the boundary of the
system. (b) The measured temperature T vs the position of the
horizon nh for the same system, where n0 ¼ nh − 25. The temper-
ature is insensitive to the location of the horizon, except when it
gets too close to the boundaries, in which case it breaks down.
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Moreover, our investigation opens up a way for modeling
strongly correlated systems by effective geometric theories
with extreme curvature, thus providing a tool for their
analytical investigation.
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Painlevé-Gullstrand black hole, J. Exp. Theor. Phys. 94, 853
(2002).

[16] G. Volovik, Black hole and Hawking radiation by type-ii
Weyl fermions, JETP Lett. 104, 645 (2016).

[17] R.-Q. Yang, H. Liu, S. Zhu, L. Luo, and R.-G. Cai,
Simulating quantum field theory in curved spacetime with
quantum many-body systems, Phys. Rev. Res. 2, 023107
(2020).

[18] D. Sabsovich, P. Wunderlich, V. Fleurov, D. I. Pikulin, R.
Ilan, and T. Meng, Hawking fragmentation and Hawking
attenuation in Weyl semimetals, Phys. Rev. Res. 4, 013055
(2022).

[19] D. Maertens, N. Bultinck, and K. Van Acoleyen, Hawking
radiation on the lattice as universal (Floquet) quench
dynamics, arXiv:2204.06583.

[20] H. Huang, K.-H. Jin, and F. Liu, Black-hole horizon in the
Dirac semimetal Zn2In2S5, Phys. Rev. B 98, 121110(R)
(2018).

[21] H. Liu, J.-T. Sun, C. Song, H. Huang, F. Liu, and S. Meng,
Fermionic analogue of high temperature Hawking radi-
ation in black phosphorus, Chin. Phys. Lett. 37, 067101
(2020).

[22] S. Guan, Z.-M. Yu, Y. Liu, G.-B. Liu, L. Dong, Y. Lu, Y.
Yao, and S. A. Yang, Artificial gravity field, astrophysical
analogues, and topological phase transitions in strained
topological semimetals, npj Quantum Mater. 2, 23
(2017).

[23] A. Retzker, J. I. Cirac, M. B. Plenio, and B. Reznik,
Methods for Detecting Acceleration Radiation in a Bose-
Einstein Condensate, Phys. Rev. Lett. 101, 110402 (2008).

[24] J. Rodríguez-Laguna, L. Tarruell, M. Lewenstein, and A.
Celi, Synthetic Unruh effect in cold atoms, Phys. Rev. A 95,
013627 (2017).

[25] A. Roldán-Molina, A. S. Nunez, and R. A. Duine, Magno-
nic Black Holes, Phys. Rev. Lett. 118, 061301 (2017).

[26] A. Kosior, M. Lewenstein, and A. Celi, Unruh effect for
interacting particles with ultracold atoms, SciPost Phys. 5,
61 (2018).

[27] J. Steinhauer, Observation of quantum Hawking radiation
and its entanglement in an analogue black hole, Nat. Phys.
12, 959 (2016).

[28] M. Stone, An analogue of Hawking radiation in the quantum
Hall effect, Classical Quantum Gravity 30, 085003 (2013).

[29] L. Mertens, A. G. Moghaddam, D. Chernyavsky, C. Morice,
J. van den Brink, and J. van Wezel, Thermalization by a
synthetic horizon, Phys. Rev. Res. 4, 043084 (2022).

[30] C. D’Cruz and J. K. Pachos, Chiral phase from three-spin
interactions in an optical lattice, Phys. Rev. A 72, 043608
(2005).

[31] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.016701 for a full
derivation of all results obtained from mean field theory and
a further discussion of the conditions required for thermal-
ization in the model.

[32] H. Nielsen and M. Ninomiya, A no-go theorem for
regularizing chiral fermions, Phys. Lett. 105B, 219 (1981).

[33] H. Nielsen and M. Ninomiya, Absence of neutrinos on a
lattice: (ii). Intuitive topological proof, Nucl. Phys. B193,
173 (1981).

[34] E. Tirrito, M. Lewenstein, and A. Bermudez, Topological
chiral currents in the Gross-Neveu model extension, Phys.
Rev. B 106, 045147 (2022).

[35] G. E. Volovik, The Universe in a Helium Droplet, 2nd ed.
(Clarendon Press, Oxford, 2003), p. 424.

PHYSICAL REVIEW LETTERS 130, 016701 (2023)

016701-5

https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevB.101.245116
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.98.064503
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1140/epjst/e2008-00716-9
https://doi.org/10.1140/epjst/e2008-00716-9
https://doi.org/10.1103/PhysRevA.77.012106
https://doi.org/10.1038/s41598-020-65291-8
https://doi.org/10.1038/s41598-020-65291-8
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1088/1367-2630/7/1/203
https://doi.org/10.1103/PhysRevLett.85.5042
https://doi.org/10.1007/s10909-017-1817-8
https://doi.org/10.1007/s10909-017-1817-8
https://doi.org/10.1134/1.1484981
https://doi.org/10.1134/1.1484981
https://doi.org/10.1134/S0021364016210050
https://doi.org/10.1103/PhysRevResearch.2.023107
https://doi.org/10.1103/PhysRevResearch.2.023107
https://doi.org/10.1103/PhysRevResearch.4.013055
https://doi.org/10.1103/PhysRevResearch.4.013055
https://arXiv.org/abs/2204.06583
https://doi.org/10.1103/PhysRevB.98.121110
https://doi.org/10.1103/PhysRevB.98.121110
https://doi.org/10.1088/0256-307X/37/6/067101
https://doi.org/10.1088/0256-307X/37/6/067101
https://doi.org/10.1038/s41535-017-0026-7
https://doi.org/10.1038/s41535-017-0026-7
https://doi.org/10.1103/PhysRevLett.101.110402
https://doi.org/10.1103/PhysRevA.95.013627
https://doi.org/10.1103/PhysRevA.95.013627
https://doi.org/10.1103/PhysRevLett.118.061301
https://doi.org/10.21468/SciPostPhys.5.6.061
https://doi.org/10.21468/SciPostPhys.5.6.061
https://doi.org/10.1038/nphys3863
https://doi.org/10.1038/nphys3863
https://doi.org/10.1088/0264-9381/30/8/085003
https://doi.org/10.1103/PhysRevResearch.4.043084
https://doi.org/10.1103/PhysRevA.72.043608
https://doi.org/10.1103/PhysRevA.72.043608
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.016701
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.016701
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.016701
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.016701
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.016701
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.016701
http://link.aps.org/supplemental/10.1103/PhysRevLett.130.016701
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1016/0550-3213(81)90524-1
https://doi.org/10.1103/PhysRevB.106.045147
https://doi.org/10.1103/PhysRevB.106.045147


[36] U. Schollwöck, The density-matrix renormalization group
in the age of matrix product states, Ann. Phys. (Amsterdam)
326, 96 (2011).

[37] P. Calabrese and J. Cardy, Entanglement entropy and
quantum field theory, J. Stat. Mech. (2004) P06002.

[38] T. Giamarchi, Quantum Physics in One Dimension
(Oxford University Press, New York, 2003), p. 29.

[39] E. Miranda, Introduction to bosonization, Braz. J. Phys. 33
(2002).

[40] S. Aditya and D. Sen, Bosonization study of a generalized
statistics model with four Fermi points, Phys. Rev. B 103,
235162 (2021).

[41] J. Haegeman, T. J. Osborne, and F. Verstraete, Post-matrix
product state methods: To tangent space and beyond, Phys.
Rev. B 88, 075133 (2013).

[42] G. E. Volovik, The Universe in a Helium Droplet
(Oxford University Press, New York, 2009), Chap. 32.

[43] M. Perarnau-Llobet, A. Riera, R. Gallego, H. Wilming,
and J. Eisert, Work and entropy production in genera-
lised Gibbs ensembles, New J. Phys. 18, 123035
(2016).

[44] L. Vidmar and M. Rigol, Generalized Gibbs ensemble in
integrable lattice models, J. Stat. Mech. (2016) 064007.

[45] M. Srednicki, Chaos and quantum thermalization, Phys.
Rev. E 50, 888 (1994).

[46] J. M. Deutsch, Quantum statistical mechanics in a closed
system, Phys. Rev. A 43, 2046 (1991).

[47] M. Rigol, V. Dunjko, and M. Olshanii, Thermalization and
its mechanism for generic isolated quantum systems, Nature
(London) 452, 854 (2008).

[48] D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P.
Zoller, Cold Bosonic Atoms in Optical Lattices, Phys. Rev.
Lett. 81, 3108 (1998).

PHYSICAL REVIEW LETTERS 130, 016701 (2023)

016701-6

https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1590/S0103-97332003000100002
https://doi.org/10.1590/S0103-97332003000100002
https://doi.org/10.1103/PhysRevB.103.235162
https://doi.org/10.1103/PhysRevB.103.235162
https://doi.org/10.1103/PhysRevB.88.075133
https://doi.org/10.1103/PhysRevB.88.075133
https://doi.org/10.1088/1367-2630/aa4fa6
https://doi.org/10.1088/1367-2630/aa4fa6
https://doi.org/10.1088/1742-5468/2016/06/064007
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1038/nature06838
https://doi.org/10.1038/nature06838
https://doi.org/10.1103/PhysRevLett.81.3108
https://doi.org/10.1103/PhysRevLett.81.3108

