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Abstract 

Musculoskeletal disorders remain the most reported occupational health workplace problem, 

affecting workers in all sectors of economic activity. The automotive industry is one of the 

industries with the highest prevalence of musculoskeletal symptoms, mainly due to the 

biomechanical risk factors that workers are exposed to during their workday. As this industry 

is one of the largest industrial forces that has contributed significantly to the growth of the 

global economy, it is crucial to develop efficient solutions that can be implemented in 

workplaces to improve working conditions by eliminating or reducing workers' exposure to 

the main biomechanical risk factors. The present dissertation attempts to understand the 

short-term relationships between biomechanical risk factors and musculoskeletal symptoms 

in the automotive assembly line, in addition to providing an organizational strategy that uses 

a mathematical approach to mitigate exposure to the same risk factors and reduce the 

prevalence/incidence of musculoskeletal disorders. Therefore, this dissertation presents 

three main investigations. The first study with a cohort design determines the short-term 

associations between biomechanical risk factors and musculoskeletal symptoms in the upper 

limbs and low back in an automotive plant. The workers were divided into low and high-risk 

groups for various risk factors. The results suggested that workers who were in the high-risk 

group had a higher likelihood to report adverse effects on their musculoskeletal symptoms at 

the end of a work week, particularly when exposed to certain risk factors, such as: posture for 

symptoms in the neck, right wrist, and left shoulder. The second study proposes a 

mathematical formulation based on a genetic algorithm that considers the assessment of 

biomechanical risk factors (EAWS) in the workplace, workers’ qualifications, and 

organizational aspects inherent in the operation of the production line. The algorithm is based 

on three criteria: enhancing diversity, ensuring team homogeneity, and reducing exposure to 

biomechanical risk factors. The success of the algorithm in meeting these criteria has been 

verified. In addition, when comparing the results of the algorithm with the results of manual 

job rotation plans (created by a team leader), it was shown that the mathematical solution 

was more efficient, not only in relation to the three criteria, but also in terms of time spent on 

this task. Finally, the third study complements the second by comparing the results obtained 

via the genetic algorithm with the data obtained through the rotation plans made by team 

leaders of several teams on the assembly lines. Therefore, the aim of this study was to 
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evaluate the effectiveness of the algorithm in creating job rotation plans compared to the 

manual process of team leaders in terms of diversity, homogeneity, exposure, shift working 

sequence quality and matrix quality. The job rotation plans of 7 teams (89 workers) from the 

assembly area were included in the sample. Exposure was the only criterion that did not show 

significant differences between the two methods, however, all variables at the individual level 

showed high values in the limits of agreement. The values of diversity, homogeneity, shift 

working sequence quality, and matrix quality of the job rotation plan generated by the genetic 

algorithm were on average higher than the values of the team leaders’ job rotation plan. These 

results show that implementing the genetic algorithm has a promising potential to create job 

rotation plans that reduce musculoskeletal disorders in the automotive industry and as well 

as to reduce the time associated with the team leader completing this task. 

 

Keywords: Musculoskeletal disorders, biomechanical risk factors, genetic algorithm, 

preventive measures, automotive industry 
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Resumo 

As lesões músculo-esqueléticas continuam a ser o principal problema de saúde reportado no 

local de trabalho, afetando trabalhadores em todos os setores de atividades. A indústria 

automóvel é um dos setores com maior prevalência de sintomatologia músculo-esquelética, 

principalmente devido aos fatores de risco biomecânicos a que os trabalhadores estão 

expostos durante o seu dia de trabalho. Sendo esta indústria uma das maiores forças 

industriais, que contribuí de forma significativa para o crescimento da economia global e 

nacional, é fulcral desenvolver soluções eficientes para implementar nos postos de trabalho 

por forma a melhorar as suas condições, eliminando ou reduzindo a exposição dos 

trabalhadores aos principais fatores de risco biomecânicos. A presente dissertação procura 

compreender os efeitos a curto prazo dos fatores de risco biomecânicos sobre a 

sintomatologia músculo-esquelética na linha de montagem de uma indústria automóvel, e 

providencia uma estratégia organizacional, recorrendo a uma abordagem matemática, para 

mitigar a exposição a condições de trabalho adversas e reduzir a incidência de lesões e 

sintomatologia músculo-esqueléticas. Para a concretização desta dissertação, foram 

desenvolvidos três estudos. O primeiro estudo, com um desenho prospetivo e uma amostra 

de 228 trabalhadores, determinou as associações a curto prazo entre os fatores de risco 

biomecânicos e a sintomatologia músculo-esquelética nos membros superiores e na região 

lombar numa fábrica da indústria automóvel. Os trabalhadores foram divididos em grupos de 

baixo e elevado risco para os diferentes fatores de risco. Os resultados sugerem que ao final 

de uma semana de trabalho, os trabalhadores que pertencem ao grupo de alto risco têm uma 

predisposição superior para reportarem efeitos desfavoráveis na sua sintomatologia músculo-

esquelética, principalmente quando sujeitos a determinados fatores de risco, como é o caso 

da postura para a sintomatologia no pescoço, punho direito e ombro esquerdo. O segundo 

estudo propõe uma formulação matemática com base num algoritmo genético, que tem em 

conta a avaliação dos fatores biomecânicos presentes nos postos de trabalho (EAWS), a 

qualificação dos trabalhadores e aspetos organizacionais inerentes ao funcionamento da linha 

de produção. O algoritmo baseia-se em três critérios: melhorar a diversidade da exposição aos 

fatores de risco, garantir a homogeneidade da equipa e reduzir a exposição aos fatores de 

risco biomecânicos. O sucesso do algoritmo no cumprimento destes critérios foi verificado. 

Adicionalmente, quando se compararam os resultados do algoritmo com os resultados dos 
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planos de rotação criados manualmente por um team leader, verificou-se que a solução 

matemática despendia menos tempo na concretização da tarefa. Por fim, o terceiro estudo 

complementa o segundo comparando os resultados obtidos pelo algoritmo genético e os 

dados obtidos pelos planos de rotação gerados pelos team leaders de várias equipas da linha 

de montagem. Assim, o objetivo deste estudo é avaliar a eficácia do algoritmo em gerar planos 

de rotação, quando comparado com o processo manual realizado pelos team leaders quanto 

à diversidade, homogeneidade, exposição, sequência de estações de trabalho e qualidade da 

matriz.  Os planos de rotação de 7 equipas (89 trabalhadores) da área da montagem foram 

incluídos na amostra. A análise de grupo demonstrou que a exposição é o único critério que 

não apresenta diferenças significativas entres os dois métodos, no entanto, a nível individual 

todas as variáveis apresentaram valores elevados nos limites de concordância. Os valores de 

diversidade, homogeneidade, sequência de postos de trabalho e qualidade da matriz do plano 

de rotação gerado pelo algoritmo genético são, em média, superiores quando comparados 

com os valores do plano de rotação do team leader. Estes resultados revelam um potencial 

promissor na implementação do algoritmo genético para a criação de planos de rotação para 

diminuir o tempo associado à realização desta tarefa pelo team leader, mas também no seu 

papel ativo na redução das lesões músculo-esqueléticas na indústria automóvel.  

 

Palavras-chave: lesões músculo-esqueléticas, fatores de risco biomecânicos, algoritmo 

genético, medidas preventivas, indústria automóvel  
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1.1. Dissertation structure 

Musculoskeletal disorders (MSDs) and symptoms (MSSs) are currently the most common 

causes of disabilities and limitations related to daily life and gainful employment (Briggs et al., 

2018; De Kok et al., 2019) and have been recognized as a problem since the 17th century 

(Ramazzini, 2001). A recent World Health Organization report highlighted how MSDs can 

affect workers and employers in all economic sectors and occupations (Briggs et al., 2018). 

Understanding what solutions can be implemented in a work environment and what impact 

they can have, is paramount in alleviating both the economic and social burden of MSDs.  The 

present dissertation, entitled “Development of a job rotation algorithm to reduce 

occupational exposure in the automotive industry”, aims to understand the short-term 

relationships of biomechanical risk factors and MSSs in the assembly line of an automotive 

industry, while also providing an organizational strategy, taking the advantage of digitalization 

and mathematical approaches, to mitigate the exposure to these known risk factors and 

reduce the overall prevalence of MSDs. 

The core of this dissertation is a collection of three research articles that have been published 

or submitted for publication in peer-reviewed journals. In order to clarify the framework of 

these studies, this dissertation is structured as follows: 

Chapter 2 contains a background introduction in which we present an overview of the current 

state of the art of the epidemiology of MSDs and at the same time describe a possible 

conceptual model that could be used to explain the outbreak that leads to these conditions, 

with a particular focus on the automotive industry. We also highlight the predominant 

biomechanical risk factors and briefly describe how they are related to MSSs in the most 

affected areas of the body. Following this background, the possible solutions to reduce the 

incidence and prevalence of MSDs are addressed, focusing on the job rotation plans and in 

particular those created through a genetic algorithm approach. Finally, the second chapter 

concludes with the aims and overview of the dissertation, which present the different studies 

that integrate the current dissertation and how they are related with each other.  

Chapters 3 to 5 correspond to the three research articles conducted during this dissertation 

to tackle the research goals described in chapter 2. 
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Chapter 6 provides a general discussion integrating the key insights gained with the three 

investigations of this dissertation as well as the general methodological issues concerning 

those studies. Recommendations for future research are provided alongside with practical 

implications for the field. 
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2.1 Background 

Epidemiology of MSDs 

Nowadays, industrial organizations and companies face new demanding challenges, 

mainly created by the pressure of intense competition to improve productivity. Forced to 

survive and thrive in such volatile environments, workplaces have no choice but to 

develop and maintain many competitive advantages, which poses a significant threat to 

the health and well-being of their workers (Hochdörffer et al., 2018). According to the 

World Health Organization, approximately 1.71 billion people have musculoskeletal 

conditions worldwide, with a significant amount occurring in a working environment 

(Cieza et al., 2020). In this regard, the issue of work-related musculoskeletal disorders 

(WRMSD) was also addressed by the European Risk Observatory Report from the 

European Agency for Safety and Health at Work where three out of every five workers in 

the European Union (EU)-28 reported WRMSDs complaints. Data driven by the EU report 

can also be used to assess this issue in Portugal, where 54% of workers reported suffering 

from one or more WRMSD in the past 12 months (De Kok et al., 2019).  

All of these challenges concerning WRMSDs have been recognized and addressed at a 

European level, where a consensus statement was made with clear future directions 

identifying the need for extra efforts to be taken in terms of prevention. Since WRMSDs 

represent a major public health issue, not only through their impact on worker’s health, 

social well-being and performance, but also by their high economic burden, affecting 

companies, businesses and national health care systems (Bevan, 2015). Not surprisingly, 

the financial costs of WRMSDs in Europe are estimated at 240 billion euros, accounting 

for 2% of the gross domestic product of EU-15 (Bevan, 2015). These values are due not 

only to their high prevalence, but also to the costs associated with work absenteeism 

resulting from these disorders. In fact, a high proportion of working days lost in the EU 

Member States are due to WRMSDs, with workers suffering from WRMSDs being absent 

from work for a longer period of time compared to workers with other health problems 

(De Kok et al., 2019). 

Within the several economic sectors affected by WRMSDs, the automotive industry is 

significantly impacted mainly by the occupational exposure which workers face on a daily 
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basis at their working stations (De Kok et al., 2019). The automotive industry 

encompasses a wide range of companies and consortia involved in the several stages of 

development, manufacturing and selling motor vehicles, comprehending a large force of 

human resources and represents one of the world’s largest industries by revenue 

(Grassano et al., 2021). In fact, automotive industry is a long contributor to Portugal’s 

economy and a major employer (International Labour Organization, 2022). A significant 

body of literature, both cross-sectional and longitudinal, have identified a dose-response 

relationship between the exposure to biomechanical risk factors and the 

prevalence/incidence of WRMSDs reported in the automotive industry, mainly on the 

assembly lines (Punnett, 1998). In fact, when questioned about the pain during the 

previous 12-months, 47% of the plant and machine operators and assemblers reported 

MSSs in their shoulders, neck, and/or upper limbs, whereas 55% reported back pain (De 

Kok et al., 2019). Thus, this is one of the occupations with the highest prevalence of 

reported MS complaints (De Kok et al., 2019).  

 

MSD definition and conceptual model 

The term MSD includes a wide range of inflammatory and degenerative conditions that 

affect several tissues and structures such as muscles, tendons, ligaments, joints, and 

peripheral nerves (National Institute of Occupational Safety and Health, 2000). When 

impaired, these tissues and structures can lead to clinical syndromes such as tendon 

inflammations and related conditions (tenosynovitis, epicondylitis, bursitis), nerve 

compression disorders (carpal tunnel syndrome, sciatica), osteoarthrosis, myalgia, low 

back pain and pain in other body regions that cannot be related to a known pathology 

(National Institute of Occupational Safety and Health, 2000). Out of the different body 

segments affected by such conditions, those with higher incidence and prevalence are 

the low back, neck, shoulder, forearm, hand, and the lower extremity (National Institute 

of Occupational Safety and Health, 2000; Punnett & Wegman, 2004). 

Occupational exposures, such as biomechanical risk factors (external loads), 

organizational factors and psychosocial context variables, are strong determinants of 

MSDs (Neupane et al., 2013). This issue is elegantly explained in detail in the original 

model of Macdonald and Oakman (Macdonald & Oakman, 2015), where a mismatch 
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between the workplace factors mentioned above and the individual factors, such as the 

worker’s related abilities and skills, his personality, and genetic vulnerabilities, may 

trigger a stress response where high internal biomechanical loads can lead to discomfort, 

pain, or tissue damage in the short-term and/or long-term (Figure 2.1). This stress 

response can result in WRMSDs through several physiological pathways, for example 

those affecting “the function of the fibroblasts and myofibroblasts that reside throughout 

the body and more specifically in the fascia”, where a pro-inflammatory response and a 

dysfunctional regulation of the stress response hormones (e.g., cortisol and 

catecholamines) are also involved (Macdonald & Oakman, 2022).  

 

 
Figure 2.1 – Model of causation for MSD risk (adapted from Macdonald & Oakman, 2015) 
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Biomechanical Risk Factors and MSDs 

Within the scientific areas of study involved in WRMSDs, the science of Ergonomics plays 

an important role as it is a scientific discipline specializing in MSDs risk assessment and 

control. In the automotive industry and throughout the development and manufacturing 

processes, simple tasks such as tightening, picking up, gripping with variable intensity and 

material handling are performed in the production lines – all of which involve the 

exposure to biomechanical risk factors. From an ergonomist point of view, awareness 

must be made of the various biomechanical risk factors associated with a particular 

occupation, which, in the automotive industry, includes rapid work pace and repetitive 

motion patterns; insufficient recovery time; manual material handling of heavy loads and 

forceful manual exertions; non-neutral body postures (either dynamic or static); 

mechanical pressure concentrations; segmental or whole-body vibration; local or whole-

body exposure to cold; or a combination of these different risk factors, in addition 

potentially associated with the organizational and psychosocial factors (Macdonald & 

Oakman, 2022; Punnett & Wegman, 2004). Looking at the current literature, several 

observational, cross-sectional and prospective studies have associated some of these risk 

factors with MSSs in multiple body regions (Coggon et al., 2013; Guerreiro et al., 2020; 

Hallman et al., 2019; Subas Neupane et al., 2017; Punnett, 1998). For instance, in their 

systematic review Da Costa and Vieira (Da Costa & Vieira, 2010) reported that awkward 

postures were related with increased pain in the neck and lower back regions across 

several industries, whereas force application was associated with wrist and shoulder pain. 

All these body segments comprise the major regions reported as having musculoskeletal 

complaints in the automotive industry (Nordander et al., 2016). Moreover, among these 

biomechanical factors, manual material handling of heavy loads, vibrations and awkward 

postures are among the strongest predictors of MSSs, probably related with the high 

internal biomechanical loads (Mayer et al., 2012; National Institute of Occupational 

Safety and Health, 2000; Punnett & Wegman, 2004). Nonetheless, all these studies have 

focused on the long-term relationship between musculoskeletal complaints and exposure 

to risk factors without exploring the acute changes on self-reported pain in the short-

term, which may have important information on the early symptoms and development 

of MSDs. Since the sooner a MSD is managed, the less likely it will develop into a chronic 
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condition that leads to a loss of productivity and reduced wellbeing (De Kok et al., 2019), 

it is important for industries and companies to study the short-term relationship between 

known risk factors and musculoskeletal complaints and analyze which solutions may 

better suit their assembly lines.  

 

Job rotation plans and relationship with MSDs 

The science of Ergonomics plays a pivotal role in mediating the working conditions of 

workers to improve their health and well-being, while accounting for the needs of 

industries and companies to maintain their levels of productivity (Macdonald & Oakman, 

2022). In the automotive industry, several approaches have been pursued with the goal 

to eliminate or mitigate the exposure to potential risk factors, such as changes in tools, 

workplace conditions, and manufacturing processes, either on the early or ongoing stages 

of product development (Figure 2.2). However, these changes are dependent on the 

feasibility of their implementation and may face significant roadblocks due to logistical or 

financial reasons. In such scenarios, companies tend to rely on more cost-effective 

solutions such as organizational measures, where the job rotation solution is often seen 

as a more viable approach (Padula et al., 2017).  

 

Figure 2.2 – Measures to reduce MSD risk in the workplace 
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The emergence of the term job rotation dates to the 1940s and 1950s, when work design 

methods began to counteract the simplification, specialization, and repetitiveness that 

dominated early 20th-century Taylorist work design (Morris, 1956; Tucker, 1941). Job 

rotation plans were first introduced as organizational strategies with the aim of improving 

the production time, costs, and quality of existing manufacturing assembly lines by 

increasing the flexibility and know-how of their workers (Padula et al., 2017). According 

to the European Foundation for the Improvement of Living and Working Conditions 

(2017) (Eurofound, 2017), 45% of workers in the EU practiced job rotation in 2015. 

Although the original reason was related to lean production, job rotation plans were also 

designed to have a reduction in MSDs in mind through mitigating ongoing exposure to 

risk factors (Comper & Padula, 2014; Padula et al., 2017). Job rotation plans have been 

implemented in several industries to improve work diversity, ensure an equal workload 

among workers, (Aryanezhad et al., 2009) and reduce work monotony and the 

accumulation of fatigue (Asensio-Cuesta, Diego-Mas, Cremades-Oliver, et al., 2012). The 

concepts of diversity and variability are important constructs to ensure the safety, health 

and well-being of workers, while simultaneously improving the sustainability and 

resilience of the workforce (Mathiassen, 2006). For example, the establishment of a job 

rotation strategy encourages the worker’s ability to perform multiple work tasks at 

multiple workstations, thus providing the manufacturing industry with greater flexibility 

to counteract the effects of absenteeism (Padula et al., 2017). Therefore, it is with no 

surprise that job rotation plans are recommended as an organizational measure to reduce 

workplace exposure to multiple risk factors and thus increase variability and reduce 

worker fatigue and monotony (Jorgensen et al., 2005; Rodriguez & Barrero, 2017; Yung 

et al., 2012). 

 

Job rotation plan as a solution  

Despite the aforementioned benefits of job rotation plans, conceiving one can be 

complex due to the number of variables and combinations that have to be considered 

during the design and conception phases. Moreover, the greater the number of variables 

included in the job rotation, the higher the amount of combinations possible, which 

represents an increase in the complexity of this combinatorial problem (Carnahan et al., 
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2000). When looking at the current scenario of manufacturing plants of the automotive 

industry, job rotation plans are widely disseminated in their production lines, however, 

the majority are conceived by the team leaders (or through management) by hand and 

on their own working schedule (Eurofound, 2017). This process can raise different 

implications, such as:  

• Additional work burden to the team leaders who already have other 

responsibilities, and where the design of the job rotation plan can be seen as a 

complex and demanding chore distracting them from their main tasks; 

• Despite their working experience, team leaders do not have the know-how and 

expertise to establish consistent and objective decision criteria to support and 

help their decision-making process in designing job rotation plans, while 

accounting for occupational exposure to biomechanical risk factors of each 

workstation, the diversity of the working sequence and the workload balance of 

their team;  

• Finally, in cases where an immediate solution is needed due to external factors, 

such as unscheduled absenteeism, job rotation plans are redesigned without a 

supportive assessment of the implication of sudden changes in the occupational 

exposure of workers and workload balance of the teams.  

Therefore, a computer assisted method to support the decision tasks of team leaders and 

other professionals in the design of job rotation schedules would be valuable and of great 

importance. Several studies have proposed solutions for the automatic design of job 

rotation plans with all of the solutions presenting optimization algorithms to solve this 

combinatorial problem (Bhasin et al., 2016; Digiesi et al., 2018; McDonald et al., 2009; 

Rajabalipour Cheshmehgaz et al., 2012). In the following sub-chapter, we will address 

some of these solutions and both their strengths and limitations.  

 

The design of job rotation plans 

The current body of literature has proposed several solutions for the automatization of 

job rotations plans (Bhasin et al., 2016; Digiesi et al., 2018; McDonald et al., 2009; 

Rajabalipour Cheshmehgaz et al., 2012). Various types of methodologies have been 
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identified so far, adopting different taxonomies that can depend on the available 

variables, the organizational context and the purpose of optimization. Regardless, all the 

solutions present optimization algorithms to solve this combinatorial problem, such as: 

mixed-integer programming to upper extremities (Boenzi et al., 2013; Digiesi et al., 2018; 

Xu et al., 2012), minimizing net present cost within a lean manufacturing cell (McDonald 

et al., 2009), multi-criteria fuzzy-genetic algorithms for assembly line balancing 

(Rajabalipour Cheshmehgaz et al., 2012) and a diploid genetic algorithm (GA) in dynamic 

environment (Bhasin et al., 2016).   

When looking at examples in the automotive industry, a heuristic was proposed to 

maximize diversification by setting criteria that characterizes the workplace by 

movements, general capacities, mental and communication capacities (Diego-Mas et al., 

2009). In this model, GA is selected as the optimization method and diversification is 

mostly accomplished by including penalizations when subsequent rotations have similar 

characteristics. The same authors presented another GA to design job rotation plans 

(Asensio-Cuesta, Diego-Mas, Cremades-Oliver, et al., 2012). In this case, in addition to 

ergonomic variables derived from the Occupational Repetitive Action (OCRA) method 

(Colombini & Occhipinti, 2016), a competence criterion, related with product quality and 

employee satisfaction, was used as well. All of these environmental and organizational 

factors were integrated in the fitness function and optimized by means of the GA 

(Asensio-Cuesta, Diego-Mas, Cremades-Oliver, et al., 2012). In a different investigation, 

the focus was to reduce the accumulated risk by enhancing posture diversity by a multi-

criteria methodology (Rajabalipour Cheshmehgaz et al., 2012). In this case, the model 

relies on the cycle time, overall physical workload and accumulated risk of posture based 

on the Ovako Work Assessment System (OWAS) (Karhu et al., 1977) scores for each body 

segment, and uses a fuzzy GA as the search algorithm (Rajabalipour Cheshmehgaz et al., 

2012).  

Based on these previous investigations, several risk assessment methods (e.g., OCRA and 

OWAS) have been used in the mathematical models to improve the fitness function and 

the job rotation plans. Another example of a risk assessment method lies with the 

European Assembly Worksheet (EAWS) method (Appendix 1), which is also used in the 

literature as an integral of the fitness function (Schaub et al., 2013). For instance, the 

variables of the EAWS method were used to characterize the risk factors of each 
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workstation and implemented as an objective function as the sum of time-weighted 

period scores (Otto & Scholl, 2013). In this scenario, the methodology implements a naive 

construction procedure and a smoothing heuristic (Otto & Scholl, 2013). Another example 

can be observed in a job rotation plan, where a linear programming-based heuristic is 

proposed to search for short-term staff planning. The methodology uses the workplace's 

exposure from EAWS, the workers' qualifications and the most recent allocation of each 

worker (Hochdörffer et al., 2018).  

There are several investigations that developed heuristics that use occupational variables 

based on risk assessment methods and organizational variables that include 

qualifications, absenteeism and/or impairment restrictions (Asensio-Cuesta, Diego-Mas, 

Canós-Darós, et al., 2012; Asensio-Cuesta, Diego-Mas, Cremades-Oliver, et al., 2012; 

Carnahan et al., 2000; Diego-Mas et al., 2009; Hochdörffer et al., 2018; Otto & Scholl, 

2013; Rajabalipour Cheshmehgaz et al., 2012). In addition, regarding occupational 

variables, there is an increased interest in including diversity and variability factors in the 

methodologies (Mathiassen, 2006). In fact, regardless of the method chosen to conceive 

a job rotation plan (e.g., GA, mixed-integer programming to upper extremities) and the 

use of different criteria and risk factors (i.e., biomechanical, organizational, and 

psychosocial) to establish the fitness function, the concept of diversity is a common 

feature for most mathematical formulations addressed in these studies. 

Despite the known importance of diversity in the conception of job rotation plans, there 

are also other criteria that may have a significant impact in the reduction of MSDs and 

that should not be overlooked, such as the homogeneity (i.e., balanced effort) between 

workers and the overall exposure (i.e., daily demand) to risk factors. On this topic, there 

are currently no suitable solutions in the automotive industry that encompass diversity, 

homogeneity, and exposure, while using objective ergonomic indicators to build a job 

rotation plan. In the next sub-chapter, the main objectives for the current dissertation 

will be addressed that will help overcome the referred shortcomings in the literature 

review of this dissertation. 
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2.2. Thesis goals 

The present dissertation presents three research studies conducted under the framework 

of MSDs in the automotive industry and possible strategies to mitigate the exposure of 

known biomechanical risk factors.  

 

In Study 1 (chapter 3) we set forward a short-term prospective study aimed to determine 

the associations between biomechanical risk factors and MSSs in the upper limbs and low 

back in a production line of an automotive company. This is particularly important given 

that most studies were designed having in mind the long-term associations of MSS and 

biomechanical risk factors, whereas we focused on the acute changes of MSS reported in 

the morning and afternoon period throughout a workweek.  

 

Study 2 (chapter 4) was conducted with a two-fold objective: 1) to conceive a 

mathematical formulation based on objective ergonomic indicators and a worker’s 

qualifications to generate a job rotation plan solved by means of a GA in the automotive 

industry; and 2) provide an industrial case study where the GA was tested and applied on 

a single team of the assembly line, in order to be compared to team leaders’ job rotation 

plan. This investigation overcomes the shortcomings presented in the literature by 

integrating the diversity, homogeneity, and exposure criteria in the fitness function 

whereas most of the previous investigations focused only on the diversity issue.  

 

Study 3 (chapter 5) expands the objectives established in Study 2 by comparing the results 

of the GA with those provided by the team leader in a larger sample of teams of the 

assembly line. Therefore, this study aimed to evaluate and compare the effectiveness of 

the GA and the team leader to develop a job rotation plan. 
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Abstract 

To determine the short-term associations between biomechanical risk factors and 

musculoskeletal symptoms in the upper limbs and low back in an automotive company, a 

longitudinal study with a follow-up of 4 days was conducted in a sample of 228 workers of the 

assembly and paint areas. Data were analyzed using generalized estimating equations, 

calculating the crude and adjusted model for age, sex, seniority, and intensity of pain at 

baseline. The interactions found were the same for both models. Workers were divided in 

low-risk and high-risk group for posture, force, exposure, percentage of cycle time with the 

arm at/above shoulder level, and with the trunk flexed or/and strongly flexed. The predictive 

factors showed by time x group effect were found between pain intensity on the left shoulder 

for posture (β = 0.221, p < 0.001), percentage of time with the trunk flexed (β = 0.136, p = 

0.030) and overall exposure (β = 0.140, p = 0.013). A time x group interactions were observed, 

namely between neck pain and posture (β = 0.218, p = 0.005) and right wrist and force (β = 

0.107, p = 0.044). Workers in the high-risk group were more prone to report unfavorable 

effects on their self-reported musculoskeletal pain, across a workweek when exposed to 

specific risk factor, being posture important to neck, right wrist, and left shoulder pain. 

Keywords: short-term musculoskeletal pain; biomechanical factors; posture; force; exposure 
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3.1. Introduction 

Musculoskeletal disorders (MSDs) and symptoms (MSSs) are the most common work-related 

health problem in the European Union, impacting workers and employers across all economic 

sectors and occupations. Besides, MSDs have a high economic and social burden, affecting 

not only companies and businesses but also society’s health care systems (De Kok et al., 2019). 

Data from 31,612 workers reported in the 2015 sixth wave of the European Working 

Condition Survey showed that three out of five workers in the European Union-28 had MSDs 

(De Kok et al., 2019). The most common complaints were back (43%) and the upper limbs 

(41%) pain. Moreover, when questioned about the pain during the previous 12-months, 47% 

of the plant and machine operators and assemblers reported MSSs in the shoulders, neck, 

and/or upper limbs, whereas 55% reported back pain (De Kok et al., 2019). Thus, this is one 

of the occupations with the highest prevalence of reported musculoskeletal complaints (De 

Kok et al., 2019). Simple tasks such as tightening, picking up, and material handling, 

performed in the automotive production line have been suggested as the culprit behind the 

high incidence of MSDs (Zare et al., 2016). These types of operations have highly repetitive 

tasks, forceful exertion, and awkward postures, among other known biomechanical risk 

factors (Ohlander et al., 2019; Punnett, 1998; Spallek et al., 2010). Furthermore, short work 

cycles and insufficient recovery time related to the assembly line have often cumulative 

effects on mechanical load in the exposure during the work shift (Punnett, 1998; Visser & Van 

Dieën, 2006; Winkel & Mathiassen, 1994). 

Among the most subjective symptoms of MSDs are sensations of constant muscle fatigue and 

stiffness accompanied by radiating pain (Visser & Van Dieën, 2006). Despite the fact that 

MSDs are one of the most common health problems in the automotive industry (Bernard, 

1997; Nordander et al., 2016), where heterogeneous work tasks may be found (Neupane et 

al., 2017), short-term pain trajectory (e.g., one week) has received limited attention in the 

workplace. Most of the literature addressing the importance of perceived symptoms has 

focused on the cross-sectional (Coggon et al., 2013; Punnett, 1998) and long-term longitudinal 

(Da Costa & Vieira, 2010; Guerreiro et al., 2020; Hallman et al., 2019; Neupane et al., 2017) 

associations between physical and psychosocial factors, and MSSs with no studies addressing 

the short-term associations in the automotive industry. Understanding how early MSSs, 
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before or after a work shift, evolve throughout a workweek, while exposed to different 

biomechanical risk factors, may provide valuable insight on the progression of symptoms and 

prevention of MSDs, such as which time of the day may be more sensitive to detect 

differences in pain reporting (Punnett & Wegman, 2004; Thi Thu Tran et al., 2016). In fact, 

when looking at exposure-response models, mainly on the short-term effects, the 

repercussions of the external exposure (i.e., biomechanical risk factors such as posture, force, 

etc.) on internal exposure (acute responses at system, tissue, cellular, and molecular level) 

during the working day and some hours after, may have serious medium to long-term 

implications on workers’ health if not followed by a proper recovery (van der Beek & W Frings-

Dresen, 1998). This issue is of utter importance, since these short-term effects may lead to 

more permanent symptoms and/or clinical disorders, most of the time accompanied by a 

decrease in work capacity and a negative impact in the productivity (Stigmar et al., 2013). 

Therefore, this study aims to determine the prospective associations between biomechanical 

risk factors and MSSs in the neck, upper limbs, and low back in a production line of an 

automotive company throughout a workweek. 

 

3.2. Materials and Methods 

Study Design 

This research has a prospective study design, which was conducted between June and July 

2019 among a production line of a large automotive company. 

 

Participants 

A total of 302 workers (α = 5%, β = 0.20, d = 0.5, 20% of MSSs prevalence in the automotive 

industry, and a 15% drop-out) (Charan & Biswas, 2013) divided into 16 randomly selected 

teams from the assembly and paint areas, were invited to participate in this study. This 

sample was initially selected from a broader project aiming to develop a mathematical 

formulation to generate job rotation plans to teams in the production line of an automotive 

industry. 
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The study involved one week of work, which started after two days off, followed by 5 

consecutive days of work. The eligibility criteria included having a contract with the company, 

being allocated to assembly and paint areas, having at least 3 months of seniority, not have 

any medical restrictions to perform the job assessed by the plant medical doctor, and not 

being a temporary worker. Workers and management in the company were informed at the 

organizational level first. The week before starting the data collection, the researcher met 

with all the workers from each team to explain the study aim, protocol, and provide detailed 

information on how to proceed during the data collection period. All participants gave their 

written informed consent before their participation in the study.  

 

Self-Reported Musculoskeletal Symptoms 

During the workweek (4 consecutive days), workers were asked to report their daily 

symptoms intensity in 10 body regions (neck, right and left shoulder, right and left elbow, 

right and left wrist, right and left hand/finger, and low back) using a numeric rating scale 

(Jensen et al., 1986). In this scale, workers reported a number between 0 and 10 that fitted 

their MSSs intensity, where 0 represents “no pain” and 10 “the worst pain” (Jensen et al., 

1986). On the first day, the researcher individually handled the questionnaires to workers and 

explained how to fill them out throughout the week. Every day the workers reported their 

symptoms intensity immediately before and after the shift. The symptoms intensity reported 

at the beginning and at the end of the shift was used in the analysis.  

The job rotation plan and the workstations assigned for each worker, during the data 

collection week, were provided by each Team Leader. The job rotation plan of each worker 

was collected to provide information about their individual daily and weekly exposure from 

each workstation.  

 

Biomechanical Risk Factors  

The biomechanical risk factors were assessed using the European Assembly Worksheet 

(EAWS), by certified ergonomists working within the company. This method is often used and 

validated in the automotive industry (Schaub et al., 2013). The theoretical model that 

supports this method overcome the traditional concept of limiting values of NIOSH 
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(recommended weightlifting) (National Institute for Occupational Safety and Health, 2007) 

and in the ISO 11226, ISO 11228-1, ISO 11228-2, and ISO 11228. 

The EAWS method results in a traffic light scheme point to classify the exposure severity level 

of each workstation evaluated. EAWS is divided in four sections for the evaluation of (1) 

working postures and movements with low additional physical efforts; (2) action forces of the 

whole body or hand-finger system; (3) manual material handling (>3 kg); (4) repetitive loads 

of the upper limbs. 

 

Posture 

In the first section, static working postures and high frequent movements were estimated. 

Working postures for standing, sitting, bending, kneeling, crouching, lying, and climbing were 

rated. Asymmetric postures for the trunk, such as trunk rotation, lateral bending, and far 

reach, were also evaluated. For this section the longer the time spent in unfavorable 

conditions, the higher the score for this risk factor.  

Posture—Percentage of Cycle Time 

Within the partial scores for posture, the variables percentage of cycle time with the arm 

at/above shoulder level (%CT shoulder), and percentage of cycle time with the trunk bent or 

strongly bent (%CT bent) were defined as the percentage of time that each worker is exposed 

to these awkward postures during the cycle time of that workstation.  

 

Force 

Whole body and hand-finger action forces above 30 to 40 N, respectively, were considered in 

the second section of the EAWS method. A total score for force was derived by multiplying 

the intensity and the duration (static)/frequency (dynamic) of force exertions. Finally, the 

variable exposure represents the total score for a specific workstation and the variables 

posture and force were defined by the partial scores for each of these risk factors. 
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Demographic Data  

Demographic data concerning age, sex, and seniority for all workers was collected by 

documental search from Human Resources Department and was provided by the company 

before the assessments. 

Statistical Analysis 

Given the high drop-out rate on the 5th day of assessments, only the first 4 days were 

considered in the analyses. A descriptive analysis was carried out to present sample baseline 

characteristics and mean scores for MSSs over the 4 days follow-up period. Mean scores and 

standard deviation were calculated for the whole population and for the sub-groups that 

were defined according to the different risk factors: posture, force, %CT shoulder, and %CT 

bent. These sub-groups were established based on the tertiles of the EAWS results. The low-

risk sub-group included the first 2 tertiles and the high-risk group, the upper tertile. Thus, the 

cut-offs to be allocated in each of the high-risk groups were: having a total exposure score 

above 33.63; a posture score above 20.39; for force risk factor a score above 8.21 points; for 

the risk factor %CT shoulder a score above 10.18, and the %CT bent risk factor a score above 

10.59. 

Comparisons between groups (low risk and high-risk groups for each of the EAWS variables) 

at baseline were performed using the parametric independent sample t-tests for those 

normally distributed outcomes (i.e., age, seniority) and the non-parametric Mann–Whitney 

test in the absence of normality distribution on the variables (i.e., self-reported symptoms).  

Generalized estimating equations (GEE) were used to analyze the between-group and within-

group changes for MSS and the least significant differences were used for post hoc test 

(Ballinger, 2004; Lipsitz et al., 1994). Unadjusted models were performed as well as models 

adjusted for potential confounding factors including age, seniority, gender, and baseline 

symptoms if differences between groups at baseline were observed. A linear distribution for 

the response was assumed and an autoregressive correlation matrix was set to the data 

(Ballinger, 2004; Lipsitz et al., 1994). 

Statistical analysis was performed using IBM SPSS Statistics version 25.0 (SPSS Inc., an IBM 

company, Chicago, IL, USA). For all tests, statistical significance was set at p < 0.05. 
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3.3. Results 

Sample Characteristics and Exposure 

All the 302 workers, who were invited to participate in the study, filled the baseline 

questionnaire. However, the final sample included 228 workers, since 74 had to be excluded 

given the lack of ID in the follow-up questionnaires. The decision to remove the fifth day was 

justified by the dropout rate on the final day of the workweek.  

The baseline characteristics of workers are presented in Table 3.1. The workers’ mean age 

was 30.0 ± 7.1 years, the seniority was 2.0 ± 3.8 years and 39.5% were females. In the total 

exposure and posture groups, statistically significant differences were found in seniority 

between groups. There were no statistical differences in the workers’ mean age and between 

genders across the exposure groups.
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Table 3.1 - Sample characteristics, according to each of the risk factors and low-risk and high-risk groups 

 
Exposure Posture Force %CT Shoulder %CT Bent 

Total Sample 
(n=228) 

 Low Risk 
(n=152) 

 High risk 
(n=76) 

Low Risk 
(n=152) 

 High risk 
(n=76) 

Low Risk 
(n=152) 

 High risk 
(n=76) 

Low Risk 
(n=152) 

 High risk 
(n=76) 

Low Risk 
(n=152) 

 High risk 
(n=76) 

Age (years) 30.3±7.4 29.7±6.5 30.4±7.3 29.4±6.7 30.1±6.8 29.8±7.6 29.7±6.9 30.7±7.4 30.2±7.2 29.6±6.9 30.0±7.1 

Seniority (years) 2.3±4.5 1.2±1.6* 2.9±4.4 1.3±2.2* 2.0±3.9 1.8±3.6 1.9±3.9 2.0±3.7 2.1±4.0 1.6±3.4 2.0±3.8 

Gender (% female) 39.1 40.8 39.5 39.5 38.4 42.1 44.1 30.3 36.8 44.7 39.5 

*significance p<0.05 
%CT shoulder – percentage of cycle time with the arm in extreme posture (at/above shoulder level); %CT bent - percentage of cycle time with the trunk bent or strongly bent. 
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Musculoskeletal Symptoms Tendency according to Work Exposure 

Figures 3.1 and 3.2 depict the information of the within-group changes throughout the 

workweek on the symptoms reported in different body segments assessed at the beginning 

and the end of the shift, in workers categorized in the high vs low-risk group according to 

exposure, force, posture, %CT shoulder and %CT bent risk factors. We found a within-group 

changes with a negative trend for the symptoms reported on both shoulders and right wrist 

in those categorized as the low-risk group in all the risk factors (p < 0.05). Similarly, we 

observed a negative trend throughout the week for neck symptoms reported by the low-risk 

group in what concerns posture and %CT bent risk factors, and for low back symptoms in the 

posture low-risk group. Conversely, we observed no within-group changes in the MSS 

reported at the beginning of the shift throughout the week. 
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Figure 3.1 - Trajectory of MSS reported at the end of the shift during the 4 days of data collection. (a) Within-group changes 
are shown for exposure and left shoulder; (b) within-group changes are shown for exposure and right elbow; (c) within-group 
changes are shown for force and right shoulder; (d) within-group changes are shown for force and right wrist; (e) within-
group changes are shown for %CT bent and neck; (f) within-group changes are shown for %CT bent and right shoulder; (g) 
within-group changes are shown for %CT bent and left shoulder; (h) within-group changes are shown for %CT bent and right 
wrist. * Within-group changes for afternoon group significant at p < 0.05. 
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Figure 3.2 - Trajectory of MSS reported at the end of the shift during the 4 days of data collection. (a) Within-group changes 
are shown for posture and neck; (b) within-group changes are shown for posture and low back; (c) within-group changes are 
shown for posture and right shoulder; (d) within-group changes are shown for posture and left shoulder; (e) within-group 
changes are shown for posture and right wrist; (f) within-group changes are shown for %CT shoulder and right shoulder; (g) 
within-group changes are shown for %CT shoulder and left shoulder; (h) within-group changes are shown for %CT bent and 
right wrist. * Within-group changes for afternoon group significant at p < 0.05. 
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Predictive Models of Musculoskeletal Symptoms 

Table 3.2 summarizes the results for the within and between-group interaction effects with 

each biomechanical risk group, adjusted for age, gender, seniority, and baseline values 

whenever differences were found between groups for baseline measurements. Following 

adjustments, most of the between-group effects were found at the end of the shift. As a 

result, those the predictive factors are allocated to the high-risk group for the exposure (β = 

0.140, p = 0.013), posture (β = 0.221, p < 0.001), and %CT bent (β = 0.136, p = 0.030) had a 

significant interaction for symptoms reported in the left shoulder when compared to those in 

the low-risk group. For the symptoms reported in the neck and right wrist region, we can 

conclude that the predictive factors with significant interaction effect in the high-risk group 

were posture (β = 0.218, p = 0.005) and force risk factors (β = 0.107, p = 0.044), respectively. 

Finally, at the beginning of the shift, the left shoulder region also had an interaction effect for 

posture in those in the high-risk group (β = 0.053, p = 0.008), when compared to those in the 

low-risk group. 
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Table 3.2 - Within and between-group changes in MSS in different body regions for different biomechanical risk factors, after 
a workweek. Betas (β) are presented as unstandardized coefficients adjusted. The model is adjusted for gender, age, 
seniority, and baseline whenever differences were found between the low-risk and high-risk groups, with the respective 95% 
confidence intervals. 

Symptoms at the beginning of the shift 

 Exposure Posture Force %CT Shoulder %CT Bent 

Body 
regions 

High risk * Low 
Risk  

β 
(95%CI) 

High risk * Low 
Risk  

β 
(95%CI) 

High risk * Low 
Risk  

β 
(95%CI) 

High risk * Low 
Risk  

β 
(95%CI) 

High risk * Low 
Risk  

β 
(95%CI) 

Neck 
0.010 

(-0.103-0.123) 
0.089 

(-0.015-0.193) 
-0.049 

(-0.156-0.058) 
-0.046 

(-0.172-0.081) 
0.028 

(-0.085-0.141) 

Low Back 
0.020 

(-0.112-0.152) 
0.124 

(-0.001-0.249) 
0.007 

(-0.106-0.120)† 
-0.002 

(-0.147-0.143) 
0.044 

(-0.084-0.173) 
Right 
Shoulder 

0.010 
(-0.107-0.126) 

0.093 
(-0.021-0.208) 

0.013 
(-0.085-0.111)† 

-0.047 
(-0.178-0.084) 

0.014 
(-0.107-0.136) 

Left 
Shoulder 

0.055 
(-0.010-0.119)† 

0.053 
(0.002-0.104)* † 

-0.033 
(-0.097-0.030)† 

0.035 
(-0.035-0.104) 

0.054 
(-0.021-0.129) 

Right Elbow 
0.018 

(-0.036-0.072) 
0.013 

(-0.042-0.067) 
0.012 

(-0.039-0.064) 
0.011 

(-0.042-0.064) 
-0.010 

(-0.070-0.050) 

Left elbow 
0.040 

(-0.009-0.089)† 
0.026 

(-0.014-0.067)† 
0.018 

(-0.036-0.072) 
0.000 

(-0.054-0.054) 
-0.015 

(-0.083-0.054) 

Right wrist 
0.008 

(-0.116-0.106) 
0.050 

(-0.058-0.159) 
0.068 

(-0.017-0.153)† 
-0.029 

(-0.149-0.091) 
0.035 

(-0.075-0.144) 

Left wrist 
-0.012 

(-0.091-0.068) 
0.064 

(-0.019-0.147) 
-0.009 

(-0.087-0.070) 
0.006 

(-0.081-0.093) 
0.017 

(-0.068-0.102) 
Right 
hand/fingers 

0.005 
(-0.107-0.117) 

0.038 
(-0.075-0.1519 

-0.027 
(-0.130-0.076) 

-0.050 
(-0.177-0.076) 

0.003 
(-0.112-0.118) 

Left 
hand/fingers 

0.002 
(-0.091-0.094) 

0.025 
(-0.039-0.089) 

-0.019 
(-0.103-0.064) 

-0.040 
(-0.147-0.067) 

0.051 
(-0.046-0.147) 

Symptoms at the end of the shift 

 Exposure Posture Force %CT Shoulder %CT Bent 

Body 
regions 

High risk * Low 
Risk  

β 
(95%CI) 

High risk * Low 
Risk  

β 
(95%CI) 

High risk * Low 
Risk  

β 
(95%CI) 

High risk * Low 
Risk  

β 
(95%CI) 

High risk * Low 
Risk  

β 
(95%CI) 

Neck 
0.002 

(-0.150-0.154) 
0.218 

(0.067-0.368)* 
-0.002 

(-0.129-0.126)† 
0.015 

(-0.131-0.162) 
0.113 

(-0.041-0.267) 

Low Back 
0.063 

(-0.107-0.233) 
0.143 

(-0.026-0.311) 
0.108 

(-0.036-0.252)† 
-0.008 

(-0.180-0.164) 
0.054 

(-0.111-0.220) 
Right 
Shoulder 

-0.027 
(-0.169-0.115)† 

0.092 
(-0.060-0.245) 

0.030 
(-0.106-0.167)† 

0.030 
(-0.127-0.188) 

0.080 
(-0.066-0.227) 

Left 
Shoulder 

0.140 
(0.030-0.251)*† 

0.221 
(0.102-0.339)* 

0.004 
(-0.108-0.117)† 

0.075 
(-0.049-0.199)† 

0.136 
(0.013-0.260)* 

Right Elbow 
0.007 

(-0.068-0.082)† 
0.055 

(-0.042-0.152) 
0.015 

(-0.057-0.088)† 
-0.010 

(-0.117-0.098) 
0.011 

(-0.060-0.081)† 

Left elbow 
0.031 

(-0.040-0.102)† 
0.067 

(-0.016-0.150) 
0.007 

(-0.064-0.078)† 
-0.008 

(-0.092-0.077) 
0.016 

(-0.071-0.102) 

Right wrist 
0.005 

(-0.131-0.141) 
0.020 

(-0.114-0.153) 
0.107 

(0.003-0.211)*† 
-0.050 

(-0.191-0.090) 
0.084 

(-0.049-0.218) 

Left wrist 
0.056 

(-0.071-0.183) 
0.103 

(-0.029-0.235) 
0.081 

(-0.041-0.203) 
0.039 

(-0.107-0.186) 
0.065 

(-0.060-0.191) 
Right 
hand/fingers 

-0.084 
(-0.299-0.061) 

-0.013 
(-0.157-0.130) 

-0.001 
(-0.126-0.125)† 

-0.046 
(-0.199-0.107) 

-0.094 
(-0.239-0.052) 

Left 
hand/finger 

-0.062 
(-0.175-0.050) 

0.051 
(-0.070-0.172) 

0.047 
(-0.057-0.150)† 

-0.014 
(-0.142-0.114) 

0.063 
(-0.055-0.180) 

*Between-group changes significant at p < 0.05; † within-group changes significant at p < 0.05 
95% CI – 95% confidence interval; %CT shoulder – percentage of cycle time with the arm in extreme posture (at/above 

shoulder level); %CT bent - percentage of cycle time with the trunk bent or strongly bent. 
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3.4. Discussion 

This study aimed to determine the prospective associations between biomechanical risk 

factors and MSSs in the upper limbs and low back in a production line of an automotive 

company throughout a workweek. 

To our knowledge, this is the first study to analyse the prospective short-term associations 

between biomechanical risk factors and MSS in the upper limbs and low back, in a production 

line of an automotive company during a workweek. The main findings were that during this 

period the intensity of self-reported MSS was less favorable in the high-risk group, for selected 

biomechanical risk factors, such as overall exposure, force, posture, and %CT bent, specifically 

on neck, shoulder, and wrist segments, when compared with the low-risk group. These 

associations were more pronounced after the shift when compared to the beginning of the 

shift. These results suggest that workers in the high-risk groups of these specific risk factors 

may be more susceptible to have increased MSS. Thus, if continuous exposure to such 

conditions is maintained, these workers will have greater odds for future MSDs. 

Given the MSDs’ impact in the occupational context, more specifically in the automotive 

industry, it is paramount to understand which specific risk factors increase the incidence of 

MSDs and how to assess and detect early signs and symptoms of this condition. Our results 

add upon the current literature by showing that one week of work can alter the self-reported 

MSS of workers in the automotive industry depending on the exposure to a given risk factor 

and the body segment analyzed. For instance, and considering the posture risk factor, workers 

who were categorized in the high-risk group had higher MSSs scores for both neck and left 

shoulder body regions. Moreover, the shoulder region was also identified as a specific region 

of interest, since a time x group interaction was also found for exposure, and the %CT bent 

risk factors, favoring the low-risk group. Likewise, we also observed time x group interaction 

in the force risk factor for the right wrist region. Given that posture has been identified as an 

established risk factor for MSDs (Bernard, 1997; Hoogendoorn et al., 1999; National Research 

Council & Institute of Medicine, 2001; van der Windt et al., 2000) and since it is composed by 

%CT shoulder and %CT bent, there was either a within-group changes alone or time x group 

interaction for the left shoulder, special attention should be given to this risk factor, on the 

short-term management of workers exposure. The literature on the MSDs incidence and the 
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connection between self-reported symptoms for the neck and posture risk factor 

(Christensen & Knardahl, 2010; Heuvel et al., 2006), as well as wrist symptoms and force risk 

factor has also been established (Silverstein et al., 1986), and hence should also be monitored. 

Beyond the be-tween-group effects, within group changes were also found between different 

body regions and all risk factors, reinforcing the notion that those in the low-risk group may 

also benefit from the decreased intensity of self-reported symptoms over the working week. 

These changes can be observed across all risk factors, being the right wrist, right shoulder, 

and left shoulder the most affected regions. Even though it was absent from the between 

group changes, the low back region had a time-effect for the low-risk group in the posture 

risk factor. This region has been previously identified as one of the body segments with a high 

prevalence for MSSs (Bláfoss et al., 2019), in which posture is considered a risk factor 

(Bernard, 1997). In fact, when considering other industries, frequent occupational lifting has 

been associated to short-term increase in reported low back symptoms. Our study found 

similar results to those of Andersen at al. (Andersen et al., 2017) where the increase in 

symptoms intensity was of small magnitude during the study period. Nonetheless, our study 

did not assess occupational lifting, but unfavorable postures adopted by workers during the 

workday may be the underlying cause of low back symptoms (Zare et al., 2016).  

Our results are in accordance with previous studies, some with cross-sectional (Punnett, 

1998), others with long-term prospective designs (Da Costa & Vieira, 2010; Punnett & 

Wegman, 2004) showing that disorders in the upper limbs such as shoulders, and wrists 

increased markedly with overall exposure scores, composed by biomechanical risk factors 

such as awkward postures and forceful exertions. Regarding neck self-reported symptoms, 

Da Costa et al. (Da Costa & Vieira, 2010), in a systematic review of prospective studies, also 

provided evidence on the connection between awkward postures and increased 

symptomatology in this body region, across several industries and workplaces. However, 

none of these studies accessed self-reported symptoms in the short-term (i.e., such as during 

a workweek), which might provide valuable insight into early symptoms, since a shorter 

duration of shoulder MSS, among others, is a predictor of greater improvement in disability 

(Kennedy et al., 2006). Therefore, assessing MSS during a shorter period could be a way to 

prevent or help improve the outcomes of an injury, thus affecting the incidence of long-term 

MSDs. 
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In this study, even though the average intensity of the self-reported MSSs were scored as mild 

(1–3) (Krebs et al., 2007), it is still noteworthy that the interaction observed on the exposure 

to these specific risk factors might help, through a cumulative manner, on the management 

of long-term risk for MSD (Kennedy et al., 2006). For instance, for the left shoulder to be in 

the high-risk group for the overall exposure, posture and %CT bent was associated with 

increased self-reported symptoms intensity, during a 4-day work period, which in the long-

term may accrue the symptoms’ intensity to a cut-off value closer to three (scale: 1–10). In 

fact, this value was identified in the literature as a criterion in the diagnosis of rotator cuff 

tendonitis (Sluiter et al., 2001). On this topic, the work developed by the team leaders at the 

production line on managing the rotation plans may prevent or aggravate the exposure to 

these risk factors. The team leaders’ rotation plans are made empirically, and without 

considering the evaluation carried out by the validated evaluation method EAWS (Schaub et 

al., 2013). Nonetheless, they are trained to actively pursue weekly changes in diversity and 

variability in overall exposure and thus, mitigate the effects of the cumulative exposure to the 

biomechanical risk factors, reducing the incidence of the MSSs. Another important factor 

concerns the initial condition of all workers, regardless of their previous week, where they 

start their workweek following a resting period of 2 days. We can speculate that both the 

rotation plan and the 2-day rest period may impact the symptoms intensity reported by the 

workers and reset their perceived symptomatology at the beginning of each week. However, 

even if there is residual symptoms from the workweek prior to the assessment, we adjusted 

all models when baseline differences were observed for self-reported MSS. Therefore, the 

time x group interactions between the high and low risk group for each of the body segments 

were irrespective of the worker’s baseline values. 

Another finding from this investigation concerns the results obtained at the end and the 

beginning of the shift, throughout the workweek. Most of the associations found for the 

within-group changes and time x group interactions were observed at the end of the shift, 

which could be explained by the fact that workers had already undergone their shift, thus 

were already exposed to all the risk factors. Interestingly, there was no within-group changes 

for the MSS reported at the beginning of the shift throughout the week, suggesting that 

workers always started on average with the same intensity of self-reported symptoms. 

Therefore, self-reported symptoms at the end of the shift may provide more valuable 
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information, especially if looking at the short-term cumulative effects for exposure. To our 

knowledge, most of the literature does not report the time of the working day when the 

symptoms was reported. In fact, one study in a seafood processing factory indicated that the 

data collected was performed after the shift, also found that 80% of their workers reported 

symptoms after the shift on upper and lower extremities, neck, and shoulders (Thi Thu Tran 

et al., 2016).  

This study is not without limitations. For instance, we did not control the models for the risk 

factors that workers were exposed in the week prior to data collection, and other important 

determinants, such as physical activity level and the handedness of the participants. However, 

when baseline differences between groups were observed for musculoskeletal intensity 

symptoms, we adjusted the models for baseline values in each of the groups (Podsakoff et al., 

2003). Regardless of the initial briefing on how to fill the questionnaires, self-reporting data 

on MSS can always be biased depending on workers’ mood and on a higher frequency of data 

collection. Despite the dropout being higher than expected (~30%), the 228 subjects included 

in the final sample still have a high variability of exposure to the risk factors, given the tasks 

performed in the production line. Moreover, the results obtained in the intention to treat 

analysis (data not shown) did not differ from those presented in this study.  

One of the methodological strengths of our study is the short-term longitudinal approach, 

which might provide valuable insight into how MSS may be related to biomechanical risk 

factors. Additionally, we provide information in several body segments, while also accounting 

for different biomechanical risk factors in both the beginning and end of the shift using a 

significant sample size. 

 

3.5. Conclusions 

In conclusion, this work suggests that workers in the high-risk groups to biomechanical risk 

factors such as posture, force, and the overall exposure had unfavorable effects on their self-

reported MSSs throughout a workweek. More specifically, the risk factor posture seems to 

have an increased contribution to the MSSs in the neck and left shoulder regions. Therefore, 

alternating exposure to such risk factors may be of relevance to the short-term period to 
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possibly prevent or help improve the MSSs, thus affecting the incidence of long-term MSDs in 

the automotive industry.  
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Abstract 

Job rotation is a work organization strategy with increasing popularity, given its benefits for 

workers and companies, especially those working with manufacturing. This study proposes a 

formulation to help the team leader in an assembly line of the automotive industry to achieve 

job rotation schedules based on three major criteria: improve diversity, ensure homogeneity, 

and thus reduce exposure level. The formulation relied on a genetic algorithm, that took into 

consideration the biomechanical risk factors (EAWS), workers’ qualifications, and the 

organizational aspects of the assembly line. Moreover, the job rotation plan formulated by 

the genetic algorithm formulation was compared with the solution provided by the team 

leader in a real life-environment. The formulation proved to be a reliable solution to design 

job rotation plans for increasing diversity, decreasing exposure, and balancing homogeneity 

within workers, achieving better results in all the outcomes when compared with the job 

rotation schedules created by the team leader. Additionally, this solution was less time-

consuming for the team leader than a manual implementation. This study provides a much-

needed solution to the job rotation issue in the manufacturing industry, with the genetic 

algorithm taking less time and showing better results than the job rotations created by the 

team leaders.  

Keywords: automotive industry, musculoskeletal disorders, prevention approach, workplace 

intervention, genetic algorithm, occupational risk factors   
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4.1. Introduction 

Musculoskeletal disorders (MSD) are the most common work-related health problem 

worldwide (Sebbag et al., 2019), being considered one of the top reasons for work 

absenteeism (Durand et al., 2014). Within this context, work-related musculoskeletal 

disorders (WRMSDs) have a significant impact on the declined working capacity and quality 

of life of workers, as well as high costs for companies and society due to productivity loss and 

healthcare services (De Kok et al., 2019). Preventing WRMSDs is especially important in 

repetitive jobs with less exposure variation, fewer breaks, and prolonged low-level exertions, 

such as that in the automotive industry (Mossa et al., 2016), since these jobs tend to be the 

reason behind the higher number of WRMSDs on the long term (Aryanezhad et al., 2009).  

Alongside other measures to reduce the incidence of WRMSD (i.e., engineering, processes, 

and product changes on the assembly line), the job rotation plans have been recommended 

as an organizational measure to reduce the exposure in workplaces to several risk factors and, 

thus, increase the variability and reduce worker fatigue and monotony (Jorgensen et al., 2005; 

Rodriguez and Barrero, 2017; Yung et al., 2012). Within the several solutions found in the 

literature to optimize job rotation plans, there are mixed-integer programming to upper 

extremities (Boenzi et al., 2013; Digiesi et al., 2018; Xu et al., 2012), minimizing net present 

cost within a lean manufacturing cell (McDonald et al., 2009), multi-criteria fuzzy-genetic 

algorithms for assembly line balancing (Rajabalipour Cheshmehgaz et al., 2012), and diploid 

genetic algorithm (GA) in dynamic environments (Bhasin et al., 2016).   

The GA stands out from the remaining solutions since it can solve complex mathematical 

problems in situations where there are a large number of possible outcomes and the 

environments are dynamic (Carnahan et al., 2000). In fact, the GA have already been 

implemented in different automotive industry scenarios with several studies using this 

approach to reduce the risk of MSDs and maximize the diversification of the job rotation plans 

(Asensio-Cuesta et al., 2012b, 2012a; Diego-Mas et al., 2009). For instance, the GA solution 

provided by Diego et al. for an automotive parts supplier assembly plant (Diego-Mas et al., 

2009), focused on maximizing the diversification while using a multi set of criteria that 

characterized the workplace by physical, mental, and communication capacities. The same 

authors also used a GA approach to design a job rotation in environments characterized by 
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high repeatability of movements (Asensio-Cuesta et al., 2012a). Compared to their previous 

work, authors added information from the Occupational Repetitive Action (OCRA) screening 

tool, in which they assessed the presence of risk factors when performing repeated 

movements. The solution was able to diversify the tasks in order to aid the recovery of 

workers in between jobs.  In a different take on this topic, Asensio-Cuesta and colleagues 

(Asensio-Cuesta et al., 2012b) developed another GA solution that considered the 

competence criterion related with product quality and employee satisfaction as a measure 

for the goodness of solutions. Although the method used is the same, the choice, the number, 

and the diversity of variables included in the model (e.g., movements, general capacities, task 

time) as well as the criteria used to establish the GA (e.g., capacity to perform the movement, 

frequency of movement per minute) differ between studies, which leads to different results 

and amplifies the lack of consensus in the literature regarding the effectiveness of rotation 

plans (Comper and Padula, 2014).  

Although most of the studies have focused on the issue of diversity for the development of 

the job rotation plans, other criteria may have a significant impact in reducing the risk of 

MSDs, and should not be overlooked, such as the homogeneity (i.e., balanced effort) between 

workers and the overall exposure (i.e., daily demand) to risk factors. Moreover, the majority 

of the GAs used in the literature relied on changes in the intensity of the task to increase the 

diversity of the job rotations, which was achieved by using specific or general ergonomic risk 

assessment metrics, differing in respect to the level of detail regarding evaluation sections 

they cover (Carnahan et al., 2000; Diego-Mas et al., 2009). Moreover, most of the studies 

covered the issue of job rotation plans in an automobile parts supplier industry, with a lack of 

information on assembly lines of big automotive plants, where the specificities of the tasks 

performed may have different implications for WRMSDs. To the best of our knowledge, 

currently there is no suitable solution to tackle the job rotation issue in the automotive 

industry that focuses not only on the diversity criteria, but also ensures the reduction of 

exposure throughout the working shift, and safeguards the homogeneity within the team, 

while using objective ergonomic indicators to build a job rotation plan. 

This study’s aims were two-fold: 1) to develop a formulation based on objective ergonomic 

indicators and workers qualifications to generate a job rotation plan based on diversity, 

homogeneity, and exposure criteria for an assembly line in the automotive industry, solved 
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by means of a GA; and 2) provide an industrial case study where the GA was tested and 

applied to a randomly selected team from the automotive assembly area in a real life-

environment, in order to compare the performance of the job rotation plan formulated by 

the new GA versus that of the team leader.  

Given the length and detail of the GA, and to guide the reader, the manuscript is organized 

into the following sections: In section 2, we address the modelling assumptions used to apply 

the GA, provide a detailed description of the job rotation variables included in the GA and 

explain the respective mathematical formulation. In section 3, we describe the GA 

architecture and the several steps needed to provide the best closing condition. Section 4 

presents the results of an industrial case study, where the GA was tested in a real life-

environment. Finally, in section 5, the results are discussed and wrapped up by a conclusion 

in section 6. 

 

4.2. Methods 

4.2.1. Modelling assumptions 

To apply the GA in this study, several assumptions were considered, including organizational 

conditions, workforce, and workstation characteristics, which were made to cope with real-

life environments constraints of this assembly line, including: 

• Workers perform the workstations that they are qualified to, according to the 

versatility matrix of the respective team.  

• In each rotation period, only one workstation could be assigned to each worker. 

• During a shift, the same workstation should not be assigned to a worker more than 

once. 

• Workstations with high demands on the same body region should not be consecutively 

assigned to the same worker.  

• Any workstation can be assigned in the first period of the shift, as full recovery from 

one day to the next is assumed. 
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• All variables of the formulation are deterministic and constant during the planning 

horizon. 

• The allocation of workers to workstations is independent of gender, efficiency, and 

quality. 

 

4.2.2. Notation  

The notation used in the proposed model is available in Table 4.1. 

  



Chapter 4 

 

     49 

Table 4.1 - Index and parameters definition 

Index Definition 

𝑤𝑠 Index of workstations, where 𝑤𝑠=1,2,…,𝑊𝑆 

𝑤 Index of workers, where 𝑤=1,2,…,𝑊 

𝑟𝑜𝑡 Index of rotation periods, where 𝑟𝑜𝑡=1,2,3,4 

𝑖 Index of categories of each risk factor or risk factor layers, where 𝑖=1,…,𝑁 

𝑙 Index of layers of the force risk factor categories, where 𝑙=1,2,…,𝐿 

𝑡 Index of the workplace transition period, where t=1,2,…,𝑅 − 1 

𝑟𝑓 Index of risk factors of the EAWS, where 𝑟𝑓=𝑝,𝑚𝑚ℎ or 𝑓 

Parameters  

𝑂𝐸𝑟𝑜𝑡 Score of a workstation on a rotation period 𝑟𝑜𝑡 (See Eq.1) 

𝐴𝑃𝑤𝑠  Overall score of a workstations 𝑤𝑠 

∆𝑡%𝑟𝑜𝑡 Percentage of time of rotation period 𝑟𝑜𝑡 

𝑂𝐸𝑤 Occupational exposure score of a sequence of workstations attributed to a 

worker 𝑤 (See Eq.2) 

𝑁𝑂𝐸𝑤 Normalized occupational exposure score of a sequence of workstations 

attributed to worker 𝑤 (See Eq.3) 

𝑚𝑖𝑛𝑤 Minimum occupational exposure score of worker 𝑤 

𝑚𝑎𝑥𝑤 Maximum occupational exposure score of worker 𝑤 

𝑡𝑠𝐴𝑡  Transition score of the risk factor group A (e.g., 𝑡𝑠𝑝 - posture and 𝑡𝑠𝑚𝑚ℎ  - 

Manual Material Handling) for the transition period 𝑡 (See Eq.4) 

𝑡𝑠𝐴𝑡,𝑖 Transition score given to the category 𝑖 of the risk factor (group A) for the 

transition period 𝑡 

𝑡𝑠𝐵𝑡 Transition score of the risk factor group B (𝑡𝑠𝑓 - force) for the transition 

period 𝑡 

𝑡𝑠𝐵𝑡,𝑙 Transition score given to the layer 𝑙 of the risk factor (group B) for the 

transition period 𝑡 (See Eq.5) 

𝑡𝑠𝐵𝑡,𝑙,𝑖 Transition score given to the layer 𝑙 and category 𝑖 of the risk factor (group 

B) for the transition period 𝑡 

𝑡𝑠𝑤,𝑟𝑓 Transition score of a sequence for risk 𝑟𝑓 and worker 𝑤 (See Eq.6) 

𝑡𝑠𝑡 Transition score for the transition period 𝑡 

𝑇𝑠𝑤 Transition score of a sequence for worker 𝑤 (See Eq.7) 

𝑊𝑟𝑓 Weight of risk factor 𝑟𝑓 

𝜎𝑜𝑒 Standard deviation of the 𝑁𝑂𝐸 scores of the team (See Eq.8) 

𝜎𝑑 Standard deviation of the 𝑇𝑠 scores of the team (See Eq.10) 

𝑁𝑂𝐸 Mean 𝑁𝑂𝐸 score for the team 

𝑇𝑠 Mean transition score of the team 

𝑆𝑊𝑆𝑄𝑤 Shift working sequence quality for worker 𝑤 (See Eq.13) 

𝑆𝑊𝑆𝑄 Mean shift working sequence quality (See Eq.14) 

𝐻𝑜𝑚 Homogeneity score (See Eq.12) 

𝐻𝑜𝑚𝑑  Homogeneity score for diversity 

𝐻𝑜𝑚𝑜𝑒 Homogeneity score for occupational exposure 

𝑀𝑄 Matrix quality index of the job rotation plan (See Eq.15) 
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4.2.3. Job rotation plan variables 

Two main types of variables were considered to design the job rotation plan: (1) 

biomechanical variables; and (2) organizational variables. 

 

Biomechanical Variables 

The main variables used to define the quality assessment of a job rotation schedule were: (1) 

the overall risk score of each workstation, resulting from the assessment of the biomechanical 

and organizational work conditions; (2) the duration and intensity of the biomechanical risk 

factors present in each workstation such as posture, force, and manual material handling 

(MMH). 

Data on biomechanical work conditions (intensity, duration, and frequency) were collected 

from the ergonomics evaluation made through the European Assembly Worksheet method 

(EAWS) (Schaub et al., 2013) performed by certified ergonomists. The corresponding methods 

evaluated the movements made by a worker while performing the workstation. This method 

assessed: 

• working postures and movements with low additional physical efforts;  

• action forces of the hand-finger system and/or whole body;  

• MMH;  

• repetitive loads on the upper limbs.  

As a result, a combined score of all these risk factors was used and an overall exposure score 

was assigned to the workstation characterized by a traffic light color scheme: green - no risk 

or low risk (0-30 points); yellow - possible risk (31- 49 points); and red - high risk (>50 points) 

(Schaub et al., 2013).  

 

Organizational variables 

The team's versatility matrix was obtained from the Team Leader. The matrix indicates the 

qualifications of workers. In other words, it provides which workstations can be assigned to 

which workers according to their skills. The duration of each rotation period differs between 
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shifts (early, late, and night shifts) and even between teams within the same area. Also, a 

common approach in practice is to estimate ergonomic risks as a time-weighted average of 

the respective ergonomic points for the different jobs. Thus, this data was also included to 

calculate the occupational exposure score for the quality assessment metric.  

 

4.2.4. Defining the Fitness Function 

The fitness function is the core of this work. In this function, the mathematical formulation 

that guides optimization algorithms, such as the GA, was integrated to reach the solutions 

that were desired. In this section, we describe how this mathematical formulation was 

created based on the aforementioned variables.  

The quality of the job rotation schedule was estimated with variables that are present in the 

working day of each worker. The EAWS data was used to characterize the occupational 

environment. These scores quantify the risk of each workstation and provide an individual 

picture of each of the risk factors that were used for the global score. The way these variables 

are combined to give a representative score of the job rotation schedule should maximize its 

purpose, which is to assign a sequence of workplaces that promotes the variation in posture, 

load, and muscle activity (Mathiassen, 2006). 

Furthermore, the proposed mechanism for building the fitness function was composed of 

three layers of analysis: (1) overall averaged occupational exposure score, (2) diversity 

calculated for the sequence of workstations considering the risk factors, and (3) a 

homogeneous rotation schedule, so that the scores assigned to the team were balanced 

between workers. 

 

Exposure 

The first layer of assessment involved calculating the average occupational exposure score 

from the sequence of workstations assigned to each worker. The occupational exposure score 

of a workstation (𝑂𝐸𝑟𝑜𝑡) in a given rotation period rot was calculated according to Eq. 1, 

considering the network shift time: 

𝑂𝐸𝑟𝑜𝑡  =  𝐴𝑃𝑤𝑠  ×  ∆𝑡%𝑟𝑜𝑡  (1) 
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The time was fixed according to the rotation period in which the workstation was allocated. 

Finally, the resulting score for a sequence of workstations (𝑂𝐸𝑤) performed by a worker over 

the set of rotation periods (𝑛𝑟𝑜𝑡=4) was given according to Eq. 2:  

𝑂𝐸𝑤  =  ∑ 𝑂𝐸𝑟𝑜𝑡

𝑛𝑟𝑜𝑡

𝑟𝑜𝑡=1

 (2) 

 

The 𝑂𝐸𝑤 has to be normalized to obtain a value between 0 and 1 as an output. A sequence 

with a score of 0 was the best possible sequence of workstations considering the qualification 

matrix. On the other hand, the score of 1 represents the worst possible sequence of 

workstations. The lowest exposure score (𝑚𝑖𝑛𝑤) was therefore associated with 0, while the 

highest (𝑚𝑎𝑥𝑤) was associated with 1. Before the algorithm was applied, the worst and best 

reference exposure sequences for each worker were calculated. The normalization was made 

taking into consideration these reference values (𝑚𝑖𝑛𝑤 and 𝑚𝑎𝑥𝑤): 

𝑁𝑂𝐸𝑤 = 
𝑂𝐸𝑤 − 𝑚𝑖𝑛𝑤
𝑚𝑎𝑥𝑤 − 𝑚𝑖𝑛𝑤

 (3) 

 

where 𝑁𝑂𝐸𝑤 was the normalized occupational exposure score for a given worker’s (𝑤) 

sequence. 

 

Diversity 

The second layer of assessment consisted of calculating the diversity in the sequence of 

workstations. Diversity is the amount of change in the exposure score between successive 

workstations for each one of the following risk factors: posture, force, and MMH. Therefore, 

this measure should guide the algorithm to reach solutions that have a high diversity. 

Generally, diversity was calculated through a score for the transitions between categories of 

exposure in successive workstations (in a multi-layered process). It is relevant to mention that 

the term transitions was intended to represent the change in the presence of a risk factor 

between successive workstations. Since there were 4 working periods, there were 3 

transitions evaluated. Independent of the risk factor, each transition can be categorized, 
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based on the presence (1) or absence (0) of a risk factor, as one of the three possible types of 

transitions showed in Figure 4.1, namely Type 1, 2 or 3: 

 

Type 1 transitions - there is a change between the presence and absence of risk factor in two 

consecutive workstations (presence to absence, or vice-versa). The score for this transition is 

1, as it is the type of transition preferred to be searched. 

Type 2 transitions - the risk factor is absent in two consecutive workstations, so the score is 

⅓ (absence to absence). This value was given because the absence of a risk factor in two 

consecutive workstations should not be evaluated as bad, but the algorithm should be guided 

in searching for solutions that have diversity, therefore it should be scored under 1. This way, 

type 2 transitions are favored against type 3 transitions, but not with regard to type 1 

transitions.  

Type 3 transitions - the risk factor is present in two consecutive workstations, thus being the 

non-desirable transition. The score attributed to this type of transition was dependent on the 

risk factor evaluated. 

The process to calculate the score of a transition depends on the risk factor category. For 

posture and MMH, the process is showed in Figure 4.1, while for force, the process is showed 

in Figure 4.2. 
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Figure 4.1 - Diversity in posture and manual material handling. The process is depicted as a flowchart. When the risk factor 

is present in both workstations, the process iterates over the categories of the risk factor, being 𝑖 the iterator variable. 

 

Diversity in Posture and Manual Material Handling 

The diversity in posture and MMH was calculated following the same rationale. The first step 

was to verify the presence of a risk factor in the next workstation. Therefore, if the risk factor 

was present in the first workstation (1) but not in the next one (0) (or vice versa - type 1 

transitions), then the score for the transition was calculated for the risk factor between these 

two workstations was 1. However, if the risk factor was absent in both (type 2 transitions), 

then the transition score was 1/3. If the risk factor was present in the first two workstations, 

which means that no transition existed, then a second step was needed.  

EAWS evaluates posture according to time spent in an awkward posture during the cycle time. 

A transition in the sequence would mean that the difference in the scores of the following 

workstations was significant. To establish significance levels, the distributions of the risk 

factor scores for each posture category, and each worker were divided into four percentiles 

(0-25%, 25-50%, 50-75%, and 75-100%). Transitions were considered significant when 

consecutive workstations had scores belonging to different percentiles. If there was a change 

in the percentile, the score was 1, and if not, the score was 0. Although the body region was 

recruited in two consecutive workstations, the intensity with which this recruitment took 
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place was different, and, therefore, there was diversity. This diversity was sought with this 

algorithm. 

The process to calculate the diversity score for MMH was the same as posture. In the case of 

posture, a diversity score for each body region (N=3) (i.e., elbow, trunk, and shoulder/neck) 

was calculated. In the case of MMH, 4 categories (N=4) were considered: repositioning, 

carrying, holding, and pushing and pulling.  

Equation 4 shows the process to calculate the transition score (𝑡𝑠𝐴𝑡) for posture and MMH:  

𝑡𝑠𝐴𝑡 =∑
𝑡𝑠𝐴𝑡,𝑖
𝑁

𝑁

𝑖=1

  (4) 

 

𝑡𝑠𝐴𝑡,𝑖 = {
𝟏 𝑖𝑓 𝑄𝑎 ≠ 𝑄𝑏,   𝑤𝑠𝑟𝑜𝑡 ∈  𝑄𝑎,𝑤𝑠𝑟𝑜𝑡+1 ∈  𝑄𝑏
𝟎 𝑖𝑓 𝑄𝑎 = 𝑄𝑏,   𝑤𝑠𝑟𝑜𝑡 ∈  𝑄𝑎,𝑤𝑠𝑟𝑜𝑡+1 ∈  𝑄𝑏

 

 

Here, the 𝑡𝑠𝐴𝑡 is the score for the transition of the risk factor; 𝑖 represents the categories of 

the risk factor; 𝑡𝑠𝐴𝑡,𝑖 is the score for the transition 𝑡 and the category 𝑖 for the risk factor 

(body region and MMH categories), and 𝑄𝑎 is the percentile where the workstation 𝑤𝑠 on the 

rotation period 𝑟𝑜𝑡 belongs to, with 𝑄𝑏 being the percentile belonging to where the 

workstation 𝑤𝑠 is on the next rotation period 𝑟𝑜𝑡 + 1. To have an output between 0 and 1, a 

denominator factor 𝑁 was used, which is equal to the number of categories in each factor.  

 

Diversity in Force 

The calculation of diversity in force follows the same logic as in the previously mentioned risk 

factors. However, when facing a transition of type 3, the process was made in more layers 

and differently. The first step, like posture and MMH, was checking if a risk factor was present 

in consecutive workstations and if so, the following layers were evaluated: (1) the presence 

of that risk in one or both systems “whole-body” and/or “hand-arm-finger”; (2) if present, at 

what intensity and, (3) in what type, dynamic or static. Figure 4.2 represents the calculation 

of diversity for force.  
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Figure 4.2 - Flowchart to calculate force diversity. In each layer, on the left, it is indicated the number of categories (N). 
On the right side, the possible scores attributed to type 1 (top), type 2 (middle), and type 3 (down) transitions are 
presented. 

 

Looking at Figure 4.2, the rationale followed in a downward direction until the transition was 

verified or until the last layer was met (the type of force).  

In the case of being present in two consecutive workstations, the score was calculated in the 

next layer to verify the change in the presence or absence of the risk factor in the whole body 

or hand-arm finger system. Next, the process was repeated, and if the risk factor was 

presented in both workstations in the system layer, the presence and absence of the risk 

factor was checked for each intensity level (light, medium, high, stressed, maximum, or > 

maximum). If the risk factor was observed in both workstations at a specific intensity level, 

the calculation of the score goes deeper and the change of presence and absence of the risk 

factor was evaluated for the force mode (dynamic or static). Finally, in that layer, if the 

presence of the risk factor was verified in both workstations, then the output was 0. 

The details in Eq. 5 show how to calculate the diversity in force: 

𝑡𝑠𝐵𝑡,𝑙 =∑
𝑡𝑠𝐵𝑡,𝑙,𝑖
𝑁𝑙

𝑁𝑙

𝑖=1

  (5) 
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𝑡𝑠𝐵𝑡,𝑙,𝑖 =

{
 
 
 

 
 
 

𝟏 ∶ 𝑓𝑜𝑟 𝑡𝑦𝑝𝑒 1 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠
𝟏

𝟑
: 𝑓𝑜𝑟 𝑡𝑦𝑝𝑒 2 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠

𝒕𝒔𝑩𝒕,𝒍 ∶ 𝑓𝑜𝑟 𝑡𝑦𝑝𝑒 3 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠,       

𝑤𝑖𝑡ℎ 𝑙  = 𝑙 + 1  𝑎𝑛𝑑 𝑖𝑓 𝑙 < 3
𝟎 ∶ 𝑓𝑜𝑟 𝑡𝑦𝑝𝑒 3 𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑠,

𝑖𝑓 𝑙 = 3

 

 

In this case, 𝑡𝑠𝐵𝑡,𝑙 is the transition score given to layer 𝑙, 𝑡𝑠𝐵𝑡,𝑙,𝑖 is the transitions score for the 

category 𝑖   in that layer 𝑙. 𝑁𝑙 is the number of categories of layer 𝑙 and 𝑖 is the iterator over 

the categories. 

 

Total diversity score 

For each one of the risk factors described in the previous sections, the transition score 𝑡𝑠 had 

to be accounted for all rotation periods during the working day. Therefore, the diversity score 

of each risk factor was calculated with Eq. 6: 

𝑡𝑠𝑤,𝑟𝑓 = ∑𝑡𝑠𝑡

𝑅−1

𝑡=1

  (6) 

 

Note that, 𝑡𝑠𝑤,𝑟𝑓 is the transition score for risk factor 𝑟𝑓 for worker 𝑤 in the transition period 

𝑡, resulting from the sum of the transition score 𝑡𝑠𝑡 for the transition period 𝑡.  

The total diversity score, considering all risk factors was calculated. As the effect of the risk 

factors on occupational exposure was not equal, the relevance of the transition score of each 

risk factor was weighted (𝑊𝑟𝑓) differentially: 3 for posture, 2 for force, and 1 for MMH. The 

rationale for this choice was based on the ergonomics assessment and the weight of each risk 

factor to the total score (Bao, 2015). The score of each change in the workplace was then the 

sum of the transition score for each risk factor normalized between 0 and 1. The final score 

value was calculated according to Eq 7: 

𝑇𝑠𝑤 =
∑ 𝑊𝑟𝑓  ×  𝑡𝑠𝑟𝑓𝑟𝑓

6
  (7) 

In this formulation, 𝑟𝑓 is the risk factor considered: posture, force, or MMH. 



A Genetic Algorithm Approach to Design Job Rotation Schedules Ensuring Homogeneity and Diversity 
of Exposure in the Automotive Industry 

 

58      

Homogeneity 

The homogeneity was the last variable included in the fitness function, and our formulation. 

In order to guarantee the balance between the team, homogeneity aimed to guide the 

algorithm to avoid favoring workers differently. The homogeneity score was calculated after 

the occupational exposure and diversity score were calculated for all of the team workers. 

The standard deviation of occupational exposure (Eq. 8) and diversity scores (Eq. 10) was 

calculated. Then, the homogeneity contribution of occupational exposure (Eq. 9) and diversity 

(Eq. 11) was determined.  

𝜎𝑜𝑒 = √
1

𝑊
∑(𝑁𝑂𝐸𝑤 − 𝑁𝑂𝐸)

2
𝑊

𝑤=1

  (8) 

𝐻𝑜𝑚𝑜𝑒 = 1 − 𝜎𝑜𝑒 
(9) 

where: the 𝜎𝑜𝑒 is the standard deviation of occupational exposure, 𝑊 is the number of 

workers on the team, 𝑤 is the iterator over the workers, 𝑁𝑂𝐸𝑤 is the occupational exposure 

score for the worker 𝑤 and 𝑁𝑂𝐸 is the mean occupational exposure score of the team. 

𝐻𝑜𝑚𝑜𝑒 is the homogeneity contribution of the exposure.  

𝜎𝑑 = √
1

𝑊
∑(𝑇𝑠𝑤 − 𝑇𝑠)

2
𝑊

𝑤=1

  (10) 

𝐻𝑜𝑚𝑑 = 1 − 𝜎𝑑  
(11) 

Here 𝜎𝑑  is the standard deviation of occupational exposure, 𝑊 is the number of workers on 

the team, 𝑤 is the iterator over the workers, 𝑇𝑠𝑤 is the diversity score for the worker 𝑤 and 

𝑇𝑠 is the mean diversity score of the team. 𝐻𝑜𝑚𝑜𝑒 is the homogeneity contribution of 

diversity. 

Since the standard deviation is a measure of dispersion, the higher the value the worse the 

balance is of the job rotation plan between workers. As a mean to have a value with a positive 

trend (the higher the better), the homogeneity score (𝐻𝑜𝑚) results from an inverse sum of 

both standard deviations. The final homogeneity score is given by Eq. 12:  
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𝐻𝑜𝑚 = 𝐻𝑜𝑚𝑑 +𝐻𝑜𝑚𝑜𝑒 (12) 

 

4.2.5. Formulation of the Fitness Function 

The fitness function is the combination of occupational exposure, diversity, and homogeneity. 

For each worker sequence, a score was calculated for occupational exposure and diversity, 

normalized between 0 and 1. The index that characterizes the quality of this worker sequence 

was the weighted sum of both scores, 2 for diversity, and 1 for occupational exposure (Eq. 

13).  

𝑆𝑊𝑆𝑄𝑤 = 1 − 𝑠𝑐𝑜𝑟𝑒𝑂𝐸𝑤 + 2 × 𝑠𝑐𝑜𝑟𝑒𝐷𝑤  (13) 

 

In this case, 𝑆𝑊𝑆𝑄𝑤 is the quality of the shift working sequence index for worker 𝑤. Note 

that the occupational exposure score has a negative trend (the lower the better), therefore 

the subtraction in the equation was used to invert the trend of the parameter.  

The shift working sequence quality (𝑆𝑊𝑆𝑄), which means the quality of the job rotation plan 

for the entire team (i.e., characterizes the job rotation plan in terms of occupational exposure 

and diversity), was calculated by averaging the set of indexes (Eq. 14).  

𝑆𝑊𝑆𝑄 = ∑
𝑆𝑊𝑆𝑄𝑤
𝑤

𝑊

𝑤=1

 (14) 

 

Finally, the homogeneity score was added, resulting in the matrix quality index (𝑀𝑄) (Eq. 15): 

𝑀𝑄 = 𝑆𝑊𝑆𝑄 + 0.25 × 𝐻𝑜𝑚  (15) 

 

Since the search should favor job rotation schedules with reduced exposure and high diversity 

above homogeneous schedules, a weight of 0.25 was calculated for the homogeneity score 

to adjust its influence in the guidance of the algorithm.  

The fitness function is then the MQ index, which has to be maximized to reach solutions that 

increase the diversity, reduce the exposure and increase homogeneity, as presented in Eq. 

16: 
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𝑚𝑎𝑥  𝑀𝑄 = 𝑆𝑊𝑆𝑄 + 0.25 × 𝐻𝑜𝑚  (16) 

 

4.3. Heuristic approach for job rotation scheduling   

The fitness function (Eq. 15) represents the quality of the job rotation plan regarding 

occupational exposure, diversity, and homogeneity. This function guides the algorithm in 

generating a job rotation plan that maximizes the 𝑀𝑄 function (Eq. 16). From this 

formulation, any optimization algorithm can be applied to reach a desired solution. In this 

case, the proposed algorithm was based on a GA, which was already applied in similar 

contexts by Diego-Mas et al. (Diego-Mas et al., 2009). In this section, we describe the several 

steps that comprehend the GA’s architecture (Figure 4.3). The GA relies on the natural 

selection theory, in which evolution of the overall population into better offspring was 

expected over several iterations.  
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Figure 4.3 - Flowchart of the genetic algorithm architecture: Step (1): Creating initial population with valid chromosomes 
- randomly generated. Step (2): Evaluating the fitness of population members applying Equation 13, which considers 
exposure, diversity, and homogeneity. Step (3): Selection of the individuals that will undergo crossover and mutation with 
2% Elitism (E), and 30% Rank-Based Wheel (RW). Step (4): Apply Crossover and Mutation methods. Step (5): Generate an 
offspring population from the selected chromosomes. Step (6): If the closing condition is met, return the best offspring 
(Step 7), otherwise, return to step 2. 

Abbreviations: 𝑆𝑊𝑆𝑄 – Mean shift working sequence quality; 𝐻𝑜𝑚 – Homogeneity; OX – ordered crossover. 

 

The algorithm starts by generating the initial population. Thereafter, in each iteration, a 

selection of a set of chromosomes that belonged to the population pool were selected to 

perform a crossover with their genes and/or were mutated, expecting that better 

chromosomes would be created over the iteration process that ended when a closing 

condition was verified. The proposed genetic algorithm followed the same architecture. 

In this case, the nomenclature is defined in Figure 4.4, showing that the population is the 

overall set of possible job rotation plans; the chromosome belonging to the population is a 
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valid job rotation plan; and the gene belonging to the chromosome is a workstation of the job 

rotation plan. 

 

Figure 4.4 - Nomenclature of the genetic algorithm. The population is regarded as the group of possible job rotation plans; 
the chromosome is a valid job rotation plan, and the gene is a workstation. 

 

The way a GA is structured can vary extensively and several approaches were found in the 

literature for the selection, crossover, and mutation steps. The chosen methods depend on 

the type of problem itself and the restrictions that the problem implies. In this case, the main 

restrictions were related to the definition of a valid job rotation plan. The structure of the 

proposed algorithm will be explained further, namely which methods were used for the 

selection, crossover, and mutation, as well as what comprised was the closing condition. 

 

4.3.1. Population Generation 

The GA started by randomly generating a primary population pool that contained a set of 

chromosomes. Each of these chromosomes is valid and cannot be generated against the 

constraints defined. Thus, a chromosome had a size of 𝑛𝑤 × 𝑛𝑟𝑜𝑡, with 𝑛𝑤 being the number 

of workers (equal to the number of workstations) and 𝑛𝑟𝑜𝑡 the number of rotation periods. 

One workstation was randomly assigned to each of the cells in the matrix, and no 

workstations was repeated on the same row. The initial number of chromosomes in the 

population can vary. The value of 100 individuals was considered, after obtaining satisfactory 

results for the case of 12 workstations and 4 rotation periods. Each of the chromosomes 
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belonging to the population was evaluated by the fitness function to get a score that 

characterized their fitness. 

 

4.3.2. Selection  

Having the starting population, the next step was to select a set of chromosomes for the 

search space exploration with crossover and mutation. The selection had several criteria. The 

main idea was that the population should be able to evolve, and chromosomes should have 

better scores over the iteration process. First, it was necessary to guarantee the presence of 

2% of the best chromosomes of the population for the next iteration, a process called elite 

selection. Second, for this process, a rank-based roulette wheel selection (Goldberg, 1989) 

was used to select 30% of the population pool. It is important to note that a chromosome 

selected was excluded from the population set to avoid further repetitions in the selection. 

 

4.3.3. Crossover 

The selected chromosomes were the base individuals that origin the new population for the 

next iteration. The crossover was responsible for 50% of the new population. During 

crossover, the selected chromosomes were merged based on a specific method. When 

merging the information of two chromosomes, the sequences of workstations attributed to 

each worker based on the information of two job rotation plans was expected to be 

reordered. The problem in swapping information from one job rotation plan to the other was 

that the offspring would probably be invalid, because: (i) it would have repeated workstations 

on the same rotation period; and (ii) the workstations assigned to a worker might not be 

present in his/her qualification matrix. To tackle these constraints, the proposed solution was 

to use a permutation-based crossover method applied column-wise to the chromosomes. In 

this case, the method considered was the ordered crossover (OX) (Moscato, 1989). Consider 

the example presented in Figure 4.5. For this example, we assumed that there were six 

different workstations and six different workers. The color and the corresponding number 

represent each workstation. The corresponding qualification matrix is presented in Figure C.1 

Supplementary Material. 
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Figure 4.5 - Example of the ordered crossover method applied to this problem. From two parents (one rotation of a job 
rotation plan for each parent) a child was created. The child was based on a variation of parent 2, which has received the 
selection from parent 1, in the same positions. The genes that were now repeated in the child (group A) are erased, and 
the ones that are not present in the child will be added by the order they appear in parent 2. For those who belong to the 
map, the shift of genes will go through a qualification check. The red points indicate the checkpoint because of the 
workstation shift. 

Abbreviations: w – worker 

 

From two job rotation plans (𝑚𝑎𝑡𝑟𝑖𝑥1 and 𝑚𝑎𝑡𝑟𝑖𝑥2), a random number of rotation periods 

(column) were selected to go through the OX method. From 𝑚𝑎𝑡𝑟𝑖𝑥1 a column was selected 

as the first parent (𝑝𝑎𝑟𝑒𝑛𝑡1, and the same column from 𝑚𝑎𝑡𝑟𝑖𝑥2 was selected as the second 

parent (𝑝𝑎𝑟𝑒𝑛𝑡2). The OX method starts by selecting randomly a subsection of workstations 

from 𝑝𝑎𝑟𝑒𝑛𝑡1. The child was mapped by inserting into 𝑝𝑎𝑟𝑒𝑛𝑡2, on the same subsection 

positions, the subsection of 𝑝𝑎𝑟𝑒𝑛𝑡1. In Figure 4.5, 𝑤𝑠1; 2 and 6 were shifted from 𝑤𝑠6; 𝑤𝑠5 

and 𝑤𝑠4. After that, the repeating workstations (𝑤𝑠1 and 𝑤𝑠2 - group A) were deleted from 

𝑝𝑎𝑟𝑒𝑛𝑡2. The now missing workstations (5 and 4 - group B) were added by order of 

appearance in the original 𝑝𝑎𝑟𝑒𝑛𝑡2. This new rotation period was 𝑐ℎ𝑖𝑙𝑑1 with 𝑤𝑠5; 𝑤𝑠4; 

𝑤𝑠1; 𝑤𝑠2; 𝑤𝑠6 and 𝑤𝑠3. 

Each row (worker) had a set of valid workstations. If during the OX method, a workstation was 

shifted into a row where it was not valid, the process searched for rows where this 
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workstation could fit and made the exchange. This process was a checkpoint to ensure the 

child generated was a valid option. 

 

4.3.4. Mutation 

The mutation is the other operator used to generate the other 50% of the new population. 

The method used was a variation of the bit string mutation. The process comprised 3 steps 

and was done per column: (1) random selection of rotation periods; (2) random selection of 

a workstation for a given rotation period; (3) change of the workstation selected for another 

in the same period of rotation, as long as it ensures compliance with the qualification matrix. 

Consider the example presented in Figure 4.6 and the qualification matrix (Figure C.1 – 

Appendix 3). The example shows a column of one of the selected job rotation plans. The 

column had randomly been selected (step 1). Then one workstation was randomly selected 

(step 2). After that, this workstation was shifted with workstations that would follow the 

requirements. In this case, 𝑤𝑠3 from 𝑤1 was selected. The possible workers to shift this 

workstation with were 𝑤3, 𝑤5 and 𝑤6, because these have 𝑤𝑠3 on their qualifications, and 

𝑤1 is able to perform 𝑤𝑠3, 𝑤𝑠5 and 𝑤𝑠6. The shift workstation was then chosen randomly 

from the valid group. 

 

 

Figure 4.6 - Mutation example. A rotation period was selected and would be mutated to generate a variation of the 
rotation period. 

Abbreviations: w – worker 

 

4.3.5. Closing Conditions  

When the closing condition is reach, the iterative process of the genetic algorithm ends, and 

a result is returned. Two conditions must be met: (1) "is the score of the best chromosome 
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higher than the reference value?" and (2) "is the number of iterations above 100?”. The first 

condition guarantees that a job rotation plan with a referenced adequacy was returned. The 

reference value was the mean score of the weekly job rotation plan designed by the team 

leaders for their URQ. The second condition was meant to give the algorithm enough 

iterations to stabilize. This value had to be experimentally calculated by running the algorithm 

1000 times and extracting the value that ensures a good margin to let the algorithm stabilize. 

When these two conditions are met, the algorithm stops and outputs the best chromosome 

of the population. If the conditions are not met, the algorithm is kept running to improve the 

offspring. 

 

4.4. Industrial case study 

A full detailed example on how the GA can be applied can be found in the Supplementary 

Material (Appendix C). The GA was also tested in a real life-environment, by being applied to 

a randomly selected team from the assembly area of an automotive industry with 12 workers, 

12 workstations, and under the responsibility of (hereafter) a team leader. All workstations 

were close together and the standard rotation did not affect the normal operation of the 

production line (since rotation periods coincided with breaks). Although there was a standard 

job rotation at the company (provided by the Team Leader), the choice of the workstations 

was mostly based on empirical knowledge and experience.  

In this study, the morning shift was considered. The working day was composed of 8h, with a 

lunch break of 30 minutes, and two breaks of 7 minutes each, before and after lunch. This 

translates into a mean network time of 466 minutes. Considering the network time, four 

working periods were already established with the following relative distributions: (1) 22.6%; 

(2) 30.7%; (3) 27.0%; and (4) 19.7%. Each worker performs 4 different workstations during the 

working day, according to their qualification. The versatility matrix was consulted to allocate 

workers to workstations that they were able to perform autonomously. 
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4.4.1. Workstations and workers  

The evaluations of the 12 workstations belonging to the team are presented in Table 4.2. 

Most of the workstations were classified with medium risk, one workstation was classified as 

no risk (𝑤𝑠10) and two workstations were classified as high risk (𝑤𝑠3 and 𝑤𝑠11).  

 

Table 4.2 - Ergonomic evaluation and risk factors characteristics. Risk factor scores for all categories of the EAWS. The colors 
on the Action Forces section represent the type of force exerted: black - dynamic and static forces; dark grey - dynamic 
forces; light blue – static force; light grey - the risk factor is not present. The unit %t indicates the percentage of time spent 
in that risk factor during 1 cycle time, and n represents the number of times these risk factors appear in 1 cycle time. 

 Posture (%t) MMH (points) Force (%t or n)  

 NS T E     WB HAF 

 ASL AHL B SB GA
6 

GA
8 

GA
10 

R C H P 1 2 3 4 5 6 1 2 3 4 5 6 S 

Ws1 0 0 15 0 53 11 10 0 0 0 0             42 

Ws2 7 0 5 0 25 21 5 0 0 0 0             31 

Ws3 0.2 0 19 0 39 18 9 0 0 0 0             59.5 

Ws4 3 0 19 0 25 23 0 0 0 0 0             41 

Ws5 0 0 31 0 18 16 3 0 0 0 0             48 

Ws6 0 0 14 0 42 5 0 0 0 0 0             43 

Ws7 0 0 0 2 33 8 0.5 0 0 0 0             35.5 

Ws8 0 0 22 0 29 23 5 1 0 0 0             43 

Ws9 0 0 3 0 40 10 0 0 0 0 0             35 

Ws10 6 10 0 0 11 1 0 0 0 0 0             24.5 

Ws11 9 24 0 0 13 0.9 2 0 0 0 0             56.5 

Ws12 10 7 0 0 3 46 9 0 0 0 0             42.5 

Abbreviations: Ws – Workstation; NS – Neck and shoulder; ASL – At/Above shoulder level; AHL – Above head level; T-Trunk; 
B-Bent; SB-Strongly bent; E – Elbow; GA6 – Arm reach at 60%; GA8 – Arm reach at 80%; GA10 – Arm reach at 100%; MMH – 
Manual material handling; R – Repositioning; C – Carrying; H – Holding; P – Pushing and Pulling; WB – Whole body force; 
HAF – Hand Arm Finger force; S - Score 

 

Note that posture was evaluated considering the percentage of time that an awkward posture 

was observed during the cycle time (approximately 79 seconds), as well as the static force for 

the whole body and hand arm finger systems. The dynamic type of force was accessed 

according to the frequency of its presence in the cycle time. The presence or absence of MMH 

in the workstation was used to classify this risk factor. 

The team’s qualification matrix is given in Table 4.3. From the 12 workers, eight had full 

versatility, i.e., they can perform autonomously all workstations, which was an advantage to 

the Team Leader.  
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Table 4.3 - Worker’s versatility according to the workstations. The empty cells indicate that the worker does not have the 
competence to perform the respective workstation 

 WS 1 WS 2 WS 3 WS 4 WS 5 WS 6 WS 7 WS 8 WS 9 
WS 
10 

WS 
11 

WS 
12 

W 1 • • • • • • • • • • • • 

W 2 • • • • • • • • • • • • 

W 3 • • • • • • • • • • • • 

W 4 • •  • • •   • • • • 

W 5 • • • • • • • • • • • • 

W 6 • • •  • • • • • • • • 

W 7 • • • • • • • • • • • • 

W 8 • • • • • • •     • 

W 9 • • • • • • • • • • • • 

W 10 • •  •  • • • • • • • 

W 11 • • • • • • • • • • • • 

W 12 • • • • • • • • • • • • 

Abbreviations: W – Worker; WS - Workstation 

 

4.4.2. Convergence of the algorithm 

The fitness function guides the algorithm during the iterative process, and it is expected to 

improve all variables contributing to the quality score. Therefore, the occupational exposure 

score should decrease, and diversity and homogeneity scores should increase. Figure 4.7 

shows a higher improvement for diversity and homogeneity as expected, but on the other 

hand, exposure did not change significantly during the entire process. Regarding the quality 

score, the best job rotation plan in the population over the iteration process was verified as 

an improvement.   
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Figure 4.7 - Convergence of the algorithm considering exposure (orange), diversity (green), and homogeneity (red). 

 

Figure 4.8 gives the evolution of the execution of the algorithm concerning exposure, 

diversity, and homogeneity and reflects the capacity of the algorithm to progressively 

generate better solutions by employing simulated evolution techniques.   
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Figure 4.8 - Evolution of the fitness of the best individual throughout the generations, concerning exposure (A), diversity (B), 
and homogeneity (C). 

 

The algorithm reaches a stable solution around the 70th iteration.  

 

4.4.3. Job rotation schedule obtained 

The algorithm took 53 seconds to generate the proposition of a job rotation plan for the 

problem proposed: 12 workers, 12 workstations, and 4 working periods. The working 

computer used an Intel i5 quad core processor with 3.2 GHz, 8 GB of RAM and ran on a Linux 

Ubuntu 18.0.1 operative system.  

The best solution obtained is presented in Figure 4.9. In this solution, the allocation of workers 

to workstations satisfied the restrictions imposed on the problem and tried to decrease the 

prolonged time consumed by the same movement. During the working day, the workers were 

not assigned to the same workstations and did not occupy two red workstations. This 

happened mainly because diversity was highly promoted over the iteration process, resulting 

in working sequences with better diversity results. In the last 3 columns of Figure 4.9, the 

contribution of each worker to the fitness function is given with the values of exposure, 

diversity, and SWSQ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         

(A) (B) 

(C) 
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Figure 4.9 - Best scored job rotation schedule for the last iteration of the algorithm. Each cell is colored considering the 

color traffic light scheme used to classify the risk of the workstation. Scores: 𝐻𝑜𝑚 = 1.84, 𝑆𝑊𝑆𝑄 =1.98,  𝑀𝑄 = 2.44. 
Abbreviations: w – Worker; ws – Workstation; Rot – Rotation period; SWSQ - Shift working sequence quality 

 

The scores for the job rotation schedules obtained are presented in Table 4.4. As expected, 

the first matrix had the worst 𝑀𝑄 score compared to the last matrix (2.02 and 2.44, 

respectively). This was due to the fact that the first matrix had the worst set of occupational 

exposure and diversity scores, and these scores were not homogenous. The final score had a 

better homogeneity score when compared to the initial score (1.84 and 1.74, respectively).  

 

Table 4.4 - Results for job rotation schedules obtained in the first and last iteration. 

 𝑆𝑊𝑆𝑄 𝐻𝑜𝑚 𝑀𝑄 

Best scored job rotation for 1st iteration 1.80 1.74 2.23 

Worst scored job rotation for 1st iteration 1.63 1.59 2.02 

Best scored job rotation for the last iteration 1.98 1.84 2.44 

Abbreviations: 𝑆𝑊𝑆𝑄- Mean shift working sequence quality; 𝐻𝑜𝑚 – Homogeneity; 𝑀𝑄 – Matrix quality  
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An improvement in the results during the iteration process resulted in a better solution, i.e., 

in a better job rotation schedule for this specific team.  

A job rotation plan designed by a team leader is presented in Figure 4.10. 

 

Figure 4.10 - Example of a job rotation plan designed by a team leader. 

Abbreviations: w – worker; ws – Workstation Rot – Rotation; 𝑆𝑊𝑆𝑄 – Shift working sequence quality 

 

For evaluation purposes, look at 𝑤1, 𝑤7, and 𝑤11. Besides the risk level of the workstations, 

scores for the sequence evaluation are presented, namely the exposure, the diversity, and 

the sequence quality score. The sequence of workstations attributed to 𝑤1  was medium 

levelled, except for the first workstation, which had a low-risk level. This fact was verified by 

the exposure score, which was 0.09, close to 0, reflecting that this sequence was near to the 

best possible sequence 𝑤1 could have. Nevertheless, the diversity score of 𝑤1 was not as 

good (0.58). This shows how different the evaluation made for the diversity was between the 

three workers. Regarding 𝑤11, the scores were different. In this case, the sequence had two 

red-labelled workstations, which increased the exposure score. On the other hand, the 
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diversity score was the same as for 𝑤1. This demonstrates how different the measures of 

exposure and diversity were. A sequence of workstations with low-levelled scores might be 

good in terms of exposure, but might be bad in diversity, because it measures different 

outcomes. For instance, 𝑤7 had the worst diversity score of the team. This was a result of the 

two identical workstations at the end of the shift, therefore compromising the diversity score 

at the last transition. 

When comparing the best results obtained by the GA for one day (Table 4.4), with a full week 

planned by the team leader (Table 4.5), we found that the algorithm provided better results 

in all the parameters, including homogeneity, diversity, and matrix quality, regardless of the 

day analyzed. 

 

Table 4.5 - Scores for shift working sequence quality, homogeneity, and matrix quality for job rotation schedules for a week 
designed by a team leader. These schedules were scored with the formulation designed. 

Team Leader Matrix 𝑺𝑾𝑺𝑸 𝑯𝒐𝒎 𝑴𝑸 

Day 1 1.72 1.77 2.16 

Day 2 1.64 1.71 2.07 

Day 3 1.72 1.73 2.15 

Day 4 1.76 1.74 2.20 

Day 5 1.69 1.70 2.12 

Abbreviations: 𝑆𝑊𝑆𝑄 – Shift working sequence quality; 𝐻𝑜𝑚 – homogeneity; 𝑀𝑄 – Matrix quality 

 

4.5. Discussion 

The main purposes of this study were: (1) to develop a formulation based on objective 

ergonomic indicators and workers qualifications to generate job rotation schedules based on 

three main criteria: diversity, exposure and homogeneity for an assembly line of the 

automotive industry solved by means of a GA; and (2) provide an industrial case study where 

the GA was tested and applied to a randomly selected team from the automotive assembly 

area in a real life-environment, in order to compare the performance of the job rotation plan 

formulated by the new GA versus that of the team leader. The algorithm proposed showed a 

high diversity sequence during working hours, a lower overall exposure, and reassured 

homogeneity to balance the rotation within each team. These results also demonstrate that 

the time spent by the team leader organizing the weekly schedule was considerably higher 

when compared with the time that the algorithm took to deliver a job rotation plan for a 

week. 
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A job rotation plan is an essential tool to the automotive industry and its aim is to facilitate 

not only the work of the team leader but also, in the long run, to reduce the risk associated 

with musculoskeletal injuries by increasing diversity, decreasing exposure, and ensuring 

homogeneity. This investigation, through its resources and departments, namely the 

industrial engineering, the ergonomics, and the occupational health teams, built a job 

rotation plan using a GA. The algorithm had a good computational performance and 

generated a solution that took less time building a rotation plan, when compared with that 

of the team leaders.  More specifically, it took the algorithm 53 seconds to generate a job 

rotation plan, where usually team leaders spend approximately 2-3 hours. Thus, the use of 

GA has the potential to spare the team leaders time for allocation to other important tasks. 

The reduction in the time to generate a job rotation plan is in accordance with other studies 

that also used this type of algorithms (Asensio-Cuesta et al., 2012a; Diego-Mas, 2020; Diego-

Mas et al., 2009; Hochdörffer et al., 2018). 

Our results also suggest that the repetition of the same workstation, followed by rotation 

periods, although allowed, was not promoted by the method. This is a result of the algorithm 

giving higher relevance to the diversity score. This score has a wide progression and is the 

major factor of convergence. It also demonstrates that the algorithm can improve the 

conditions from the first iteration to the last and give a result that reflects the need for 

increased diversity and homogeneity, and decreased exposure. Diego et al. applied a GA in an 

automotive parts supplier assembly plant considering the previous rotations, trying to 

minimize the performance with the same body region, but not quantifying it, as we did with 

diversity (Diego-Mas et al., 2009). The option to favor diversity was supported by the 

physiologic pathways of musculoskeletal health stating that posture and load variation are 

beneficial (Mathiassen, 2006). One of the strengths and a novelty of this study is the fact that 

it included the calculation of diversity of force and MMH along with posture, which provides 

more risk factors being embedded by the GA, whereas, the majority of the algorithms 

presented in the literature relied on posture and movement, ergonomic score (from an 

evaluation method, e.g., OCRA, EAWS), learning skills, and others (Padula et al., 2017). 

As far as exposure is concerned, it is one of the parameters contributing to the fitness 

function, but with less weight than diversity. In the literature, the cumulative exposure, with 

different criteria used between studies, is one of the key factors to evaluate the effectiveness 



Chapter 4 

 

     75 

of the job rotation schedule (Asensio-Cuesta et al., 2012a; Diego-Mas et al., 2009; Hochdörffer 

et al., 2018; Rajabalipour Cheshmehgaz et al., 2012; Xu et al., 2012). In this study, exposure 

did not change significantly because its weight was very low when compared to diversity. The 

choice to promote diversity over occupational exposure reflects the idea to promote an 

opportunity of relaxing overloaded motor units by having workstations that differ in all the 

risk factors considered (Mathiassen, 2006). Besides, the proposed formulation also 

considered homogeneity as a key feature, allowing workers to have a similar exposure during 

the shift. The team selected showed characteristics of versatility that were reflected on the 

matrix of the work team, where most of the workers were able to perform the majority of the 

workstations with autonomy. This is beneficial for workers since they have the possibility to 

improve their diversity and reduce exposure during the shift. A previous study has considered 

the balance between the workers as a contribution to the target function (Diego-Mas et al., 

2009).  

Even though there is no consensus in the literature about the effectiveness of this measure 

in the prevention of WRMSD’s (Comper and Padula, 2014), several approaches have been 

implemented, considering different criteria (Padula et al., 2017). The use of GA to generate 

job rotation plans in the industry is a common option due to its combinatorial nature and 

satisfactory results (Asensio-Cuesta et al., 2012a; Diego-Mas et al., 2009). The decision to use 

a GA to solve the combinatorial problem in designing the job rotation plan in this study was 

due to it already being proven to be successfully used in a similar context (Asensio-Cuesta et 

al., 2012a; Diego-Mas et al., 2009). The methods that were applied for selection, crossover, 

and mutation are well known and were used because these were found to be adequate for 

this problem (Moscato, 1989). The mutation rate, in this case, was higher than what is usually 

found in the literature, but better convergence results were reached with a higher mutation 

rate. The job rotation schedules generated by the GA provided better scores than the ones 

developed by the team leaders in homogeneity, diversity, and matrix quality.  

Any tool developed to assist in work organization must be flexible and appropriate to the 

specific requirements of each production process. Nevertheless, the GA can be implemented 

in the rest of the assembly area, due to the similarity of processes. In the future, transfers to 

production areas can be made with the optimization of their specificities and characteristics. 

It’s also important to highlight that the work organization variables, such as the duration and 
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number of working periods and the duration, and frequency of breaks during the shift, have 

not been changed. However, it will be interesting to compare the results of the fitness 

function of the two remaining shifts, late evening, and night, since the working periods have 

different durations. This comparison could give different perspectives to make a more 

suitable duration and distribution of working periods throughout the shift at the organization 

level. Also, recent publications suggest that motivational and preferential aspects within the 

job rotation could also be integrated (Asensio-Cuesta et al., 2019).  

Despite presenting a case study with 12 workers with promising results, this formulation lacks 

a broader application and validation in an ecological context in order, to further understand 

its effectiveness in a larger scale sample and musculoskeletal symptom prevention. In an era 

of technological development, the use of direct quantitative assessment of risk factors in the 

working field, such as those acquired through motion sensors, would enable the proposed 

formulation to have more reliable risk scores than the ones globally provided by the EAWS.  

 

4.6. Conclusion 

The formulation developed in this study generated job rotation schedules considering 

constraints present in the assembly line of the automotive industry. This formulation has been 

proven to be a reliable solution to design job rotation plans, increasing diversity, decreasing 

exposure, and balancing homogeneity for the team. The solution presented in this study 

combined the information from workers in terms of qualification and the requirements of the 

workstations to generate and evaluate solutions looking for the best sequences. Moreover, 

this approach helped the team leaders, in a time-efficient manner, to decide which job 

rotation plan would be better suited when considering all the constraints, his experience and 

his knowledge about the workstations and his team. 

From the company point of view, this approach could additionally be a relevant tool for data 

generation, which could be crucial for designing new production systems and to manage 

investments aimed at improving productivity and promote musculoskeletal health at work.  

Nonetheless, future research is warranted to analyze the effectiveness of the job rotation 

plans generated by this type of formulations with those provided by the team leaders, while 
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considering a larger sample, how the plans impact the results of diversity, exposure, and 

homogeneity, and how they translate into the reduction of the prevalence of WRMSD.  
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Abstract 

The aim of this study was to compare two processes for developing job rotation plans 

(performed by the team leader or through a genetic algorithm (GA) and how they perform in 

terms of diversity, homogeneity, exposure, matrix quality (MQ), and shift working sequence 

quality (SWSQ). The sample included 7 teams (89 workers) from an automotive industry. At a 

group-level analysis, values provided by the GA were not significantly different from the team 

leader for exposure, whereas differences were observed for diversity, SWSQ, homogeneity, 

and MQ. Weak correlation coefficients were observed for all outcomes, except for 

homogeneity and MQ. Individual results showed high limits of agreement for all outcomes, 

and a significant relationship between the difference and the mean of the methods for 

exposure and diversity. Overall, job rotation plans generated by the GA seems to be a 

promising tool to reduce the burden of team leaders when building job rotation plans. 

Keywords: assembly line, organizational measures, occupational exposure  
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5.1. Introduction 

Musculoskeletal disorders (MSDs) are one of the most common health problems in the 

workplace, with three out of five European workers reporting MSDs related to their working 

conditions (De Kok et al., 2019). In the automotive industry, MSDs are closely related to the 

risk factors that workers are exposed to, which can vary depending on the different conditions 

of the assembly line. These occupations are characterized by low level static muscle loads for 

long periods, highly repetitive work, short recovery periods, force exertions, and extreme 

postures, all of which, if maintained on the short-term (Assunção et al., 2021) or long term 

(Da Costa and Vieira, 2010; Hallman et al., 2019; Neupane et al., 2017) can lead to deleterious 

cumulative biomechanical loading and increased MSDs (Bernard and Putz-Anderson, 1997; 

Madeleine, 2010; Ohlander et al., 2019; Punnett, 1998). 

Given the high economic and social impact of MSDs, automotive companies have changed 

their working conditions to improve workers’ health and well-being. Approaches can vary, 

and include changes in tools, workplace conditions, and manufacturing processes, which can 

be made in the early or ongoing stages of product development to eliminate or mitigate the 

exposure to potential risk factors (Macdonald and Oakman, 2022). If these physical changes 

are not possible for technological, logistical, or financial reasons, companies tend to rely on 

more cost-effective solutions such as organizational measures, where the job rotation 

solution is often used (Kogi et al., 2003). The job rotation plans have been recommended as 

an organizational measure to reduce workplace exposure to multiple risk factors and, thus 

increase variability and reduce worker fatigue and monotony (Jorgensen et al., 2005; 

Rodriguez and Barrero, 2017; Yung et al., 2012). Numerous studies have been conducted on 

this topic, with job rotations relying on mathematical solutions such as genetic algorithms 

(GA) to improve working conditions and reduce MSDs (Asensio-Cuesta et al., 2012; Assunção 

et al., 2022; Diego-Mas et al., 2009). Each formulation has its own set of assumptions, criteria, 

and variables. Although there are other solutions to improve job rotation logistics, GA stands 

out from the remaining solutions, since it can solve complex combinatorial mathematical 

problems in situations where there are many possible outcomes and the environments are 

dynamic (Carnahan et al., 2000). 
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Despite recent literature suggesting a positive effect between job rotation plans and several 

psychological factors (e.g., job satisfaction, less stress), there is no consensus on how it may 

impact general physiological health outcomes (e.g., upper limb MSDs) when compared to not 

having any organizational measures (Mlekus and Maier, 2021). Moreover, additional 

information is also needed on the impact of how different solutions (i.e., mathematical vs 

manual job rotation plans) perform in reducing MSDs in the short and long term. This aspect 

is paramount, especially in the automotive industry, as job rotations are often performed 

manually by the team leaders, and where there are no studies comparing how they perform 

in terms of risk factor exposure with other mathematical solutions such as the GA. 

Therefore, this study aimed to compare two processes for developing rotation plans: (1) 

through human intervention performed by the team leader; and (2) through a GA 

mathematical formulation. Specifically, this study aims to verify how each of the approaches 

perform in terms of diversity, homogeneity, exposure, matrix quality (MQ), and shift working 

sequence quality (SWSQ).  

 

5.2. Methods 

5.2.1. Sample 

The sample was initially selected from a broader project aimed to determine the prospective 

associations between biomechanical risk factors and MSSs in different body regions in the 

automotive industry (Assunção et al., 2021), while also taking advantage of the mathematical 

formulation built to develop job rotation plans for this same production line (Assunção et al., 

2022). In this secondary analysis, we used a sample of 302 workers (α = 5%, β = 0.20, d = 0.5, 

20% of musculoskeletal symptoms prevalence in the automotive industry, and a 15% drop-

out) (Charan and Biswas, 2013). The eligibility criteria included having a contract with the 

company, being allocated to the assembly line, having at least 3 months of seniority, not 

having any medical restrictions to perform the job assessed by the plant medical doctor, and 

not being a temporary worker. From the initial 16 teams, we used a convenience sample of 7 

since they had complete information, that could be used and run on the GA. The study was 

carried out following the recommendations of the Declaration of Helsinki for Human Studies. 

The protocol was approved by the Ethics Committee of the Faculty of Human Kinetics, from 
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the University of Lisbon (CEFMH Nº8/2019). All participants gave their written informed 

consent before they participated in the study. 

 

5.2.2. Procedures 

Job rotation Plan built manually by the team leader 

In this automotive industry, team leaders from the assembly line were responsible for 

planning their team’s job rotation plans every week using mostly their empirical knowledge 

about the biomechanical risk factors. Throughout the conception of the job rotation plans, 

they considered all the inherent constraints: absenteeism, versatility matrix (worker’s 

qualification), medical restrictions, worker relationships, and production specifics. As support, 

they used an Excel file to plan the job rotation. 

 

Job rotation plan formulated by a genetic algorithm  

The GA used to generate the job rotation plans for the assembly line of an automotive 

industry is described in full detail elsewhere (Assunção et al., 2022). The proposed mechanism 

for building the fitness function consisted of three layers of analysis: (1) averaged total 

occupational exposure score, (2) diversity calculated for the sequence of workplaces 

considering the risk factors, and (3) a homogeneous rotation scheme, so that the scores 

allocated to the team were balanced among workers. Moreover, the job rotation plans were 

conceived considering the following variables: the versatility matrix, which comprehends the 

workers' qualifications, and an objective ergonomic risk assessment method implemented in 

the factory (i.e., European Assessment Worksheet (EAWS) (Schaub et al., 2013)). The EAWS 

data was used to characterize the biomechanical exposure. These scores quantify each 

workstation risk by providing an individual picture of each biomechanical risk factor (e.g., 

posture, force, and manual material handling).  

 

Exposure, diversity, homogeneity, SWSQ, and MQ – quality criteria outcomes 

Both job rotation sequences delivered by the team leader and generated by the GA were 

processed by a mathematical formulation (Assunção et al., 2022) built with the intention to 

provide quality criteria outcomes. The exposure, diversity, and SWSQ were calculated for 
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each worker individually, whereas homogeneity and MQ values were calculated equally for 

each team of the assembly line. 

 

Exposure 

The first layer of assessment involved calculating the average occupational exposure score 

from the sequence of workstations assigned to each worker on the assembly line. The 

occupational exposure score of a workstation in each rotation period is obtained by 

multiplying the occupational exposure score by the percentage of time of that given period. 

 

Diversity 

Diversity is the amount of change in the exposure score between successive workstations for 

each one of the following risk factors: posture, force, and manual material handling. 

Generally, diversity was calculated through a score for the transitions between the presence 

of a risk factor between successive workstations. Since there were 4 working periods, there 

were 3 transitions evaluated. Independently of the risk factor, each transition can be 

categorized, based on the presence (1) or absence (0) of a risk factor. 

 

Shift of working sequence quality 

The SWSQ represents the quality of the job rotation sequence for each worker. This index is 

the weighted sum of both scores, 2 for diversity, and 1 for occupational exposure. 

 

Homogeneity 

This criterion guarantees the balance between the team, guiding the algorithm to avoid 

favouring workers differently. 

 

Matrix Quality 

The MQ is the parameter that should favour job rotation plans with reduced exposure and 

high diversity and high homogeneity. 
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This process allowed us to have the same metrics analysed for both job rotation plans (i.e., 

team leader vs. GA). Further insight on how each outcome was calculated is provided in full 

detail elsewhere (Assunção et al., 2022). 

 

5.2.3. Statistical analysis 

Descriptive characteristics of the sample were presented as mean ± SD. The paired t-test was 

performed to compare the mean outcome values of the manual method with that of the 

algorithm method for the normally distributed variables and the Wilcoxon signed-rank test 

for the non-normal distributed variables. Likewise, the relationship between the two methods 

was determined using the Pearson or Spearman correlation (r) for the normal and non-normal 

variables, respectively. The Bland and Altman analysis (Bland and Altman, 1986) was used to 

examine the limits of agreement (LOA) (mean difference ± 2 SD) between the different job 

rotation outcomes (exposure, diversity, SWSQ, homogeneity, and MQ) made by the GA and 

the team leader. The concordance correlation coefficient (CCC) (Lin, 1989) was also calculated 

to quantify the degree of agreement between the different job rotation outcomes given by 

the GA and the team leader with the line of identity. The CCC was interpreted according to 

McBride (2005) (McBride, 2005) recommendation: values less than 0.90 were poor, those 

between 0.90-0.95 were moderate, those between 0.95-0.99 were substantial, and values 

greater than 0.99 were excellent. A p value of < 0.05 was considered statistically significant. 

Statistical analysis was performed using IBM SPSS Statistics Version 25.0 (SPSS Inc., an IBM 

company, Chicago, IL, USA) and STATA version 13.1 (StataCorp, College Station, TX).  

 

5.3. Results 

A total of 89 workers from 7 teams from the assembly line were included in the analysis. The 

workers’ mean age was 29.10±6.4 years, the seniority was 1.66±0.7 years and 38.8% were 

females. Looking at the composition of the teams, three had 11 workers, two had 15 workers, 

one had 17 workers and one had 9 workers. 

Table 5.1 compares the job rotation plan criteria values determined by the team leader and 

the GA. For exposure, the mean output from the GA was similar to the one produced by the 

team leader (p value = 0.80), although the correlation was weak but close to be considered 
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moderate (r = 0.44). The values for both the diversity and SWSQ from the GA and the team 

leader were weakly correlated (r = 0.29 and r = 0.44, respectively) and significantly different 

(p value < 0.001), with the GA generating higher scores compared to the team leader. 

Moreover, both SWSQ (CCC = 0.16) and diversity (CCC = 0.04) obtained low CCC values. 

 
Table 5.1 - Comparison of exposure, diversity, and SWSQ between job rotation plans built manually by the team leader and 
through the GA. Values for exposure, diversity and SWSQ were considered distinctively for each worker. 

 
Job rotation by 

Genetic 
Algorithm 

Job rotation 
by Team 
Leader 

Mean 
differencea 

p valueb r CCC 

Exposure 0.49±0.08* 0.49±0.11* 0.01±0.10 0.80c 0.44¥ 0.57¥ 
Diversity 0.74±0.03 0.63±0.04 0.11±0.04 <0.001 0.29¥ 0.04¥ 

SWSQ 1.98±0.11 1.76±1.33 0.23±0.13 <0.001 0.44¥ 0.16 

SWSQ Shift Working Sequence Quality, CCC Concordance Correlation Coefficient 
a Mean difference between Job rotation by Genetic Algorithm and Job rotation by Team Leader 
b p value based on paired sample t-test comparing Job rotation by genetic algorithm and job rotation by team leader 
c p value based on Wilcoxon signed-rank test comparing Job rotation by genetic algorithm and job rotation by team leader 
*Median and interquartile values were presented for non-normal variables 
¥ Significant at p value <0.001  

 

The homogeneity and MQ scores given to each team by the GA were higher than those given 

by the team leader (Table 5.2). The values for homogeneity and MQ of the GA and the team 

leader were highly correlated (r = 1.00 and r = 0.93, respectively), and significantly different 

(p value < 0.001) for homogeneity, with the GA having higher scores compared to the team 

leader. Moreover, both homogeneity (CCC = 0.31) and MQ (CCC = 0.06) achieved low CCC 

values. 

 
Table 5.2 - Comparison of homogeneity and matrix quality between job rotation plans built manually by the team leader and 
through the GA. Values for homogeneity and matrix quality were considered equal for the whole team. 

  
Job rotation by 

Genetic 
Algorithm 

Job rotation by 
Team Leader 

Mean 
differencea 

p valueb r CCC 

Homogeneity 1.80±0.16* 1.63±0.27* 0.22±0.05 0.02 1.00 0.31¥ 
Matrix Quality 2.40±0.10* 2.16±0.08* 0.27±0.04 0.02 0.93¥ 0.06 

CCC Concordance Correlation Coefficient  
a Mean difference between Job rotation by Genetic Algorithm and Job rotation by Team Leader 
b p value based on Wilcoxon signed-rank test comparing Job rotation by genetic algorithm and job rotation by team leader 
*Median and interquartile values were presented for non-normal variables 
¥ Significant at p value <0.001  

 

Figures 5.1 displays the relationship between the job rotation plan criteria values determined 

by the team leader and the GA (Fig. 5.1a, c, e) as well as the results of the Bland and Altman 
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analyses (Fig. 5.1b, d, f). For exposure and diversity, there was a significant association 

between the differences and the means of the values from the GA and team leader (exposure 

r = -0.39, p < 0.001; diversity r = -0.44, p < 0.001). On the contrary, for the SWSQ there was 

no association between the differences and the means of the values from the GA and team 

leader (r = - 0.20, p = 0.06). All the outcomes presented large LOA when comparing the values 

provided by the GA and the team leader, with the SWSQ also providing a large bias with a 

mean value of 0.23.  
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Figure 5.1 – Relationship between the output produced by the genetic algorithm and the team leader with regression line 
(solid line) and the line of identity (dashed line) for a) Diversity, c) Exposure, and e) SWSQ. The Bland and Altman plot of the 
difference between the output produced by the genetic algorithm and team leader with the regression line (solid black line), 
bias (short dashed line), and 95% LOA (long dashed line) for b) Diversity, d) Exposure, and f) SWSQ. 

 

5.4. Discussion 

The present investigation compared two methods to develop job rotation plans in the 

assembly lines of an automotive industry, regarding the outcomes of diversity, homogeneity, 

and exposure: (1) performed manually by the team leader; and (2) through a mathematical 
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formulation using the GA approach. The main findings of this investigation indicate that the 

job rotation plan carried out by the GA differed from those obtained by the team leader for 

diversity, SWSQ, homogeneity, and MQ, both at the group and individual levels. On the other 

hand, for the exposure outcome, there were no mean differences between methods, 

although at the individual level wide LOAs were observed.  

Over the past few years, there has been an increased focus in the ergonomics and engineering 

research fields to understand how job rotation plans could be used as an organizational 

measure to improve not only productivity in the workplace but also other psychological and 

physiological health outcomes (Mlekus and Maier, 2021; Posthuma et al., 2013). Moreover, 

there is also no evidence on how different methods used to build job rotation plans perform 

in terms of outcomes related to MSDs. As far as we know, this study provides for the first time 

a comparison between job rotation plans built manually by the team leader and those 

generated by a GA in a sample of workers in the automotive industry. Our results suggest that 

at the group level both the GA and the team leader job rotation plans produced similar results 

for the exposure outcome and had a moderate correlation. However, at the individual level, 

the job rotation plan provided by the team leader had a significant trend to overestimate the 

values provided by the GA, especially at higher values of exposure, while also having high LOA. 

These results highlight the ability and the empirical knowledge of team leader to build a job 

rotation that mitigates overall exposure, by managing through his experience the effort and 

difficulty related to each process in the workstation. These acquired skills may explain why 

there are no differences for exposure between the GA and the team leader at the group level 

results. In fact, the most recent meta-analysis investigating the effectiveness of job rotation 

plans concluded that having such organizational measure is associated with reduced 

musculoskeletal complaints and physical workload in workers performing high-intensity 

tasks, which is the case for those working in the assembly line of the automotive industry 

(Mlekus and Maier, 2021).   

Another aspect to consider is the diversity and the homogeneity when looking at the 

conception of a job rotation plan. Our results suggest that the job rotation plan built manually 

by the team leader had a significantly lower score for diversity and homogeneity when 

compared to those of the GA, as well as on other surrogate quality indexes of the job rotation 

plan (SWSQ and MQ). For instance, the Bland and Altman for diversity showed a significant 
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trend between the means and the differences of the methods, whereas SWSQ had high LOA 

and a significant bias between the GA and the team leader. Even though there is no gold 

standard to compare both these methods and how they perform when generating a job 

rotation plan, the fact that the GA provided higher scores on average for diversity, SWSQ, 

homogeneity, and MQ may be an indicator that the implementation of a GA solution may play 

a significant role in reducing MSDs. In that note, both job rotation sequences delivered by the 

team leader and generated by the GA were processed by a mathematical formulation 

(Assunção et al., 2022) allowed us to have the same metrics analyzed for both job rotation 

plans. In this regard, there is evidence supporting the importance of maximizing diversity in 

job rotation plans, since it is positively associated with satisfaction, learning and 

development, psychological and physiological health outcomes, and organizational 

performance outcomes (Mathiassen, 2006). In fact, by increasing workers’ learning and 

development capacities through a more diverse job rotation plan, one can expect that the 

versatility matrix of the workers will be more flexible, which in the long run will improve the 

job rotation plans generated by the GA. It is also important to note that the GA solution 

obtained higher scores in the homogeneity outcome without compromising the overall 

exposure to known biomechanical risk factors, while also maximizing the diversity score. 

Homogeneity is an often under looked variable in the conception of a job rotation plan, but it 

is of key importance to maintain the balance between workers on the same team (Assunção 

et al., 2022). 

Although this investigation used a novel approach by taking advantage of the mathematical 

formulation to run both the job rotation plans created by the team leader and the GA, which 

allowed for a direct comparison of both methods in several quality criteria outcomes, some 

limitations should be pointed. Our investigation design did not allow us to assess if the 

improvements observed in any of the outcomes related to the quality of the job rotation plan 

(i.e., exposure, diversity, homogeneity, SWSQ, and MQ) would in fact translate into the 

reduction of the incidence of MSDs. Nevertheless, outcomes such as diversity, exposure, 

homogeneity have established meanings in the literature (Mathiassen, 2006) which can be 

used to speculate and infer on the possibility of one method being a better fit for the medium 

to long term incidence reduction of MSDs. Additionally, this is an issue often observed in 

investigations related to the development of job rotation plans using mathematical 
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formulations, where there is a lack of follow-up in the automotive industry to assess their 

effectiveness in reducing MSDs (Mlekus and Maier, 2021). Thus, in the future, it would be 

important to prospectively study MSDs prevention using the GA, according to the data 

presented in this study. 

 

5.5. Conclusion 

Job rotation plans generated by the GA differed from those provided by the team leader for 

the diversity, homogeneity, SWSQ, and MQ outcomes. Even though at the group level the 

values provided by the GA for exposure were like those of the team leader, none of the 

outcomes performed well at the individual level, with wide LOA being observed. Given that 

on average the values provided by the GA provided more favourable results for the diversity 

and homogeneity outcomes, the use of the GA method for developing job rotation plans in 

the automotive industry, maybe a potentially promising approach to not only reduce the 

burden of the team leader through the automation of this task but also to reduce MSDs in the 

assembly line of the automotive industry, considering the better results obtained by this 

process.   
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6.1. Introduction 

Musculoskeletal disorders remain the leading cause of lost productivity in the workplace and 

have other well-known impacts on workers’ well-being and health-related outcomes (De Kok 

et al., 2019; Sebbag et al., 2019). The recent report by the European Agency for Safety and 

Health at Work advocates that this problem needs to be tackled at multiple levels, starting at 

the individual level by adjusting the conditions under which workers perform their tasks (e.g., 

changing tools) and then progressing to a more macro level through implementing and 

revising multiple health policies to improve working conditions (De Kok et al., 2019). Looking 

across the entire spectrum of measures implemented by companies and sectors, there are 

several approaches to improving workplace conditions that need to be weighed in terms of 

their economic viability and feasibility (Tharmmaphornphilas & Norman, 2007). For instance, 

in the automotive industry, where the risk factors are known but difficult to improve, such as 

tasks performed overhead or inside the vehicle during assembly, most solutions to improve 

these working conditions are either too expensive or under unrealistic conditions (Hochdörffer 

et al., 2018). Moreover, for jobs where improvement methods are found, they may not be 

implemented due to time, financial or logistical constraints, e.g., related to assembly line 

synchronization or changes in working height conditions. In such scenarios, companies and 

industries tend to adopt organizational measures where job rotations are viewed as a simple 

strategy to mitigate exposure to known biomechanical risk factors and improve overall 

productivity by managing the time each worker spends on a given task (Asensio-Cuesta, 

Diego-Mas, Cremades-Oliver, et al., 2012; Asensio-Cuesta, Diego-Mas, Canós-Darós, et al., 

2012; Diego-Mas et al., 2009;Diego-Mas, 2020; Jonsson, 1988) 

The aim of this dissertation was to provide new insight into the relationship between the 

biomechanical risk factors present in the automotive industry and the short-term effects of 

MSSs, as well as to develop a mathematical formulation to create job rotation plans and 

mitigate exposure to these known biomechanical risk factors. In Chapter 2, we provide a 

comprehensive summary of the current literature on WRMSD and its known biomechanical 

risk factors, while delving into detail the possible solutions to eliminate or reduce exposure 

to such factors, with a particular focus on job rotation plans. In Chapters 3 to 5 we present 

the original work of this dissertation, made in collaboration with the largest automotive 

industry in Portugal. A detailed discussion of each of the three studies is included in each 
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chapter. The aim of this last section is to integrate and summarize the main research findings 

of each investigation and to provide a global overview of the implications for future research 

and their practical implications. Finally, we will also disclose and discuss some of the 

limitations of this research.  

 

6.2. Summary of the main findings 

6.2.1. Short-term exposure to risk factors and musculoskeletal symptoms 

Looking at the current dissertation structure and how it is organized and linked between the 

different original investigations that comprise it, it was our intention that the first manuscript 

(Chapter 3) would analyse the topic of MSSs and its prospective relationship with 

biomechanical risk factors in an automotive production line during a typical working week 

(Assunção et al., 2021). The methodological approach involved a total of 228 workers divided 

into 16 randomly selected teams from the assembly and paint areas. These workers were 

followed throughout a work week, twice a day, and assessed for biomechanical risk factors 

through the EAWS methods and provided a self-reported score for the MSSs. This was the 

first study to provide observational evidence in which after just one week, the group of 

workers exposed to known biomechanical risk factors, such as force, posture, and percentage 

of time spent in a bent position and overall exposure, were at increased odds of reporting 

MSSs in the neck, shoulders and wrist body regions when compared to the low-risk group. 

The novelty of this investigation lies on the time frame of when the assessments took place, 

since most of the current body of literature covers investigations looking at associations of 

MSD and biomechanical risk factors at the medium and long term (Da Costa & Vieira, 2010; 

Guerreiro et al., 2020; Hallman et al., 2019; Punnett & Wegman, 2004) or in a cross-sectional 

approach (Coggon et al., 2013; Punnett, 1998). Moreover, we looked at the self-reported 

MSSs in the morning, before the shift started, and in the afternoon, after the shift ended, to 

understand how the MSSs were related to workers in the high vs low-risk groups. In this 

regard, a relationship between MSSs and the influence of known biomechanical risk factors 

was observed only for the models that accounted for the afternoon period, indicating that 

there is no carry over effect of self-reported pain to the next morning and that future 

investigations using the same method, should focus their assessments at the end of the 

working day. However, as previously mentioned, when looking at the entire workweek, there 



Chapter 6  

    

101 

was a significant unfavourable trend for MSSs in the high-risk group. This information has 

practical implications for the automotive industry, since in the absence of a strategy to 

mitigate the exposure to which workers are subjected, there is a significant risk that 

cumulative biomechanical load may evolve to a MSD in a near future (Kennedy et al., 2006; 

Krebs et al., 2007).  

 

6.2.2. Genetic algorithm development  

With this problem in mind, the second manuscript of this dissertation (Chapter 4) aimed to 

develop a viable strategy to reduce exposure to biomechanical risk factors. Through a GA 

approach, a mathematical formulation was created to generate job rotation plans in the 

automotive industry that could minimize the risk of MSDs in the workplace by managing 

exposure to known biomechanical risk factors (Assunção et al., 2022). The key findings from 

this research were the conception of a viable algorithm that demonstrated a high diversity 

sequence during work hours and reduced overall exposure to risk factors, while maintaining 

homogeneity to balance the rotation between team members in the assembly line. In 

addition, the algorithm excelled in outperforming the team leader in the amount of time 

needed to create a job rotation plan for a week’s work (i.e., 53 seconds for the GA vs. 3-4 

hours for the team leader).  

In a time of constant social and economic change, most companies and industries tend to 

adapt by optimizing their processes at both the human and manufacturing level. In the 

automotive industry, there are still processes that can be optimized, such as those related 

with job rotation plans. In this regard, the factory depended on team leaders to develop job 

rotation plans, which reduced the team leader’s productivity in managing assembly area 

teams by shifting their focus to a task that was time consuming. Additionally, most of their 

knowledge used to create job rotation plans is empirical, with most plans being built 

considering each worker’s ability to perform a set of workstations or the presence of an injury 

that precludes them from performing their job. Nonetheless, a job rotation plan, by definition, 

should be used to optimize an assembly line, but is also a tool to reduce MSDs (Diego-Mas, 

2020; Jonsson, 1988; Song et al., 2016). The factory where this dissertation was conceived has 

implemented a risk assessment method, the EAWS (Schaub et al., 2013), which provides a risk 

score for each workstation that includes postures and movements and low additional physical 
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efforts, action forces of the hand-finger system and/or the whole body, MMH, and repetitive 

load on the upper limbs. In this context, team leaders do not take into account the ergonomics 

risk assessment given by the EAWS in their job rotation plan, which reduces their ability to 

influence the exposure, diversity and homogeneity of their schedules and, above all, their 

ability to effectively prevent MSDs. 

Due to the large number of criteria that must be taken into account when designing a job 

rotation plan (Asensio-Cuesta, Diego-Mas, Canós-Darós, et al., 2012), such as the multitude 

of restrictions, the high number of workstations in the assembly line and the risk assessment 

of each workstation, it is only logical that a mathematical formulation would be suitable to 

master such a task (Diego-Mas et al., 2009). Of all the different mathematical solutions, GA 

stands out from the remaining, since it can quickly handle complex mathematical problems 

in situations where there are a large number of variables and outcomes in a context of a 

dynamic environment (Carnahan et al., 2000). As mentioned in Chapter 4, a few successful 

GAs have been implemented in both the automotive industry (Asensio-Cuesta, Diego-Mas, 

Cremades-Oliver, et al., 2012; Asensio-Cuesta, Diego-Mas, Canós-Darós, et al., 2012; Diego-

Mas et al., 2009) and in other contexts (Boyd & Savory, 2001). These algorithms considered a 

diverse and distinct number of variables, mainly focused on increasing the diversity of job 

rotation plans, while overlooking other variables such as homogeneity (Assunção et al., 2022; 

Carnahan et al., 2000). On the other hand, most GAs (Asensio-Cuesta, Diego-Mas, Canós-

Darós, et al., 2012; Diego-Mas et al., 2009) relied on changes in the overall intensity of the 

tasks performed to increase diversity, either using a specific or a generic risk assessment 

method. Nonetheless, these GAs did not account for the specific biomechanical risk factors 

that compose the overall score provided by the risk assessment method and how the GA can 

be best adjusted to create a more robust job rotation plan. For example, two workstations 

assessed as low-risk and high-risk could be placed back-to-back and still comply with the 

general diversity criterion. However, when looking at the individual risk factors identified for 

each workstation, it is possible that this approach could result in an overlapping exposure of 

a biomechanical risk factor (e.g., both workstations having tasks performed in an overhead 

position). Furthermore, most of these investigations developed GAs for the automotive parts 

supplier industry (Asensio-Cuesta, Diego-Mas, Cremades-Oliver, et al., 2012; Asensio-Cuesta, 

Diego-Mas, Canós-Darós, et al., 2012; Diego-Mas et al., 2009) with no information on the 
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assembly lines of large automotive plants, where the specifics of the tasks performed at 

different workstations may differ.  

Another important aspect of job rotation plans lies with the effectiveness of these strategies 

to decrease the incidence of MSDs and how job rotation plans generated by a GA approach 

compare to those performed by team leaders or other known experts. This issue will be 

addressed in the next sub-chapter.  

 

6.2.3. Comparing genetic algorithm and team leader job rotation plans 

Advances in modern technological achievements have been supported by key organizational 

strategies that have provided the means for the ongoing growth of multiple industries. On 

this note, the current body of knowledge suggests that job rotation plans may have a special 

role in improving overall working conditions and productivity by reducing the incidence of 

MSDs and other changes favouring psychological-related outcomes, such as job satisfaction, 

less stress, and greater labour flexibility (Mlekus & Maier, 2021). However, over the past 

decades much of the responsibility associated with the implementation of job rotation plans 

in the automotive industry has been handled by specialized workers, most of whom have 

leadership responsibilities to a specific team. Many of these team leaders rely on their 

empirical knowledge and workers’ self-reported data to design their job rotation plans, which 

means sacrificing their own working time to perform a time-consuming task. As described in 

the previous chapter, the research in the field of ergonomics and industrial engineering has 

increased significantly to develop mathematical formulas that can optimize the process of 

generating job rotation plans (Asensio-Cuesta, Diego-Mas, Canós-Darós, et al., 2012; Asensio-

Cuesta, Diego-Mas, Cremades-Oliver, et al., 2012; Diego-Mas, 2020; Diego-Mas et al., 2009). 

To our knowledge, there is currently no evidence comparing job rotation plans conceived by 

the team leader and those generated by a mathematical formula such as the GA in the context 

of the automotive industry. Therefore, in the third and last manuscript of this dissertation 

(Chapter 5), we compared these two methods in terms of: exposure, diversity, SWSQ, 

homogeneity and matrix quality.  

By using our previously built mathematical formula, that enabled not only the development 

of a job rotation plan but also the assessment of scores for diversity, exposure, SWSQ, 

homogeneity, and matrix quality (Assunção et al., 2022), we were able to run information 
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from job rotation plans of 7 teams (89 workers) created by the team leader and compared 

them with the results of the GA. Both methods were compared in relation to several quality 

criteria, including the average occupational exposure from the sequence of workstations 

assigned to each worker, how different the magnitude of the change in exposure is between 

workstations, how balanced a team is in terms of exposure (i.e., homogeneity) and finally two 

other outcomes related with quality of the sequence of workstations and a matrix parameter 

providing the best combination of these three outcomes: exposure, diversity and 

homogeneity. The key findings of this investigation showed that the job rotation plan 

generated by the GA differed from those created by the team leaders in terms of diversity, 

SWSQ, homogeneity and matrix quality. No differences were observed for the exposure 

outcome. Nevertheless, all the outcomes had broad LOAs, indicating large differences at the 

individual level. As pointed out in Chapter 5, these results may be of importance for the 

automotive industry, especially when it comes to diversity, homogeneity, SWSQ and matrix 

quality. While there is no gold standard to compare these two methods and their 

performance in creating a job rotation plan, the fact that the GA yielded higher scores for 

diversity, SWSQ, homogeneity, and matrix quality can be indicative that implementing such a 

solution may play a role in reducing MSDs in the medium to long term. On this note, the 

diversity outcome has been gaining a significant relevance in the conception of the job 

rotation plans, since accounting only for exposure may compromise the effectiveness of this 

organizational strategy. This assumption is based on the importance of giving muscles 

adequate recovery time to avoid higher levels of fatigue and to reduce mechanical load and, 

thus the risk of MSDs (Mathiassen, 2006). Therefore, the idea of designing a more diverse job 

rotation plan is to allow for a job sequencing between workstations that encourages load 

variation, even though average exposure is kept constant (Mathiassen, 1993). All these 

aspects were considered in the development of our GA (Assunção et al., 2022), where diverse 

exposure to posture, force and manual material handling were maximized. Looking at our 

GA’s fitness function, each worker had a score calculated based on occupational exposure 

and diversity, with the latest having a higher weight in this formulation. These considerations 

may explain the differences between the team leaders’ scores on diversity and those on GA.  

Following the same trend, the homogeneity scores achieved by the GA were also superior 

when compared to those provided by the team leader, which may indicate that the GA job 
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rotation plans may be more balanced in terms of exposure and diversity for each team. 

Putting this information into perspective, one can speculate that over time in the eventual 

situation where a team leader provides a similar job rotation plan, with low diversity and low 

homogeneity, this may contribute to the phenomenon observed in Chapter 3, where workers 

in high-risk group are exposed to risk factors week after week, and hence at risk for 

cumulative fatigue and the onset of MSDs. On the other hand, if the job rotation plans are 

generated by the GA, considering the homogeneity in the fitness function, the difference 

between the high-risk group and the low-risk group may be reduced, with possible 

implications for future incidence of MSDs. 

 

6.3. Methodological considerations  

This dissertation was part of a specific group of grants awarded by the Portuguese Foundation 

for Science and Technology in which the main goal was to bridge the gap between 

industries/companies and academia. This specific grant revealed to be an excellent 

opportunity to work in a close partnership with the largest automotive company operating in 

Portugal, which allowed us to have access to a significant proportion of their assets in an 

ecological industrial setting. This industry is organized according to a series production model, 

consisting of four production areas, which had a single assembly line, with an imposed 

cadence. The production was of the semi-continuous type, developed in three shifts, with a 

fixed crew, of eight hours of work each, with three breaks planned for each work shift: one of 

longer duration (30 minutes) reserved for the period of meals and others two shorter intervals 

(7 minutes), for rest. The factory operates on the four levels of the production process (Press, 

Body, Paint, and Assembly). 

Since the main goal of the dissertation was to understand the short-term relationships of 

biomechanical risk factors and MSS on an automotive assembly line, while conceiving a job 

rotation plan tool to mitigate exposure to these known risk factors, this dissertation also 

allowed for an excellent opportunity to make a difference on how the factory runs and 

operates its human resources. Despite all these major benefits, this collaboration also faced 

significant challenges such as: recruitment and how to achieve a meaningful sample size; and 

how to implement other physiological outcomes without compromising the operations 

conducted in the assembly line. 
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In the first study of this dissertation (Chapter 3), we recruited a representative sample of the 

assembly and paint areas, which was followed over the course of one week to assess the 

relationship between self-reported symptoms and biomechanical risk factors. When looking 

at the results, one could argue that a possible limitation is the lack of an additional week of 

assessments to understand the impact of the days off and how it would affect the self-

reported symptoms in the following week. Given that we had daily assessments with self-

reported questionnaires, both in the morning and in the afternoon periods, we chose not to 

overload the workers with an additional week of assessments that could lead to a potential 

disruption of the operations in the assembly line. In fact, due to the progressive drop-out 

observed throughout the work week, we ended up having to remove the fifth day to preserve 

our sample power.  

In Chapter 4, we presented the manuscript where we developed a job rotation plan that used 

a GA approach focused on parameters such as diversity, homogeneity, and exposure. Because 

the results of the first manuscript provided important information about which biomechanical 

risk factors were associated with MSS, it was only logical to use this information as part of the 

exposure parameters for the design of the GA. However, regarding other known risk factors 

(e.g., MMH, vibrations), no associations were found for short-term symptoms in the upper-

limbs and low back symptoms, even though such relationships may be relevant when looking 

at medium and long-term symptoms self-reports. In fact, other observational research 

(Punnett, 1998) has observed that these risk factors were associated with complaints in other 

body regions. Therefore, through a more holistic approach, it was our intent to take 

advantage of the already implemented ergonomic risk assessment method (EAWS) by 

including it in the GA in order to provide a major source of decisions onto diversity and 

exposure.  

Finally, in Chapter 5, we provided a much-needed comparison between job rotation plans 

generated by the GA and those made by the team leaders in terms of diversity, homogeneity, 

exposure, SWSQ and matrix quality. Despite these results, there is still a literature gap on how 

job rotation plans are perceived by workers in terms of satisfaction when built by the GA vs. 

the team leaders, and on what will be the long-term impact of implementing such a tool. One 

of the main goals of this dissertation was to create a job rotation that would reduce the impact 
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of exposure to MSDs. Nonetheless, accessing the impact of the created mathematical 

formulation on the MSD incidence presented to be a significant challenge, since there were 

several confounding factors in the ecological industrial setting. For example, alongside the job 

rotation plans, the automotive industry is constantly updating the workplace with new 

assembly lines, tools, workers, and other organizational measures such as shifts, making it 

quite difficult to pinpoint the exact contribution of the job rotation plan to the MSD milieu. In 

fact, this might be one of the major underlying reasons for the inconclusive/inconsistent 

results provided by other job rotation plan investigations (Leider et al., 2015; Mlekus & Maier, 

2021). Nonetheless, when using a holistic ergonomic approach, it is important to consider 

that the job rotation plan is just one strategy among others, and it is only through the 

cumulative stacking effect of the different ergonomic solutions that we can make a significant 

impact on the problem related with MSDs.  

 

6.4. Future research 

To overcome the aforementioned shortcomings, it is important that future research focuses 

on the true medium and long-term effects of job rotation plans in MSSs and MSDs, and how 

they are perceived by workers and team leaders in terms of job satisfaction and time 

management. To do so, data collection on MSSs and MSDs would have to be collected in a 

cohort study and compared to our data before the implementation of the job rotation plans 

conceived by the GA. However, one should consider that such a study would require a long-

term follow-up (e.g., with 6 months follow-up) to allow enough time to observe the 

development of MSS/MSD. On the other hand, the algorithm was developed considering the 

specific characteristics of the assembly line, which may limit its applicability in other 

production areas, such as the painting area. Future research should analyse the capacity of 

the GA to be optimized through its mathematical formulation and hence, meet the needs of 

other areas/industries to improve their job rotation plans. 

In an era of technological development, the use of a direct quantitative assessment of risk 

factors in the workplace, such as those acquired by motion sensors, would allow the proposed 

formulation to have more reliable risk assessments than those provided by the EAWS. 
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Therefore, research is needed to assess whether the introduction of these new assessment 

methods would improve the GA's ability to provide better job rotation plans 

 

6.5. Practical implications 

Based on the key findings of this dissertation, some important recommendations can be made 

to the automotive field and other related industries. Through the implementation of the GA, 

one can expect improvements in the management of human resources and possibly in the 

incidence of MSDs among the industry workers, all of which will directly or indirectly impact 

the overall quality of life at work. By introducing the GA into the daily planning routine of the 

different teams, the company will provide team leaders with an opportunity to better manage 

their schedules and be more available to perform other tasks on the assembly lines, as they 

will be spending less time planning (e.g., the different job rotations). 

In addition, our finding that one week of work had implications on the self-reported 

symptoms depending on the exposure to known biomechanical risk factors, raises awareness 

on how automotive industries should manage their working teams, and highlights the 

importance of having organization tools (e.g., job rotation plans) to balance overall exposure, 

increase diversity and optimize homogeneity.  

Finally, using the algorithm could be seen as a tool for planning possible changes in the 

production line (e.g., line balancing, changing processes, and introducing a new process or 

product) and to understand or even predict the impact of these changes in terms of industrial 

engineering and risk assessment.  
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Supplementary Material 

 

1. Example 

A demonstration of how to apply the concepts will be described in the following section. In 

this example, the number of workers (𝑊) is 6, the number of workstations (𝑊𝑆) is also 6, and 

the number of rotation periods (𝑟𝑜𝑡) is 4. In this hypothetical scenario, the workers 

considered have a qualification matrix presented in Figure 1. The workstations were scored 

based on the EAWS as presented in Table C.1. 

Table C.1 - Risk factor scores for all categories of the EAWS. The colours on the Action Forces section represent the type of 
force exerted: black - dynamic and static forces; dark grey - dynamic forces; light grey - the risk factor is not present. The unit 
%t indicates the percentage of time spent in that risk factor during 1 cycle time, and n represents the number of times these 
risk factors appear in 1 cycle time. 

 Posture (%t) MMH (points) Force (%t or n)  

 NS T E     WB HAF 

 ASL AHL B SB GA6 GA8 GA10 R C H P 1 2 3 4 5 6 1 2 3 4 5 6 S 

Ws

1 

0  19 0 39 18 9 0 0 0 0             60 

Ws

2 

0  15 0 53 11 9 0 0 0 0             42 

Ws

3 

0  31 0 18 16 3 0 0 0 0             48 

Ws

4 

0  4 0 33 8 1 0 0 0 0             36 

Ws

5 

9 24 0 0 13 1 2 0 0 0 0             57 

Ws

6 

0  22 0 29 23 5 11 0 0 0             43 

Abbreviations: Ws – Workstation; NS – Neck and shoulder; ASL – At/Above shoulder level; AHL – Above head level; T-
Trunk; B-Bent; SB-Strongly bent; GA6 – Arm reach at 60%; GA8 – Arm reach at 80%; GA10 – Arm reach at 100%; MMH – 
Manual material handling; R – Repositioning; C – Carrying; H – Holding; P – Pushing and Pulling; WB – Whole body force; 
HAF – Hand Arm Finger force; S – Score. 
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Figure C.1 - Example of a qualification matrix for 6 workers and 6 workstations. 

Abbreviations: w – worker. 

 

The way exposure, diversity, and homogeneity scores were calculated are demonstrated in 

the following section. For this example, consider the randomly generated job rotation 

schedule, presented in Figure C.2.  

 

 

Figure C.2 - Randomly generated job rotation plan for the example. 

Abbreviations: w – worker; Rot – rotation period. 

 

 

1.1. Example of Exposure 

For the calculation of exposure and diversity, take into consideration the sequence of 

workstations given to 𝑤2.  

The exposure is calculated using Eq. (2) and computed in Eq.(17): 

𝑂𝐸2 = (0.23) ∗ 60 + (0.30) ∗ 43 + (0.27) ∗ 36 + (0.20) ∗ 57 (17) 
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The 𝑂𝐸2 score (47.71) is then normalized using Eq. (3), which uses the maximum and 

minimum possible occupational score for a specific worker. In this case, looking at Table 3, 

𝑤𝑠1 is 𝑤2 most demanding workstation. Repeating this workstation over the 4 rotation 

periods gives the worst working sequence: 1 → 1 → 1 → 1 (𝑚𝑎𝑥2 = 60). The workstation with 

lower score for 𝑤2 is 𝑤𝑠4. Repeating this workstation over the 4 rotation periods gives the 

best working sequence: 4 → 4 → 4 → 4 (𝑚𝑖𝑛2 = 36). The normalized score is (based on Eq. 

(3)): 

 

𝑁𝑂𝐸2 =
47.71 − 36

60 − 36
= 0.33 (18) 

 

The closer the 𝑂𝐸2 score is to the 𝑚𝑎𝑥2, the closer to 1 would be 𝑁𝑂𝐸2 score, indicating a 

worse exposure score.  

 

1.2. Example of diversity in Posture and MMH 

The calculation of diversity score for posture and MMH was made, and process was the same. 

In Figure C.3 the presence/absence of the risk factor for each body region category of posture, 

for 𝑤2 is depicted. 

 

Regarding posture and MMH, the process was the same. In Figure C.3. was depicted the 

presence/absence of the risk factor for each body region category of posture, for 𝑤2. 

 



 

127 

 

Figure C.3 - Presence and absence of each risk factor category (NS- Neck and Shoulders; T-Trunk; E-Elbow) of posture for 
the working sequence of worker 2. On the right side of the Figure, the distribution of the risk factors scores is presented 
for each risk factor category in quartiles. The workstations are located on the quartiles where they belong. The distribution 
for NS is omitted because it did not reach that step. 

 

The Neck and Shoulders (NS) body region was only present on workstation 5, with a transition 

score for the first and second shift of 1/3 (transition type 2), while for the last shift, the 

transition was scored as 1 (transition type 1). Trunk and Elbow were present in more 

workstations. When two back-to-back workstations had the same posture or MMH risk factor 

present, the transition score was calculated by inspecting the change in quartiles. The 

distribution of scores for each worker and each risk factor of Posture and MMH was calculated 

and divided into quartiles. In Figure C.3, each body region had its distribution. Therefore, each 

workstation fits in one of the quartiles, for instance, 𝑤6 had a score of 22 for the trunk and 

fits in the upper quartile, indicating that out of all the workstations, it is the one with a higher 

risk for the trunk. After making this evaluation, the transition scores were now based on the 

inter-quartile transitions on shifts. For instance, for the trunk, the transition of the first shift 

was scored as 1, because there was an inter-quartile transition between 𝑤𝑠1 and 𝑤𝑠6 For 

elbow, the last shift was scored as 0, because there was no inter-quartile transition between 

𝑤𝑠4 and 𝑤𝑠5. The transition scores for NS, Trunk, and Elbow were, respectively, for each 

transition:  
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𝑡𝑠𝐴𝑡,𝑝1 =

1
3 + 1 + 1

3
= 0.78 

(19) 

𝑡𝑠𝐴𝑡,𝑝2 =

1
3 + 1 + 1

3
= 0.78 

(20) 

𝑡𝑠𝐴𝑡,𝑝3 =
1 + 1 + 0

3
= 0.67 (21) 

 

The final transition score for posture was the average (Eq. (22)): 

𝑡𝑠𝐴𝑡,𝑝 =
0.78 + 0.78 + 0.67

3
= 0.74 (22) 

  

To calculate the transition scores for MMH, the process was the same. In this case, the values 

for all were almost 0, therefore the risk factor was majorly absent, except for the repositioning 

category of 𝑤𝑠6. Therefore, the transition scores for each shift of 𝑤2, for repositioning are 

(1) 1, (2) 1, and (3) 1/3. The transition scores for each shift were: 

 

𝑡𝑠𝐴𝑡,𝑚𝑚ℎ1 =
1 +

1
3 +

1
3 +

1
3

4
= 0.50 

(23) 

𝑡𝑠𝐴𝑡,𝑚𝑚ℎ2 =
1 +

1
3 +

1
3 +

1
3

4
= 0.50 

(24) 

𝑡𝑠𝐴𝑡,𝑚𝑚ℎ3 =

1
3 +

1
3 +

1
3 +

1
3

4
= 0.33 

(25) 

 

The final transition score for MMH was the average (Eq. (26)): 

 

𝑡𝑠𝐴𝑡,𝑚𝑚ℎ =
0.50 + 0.50 + 0.33

3
= 0.44 (26) 

 

1.3. Example of diversity for force 

The process to calculate the transition score for force was presented in Figure C.4.  
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Figure C.4 - Calculation of transitions score in force in each layer. 

Abbreviations: WB – Whole body forces; HF - Hand Arm Finger Forces 

 

As in posture and MMH, the first layer (Force) inspects the presence and absence of the risk 

factor in each workstation. In the case of 𝑤2, the factor was always present. Therefore, the 

transition score for each shift was calculated on the transition scores of the next layer (System 

Layer). In this layer, the evaluation was made for both Whole Body and Hand Arm Finger 

forces. For the Whole Body, the scores followed transition types 1 and 2. Regarding Hand Arm 

Fingers, the risk factor was always present, therefore the transition score was calculated by 

the next layer (Level Layer). For each force level (1 to 6), the transition score was calculated. 

For Hand and Fingers system of worker 2, the only force level with risk factor presence was 

level 3. As the risk factor was present in all rotation periods, the score was calculated on the 

last layer (Type Layer). In the sequence of 𝑤2, the only workstation with static forces was 

𝑤𝑠1, while the remaining workstations were absent of the risk factor. On the other hand, 

dynamic forces were present in all workstations, which means that no diversity was achieved. 

The score, in the last layer, was 0. Using all the previous information, we were able to calculate 

the scores for the previous layers. For Level Layer 3:  
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𝑡𝑠𝐵𝑡,𝑓21 =
0 + 1

2
= 0.50 (27) 

𝑡𝑠𝐵𝑡,𝑓22 =
0 +

1
3

2
= 0.17 

(28) 

𝑡𝑠𝐵𝑡,𝑓23 =
0 +

1
3

2
= 0.17 

(29) 

 

For the System Layer HF: 

𝑡𝑠𝐵𝑡,𝑓11 =

1
3 +

1
3 + 0 +

1
3 +

1
3 +

1
3

6
= 0.37 

(30) 

𝑡𝑠𝐵𝑡,𝑓12 =

1
3 +

1
3 + 0.17 +

1
3 +

1
3 +

1
3

6
= 0.30 

(31) 

𝑡𝑠𝐵𝑡,𝑓13 =

1
3 +

1
3 + 0.17 +

1
3 +

1
3 +

1
3

6
== 0.30 

(32) 

 

Finally, the transition score for the force risk factor was: 

𝑡𝑠𝐵𝑡,𝑓1 =

1
3 + 0.37

2
= 0.35 

(33) 

𝑡𝑠𝐵𝑡,𝑓2 =

1
3 + 0.3

2
= 0.32 

(34) 

𝑡𝑠𝐵𝑡,𝑓3 =
1 + 0.3

2
= 0.65 (35) 

𝑡𝑠𝐵𝑡,𝑓 =
0.35 + 0.32 + 0.65

3
= 0.44 (36) 

 

 

1.4. Diversity Score 

The final diversity score for 𝑤2 was calculated following Eq. (7): 

 

𝑇𝑠2 =
3 ∗ 𝑡𝑠𝐴𝑡,𝑝 + 2 ∗ 𝑡𝑠𝐵𝑡,𝑓 + 1 ∗ 𝑡𝑠𝐴𝑡,𝑚𝑚ℎ

6
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𝑇𝑠2 =
3 ∗ 0.74 + 2 ∗ 0.44 + 1 ∗ 0.44

6
 (37) 

𝑇𝑠2 = 0.59  

 

1.5. Example of homogeneity and the job rotation schedule quality 

The results of exposure and diversity for the rotation schedule are presented in Table C.2. 

 

Table C.2 - Scores for the normalized occupational exposure (𝑁𝑂𝐸), diversity (𝑇𝑠), homogeneity (𝐻𝑜𝑚), shift working 
sequence quality (𝑆𝑊𝑆𝑄) and the quality of the job rotation schedule (𝑀𝑄) presented in Figure C.2. 

Worker 𝑁𝑂𝐸 𝑇𝑠 𝑆𝑊𝑆𝑄 

1 0.33 0.48 1.63 

2 0.49 0.59 1.69 

3 0.25 0.63 2.01 

4 0.46 0.70 1.94 

5 0.73 0.79 1.85 

6 0.28 0.57 1.86 

 𝐻𝑜𝑚  𝑆𝑊𝑆𝑄 

 1.74  1.83 

𝑀𝑄  2.27  

 

The calculation of the homogeneity score was obtained using Eq. (12) calculating the standard 

deviation of the 𝑁𝑂𝐸 and 𝑇𝑠 scores. The score that evaluates the quality of a working 

sequence, on average, was made applying Eq. (14).  

The final quality score of the entire job rotation schedule, including the evaluation of the 

working sequences, as well as the overall homogeneity of the plan, was made with Eq. (15), 

being the result 2.15.
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(2019) The role of the industrial work transformation on the exposure patterns. In Proceedings 

of the International Symposium on Occupational Safety and Hygiene.
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