

Master

Master’s in Actuarial Science

Master’s Final Work

Dissertation

MODELLING HOSPITAL ADMISSION RATES IN SÃO PAULO,
BRAZIL

LEE-CARTER MODEL VS. NEURAL NETWORKS

Rodolfo Monfilier Peres

October – 2022

Master

Master’s in Actuarial Science

Master’s Final Work

Dissertation

MODELLING HOSPITAL ADMISSION RATES IN SÃO PAULO,
BRAZIL

LEE-CARTER MODEL VS. NEURAL NETWORKS

Rodolfo Monfilier Peres

Supervisor

Onofre Alves Simões

October - 2022

 iii

Abstract

In Brazil, hospital admissions represent almost 50% of the total claims cost of health insurance

companies while they only represent 1% of the total medical procedures. Therefore, modeling

hospital admissions is extremely useful for health insurers to assess their claim costs over time

and actuaries should be capable to include that information in their analyses, in order to

preserve the financial sustainability of the companies.

This dissertation analyses the use of the Lee-Carter model for predicting the general level of

hospital admissions in the state of São Paulo, Brazil, using the traditional ARIMA model and

contrasting it with the LSTM neural network. Publicly available data between the years 2008

and 2019, divided by gender, were used. The function auto.arima from the R package forecast

was used to find the best ARIMA model for the data while the LSTM neural network model

was searched in a combination of 20 models, varying the learning rate and decay factor. The

results showed that the LSTM model and the ARIMA have similar RMSE and MAE

performance.

Keywords: Lee-Carter; Neural Network; LSTM; Hospitalizations; Time Series

 iv

Resumo

No Brasil, hospitalizações representam quase 50% dos custos totais de sinistros em operadoras

de planos de saúde enquanto representam apenas 1% dos procedimentos médicos. Portanto,

estimar hospitalizações é extremamente útil para que operadoras de planos de saúde possam

estimar seus custos ao longo do tempo e atuários devem ser capazes de incluir essas

informações em suas análises para garantir a sustentabilidade financeira das companhias.

Essa dissertação analisa o uso do modelo de Lee-Carter para prever o nível geral de

hospitalizações no estado de São Paulo, Brasil, utilizando o modelo ARIMA tradicional e

comparando-o com a rede neuronal LSTM. Dados públicos entre os anos de 2008 e 2019,

divididos por sexo, foram utilizados. A função auto.arima do pacote R forecast foi utilizada

para encontrar o melhor modelo ARIMA enquanto que a rede neuronal LSTM foi selecionada

entre a combinação de 20 modelos, variando a learning rate e o decay factor. Os resultados

mostraram que o modelo LSTM e o modelo ARIMA possuem RMSE e MAE similares.

Palavras-chave: Lee-Carter Model; Redes Neuronais; LSTM; Internações; Séries Temporais

 v

Contents

Abstract .. iii

Resumo .. iv

List of Figures ... vi

List of Tables ... vii

Chapter 1 - Introduction .. 1

1.1 - Overview and motivation .. 1

1.2 - Literature Review ... 2
1.2.1 - Some Applications of the Lee-Carter Model ... 2
1.2.2 - Healthcare forecasting ... 3
1.2.3 - Neural networks & Lee-Carter .. 4

1.3 - Organization ... 6

Chapter 2 - Concepts and Models .. 7

2.1 - The Lee-Carter model .. 7

2.2 - Neural Network .. 8
2.2.1 - Overview ... 8
2.2.2 - The artificial neuron .. 9
2.2.3 - The activation function ... 11
2.2.4 - Cost function ... 12
2.2.5 - Gradient Descent ... 13
2.2.6 - Learning Rate .. 13
2.2.7 - Backpropagation algorithm ... 14
2.2.8 - Recurrent Neural Networks ... 18
2.2.9 - Long Short-Term Memory .. 19

Chapter 3 - Data .. 23

Chapter 4 - Estimation and Prediction ... 29

4.1 - Estimation of the Lee-Carter model .. 29

4.2 - Time series model .. 30

4.3 - LSTM model .. 32
4.3.1 - Data scaling ... 32
4.3.2 - Sliding window and differencing .. 33
4.3.3 - Tridimensional form ... 34
4.3.4 - LSTM general architecture ... 34
4.3.5 - Learning Rate .. 36
4.3.6 - Epochs ... 37

4.4 - Comparison between models ... 38

Chapter 5 - Conclusions .. 41

References ... 44

Appendix I - Time Series Outputs .. 49

Appendix II - LSTM Outputs ... 51

 vi

List of Figures
Figure 1 - General structure of a neural network ... 9
Figure 2 - The artificial neuron .. 10
Figure 3 - Comparison between learning rates .. 14
Figure 4 - Backpropagation Pseudocode ... 15
Figure 5 - Typical structure of an RNN. .. 19
Figure 6 - Neural network with LSTM cell ... 20
Figure 7 - LSTM Cell .. 20
Figure 8 - SIH/SUS and PNAD/IBGE data standardization .. 24
Figure 9 - Hospital admissions of females by age group ... 24
Figure 10 - Hospital admissions of males by age group .. 25
Figure 11 - Female hospital admissions from Jan/2008 until Nov/2019 26
Figure 12 - Male hospital admissions from Jan/2008 until Nov/2019 26
Figure 13 - Female population by age group ... 27
Figure 14 - Male population by age group ... 27
Figure 15 - Male and female fitted kts ... 30
Figure 16 - Male kt prediction for the next 12 months .. 31
Figure 17 - Female kt prediction for the next 12 months .. 31
Figure 18 - LSTM sliding window .. 33
Figure 19 - LSTM architecture used in this work .. 35
Figure 20 - Cost function in relation to the number of epochs .. 37
Figure 21 - Male kt prediction from Dec/19 to Nov/20 ... 39
Figure 22 - Female kt prediction from Dec/19 to Nov/20 ... 40

 vii

List of Tables
Table 1 - Commonly used activation functions ... 12
Table 2 - Hospital admissions related to pregnancy, childbirth, and puerperium 25
Table 3 - Population distribution by gender .. 28
Table 4 - Fitted 𝑎𝑥 and 𝑏𝑥 for females and males, by age group .. 30
Table 5 - Mean and standard deviation of females and males from the training dataset 32
Table 6 - LSTM models ... 37
Table 7 - Comparing forecast performance between ARIMA and LSTM 39

 1

Chapter 1 - Introduction

1.1 - Overview and motivation

The main purpose of this dissertation is to add a contribution to the set of possible applications

of neural network techniques in the actuarial science field. More specifically, the aim is to

model the general level of hospital admission rates using recent neural network developments

and to contrast results with the results supplied by the Lee-Carter model (Lee & Carter, 1992).

By doing so, we intend to come to an understanding about neural network models being useful

to model hospital admissions and, if they are, whether they show considerable improvement

over the Lee-Carter model.

The Lee-Carter model is vastly used for mortality modeling, with few applications

outside this area (Frees, 2006). The first application for health insurance was proposed by (Lee

& Miller, 2002) to forecast Medicare expenditures in the period 2020-2075, in the United

States. Although mostly used in the mortality field, it was shown by (Rodrigues, Andrade,

Queiroz & Machado, 2013) that it is also suitable to forecast admission rates in hospitals.

According to the authors, its major advantage over the traditional forecast methods in health

insurance is the fact that it is possible to construct confidence intervals in this approach.

More recently, researchers have made numerous developments in the use of neural

networks for mortality modeling, which have shown great improvement over the Lee-Carter

model, see (Nigri, Levantesi, Marino, Scognamiglio & Perla, 2019; Hainaut, 2018; Deprez,

Shevchenko & Wüthrich, 2017; Richman & Wüthrich, 2018).

Considering the elements described above, this dissertation intends to model the general

level of hospital admissions rates in São Paulo, Brazil, as done by (Rodrigues, Andrade,

Queiroz & Machado, 2013), using publicly available data. The idea is to model the admission

rates again, in light of the recent studies that combine the Lee-Carter model with neural

 2

networks and to contrast the models. The purpose is to determine if these new models with

neural networks can provide improvements over what was done before.

In Brazil, hospital admissions represent almost 50% of the total claim cost of health

insurance companies while they only represent 1% of the total medical procedures (Cechin &

Lara, 2020). Given that, modeling hospital admissions is extremely useful for health insurers

to assess their claim costs over time. Adverse events can seriously strain their liabilities, and

actuaries should be well prepared to assess that to keep the financial sustainability of the

companies.

This dissertation aims to contribute to the development of machine learning techniques

in the actuarial field while also adding a contribution to forecasting models in healthcare. As

will be seen in the literature review section, the use of neural networks combined with the Lee-

Carter model is a new subject in the actuarial field. The first papers on this topic only appeared

in 2018, see (Hainaut, 2018). Even though some contributions have been made since then, the

lack of literature on the subject imposes difficulties for new studies but, at the same time, it is

motivating.

1.2 - Literature Review

This section starts by briefly reviewing the Lee-Carter model. Then it presents a short survey

of healthcare forecasting. Finally, it reviews the combined use of neural networks and the Lee-

Carter model.

1.2.1 - Some Applications of the Lee-Carter Model

In 1992, (Lee & Carter, 1992) proposed a new model for estimating mortality rates. It became

widely spread and the leading statistical model for mortality forecasting (Deaton & Paxson,

2004) and it started to be used as a benchmark model for population mortality (Hollmann,

Mulder & Kallan, 2000). Still today, several developed countries such as Denmark, Sweden,

 3

Canada, and Italy use the Lee-Carter model to forecast mortality (Kjærgaard & Bergeron-

Boucher, 2022).

 Lee and Carter seek to summarize an age-period surface of log-mortality rates in terms

of an average age profile of mortality, mortality changes over time, and how much each age

group changes when mortality changes.

 Despite the simplicity of the model, it resulted in good outcomes in fitting mortality

rates for several countries (Steeghs, 2020). It was used by (Wilmoth, 1996) in Japan, by

(Tuljapurkar, Li & Boe, 2000) for estimating mortality in the G7 countries, and by several other

authors that applied the Lee-Carter for many different populations, see for instance (Kjærgaard

& Bergeron-Boucher, 2022) who forecasted mortality for age 65 or above for four European

countries and (Rabbi & Mazzuco, 2020) who applied the model with smoothed mortality rates

for 20 low-mortality countries.

 However, its popularity and simplicity did not prevent the model from being criticized,

mostly because it assumes that all information about future mortality is contained in the past

observed data, not including important covariates such as tobacco use, alcohol consumption or

comorbidity (Girosi & King, 2008). Moreover, exogenous shocks such as new medical

technologies, economic crises, pandemics, etc. are ignored (Gutterman & Vanderhoof, 1998).

1.2.2 - Healthcare forecasting

In recent years, most healthcare systems are going through reforms, attempting to control the

raising costs of healthcare. Generally, most reforms focus on strengthening primary care,

adopting mechanisms for supply-induced demand, new forms of care (i.e. home care and long-

 4

term care), and promoting changes to achieve a better lifestyle (Paris, Devaux & Wei, 2010;

Menec, Lix, Nowick & Ekuma, 2007; Rodrigues, Andrade, Queiroz & Machado, 2013).

 With these reforms in mind, several studies have focused on forecasting health service

expenditures and frequency of utilization. Traditional methods of forecasting healthcare

expenditures use a fixed utilization rate by age to estimate the pure demographic effect on

health costs (Tate, MacWilliam & Finlayson, 2005; Lindberg & McCarthy, 2021). The pure

demographic effect assumes that healthcare costs stay the same and are impacted only by the

size and age structure of the population (Lindberg & McCarthy, 2021). Because of this

assumption, traditional methods assume that costs are only impacted by the demographic

changes of the population. The main caveat is that they can only be used in short-period

analyses since changes in utilization patterns are not incorporated (Lindberg & McCarthy,

2021).

 Other (non-traditional) methods have tried to forecast healthcare expenditure based on

time series analyses (Tate, MacWilliam & Finlayson, 2005). Other studies have relied on the

use of panel data to estimate healthcare utilization. These studies include other covariates such

as income per capita and educational level (Xu, Saksena & Holly, 2011; European

Commission, 2013).

 In the first study using the Lee-Carter model to forecast health expenditures (Lee &

Miller, 2002), the authors applied the model by setting a fixed age pattern of expenditures.

Following (Lee & Miller, 2002), (Rodrigues, Andrade, Queiroz & Machado, 2013) were

successful in predicting healthcare admission rates by applying the Lee-Carter model in Brazil.

1.2.3 - Neural networks & Lee-Carter

Research contributions, such as the ones mentioned below, that combine the use of the Lee-

Carter model and neural networks in the demographic field of study have been growing

recently. In the work of (Deprez, Shevchenko & Wüthrich, 2017), the authors used machine

 5

learning algorithms to assess the goodness of fit of standard mortality models. They analyze

how a standard mortality model could be improved based on feature components of an

individual, such as age. This work was further extended by (Levantesi & Pizzorusso, 2019),

who used machine learning algorithms to calibrate a parameter that was applied to mortality

rates fitted by standard mortality models.

 Although both papers applied machine learning techniques in the field of mortality

modeling, none of them have specifically used neural networks. The use of neural networks to

predict mortality rates started with (Hainaut, 2018), by proposing a neural network that detects

the non-linearities in the structure of the log forces of mortality. In the same year, (Richman &

Wüthrich, 2018) proposed a Lee-Carter approach for multiple populations, where the

parameters were estimated by neural networks. In the work of (Nigri, Levantesi, Marino,

Scognamiglio & Perla, 2019), the authors use the Long Short-Term Memory (LSTM) neural

network, which will be detailed in the next chapter, to improve the accuracy of predictions of

the general level of mortality given by the Lee-Carter model.

In the paper of (Nigri, Levantesi & Marino, 2021), the authors consider an LSTM model

to predict mortality and lifespan in five developed countries. Comparing the results with

standard models, they conclude that their predictions provide a more accurate portrait. As stated

by the authors, an LSTM model was chosen because: “This type of neural network leads to

predicting future values of longevity indexes while maintaining the significant influence of the

past trend, but at the same time adequately reproducing the recent trend into forecasting.”

(Nigri, Levantesi & Marino, 2021, p. 1).

In another recent study, (Perla, Richman, Scognamiglio & Wüthrich, 2021) tested

several neural networks to simultaneously predict mortality in all countries of the Human

Mortality Database from 1950 onwards, showing that great accuracy can be achieved in a large-

scale prediction.

 6

1.3 - Organization

This dissertation is divided into five chapters. Chapter 1 presents the organization of this work,

an overview, and motivation for the study, and the literature review of the subject. Chapter 2

defines and introduces the approaches used in the research, namely the Lee-Carter model and

the neural network framework. Chapter 3 discusses the data used. In Chapter 4, the models are

built and compared. Finally, Chapter 5 presents the conclusions and discusses further

recommendations for future works on the topic.

 7

Chapter 2 - Concepts and Models

2.1 - The Lee-Carter model

The Lee-Carter model (Lee & Carter, 1992) was developed for mortality forecasting and states

that:

log(𝑢!,#) = 𝑎! +	𝑏!𝑘# +	𝑒!,# ,																			(1)

where 𝑢!,# is the death rate for age x in year t, 𝑎! is the average log of mortality at age 𝑥, 𝑏! is

the rate of change of the log mortality with time at age 𝑥, 𝑘# is the general level of mortality

for calendar year 𝑡, and 𝑒!,# is the residual term at age 𝑥 and time 𝑡, with mean 0 and variance

𝜎$%.

It is a two-fold model. First, parameters 𝑎!, 𝑏! and 𝑘# need to be estimated. In the

second stage, the fitted 𝑘# values are modeled as an ARIMA(p, q, d) process. As explained by

(Lee & Carter, 1992), the model cannot be fitted by ordinary regression methods because there

are no given regressors; on the right side of the equation, there are only parameters to be

estimated and the unknown index 𝑘#.

To solve this problem, the authors applied the singular value decomposition (SVD) to

the matrix of log mortality rates, normalized by subtracting the average log mortality at each

age from each row of the matrix. The model is not identifiable, which means that parameters

are not uniquely estimable. To avoid this problem, (Lee & Carter, 1992) imposed location and

scale constraints on 𝑏 and 𝑘,	as follows:

3𝑏!% = 1,								(2)

3𝑘# = 0.								(3)

Besides SVD, there are other ways to estimate the parameters, namely the Weighted

Least Squares (WLS) and the Maximum Likelihood Estimation (MLE), as done by (Wilmoth,

 8

1993). Even though other methods to estimate the parameters could be applied, in this

dissertation it was chosen to stick with the original SVD approach, see (Lee & Carter, 1992).

The performance of the three methods was compared by (Koissi, Shapiro & Högnäs, 2005) and

the authors concluded that the values estimated for 𝑎! and 𝑏! are almost identical regardless of

the method used, supporting the decision to use the original SVD in this work.

In this dissertation, the Lee-Carter model is used to model the general level of

hospital admission rates. In this new context, the variables of the model assume a new

interpretation. By referring back to equation (1), in this new context the variable 𝑢!,# is now

the hospitalization rate for age x in year t, 𝑎! is the average log of hospitalization at age 𝑥, 𝑏!

is the rate of change of the log hospitalization with time at age 𝑥, 𝑘# is the general level of

hospitalization for calendar year 𝑡 and 𝑒!,# is the residual term at age 𝑥 and time 𝑡, with mean

0 and variance 𝜎$%.

2.2 - Neural Network

2.2.1 - Overview

This section intends to give a brief explanation of a general neural network and present the

Recurrent Neural Networks (RNNs) and the Long Short-Term Memory (LSTM) neural

networks. Being the latter the one used in this work.

Neural networks are mathematical models based on the biological neural network

structures of the brain (Minsky & Seymour, 2017; McCulloch & Pitts, 1943; Wiener, 1948).

Similar to the brain, neural networks are composed of neurons and synaptic connections linking

them. The general neural network model is formed by an input layer, one or several hidden

layers, and an output layer, and each of them is composed of several neurons (Nigri, Levantesi,

 9

Marino, Scognamiglio & Perla, 2019). Figure 1 below shows the structure of a classical neural

network.

Figure 1 - General structure of a neural network

Source: (Bre, Gimenez & Fachinotti, 2017)

This structure is called feedforward neural network since the information passes

through it in only one direction. Each circle represents a neuron while each line represents the

synapse connections between neurons. Each neuron is connected to those neurons in the

neighboring layers via adaptative weights (Bre, Gimenez & Fachinotti, 2017). Synapses take

the output of a given neuron and multiply it by a given weight. Neurons add the outputs from

all synapses and apply an activation function (Nigri, Levantesi, Marino, Scognamiglio & Perla,

2019).

2.2.2 - The artificial neuron

In this section, we give a brief explanation of the artificial neuron, to further understand the

neural network model. A neural network can be seen as a series of artificial neurons arranged

together (Bre, Gimenez & Fachinotti, 2017). An artificial neuron is an information-processing

unit that receives inputs and, by the weighted sum of these inputs, returns an output (Haykin,

2008).

 10

Figure 2 shows what happens inside a generic neuron 𝑗 in a given hidden layer 𝑘. The

values 𝑎&'()* represent the input from 𝑖#+ neuron of the previous layer 𝑘 − 1, 𝑤&'(is the weight

connecting to the previous 𝑖#+ neuron output, 𝑏'(is the bias applied to neuron 𝑗 in layer 𝑘, 𝑧'(

is the output of the weighted sum in neuron 𝑗 at layer 𝑘, 𝑔(𝑧'() is any activation function applied

to 𝑧'(and 𝑎'(is the output of the neuron 𝑗 in layer 𝑘.

Figure 2 - The artificial neuron

Source: Adapted from (Bre, Gimenez & Fachinotti, 2017)

In analytical terms, Equation (4) and Equation (5) translate the process explained above.

𝑧'(=3(𝑤,'(∙ 𝑎,'()* + 𝑏'(
&

,-*

),																					(4)

where 𝑤,'(is the weight of the connection between the 𝑖#+ neuron of the previous layer and

neuron 𝑗 of layer 𝑘, 𝑎,'()* is the output from the 𝑖#+ neuron from the previous layer 𝑘 − 1 being

applied to neuron 	𝑗 and 𝑏'(is the bias applied to neuron 𝑗 in layer 𝑘.

The output 𝑧'(then passes through the activation function as defined below:

𝑎'(= 𝑔@𝑧'(A,					(5)

where 𝑎'(is the output of the neuron 𝑗 in layer 𝑘, 𝑔(∙) is any activation function and 𝑧'(is the

weighted input to the activation function.

 11

The weighted sum then passes through an activation function, a process that will be

explained in the next section. There is also an externally applied bias 𝑏'(. It has the effect of

increasing or decreasing the net input of the activation function, depending on if it is positive

or negative (Haykin, 2008).

2.2.3 - The activation function

In the previous section, it was stated that the output of the artificial neuron passes through an

activation function to limit the amplitude of the neuron’s output. Without an activation

function, the output of the neuron would be only a linear operation. It would consist of a dot

product between the weights and the input of the neuron. This result is then added to the bias.

To add non-linearity to the neural network model, an activation function is needed (Chollet,

2018). The reason why it is necessary to add non-linearity to the model is that, otherwise, it

would only be able to learn linear transformations from the input data. So, for the model to be

able to learn non-linear representations of the data, the activation function must be included

(Chollet, 2018).

 There are several activation functions in the neural network literature. Some examples

of the ones commonly used are shown in Table 1:

Name Definition Plot

Linear 𝑓(𝑥,) = 	𝑥,

Logistic Sigmoid 𝑓(𝑥,) = 	𝜎(𝑥,)

Hyperbolic Tangent 𝑓(𝑥,) = 	𝑡𝑎𝑛ℎ(𝑥,)

 12

Rectified Linear Unit (ReLU) 𝑓(𝑥,) = 	max	{0, 𝑥,}

Table 1 - Commonly used activation functions

Source: Adapted from (Neves, 2018)

2.2.4 - Cost function

In a neural network, to calculate the errors between the predicted values and the actual values,

an error function needs to be defined. It is generally called cost function in the neural network

literature for instance in (Krogh, Hertz & Thorbergsson, 1990). Several cost functions can be

used, depending on the problem to solve.

Consider, for example, the cost function 𝐽, defined as the Mean Squared Error (MSE)

𝐽(𝜃) = 	
1
𝑚
((ℎ𝜃*𝑥("), −	𝑦("))$
%

"&'

,											(6)

where 𝜃	represents the set of weights 𝑤 and biases 𝑏 of the neural network, 𝑚 is the total

number of training examples, ℎ/@𝑥(,)A is the prediction made for 𝑖#+ training example, using

the set of parameters 𝜃, 𝑥(,) is the 𝑖#+ training example, 𝑦(,) is the true value for the 𝑖#+ training

example.

The cost function needs to fulfill two conditions (Nielsen, 2015):

1. It must be written as a function of the outputs of the neural network. This always

needs to hold because we want to calculate the difference between the output of

the neural network and the actual values.

2. It must be written as an average, for 𝑚	individual training examples. It means

that the cost function is calculated as an average of 𝑚 individual differences

between the output and the actual value.

 13

Since the cost function is a function of the differences between the predicted and the

actual values, it needs to be minimized. The weights and biases in the network need to be

adjusted in such a way that the value of the cost function is as small as possible.

2.2.5 - Gradient Descent

The idea of defining a cost function to evaluate the predictions made by the neural network

was introduced in the previous section. This function needs to be minimized so that the errors

are minimized too. Frequently, optimization problems are solved by using techniques of

differential calculus to find the minimum or maximum of an appropriate function. In the case

of neural networks, such an approach cannot be used since the network can take several weights

and biases and the use of traditional differential calculus would be not effective in finding the

minimum or the maximum of a function (Nielsen, 2015).

 To overcome this problem, gradient descent is used. It was first proposed by (Cauchy,

1847), motivated by astronomical calculations (Lemarechal, 2012). It was also presented by

(Hadamard, 1908) and further developed by (Curry, 1944) in the research of minimizing non-

linear problems.

 Gradient descent is an algorithm that iteratively minimizes a cost function by moving

in the direction of the negative gradient of that function. The algorithm relies on the following

equality:

𝜃 ∶= 𝜃 − 	𝜂 ⋅ ∇/𝐽(𝜃),															(7)

where 𝜃	represents the set of weights 𝑤 and biases 𝑏 of the neural network, 𝜂 is the learning

rate (explained next), ∇/ is the gradient and 𝐽(𝜃) is the cost function.

2.2.6 - Learning Rate

Learning rate is a parameter that determines the step size at each iteration while moving

towards a minimum of a cost function (Murphy, 2012, p. 247). The choice of the learning rate

 14

𝜂 is important since a small value will lead to many iterations, making the algorithm slow,

while a large value could not allow convergence to the minimum of the function (Nigri,

Levantesi, Marino, Scognamiglio & Perla, 2019). Figure 3 illustrates how the learning rate

works.

Figure 3 - Comparison between learning rates

Source: Author

When the learning rate is too small, the algorithm needs several iterations to adjust the

values of the weights and find the minimum of the cost function. It is time-consuming and can

be inefficient in real-life applications. If the learning rate is too high, the algorithm will rebound

and never reach the minimum. The optimal learning rate should be one that allows the

algorithm to converge within a desired time. There is no right or wrong value for the learning

rate and one should try several values to find the one that best fits a given problem (Bengio,

2012).

2.2.7 - Backpropagation algorithm

In a neural network, weights and biases are randomly assigned and they need to be adjusted by

several iterations until their optimal values are found. There are several ways in which they can

be randomly initialized but, in general, random values are taken from a probability distribution

such as Normal or Uniform, see (Narkhede, Bartakke & Sutaone, 2022) for an in-depth review

on the topic.

 15

The weights and biases are adjusted by backpropagating the errors through the neural

network, in order to minimize the errors (Rumelhart, Hinton & Williams, 1986). The

backpropagation algorithm is used to iteratively update the weights and biases of the network.

It uses gradient descent to calculate the gradient of the cost function. The negative of the

gradient points in the direction that minimizes the cost function.

 Ultimately, the backpropagation algorithm iteratively computes the partial derivatives

of the cost function in relation to the weights and biases of the network. Then, it updates the

values of the weights and biases in the negative direction of the gradient. It computes again the

cost function and evaluates if it has reached a given desired value. Figure 4 below summarizes

how backpropagation pseudocode works.

Figure 4 - Backpropagation Pseudocode

Source: Author

 The algorithm receives a given learning rate 𝜂 and a randomly assigned set of weights

and biases 𝜃, as input. It computes the cost function 𝐽(𝜃), the gradient ∇/ and updates 𝜃 while

the cost function is not smaller than a stop criterion. This criterion normally relies on human

decisions and can be set in many different ways, such as defining a given threshold or stopping

the algorithm after a given number of iterations (Lalis, Gerardo & Byun, 2014).

2.2.7.1 – Partial derivatives in relation to the weights

 16

In this section, we explain how the partial derivative of the cost function in relation to the

weights in the network is computed. First, let us define the cost function 𝐽. The derivative of

the cost function in relation to the weight is 23
24!"

. This can be computed by the chain rule as:

𝜕𝐽
𝜕𝑤,'(

=	
𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑤,'(
=	

𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
𝜕𝑧'(

𝜕𝑤,'(
,						(8)

The first factor on the right-hand side of equation (8) computes the derivative of the

cost function 𝐽 in relation to the output of neuron 𝑗, in layer 𝑘. This means that we are

calculating how the input of the neuron influences the cost function. If the neuron is in the

output layer it is straightforward to compute it. In this case, the neuron’s output 𝑎'(is simply

the prediction 𝑦V(𝑥) made by the network and we only need to calculate how the prediction

influences the cost function. In this case, the derivative is:

𝜕𝐽
𝜕𝑎'(

=
𝜕𝐽

𝜕𝑦V(𝑥),											(9)

When neuron 𝑗 is in any arbitrary hidden layer 𝑘 of the network it is less obvious how

to calculate the derivative. In this case, the neuron’s output 𝑎'(influences the cost function

through multiple paths. The output 𝑎'(is connected to several other neurons in layer 𝑘 + 1 and

we need to take this into account, summing all these paths. Equation (10) shows it:

𝜕𝐽
𝜕𝑎'(

= 3 X𝑤,'(5* ∙ 𝑔6@𝑧'(5*A
𝜕𝐽

𝜕𝑎'(5*
	Y .

&#$%)*

'-7

						(10)

The second factor on the right-hand side of equation (8) calculates the derivative of the

weighted input of the activation function in relation to the weights. Equation (11) calculates it:

𝜕𝑧'(

𝜕𝑤,'(
=
𝜕(∑ (𝑤,'(∙ 𝑎,()* + 𝑏'(&

,-*))
𝜕𝑤,'(

=	𝑎,()*,									(11)

This result means that the effect of a small change in the weight in neuron 𝑗, in layer 𝑘,

depends on how strong the previous neuron’s output	𝑎,()*	 was.

 17

Finally, the last factor of equation (8) calculates the derivative of the output of neuron

𝑗, in layer 𝑘, with respect to the weighted input 𝑧'(is simply the derivative of the activation

function 𝑔(∙) shown below:

𝜕𝑎'(

𝜕𝑧'(
=	
𝜕𝑔(𝑧'()
𝜕𝑧'(

=	𝑔6@𝑧'(A,											(12)

Inserting equations (9), (10), (11) and (12) in equation (8) we obtain:

𝜕𝐽
𝜕𝑤,'(

=	
𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
𝜕𝑧'(

𝜕𝑤,'(
=	

𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
	𝑎,()* =	𝛿' ∙ 𝑔6@𝑧'(A ∙ 𝑎,()*, (13)	

with

𝛿' =	
𝜕𝐽
𝜕𝑎'(

=

⎩
⎪
⎨

⎪
⎧

𝜕𝐽
𝜕𝑦V(𝑥)

,																																																										𝑖𝑓	𝑗	𝑖𝑠	𝑎𝑛	𝑜𝑢𝑡𝑝𝑢𝑡	𝑛𝑒𝑢𝑟𝑜𝑛

3 X𝑤,'(5*𝑔6@𝑧'(5*A
𝜕𝐽

𝜕𝑎'(5*
	Y , 𝑖𝑓	𝑗	𝑖𝑠	𝑎	ℎ𝑖𝑑𝑑𝑒𝑛	𝑛𝑒𝑢𝑟𝑜𝑛

&#$%)*

'-7

	
			(14)

2.2.7.2 – Partial derivatives in relation to the biases

Computing the partial derivatives of the cost function in relation to the biases is almost identical

to what was done for the weights. We have:

𝜕𝐽
𝜕𝑏,'(

,										(15)

which can be computed by the chain rule as:

𝜕𝐽
𝜕𝑏,'(

=	
𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑏,'(
=	

𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
𝜕𝑧'(

𝜕𝑏,'(
,									(16)

Comparing equation (16) with equation (8), we see that the only difference is in the last

term of the right-hand sides. It now depends on the bias instead of the weight. The calculation

is as follows:

𝜕𝑧'(

𝜕𝑏,'(
=
𝜕(∑ (𝑤,'(∙ 𝑎,()* + 𝑏'(&

,-*))
𝜕𝑏,'(

= 	1,									(17)

 18

So, similarly to equation (13), now we have:

𝜕𝐽
𝜕𝑏,'(

=	
𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
𝜕𝑧'(

𝜕𝑏,'(
=	

𝜕𝐽
𝜕𝑎'(

𝜕𝑎'(

𝜕𝑧'(
1 = 	𝛿' ∙ 𝑔6@𝑧'(A,												(18)	

2.2.8 - Recurrent Neural Networks

Classical neural networks represented in Figure 1 are also called feedforward neural networks

because information moves from the input to the output layer in a single direction. In the

recurrent neural networks (RNN) structure, the information moves cyclically in the network

using additional synapses. They are a special case of neural networks where the objective is to

predict future steps in a sequence of observations (Namini & Namin, 2018). This means that

the output of an RNN is based on previous elements of a given sequence, while the output of a

standard feedforward neural network depends only on the current input (Lindholm &

Palmborg, 2022). Figure 5 below shows a typical RNN.

To predict future steps in a sequence of observations, earlier stages of data need to be

“remembered” and the hidden layers of RNNs act as memory storage for keeping information

captured in earlier stages (Namini & Namin, 2018).

Although they are a powerful structure, the major drawback of RNNs is that they only

remember a few steps in the sequence of data and therefore are not appropriate to work with

long sequences (Abiodun et al., 2019; Namini & Namin, 2018). Another issue results from the

fact RNNs are recurrent, making the same function to be composed with itself many times, and

this leads to the vanishing gradient problem (Lindholm & Palmborg, 2022). When the

backpropagation algorithm advances backward from the output layer to the input layer, the

gradients often get smaller and smaller, which eventually leaves the weights of the initial layers

 19

nearly unchanged. Because of that, the algorithm never converges to the optimal value. This is

the vanishing gradient problem.

Figure 5 - Typical structure of an RNN.

Source: Adapted from Abiodun et al. (2019)

2.2.9 - Long Short-Term Memory

As RNNs are not suitable to model long-term dependencies, they are not a natural choice for

time series modeling. To overcome the problem presented by RNNs, the LSTM model was

developed as an improvement by (Hochreiter & Schmidhuber, 1997) and further extended by

(Gers, Schmidhuber & Cummins, 2000). LSTMs are RNNs whose architecture is built in such

a way that it allows for considering the relationships between the data of the sequence, even if

it is long, and eliminates the vanishing gradient problem. Hence, LSTMs acquire both long and

short-term memory (Nigri, Levantesi, Marino, Scognamiglio & Perla, 2019).

 Figure 6 shows the basic structure of an LSTM neural network. The network receives

an input, which is processed by a neuron in the input layer. After that, its output passes through

an LSTM cell and part of the output of this cell goes to the other neurons in the network and

another part goes to another LSTM cell.

 20

Figure 6 - Neural network with LSTM cell

Source: Author

Figure 7 illustrates what is inside an LSTM cell.

Figure 7 - LSTM Cell

Source: Adapted from (Choi & Lee, 2020)

In Figure 7, the red line is the cell state vector, which represents the long-term memory

of the LSTM model (Choi & Lee, 2020). In the cell state vector, the information 𝐶#)* enters

the LSTM cell at learning step 𝑡 − 1 and leaves it as 𝐶# at learning step 𝑡. The three structures

called gates (forget gate, input gate, and output gate) determine how much information should

be carried out to the next step (Mirzaei, Kang & Chu, 2022). In Figure 7, the + symbols

 21

represent the mathematical addition, × symbols represent the element-wise multiplication and

ℎ# is the short-term duration memory of the LSTM cell at time step 𝑡.

To understand the LSTM cell, we need to understand what each of the three gates does.

The forget gate is responsible for information filtering (Škrlj, Kralj, Pollak & Lavrač, 2019).

The forget activation 𝑓# takes the output of the previous hidden state and the input of data.

Then, it outputs a value between 0 and 1, where 0 means “forgets everything” and 1 means

“remembers everything”. Finally, the output of 𝑓# is multiplied by 𝐶#)*, the long-term memory

of the LSTM cell, determining to what extent to forget from the previous data.

In the input gate, the model decides which new information is going to be added to the

cell state vector. For doing this, it multiplies 𝑖# by Ĉ# (called the candidate state) and adds the

result to the cell state. In equations (19) and (22) below we see that 𝑖# is the output of a sigmoid

function, bounding between 0 and 1, and that Ĉ# is the output of a tangent hyperbolic function,

which bounds between -1 and 1. In practical terms, what happens in the input gate is that Ĉ#

decides which new candidate values should be added to the cell state 𝐶# while 𝑖# controls to

what extent they should be added.

In the output gate, the LSTM cell controls the new values of the hidden state (the short-

term memory of the model). These values are based on the cell state but are filtered for relevant

information. The cell state is run through the hyperbolic tangent function to regularize values

between -1 and 1. Then this output is multiplied by 𝑜# to decide which part of the information

should be taken. Equations (19)-(24) summarize how each part of the LSTM cell is calculated:

𝑓# = 	𝜎@𝑊8[𝑥# , ℎ#)*] 	+ 	𝑏8A,									(19)

𝑖# = 	𝜎(𝑊,[𝑥# , ℎ#)*] 	+ 	𝑏,),									(20)

𝑜# = 	𝜎(𝑊9[𝑥# , ℎ#)*] 	+ 	𝑏9),								(21)

𝐶# =	𝑓#	⨀	𝐶#)* +	𝑖#	⨀	Ĉ# ,													(22)

Ĉ# = 	𝑡𝑎𝑛ℎ(𝑊:[𝑥# , ℎ#)*] 	+ 	𝑏:),					(23)

 22

ℎ# =	𝑜#	⨀	𝑡𝑎𝑛ℎ(𝐶#),															(24)

where 𝑓# is the forget activation, 𝜎 is the logistic sigmoid function, 𝑊 is the matrix of weights,

𝑥# is the input data, ℎ#)* is the short-term memory at time step 𝑡 − 1, 𝑏 is the bias, 𝑖# is the

input activation, 𝑜# is the output activation, 𝐶# is the cell state, 𝐶#)* is the cell state at time step

𝑡	 − 1, Ĉ# is the candidate values to update the cell state 𝐶#, 𝑡𝑎𝑛ℎ is the hyperbolic tangent

function, 𝑡 is learning time step and ⨀ is the element-wise multiplication. The subscripts 𝑓, 𝑖

and 𝑜 represent the forget, input and output gate, respectively.

 23

Chapter 3 - Data

Hospitalization data from the state of São Paulo was gathered from Serviço de Informações

Hospitalares do Sistema Único de Saúde (Hospital Information System of the Unified Health

System - SIH/SUS) and the data from the population resident in the state of São Paulo was

gathered from Pesquisa Nacional por Amostragem de Domicílios do Instituto Brasileiro de

Geografia e Estatística (National Sample Household Survey of the Brazilian Institute of

Geography and Statistics - PNAD/IBGE), both from Jan/2008 until Nov/2019. The

hospitalization data encompasses all private and public hospital admissions.

The hospitalization data is monthly available while the data from the population

resident in the state of São Paulo is only available at the end of the year. This annual data was

transformed into monthly data, assuming that each observed annual increase/decrease in the

resident population occurred uniformly during the year, a very common method described in

(United Nations, 1952).

The choice of gathering data from 2008 onwards was made because this is the first year

when the dates of hospital admissions started to be registered. Also, the date of Nov/2019 was

chosen as the final year because of the COVID-19 pandemic in Brazil. The first COVID

infection was reported in Feb/2020 by Brazilian authorities but even though we already can see

great distortions in data from Dez/19 onwards.

The data provided by SIH/SUS is disposed in 18 age groups, being them: < 1 year old,

1-4 years old, …, 75-79 years old, 80+ years old. On the other hand, the data provided by

PNAD/IBGE is disposed in 15 age groups: 0-4 years old, …, 70+ years old. To overcome this

mismatch, the data from SIH/SUS was standardized to the same standard as the PNAD/IBGE

data. Therefore, the data is disposed in 15 five-year age groups, starting from 0-4 years to 65-

69 years, and the last group 70+ years.

 24

Figure 8 illustrates how the age group data from SIH/SUS was put in the same standard

as the data of PNAD/IBGE. It was simply done by summing the SIH/SUS data into the

PNAD/IBGE age group standard.

 Figure 8 - SIH/SUS and PNAD/IBGE data standardization

 Source: Author

Figure 9 and Figure 10 show boxplots for each age group of the hospital admission

dataset, from 2008 until 2019. The number of hospital admissions is similar for both genders,

except between age groups 10-14 to 40-44 years old. By further analyzing the data, we see that

this is driven by pregnancy, childbirth, and puerperium, accounting for an overall of 60.8% of

hospital admissions within these age groups for females.

Figure 9 - Hospital admissions of females by age group

Source: Author, based on SIH/SUS data

 25

Figure 10 - Hospital admissions of males by age group

Source: Author, based on SIH/SUS data

Table 2 shows in detail the percentage of female hospital admissions that are related to

pregnancy, childbirth, and puerperium. For the other age groups, the percentage is roughly

zero and, therefore, they are not shown in the table.

Age Group Percentage
10 – 14 years 14.9%
15 – 19 years 74.4%
20 – 24 years 78.3%
25 – 29 years 70.8%
30 – 34 years 59.8%
35 – 39 years 43.6%
40 – 44 years 18.6%

Overall 60.8%
Table 2 - Hospital admissions related to pregnancy, childbirth, and puerperium

Source: Author, based on SIH/SUS data

 Figure 11 shows the female hospitalizations from Jan/2008 until Nov/2019, by age

group. We see how the number of hospitalizations is distributed, being the age group 70+ years

the highest one in the absolute number of hospital admissions.

 26

Figure 11 - Female hospital admissions from Jan/2008 until Nov/2019

Source: Author, based on SIH/SUS data

 Similarly to Figure 11, Figure 12 shows the number of hospitalizations for males, by

each age group. We can see that the age groups 0-4 years and 70+ years are the ones with the

highest number of hospitalizations. In the other age groups, differently to what happens to

females, the numbers of hospital admissions, by age group, are more similar.

Figure 12 - Male hospital admissions from Jan/2008 until Nov/2019

Source: Author, based on SIH/SUS data

 27

Figure 13 and Figure 14 show the residents’ data, by age group, for each gender. As

shown by the charts, the distribution is similar for both genders. In Table 3, we see that in

general females are more numerous than males, especially in older age groups. This is related

to the fact that females have higher life expectancy than males.

Figure 13 - Female population by age group

Source: Author, based on PNAD/IBGE data

Figure 14 - Male population by age group

Source: Author, based on PNAD/IBGE data

 28

Age Groups Females Males

0-4 years 49.0% 51.0%

5-9 years 49.2% 50.8%

10-14 years 48.8% 51.2%

15-19 years 49.3% 50.7%

20-24 years 49.9% 50.1%

25-29 years 51.2% 48.8%

30-34 years 51.7% 48.3%

35-39 years 52.0% 48.0%

40-44 years 52.3% 47.7%

45-49 years 53.0% 47.0%

50-54 years 53.3% 46.7%

55-59 years 53.4% 46.6%

60-64 years 54.1% 45.9%

65-69 years 55.3% 44.7%

70+ years 59.2% 40.8%

Total 51.6% 48.4%

Table 3 - Population distribution by gender

Source: Author, based on PNAD/IBGE data

 29

Chapter 4 - Estimation and Prediction

In this chapter, we will obtain the parameters 𝑎! and 𝑏! as in (Lee & Carter, 1992) and we will

estimate the 𝑘# trend by an 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model, divided by gender. We follow (Nigri,

Levantesi, Marino, Scognamiglio & Perla, 2019) and estimate the 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) by using

the auto.arima function from the R package forecast see (Hyndman & Khandakar, 2008;

Hyndman et al., 2022).

This package applies the Hyndman-Khandakar algorithm (Hyndman & Khandakar,

2008), to automatically select the best 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model for a given time series. This

algorithm works in two steps. In the first one, it chooses the best differencing order d by

checking the stationarity of the time series using a unit root test. In the second step, the

algorithm selects the best values of auto-regressive and moving average orders, p and q, using

an information criterion (AIC or BIC).

The result obtained by the 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) model is compared with the forecasts made

by the LSTM neural network. The estimations intend to predict the last 12 months of the fitted

𝑘#.

4.1 - Estimation of the Lee-Carter model

We obtain the parameters of the Lee-Carter model as explained in Chapter 2. The process was

developed for both genders, obtaining 𝑘# for males and females from 2008 to 2019. Figure 15

shows 𝑘# for both genders.

 30

Figure 15 - Male and female fitted kts

Source: Author

 Table 4 shows the fitted 𝑎! and 𝑏! for each age group and gender

Age
Group

Female Male
𝒂𝒙 𝒃𝒙 𝒂𝒙 𝒃𝒙

0-4 -5.065297 0.10449056 -4.845265 0.08736755
5-9 -6.391685 0.07711722 -6.002098 0.06256431

10-14 -6.613553 0.07728216 -6.405589 0.05413556
15-19 -5.176530 0.06819218 -6.368512 0.04540376
20-24 -4.826560 0.02003936 -6.106506 0.03171212
25-29 -4.974457 0.02094504 -6.049290 0.04420463
30-34 -5.197766 0.02922902 -5.972261 0.06880108
35-39 -5.416896 0.04026236 -5.862534 0.07340256
40-44 -5.656251 0.06463627 -5.762601 0.08326992
45-49 -5.690644 0.07470302 -5.599314 0.06810099
50-54 -5.621203 0.08955646 5.397862 0.07876780
55-59 -5.479867 0.08348134 -5.181277 0.06963178
60-64 -5.301539 0.08582828 -4.965034 0.08479263
65-69 -5.091800 0.07347616 -4.740753 0.06855017
70+ -4.668532 0.09076058 -4.391226 0.07929514

Table 4 - Fitted 𝑎! and 𝑏! for females and males, by age group

Source: Author

4.2 - Time series model

Since the 𝑘# presents monthly seasonality, a SARIMA model was used for the prediction. The

auto.arima package in R deals with it easily. The series was split into two, one for training the

model with the first 131 data points of the series and another one for testing the model with the

 31

final 12 months of data. In the prediction, the next 12 months of 𝑘# were predicted. The

auto.arima package chose the same 𝐴𝑅𝐼𝑀𝐴(𝑝, 𝑑, 𝑞) for both genders. This is not a surprise

since both genders have similar trends, as it was shown in Figure 15. Below, there are the plots

for both genders with a 95% prediction interval. The results are summarized in Table 7, in

section 4.4. Further results of the model are shown in Appendix I.

Figure 16 - Male kt prediction for the next 12 months

Source: Author

Figure 17 - Female kt prediction for the next 12 months

Source: Author

 The results obtained are in line with the results of (Rodrigues, Andrade, Queiroz &

Machado, 2013) although not directly comparable. In their work, they used annual data from

the state of Minas Gerais, Brazil while in this dissertation we used monthly data from the state

of São Paulo, Brazil. The choice for using monthly data is to have more data points that can

 32

improve the estimations while the choice of the state of São Paulo is because it is the largest

state in Brazil, accounting for 22% of the Brazilian population, more than double the state of

Minas Gerais, which accounts for 10% of the population (IBGE, 2021).

4.3 - LSTM model

In this chapter, we describe in detail how the LSTM neural network model was built. The model

was implemented in R, using the packages Keras (Chollet, 2015) and TensorFlow (Abadi et

al., 2015). A major aspect is that the neural network demands great data preparation before the

model can be fit.

4.3.1 - Data scaling

As done in section 4.2, the data was split into training and test. For the neural network, it also

needs to be scaled before fitting the model. The backpropagation algorithm, presented in

section 2.2.7, converges faster when the data provided as input has its mean close to zero

(LeCun, Bottou, Orr & Muller, 2012). For standardizing the data, the mean and standard

deviation of the training dataset is calculated, and their values can be seen in Table 5.

Statistic Female 𝒌𝒕 Male 𝒌𝒕

Mean 0.09714466 0.1279912

Standard Deviation 0.91980280 0.9871962
Table 5 - Mean and standard deviation of females and males from the training dataset

Source: Author

 With these figures, the training and test datasets were then standardized by applying the

usual formula, see Equation (25).

𝑧 =
𝑥 −	 �̅�	
𝜎V ,				(25)

where 𝑧 is the standardized data, 𝑥 is the original data, �̅� is the mean and 𝜎 is the standard

deviation.

 33

It is important to note that the test dataset also needs to be standardized with the same

parameters used to standardize the training dataset. In this way, both the test and training data

will be on the same scale.

4.3.2 - Sliding window and differencing

After being standardized, the data keeps the same dimensions as the original data (a single

vector), but it needs to be put in a sliding window format for the neural network (Brownlee,

2018). To do so, the data is split into two different datasets, one called input and the other one

called output. Figure 18 shows how the sliding window is applied.

 Figure 18 - LSTM sliding window

 Source: Adapted from (Neves, 2018)

𝑇 represents the length of the time series, 𝑝 represents the length of the training sequence and

𝑛 represents the length of the output sequence.

In the sliding window, the input and output data have the same length, being the output

equal to the input shifted one-time step (Neves, 2018). The values of (𝑘#	*, …, 𝑘#	*%) are used

to predict the values of (𝑘#	*>, …, 𝑘#	%?), the values of (𝑘#	%, …, 𝑘#	*>) are used to predict the

values of (𝑘#	*?, …, 𝑘#	%@), and so on. This is how sliding works in the training step of the

model. After this step, the neural network has learned the input-output relationship of the data

and it should be able to predict future values (Nigri, Levantesi, Marino, Scognamiglio & Perla,

2019).

 34

In this work we want to predict the next 12 months (𝑛 = 12). Therefore, we build the

datasets in such a way that 12 data points are predicted by the past 12 data points. It is important

to note that differencing was not applied to the data used for the neural network model. LSTMs

do not require previous information of the time series structure and are less subject to time

series stationarity (Silva, Steen & Darley, 2019). Research suggests that these models are more

flexible to work with non-stationarity data (Silva, Steen & Darley, 2019).

4.3.3 - Tridimensional form

Another characteristic of the LSTM neural network is that it needs to be fed with tridimensional

data in the form of [samples, time steps, features] (Brownlee, 2018). Where:

• samples specify the number of observations in the dataset

• time steps specify the number of time steps we want the neural network to look back in

time

• features specify the number of predictors of the series

The training dataset has the dimensions [96, 12, 1]. The first dimension is 96 because of

the number of observations in the training dataset (as shown in Figure 18), the second

dimension is 12 because it is the number of time steps used as input and the last dimension is

1 because it is a univariate time series, so it has only one predictor.

The test dataset has the dimensions of [1, 12, 1]. The first dimension is 1 because the test

dataset has only one line of observations, composed of 12-time steps. The third dimension is

again 1 because it is a univariate time series.

4.3.4 - LSTM general architecture

The past three sections presented how the data needs to be preprocessed before being used by

the neural network. This section explains how the model structure was chosen and how it was

fitted. The first task is to determine the general structure of the neural network (i.e. the number

of neurons and layers). Unfortunately to choose the number of neurons and layers is not easy.

 35

 Neural network architecture typically relies on human knowledge and trial and error

(Dong, Kedziora, Musial & Gabrys, 2021). Neural architecture search (NAS) has been

proposed to automatically search for the best architecture for neural networks, but currently,

algorithms suffer from computational cost (Jin, Song & Hu, 2019). For further readings into

the NAS field see (Dong, Kedziora, Musial & Gabrys, 2021; Hu, Chu, Pei, Liu & Bian, 2021).

 Given that it is not trivial to find the appropriate architecture for a neural network

model, this work proposed to have a simple neural network model, without sophistication, that

could be contrasted with the ARIMA model. The final architecture used in this work can be

seen below in Figure 19.

Figure 19 - LSTM architecture used in this work

 Source: Author

 The input layer has 12 neurons because each neuron represents one data point of the

input sequence shown in Figure 18. Regarding the hidden layer, problems that require two or

more hidden layers are not commonly seen (Heaton, 2005, p. 128), since training can be too

difficult due to the increase in the number of parameters, overall complexity, and time to

execute the model (Uzair & Jamil, 2020). Considering the complexities that adding hidden

layers imposes and since in this work we are dealing with a univariate time series (only one

predictor), we chose to have only one hidden layer in the neural network. The output layer is

composed of a single neuron that outputs a sequence of 12 predictions. Even though the used

 36

architecture seems to be simple, it has 685 adjustable parameters. Details of the model are in

Appendix II.

4.3.5 - Learning Rate

Recall from section 2.2.6 that the learning rate is a parameter that should be empirically chosen.

It is one of the most important parameters to adjust in neural network architecture (Bengio,

2012). A default value of 0.01 typically works for default neural networks but other values

should be tested as well (Bengio, 2012). Values tested are usually small e.g., a learning rate

within the set {0.1, 0.01, 10-3, 10-4, 10-5} (Goodfellow, Bengio & Courville, 2016, p. 436).

Despite only choosing a fixed value for the learning rate, some authors such as (Wang,

You, Long & Jordan, 2019) have shown that using a learning rate decay can provide benefits

for training neural networks. In this approach, the learning rate starts with a given value that

decays by a factor during the iterations.

 Considering that, in this work we have tested four learning rates and five decay values,

comprising a total of 20 model combinations, per gender, to find the combination that

minimizes the cost function. All models have the same structure, only varying the learning rate

and decay factor. Table 6 shows the LSTM models combination made.

Model Learning rate Decay Factor
Model 1 0.001 0
Model 2 0.001 0.0000001
Model 3 0.001 0.00001
Model 4 0.001 0.001
Model 5 0.001 0.1
Model 6 0.002 0
Model 7 0.002 0.0000001
Model 8 0.002 0.00001
Model 9 0.002 0.001

Model 10 0.002 0.1
Model 11 0.01 0
Model 12 0.01 0.0000001
Model 13 0.01 0.00001
Model 14 0.01 0.001
Model 15 0.01 0.1

 37

Model 16 0.02 0
Model 17 0.02 0.0000001
Model 18 0.02 0.00001
Model 19 0.02 0.001
Model 20 0.02 0.1

Table 6 - LSTM models

Source: Author

4.3.6 - Epochs

In the fitting step of the neural network, the model is iterated several times to adjust its

parameters, in order to reduce the cost function. These number of iterations are called epochs.

A training epoch refers to the number of passes of the entire training dataset through the neural

network algorithm (Hastie, Tibshirani & Friedman, 2017, p. 397).

 The number of epochs can be determined using a graphic approach, by plotting the cost

function in relation to the number of epochs. Figure 20 shows the Mean Squared Error (MSE)

cost function in relation to the number of epochs. By further analyzing the chart, we see that

the error starts to rebound around the 25th epoch. This means that the gradient descent has

already reached the minimum of the cost function and, since the iterations did not stop, it

continues iterating around the minimum and rebounding. Also, we see that between the 20th

and 25th epoch the error is still basically the same, it did not considerably decrease. Given that,

the number of 20 epochs was chosen to be used in this work.

Figure 20 - Cost function in relation to the number of epochs

Source: Author

 38

As explained in Chapter 2, the parameters of a neural network are randomly assigned.

The backpropagation algorithm takes random weights and biases to minimize the cost function.

Since it receives random parameters as input, each time the model is run it outputs a different

result. Because of this stochastic behavior, to evaluate the model’s performance it is necessary

to run it several times and calculate the average of the error metrics (Brownlee, 2017). The

minimum number of 30 times is recommended by (Brownlee, 2017), limited only by

computational resources and time expend running the model.

 Section 2.3.5 described that a total of 20 model combinations were made, by varying

the learning rate and decay rate. It is worth noting that 30 random seeds were generated. That

means that each round of each model has been initialized with the same weights and biases so

any difference in performance can only be attributed to differences in the learning rate and

decay. The LSTM models with the smallest average errors are shown in Table 7, in the next

section. In Appendix II, the statistics are shown in detail.

4.4 - Comparison between models

To evaluate the forecast performance made by the standard ARIMA and the LSTM models,

the Root Mean Squared Error (RMSE) and the Mean Absolute Error (MAE) error metrics were

calculated. The models presented in the 4.2 and 4.3 sections were used to predict the 𝑘# from

Dec/18 to Nov/19 and their results were then contrasted with the fitted 𝑘# to calculate the error

metrics.

 Table 7 summarizes the performance of the ARIMA model, LSTM Model 3, and LSTM

Model 20. The lowest errors are highlighted in bold. Model 3 is the one that presented the

lowest errors for males and Model 20 is the one with the lowest errors for females.

 39

Model
Female Male

RMSE MAE RMSE MAE

𝑘# ARIMA 0.4714 0.3452 0.4550 0.3655

𝑘# LSTM - Model 3 0.4974 0.4050 0.5635 0.4760

𝑘# LSTM - Model 20 0.4633 0.3582 0.5993 0.5059

Table 7 - Comparing forecast performance between ARIMA and LSTM

Source: Author

The error presented in Model 3, for males, is higher than the error presented by the

ARIMA model. For the females, in Model 20, only the RMSE is lower than the RMSE of the

ARIMA model. Overall, both RMSE and MAE showed no great differences for females.

With these error metrics calculated, we also performed the prediction of the next 12

months of 𝑘#, between Dec/2019 and Nov/20, for both genders, predicting how the 𝑘# would

behave in the absence of the Covid-19 pandemic. The results are shown in Figure 21 and Figure

22. We can see that the ARIMA and the LSTM models have a similar pattern, which is not a

surprise since the errors shown in Table 7 are similar.

Figure 21 - Male kt prediction from Dec/19 to Nov/20

Source: Author

 40

Figure 22 - Female kt prediction from Dec/19 to Nov/20

Source: Author

 41

Chapter 5 - Conclusions

The main purpose of this work is to add a contribution to the set of possible applications of

machine learning techniques in the actuarial science field. This dissertation focused on how to

model the general level of hospital admission rates using the Long Short-Term Memory

(LSTM) neural network and to contrast its results with the results obtained by the Lee-Carter

model (Lee & Carter 1992), as done in the work of (Rodrigues, Andrade, Queiroz & Machado,

2013).

 This study used publicly available datasets about hospital admissions and population

from the state of São Paulo, Brazil. The auto.arima function from the R package forecast was

used to search for the best ARIMA(p, d, q) and this result was compared with the result provided

by a neural network model. A simple neural network architecture was implemented, and 20

LSTM models were built to search for the best combination of learning rates and decay factors,

by each gender.

Each of these 20 models was run 30 times to average its RMSE and MAE results. This

was performed on a personal computer, and it took around three hours, per gender, to run. In

contrast, the auto.arima function took only a few seconds to find the best set of ARIMA

parameters. Despite the much greater time spent in preparing the data and effectively running

the neural network model, the results for females provided by the neural network and by the

ARIMA model were similar. On the other hand, for males, the ARIMA model performed better

than the LSTM, showing lower RMSE and MAE.

A 12-month 𝑘# prediction between Dec/2019 and Nov/2019 was presented in Figure 21

and Figure 22, showing similarities between the predictions made by the ARIMA and LSTM

models. These results intended to predict how the 𝑘# of each gender would have behaved if the

Covid-19 pandemic did not break through.

 42

In practical terms, by modeling hospital admission rates actuaries can better assess the

technical provisions of health insurance companies. Considering that hospital admissions

account for approximately 50% of claim costs in the Brazilian health insurance market (Cechin

& Lara, 2020), even small variations in hospital admission rates can put a serious strain on the

liabilities of insurers. Additionally, in Brazil, there are the so-called verticalized health

companies, which are health insurers that own hospitals and clinics in an attempt to control

costs and frequency of use. For this kind of companies, modeling hospital admissions is even

more important, since they can not only better assess their technical provisions but also better

plan human and medical resources considering the level of predicted hospital admissions.

Even though a small data sample was used in this work, the performance of the LSTM

and ARIMA models was similar. It is well known that neural networks models demand huge

amounts of data to be fitted but his similar performance suggests that future works could rely

on two approaches to test if the LSTM model can be significantly better than the ARIMA:

1. Work with longer data sequences. For example, health insurance companies

always dispose of daily data. Comparing the ARIMA and LSTM on a daily

sequence of data instead of a monthly one could show a significant difference

in model performance.

2. Fine-tune the LSTM model. The structure of the LSTM model could be adjusted

until finding a structure that best described the problem.

Considering point 2 introduced above, future work could explore the automatic search

of parameters to adjust the neural network, but researchers and practitioners should be aware

that it can be computationally costly. The work of (Jin, Song & Hu, 2019) proposed the package

AutoKeras for this search, implemented in Python, which they claim to be efficient when

compared to existing auto-search algorithms. Since this dissertation was done in R, this

package could not be tested.

 43

The use of regularization techniques in neural networks (i.e. L1 and L2 regularization

and dropout) should also be explored, see (Hastie, Tibshirani & Friedman, 2017; Chollet,

2018). This gives a possibility to improve results and to study how the use of different

regularization techniques impacts the performance of a neural network.

This research has shown that, for the given problem and available data, the LSTM and

ARIMA models performed similarly in predicting the the general level of hospital admissions

𝑘#. It is known that neural networks depend on huge amounts of data but, even though the data

used was small, the neural network was able to have a similar result to the ARIMA model. This

indicates that the LSTM model could perform better than the ARIMA model with longer data

sequences and/or fine-tuning the LSTM model with a different structure and set of parameters.

Modeling hospital admissions is useful for health actuaries to better estimate technical reserves

and liabilities of insurers and also for verticalized companies to better plan resources

accordingly to the predicted admission rates.

 44

References

Abadi, M. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.

https://www.tensorflow.org.
Abiodun, O. I., Jantan, A., Omolara, A. E., Dada, K. V., Umar, A. M., Linus, O. U., . . . Kiru,

M. U. (2019). Comprehensive Review of Artificial Neural Network Applications to
Pattern Recognition. IEEE Access, 7, 158820-158846.
https://doi.org/10.1109/ACCESS.2019.2945545

Bengio, Y. (2012). Practical Recommendations for Gradient-Based Training of Deep
Architectures. In Neural Networks: Tricks of the Trade (2nd edition, pp. 437-478).
Berlin, Heidelberg: Springer.

Bre, F., Gimenez, J. & Fachinotti, V. (2017). Prediction of wind pressure coefficients on
building surfaces using Artificial Neural Networks. Energy and Buildings, 158, 1429-
1441. https://doi.org/10.1016/j.enbuild.2017.11.045

Brownlee, J. (2017). Long Short-Term Memory Networks With Python: Develop Sequence
Prediction Models With Deep Learning. Machine Learning Mastery.

Brownlee, J. (2018). Deep Learning for Time Series Forecasting - Predict the Future with
MLPs, CNNs, and LSTMs in Python. Machine Learning Mastery.

Cauchy, A. (1847). Méthode Général pour la résolution des systèmes d'équations simultées.
Comptes Rendus Hebd. Séances Acad. Sci., 25(2), 536-538.

Cechin, J. & Lara, N. (2020). Análise Especial do Mapa Assistencial da Saúde Suplementar no
Brasil Entre 2014 e 2019. São Paulo: Instituto de Estudos da Saúde Suplementar.
https://www.iess.org.br/biblioteca/tds-e-estudos/estudos-especiais-do-iess/analise-
especial-do-mapa-assistencial-da-saude

Choi, J. & Lee, S. (2020). Consistency Index-Based Sensor Fault Detection System for Nuclear
Power Plant Emergency Situations Using an LSTM Network. Sensors, 20(6), 1651.
https://doi.org/10.3390/s20061651

Chollet, F. (2015). Keras. https://keras.io.
Chollet, F. (2018). Deep Learning with Python. United States of America: Manning

Publications Co.
Curry, H. B. (1944). The method of steepest descent for non-linear minimization problems.

Quarterly of Applied Mathematics, 2(3), 258-261. https://doi.org/10.1090/qam/10667
Deaton, A. & Paxson, C. (2004). Mortality, Income and Income Inequality Over Time in Britain

and the United States. In Perspectives on the Economics of Aging (pp. 247-286).
National Bureau of Economic Research, Inc.

Deprez, P., Shevchenko, P. V. & Wüthrich, M. V. (2017). Machine Learning Techniques for
Mortality Modeling. European Actuarial Journal, 7, 337-352.
https://doi.org/10.1007/s13385-017-0152-4

Dong, X., Kedziora, D. J., Musial, K. & Gabrys, B. (2021). Automated Deep Learning: Neural
Architecture Search Is Not the End. arXiv. https://doi.org/10.48550/arxiv.2112.09245

European Commission, Directorate-General for Economic and Financial Affairs, Schwierz, C.,
Medeiros, J. (2013). Estimating the drivers and projecting long-term public health

 45

expenditure in the European Union: Baumol’s «cost disease» revisited, European
Commission. https://data.europa.eu/doi/10.2765/54565

Frees, E. (2006). Forecasting labor force participation rates. Journal of Official Statistics,
22(3), 453-485.

Gers, F., Schmidhuber, J. & Cummins, F. (2000). Learning to forget: Continual prediction with
LSTM. Neural Computation, 12(10), 2451-2471.
https://doi.org/10.1162/089976600300015015

Girosi, F. & King, G. (2008). Demographic Forecasting. Princeton University Press.
Goodfellow, I., Bengio, Y. & Courville, A. (2016). Deep Learning. MIT Press.
Gutterman, S. & Vanderhoof, I. T. (1998). Forecasting changes in mortality: a search for a law

of causes and effects. North American Actuarial Journal, 2(4), 135-138.
Hadamard, J. (1908). Mémoire sur le problème d'analyse relatif à l'équilibre des plaques

élastiques encastrées. Memoires presentés par divers savants a l'Académie des Sciences
de l'Institut National de France, 33(4).

Hainaut, D. (2018). A Neural-Network Analyzer for Mortality Forecast. ASTIN Bulletin, 48(2),
481-508. https://doi.org/10.1017/asb.2017.45

Hastie, T., Tibshirani, R. & Friedman, J. (2017). The Elements of Statistical Learning: Data
Mining, Inference, and Prediction (2nd Edition). Springer.

Haykin, S. S. (2008). Neural Networks and Learning Machines (3rd Edition). Person.
Heaton, J. (2005). Introduction to Neural Networks with Java (1st Edition). Heaton Research.
Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation,

9(8), 1735-1780. https://doi.org/10.1162/neco.1997.9.8.1735
Hollmann, F. W., Mulder, T. J. & Kallan, J. E. (2000). Methodology and Assumptions for the

Population Projections of the United States: 1999 to 2100. (Working Paper No. POP-
WP038), U.S. Bureau of Census, Population Division.

Hu, X., Chu, L., Pei, J., Liu, W. & Bian, J. (2021). Model Complexity of Deep Learning: A
Survey. Knowledge and Information Systems, 63, 2585-2619.
https://doi.org/10.1007/s10115-021-01605-0

Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O'Hara-Wild M.,
Petropoulos F., Razbash S., Wang E. & Yasmeen F. (2022). forecast: Forecasting
Functions for Time Series and Linear Models. R package version 8.16, URL:
https://pkg.robjhyndman.com/forecast/

Hyndman, R. J. & Khandakar, Y. (2008). Automatic time series forecasting: the forecast
package for R. Journal of Statistical Software, 26(3), 1–22.
https://doi.org/10.18637/jss.v027.i03

IBGE. Instituto Brasileiro de Geografia e Estatística (2021). Estimativas da População
Residente no Brasil e Unidades da Federação com data de Referência em 1 de Julho de
2021. Retrieved from https://biblioteca.ibge.gov.br/visualizacao/livros/liv101849.pdf

Jin, H., Song, Q. & Hu, X. (2019). Auto-Keras: An Efficient Neural Architecture Search
System. arXiv. https://doi.org/10.48550/arXiv.1806.10282

 46

Kjærgaard, S. & Bergeron-Boucher, M.-P. (2022). Mortality forecasting at age 65 and above:
an age-specific evaluation of the Lee-Carter model. Scandinavian Actuarial Journal, 1,
64-79. https://doi.org/10.1080/03461238.2021.1928542

Koissi, M. C., Shapiro, A. & Högnäs, G. (2005). Fitting and forecasting mortality rates for
nordic countries using the Lee-Carter method. Actuarial Research Clearing House, 1-
21.

Krogh, A., Hertz, J. A. & Thorbergsson, G. I. (1990). A cost function for internal
representations. In Advances in Neural Information Processing Systems 2 (pp. 733-
740). Morgan Kaufmann Publishers Inc.

Lalis, J. T., Gerardo, B. D. & Byun, Y. (2014). An Adaptive Stopping Criterion for
Backpropagation Learning in Feedforward Neural Network. International Journal of
Multimedia and Ubiquitous Engineering, 9(8), 149-156.
https://doi.org/10.14257/ijmue.2014.9.8.13

LeCun, Y., Bottou, L., Orr, G. & Muller, K.-R. (2012). Efficient BackProp. In Neural
Networks: tricks of the trade (pp. 9-48). Springer.

Lee, R. & Carter, L. (1992). Modeling and Forecasting US Mortality. Journal of the American
Statistical Association, 87, 659–671. https://doi.org/10.2307/2290201

Lee, R. & Miller, T. (2002). An Approach to Forecasting Health Expenditures with Application
to the U.S. Medicare System. Health Services Research (Ann Arbor), 37(5), 1365-1386.
https://doi.org/10.1111/1475-6773.01112

Lemarechal, C. (2012). Cauchy and the gradient method. Documenta Mathematica, Extra
Volume ISMP, 251-254.

Levantesi, S. & Pizzorusso, V. (2019). Application of machine learning to mortality modeling
and forecasting. Risks, 7(1), 26. https://doi.org/10.3390/risks7010026

Lindberg, C. & McCarthy, T. (2021). Impact of Demographic Change on Health Expenditure
2022-2025. Report prepared by the Irish Government Economic and Evaluation Service
(IGEES) staff in the Department of Health.

Lindholm, M. & Palmborg, L. (2022). Efficient Use Of Data For LSTM Mortality Forecasting.
European Actuarial Journal. https://doi.org/10.1007/s13385-022-00307-3

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics, 5, 115–133.
https://doi.org/10.1007/BF02478259

Menec, V., Lix, L., Nowick, S. & Ekuma, O. (2007). Health care use at the end of life among
older adults: Does it vary by age? Journal of Gerontology, 62(4), 400-407.
https://doi.org/10.1093/gerona/62.4.400

Minsky, M. & Seymour, P. (2017). Perceptrons, Reissue of the 1988 Expanded Edition with a
new Foreword by Léon Bottou. Cambridge: Massachusetts Institute of Technology
Press.

Mirzaei, S., Kang, J.-L. & Chu, K.-Y. (2022). A comparative study on long short-term memory
and gated recurrent unit neural networks in fault diagnosis for chemical processes using
visualization. Journal of the Taiwan Institute of Chemical Engineers, 130.
https://doi.org/10.1016/j.jtice.2021.08.016

 47

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Cambridge: MIT Press.
Namini, S. & Namin, A. (2018). Forecasting Economic and Financial Time Series: ARIMA

vs. LSTM. ArXiv. https://doi.org/10.48550/arXiv.1803.06386
Narkhede, M. V., Bartakke, P. P. & Sutaone, M. S. (2022). A review on weight initialization

strategies for neural networks. Artificial Intelligence Review, 55, 291-322.
https://doi.org/10.1007/s10462-021-10033-z

Neves, R. (2018). An Overview of Deep Learning Strategies for Time Series Prediction
(Master’s thesis, Instituto Superior Técnico, Lisbon, Portugal). Retrieved from
https://fenix.tecnico.ulisboa.pt/downloadFile/1126295043835783/

Nielsen, M. A. (2015). Neural Networks and Deep Learning. Determination Press.
Nigri, A., Levantesi, S. & Marino, M. (2021). Life expectancy and lifespan disparity

forecasting: a long short-term memory approach. Scandinavian Actuarial Journal
2021, 2, 110-133. https://doi.org/10.1080/03461238.2020.1814855

Nigri, A., Levantesi, S., Marino, M., Scognamiglio, S., & Perla, F. (2019). A Deep Learning
Integrated Lee–Carter Model. Risks, 7(1), 33. https://doi.org/10.3390/risks7010033

Paris, V., Devaux, M. & Wei, L. (2010). Health systems institutional characteristics: A survey
of 29 OECD countries. OECD Working Papers, No. 50, OECD Publishing, Paris.
https://doi.org/10.1787/5kmfxfq9qbnr-en

Perla, F., Richman, R., Scognamiglio, S. & Wüthrich, M. (2021). Time-series forecasting of
mortality rates using deep learning. Scandinavian Actuarial Journal 2021, 7, 572-598.
https://doi.org/10.1080/03461238.2020.1867232

Rabbi, A. & Mazzuco, S. (2020). Mortality Forecasting with the Lee-Carter Method: Adjusting
for Smoothing and Lifespan Disparity. European Journal of Population, 37(1), 97-120.
https://doi.org/10.1007/s10680-020-09559-9

Richman, R. & Wüthrich, M. V. (2018). A Neural Network Extension of the Lee-Carter Model
to Multiple Populations. http://dx.doi.org/10.2139/ssrn.3270877

Rodrigues, C. G., Andrade, M. V., Queiroz, B. L. & Machado, C. J. (2013). The Applicability
of the Lee-Carter Method to Forecast Health Services Use in Brazil. In: Hoque, N.,
McGehee, M., Bradshaw, B. (eds) Applied Demography and Public Health. Applied
Demography Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-
6140-7_21

Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning representations by back-
propagating errors. Nature 323, 533-536. https://doi.org/10.1038/323533a0

Silva, R., Steen, E. & Darley, O. (2019). Time Series Forecasting with Deep Learning Models.
Škrlj, B., Kralj, J., Pollak, S. & Lavrač, N. (2019). Towards Robust Text Classification with

Semantics-Aware Recurrent Neural Architecture. Machine Learning and Knowledge
Extraction, 1(2), 575-589. https://doi.org/10.3390/make1020034

Steeghs, K. (2020). Parameter Uncertainty in the Lee-Carter Model. Network for Studies on
Pensions, Aging, and Retirement (Master’s thesis, Maastricht University, Amsterdam,
The Netherlands). Retrieved from
https://www.netspar.nl/assets/uploads/P20200814_MSc014_Steeghs.pdf

 48

Szandala, T. (2021). Review and Comparison of Commonly Used Activation Functions for
Deep Neural Networks. arXix. https://doi.org/10.48550/arXiv.2010.09458

Tate, R. B., MacWilliam, L. R. & Finlayson, G. (2005). A Methodology for Evaluating
Hospital Bed Need in Manitoba in 2020. Canadian Journal on Aging/La Revue
canadienne du vieillissement, 24(5), 141-151. https://doi.org/10.1353/cja.2005.0056

Tuljapurkar, S., Li, N. & Boe, C. (2000). A universal pattern of mortality decline in the G7
countries. Nature 405, 789-792. https://doi.org/10.1038/35015561

United Nations. (1952). Methods of Estimating Total Population for Current Dates.
Uzair, M. & Jamil, N. (2020). Effects of Hidden Layers on the Efficiency of Neural networks.

2020 IEEE 23rd International Multitopic Conference (INMIC), 1-6.
https://doi.org/10.1109/INMIC50486.2020.9318195

Wang, J., You, K., Long, M. & Jordan, M. I. (2019). How Does Learning Rate Decay Help
Modern Neural Networks? arXiv. https://doi.org/10.48550/arXiv.1908.01878

Wiener, N. (1948). Cybernetics: Or Control and Communication in the Animal and the
Machine, (2nd ed.). Cambridge: Massachusetts Institute of Technology Press.

Wilmoth. (1993). Computational methods for fitting and extrapolating the Lee-Carter model
of mortality change. Technical Report. University of California, Berkeley.

Wilmoth. (1996). Mortality projections for Japan. In: Health and mortality among elderly
populations (pp. 266-288). Clarendon Press.

Xu, K., Saksena, P. & Holly, A. (2011). The determinants of health expenditure. A country-
level panel data analysis. (WHO Working Paper R4D). Geneva: World Health
Organization.

 49

Appendix I - Time Series Outputs

Residuals for Females - ARIMA(3, 0, 0)(2, 1, 0)[12]

 Ljung-Box test

data: Residuals from ARIMA(3,0,0)(2,1,0)[12]
Q* = 31.292, df = 19, p-value = 0.03749

Model df: 5. Total lags used: 24

Residuals for Males - ARIMA(3, 0, 0)(2, 1, 0)[12]

 Ljung-Box test

data: Residuals from ARIMA(3,0,0)(2,1,0)[12]
Q* = 29.717, df = 19, p-value = 0.05551

Model df: 5. Total lags used: 24

 50

 51

Appendix II - LSTM Outputs

Model summary - Females and Males

Female LSTM - RMSE metrics

Female LSTM - MAE metrics

 52

Male LSTM - RMSE metrics

Male LSTM - MAE metrics

