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Abstract

The study of infinite dimensional quantum systems has been an active area of dis-
cussion in quantum information theory, particularly in settings where certain properties
are shown to be not attainable by any finite dimensional system (such as nonlocal cor-
relations). Similarly, the notion of stabilizer states has yielded interesting developments
in areas like error correction, efficient simulation of quantum systems and its relation to
graph states. However, the commonly used model of tensor products of finite dimensional
Hilbert spaces is not sufficiently general to capture infinite dimensional stabilizer states.
A more general framework quantum mechanical systems using C*-algebras has been in-
strumental in studying systems with an infinite number of discrete systems in quantum
statistical mechanics and quantum field theory. We propose a framework in the C*-algebra
model (specifically, the CAR algebra) for the stabilizer formalism that extends to infinitely
many qubits. Importantly, the stabilizer states on the CAR algebra form a class of states
that can attain unbounded entanglement and yet has a simple characterization through
the group structure of its stabilizer. In this framework, we develop a theory for the states,
operations and measurements needed to study open questions in quantum information.
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Chapter 1

Introduction

In the field of quantum information theory (QIT), we have long recognized that quantum
mechanical systems can be described by states which are vectors in a Hilbert space H and
observables represented by an algebra of operators contained in B(#). In QIT, where we
mainly focus on discrete systems with finite dimension, this model has served very well.
More recently however, it has been shown in various settings that there exists kinds of
quantum correlations which are testable and cannot be attained by a system consisting of
finitely many qubits or qudits[5, 14, 17]. Rather, an infinite dimensional system and some
infinitary amount of entanglement is required to achieve it.

In infinite dimensional systems, the Hilbert space model of quantum information begins
to break down. When we only have a finite number of systems, we can take the tensor
product of the Hilbert spaces of each system to get a Hilbert space for the joint state on all
the systems. When we have an infinite number of systems, the Hilbert space that contains
the infinite tensor product of all the systems is difficult to work with mathematically. A
simpler version of the infinite tensor product exists, but does not produce a large enough
space to capture the states that are pertinent. A different framework is required.

The replacement, also inspired by von Neumann’s work, lies in operator algebras. Op-
erator algebras are already intrinsic to QIT, as the operators can all be expressed by some
matrix algebra, but the framework that von Neumann developed is more general than finite
matrices. The model focuses on the structure of the set of allowable operators on the sys-
tem, and represents them using C*-algebras. The C*-algebra model was used extensively
in quantum field theory and quantum statistical mechanics [1] in the 70s. More recently,
the model has been applied to QIT to study non-locality of C*-algebra model systems as
well [4].



We will discuss the C*-algebra model of quantum systems using the CAR algebra, which
is essentially an algebra of operators on infinitely many qubit systems. This model gives
access to many exotic states but we will focus on a restricted set of states which have been
fruitful avenues of research in the past.

In the Hilbert space model, there is a set of states called Stabilizer states [9]. These
states are fairly simple in the sense of the Gottesman-Knill theorem, which states that sta-
bilizers and a restricted number of operations can even be efficiently simulated classically.
Yet, these states have rich structure, and exhibit quantum nature. Notably, the Bell state
is an example of a stabilizer state.

We introduce a formalism for states on the CAR algebra which have stabilizer struc-
ture. In Chapter 2, we give an overview of the general C*-algebra model with associated
definitions and useful theorems. We give two constructions of the CAR algebra which
each provide insight on the structure of the algebra, and prove theorems about the CAR
algebra that will be used in the remainder of the thesis. In Chapter 3, we define stabi-
lizers on the CAR algebra as well as the allowable operations needed to study quantum
information theory, including Clifford operations and a definition of the partial trace. In
Chapter 4 we define a related class of states, called graph states, and briefly discuss how
their relationship to stabilizer states changes in the infinite dimensional system.



Chapter 2

The C*-Circuit Model

Inspired by classical circuits, the quantum circuit model of computation is a model of
computation consisting of a collection of basic operations and states that are required for
computation in quantum information theory.

2.1 The Conventional Circuit Model

First, we briefly review the typical model used in quantum information.

2.1.1 States and Registers

In this model, we have a notion of registers which hold information, akin to a register in
a computer processor. Some collection of registers holds a quantum state, and finally we
have a notion of the possible operations we can perform on such states.

A register is composed of either an alphabet 3 of symbols encoding the state set of the
register, or it is a tuple of other registers (a compound register).

If the register is a tuple, then the register is called a compound register. The alphabet
of a compound register is the Cartesian product of the alphabet of each component register,
and the symbols are the string concatenations of the symbols from each register.

The classical state of a register is the symbol that the particular register holds. For
example, the alphabet may be the alphabet of 32-bit strings, and the classical states are
the symbols of that alphabet, in this case any 32-bit word.



In some models, the register is not necessarily deterministic, rather the actual classical
state is random. This is simply called a classical probabilistic state, and the register holds
a probability distribution p on the possible classical states (symbols) of a register rather
than a single symbol. The probability that the register holds a classical state a is given by

p(a).

To each register, we can associate with it a vector space, equipped with a norm.

Definition 2.1.1. An inner product space is a vector space V' over a field F, and an inner
product map (-, -), where the inner product satisfies

1. (z,y) = (z,y) for all x,y € V, where the & denotes conjugation
2. {ax,y) = oz, y), for all z,y €V, and o € F
3.

(x+y,2) =(x,2) + (y,2), forallx,y,z €V

A wvector space is called Euclidean if the norm used is the Euclidean norm, given by the
inner product

lul| = Vu-u

Given a norm, there is a natural distance function between vectors x,y in the vector
space, gwen by d(z,y) = ||lu — v||. If in addition to the properties of Definition 2.1.1 we
have that the distance function is given as d(x,y) = ||lu—v||, and every Cauchy sequence in
V' converges with respect to the norm, then the inner product space is also a Hilbert space.

For finite systems, it is sufficient to discuss Euclidean spaces, but is common and more
general to consider a Hilbert space, also equipped with a Euclidean norm. Given a register
X which has a finite alphabet ¥, the C* denotes a complex vector space of dimension |X|.
If the register X = (Y1,Ys,...) is compound, then the vector space associated with X is
given by X = )V, ® Vo ® ..., where each )); is the associated vector space for Y;.

Whereas a classical state is represented by a simple probability distribution, a quantum
state on a register is represented by a density operator. Given a Hilbert space or Euclidean
space space X', we can consider the bounded linear operators B(X).

Definition 2.1.2. Given two Hilbert spaces X and ), the norm || - || of a linear operator
T:X — )Y is given by



T[] = sup{|[Tz[[y : & € X}
Since T' is linear, it is equivalent to restrict ourselves to x € X, ||z||x = 1.

Definition 2.1.3. (Bounded Operators) Given a map T : X — Y, T is called bounded if
there exists M such that for all x, ||[Tz|| < M||z||. If X and Y are both finite dimensional
vector spaces, then T is bounded if it is linear.

Equivalently, T is bounded if ||T|| < oo

Definition 2.1.4. (Trace) Let {e;} be an orthonormal basis for X, then the trace of an
operator T : X — ), denoted tr(T), is given by

tr(T) = (Te;, e;)

Definition 2.1.5. (Positive operators) An operator T : X — X is called positive if for
allz € X, (Tx|z) € R and (Tx|z) > 0. Positive operators are sometimes called positive-
semidefinite or non-negative.

Definition 2.1.6. (Density operators) The density operators on X are the operators p :
X — X which are positive semi-definite and have trace 1.

The set of states on a conventional quantum register is the set of density operators on
that register.

D(X) is a convex set, so given some alphabet I', and a probability distribution p(a) over
a € I', we can take a convex combination p =) p(a)p,, and p is still a density operator.
Previously, we mentioned that classical states are single symbols from the state set, or a
probability distribution over the state set. A density operator can encode a single symbol
when the density operator has only a single entry along the diagonal. A probabilistic
mixture of such density operators represents a probabilistic classical state, which is given
by a diagonal density matrix. Thus, the notion of a density matrix generalizes the notion
of classical and probabilistic states on the register.

If the register X is a compound register, then the quantum states are density matrices
from D(Y1,Ya,...). It is not generally true that the states can be decomposed into the
form p = p; ® pa ® ... where each p; € );, but in this special case, p is called a product
state.



2.1.2 Dynamics

In the context of quantum information, we are interested in studying the dynamics of
a quantum mechanical system, and leverage it to perform operations that will do com-
putation. We need to have a model for the evolution of states, as well as the allowable
operations.

The most general operations on quantum states are given by channels.

Definition 2.1.7. (Completely Positive) A map ® : B(X) — B()) is completely positive
iof for every Hilbert space Z the map ® R [ : X ® Z — Y, is positive.

Definition 2.1.8. (Quantum Channels) A linear map ® : B(X) — B()) is called a
quantum channel if it satisfies the following:

1. ® is completely positive

2. ® preserves the trace

A specific example of channels we will focus on is given by the form ®(p) = UpU*,
where U € B(X) is unitary. These are sometimes called unitary channels, and represent
the reversible operations on the register.

If the state set of the registers we work in are binary, then an operation is called local
if it applies only to one particular bit position, and is identity on the remaining positions.

In 2 dimensions, each unitary is decomposable into a linear combination of the Pauli

) 0 1 0 —1 1 0 10
mautmces,WhelreX—(1 0)’Y_(2' O),Z—(O —1)’I_<O 1).

In the circuit model, we typically only care about reversible operations and measure-
ments.

Definition 2.1.9. (Observables) An observable is a Hermitian operator O which repre-
sents a physical quantity that can be measured. The possible values that are measurement
outcomes of O are its eigenvalues, with the state attaining a particular eigenvalue is the
corresponding eigenvector.

Each observable can be decomposed via the spectral decomposition into a linear com-
bination of projectors that project an input onto one of the eigenvalues of the observable.
We can view a state as being in an ensemble of the eigenvalues of a particular observable,
where a measurement gives you a random outcome according to probabilities given by the
ensemble. The notion of a POVM formalizes this notion.



Definition 2.1.10. (POVMs) A positive operator valued measure (POVM) is a set of
positive operators { P;} that sum to the identity operator. The operator P; encapsulates the
operation of measurement. Given a density matrix p, the probability of obtaining outcome
i is given by tr(Pip).

When every P; is a projector (meaning (P;)* = P;) then this is also called a projector
valued measure (PVM).

2.2 Limitations of the Conventional Model

The above definitions are sufficient for a discussion of many topics in quantum information,
but it remains limited in some special cases. We can try to extend the typical notion
of a register to hold one out of infinitely many states, that is, make the alphabet ¥ a
countably infinite set. This is possible if we choose an appropriate Hilbert space, but a
finite dimensional space is no longer sufficient.

The trace operation is extended to infinite dimensional spaces. Given an orthonormal
basis {ey }ren, the trace of an operator A is defined as tr A = ), (Aeg|e). Since the trace
is a sum of non-negative real numbers, the trace is non-negative, or infinity. The operators
with trace that does not diverge is called trace class. However, not every object we might
want to represent is trace class.

For example, let ¥ = N, we can take X = (?(N). The bounded operators on ¢*(N)
are certainly not all trace class. Furthermore, it is necessarily the case that for a positive
semi-definite operator to be trace class, the limit of the eigenvalues are vanishingly small.
That is, for every e there is an eigenvalue A with |[A\| < e. In the example of a diagonal
density operator, the entries must tend to zero.

Currently, we assume that if X is a compound register, we expect that it is composed of
finitely many other registers. We can extend this construction to allow compound registers
formed from infinitely many registers, but we will see that we cannot include all the possible
states that we might expect to have.

The state overall state on the joint spaces spanned by all of the systems is described
by taking the Hilbert space tensor product of the Hilbert spaces of the individual systems.
When we have a sequence Hilbert spaces, the construction of the infinite tensor product
of all of the Hilbert spaces becomes fairly involved. The construction was studied fairly
deeply by von Neumann [19], who actually showed that there are two kinds of infinite tensor



products, the “complete” and “incomplete” tensor products®. The complete tensor product
is non-separable and unwieldy so it rarely shows up in the literature. The incomplete
tensor product is easy to work with, but does not capture states which are pertinent to a
full discussion of quantum information theory.

Definition 2.2.1. (Incomplete Tensor Product) Let Vi, k € N be a family of finite dimen-
sional Hilbert spaces. In each Yy we choose a unit vector uy. Let (vg)ren be a sequence of
vectors where for all but finitely many k, we have vy, = uy.

We assign every such sequence to a basis vector e(,,). We equip our space with the
inner product (e(v,), €(w;)) = | 5 (Vk, Wk) and the norm to be the Euclidean norm. The basis
vectors form a vector space V. Since all but finitely many indices k will have (v, w) = 1,
this norm is well defined.

The infinite tensor product of the Hilbert spaces,

X = QY
k
is given by the completion of V with respect to this norm.

It is not difficult to see that if we actually only have finitely many component registers,
then this definition reduces to the usual definition of a tensor product of finitely many
Hilbert spaces. For countably many registers this leads to a new construction, but typically,
many interesting states will be missing.

For instance, if every ) is chosen to be C2, and for convenience, assume each wuy, is the
same vector, for example u;, = |0). We can then construct H = @), Vi using the above
definition.

In this Hilbert space, we have vectors which are infinite tensor products of a sequence
of vectors from C2. Since the basic vectors we start with only includes vectors in the linear
span of sequences ending in |0), the only vectors we have are Cauchy sequences of vectors
where all but finitely many positions are |0).

Roughly speaking, this means that the state in position £ have to tend towards wuy in
inner product. To illustrate what this means, suppose we have |[v) = |v1) ® |v2) ® |v3) ® . ..
where each vy, is a pure state in C2. This is the form of a general product state. We are

IThe incomplete term is a bit of a misnomer. Both types are complete with respect to the norm, and
the name incomplete instead refers to the fact that not every sequence of vectors from the Hilbert spaces
is included in the incomplete space.



interested in what conditions we need to impose to be able to claim that |v) is really in
the Hilbert space.

Suppose we take the sequence of vectors where the n-th term is

|T,) = |v1) @ v2) ... |Un) ®[0) ® ...

as in we truncate all but the first n factors in the tensor product, and the remaining ones
are just |0). Clearly this sequence converges to |v), and each |x,) a basic vector before we
take the completion. Thus, |v) is in the Hilbert space if and only if this sequence is Cauchy
with respect to the inner product. If we compute the distances |z, — z,,,|, we obtain the
following:

|J7n - 17m| = ’|U1> R R® |Un> ® (|Un+1> 0y |Un+2> QX |Um> . |0>®(m—n)> 2 |O> o ‘
- ‘|U"+1> ® |Un+2> Q- |1)m> — |O>®(m—n)|

=1+1— ] Oy — J] (welo)
1=n+1 1=n+1

We must be able to make the distance |z, — x,,| arbitrarily small only by increasing n,m,
so the two products should both approach 1. This implies that the terms in the individual
terms |(0, vy)| should not be too far from 1. Specifically, the condition is

Z|(vi|0> — 1] <oo

We can make a similar argument for non product states, as well as mixed states. In
those cases, we obtain a similar condition where essentially the state must tend towards
0).

This means that a state such as |1)®> where the state at position i clearly does not
tend towards |0) cannot be in this Hilbert space, since it is not the limit of any Cauchy
sequence.

Still, this presents some useful ideas that we can use. We will see in the next section
how these are addressed.



2.3 C*-Circuit Model

In the C*-circuit model, we represent quantum registers by making use of different mathe-
matical object than the Hilbert space. This allows us to represent registers with structure
that we like to exploit. Specifically, we use C*-algebras.

Definition 2.3.1. (C*-Algebras) Let A be an associative algebra with an operation * : A —
A. Suppose that the x operation satisfies the following conditions for all x,y € A, A € C

2. (z+y)x =a"+y*
3. (wy)" = ya”
4. (A\x)* = \z*

These conditions make A a x-algebra. In addition, if A is equipped with a norm || - ||
satisfying

1. A is complete with respect to the metric induced by || - ||.

2. Jwyll = |lz[| - [lyl| for all z,y € A.

3. N|a*al| = [|z|| - [|2*]| or equivalently, ||za*|| = ||z[|*.

then A is a Cx-algebra. A x-algebra with the first two of the above conditions makes

A a Banach algebra, and with all three, make it a C*-algebra. The last condition is also
known as the C*-condition.

The above definition gives a characterization of a C*-algebra. Any abstract algebra
that satisfies those conditions is a C*-algebra, but we can also have explicit constructions
of C*-algebras of operators, typically bounded operators acting on a concrete Hilbert space.

Definition 2.3.2. Given a C*-algebra A and some Hilbert space H, a x-homomorphism
m: A— B(H) is called a representation.

10



A linear, multiplicative map 7 : A — B(H) from the algebra to bounded operators on
some Hilbert space is called a representation of A. Although representations can be fairly
arbitrary, a representation is called faithful if its kernel is trivial.

The Gelfand Naimark Segal construction[l6] says that every C*-algebra has at least
one faithful representation as bounded operators on a Hilbert space. Thus, it is common
to say that a particular algebra is a C*-subalgebra of B(H), for some Hilbert space H,
even if the C*-algebra itself is defined with abstract elements.

Definition 2.3.3. Given a C*-algebra A, A is called unital if it contains a multiplicative
wdentity 1.

2.3.1 States on a C*-algebra

In its abstract form, the C*-circuit model doesn’t require us to define a classical state set.
Nor do we need to choose a particular basis for the states on our register. In the case of a
C*-algebra model, we have abstract states which are linear functionals mapping elements
of the C*-algebra to the complex numbers, that are positive and unital.

In this subsection, we will develop the necessary results to define quantum states on
the C*-circuit model.

States on a C*-algebra are represented by functionals, which are maps that take ele-
ments of the algebra to the base field, in this case C. The physical intuition here is that
Hermitian elements of the algebra represent all the observables, and states represent the
measurement, outcomes of the observables.

A functional is positive if it maps positive operators to real, positive numbers.
Let s(A) be a positive functional on the C*-algebra A, s: .4 — C.

Then s*(A) = s(A*) denotes its adjoint. s is Hermitian if s = s*. For a (bounded)
Hermitian linear functional, we have the following equivalent definition of norm, which is
equivalent to the operator norm

|Is| = sup{s(H) - H = H",[[H|| < 1}

That is, although the operator norm is the supremum over operators on the C*-algebra,
taking the supremum over only the self-adjoint operators of the C*-algebra is sufficient.

11



As above, if a positive linear functional is a state if it is, in addition, unital. That is,
if s(I) = 1. A positive linear functional is Hermitian (one can show this by considering
IA][- I + A)

In the following, A is a unital C*-algebra.

Lemma 2.3.4. Let s be a positive linear functional on A, then

1s(B*A)|? < s(A*A)s(B*B)
Lemma 2.3.5. Let A be a unital C*-algebra, and let A € A, andsaastateonA.The followingaretrue
IfVs,s(A) =0, then A= 0.
If Vs, s(A) is real, then A = A*.
IfVs, s(A) >0, then A > 0.

If A is normal, then there exists s such that |s(A)| = ||A]].

Hermitian states are a lot like Hermitian operators, in the sense of the following lemma

Lemma 2.3.6. Every bounded Hermitian functional can be expressed in the form of st —s—,
where s, s~ are both positive linear functionals. Furthermore, ||s|| = ||sT|| + ||s~||-

As mentioned before, functionals essentially encode the measurement information of
observables on the algebra. If we know the outcome of certain observables, we can uniquely
determine the state.

In the last section of this chapter, we will look at a specific algebra that includes a basis
for a countable number of qubits.

2.3.2 Reversible Dynamics on the C*-circuit model
We also need a model for the “gates” of the circuit. In the conventional model, we looked at

channels as the basic operations on quantum states. In a circuit, the reversible operations
are unitary channels. Mappings of the form:

¢(p) =UpU”

12



where U is a unitary operator is the form of all unitary operations. In infinite dimen-
sions, requiring that all operations be unitary may be too restrictive. For instance, there
are operations O and O* such that OO* = I, but O*O # I. Such operations partially
satisfy the unitary condition, but are not unitary themselves.

Definition 2.3.7. A x-automorphism on a C*-algebra A is a map u: A — A such that

1. w s linear.
w is multiplicative, u(a)u(b) = u(ab).

u preserves the x-operation, u(a)* = u(a*).

e e

u 18 a byection.

If the map 1s not bijective, then u is called an endomorphism. If the codomain is some
other algebra, then w is an isomorphism. If the map is not bijective and the domain and
codomain are not equal, then the map s called a homomorphism.

Since automorphisms are bijective, they are reversible.

We call an automorphism « : A — A inner if it is of the form a(a) — UaU*, where
U is a unitary element of A. However, the set of inner automorphisms on A is usually
not the same as the set of automorphisms on A. For arbitrary Hilbert spaces, every -
automorphism from B(H) to itself is inner® (see [16] for a proof), but this is not true for
C*-algebras in general.

Thus, the reversible operations that we permit is the entire automorphism group of A.

Given an automorphism «, the state s on the C*-algebra remain the same, but the
operators evolve. The outcome of measuring a state after with an element A € A after an
automorphism is applied is given by measuring the evolved operator a(A) on the original
state.

Equivalently, we can say that s — s’, where s’ is defined as

s'(A) = s(a(A))

2Technically, if the base field is C, there is a simple *-automorphism that is not inner, which is the map
©o(A) — e A. However, since in quantum information, the global phase is not relevant, we can simply
say that every x-automorphism on a seperable Hilbert space is some inner automorphism composed with
the phase automorphism.

13



By the fact that the automorphism preserves multiplication, it must also map the
identity to itself, so s is unital. Automorphisms also preserve positivity, so s’ is also
positive, thus s’ is a well defined state.

2.3.3 Tensor Products of C*-algebras

In the conventional model, we allowed ourselves to compose two registers X and Y by
taking all the possible concatenations zy for x € X and y € Y. The density matrices on
the composition are the density matrices on the Hilbert space X ® ).

We can do the same thing in the C*-algebra model. The tensor product of C*-algebras
A and B is made up of tensor products of pairs of elements A € A and B € B.

Definition 2.3.8. (Algebraic Tensor Product) Given two C*-algebras A and B, the alge-
braic tensor product of A and B is a vector space A®B, with a bilinear map AxB — A®B.

Being bilinear, the map ® satisfies

1. (ay+a3) ©b=a1 ®b+as ®b for all a;,as € Ab € B
2. Ma®b)=(Xa)©Ob=a® (A\) forallac A, be B, N C

The algebraic tensor product is essentially equivalent to taking the concatenation of
its factors A and B. The resulting algebra is not necessarily complete with respect to any
norm satisfying the C*-property.

This definition is similar to the setting when A and B are Hilbert spaces. In that case,
resulting vector space is also not generally complete. For Hilbert spaces, we choose a norm
based on the inner product (a ®b, c® d) 408 = (a, ¢) 4(b, d)5, and take the completion with
respect to this norm.

When A and B are C*-algebras, A ® B is a *-algebra we also need to choose a norm,
and take the completion. However, there is usually more than one norm satisfying the C*-
condition, which could be a good choice of norm. The following is a very natural candidate
for a C*-norm on A ® B. Given representations 7 : A — B(H;), and 7 : B — B(Hs), we
can choose the norm on A ® B to be

HZAi@Bi

— H ;m(z‘li) ® m2(B;)

B(H1®H2)

14



Where the norm is defined by mapping the algebra elements to operators on Hilbert
spaces, then using the usual norm on the Hilbert space tensor product. This means that
given a representation of the x-algebra as operators on a Hilbert space, the Hilbert space
norm induces a norm on the x-algebra. One can still choose a number of representations
m and 7, so we can choose the norm to be the largest norm given by any representation.

1,72

= sup {H;m(z‘lz) ® m2(B;)

H > A0 B (2.2)
: B(H1®H2)

However, this is also not the only norm that is natural to consider. The norm in
Equation 2.3 implies a spatial decomposition of operators, that every simple tensor A; ® B;
has a representation as a tensor product m;(A) ®@me(B). Another possible norm is to simply
consider all possible representations of A ® B itself, and take the largest norm.

‘ ZA,-@B,- :sup{‘ } (2.3)
i i B(H1&M2)

These two norms are called the min and max norm respectively, and they are the most
relevant norms since these are the two norms that we know best how to describe. As
implied by the name, every C* norm on A® B has a value somewhere between the min and
max norms. Since the norms are different in general, taking the completion with respect
to the min and max norms will give different C*-algebras. The C*-algebra generated by
taking the max norm completion of A ® B gives the max tensor product, denoted ®,,q.,
and respectively, ®,,;, for the min norm.

Z m(A; © B;)

%

The specifics of the differences between the min and max tensor products of C*-algebras
are out of the scope of this thesis. Instead, we will focus on special cases of algebras where
the min and max tensor products are the same.

Definition 2.3.9. A C*-algebra A is called nuclear, if for all C*-algebras B, A ®pin B =
A Qpaa B.

Specifically, any full matrix algebra is nuclear, because M, ® B is related by a x-
isomorphism to M,,(A) (the matrix algebra of n xn size matrices which entries are elements
of A) which is a C*-algebra. Since any finite C*-algebra is a direct sum of full matrix
algebras®, any finite C*-algebra is also nuclear.

3This well known, but is actually a fairly deep theorem to prove. See [13]
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2.4 The CAR Algebra Model

The CAR algebra is named by the acronym for Canonical Anticommutation Relations,
which is a notion that comes from quantum mechanics. A fermionic quantum field has
creation and annhilation operators that anticommute with each other, whereas bosonic
fields have operators that commute. The CAR algebra is an abstract algebra representation
of these relationships.

In the first part of this chapter, we highlighted some limitations of the ability of the
conventional model to represent some states that would be useful to consider. One example
was that in the Hilbert space of an infinite tensor products qubit Hilbert spaces, many states
are “missing”. Once the representative vector from each qubit Hilbert space is fixed, you
cannot take a infinite tensor product of arbitrary vectors from each component Hilbert
space.

We will introduce an algebra that allows us to encode these states and more.

The CAR algebra has two equivalent definitions. One is significantly simpler to under-
stand, and more intuitive to work with. The other is somewhat more abstract, but allows
us to tease out some important properties of the algebra. In this section we will introduce
both.

Taking the completion with respect to this norm yields a C*-algebra which is the CAR
algebra.

2.4.1 CAR Algebra Construction

In this section, we will give two equivalent definitions of the CAR algebra. Both are useful
to see in order to understand some of the properties of the CAR algebra.

Algebra Generated by CAR Relations

Let ‘H be a Hilbert space, and « be a linear map « : H — B(H), mapping each vector in
the Hilbert space to an operator. If it holds that for all f,g € H
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then a encodes an anticommutating relationship. The C*-algebra generated by the set
{a(f) : f € H} is the CAR algebra.

We follow [0] for this section. To understand this definition a bit, first consider f and g
are unit vectors, and let f = g. Then we have that a(f)? = 0 and a(f)*a(f) +a(f)a(f)* =
I. The second implies that

(a(f)a(f)* =alf)a(f)

This implies that a(f) is a partial isometry. The operator E(f) := a(f)*a(f) is a
projection, and E+(f) = a(f)a(f)* The E(f) and E+(f) defines the domain and range of
a(f). We claim the following

Proposition 2.4.1. The C*-algebra generated by the operator C*(a(f)) is isometric to
M,.

Proof. This fact is made obvious if we make the association Eyy = E(f), Eia = a(f)*,
Egl = Oé(f), and EQQ = El(f)

It may be checked now that each multiplication E;;E},; satisfies the relationships be-
tween 2 X 2 matrix elements e;jey;. Here are some example calculations:

]

Now consider f # ¢ and (f,g) = 0. Note that o(f) and a(g) must anticommute.
Computing the commutator [a(g), E(f)], we have

[a(9), E(f)] = a(g)alf) a(f) — a(f) alf)alg)
= a(g)alf) a(f) + a(f) alg)a(f)
(alg)alf)" + alf) alg))a(f)
{9, [)a(f) =0



Via an extension of this calculation it is shown that [E(g), E(f)] = 0 as well.
Define the reflection V; = I — 2E(f). Now let

E® = E(g), ES) = E*(g), EY) = Via(g)*, ESY = Via(g)

We can again check that El(f ) satisfies the matrix element relationships. In addition,

using the fact that Via(g) commutes with everything in C*(«a(f)), we have that every Ez(f )
commutes with every Ej;, which we will henceforth denote as EV). Thus, C*(Via(g)) = Mo,
and C*(a(f), Via(g)) = M,.

If we fix an orthonormal basis {f, : n=1,2,...}, and set

n—1

v, = [t —2E(5)

i

and Vi = I, we can define

EY = B(fa), B = Vaa(fa), BY = Vaa(f)', By = EX(f.)

It follows that the algebra A, = C*({a(f;) : 1 < i < n}) contains n of copies of M,
and so its isomorphic to Ms». The full CAR algebra contains each A,, for all finite n, and
it is clear that A the closed union of all A,,.

A={JA,

n

This fact gives us a few notable properties of the CAR algebra. First, any algebra which
is the closed union of a union of finite dimensional subalgbras is called Approximately
Finite. Moreover, if we have that the sequence of Ay, are all isomorphic to full matrix
algebras, then the algebra is called Uniformly Hyperfinite (UHF).

In a sense, the CAR algebra is the closed union of the C*-algebra of operators on k
qubits for all finite k. The following section will make this view more clear.
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CAR algebra as a group C*-algebra

Another way think about the CAR algebra is as a C*-algebra generated by a group.

We start by considering the C*-algebra of a single qubit. If we consider a single qubit,
the set of operators is simply the linear maps on the Hilbert space C2.

We can build the C*-algebra of operators for a qubit fairly easily, since the full matrix
algebra M, is already a C*-algebra. However, we can generate the entire My(C) using the
Pauli operators X, Y and Z. The Pauli operators can also be defined (up to change in
basis) by their commutation relationships and Hermiticity alone. Instead of defining the
Pauli operators by their matrix representation, we can abstractly define the Pauli matrices
as abstract mathematical objects, satisfying

X=X"2=2Y =—-iXZ

and

X?=7"=Y=1

The group generated by these elements includes X, Y, Z, but also —I and i/. We can
construct the group algebra by taking complex vectors indexed by X,Y, 7, representing
linear combinations of X, Y, Z. The group element —X is associated with the scalar mul-
tiple of X and (—1), i.e. —X = (—1)- X. If we take the norm of a linear combination
to be the operator norm of the matrix with X, Y, Z taking their usual matrix definitions,

this norm is a C*-norm. This algebra is already complete, and is equivalent to the matrix
algebra M, (C).

At this point we introduce some notation.

Definition 2.4.2. Let M be some 2 X 2 matriz, and a be a bit string (possibly countably
infinite length). Let ai] denote the bit in the i-th position. The notation M® denotes

M = ®M“m

When @ is an integer, M; denotes

M=I0I®I®..0MeI®I®...

i—1 times
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Suppose we are given 2 qubits instead, the algebra of operators is now generated by
the matrices R ® R, where each R € {I, X, Z,Y}. Moreover, we can encode R into two
bits, where the first bit a is the exponent on X, the second is the exponent on Z°, and
associating —Y = X Z. For two qubits, we can enlarge a and b to be 2-bit strings, where
a = 01 is understood to be X° ® X! for example. We can then generalize to n qubits, we
can have a and b be n bit strings.

We can generalize further by letting the x-algebra be indexed by infinite sequences of
Paulis, that ends in I ® [ ® .... If we disregard the coefficients (since they will be done
by scalar multiplication anyway) and associate XZ = Y, we can simply define the set
S ={XZ%:a,b € {0,1}*}. The x-algebra is the algebra of linear combinations of finitely
many such sequences. The norm that we will use is similar to the single qubit case. If we
have finitely many combinations, the terms must have all finite number of tensor factors
which are not identity. Thus, the result is of the form M ® I ® I..., where M is an
arbitrary 2" dimensional matrix.

At this point, we should make the notation / ® I ® ... more formal. We can define
the notation I = I ® I ® .... The operations associated with I can be defined with the
following axioms:

Definition 2.4.3. The notation I is used to denote I @ [ ® .... In the CAR algebra, T
itself is the identity element, but also it acts as a tensor component of some operators. IF
A and B are 2"-dimensional square matrices, and I follows the following rules

1. I®l=1I
2. (A I)(BeI)=(AB)® I
3. (@A) + (BB®I)=(aA+3B)® I

When A and B are not the same dimension (1) may be combined with the other rules
to pad one operator to the size of the larger operator.

Using these rules, we can formalize the operations on CG.

It remains to choose a norm satisfying the C* condition. Since each operator in CG is a
finite linear combination of operators where only finitely many components are non-identity:.
Operators in CG are of the form of M ® I ® I ..., where M is some finite dimensional
operator. Thus, we can define a norm using the norm of M, and |[M @ I®1I...|| = ||M||.
The C* condition is satisfied, since the spectral norm satisfies the C* condition.

The completion with respect to this norm gives us the CAR algebra.
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2.4.2 States on the CAR Algebra

As a special case of the C*-algebra model, the states on the CAR algebra are the positive,
unital, linear functionals as usual. Nevertheless, there are a few important classes of states
which will be discussed in more detail. The CAR algebra allows us to define quantum
states that we encounter in a typical discussion of quantum information. But more than
that, we can generalize the states to infinite dimensions.

In this section, we will develop a framework that we will use to define states specifically
on the CAR algebra.

A state is defined by its action on elements of the CAR algebra. Certain CAR algebra
elements correspond to values with physical interpretations. For example, given a state s,
s(Xy) corresponds to measuring in the Pauli X in the 1 position.

To try to define a state, we start by considering states on the underlying *-algebra,
which is the algebra of finite linear combinations of Pauli operators discussed in the previous
section. The definition of a state is a positive, unital, linear functional, but the x-algebra
does not come with a definition of positive, so we have to define one.

Definition 2.4.4. (x-closed subalgebra) Let V be a subalgebra of a C*-algebra, then V is
called *-closed if the x applied to every element in V is another element in V

Definition 2.4.5. Let A be a C*-algebra, and V be a *-closed subalgebra. Let AT denote
the positive elements of the C*-algebra, the positive elements of V are the elements VN AT.

The x-algebra is clearly *-closed, and is a subalgebra, so the elements of the x-algebra
which are positive are exactly the ones which are also positive in the C*-algebra.

Definition 2.4.6. Given V a x-algebra with positivity, a state on V is a unital linear
functional that maps positive elements to positive real numbers.

We can define a linear functional on the x-algebra by defining its action on every tensor
product of Paulis, and extending linearly. The elements Z*X° where a and b are infinite
binary strings each with finitely many 1s, forms a basis for the x-algebra, and so every
element of the x-algebra is a finite linear combination of said operators.

It still remains to show that such a linear functional is positive, i.e. that it maps positive
elements of the x-algebra to positive real numbers. To ensure that our linear functional
is a state, we will scale every linear functional to be unital, so s(I) = 1. We also will
show that a positive, linear functional on the x-algebra can be extended to a positive linear
functional on the C*-completion of that x-algebra.
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Lemma 2.4.7. Let A be a C*-algebra, and V. C A be a subspace closed under the x
operation. Let s be a linear functional on V', then s is positive if and only if |s| = s(1).
Specifically when s is also unital, s is positive when |s| = 1.

Proof. The proof of this is adapted from a proof given in [13]

For the forward direction, let s be a positive linear functional, and A be an arbitrary
element in the C*-algebra. We can choose a complex unit scalar «, so that s(awA) > 0 is
real and positive.

Let H be the real part of @A, then we have ||H|| < ||A]|, and also H < ||H||I < ||A]|1.
Thus, s(||H||I — H) = ||Al||s(I) — s(H) > 0. Also, |s(A)| = s(aA).

Since s is positive, it is also Hermitian, so s(aA) = s(ad) = s(a*A*). So s(H) =
s(Re(aA)) = s((aA 4+ a*A*)/2). Combined with the fact that s(H) < ||H||s(I), we have
s(A)| < 1HIIs(T) < [|Alls(T). Which implies [ls] < s(D).

For the backwards direction, assume that |s| = s(I). Without loss of generality, we can
assume that s(I) = 1 by normalizing.

Suppose A is positive, and s(A) = a + bi. It suffices to show that a is positive, and
b=0.

The spectrum of A is real and positive, so if we fix a small positive number s, we
can make the spectrum of (I — sA) to be normalized, sp(I — sA) C [0,1], and so that
||l —sA|| < 1.

Since 1 > |s(I — sA)| = |1 — s(a+ bi)| > 1 — sa, and s is positive, this implies that a
must be positive.

Let B, be a family of operators with B,, = A—(a—inb)I. We have ||B,||> = || B} B,|| <
||A—al|l*+n?b?. On the other hand, |s(B,)|* = |s(A—al +inbl)|* = |bi+inb|* = b*(n*+
2n+1). Using the fact that |s(B,)[* = || B,||?, we have b?(n? +2n+1) < ||A —al||* +n?0?,
which is only possible if b = 0. m

This lemma is a very useful characterization of positive functionals, which will be used
in a few ways. From this lemma, each state lies on the surface of the unit ball of the
space of bounded linear functionals. The set of all states is also a convex set. One other
immediate consequence of the forward direction is the following lemma.

Lemma 2.4.8. Let s be a linear functional that is positive and unital on a x-algebra, then
s may be extended uniquely to its C*-completion.
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Proof. To show that s can be extended to the completion, we need to show that for every
Cauchy sequence (A4;), the sequence s(4;) is also Cauchy.

Let (A;) be a sequence in the x-algebra converging to A in the C*-completion of the
«-algebra (for us, the CAR algebra). Then for every A;, A; in the sequence, we have that
|s(A;) — s(A))] = |s(A; — A;)] < |A; — A;| by Lemma 2.4.7. For every ¢, there exists an N
such that for all i, 7 > N, we have |4; — A;| < ¢, and so we also have |s(4;) — s(4;)] < e.
Thus, the sequence (s(A;)) is Cauchy.

For every A in the completion of the *-algebra, we can choose a Cauchy sequence (4;)
with lim; ., A; = A, and define s(A) = lim;_,, s(4;). O

Using these lemmas, we can define a state by defining it on the Pauli basis, and then
use Lemma 2.4.7 to determine if it is positive, and use Lemma 2.4.8 to extend it to a state
on the entire CAR algebra. We will see some examples.

2.4.3 *-Automorphisms on the CAR Algebra

Once again, let P denote the set of infinite Pauli sequences, and CP denote the x-algebra
of finite linear combinations of P with complex coefficients. Recall also that CP is made
up of elements of the form of M ® I, where M is some finite square matrix which has
dimension power of 2. The completion of CP with respect to the norm |[M ® I| = |M|
gives the CAR algebra.

The following theorem gives an important fact about sx-automorphisms on CP and the

CAR algebra.

Theorem 2.4.9. Let ¢ : CP — CP be a x-automorphism. There exists a unique extension
o CAR — CAR, which is a x-automorphism.

Proof. We will show that the unique extension is the map ¢(A) = lim, ¢(a,), where
(an)nen € CP is a sequence in the x-algebra converging to A.

Claim 1: If ¢ is a x-automorphism, then ¢ is uniformly continuous.
Proof of claim 1. We will prove this claim in 2 parts. First, we show that since ¢ is a

s-automorphism, then |p(A)| < |A|. Suppose for some scalar A, A + A is invertible, then
let B be its inverse.
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(A4 ) = p(A) + Xp(I)
= p(A) + A\

We can then show that ¢(A) + A is invertible, where its inverse is ¢(B).

(0(A) + A)p(B) = (A + M)p(B) (2.9)
= o((A+ADB) (2.10)
= (1) (2.11)
_7 (2.12)

And respectively for the left inverse.

We have shown that if A+ XTI is invertible, then so is ¢(A)+AI. Conversely, if p(A)+ AT
is not invertible, then neither is A + AI, and so if A is in the spectrum of p(A), then it is

also in the spectrum of A. In other words, the spectrum of p(A) is a subset of the spectrum
of A, 50 |¢(A)] < |A.

Since ¢ is invertible, and its inverse is also a x-automorphism, then we can make the
same argument and show that |A| < |p(A)], so we have |p(A)| = |A|.

Let € be an arbitrary positive real number, and let A, B be arbitrary elements of CP
with |A — B| <e. Then |p(A) — ¢(B)| = |¢(A — B)| = |A — B| < €. Thus, there exists a
constant 0 = € such that for arbitrary A, B, whenever |¢(A) —p(B)| <€, then |A— B| < 4.
Thus, ¢(A) is uniformly continuous.

This concludes claim 1. O
Claim 2: ¢ is well defined.

Proof of claim 2. By the definition of the CAR algebra, every A € CAR, there is a Cauchy
sequence (a,)nen that converges to A and each A; is in CP.

Since ¢ is uniformly bounded, it can be shown that if (a,) is a Cauchy sequence, then
(p(ay)) is also a Cauchy sequence.

Let (A;)ien be a Cauchy sequence, we want to show that the sequence (¢(a;)) is also
Cauchy. We need to show that for every e, there exits some N such that for all n,m > N,
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we have |p(a,) — ¢(a,)| < e. However, we know that ¢ is uniformly continuous, so for
every e, there exists some 0 such that for any 4, j, whenever |a; — a;| < § we have that
lo(a;) — p(a;)| < € also. Since (a;) is Cauchy, given § (which was obtained for fix €), there
exists N such that for all 4,5 > N, we have |p(a;) — ¢(a;)| < 0, as required.

Thus, ¢(a,) is a Cauchy sequence, and @(A) = lim, ¢(a,) converges to an element in
the CAR algebra, so ¢ is well defined. m

Claim 3: ¢ is an extension, and ¢ is unique

Proof of claim 3. ¢ is an extension, because whenever a € CP, we can take the constant
sequence a,, = a, and clearly a, — a and ¢(a,) — p(A).

Whenever X C Y is a dense subset, the extension of a linear map from X to ) is
unique. ]

Claim 4: ¢ is a x-automorphism
Proof of claim 4. A x-automorphism has the following properties. Let A, B € CAR, A € C
L (A7) = o(A)”
2. @(MA+ MB) = M P(A) + \ap(B)
3. ¢(AB) = ¢(A)@(B)
4. ¢ is bijective

For the first condition, using the fact that a) — A* if a,, = A,

P(A") = lim p(ay,)
= lim g (ay)"
= (limp(a,))*
= @(A)
By linearity and multiplicativity of limits, the second and third condition is met.

Finally, ¢ is bijective, since we can define a unique inverse ¢~ (A) = lim,, ¢~ *(a,,)

This proves that ¢ is a x-automorphism. O

25



This ends the proof. m

Using the above theorem, it is sufficient to define the action of maps on Pauli elements,
and extend linearly to the x-algebra. If the map is a automorphism on the x-algebra, then
it is uniquely extendable to the CAR algebra. This will is particularly useful when defining
stabilizers, since the majority of operations will happen on Pauli group elements.

2.4.4 Hyperfinite Property of the CAR Algebra

Recall from earlier that every finite algebra is of the form of a direct sum of full matrix
algebras.

Let A; be a family of finite dimensional C*-algebras where each A; = M,,,(C), a complex
matrix algebra, and the family is connected via inclusions, that is A; C A;;. The union
of the the family of C*-algebras is a C*-algebra itself, upon taking the completion.

Definition 2.4.10. If a C*-algebra A is unital and there exists a chain of unital C*-algebras
Ao, A1, ... satisfying

1. AyCA C---CA
2. each Ay, is isomorphic to M, (C) for some integer ny,

8. A=UenAi
then A is a uniformly hyperfinite algebra (UHF')

Specifically, by the construction of the CAR algebra in Section 2.4.1, one can see that
the CAR algebra contains the matrix algebras Ms(C), M,(C), and every M, (C) where n
is a power of 2. Thus, the CAR algebra is a UHF algebra, and is commonly seen as the
prototypical UHF algebra.

It is only a slight abuse of notation to view the CAR algebra as M, the matrix algebra
of infinite tensor products of Ms(C).

Due to a line of work culminating in [2], UHFs are described as a special case of the
more general class of nuclear C*-algebras. Being a UHF algebra, the CAR algebra in
particular is nuclear, so we can take tensor products of the CAR algebra with any other
C*-algebra B, and referring to the completion of CAR®B is unambiguous.
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Since the CAR algebra is UHF, we also have CAR = CAR ®M,,(C) for any n which is
a power of 2. Moreover, we have that CAR ® CAR = CAR. The easiest way to see this
isomorphism is that the CAR algebra, being UHF, is a direct limit of matrix algebras M,
where n is a power of 2. Each matrix algebra M,, is a tensor product of logn tensor factors
of M,. We can instead associate the first log n tensor factors with the algebra M,,, and the
first factor of the CAR algebra with the (logn) + 1 tensor factor in the chain.

Similarly the algebra CAR ® CAR can be viewed as associating the even position tensor
factors with the first copy of the CAR algebra, and the odd with the second. Together
forming a single copy of the CAR algebra once again.
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Chapter 3

Stabilizer States

3.1 Review of the Stabilizer Formalism

In the conventional model, stabilizer states[9] are a class of states which are important in
the theory of error correcting codes, and by the Gottesman-Knill theorem, is important to
the study of classical simulation of quantum computing. We will study in this chapter an
extension of conventional stabilizer groups into the CAR algebra.

Definition 3.1.1. (Stabilizer Groups) The stabilizer group is a commuting subgroup of the
Pauli group not containing —1I.

The stabilizer group G “stabilizes” a particular state [¢) if for every M € G we have
M) = |1). This leads to the following definition.

Definition 3.1.2. (Stabilizer States) A stabilizer state is a state |1) for which there exists
a stabilizer group G such that for all M € G, M|¢) = [¢)).
For every such G, |1) is said to be stabilized by G

Next, we will define what is called the Clifford group. To do so, consider the Pauli
group on n qubits, we denote this group P,,.

The Clifford group of P, can be defined in a few ways. Often, the Clifford group CL,
is defined to be the unitary normalizer of P,, i.e. viewing the Pauli group as a subset of
2™ x 2™ matrices, the Clifford group are the 2™ x 2™ unitary matrices that map Pauli group
elements to other Pauli group elements.
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CL, = {u € Up|uP,u* = P,}

However, the Clifford group as defined is too large. For one, the center of this group
are the elements of the form U(1) - I, which is mathematically uninteresting because U(1)
represents a phase in the operators that always cancels out. Moreover, defining the Clifford
group in this way gives an infinite group since U(1) is already infinite.

A common resolution is to factor out the unphysical phase, and define the quotient
group CL, /U(1). This group is equivalent to the group generated by the operators H,S
and CNOT, which are called the Clifford gates. From here on, we amend the definition of
the Clifford group so that CL,, refers to the group with finite center.

Definition 3.1.3. (The Clifford Group) The Clifford group, denoted CL,, is the quotient
group {u € Ugn|uP,u* = P,}/U(1), or equivalently, the group generated by the gates H, S
and CNOT on n qubits.

The Clifford Gates are these particular generators of the Clifford group. A Clifford
Circuit is a circuit consisting of only clifford gates, aka an element of the Clifford Group.

Defined by its generators, it is clear that the group is finite, since the gates all square to
the identity. With these definitions, we can give an alternate characterization of stabilizer
states, starting with the following lemma.

Lemma 3.1.4. Clifford circuits map commuting Paulis to commuting Paulis.

Proof. Let A and B be tensor products of Paulis, and [A, B] = 0, and let C' € CL,, be a
Clifford circuit. Then

[CAC*, CBC"] = CAC*CBC* — CBC*CAC” (3.1)
— CABC* — CBAC” (3.2)

— C|[A, BC” (3.3)

=0 (3.4)

]

If G is an abelian subgroup of the Pauli group (for example, a stabilizer group), then
the action of a Clifford circuit C' is that the group CGC™ is also a stabilizer group. Suppose
that |¢) is a stabilizer state, we claim that C|¢) is a stabilizer state, and if G stabilizes
|1}, then CGC™* stabilizes C|v).
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Lemma 3.1.5. Let |[¢) be a stabilizer state and G be a group that stabilizes it, and let
C € CL, be a Clifford circuit. Then CGC* is the stabilizer subgroup of C|1).

Proof. From the above lemma, we know that the group CGC™ is in the Pauli group, and
it is abelian. It remains to show that for every M € G, CMC* has a +1 eigenvalue which

is [1).

Let [¢) = Cly).
CMC* 'y = CMC*C|) (3.5)
— CM|y) (3.6)
= Cly) (3.7)
= |¢) (3.8)
As required. O]

As a consequence of this lemma, we have a second, equivalent definition of stabilizer.
Every state in Definition 3.1.2 can be obtained by applying a Clifford circuit to the state
|0Y®™ and every Clifford circuit applied to the all 0 state has a stabilizer group obtained
by conjugating the stabilizer group with the Clifford circuit.

So far, we have defined the states which have stabilizers, and the stabilizer group itself.
We have not yet addressed the uniqueness of stabilizer groups. In the terms we have defined
so far, if G is a group that stabilizes [¢), then clearly any subgroup of G stabilizes |¢)).
On the other hand, if |¢) is stabilized by G;, and |¢) is stabilized by G, then both states
are simultaneously stabilized by G; N Gs. In other words, it is not generally the case that
a state [¢) is stabilized by a unique subgroup G, and it is also not the case that G only
stabilizes one state. Still, we are interested in the case when this is true.

Definition 3.1.6. Let |¢) be a stabilizer state, and G be a stabilizer for [1). G is called
maximal if every stabilizer of 1) is a subset of G.

Theorem 3.1.7. The maximal stabilizer of a stabilizer state is unique.

Proof. Suppose for contradiction that G; and Gy are both maximal stabilizers of [¢). Since
they are maximal, they are not subsets of each other, so there exists M; € Gy and M; ¢ Gs.
But for every My € G, we have My Ms|y) = MsMi|Y) = [¢), so My commutes with
everything in Go, so G, cannot be maximal. n
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Theorem 3.1.8. If G is maximal, then the state that it stabilizes is unique.

Finally, a common way of analyzing stabilizers is to encode them into binary form. The
elements of the Pauli group can be uniquely decomposed into a pair of Pauli matrices with
only X factors and another Z factors, since X - Z =Y, up to a phase. We can encode any
n-qubit Pauli into 2 n-bit strings and one coefficient for the phase, which is one of +1, 4.

For example, consider the following generators on 4 qubits (omitting the ® symbol).

X I
I X
I 1
I 1

N
N~

These can be encoded into the matrices

1 000 0000
0100 0000
X = 001 1| Z= 0000
0000 0011

The above encoding does not take into account the phases associated with each opera-
tor.

Since the stabilizer is a subgroup of a finite group, it must be finite, and so it must be
generated by a finite number of Pauli elements. An entire stabilizer can be encoded via
its generators, which can themselves be put into binary form. We can describe a stabilizer
using a pair of matrices (X, Z) where each row is a pair of binary strings (s,,s,) which
encodes two Pauli operators.

Furthermore, the elementwise addition of the vectors corresponds to group multiplica-
tion of Pauli group elements. The rows which are vectors in a binary linear space F2,
and the vector space structure encodes the group structure of the stabilizer. Specifically,
if we have a group G with n generators encoded into vectors, then a Pauli operator M is
in the group G if it is in the linear span of the binary representation of the generators.
The binary vector encoding of the generators forms a basis for the binary vectors of all
the group elements. This allows us to show some properties of stabilizers is given in the
following lemmas.
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Lemma 3.1.9. If A = (s,,s,) and B = (s,,,s,) are pairs of bit strings that represent two
Pauli operators, then A and B commute if and only if s, - s, + s, - s, = 0, where u - v is

the dot product in the space FY.

Lemma 3.1.10. In finite dimensions, a stabilizer group on n qubits is not extendable if it
has n independent generators.

In other words, the pair of matrices representing a stabilizer are both square. When
the stabilizer is not extendable, the state that exists as the joint 41 eigenvector of every
Pauli in the stabilizer is unique.

When we extend this logic to infinite stabilizers, we aim to show that some infinite
analogue of the pair of matrices (X, Z) encodes an infinite stabilizer, which defines a
particular state on the CAR algebra. In order for each row of the matrices to encode one
Pauli operator in the CAR algebra, we allow the binary strings that forms each row to be
infinite so that we have infinite width matrices X = z;;.

3.2 Stabilizer States in the CAR algebra

In this section, we aim to bring the stabilizer formalism to the CAR algebra, and establish
stabilizer states on infinitely many qubits.

First, we need to translate the components of the stabilizer formalism to the language
of the CAR algebra. To do so, we have to make a few adjustments. The group structure
of the stabilizer is simple to define in the CAR algebra. All the Pauli elements M can be
mapped to an operator of the form M ® I. In fact, through the map M — M ® I, every
n-qubit Pauli group is embeddable into the CAR algebra, so any stabilizer group can be
embedded into the CAR algebra.

In the CAR algebra formalism, the definition of a stabilizer remains the same, a stabi-
lizer on the CAR algebra is a subgroup of the infinite Pauli group. This definition is not
novel, see [8] for example.

Still there are a few caveats. A stabilizer with finitely many generators is always
extendable in the CAR algebra. The intuition is, to stabilize a unique state in conventional
model, the stabilizer group is generated by n Paulis. In the infinite case, you cannot
stabilize a unique state with finitely many generators.

Lemma 3.2.1. A stabilizer group in the CAR algebra is extendable if it contains finitely
many generators
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Proof. Using the matrix form to encode the generators, we obtain the tuple of matrices
(X, Z) which have n rows and infinitely many columns. Since each row has finitely many
1’s, we can choose some integer k which is the position of the last 1 in all the rows. A
Pauli element which is padded with &£ 0’s on both sides will be linearly independent and
commuting with all other generators. O

This implies that even though stabilizers on n qubits for any n has an analogue in the
CAR algebra, these are not all the stabilizer states possible. This is a direct consequence
of the fact that a maximal stabilizer exists in the CAR algebra, given by the following
generators.

~ o~ N
~ N~
N~ o~
~ o~

These generate X where a is any finite weight binary string. The stabilizer above
stabilizes the state |0)®>°.

In addition, even with infinitely many generators, there is still a distinction between
maximal infinitely generated stabilizers and extendable infinitely generated stabilizers. A
simple way to see this is to take any maximal stabilizer and remove any subset of the
generators. The result is no longer maximal, but you may still be left with an infinite
number of generators.

Even if we are given a maximal stabilizer on the CAR algebra, we still have the issue
of defining the stabilizer state. The algebra elements themselves are not operators acting
on a Hilbert space, and do not have eigenvalues, so while the stabilizer is well defined, so
the definition of a stabilizer state cannot be directly extended to the CAR algebra. What
is much more interesting than the stabilizer group itself is to consider the class of CAR
algebra states which are stabilizer states.

Theorem 3.2.2. Given a stabilizer group G, define the following functional s.

1. If P is an element of the Pauli group, and P € G, then s(P) = 1.
2. If P is an element of the Pauli group and —P € G, then s(P) = —1.

3. For all other Pauli group elements, s(P) =0
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Extend to the entire CAR algebra linearly.
Then s is a state on the CAR algebra.

Proof. Since the Pauli group elements form a basis for the x-algebra, the above defines a
functional from the *-algebra to the complex numbers. We will argue first that s is a state
on the x-algebra in the sense of Definition 2.4.6, and then argue that its extension to the
C*-completion is also a state using Lemma 2.4.8.

Claim 1: s defined on the *x-algebra is a state.

Proof of claim 1. Note that s is unital by definition, since I is always in the stabilizer, and
s(I) = 1. Also by definition, s is linear. It remains to show that s is positive.

Lemma 2.4.7 states that s, defined on the x-algebra, is a state if and only if we have
|s| = s(I). Since s is unital, it suffices to show that |s| = 1.

The norm [s| is given by

|s| = sup{|s(H)| : ||H|| =1, is Hermitian }.

Where H is a Hermitian element of the x-algebra. We already have that |s(I)| = 1, so the
norm is at least 1. We only need to show that |s| < 1, we will prove that |s(H)|/||H|| < 1.
Since |s(H)| = | , cis(P;)| and |s(F;)| < 1, we have |s(H)| <[>, ¢|. It then suffices to
show that ||H|| > |, cil.

We can decompose H into a finite linear combination of Paulis, H = ), ¢; P, where
each ¢; is a real number since H is Hermitian. Since s is linear, we can equivalently take
the supremum over all non-zero H, and divide |s(H)| by the norm of H and maximize
the value |s(H)|/||H|| instead. Note that, we can assume that in the linear combination,
whenever s(P;) = 0, then ¢; = 0. By removing these terms, |s(H)| does not change but
||H|| decreases, so this only increases |s(H)|/||H|| and we take the supremum.

Therefore, without loss of generality, H is a linear combination of commuting Pauli
operators. Next, we prove that whenever the P,’s pairwise commute, then the norm

122 cBill = 11225 aill-

Every F; must be of the form p; ® I where p; € P, is a finite Pauli operator for some
n. Moreover, ||Pi|| = ||p; ® I|| = ||pi]|, for the purposes of computing ||H|| we can treat
H as a linear combination of Paulis on finitely many qubits. We can compute ||H|| by
computing the operator norm of a finite matrix.
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From the finite theory of stabilizers, the operators generate a stabilizer on n qubits, and
there exists a state |¢) which is the joint 41 eigenvector of every p;, satisfying p;|¢) = [¢).
Therefore, >, ¢;p; has an eigenvector |¢)) with eigenvalue ) . ¢;. This proves that ||H|| >
|22 el = 1225 cil-

Combined with the above fact that |s(H)| < | ", ¢;| for all H, we have that [s(H)|/||H|| <
1, where equality is attained when H = 1, for example.

This proves that |s| = 1, and with the fact that s is linear and unital, proves that s is
a state on the x-algebra.

O
Claim 2: The extension of 2 onto the CAR algebra is a state

Proof of claim 2. Lemma 2.4.8 gives us that s has a unique extension § to the CAR alge-
bra, given by §(A) = lim,,_, s(a,), where a, is some Cauchy sequence in the x-algebra
converging to A.

By definition s remains linear. Note that the sequence (s(ay))nen is Cauchy, so a
Cauchy sequence of non-negative real numbers cannot converge to a negative number, so
whenever A is positive, 5(A) is a positive real number. Finally, §(I) = 1, since § agrees
with s(I) for elements in the x-algebra. O

Thus, s is a state on the CAR algebra. [

Definition 3.2.3. A computational basis state is a state corresponding to the infinite bit
string b, and represents the state |b[1])|b[2]) ..., where b[i| is the i-th bit of b. The state s,
is defined to be the state where sy(Z;) = (—1)", and s,(X;) = 0 for all i, extended linearly.

In addition, we can define states in the X basis (|+),|—) basis) in a similar way.

3.3 Mixed States

In the previous section, we showed that stabilizers give well defined states on the CAR
algebra. In the conventional model we have states that exist on compound registers which
are composed of multiple registers. It is sometimes necessary to consider what the state
on one of those registers would be. In the conventional model, it is done using the partial
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trace. In this section, we will develop a framework for studying the partial trace in the
CAR algebra.

In the conventional model, extendable stabilizer groups show up in areas such as error
correction, where we are interested in stabilizing a subspace of the set of states, rather than
one unique state. An extendable stabilizer group can be used instead to encode a mixture
of multiple states.

From the definition of stabilizer state, we have for a Pauli operator P,

s(P)=1 :Peg
s=<¢s(P)=—-1 :—P€g
s(P)=0 :P¢g

This definition has an operational meaning as well.

We will give an example in the finite dimensional case. Suppose we have a stabilizer
group that is extendable G, and let G be generated by X X only. We can find all the pure
states that are stabilized by X X, by imagining all the possible ways to extend G to a
maximal stabilizer. After enumerating the finitely many extensions of G, one can see that
+ X1 and £77 generates the 4 unique states which has X X as one of its stabilizers.

If we choose X, then the state is |+)|+), and if the generator is —X [ the state is
|=)|=). If we choose ZZ, then the state is (|00) + |11))/v/2, and we get (]01) + |10))/v/2
if the generator is —Z 7.

The definition tells us that s(£X1I) = s(+ZZ) = 0, but we can obtain an intuitive
meaning from this. Suppose we choose an extension, say XI. It remains to decide what
the sign of XTI would be, either +1 or —1. Once we choose, the state becomes a pure
state, and we should have s(X1T1) = 1, or —1. However, we can also take the probabilistic
ensemble of the two, with probability 1/2 assign +1 sign, and —1 otherwise.

If we assigned a +, we can call the state s,, and s_ otherwise. With this definition,
the overall state is s = %SJF + %3_, since the value of the state should be like the expected
outcome. This gives us s(XI) = s (XI)+ s_(XI) = 1+ (—1) = 0, and s(—XI) =
s (=XI)+ s (=XI) = =14+ 1 = 0 as required. In addition, we also have s(ZZ2) =
s(—ZZ) = 0, since they are in neither the stabilizer group nor the extended stabilizer.

In finite dimensions, this analogy makes sense, since the state is just the expectation
value of measuring an observable, we can take the mixture of |+)|+) and |-)|—) and
compute the expectation values. The mixed state is s(A) = tr pA, where we can choose
p=s5(4++){++]) +3(——)(——1). Suppose we measure s(XT), the first term gives us
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1/2, but the second terms us —1/2, so this is as expected. If we instead measure s(Z72),
both terms give us 0.

It should be noted that for any extension M of G, we can define p as p = py + p_,
where p, is the state stabilized by G U M, and p_ is the state stabilized by G U —. In the
above example, we defined p by choosing M = X1, but p could equivalently be defined as
p = 1(/00) +]11))({00] + (11]) + $(|00) — [11))((00] — (11]). Expanding, we see that this is
equivalent to the definition above.

Moreover, this analogy can be generalized to mixtures of more than 2 states. Suppose
we need n extensions to make G maximal. We can choose any extension with n new
generators, and randomly assign signs + or — to each one with probability 1/2 each.

We can also extend this analogy to the CAR algebra. If there are only a finite number
n of generators required to make the stabilizer maximal, then we simply randomly assign
a sign to each, and s is an equal mixture of all the 2™ possible resulting states. However, in
the CAR algebra, we have the possibility of more exotic mixtures. For example, it could
happen that we can add infinitely many operators to extend G. Suppose the generators
are

Z I I I I I I I..
I 1 7z I I I I I..
I 11 I zZ I 1 1I..
I 11 1 I I Z I..

Here, every even position is left open. We can extend this in a simple way, for example,
with generators

~ o~~~
~ o~~~ N
~ o~~~
~ o~ N~
~ o~~~
~ N~ T~
~ o~~~
N

However, there are now infinitely many ways to choose the sign for each new generator.
We now have a uniform probability density of states.

Another example is when we have no generators at all. If G is the trivial group, then
s(P) = 0 except s(I) = 1, which amounts to the maximally mixed state. To see that, note
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that each Z; is a possible extension to G, and they all pairwise commute. Taking Z; for all
1 € N as the extensions, and randomly assigning the sign, we essentially randomly fix the
bit ¢ in each position, so s is the equal mixture over all infinite bit strings.

3.4 Partial Trace

If we are allowed mixed states, we can begin to define a partial trace.

Definition 3.4.1. Given a stabilizer G and index set F C N. Let G' be the set of all
elements of S which are identity on all positions in . We then trim the elements of G,
by taking each element and removing the factors of identity on the positions in F.

The partial trace of the stabilizer state is defined as trz(s) = s', where s’ is the state of

g

Suppose we have the state |0)®>° which has generators

z I I I I I 11
[z I I I I I 1
[ I Z I I I 11
[ I I zZz I I 11
I 1 1 I Z I 11

If we trace out every even position, we need to first find the subgroup of the stabilizer
group which has identity as all the tensor factors on the positions we want to trace out.
Clearly, the elements in the group which are identity in the even positions are reachable
by products of the above generators with Z’s in only odd positions. The remaining group
is generated by

~ o~ ~ N
~ N~
~ o~ N~
~~ N~
~ N~~~
~ O~~~
N~~~
~ O~~~

However, after trimming all the even positions (which contain identity only), we obtain
once again.
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z I 1 I I I 11
Iz I I I I I 1
I I Z I I I I 1
[ 1 1 zZz I I 11
[ I 1 I Z I 11

Which is a pure state, and is the state |0)®>° which is what we expect.

Note that in general, G’ is not going to be maximal, even if we disregard the positions
of the index set. Not all states will be in a product state with respect to our partition. For
example, consider (]00) + [11))/v/2® [0)#>, and trace out the second qubit. The stabilizer
of this state can be defined by the generators

~ T~ o~ N

X
A
1
I
1

~ o~ N~ T~

I
I
I
A
I

N~~~ ~
~N NN~
~ON NN~
~ON NN~

The group of elements which are identity in the second position is generated by all the
above generators, except the first two. The resulting group after trimming is generated by

I 7 I I I I 11
I 1 zZ I I I I 1
I 1 I Z I I I 1
I 1 1 1 zZz I 11

This state is now mixed, and can be extended, for example by =211 .... So the result
is a maximally mixed state in the first positions, and |0) in all other positions.

We can also take the partial traces where we trace out infinitely many positions. For
example, consider a similar example where the state is an infinite tensor product of Bell
pairs. Its generators can be the following:
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~ o~ o~ Ny
~ o~ o~ Ny X
~ N <~ o~
~ N <~ o~
N P~~~
N <~~~
~ O~~~
~ O~~~

If one traces out every even position, you would obtain a maximally mixed state.

3.5 Operations on Stabilizer States

In the CAR algebra model, we are allowed to perform operations on states to transform
them and use them for computation. In Section 3.1, we introduced Clifford gates, which
are a set of quantum gates in the conventional gate model that transforms stabilizer states
to other stabilizer states. We will define Clifford operations in the CAR algebra model.

In the CAR algebra model, allowable operations are x-automorphisms. If ¢ is a *-
automorphism on the CAR algebra, then it transforms a state s(A) into s(p(A)). Following
the spirit of the Clifford operations in the conventional model, we are interested in -
automorphisms ¢ where s(p(A)) is a stabilizer state whenever s(A) is a stabilizer state.

Specifically, ¢ applied to a Pauli group element should map it to another Pauli element.

Definition 3.5.1. Let P denote the Pauli group of the CAR algebra. A x-automorphism
¢ : CAR — CAR with the property o(P) = P is a Clifford map.

A remark is that given a group automorphism on the Pauli group, we can extend
linearly to the x-algebra, and consequently we can give an extension into the CAR algebra
through Theorem 2.4.9. A Clifford operation can be then defined as a *-automorphism on
the Pauli group. Similarly, the restriction of a Clifford operation to the Pauli group is a
x-automorphism.

Similar to the finite dimensional case in the conventional model, a Clifford opera-
tion ¢ maps commuting elements to commuting elements. This fact is true for all *-
automorphisms, not just Clifford.

Lemma 3.5.2. Let ¢ : CAR — CAR be a *-automorphism, and A, B € P with [A, B] =0,
then [p(A), p(B)] =0
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Proof.

[p(A), p(B)] = ¢(A)p(B) — ¢(B)p(A) (3.9)
— o(AB — BA) (3.10)
= ¢([4, B)) (3.11)
= ¢(0) (3.12)
— 0. (3.13)

If we have a stabilizer group G, then a Clifford operation ¢ maps ¢(G) to a commuting
subgroup of the Pauli group.

Every finite Clifford group CL,, can be embedded into the CAR algebra as a x-automorphism,
specically an inner automorphism. Each element of CL,, for every n is a subset of the fi-
nite matrix algebra Ms»(C), which are all in the CAR algebra through the inclusion map
M € My (C) = M ® I. The elements C' € CL, for all integers n forms a simple class of
Clifford operations on stabilizers. Each element C' is unitary, so the map p(A) = CAC* is
an inner automorphism on the CAR algebra.

These inner automorphisms form the basic building blocks of Clifford circuits.

In the CAR algebra, we can have outer automorphisms which are automorphisms that
are not conjugation by a unitary from the CAR algebra. Clifford automorphisms can be
outer automorphisms as well. For example, the map that takes an element X* which is a
tensor product of X’s and I’s only, and maps it to Z® which is a tensor product with Z’s
to the same position cannot be inner. To see why this is the case, consider the following
operators.

X I I I 1111
X X I I 1111
X X X 11111

We can map each of the elements in the sequence to Z’s by conjugatingby HQ HRQH ®. . ..
However this is not an element of the CAR algebra, so there is no inner automorphism
that maps each of these elements to the following.
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Z I I 11111
I Zz I I 1111
I 1 7 1 1111

This automorphism turns out to still be a valid *-automorphism (see Chapter 5), but not
an inner automorphism.

Aside from Clifford operations, we are also allowed to measure the value of any of the
positions. Measurements can be done in the framework of PVMs from Definition 2.1.10,
where the only allowable projectors are operators from the Pauli group.

Definition 3.5.3. Given a stabilizer state with stabilizer G and a Pauli element M, the
outcome of measuring M 1is the following:

o [f M € G, then the result is deterministically +1, or —1 of —M € G

e Otherwise, the outcome is random with equal probability.

After the measurement, we modify the stabilizer group G to a new stabilizer G' reprenting
the remaining state after the measurement. If the outcome of the measurement is +1, we
remove every element in G that does not commute with M (if any), and add M to the set
of generators of G'. Respectively, we add —M if the outcome was —1.
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Chapter 4

States and Graph States

In this section, we will dicuss a few frameworks in the C* circuit model that will allow us
to perform computations.

4.1 Inner Automorphisms

Recall that x-automorphisms may be categorized as inner and outer. An inner automor-
phism is a map ¢ of the form ¢(A) = UAU*, where U is a unitary element of the CAR
algebra. Immediately, this gives us some useful gates to use by creating a unitary map oy
for any unitary element of the CAR algebra.

The CAR algebra includes elements of the form of tensor products of Pauli matrices
and identity maps. For example, X; denotes i — 1 copies of identity, tensor a single Pauli
X operation.

X=IeI®le.. 0XeI®l®...

i—1 times

Similarly, we define Z; and Y; in the same way. More generally, if s is a infinite binary
string with finitely many 1s, and M is a 2 x 2 matrix then M?® denotes a tensor product
of the form

® M
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Where s[i] is the i-th bit of the string.

We can also make other operations acting on single positions, such as Hadamard opera-
tions. The Hadamard operator is a unitary element in the CAR algebra and is constructed
as a linear combination \%(XZ + Z;). Other gates from the conventional model, such as
the phase gate, T gate, can be replicated in the CAR algebra as inner automorphisms by
making them from linear combinations of the Paulis.

In fact, since the x-algebra generated by n-fold tensor products of Pauli matrices gener-
ates the full matrix algebra Masn, we every n-qubit unitary gate from the conventional model
can be constructed from finite linear combinations of CAR algebra elements. Moreover,
all of these are inner automorphisms.

Through linear combinations, we can show that matrix elements are in the CAR algebra
as well. We can the CNOT gate by building the unitary operator using matrix elements
on 2 positions.

Let EZ(;L) denote a 2 x 2 matrix entry on the n-th position, with ij ranging between 1

and 2. For example, on any position i, (I + Z;)/2 = Eﬁ), and (I — Z;)/2 = Eé;) We can
construct the CNOT gate by taking linear combinations of the form

FQE + AR + R + rEY

Since these above gates form a universal gate set [15], we can perform universal quantum
computation with this model with inner automorphisms alone.

4.2 Outer Automorphisms

An Outer Automorphism is one that cannot be made into the form of p(A) = UAU*,
but is still an automorphism nonetheless. A basic example of such an automorphism is
one where ¢(A) = ¢?A. This example is not very interesting, since it is not physically
significant to consider the global phase. Another example is the following.

Consider the family of automorphisms on the CAR algebra, ¢p,(A) = H;AH,. Each of
these are an inner automorphism. Suppose instead, we iteratively apply maps in a chain

YRt Ny i O Wil O i

Clearly, the map that takes A to A, for each finite n is a valid inner automorphism
because any composition of finitely many automorphisms is itself an automorphism. We
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can show this to be inner by constructing the unitary element that gives the inner auto-
morphism, which is U, = HiHsHs ... H,. For all elements A of the CAR algebra, the map
A — A, can be implemented by U, AU,

However, it is clear that [ [~ H; is not an element of the CAR algebra since lim,,_, [[\—, H;
does not converge in the CAR algebra norm. It is also not immediately obvious that the re-
sult of applying H to every position, lim,,_,,, A,, is well defined. But in fact, any sequence
of single qubit operations applied to the positions is a *-automorphism.

To show it, we use the fact that x-automorphism on CP extends to a x-automorphism
on the CAR algebra.

Theorem 4.2.1. Let (M;) be a sequence of 2 x 2 unitary operators acting on the i-th
position. The sequence of maps

AT A T8 A, A T
1 2 3 o ..
converges for every element in the CAR algebra.

Proof. 1t suffices to show that it converges for every element in the x-algebra CP, then
using Theorem 2.4.9, extend the map to the entire CAR algebra.

Note that every element in the *-algebra is of the form M ® I, where M is a finite
dimensional matrix. There exist some positive integer £ where the element is only “active”
on the first k positions. Thus, for some k, every map M; with ¢ > k has no effect on the
input state and acts as the identity map.

For a fixed element in the x-algebra, the sequence of the maps converges to applying
only the first k elements.

This map is linear and multiplicative, since for A and B in the %-algebra, we can find
the max of the dimensions of the non-trivial part. We can then truncate the sequence to a
finite sequence of x-automorphisms, which has the linearity and multiplicative properties
we want. 0

We refer to these maps as a “layer” of single qubit maps, since all of these maps can
be applied in parallel to each other.

Definition 4.2.2. (Locality of Automorphisms) An inner x-automorphism ¢ is called local
if there exists a set C' C N such that for all i ¢ C, o(M;) = M; for all 2 X 2 matrices M.
If |C| =1, then ¢ is also called single-qubit or qubit-local.

45



If vy is local to C', and @y is local to C" with C N C" = () then p1 and @y are sometimes
called disjoint *-automorphisms.

It is not actually important that each map in the chain is a single qubit operation. All
we really require is that the operation is inner, and also that the position(s) it acts on is
disjoint from all the positions of the previous maps.

Corollary 4.2.3. Let p; be a family of inner x-automorphisms which are all local to a
finite set of positions that are pairwise disjoint, then the chain

AN A B A B Ay B L
Is a x-automorphism.

Proof. This follows the same argument as the proof of Theorem 4.2.1.

Given a *-algebra element M ® I, where M has dimension 2¥, we can find the last
element in the chain which is not disjoint from all positions 1...k% and truncate the chain
there. Such an element must exist, because since all the maps are pairwise disjoint, there
are only finitely many maps which are not also disjoint with the k positions. O]

Schematically, this corresponds to taking a series of unitary operations affecting groups
of qubits, where each group is disjoint from one another. For every element in the -
algebra, its active area only interacts with a finite number of maps in the chain, therefore
the entire chain of map is well defined for every element in the x-algebra. As a circuit,
the following chain of inner automorphisms (represented by their unitaries) forms an outer
automorphism.

- U

- U,

— Us -
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These can be done in one “layer” in a single step. One particular type of layer of this
form is the qubit-local Clifford operation.

Definition 4.2.4. (Qubit-Local Cliffords) A qubit-local Clifford operation is an operation
where a single-qubit Clifford gate is applied to each qubit

Pictorially, this amounts to something like

b944

Another example of a x-automorphism is given by a special case of operations where
the unitaries in the chain are not pairwise disjoint, but all commute. In this case the result
is also a x-automorphism.

Lemma 4.2.5. Let p; be a family of inner x-automorphisms which are all local to a finite
set of positions and the operations pairwise commute, then the chain

A AL 2 Ay By A 2

is a x-automorphism as long as each position i is acted on by a finite number of maps
wn the chain.

Proof. First as an illustrative example, consider the case of two commuting operations (g
and ;. Suppose that for a fixed *-algebra element M ® I, ¢, acts on the active region
of M, but ¢, does not. The result is that ¢y can increase the size of the active region, in
which case ¢; may end up acting on a part that is now no longer identity.

However, since ¢; and ¢y commute, we can apply ¢; first, obtaining M ® I again,
then apply ¢g. The conclusion is that we can still truncate the chain, by applying the
non-interacting operations first.

Suppose now we have a sequence of maps ;. Since M is active on a finite region, we
only need to apply the maps that intersect this position. That number is finite in the
chain, since each position only intersects a finite number of maps in the chain, and there
are finitely many positions. Thus the x-automorphism is well defined on the *-algebra. [
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Consider the map given by the circuit

D
A\

[
A\

a
D
—

Clearly, this map is not allowed since the unitaries are not disjoint, and also are not
pairwise commuting. However, the map given by the same circuit where the CNOT gates
are replaced by controlled-Zs

—h

Is in fact a valid infinite circuit, by lemma 4.2.5. The map is also equivalent to

T

Which is simply a composition of 2 outer *-automorphisms.
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4.3 Graph States on the CAR Algebra

Definition 4.3.1. Given an undirected graph G(V, E) with no self-loops or duplicate loops,
a graph state is the state produced by applying a Hadamard on every qubit of |0)®V], and
then applying a controlled-Z gate according to the edges of the graph. Specifically, for every
edge (1,7) € E, we apply C-Z;;.

Note that the C-Z gate is symmetric in that the action of gate is the same regardless
of which one is the control and which position is the target. Thus, the graph should be
undirected. Each C-Z commutes with the C-Z gate on any position, so there is no necessary
ordering of the edges, and the graph itself encodes all necessary information of the graph
state. The pair of edges (4, 7) and (j,4) are considered duplicates. Unless noted, graphs in
this section will be undirected with no self-loops or duplicate edges.

The notion of graph states can be replicated with states on the CAR algebra in a
straightforward way. If the graph G is finite, and the state associated with G is denoted
|G), then there is a corresponding state in the CAR algebra. Let sy denote the analogue
of the all |0) state. Then for every finite graph, the graph state |G), |G) ® [0)®> is in the
CAR algebra.

Lemma 4.3.2. Given an undirected graph G(V, E) with |V| < oo, then |G) ® |0)®> is in
the CAR algebra.

Proof. Let |0)®> be the state corresponding to [000. .. ). Note that [0)®> = [0)®VI®]|0)®>.
The Hadamard layer HiH, ... Hy| and the C-Z layer are valid x-automorphisms on the
CAR algebra as finite sequences of inner automorphisms, therefore we can apply these
operations to [0)®> and obtain |G) ® |0)®> O

Graph states with finite graphs are interesting for many reasons, but can be imple-
mented nicely on a conventional circuit model. The purpose of using a CAR algebra model
is to consider more interesting graph states. One natural way to extend the notion of graph
states is to consider infinite graphs.

Definition 4.3.3. (Locally Finite Graphs) Let V' be an countable index set (typically N),
and E be a subset of V- x V. The graph G(V, E) is called locally finite if for every i € V,
the deg(i) is finite.

It can be shown that for any locally finite graphs G, a corresponding state exists on
the CAR algebra.
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Definition 4.3.4. Given an infinite, locally finite graph G, the state |G) is the state
constructed by applying a layer of H gates, followed by a controlled-Z layer where c-Z;; is
applied for every edge (i, 7)

This is well defined, since each position only has a finite number of controlled-Z gates
incident upon it, so the layer is a valid *x-automorphism via Lemma 4.2.5,

The above definition would no longer hold for infinite graphs if we allowed vertices
to have infinitely many neighbours, since we may need to apply an infinite sequence of
automorphisms where the limit may not be well defined for all inputs. Within the proof of
the Lemma 4.2.5, the fact that the ¢-Z gate is used and that the c-Z gate commutes with
itself regardless of the positions it acts on is key. If the proof were replaced the CNOT
gate for example, it would not hold.

In the case where the operators do not commute, it would not hold even if the graph has
bounded degree. For example, applying CNOT5 to the element X; results in X;X,. The
chain of CNOT gates CNOT5,CNOT93CNOT34 ... would result in an element X; X, X35. ..
which is not in the CAR algebra, so applying this infinite sequence of maps does not yield
a valid *-automorphism on the x-algebra.

4.4 Relationship Between Graph States and Stabiliz-
ers
In the conventional model, the notion of a graph state and a stabilizer state holds a special

relationship. We describe this relationship, and try to extend to the infinite dimensional
case in the CAR algebra.

Recall that the Clifford group is generated by the gates {H, S, CNOT}. The subgroup
generated by the single qubit gates {H, S} gives us a group of operations which are local
to each single qubit, which we will call local Clifford operations.

Definition 4.4.1. Given two finite dimensional stabilizer states |y1) and |¢2) are said to
be local Clifford (LC) equivalent if there exists an element of the form

Where each K; is a single qubit element of the Clifford Group CL
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It is known in the conventional model that every graph state is a stabilizer.

Theorem 4.4.2. Given a finite graph G, the graph state |G) is a stabilizer state, where
the stabilizer (encoded into binary matrices) is of the form

X=1,7=A

Where I s the infinite identity matriz, and Z is the infinite adjacency matriz of G.
That is, for each vertex i in G, there is a stabilizer of the form X; Hj:(m.)eE Zj.

Proof. Since the Hadamard layer and the controlled-Z layer are both Clifford x-automorphisms,
then clearly |G) as defined is a stabilizer state. It remains to show that the given generators
generate a stabilizer for |G).

Claim 1: These operators generate a maximal stabilizer.

Proof of claim 1. Note that it has n generators which are distinct. They are clearly inde-
pendent, since the position of the X factors are all different, so one cannot generate the
1-th stabilizer as a product of any of the other generators.

They also all commute pairwise. Let ¢ and j be vertices in the graph, the corresponding
stabilizers are X; Hk:(i’k)eE Zy, and X Hk:@k)eE Zy. Each component of the stabilizers
commute, unless k = j or k = ¢, and (i,j) € E. In this case, the stabilizer corresponding
to 4 has the factor X;Z;, and X;Z; for the stabilizer on j, which commutes.

This shows that the stabilizer is not extendable. O
Claim 2: The stabilizer stabilizes |G).

Proof of claim 2. We prove this claim by an induction on the edges for each vertex. Let
M; denote the stabilizer corresponding to the ith vertex, and U;; denote the controlled-Z
applied to ¢ and j.

For the base case, note that if G n vertices and has no edges, then |G) = [+)®>. The
stabilizers are of the form M; = X, which together stabilizes |G).

Suppose |G) is a graph state corresponding to G, and we we add an edge (i,j) to G.
The state transforms into |G’ = U;;|G), and the stabilizers M; and M, each gain a factor of
Z, the others remaining unchanged. Since U;; commutes with every Z gate, it commutes
with every stabilizer M), = M| for k # i,k # j, which all do not have factors of X in
positions ¢ or 7. We have,
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M|G') = MUy |G)
= Uy Mi|G)
= Uy|G)
= |G")
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so M, is a stabilizer.

For M; and M;, we have that U;; M;U; = Z;M;, and U;; MU} = Z;M;. A similar
calculation then shows us that the new operator indeed is a stabilizer. O

This shows that the stabilizer we constructed is a maximal stabilizer, and the elements
in the stabilizer all stabilizes |G). O

In finite dimensions, graph states are representative for the set of stabilizer states, in
the sense of the following theorem.

Theorem 4.4.3. Each stabilizer state |1)) LC equivalent to a graph state for some G.

By the above theorem, we can view graph states as a sort of standard form for stabilizer
states.

In the infinite dimensional case, we are interested in studying which theorems still hold.
It can be shown that for a locally finite graph G, the graph state on the CAR algebra has
a stabilizer which is maximal. Whether every maximal stabilizer is a graph state is still an
open problem.

On a graph state, the edge connections essentially gives you the entanglement structure
of the state. For example, the graph state for the connected graph consisting of two vertices
connected by a single edge is LC equivalent to the Bell pair.

There are other LC operations that do change the underlying graph structure. In [18],
Van den Nest et al. showed that there is essentially one graph operation that generates
all graphs that are LC equivalent to one graph. The operation has a clear action on the
graph.

Definition 4.4.4. (Local Complementation) Given a graph G(V, E), and a vertexv € V,
the local complement operation on the graph, applied at vertex v, takes the subgraph of the
netghbours of v and complements it.
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Example 4.4.5. Local complementation on the complete graph K

(a) maps to (b) via the local complementation operation applied to vertex 1. The subgraph
of the neighbours of 1 is the complete graph of vertices 2,3,4,5, so in the final graph,
2,3,4,5 have no edges with each other.

If we are allowed more than local Clifford operations, we can make more transformations
between graphs. Suppose instead we had a bipartite state, where one set of qubits were
local to Alice, and the remaining are local to Bob. Specifically, suppose we have some
index set Z, and the state is bipartite on locations Z and N\ Z. Alice is only allowed to
apply operations to her own qubits, and respectively Bob to his qubits. Alice and Bob
can jointly perform any single qubit Clifford operations, and Alice and Bob can also apply
multi-qubit Clifford operations to their own set of qubits, such as the controlled-Z.

In the finite dimensional case, the kind of entanglement we can achieve is simple. The
state can always be transformed into one which is a product state composed of only Bell
pairs and |0) states. This essentially amounts to transforming the graph into a union of
K5 and K, graphs, where K, denotes the complete graph on n vertices.

Lemma 4.4.6. Let |G) be a finite dimensional graph state with graph G, with a partition
on the vertices such that Alice holds the vertices A C V', and Bob holds B =V A. Up to
operations local to Alice’s and Bob’s qubits, the state |G) is equivalent to a tensor product
of Bell pairs and |0) states.

In the CAR algebra case, whether this holds remains open.

We can construct examples of graph states which are equivalent to the maximally
entangled state. Consider the following graph where the vertices on the left are held by
Alice and the ones on the right are held by Bob.
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This is the graph representing the infinite tensor product of Bell states. Suppose we
have the state represented by the following graph.

1, 1
2a 2b
3a 3p

We can actually convert the above graph to the top graph through a sequence of oper-
ations. First, we perform a controlled-Z on qubits 1, and 2, then do a local complement
on 1,. This removes the edge (1,,2;). We then perform another controlled-Z to remove
the edge (1p,2s).

Let j =i+ 1, we remove each edge (i4,j») by doing a controlled-Z on the pair (i, jp),
then a local complement on i, followed by a controlled-Z on (i, j,) again. Note that these
operations do not affect any other edges. Next, we turn our attention to the diagonal edges
in the other direction, (j,,17,). We perform a similar sequence of operations, controlled-Z
on (ig, Ja), local complement on i,, then controlled-Z on (i, j,) again.
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The local complement does not commute with the controlled-Z, so an arbitrary infinite
sequence of operations is not necessarily valid. However, the operation that removes the
edges (i4,Jp) commute with each other, since the neighbourhoods of i, and (i + 2), are
disjoint. The infinite sequence of commuting x-automorphisms is itself a x-automorphism,
so we can remove all the edges (i,, j,) at once, then remove the edges (j,, 1) afterwards.

However, it is not known if this can be done with all graph states.
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Chapter 5

Related Work and Open Questions

5.1 Related Work

In this work, identified some of the limitations of the Hilbert space model of quantum
information, and propose a novel formalism for stabilizer states on infinitely many qubits.
There have been works similar to ours. In [3], Forney introduces a variant of stabilizers
on infinite qubits to introduce quantum convolutional codes. In that setting, the states
are from the incomplete! Hilbert space model, but the encoded state can assumed to be
non-trivial on a finite number of indices since in practical terms one only wants to transmit
a finite amount of information.

In the incomplete Hilbert space, we can have all k-qubit states for any finite k& (where
everything else is assumed to be padded with |0)). In the CAR algebra model, we can
really have an infinite dimensional state. It is an important distinction between arbitrary
infinite dimensional states and arbitrary dimensional states padded with infinitely many
|0). In the case of convolutional codes both models are interchangeable, but the quantum
correlations achievable in the Hilbert space model is provably different from the correlations
achievable in our model.

The fact that our model captures the types of states that we are interested in is not
unique to the C*-algebra model, one can always come up with a Hilbert space model that
also has the same states. In fact, it is a property of our construction that there exists
at least one such Hilbert space by virtue of the GNS construction. The complete Hilbert
space introduced by von Neumann should suffice, although it is not clear that there is a

I This refers to the smaller Hilbert space given by an infinite tensor product of Hilbert spaces.
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faithful representation of the CAR algebra on the complete tensor product of infinitely
many copies of C2. However, working in the Hilbert space model becomes fairly involved.
A Hilbert space containing at least as many states as our model would be non-separable.
Our model implicitly has a rich tensor product structure, as it contains all finitely many
tensor products of C2, but also tensor products of the CAR algebra with other algebras is
simple to construct by the fact that the CAR algebra is nuclear.

5.2 Open Questions

The main motivation for introducing this model is to try to describe exotic classes of
entangled states. Many problems remain open in this area.

The first question is whether or not graph states are LC equivalent to stabilizer states
in the infinite qubit model as they are in the finite dimensional model. It is shown in our
work that graph states have a stabilizer in the CAR algebra model, but it is not known
that every stabilizer has a graph state representation. Showing that they are equivalent
would give allow us to use graphical techniques to study infinite stabilizer states.

In finite dimensions, the bipartite entanglement structure is extremely simple. Any
bipartite state can be transformed into tensor products Bell states by operations local to
each partition.

For infinite graphs it is not known if one can always transform the graph state into the
tensor product of Bell states.

One can give examples of states that can be transformed into any finite number of
Bell states, but it is not known if there is a x-automorphism that transforms it to the
maximally entangled state. This leads to the question of whether graph states can achieve
highly entangled states which are much harder to describe than in the finite dimensional
case.
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