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Statement of Contributions
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The material in Chapter 5 is a review of recent results in the computational dynamical
systems field and is included as it meshes well with Chapter 3.
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Abstract

This thesis focuses on data-driven methods applied to system identification and stability
analysis of dynamical systems. In the first major contribution of the theorem we propose a
learning framework to simultaneously stabilize an unknown nonlinear system with a neural
controller and learn a neural Lyapunov function to certify a region of attraction (ROA)
for the closed-loop system. The algorithmic structure consists of two neural networks
and a satisfiability modulo theories (SMT) solver. The first neural network is responsible
for learning the unknown dynamics. The second neural network aims to identify a valid
Lyapunov function and a provably stabilizing nonlinear controller. The SMT solver then
verifies that the candidate Lyapunov function indeed satisfies the Lyapunov conditions.
We provide theoretical guarantees of the proposed learning framework in terms of the
closed-loop stability for the unknown nonlinear system. We illustrate the effectiveness of
the approach with a set of numerical experiments. We then examine another popular data
driven method for system identification involving the Koopman operator. Methods based
on the Koopman operator aim to approximate advancements of the state under the flow
operator by a high-dimensional linear operator. This is accomplished by the extended mode
decomposition (eDMD) algorithm which takes non-linear measurements of the state. Under
the suitable conditions we have a result on the weak convergence of the eigenvalues and
eigenfunctions of the eDMD operator that can serve as components of Lyapunov functions.
Finally, we review methods for finding the region of attraction of an asymptotically stable
fixed point and compare this method to the two methods mentioned above.
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Chapter 1

Introduction

This thesis explores the application of data-driven methods to challenging problems in
dynamical and control systems ranging from system identification to developing Lyapunov
functions. This contribution is significant as there is no general approach for finding a
Lyapunov function for non-linear systems with provable guarantees. Recent development of
learning-based methods have shown their effectiveness in identifying unknown (or partly
known) systems [0, 29]. However, simultaneously finding Lyapunov functions and nonlinear
controllers for systems with unknown dynamics is still an open and active problem in
control and robotics applications [15]. We provide an answer to this problem using neural
networks and discuss finding Lyapunov functions using Koopman eigenfunctions.

In practice, the prevailing way of stabilizing non-linear dynamical systems is to linearize
the system around the equilibrium point and formulate linear-quadratic regulators (LQR)
problems to minimize any possible deviations from the deviation point. This method
does provide a linear feedback control policy, however this method typically produces
a stability guarantee in some small neighbourhood of the equilibrium point. This will
inevitably produce conservative systems and explains why applications to agile robotic
locomotion is difficult [28]. Outside of the linearization region, Lyapunov functions have
to be constructed to validate stability. Many existing methods for computing Lyapunov
functions rely on making polynomial approximation of the dynamics and subsequently
searching sum-of-square polynomials through semidefinite programming (SDP) to serve as
Lyapunov functions [27]. This methodology is well studied, however imposing polynomial
dynamics poses a strict restriction on the system. Additionally, numerical sensitivity in
the SDP method means that the Lyapunov conditions are difficult to satisfy. Therefore, in
this thesis, we use the fact that neural networks have much greater expressive ability than
polynomials to provide guarantee of the Lyapunov conditions while simultaneously learning



the controller. In addition, in the absence of a non-linear controller we show that Koopman
operator methods can successfully perform system identification and provide Lyapunov
functions for the learned system.

This thesis is organized as follows. Background material on dynamical systems, neural
networks and control systems is provided in Chapter 2. Chapter 3 details the methodology
and uses recently advances in computational verification for simultaneously learning a
non-linear controller and verifying a valid Lyapunov function in the valid region. To
support the neural methodology, we state and prove existence theorems for neural Lyapunov
functions and their properties. This chapter concludes with several examples highlighting
the practicality of these results. An overview of Koopman operator theory is then detailed
in the beginning of Chapter 4. We then introduce several data-driven techniques that
perform system identification based on the Koopman operator and show how the Koopman
eigenfunctions can serve as Lyapunov functions. The final part of the chapter connects
the Koopman learning algorithms with neural networks to search for basis functions that
give optimal performance. Chapter 5 reviews recent advancements in estimating the ROA
through its connection with the sub-level set of the viscosity solution of a Hamilton-Jacobi
equation. Finally, we conclude this thesis in Chapter 6.2 along with possible extensions of
the topics covered in this thesis that may be of interest.



Chapter 2

Background and Notation

2.1 Dynamical Systems

Throughout this work, we consider an autonomous system of the form
= f(x), z(0) =z, (2.1)

where f : R" — R™. Since we need to analyze the stability properties of the system for (2.1)
in the presence of uncertainty (due to the need to approximate the unknown dynamics),
we introduce a more general notion of stability about a closed set A. When A = {0}, this
coincides with the standard notion of stability about an equilibrium point. Intuitively, set
stability w.r.t. to A is measured by closeness and convergence of solutions to the set A. To
this end, define the distance from = to A by ||z||4 = inf e ||z — y||. We need the following
notions from stability analysis to formulate the theories in this thesis.

Definition 1 (Forward Invariance). A set Q C R™ is said to be forward invariant for (2.1)
if for xo € Q2 implies that x(t) € Q for all t > 0.

Definition 2 (Region of Attraction). For a closed forward invariant set A that is UAS,
a region of attraction is the set of initial conditions in D such that the solution for the
closed-loop system (2.1) is defined for allt > 0 and ||x(t)||a — 0 as t — oo.

Remark 1. In particular, The ROA is the largest set contained in D satisfying Definition 2.

We need to define notions of stability that are necessary to the proofs in Chapter 3.



Definition 3 (Set stability). A closed set A C R" is said to be uniformly asymptotically
stable (UAS) for the closed-loop system (2.1), if the following two conditions are met:

(1) (Uniform stability) For every e > 0, there exists a 6. > 0 such that ||z(0)||a < 0 implies
that x(t) is defined for t > 0 and ||z||a < € for any solution x of (2.1) for all t > 0; and
(2) (Uniform attractivity) There ezists some p > 0 such that, for every e > 0, there exists
some T > 0 such that x(t) is defined for t > 0 and ||z(t)||a < € for any solution x(t) of
(2.1) whenever ||z(0)||la < p and t > T.

Definition 4 (Reachable Set). Let R'(xq) denote the point x(t) reached by the solution of
(2.1) at time t starting at xo. For T > 0 define the finite time horizon reachable set as

RO<'=T(24) = U< R (0).
Similarly, for a set W C D, define
ROSET(W) o= Ugpew R (1),
Similarly, if solutions are defined for allt > 0, then the reachable set is defined as

R(W) = UxOEW UtZO Rt(ﬁo).

The following result states that the finite time horizon reachable set is compact and can be
found in [11].

Lemma 1. Suppose that K C R™ is a compact set. Then the set ROS'ST(K) is compact
for any T > 0.

2.2 Control Theory

Control theory is useful for dealing with any system that exhibits feedback. The control of
non-linear systems is a challenging task that is of paramount importance for applications
such as flow control [1] and eradicating infectious diseases [31]. We can think of a dynamical
system in the presence of control as

= f(z,u), x(0)=x,

where x € D is the state of the system, D C R" is an open set containing the origin,
uelUd CR™and f: DxU — D. For this thesis, we want to have a concept of lie
derivatives in the presence of a controller.



Definition 5 (Lie Derivatives). The Lie derivative of a continuously differentiable scalar
function V : D — R over a vector field f and a nonlinear controller u is defined as

"L OV "LV
Vi) =S g =52
—1 81’1 1 833'1

1=

filz,u). (2.2)

The lie derivative measures the rate of change along the system dynamics.

The following is a standard Lyapunov theorem for the UAS property of a compact invariant
set.

Theorem 1 (Sufficient Condition for UAS property). Consider the nonlinear system (2.1).
Let A C D be a compact invariant set of this system. Suppose there exists a continuously
differentiable function V : D — R that is positive definite with respect to A, i.e.,

V(z)=0Vez € Aand V(z) >0Vx € D\ A, (2.3)
and the lie derivative is negative definite with respect to A, i.e.
ViV(z) <0V e D\ A (2.4)
Then, A is UAS for the system.

See [20), 40] for sufficiency and necessity of Lyapunov conditions for set stability under more
general settings. The function V' satisfying (2.3) and (2.4) is called a Lyapunov function
with respect to A.

2.3 Neural Network Theory

In recent years neural networks have been employed in a wide variety of scientific domains
and industrial applications including learning differential equations, image classification
and recommendation systems. In practice, neural networks are entirely data-driven and
require a well chosen loss function to guide the learning process to an optimal model. A
neural network is dependent on its hyperparemeters, parameters that are chosen before
training, which includes the number of layers, hidden nodes, activation functions, and
the architecture that connects the nodes. In this thesis we consider the most standard
architecture, the multilayer feedforward perceptron (MLP) model, which takes the form

Fo®) =W (o(o(Wiz+b)-))+ by, (2.5)

5



where L denotes the number of layers, o is the non-affine activation function, W;, i =1,..., L
is the so-called weight matrix and b;, ¢ = 1,..., L is called the bias vector. Note that
{W,;, b;}£ | are optimized over during the learning process to ensure the smallest training
error. The key theorem that supports the practicality of neural networks is the universal
approximation theorem which asserts that any continuous function can be approximated
uniformly on compacta. The proof of the following result can be found in [30].

Theorem 2. Suppose K C R" is a compact set and f: K — R™ € C(R"). Let 0 € C(R)
and suppose that o is not a polynomial function. Then for every e > 0 there exists a single
layer neural network of the form Fy(x) = Wa (0 (W1x + by)) such that

sup [ Fy(x) = f(x)lee < e (2.6)

First we state an extension of the universal approximation theorem that states it is possible
to simultaneously pointwisely approximate a function and its partial derivatives by a neural
network. The proof of this result can be found in [30] and the piece of detailed analysis
omitted in the end of this proof can be found in Section 3 of [19].

Theorem 3. Let K C R™ be a compact set and suppose f : K — R™ € CY(R"). Then, for
every € > 0 there exists a neural network ¢ : K — R of the form ¢(x) = Wa(o o (Wiz + b))
for o € CY(R) and not a polynomial, W, € R¥*™ b € R* and Wy € R¥*" for some k € N
such that

If = ¢lloe := sup|f(z) = d(x)] < € (2.7)
and for allt=1,...,n, the following simultaneously holds
of 99
— 2.

Remark 2. Note that the results stated above hold for deeper neural networks, but we
state these results for neural networks with one hidden layer as this simplifies the exposition
of the proofs in Chapter 3.



Chapter 3

Identification of Lyapunov Functions
with Neural Networks

The contents of this paper are based on my co-authored NeurIPS paper [16]. Throughout
this chapter, we consider a nonlinear control system of the form
&= f(x,u), x(0)=x, (3.1)

where x € D is the state of the system, and D C R" is an open set containing the origin;
u € K C R™ is the feedback control input given by u = k(z), where x(x) is a continuous
function of z. Without loss of generality, we assume the origin is an equilibrium point of
the closed-loop system

&= f(x,k(x)), x(0)= . (3.2)
When there is no ambiguity, we also refer to the right-hand side of (3.2) by f.

We assume that we do not have explicit knowledge of the right-hand side of the system
(3.1). The main objective is to stabilize the unknown dynamical system by designing a
feedback control function x. Stability guarantees are established using Lyapunov functions.
We next present some preliminaries on model assumptions.

Assumption 1 (Lipschitz Continuity). The right-hand side of the nonlinear system (3.1)
15 assumed to be Lipschitz continuous, i.e.,

1Sz, u) = [y, )|l < Ll (z,u) = (y,0)| Yo,y €D and Vu,v €U,

where L is called the Lipschitz constant; (x,u) and (y,v) denote the concatenation of the
corresponding two vectors. We assume the Lipschitz constant L is known.
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Remark 3. In particular this ensures that the solution to (3.2) is unique and thus, the
neural network responsible for system identifications will learn a unique function.

Assumption 2 (Partly Known Dynamics). The linearized model about the origin in the
form of © = Ax + Bu, where A and B are constant matrices, is known for the nonlinear
system (3.1).

3.1 Existence of neural Lyapunov functions

A central problem in dynamics and control theory is the existence of Lyapunov functions.
As a theoretical guarantee we show that it is possible to train a neural network as a
practical Lyapunov function (i.e., set stability w.r.t. a sufficiently small neighborhood of
the origin), provided that a Lyapunov function exists. According to converse Lyapunov
theorems [20, 10], Lyapunov functions do exist when the origin is UAS. More specifically,
we show that the learned neural network satisfies the Lyapunov conditions outside some
neighborhood of the origin that can be chosen to be arbitrarily small in measure. The
idea will be to perform an under-approximation of the domain D in a controlled way. Let
(R™, B(R™), u) denote the standard measure space where B(R") is the Borel o-algebra and
p is the Lebesgue measure. The following lemma from [31] states that it is possible to
arbitrarily under-approximate open sets by compact sets in measure.

Lemma 2. For every open set O € B(R") such that ;1(O) < oo and every € > 0, there
exists a compact set K such that u(O\ K) < e.

By the pointwise approximation of the universal approximation theorem, it is not possible
to satisfy the Lyapunov conditions on D as this set contains the origin. However, if there is
a Lyapunov function for (3.2) that a neural network could learn and if practical stability
is sufficient, Theorem 4 states that there exists a neural network satisfying the Lyapunov
conditions on a compact set K except on a closed neighborhood B of the origin that is
UAS. Moreover, this approximation can be controlled in measure.

Theorem 4. Suppose that the origin is UAS for system (3.2) and I is a forward invariant
set contained in the ROA of the origin. Fix any v1,v2 > 0. There exists a forward invariant
and compact set K C T satisfying the under approzimation p(Z \ K) < ;. On K there
exists a neural network Vy that satisfies the Lyapunov conditions on K \ A, where A is
a closed neighborhood of the origin. The neural Lyapunov function Vy can certify that a
closed invariant set B containing A and satisfying u(B \ A) < 7y, is UAS. Furthermore, the
set K is contained in the ROA of B.



Proof. By the converse Lyapunov theorem [17], there exists a function V satisfying the
Lyapunov conditions on Z. Lemma 2 states that there exists a compact set W such that
u(Z \ W) < ~/2. Since unions preserve compactness we can suppose without loss of
generality that W contains the closed ball of radius r for » > 0 sufficiently small, denoted
as B,, which lies in the interior of Z. By virtue of Z being a forward invariant set contained
in the region of attraction, for autonomous systems, asymptotic stability is equivalent to
uniform attractive stability, so in particular there exists a time 7" > 0 such that all solutions
starting in W will enter A, := {z € B, : V(z) < p} for any p > 0 without leaving Z. The
continuity of measure and the Lyapunov condition V' (0) = 0 implies there exists a constant
po > 0 such that u(A,) < v/2 since N,~0A, = {0} and this is a set of measure zero. For
ease of notation, we simply refer to A, as A. Let T' > 0 be the time such that all solutions
starting in W enter A. By Lemma 1, the reachable set R'<*<T (W) is compact and satisfies
w(Z \ RPS*=T(W)) < /2. Denote

K = R==T(W)U A.

We see that K which contains the origin is compact and forward invariant. Similarly, by
the continuity of of V' and the continuity of measure, it follows that N, ,,.A, = A and this
implies there exists a level set A, such that p(A,, \ A) < 7.

By the continuity of V' there exists a constant 6 > 0 such that V' > ¢ and V;V(z) < —§ on
K\ A. We can suppose that 0 < p; — po in the inequality above. By Theorem 3, there
exists a neural network approximation of V' denoted Vj satisfying the pointwise bounds
Vs — Voo < d/2 and ||V;V — VVy|lo < /2 on K \ A. This proves that V,, satisfies the
Lyapunov conditions on K \ 4. To summarize we have established that

Vy(z) > 6/2Vz € K\ A,

and
VfV¢($) < —(5/2; Vo € K\.A

By this pointwise bound ||V, — V|| < 0/2 it follows that
ACB:= {IL’EBTZV¢§,00+(52}CAP1.

This proves that pu(B\ A) < 75. Now we show that V,, verifies that the set B is uniformly
asymptotically stable.

(Uniform Stability) Given € > 0 as per the definition of uniform stability. Denote
B.(B) := UepBe(x).



Without loss of generality by taking e < r we can assume that B.(B) C K. Choose ¢ > 0
such that
0 <c< min Vy(z)

l|z(l5=¢

holds. Then by a contradiction argument the set
Q= {x € B(B) : Vy(x) < ¢}

is contained in the interior of B.(B). By the continuity of V}, and compactness of B, V is
uniformly continuous on B. Thus, there exists 0 < d. < € such that

|xo — z|| <0 = |V(z) — V(xo)| < ¢ — po/2 for all zy € B.

In particular, this prove that Bs (B) C Q¢ C B.(B). A standard argument shows that the
set Q¢ is forward invariant and hence for all zy € B, (B) this implies that x(t) € Q° for all
t > 0 and proves uniform stability.

(Uniform Attractivity). Given that K is a compact positive invariant set that contains
A we claim that there exists some time 7" > 0 for which the solution enters A. Indeed,
suppose otherwise this means that x(t) € K \ A for all ¢t > 0. By Lemma 3 we get that
VVy(x(t)) < —0/2 for allt > 0 on K \ A. It follows that

V(z(t)) = V(z(0)) +/0 Vi Vy(x(r))dr < V(z(0)) — 6t/2.

As the right hand side will eventually become negative, this is a contradiction to the
Vs > 0on K \ A. To conclude, note that the set A is forward invariant which implies that
|x(t)]|4 = 0 for all £ > T'. In particular, as A is contained in B this proves the uniform
attractivity of B. O

Suppose further that Z is the ROA of the system (3.2). If the Lyapunov function V' is
radially unbounded, this means that V(z) — oo when  — dZ (the boundary of Z), then
the level sets of V" approach the ROA. If the origin is UAS for system (3.2), then by the
converse Lyapunov theorem, it follows that V' (z) is radially unbounded. We show that the
neural Lyapunov function inherits a similar property where the level sets approach K.

Theorem 5. In addition to the assumptions of Theorem /, suppose that I is the region
of attraction which is bounded. Set W¢ := {x € K : V,(x) < c}. Then, for any sequence
kn — 00, UneNWkn =K.

10



Proof. Without loss of generality suppose that k, is an increasing sequence and € < k.
Again, define V¢ = {x € D : V(x) < ¢}. Note that if z € K satisfies Vy(x) < ¢, then
V(x) < ¢+ e. Therefore, W C Vknten K. A similar argument shows that V<N K C
Whn c Vknte N K. Since K C D this implies that U,enVF* N K = K NUpenV* ¢ = K.
Therefore, U,enWh = K. O

3.2 Learn and Stabilize Dynamics with Neural Lya-
punov Functions

In this section we present a learning framework to simultaneously stabilize an unknown
nonlinear system with a neural controller and learn a neural Lyapunov function to certify
a region of attraction (ROA) for the closed-loop system. We build upon the framework
in [7], but address the more challenging question of stabilizing a nonlinear system with
unknown dynamics and offering formal guarantees. The theoretical results in the previous
section support the proposed method and the framework in [7]. The method involves two
shallow neural networks. The first one learns the system dynamics from data and the second
one learns a Lyapunov function for the learned dynamics along with its corresponding
nonlinear controller. The full learning framework involving the first neural network describe
in Section 3.2.1 and the second neural network described in 3.2 can be found in Fig. 3.1
and the pseudocode in Algorithm 1.

Bounded ™| Learn the dynamics | b(x,u)

Yes
Y

inputs U - f(x,u) > Estimate of 3

e 1 K r .
r v ;
i u=K(x) PKX) ;
! States Learq Neural Lyapynov > SMT Solver !
H > function Ve & nonlinear with Eq. (11 ‘
X > q. (11) |

| controller u = k(x) Vo ‘
i !
: added to X }
| for Ve and u |
! |
| Couterexamples No - ;
! 1
! 1
! 1
! |
! 1
! 1
! 1
! 1
! 1
! |
| 1

Veis a valid Neural Lyapunov function
Section 3.2

Figure 3.1: The schematic diagram of the proposed algorithm.
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3.2.1 Learning Unknown Dynamics

Theorem 2 guarantees the existence of a neural network that approximates the right hand
side f(x,u). The first neural network which we denote as ¢(z,u) is a one-hidden-layer
feedforward neural network equipped with mean square loss. The activation function is
tanh as the activation functions need to be C! to calculate its Lie derivatives. Note that
the activation function is not applied to the last layer of the neural network as f(x,u) need
not be bounded. The training data of x and u are sampled uniformly and independently
over their respective spaces. The format of the controller is

u = k(z) = Co(kz +b), (3.3)

where C' is a constant matrix, determined by the saturation property of the controller
in real systems, which defines the bounds of U, k and b are the weight matrix and bias
vector, respectively, which are initialized with an LQR controller based on the linearized
system © = Az + Bu. The bias b is chosen such that f(0,Co(b)) = 0, i.e., the origin is
an equilibrium point for the closed-loop system (3.2). Note that the bias vector b is not
updated in the learning process.

3.2.2 Neural Lyapunov Function and Nonlinear Controller

Once the training process has identified the dynamics ¢, the second neural network simul-
taneously learns a nonlinear controller and a neural Lyapunov function to certify stability
about the origin for the learned dynamics. The detailed structure of the neural network
is detailed in Fig. 3.2 [7]. Note that since we are learning a Lyapunov function using
the learned dynamics there is no guarantee that this function will certify stability around
the origin for the actual dynamics. However, since Lyapunov functions involve pointwise
bounds, we introduce an external parameter 5 that functions as a margin of error and show
that the learned Lyapunov function is indeed a Lyapunov function for the actual dynamics.
Thus, to account for approximation errors introduced by learning the neural network, the
following stricter conditions should be satisfied instead:

V(0) =0, and ,Vz € D\{0},V(z) > 0 and V,V(x) < —0. (3.4)

Here (3 is a positive real number, which can be determined by . Since computed functions
can not become arbitrarily large on D, there exists M > 0 be such that [|$%|| < M for all
x € D. Let § be the covering number for the space of samples, that is for every unsampled

12



Neural Networks for Ve & K(x)

Neural
States Vector X Lyapunov
candidate Ve
Initial LQR output1
controller u = kx Ve
output2
inputs X u = K(x)
added to X
A4

Yes

‘ Veis a valid Neural Lyapunov function ’

Figure 3.2: Algorithmic structure of learning a neural Lyapunov function and the corre-
sponding nonlinear controller with a 1-hidden layer neural network and an SMT solver.

pair of states and input (z,u) there exists a sample point (y,v) used in training and testing
the neural network such that

[(z,u) — (y,v)|| < 6. (3.5)
Denoting « as the maximum of the 2-norm loss among all known samples, which can be
from either the training dataset or the test dataset, the bound on the generalization error
can be calculated as

1f (2, u) = o, w) || < N1 (2, u) = fy, o)l + 11 (g, 0) = oy, 0)|| + [y, v) — d(x, u)]
B

SKf5+CE+K¢5<M,

(3.6)
where f and ¢ are Lipschitz continuous with Lipschitz constants Ky, Ky, respectively and

B > 0 is some sufficiently large constant. Then, the choice of § to satisfying (3.6) implies
that

V(@) VoV () < |90 () — ol w(@)ll < Mo =5 (3D
In view of (3.4) and (3.7), we have
ViV(z) <VeV(z) +B <=8+ =0, VzeD\{0}, (3.8)
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which guarantees that the actual dynamics is also stable with the obtained neural Lyapunov
function. Here, we calculate K by using LipSDP-network developed in [?], and M can be
determined by checking the inequality with an SMT solver. An initial guess of J is needed
according to some prior knowledge, and it will be re-computed in each epoch with (3.6).

A valid neural Lyapunov function can be guaranteed by the SMT solver with all the
Lyapunov conditions written as falsification constraints in the form of first-order logic
formula over reals [7]:

O () := (i r? > 5) ANV(z) <0V VsV(x)>—-p), (3.9)

where € is a numerical error parameter, which is explicitly introduced for controlling
numerical sensitivity around the origin. If the SMT solver returns either UNSAT this means
that the falsification constraint is guaranteed not to have any solutions and confirms all the
Lyapunov conditions are met. If the SMT solver returns 0-SAT, this means there exists at
least one counterexample under the §-weakening condition [?] that satisfies the falsification
conditions.

We use 6 to denote the parameter vectors for a neural Lyapunov function candidate V.
The parameters ¢ and k are found by minimizing the following cost function, which is a
modification of the so-called empirical Lyapunov risk in [7] by adding one more term [|%%||,
as we need [ to be small as well:

N
1 %
L(0.k) = + > (01 max (—Vj (2;) ,0) + Cy max (0, V,Vj (xi))) + C5V2(0) + Cal oIl
=1

(3.10)
where C, Cy, C5 and C} are tunable constants. The cost function can be regarded as the
positive penalty of any violation of the Lyapunov conditions in (2.3) and (2.4). Note that
the ROA can also be maximized by adding an Ls-like cost term to the Lyapunov risk with
L(0,k)+ + SOV ll#ill, — aVp (:), where « is a tunable parameter, as shown in the original
paper [7].

Our analysis provides stability guarantees for the unknown system by rigorously quantifying
the errors using Lipschitz constants of the unknown dynamics and its neural approximation.
To this end, we need a theoretical guarantee that extends the universal approximation
theorem, stating that we can approximate the Lipschitz constants and function values by a
neural network to an arbitrary precision.
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Algorithm 1 Neural Lyapunov Control with Unknown Dynamics

1: function LEARNINGDYNAMICS(Xayn, Upda))

2 Set learning rate (), input dimension (n 4+ m), output dimension (n)

3 repeat

4: f < NNy(x) > Output of forward pass of neural network
5: Compute MSE L(f, ¢)

6 ¢ < ¢ —YVL(f, ¢) > Updates Weights using SGD
7 until convergence

8 return ¢

9: end function

10: function LEARNINGLYAPUNOV (X, fs, k')

11: Set learning rate («), input dimension (n), output dimension (1)

12: Initialize feedback controller u to LQR solution k"

13: repeat

14: Vo(x), u(z) < NNp(2) > Output of forward pass of neural network
15: VoV (z) < 3125 8X(¢li(x)

16: Compute Lyapunov risk L(6, k)

17: 0 < 0—aVeL(0,k)

18: k<« k—aViL(0,k) > Updates Weights using SGD
19: until convergence

20: return V, u
21: end function
22: function FALSIFICATION( fy, u, Vp, €, 9, 5)

23: Encode conditions from (3.9)
24: Use SMT solver with § to verify the conditions
25: return satisfiability

26: end function
27: function MAIN( )

28: input initial guess of bound (), parameters of LQR (k'"), radius (¢), precision
(0), sampled states X, sampled inputs U

29: ¢ < LEARNINGDYNAMICS(Xgyn, Ugpday)

30: while Satisfiable do

31: Add counterexamples to X

32: Vs, u < LEARNING-LYAPUNOV (X[, ¢, k'7")

33: update 3 according to (3.6)

34: CE <« FALSIFICATION(¢, u, Vp, €, 9, )

35: end while
36: end function
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Theorem 6. Suppose that K C R" is a compact set.
(a) If f: K — R™ is L-Lipschitz in the uniform norm, i.e.

() = Wl < Lz = ylloc, (3.11)

then for every e > 0 there exists a neural network of the form ¢(x) = C(o o (Ax + b)) for
o € CY(R) and not a polynomial, A € R*™ b € R* and C € R¥" for some k € N such
that sup,c i |f(2) — ¢(x)| < € and ¢ has a Lipschitz constant of L + € in the same norms
as ( 3.11).

(b) If f: K — R™ is L-Lipschitz in the two norm, i.e.

1/ () = FW)llee < Lllz = yll2, (3.12)

then for every e > 0 there exists a neural network ¢ of the same form such that sup,cx | f(z)—

o(z)| < € and ¢ has a Lipschitz constant of L+e (—Vn;rn/e + L) in the same norms as (3.12).

The idea of the proof is to first approximate f by a smooth function F' and then
approximate F' by a neural network ¢. Since the techniques used in this proof are different
from those of this chapter, the details can be found in the appendix.

Remark 4. The equivalence of norms gives an upper bound on the Lipschitz constant for
all norms.

3.2.3 Asymptotic Stability Guarantees of Unknown Nonlinear
Systems

With the theoretical guarantee of learning a neural Lyapunov function established above,
we show that the neural network trained with the learned dynamics is robust, that is this
neural network also satisfies the Lyapunov conditions with respect to the actual dynamics
f. Since the SMT solver verifies the Lyapunov conditions outside of some e-ball which is
not necessarily forward invariant, the following technical assumption helps bridge this gap.
The assumption is mild, because for the nonlinear system to be stabilizable, it is reasonable
to assume that it has a stabilizable linearization. A linear system & = Ax + Bu is said to
be stabilizable if there exists a matrix K such that A + BK is Hurwitz, i.e., all eigenvalues
of A+ BK have negative real part. If (A, B) is stabilizable, then the gain matrix K can be
obtained by an LQR controller.
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Assumption 3 (ROA of LQR Controller). Suppose that the linearized model & = Az + Bu
from Assumption 2 is stabilizable. Consequently, an LQR controller and a quadratic
Lyapunov function can be found such that the origin is UAS for the closed-loop system (3.2).
Furthermore, we assume that the set B. which is not verified by a SMT solver lies in the
interior of a ROA of the closed-loop system, provided by the quadratic Lyapunov function.

Since this e-ball is small, we further assume that the level sets of the Lyapunov function
are contained in the ROA of the LQR controller.

Assumption 4 (Controlled Level Sets). Denote B, := {x : ||z| < €}. Let V be a
continuously differentiable function satisfying the Lyapunov conditions on D\ B.. Suppose
that there exists constants 0 < ¢y < co such that the following chain of inclusions holds

{reD:V(z)<a}CB.C{reD:V(x)<c}, (3.13)

and {x € D : V(x) < ¢y} lies in the interior of the ROA of the closed loop system provided
by the quadratic Lyapunov function.

Theorem 7. Let ¢ be the approrimated dynamics of right-hand side of the closed-loop
system (3.2) trained by the first neural network. There exists a neural Lyapunov function V
which is learned using ¢ and verified by an SMT solver that satisfies the Lyapunov conditions
with respect to the actual dynamics f. Furthermore, if the system satisfies Assumption 3
and V' satisfies Assumption 4, then the origin is UAS for the closed-loop system (3.2).

Proof. Fix 8> 0 and let M > 0 be chosen such that ||| < M. As V is learned using
the learned dynamics ¢, V' satisfies V' > 0 and =V V() < —f on D \ B.. To certify that
V satisfies the Lyapunov conditions on D \ B, it suffices to verify that V;V < 0. By the
universal approximation theorem, there exists a neural network ¢ approximating f such
that || f(x, k(x) — ¢(x, K(2)]|0o < % on the D\ {||z|| < e}. Asin (3.8), the following holds

ViV(z) <VeV(x)+ 8 < —-+=0, VreD\{0}. (3.14)

Therefore, V' satisfies the neural Lyapunov conditions on D \ B..

(Uniform Stability). The uniform stability property follows from the Assumption 3 as
the quadratic Lyapunov function guarantees uniform stability at the origin.

(Uniform Attractivity). We show that under these assumptions, the neural Lyapunov
function is able to verify uniform attractivity. As uniform attractivity is equivalent to
attractivity for autonomous systems, it suffices to verify that any level set of V', denoted
V¢, which contains B, is a ROA for this dynamical system. By a similar argument to the
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Uniform Stability part of Theorem 4, any trajectory starting in V¢ must eventually enter
B.. Since B. is contained in the ROA of the closed loop system provided by the quadratic
Lyapunov function, it follows that ||z(t)|| — 0 as t — oc. O

This theorem proves that if the dynamics are approximated to sufficient precision then
the neural Lyapunov function satisfies the Lyapunov conditions on D\ B. for the actual
dynamics. Furthermore, if the level sets of the neural Lyapunov function are sufficiently
well behaved and the set B. excluded from SMT verification is small then this learning
framework certifies that the origin is UAS for the actual system (3.2).

3.3 Experiments

In this section we demonstrate the ability of the learning framework in simultaneously
learning a non-linear controller and a Lyapunov function that certificies stability about
the origin. All examples are carried out using two neural networks, each with one hidden
layer. For learning the dynamics, the number of neurons in the hidden layer varies from
100 to 200 without an output layer activation function as stated before, and we call
this neural network FNN for convenience. However, for learning the neural Lyapunov
function, there are six neurons in the hidden layer for all the experiments, and we name this
neural network VNN in short. Regarding other parameters, we use the Adam optimizer
for both FNN and VNN, and we use dReal as the SMT solver, setting 0 as 0.01 for all
experiments. The learned dynamics is in the format of ¢ = Wytanh (W1 X + By) + By
where X = [z,u]. In VNN, the valid neural Lyapunov function is of the following form:
Vo = tanh (Wstanh (Wix + B;) + Bs). In all experiments since we have access to the
non-linear dynamics, we test the neural Lyapunov function on the actual dynamics and
observe that these satisfy the Lyapunov conditions on the valid region. All the training
of FNN is performed on Google Colab with a 16GB GPU, and VNN training is done on
a 3 GHz 6-Core Intel Core i5. The code is written by my colleague and open sourced at
https://github.com/RuikunZhou/Unknown_Neural_Lyapunov.

3.3.1 Van der Pol Oscillator

As a starting point, we test the proposed algorithm on the nonlinear system without input
u first to show its effectiveness in learning unknown dynamical systems and finding the
valid neural Lyapunov function. Van der Pol oscillator is a well-known nonlinear system
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with stable oscillations as a limit cycle. The area within the limit cycle is the non-convex
ROA, as shown in the appendix. The states equations of Van der Pol oscillator are:

nmTe (3.15)

.fQ = + (,T%—].)‘TQ

Correspondingly, the phase plot and the limit cycle of this nonlinear system are shown in
Figure 3.3 [17]. According to the algorithm described in Section 1, we learn the two nonlinear

Figure 3.3: Phase space plot and the limit cycle (bold black line) of Val Der Pol oscillator
without controller, where the area within the bold black curve forms the actual ROA.

dynamical equations with 100 hidden neurons. Clearly, we can write z = [x; 5], and we
use 100 hidden neurons to learn the dynamics in FNN. With the learned dynamics, the
weights and biases matrices of obtained neural Lyapunov function in VNN are:

W — —1.82994 —0.70762 3.35979 —6.42827 —1.14237  0.39034 "
e 1.30866  0.57501 0.27398  0.32546 —1.16843 —0.03503 | ’

Wy = [ —1.32270 —0.73489 1.87897 0.89612 1.65451 1.17499 },
B = [ —2.30191 0.38658 0.47604 0.83902 0.87791 1.18262 } and By = [0.62172].
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To ensure an accurate model, we use 9 million data points sampled on (—1.5,1.5) x (—1.5,1.5),
and the learning rate of the training process varies from 0.1 to le-5 to acquire a small
enough «. With the learned dynamics, we aim to find a valid Lyapunov function over the
domain ||z||s < 1.2, and the obtained neural Lyapunov function is shown in Fig. 3.4a. The
corresponding ROA estimate can be found in Fig. 3.4b. In comparison, the ROAs found
by the neural Lyapunov function and the classical LQR techniques in [17] using actual
dynamics are also plotted, as the blue and magenta ellipses respectively. The phase portrait
of the system is given as the grey curves with small arrows. It is obvious that the neural
Lyapunov function after tuning obtains a larger ROA. We also have a comparable verified
ROA for the system with the one obtained with actual dynamics based on the same neural
Lyapunov approach, both larger than the LQR case. The values of the parameters can be
found in Table 3.1.

Table 3.1: Parameters in Van der Pol Oscillator case

Ky Ky 0 @ [Eoo = A—-
3.4599 5.197 5e-4d 8.5e-3 1.249 0.02 0.2

Lyapunov Function Van der Pol
T 1.0
== Valid region 1.0 -
0.8
0.5 1
0.6
< 0.0{
F0.4
—0.5 1,
H0.2
_1'0_
0.0

[ NN_learned Z.71 LQR
0 NN_actual [ Valid Region

(a) Neural Lyapunov function (b) ROA comparison with LQR

Figure 3.4: Neural Lyapunov function and the corresponding estimated ROA for Van der
Pol oscillator.
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3.3.2 Unicycle Path Following

The path following task is a typical stabilization problem for a nonlinear system. Here,
we consider path tracking control using a kinematic unicycle with error dynamics [5]. In
this case, we have two state variables, the angle error 6, and the distance error d., and the
dynamics of this system can be written as:

5 veos (0.)
1 —der(s)’
d, = vsin (0,),
vk(s) cos (6,)
1 — dek(s)

(3.16)

b=

Here we assume the target path is a unit circle x(s) = 1 and take w as the input u with
r = |d, Qe]T, consequently the dynamical system is of the format & = f(z,u). Similarly,
after obtaining the learned dynamics ¢(x,u) with 200 hidden neurons, the weights and
biases matrices of Vj for this experiment are recorded below.

—2.13787 —0.02771 2.83659 —3.33855  0.61321 4.98050 |"
1.07949 —0.25036 0.69794 —2.23639 —1.62861 0.11680 | ’

Wy = [ —1.23695 1.08396 —2.13833 —0.76877 —0.84737 1.47562 },
B, = [ —1.90726 0.87544 0.18892 0.73855 1.09844 —0.79774 ] and By = [0.59095],

le

and the nonlinear controller function is u = 5 tanh(—5.95539d, — 4.034266. + 0.19740)With
the learned dynamics ¢, a neural Lyapunov function can be learned on the valid region
||z]l2 < 0.8, and the neural controller is set as u = 5tanh(kz + b). The ROA comparison
with the LQR method can be found in Fig. 3.5a. Apparently, the neural network method
yields a larger estimated ROA, compared to the classical LQR approach in which the
level set is determined by considering some relaxation of the largest reasonable range of
linearization for practical systems under a small angles assumption, given the fact that the
actual dynamics is unknown.

The parameters for this valid neural Lyapunov function and the learned dynamics in
this case are listed in Table 3.2. The Lipschitz constant K is computed by using the bound
¢l < v/mllJyll,, where J; is the Jacobian matrix of f and m is the number of rows
of Js. Note that a can be the maximum of the 2-norm loss over a test dataset as stated
in Section 3.2, since what we need here is the discrepancies between the actual value and
the approximated value of some known samples. In this regard, we can train FNN with
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fewer data samples, which is more computationally efficient. Then on top of that, a much
larger dataset uniformly sampled over state and input spaces is used to calculate «, which
contributes to a smaller §. We implement the same approach on the inverted pendulum
case as well.

Table 3.2: Parameters in unicycle path following case

K, Ky 6 o |5l B -
[45 108 le-d Te-3 443 0.1 0.1

Path Follwing Region of Attraction

0.8 —r 1.05 4 T T 0.72
= NN
0.6 - F0.90 31 T LOR - 0.64
\ [ Valid Region
_ 0.41 L 0.75 21 - 0.56
7 2 K8
= 0.2 1 r0.60 9 11 \ r0.48
o] T>) \
S 0.0 F0.45 -0 \ - 0.40
s o \
3] > \
L -0.21 +0.30 2 -1+ \ 0.32
< i
-0.4 4 r0.15 =21 \ -0.24
—0.6 - 0.00 =31 -0.16
-0.8 T T T T T T T —- -0.15 -4 T T T T T T T —-0.08
~0.8 -06 -04 -02 00 02 04 06 08 4 -3 -2 -1 0 1 2 3 4
Distance error de Angle(rad)
(a) ROA comparison for path following (b) ROA comparison for inverted pendulum

Figure 3.5: Comparison of obtained ROAs for path following and inverted pendulum.

3.3.3 Inverted Pendulum.

The inverted pendulum is another well-known nonlinear control problem. This system
has two state variables 0, 6 and one control input u. Here, 6 and 0 represent the angular
position from the inverted position and angular velocity. The system dynamics of inverted
pendulum can be described as

mglsin(6) +u — 0.10
me? '

6= (3.17)

In this example, the only nonlinear function we need to learn for FNN is (3.17).
Therefore, the input [z u]? is 3-dimensional and the output is 1-dimensional. Using
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constants ¢ = 9.81,m = 0.15 and ¢ = 0.5, by the same process as the previous experiment,
the weights and bias matrices of the neural Lyapunov function for this experiment are listed
below, and the corresponding parameters can be found in Table 3.3.

W= —0.03113 —0.01892 0.02354 —0.10678 —0.32245 0.01298

WQZ[—0.33862 0.65177 —0.52607 0.23062 —0.04802 0.66825
Blz[—0.48061 0.88048 0.86448 —0.87253 0.81866 —0.26619} and By

Y

0.03331  0.03467 2.12564 —0.39925  0.12885 0.95375}T
= |

0.22032],

and the nonlinear controller function is © = 20 tanh<—23.286329 — 5.270559) The valid

Table 3.3: Parameters in inverted pendulum case

Ky K, 0 a 1251 B«
i33.214  633.806 be-5 5He-3 0.51 0.02 04

domain is ||z]|, < 4. The similar ROA comparison is shown in Fig. 3.5b, where the LQR
approach uses the same function as given in [7]. The details regarding the bounds and g
are given in the appendix.
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Chapter 4

Koopman Operator

The classical perspective on dynamical systems that dominated this field in the 1900s is
the geometric perspective championed by proficient mathematicians such as Poincare. This
approach works well for low-dimensional dynamical systems, but it can not be used in
the absence of a well-modeled differential equation. Fortunately, the more recent data
driven methods only require measurements of the system and subsequently, can perform
system identification and can also determine the Lyapunov function for verifying asymptotic
stability as described in the previous chapter. In the 1920s an alternative perspective that
analyzed the evolution of so called measurement functions through the flow mapping intro-
duced the Koopman operator. This methodology has shown its significance in data-driven
dynamical systems with applications to robotics which are typically difficult to model with
differential equations [39)].

We will start off by clearly defining the notation and terminology. Denote the state
space as X and define the dynamics on it by some iterated mapping T : X — X. In this
chapter, we are concerned with observables or measurements of the state. These functions
can be thought of as data points. To this end, define an observable to be a function
g : X — C. The (discrete-time) Koopman operator is denoted as the operator mapping
Kr: F — F and can be defined by the following relation

[Krgl(x) = 9(T'(x)). (4.1)

Working with discrete time dynamics sometimes poses an unneeded restriction as the natural
model for many physical processes can be formulated with continuous-time dynamics.
Assume that we have the continuous-time dynamical system

% = f(x). (4.2)
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In this setting we have a family of Koopman operators, K! with each one being parameterized
by time. The family {K'},cg forms a semi-group and we call this the Koopman semigroup.
The action of the Koopman semigroup on the observable g € F can be defined as

[K'g](z) = g('(2)). (4.3)

Here ®'(x) is the flow map that takes an initial condition x € X and maps it to the solution
of the initial value problem (4.3) having initial condition x(0) = x¢. The infinitesimal
generator of the Koopman semigroup can be defined as

[Lf] :=lim w,

t—0 t

(4.4)

where the limit is taken in the strong sense for operator derivatives. We define the Lie
derivative of g along the vector field given by (3.1) as the scalar function

Vg - f(x(t)).

From now on we refer to this scalar function as simply the Lie derivative as the vector field
is taken to be implicitly defined. The generator L is called the Lie operator as the action of
this operator is equivalent to taking the Lie derivative of g. By the chain rule, it can be
shown that the following holds:

© 9(x(1)) = Vg x(t) = Vg F(x(1)) (4.5)

and equating this with the definition of the infinitesimal generator

1)) =ty LTI gy (46)

7—0 T

results in the following equality

Lg=Vg-f. (4.7)

4.1 Eigenfunctions and Spectrum of the Eigenvalues

In discrete time, a Koopman eigenfunction ¢(x) corresponding to an eigenvalue \ satisfies

@ (Xpt1) = Ko (xx) = Ap (x) (4.8)
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and in continuous time, an eigenfunction of the infinitesimal generator ¢(x) satisfies

2 o(x) = Lo(x) = up(x). (4.9)

In continuous time, each eigenfunction of K is an eigenfunction of the infinitesimal generator,
but with a different eigenvalue. Indeed, if we have that ' = Ay, then

Ko — A —1
Lo = lim 2P im
t—0 t t—0

© = log(\)¢, (4.10)

by L’Hopital’s rule. Therefore, there is a natural correspondence between eigenvalues of K*
and £ which is given by \* = exp(ut). This is why we will not make a distinction between
Koopman eigenfunctions and eigenfunctions of the infinitesimal generator in this thesis.

Note that the Koopman operator is clearly linear and that by the following result there are
infinitely many Koopman eigenfunctions.

Property 1. The product of Koopman eigenfunctions is a Koopman eigenfunction.

Proof.

K (p1p2(x)) = p192(T(x)) = @1(T(x))p2(T (%)) = M Aapr(X)pa(x).
O

Note that while a high-dimensional linear approximation simplifies the representation of
the dynamics, performing calculations with a high-dimensional matrix (i.e. with matrix
multiplication) does not scale linearly in the number of operators so we can look for a
representation in terms of Koopman modes that will. Although we hae spoken thus far
about scalar measurements, in general, we often take multiple measurements of a system,
which we will arrange in a vector g :

Each of the individual measurements may be expanded in terms of a basis of eigenfunctions
pj(x) :

9i(x) = Z Vi (%)
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Thus, the vector of observables, g, may be similarly expanded:

g1(x) .
s = | "7 | =3 giboms (4.11)
9p(%) -

where v; is known as the j-th Koopman mode associated with the eigenfunction ¢;.

Given the decomposition in (4.11), it is possible to represent the dynamics of the measure-
ments g as follows:
g(x(t) = K'g (xo0) = K'Y ¢ (x0) v;

=1

This sequence of triples {(};, goj,vj)};il is the Koopman mode decomposition and was
introduced by Mezié in [23]. Often, it is possible to approximate this expansion as a
truncated sum of only a few dominant terms.

4.2 Dynamic Mode Decomposition

For the Koopman theory to be useful in practice, we must be able use the data to learn the
Koopman operator. As the Koopman operator is an infinite-dimensional operator, this is not
possible, but we can settle for a high dimensional linear representation that approximates
the action of the Koopman operator. Since the method has to be computationally tractable,
we restrict ourselves to a finite-dimensional subspace of measurement functions Fy C F. A
practical interpretation of Fy is a space of N linearly independent functions that serve as
a finite-dimensional basis of F. This section describes exactly this procedure and derives a
connection between the dynamic mode decomposition (DMD), an algorithm that seeks to
obtain a finite-dimensional approximation of the Koopman operator and the restriction of
the Koopman operator onto Fy. We follow the procedure outlined in [16], which is defined
for discrete time. The advantage of this method over the original formulation of the DMD
algorithm introduced by Schmidt in [30] is that the timesteps are not required to be uniform.
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The DMD algorithm computes a linear best fit matrix that approximates one forward
advancement in time according to the following linear dynamical system

Xk+1 = AXk. (412)

Here x; = x(kAt), and At denotes a fixed time step that is chosen a priori sufficiently small
to resolve the highest frequencies in the dynamics so that the approximation is reasonable.
It is further claimed, but never shown in [[10] that the DMD matrix A is an approxima-
tion of the (discrete time) Koopman operator K restricted to a measurement subspace
spanned by direct measurements of the state x. This is true for a generalization of the DMD
algorithm called the extended DMD algorithm (eDMD) and is shown in the following section.

The data for the DMD algorithm are pairs of measurements that differ by one time
step, i.e. {(x(tx),x(t})}—, where t; = t, + At. Note that in this algorithm, the times
need not be sequential or evenly spaced. These snapshot pairs are then arranged into the
following data matrices

X'= | x(th) x(t5) - x(iy,)

|
t
- : - (4.13)
t
|

Thus, in matrix notation, (4.12) can be rewritten as
X'~ AX. (4.14)

Since (4.14) is typically over-determined and thus, can only be solved approximately, a
reasonable approach is to formulate this as an optimization problem

A = argmin || X' — AX||, = X'XT, (4.15)
A

where || - || is the Frobenius norm and T denotes the pseudo-inverse. The pseudoinverse of
X may be efficiently solved using the singular value decomposition (SVD). The SVD of
X =UXV* where U and V are unitary matrices, i.e. U*U =1 and V*V =1. Thus,

X' =vz-lur (4.16)
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Since the matrix A has size along the order n? we seck a truncated representation which
is derived through the leading spectral decomposition. The idea will be to represent the
observables in as linear combinations of eigenfunctions of A so that A need not be computed.
First, observe that since the data matrices X and X’ have many more rows than columns,
say m << n, hence the rank of A which we will denote as r will be an order of magnitude
smaller than n. Therefore, for efficiency we project A onto the first r columns of the matrix
U, we denote the matrix formed from the first r columns of U as U, and approximate the
pseudo-inverse using the rank-r SVD approximation X ~ U, 3, V. Therefore, the matrix
A can be approximated as .
A =U/AU,

= UrX'X'U,

=UX'V,.2 'U'U,

=UX'V, 3"

(4.17)

Thus, the spectral decomposition of the matrix A may be approximated from the spectral
decomposition of the reduced matrix A according to

AW = WA. (4.18)

The eigenvectors of A are the DMD modes ®, and they are reconstructed using the
eigenvectors W of the reduced system and the time-shifted data matrix X’ :

d=XVE 'W. (4.19)

Similarly, the DMD eigenvalues are the eigenvalues contained in the diagonal matrix A.
Upon computing the DMD eigenvalues and modes, it is possible to represent future states
in a DMD expansion that is analogous to the Koopman mode decomposition

Xp = N 'h; = @AM D, (4.20)

J=1

where ¢; are eigenvectors of A (DMD modes), A; are eigenvalues of A (DMD eigenvalues)
and b; are the mode amplitudes. Evaluating the Koopman mode amplitudes is equivalent to
evaluating for the (initial condition) in the Koopman mode decomposition and is normally
evaluated according to

b = ®'x,. (4.21)
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4.3 Extended DMD and Convergence

While DMD remains a popular algorithm for estimating the Koopman operator, this method
struggles with strongly non-linear systems as it is based on linear measurements of state
variables. An alternative method introduced in [11] called the extended dynamic mode
decomposition (eDMD) takes measurements of the state through non-linear basis functions.
Similarly to DMD, for the eDMD algorithm, let F be the space of observable functions and
assume that we are given snapshots of the data X and X’ as

|
X = | x(t) x(t2) - x(tn) |

- (4.22)
X = | x() x(t) o x(t,)

|
t
|
|
t
|

Then given a set of linearly independent basis functions f; € F, define the linear subspace
F. C F as

Fn=span{fi,..., fa}. (4.23)
In eDMD, an augmented state z € R™ is formed by
fi(x) hi(x)
z="f(x)= f2<:x) , 7z =f(x') = fQ(:X) : (4.24)
fa(x) fa(X')

Note that the vector z may contain the original state if f;(x) = x. So we typically have
that the dimension of z is much greater than the dimension of x. Next, construct the data
matrices o | o

7 = Z1 Zo - Zpy , ZI: le Z/2 N A
. | .
where the sampling need not be uniform in time. The eDMD computes a finite-dimensional

approximation of the Koopman operator, KC,, ,, : F,, = F,, by solving the following least
squares problem

(4.25)

/
m Y

AECN XN AECNXN £

min ||AZ —Z'|[; = min > ||Az; — z]|;. (4.26)
=1
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Denote the solution to this least squares problem as
Apn = Z'Z7. (4.27)
We can write the eDMD operator K, , : F, — Fp, as
Komth = €} Apnf (4.28)
for any ¢ = cf, ¢, € CV, where H denotes the Hermitian transpose.
For the remainder of this section, we set the space of observables as L?*(u) where pu

is some positive measure on the state X (more information on L? spaces is given in A. Now,
given the data points xq, ..., xy, we define the empirical measure fiy; by

1 M

where 0,, is the Dirac measure at z;. In particular, the integral of a function ¢ with respect
to fips is given by

| elardinnte) = 3730 o).

i=1
We can now show that under certain conditions computing the eDMD operator from
sampled data can be viewed as an L? projection. See Appendix A for notation regarding
the projection operator in L? spaces. First, note that using our notation, (A.1) becomes

Pho = arg min/ ‘ch— qﬁ‘z djs. (4.29)
x

ceCN

Remark 5. Therefore, the projection with respect to the empirical measure is given by

M

X i 2

Pl = arg n?vmz | flas) — o) (4.30)
ceC i=1

Since a finite linear combination of L? functions is L?, the subspace Fy is a closed subspace

of both Lo (fips) and Lo(p) and hence the projection operators Py and Py are well defined.

In the following section we present a proof of the convergence of the eDMD operator to the
Koopman operator as presented in [18]. However, we first provide an alternative proof of
the following thoerem which has the added benefit of not requiring the assumption that
the authors make in [13].
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Theorem 8. Let F be any space of observables and let Fn be a subspace spanned by N
linearly independent basis functions f; € F. Then, the eDMD operator IC,, , : Fn — Fn s
the matriz representation of the operator P]‘;‘,MIC|fN, where KC| £, is the restriction of the
Koopman operator to the subspace Fy .

Proof. By definition it follows that
g=a"f, Kyug=Db"tf. (4.31)

Since this is clearly a linear transformation it admits a matrix representation which we can
define as Ky € RV*Y such that
KN,Ma =b. (432)

It follows from (4.31) that
Knaf =Ky (a7f) = (Kyya) f.
and, since (4.32) holds for all a, (we can choose a = ¢;) to see that
Knarf? = 7K y .
As in (4.30), we have that

K 2

PiMp = argmin Z b (xx) — o (x1)| - (4.33)

despan{ fi,...fN} p—1

This corresponds to the least squares solution

¢ (x1)
Pyo = fTX1 : : (4.34)
¢ (%K)
For ¢ = Kf;,
Kfi (x1) fi (1)
e =exi| | =exi| (4.35)
Kfi (xk) fi ()
Therefore, we have Ky 17 = fTZ1Z so that we get
Ky =27Z'Z. (4.36)
This proves the claim. O]
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4.3.1 Convergence of the eDMD Operator

It has been shown that the eigenvectors of the eDMD operator can be used as Lyapunov
functions to certify stability for the underlying dynamical system ([22]). Therefore, we wish
to understand the convergence of the spectrum under the asymptotic convergence of the
eDMD operator to the Koopman operator to develop rigorous guarantees concerning the
existence of the Lyapunov function. However, these types of results are rather restrictive
as strong notions of spectral convergence can only be formulated in the case of uniform
convergence of operators.

Definition 6. A sequence of bounded linear operators F,, : V. — W 1is said to converge
uniformly to F :'V — W if

|F, — F|| — 0,
where || - || is any operator norm.

Lemma 3. Suppose that a sequence of bounded linear operators F,, : V — W converges
uniformly to F : V — W. Then, the respective spectrum converge in the Hausdorff metric,
i.e.

A}im dist (0 (Knyar),0 (Kn)) =0,

where o(-) C C denotes the spectrum of an operator and dist(-,-) the Hausdorff metric on
subsets of C.

To discuss the convergence of the eDMD operator, we first make the assumption that
the basis functions are linearly independent on all states apart from a set of measure 0.
However, as we consider the convergence as the number of samples goes to infinity, we first
assume that the measure p define on X is a probability measure.

Assumption 5. Assume that the measure p defined on o(X'), where o(X) is some o-algebra
is a probability measure, that is u(X) = 1.

Assumption 6. ( u independence) The basis functions fi,..., fx are such that
pf{reX|Mf(z)=0}=0
for all nonzero c € CN.

Remark 6. Note that for commonly used basis functions like polynomaials or trigonometric
this assumption holds deterministically.
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It is well known from probability theory that the empirical measure 7,; will converge to v
weakly (weak convergence for probability measures is defined in A). In fact, it is also true
that the respective projections converge strongly.

Lemma 4. If Assumption 6 holds, then for any ¢ € F we have with probability one
dm |Pe - Pie =0
where || - || is any norm on Fy (which are all equivalent since Fy is finite-dimensional).

Remark 7. Here probability enters the picture as the projection operator P]‘;‘,M 15 dependent
on the sample points which are sampled according to the distribution p.

Since strong convergence is equivalent to uniform convergence in finite-dimensional spaces,
we immediately obtain uniform convergence and thus, convergence of the spectrum in the
Hausdorff metric.

Theorem 9. If Assumption 6 holds, then we have with probability one for all ¢ € Fn

hm ||’CN7M§Z5 — KN¢|| = O,
M—o0
where || - || is any norm on Fy. In particular
lim HICN,M — ’CNH == O,
M—+o00

where || - || is any operator norm and

A/l[lm dist (0' (ICN,M) , 0 (ICN>) = O,

where o(-) C C denotes the spectrum of an operator and dist(-,-) the Hausdorff metric on
subsets of C.

Now, to discuss the convergence of Ky to the Koopman operator I we make two further
assumptions.

Assumption 7. The following conditions hold:

1. The Koopman operator K : F — F 1is bounded.

2. The observables 1y, ..., VN defining Fy are selected from a given orthonormal basis of
F, i.e., ()2, is an orthonormal basis of F.
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The following result is true for any separable Hilbert space and therefore holds for L?(v)

[12].

Theorem 10. For an orthonormal sequence {e1, ey, ...} in a separable Hilbert space H,
the following statements are equivalent:

(a) The sequence is an orthonormal basis.

(b) The only vector perpendicular to e; for all j is zero.

(c) The projection operator P, — I in the strong operator sense as n — oo.

To study the convergence of the spectrum of Ky to K, we need to redefine the Ky
as this operator is defined on Fy, a finite-dimensional linear space. Thus, the natural
extension of Ky to F is to precompose with Py which simply adds a zero to the spectrum
of Ky as all functions orthogonal to Fy must be mapped to zero under the projection
operator. That is, we study the convergence of KnPy = PVKPY : F - Fto K F - F
as N — oo.

Theorem 11. If Assumption 7 holds, then the sequence of operators Kn Py = PNICPY
converges strongly to K as N — o0, i.e.,

Nhinoo/X IKnPlo — Ko du =0
for all € F.

Proof. Let ¢ € F be given. Then, writing ¢ = Pi¢ + (I — Py) ¢, we have

IPNEPN¢ = Kol = |(Py = D) KPyo + K(Py = 1) ¢l < [|(Py = 1) KPyol| + K] I(1 = Py) ¢
<Py = D Kol + 1Py = DIHIKPyé = Kol + KN I(I = Py) ¢l =0

by Lemma 2 and by the fact that KPy¢ — K¢ since K is continuous by Assumption 7. [

Since strong convergence is a weaker notion of convergence than uniform convergence,
we cannot conclude convergence of the spectrum as in Lemma 3. Accordingly, we can only
obtain a weak notion of convergence of the eigenfunctions.

Definition 7. (Weak Convergence) A sequence of elements f; € F of a Hilbert space F
converges weakly to f € F, denoted f; = f, if

for all g € F.
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Since some results used in the proof of the following theorem are required in for Section
4.4.3, we detail the proof. The following two results can be found in [35].

Theorem 12. (Banach-Alaoglu theorem: the original version) Let X be a Banach space.
Then the unit ball B of X* is compact in the w* topology.

Theorem 13. (Eberlein-Smulian theorem) If X is a Banach space and A is a subset of
X, then the following statements are equivalent:

1. Fach sequence of elements of A has a subsequence that is weakly convergent in X.
2. Each sequence of elements of A has a weak cluster point in X .
3. The weak closure of A is weakly compact.

Theorem 14. If Assumption 2 holds and Ay is a sequence of eigenvalues of KCn with the
associated normalized eigenfunctions ¢ € Fn, ||on|| = 1, then there exists a subsequence
(AN, &n,) such that

lim Ay, = A, &N, — ¢,

1—00

where A € C and ¢ € F are such that K¢ = \p. In particular if ||¢|| # 0, then X is an
eigenvalue of K with eigenfunction ¢.

Proof. First, observe that since Kyony = Ayony with ¢y € Fy, we also also have
PYKPyoN = Angn. Hence |Ay| < ||PGEPY] < |IK]| < oo by Assumption 2 and the
fact that ||Py|| < 1. Therefore the sequence Ay is bounded. Since ¢ is normalized and
hence bounded, by weak sequential compactness of the unit ball of a Hilbert space there
exists a subsequence (\y,, ¢y, ) such that Ay, — X and ¢y, — ¢.

It remains to prove that (A, ¢) is an eigenvalue-eigenfunction pair of K. For ease of notation,
set \; = Ay, and ¢; = ¢n,. Denote K; = Kn, Py, = Py, KPy, and observe that Kidi = N\ich;
for all . Then we have

Ko=Ki(p—¢i)+ (’C_Kz) ¢ + K.

Taking the inner product with an arbitrary f € F and using the fact that K;¢; = \igh;, we
get

(Ko, f) = (Ki(6 =00, f) + (K= Ki) 6. f ) + (N £)
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Now, the second term on the right hand side <(IC - I@z) o, f > — 0 since K; converges

strongly to K by Theorem 3 . The last term (\;¢;, f) — (Ao, f) since \; — X and ¢; — ¢.
It remains to show that the first term converges to zero. We have

where we used the fact that PK& is self-adjoint and ¢; € Fy, and hence Pﬁ,@gbZ = ¢;. Denote
h; =K (P]’\‘,igb — gbi). We will show that h; — 0. Indeed, denoting K* the adjoint of K, we
have

(K (Py,0— 1), f) = ((PN,0— ¢+ —di) K f) = (PR,¢ — &, K f)+(d — 6, K" f) = 0,

since P]’(,i converges strongly to the identity (Lemma 2) and ¢; — ¢. Finally, we show that
(hi, P]’{,Z_f> — 0. We have

The second term goes to zero since h; — 0. For the first term we have
(hi, P f = f) < il [P f = £I| =0,

since P]‘\L,i converges strongly to the identity operator (Lemma 2) and h; is bounded since K
is bounded by Assumption 2, || P4 || < 1 and ||¢;]| < 1. Therefore we conclude that

for all f € F. Therefore K¢ = A\o. O

4.3.2 Simultaneous Convergence of the eDMD Operator

In this subsection we investigate an interesting analytical result when the number of sample
points M and number of linearly basis functions N increase at the same rate, that is,
M = N — co. The space of observables we consider is C'(X) which we define as the space
of functions f such that

| flloy = sup | f(x)] < oco.
TEX

which includes the continuous functions by the assumption below and the indication
functions. Simply write Ky = Ky n, with eigenvalues Ay and eigenfunctions ¢ € Fi.
First we make some assumptions. The first assumption is to normalize the eigenfunctions
and the rest are necessary for the convergence to be proven in this section.

37



Assumption 8. Suppose that the following assumptions hold:

1. Suppose that X is compact and that all eigenfunctions of KCn are continuous.

2. The mapping T is a homeomorphism, i.e., T is continuous and has continuous inverse
Tfl

3. The samples x; lie on the same trajectory.

Thus, it is clear from point 1 of Assumption 8 that the eigenfunctions ¢ can be normalized.
In this case since the matrices Z and Z’ are square matrices, Assumption 6 then implies
that the least squares problem can be solved exactly. That is, the equation

= AZ

has a unique solution for A € RY. Therefore, for any function f € Fy this implies that the
eDMD operator Ky is exact on these sample points. That is,

(KF) (i) = (KnnT) (i)

for all sample points x; and f € Fy. for all f € Fx. Since the eigenfunctions are linear
combinations of the basis functions, this relation holds for the eigenfunctions ¢ of Ky n,
yielding

Using point 3 of Assumption 8, and by setting the additional point zx; = T(xy), we see
that relation (4.37) can be written as

N N
1 1
N i:E 1 h(zz)¢N($z+1) = )\NN i:E 1 h<xz)¢N(xz) (438)
Furthermore, since a linear combination of Dirac masses is still a measure, by setting

1 N
N = N;QM(%)%“

the left hand side of (4.38) can be split up and expanded as

%Zh(xi)¢N<$i+l :%Z WMT ™ z) oy (z )+%( (zn)pn(Eny1) = M(T ™ 1) dn (21))

hoT 'duy + % (h(an)on(zn41) — M(T  21)dn(21)) -

><\
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Therefore, substitution the left hand side in (4.38) gives

/X ho T Yduy + % (h(an)dn(@nat) — BT e1)én(21)) = A /X hdvy.  (4.39)

Observe by points 1 and 2 of Assumption 8 that the (h(zx)dn(Tni1) — (T 21)on(T1))
term is bounded and thus, converges to 0 over any subsequential limit. Indeed, by Prohorov’s
Theorem in Appendix A we can select a common subsequence vy, — v weakly and Ay, — A.
Taking limits of both sides gives

/ hoT 'dv = )\/ hdv (4.40)
x x

for all functions h € C(X). To interpret relation (4.40) we introduce invariant measures.

Definition 8. A measure p is said to be invariant on X with respect to a measureable map

T if (T (A)) = p(A) for all Borel sets A € a(X)).

Remark 8. An equivalent condition for a measure p to be invariant on X with respect to
a measurable map T is if fX foTdu= fx fdu for all countinuous bounded function f.

Note that since the empirical measure fiy converges weakly to u, it can be shown through
some calculation under point 3 of Assumption 8 that the measure y is invariant. Furthermore,
it is a well known fact that when the measure y is invariant that the dual of the Koopman
operator (as an operator from Ly(u) — Lo(u)) is given by

K'f=foT

We show this here as well. This is because

<’Cf,g>=/x(foT)gdu
/(foT)(goT—loT)d,u
/f goT
=(f,K*g),

where the second and third lines follow from invariance of the measure and the skew
symmetric property of the inner product. Therefore, (4.40) can be written as

/lC*hdl/: )\/ hdv. (4.41)
X X

Immediately this shows that the measure v is an eigenmeasure of the Frobenius operator.
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Definition 9. The Perron-Frobenius operator P : M(X) — M(X), where M(X) is the
space of all complez-valued measures on X, is defined for every n € M(X') and every Borel
set A by

(Pn)(A) =n(T'(A)).

Therefore, setting h := go T in gives

/gonV:l/ng.
X Adx

Written out clearly, the measure v is the eigenmeasure of the Perron-Frobenius operator
with eiegnvalue 1/\. This is because we can write g = 1,4, which is the indicator function.
Therefore, going this calculation would yield

1
Pv = XV.

The Perron-Frobenius has been well known in the literature to be a dual to the Koopman
operator, however it has received interest recently due to its connection with the Lyapunov
density, a weakening of the Lyapunov function that verifies asymptotic stability almost
everywhere with respect to some measure describing the distribution of the states.

Remark 9. Note that by the measure theoretic version of the Riesz representation theorem,
we can find representations for the certain functionals that look like eigenfunction relations.
This is explained below, however it is still unclear how this could be useful.

The idea will be to obtain generalized eigenfunctions of the L? adjoint of the Koopman
operator as in the sense of [13]. Thus, we define the linear functionals Ly : C'(X) — C by

Lu(t) = [ hoydiN.
X
and
X

This means that relation (4.37) can be rewritten as
KLy = AvLuy. (4.42)

Moreover, as we normalized the eigenfunctions so that ||¢x|| = 1 it is clear (by bounding by
the sup pointwisely over the integral) that ||Ly|| <1 and |[[CLx|| < 1. As both functionals
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lie inside the unit ball, the Banach Anagolu theorem asserts that we for each sequence we
can find a subsequence along which converge in the weak* topology to functionals L € C(X)
and KL € C(X)* satisfying the relation

KL = \L,

where the scalar A is a limit point of the sequence {Ax}. Moreover, by the measure theoretic
Riesz Representation theorem, the bounded linear functions L and KL can be represented
by complex measures v and Kv such that

Kv = Av. (4.43)

Remark 10. A note of caution that L and Kv are weak limits and its representation as
a complex measure, rather than the action of the Koopman operator.

4.3.3 Application of the Convergence of the eDMD Operator to
Stability Analysis

The eigenfunctions of the Koopman operator can be used to form a Lyapunov function
according to the formula

N 1/p
V() = (Z o5 W) ,

with the integer p > 1. This is because these Lyapunov functions satisfy V (¢'(z)) <
Re {\1} tV(x) for z € X, where )\, is the eigenvalue closest to the imaginary axis (which
gives exponential stability). This result can be used to define a set

Qy={re X |V(z)<a},

which is forward invariant if Q, N 90X = @), where 0X is the boundary of X. In numerical
simulations, the Lyapunov function can also be used to approximate the region of attraction.
However, approximating the region of attraction using the eigenvectors of the eDMD
operator will not yield good results, unless the number of sample points and the number of
basis functions are large. A better numerical scheme which seeks to identify the Koopman
eigenfunctions through solving a partial differential equation is described in [22].

We note that in recent years the Lyapunov density has become increasingly popular.
While a Lyapunov function is a particular observable that decreases under the action of
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K, a Lyapunov density (or Lyapunov measure) decreases (almost everywhere) under the
action of P* [12]. The Lyapunov density was initially introduced in [32] as a function
Ct (X\ {z*}) that satisfies V - (Fp) > 0, a property which precisely corresponds to the
action of the Perron-Frobenius infinitesimal generator Lpp < 0. In future work we will
identify the connection between the action of the Perro-Frobenius operator and the action
of its infinitesimal generator and use the results of Section 4.3.2 to derive guarantees on the
existence of Lyapunov densities for this method.

4.4 Infinite Matrix Representation of the Koopman
Operator

In this section we show that the Koopman operator admits a matrix representation in
a suitably chosen basis. Let the state space X be a compact forward invariant set.
Correspondingly on this set, consider L*(X) that is f € L*(X) if it satisfies

/Xf2(:17)d:17 < 0 (4.44)

and it can be shown that L?*(X) is a Hilbert space with norm generated by the following
inner product

(f.g) = /X f(2)g(x)da. (4.45)

The motivation of this representation comes from the following classical result in the theory
of Hilbert spaces.

Theorem 15. Let H be a Hilbert space. The following are equivalent:

e H s separable.
o H has a countable orthonormal basis.

e Fvery orthonormal basis for H is countable.

In addition to considering the special case of square integrable functions, we require
assumptions on the flow operator. This is formulated in the following theorem
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Theorem 16. Let X be a forward invariant and compact set. Fixzt > 0 and suppose that
the flow operator ®' is continuously differentiable. Then the Koopman operator K' is a
bounded linear operator. Moreover, if {¢1,...,¢On,...} represents the Schauder basis formed
from Hermitian polynomials then we have the following matrix representation

SN (Ko, @) (f.ex) = K'f (4.46)
71=1 k=1

for all observables f € L*(X). The coefficients (K'¢y, ¢;) are referred to as the matriz
coefficients of K'.

Proof. Note by the forward invariance of X we have that ®‘(z) € X for all x € X so the
following mapping is well defined

K': LX) — L*(X). (4.47)

Before proving that X! is a bounded linear operator note that since ®! is continuously differ-
entiable, and X is a compact set, by the Weierstrass theorem it follows that | det Jipty-1| < M
for some M > 0. The change of variables theorem gives that

i f1g = [ 1f 0P
b's
_ / [ det Jigry 1 ()] 0 ® 0 & (u) 2du
2-H(X)
_ / [ det Jigry-1 ()| f2du
>-1(X)
< M|\ fIl3
and therefore the operator K! is a bounded linear operator. It can be shown that the
family of Hermitian polynomials {¢},, is an orthonormal basis and therefore by the previous
theorem, it must form a countable basis of L*(X). Now, let P, denote the projection
operator onto the subspace spanned by {¢1,...,¢,}. Since P, — Id in the strong sense

this implies that P,K!'P,,f — P,K'f in the strong sense. Thus, the coordinates in this
basis is given by

hm (KH( Z [, ) Or), ¢5) Z ’Ct(bka(b] (S5 b))
k=1 k=1
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Note that convergence holds here since the operator K! is a bounded linear operator. Finally,
taking P,K'f — K'f implies that

SN (Kl o) (f. d)0; =K' f.

j=1 k=1

O
Similar to the methodology of the extended DMD, we can sample data points to numerically
approximate the inner product (K'¢y,¢;). The advantage of this method is the fast

evaluation of new observable functions. The application of this representation will be
investigated in future work in the context of Lyapunov barrier functions.
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Chapter 5

Estimating the Region of Attraction

Recall that the ROA of an asymptotically stable equilibrium point as defined in Definition 2
is the set of all states that tend to an asymptotically stable equilibrium point. For practical
systems, the region of attraction is typically a proper subset of the entire state space and
therefore estimating a sufficiently large ROA allows for practical systems to operate at a
sufficiently stable operating point. Therefore, developing efficient numerical schemes for
estimating the ROA has been studied extensively [1, 6, 21, 26]. Analytically, the celebrated
Hartman-Grobman theorem asserts that the Jacobian can be used to test for stability of
some neighbourhood of the equilibrium point. However, in this chapter we review a general
methodology for efficiently computing the ROA as described in [15].

In [15] the authors discuss estimating the exact ROA. The exact ROA is not a closed
form description of that set, but rather the entire ROA is obtained indirectly via a set
that is convenient for numerical calculations (such as the largest level set of a Lyapunov
function that lies in a valid region). The traditional method for estimating the ROA is
called Zubov’s method [10, 43, 141]. Zubov’s method represents the ROA via the optimal
Lyapunov function which is the solution of a first-order partial differential equation (PDE).

Each Lyapunov function V' (z) associated with an equilibrium point z yields an estimate
of the ROA contained in the exact ROA. However, there does exist a Lyapunov function
whose associated ROA exactly coincides with the exact ROA. Zubov’s theorem provides a
way to determine this Lyapunov funciton through solving a PDE.

Theorem 17. (Zubov’s Theorem). Given an autonomous dynamical system & = f(x) with
f: X CR" = R and an equilibrium point xs € X°, a set R C X with xs € R° is the ROA
of xs iff Ju, h such that:
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1. V(0) = h(0) = 0,0 < V(z) <1 for z € R\{0}, and h > 0 for x € X\{0}.

2. ¥y > 0,3y > 0 and ag > 0 such that u(z) > v and h(z) > ay if ||| > 7.
3. V(xy) =1 for z, = OR( or ||z,] = 00).

4. VV(x) - fz) = =h(z)(1 = u(z) /1 + | f(2)]*.

Note that points 1 and 4 concern positive and negative definiteness respectively of V' (x)
in satisfying the Lyapunov conditions. The central point is point 3 and it says that the
solution to Zubov’s PDE yields a Lyapunov function V(z) : X C R" — R whose associated
ROA is the complete ROA). However, this result is rather limited due to Zubov’s PDE
does not having an analytical solution in general. Nonetheless, several different numerical
approaches have been developed to compute an approximate solution to Zubov’s PDE, and
exact solutions have been developed for specific applications [33].

The main difficulty with applying Zubov’s method is the auxiliary function h has to be
provided prior to solving for the Lyapunov function V' (z). Fortunately there are other ways
to determine an implicit, level set based representation of the complete ROA associated
with an equilibrium point. One such method described in the following section depends on
finding the viscosity solution to a particular Hamilton-Jacobi PDE.

5.1 Theoretical Foundations

In this section we denote the solution to the problem (3.1) as x(t; zo, tg) where zy and t, are
to be understood as the initial states and times respectively. We now present an alternative
way to determine the exact ROA, but to do this we need to introduce two definitions.

Definition 10. For system (3.1), the forward reachable set over the time interval [0,t] is
defined as
Fy(1,10,t]) :={z € R" | 3¢ € I,3s € [0,t],x (s;20,0) = z} .

Intuitively, the forward reachable set can be thought of as the states for the trajectory
can reach over a fixed time interval ¢. Note that since this is an autonomous system, the
specific end points of the interval have no effect on the forward reachable set. Similarly, the
backward reachable set is the set containing the sets for which the trajectories can reach a
target set within a given time interval. The backward reachable set is generally defined by
a terminal-value problem

B¢(K,[-t,0]) :={xo € R" | 2z € K,3s € [-1,0], z (s; 20, 1) = x},
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where K C R" is the target set. Similarly, the specific endpoints have no effect on the
backward reachable set for autonomous systems. In this section, the ROA is represented
implicitly as the zero sub-level set of a level set function. We denote the zero sub-level set
as

So(f) ={z eR": f(z) <0},

and the zero level set is denoted as

So(f) == {x e R": f(z) = 0},

The connection between the ROA of an asymptotically stable equilibrium point x, and the
backward reachable set of subset €2 of the ROA is clear. Since all states in the ROA must
tend towards zs as time tends to infinity, the time horizon for the backward reachable set
with (2 as a target set must be infinite. This is clearly stated in the following lemma for
which we offer a simpler proof.

Lemma 5. Let x5 be an asymptotically stable equilibrium point of system (3.1) and Af(xs)
denote the ROA of xs. Then, let Q C R™ be a closed region such that

Ty € €°,
Q C Af (xs),

where €2° denotes the interior of Q. Then
Aj (z5) = Bf(Q, (=00, 0]),

where By (), (—o0,0]) is defined analogously as in Definition , with the exception of the
interval (—oo, 0] in the place of the compact interval [—t,0].

Proof. Fix xy € Ay (z5). Since Q° is open there exists e > 0 such that B.(z,) € £2°. By
definition of the ROA, there exists a time 7" > 0 such that x(¢; zo,0) € B(x,) for all ¢t > T
Letting zp = 2(T"; 29,0) we see that zr € Q and zp € By(Q, (—00,0]). This proves that
Af (ZL’S) - Bf(Q, (—OO, 0])

Conversely, fix o € Bf(Q, (—00,0]). This means that there exists 77 > 0 and z € Q

such that * = x(T;20,0). But since z(¢;x,0) = x5 as t — oo we have that zq € Ay (z;)
which proves that By(€, (—o0,0]) C Ay (). O
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Lemma 5.1 states that the ROA can be obtained by the evolution of the backward reachable
set containing x, and contained in the ROA. This result leads to the development of a
methodology which has the advantage of not needing to choose an auxiliary function as
in Zubov’s method. The proposed method employs a time dependent PDE leading to an
iterative algorithm. There are multiple methods to numerically approximate the backward

reachable set based on a stationary Hamilton-Jacobi equation [11, 38]. In particular, the
backward reachable set can be computed as a limit of sub-level set of the viscosity solution
of the Hamilton-Jacobi equation. A special case of Theorem 2 in [24] states this below.

Theorem 18. Let ¢(x,t) : R™ x (—00,0] = R be the viscosity solution of the terminal
value Hamilton-Jacobi equation

8¢ + min [O f ] 0, (5.1)
( 0) = do(2),

where ¢o(x) is bounded and Lipschitz continuous, and

Ts S SO (¢0) )
5.2
o (60) © A (z2). 2

Then, the ROA can be described by ¢

Bi({z € R" : ¢o(x) < 0}, (=00,0]) = {z € R" | ¢(x, —o0) < 0}, (5.3)

where ¢p(x, —00) = lim, o0 ¢(z, —7).
The previous two results then immediately imply the following corollary.

Corollary 1. Given the same assumptions as in Theorem 18, the ROA can be described by

Af(xg) ={z e R" | ¢(z, —00) < 0} . (5.4)

Corollary 1 encodes the computation of the ROA as a terminal value Hamilton—Jacobi
equation. Since the viscosity solution ¢(x,t) changes continuously over time, its evolution
backwards in time implies that the sub-level set Sy(¢(z,t)) is getting closer to the exact
ROA.

Remark 11. Note that the sub-level sets So(¢(x,t)) increase in time and are always subsets

of the exact ROA. Indeed, since % >0, for 0 < T < oo,¢p(x,=T) > ¢(x,—00), which

means  So(¢(x,—T)) C {x € R" | ¢(x,—00) < 0}, therefore So(p(z, =T')) C Af ().

The remark implies that for sufficiently large time T, So(¢(z, —T')) can be used as a
conservative estimate of the exact ROA.
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5.2 Methodology

As proposed in [15], we state their evolutionary methodology to determine the ROA based
on the theoretical foundations of the previous section. The proposed methodology tracks
the evolution of the viscosity solution of the Hamilton-Jacobi equation on a fixed Cartesian
grid in any number of dimensions. This is an iterative method that yields a larger estimate
of the ROA than the previous time point. The following is an outline of the methodology
for determining the ROA:

Algorithm

1. Create the computational grid. The state space is discretized into a fixed Cartesian
grid, on which the estimates of the ROA evolve.

2. Compute the vector field on the grid. Compute the vector field of the system @ = f(z)
on the grid created in Step 1. The vector field is used to construct the numerical
Hamiltonian.

3. Create the initial condition. The zero sub-level set of the initial condition is an
initial estimate of the ROA and the zero level-set of initial conditions is an initial
estimate of the boundary. A quadratic Lyapunov function based on the linearized
system can be used to generate the initial condition. Additionally, a signed distance
function ¢g(x) = ||z — x,||, — ¢ can also be employed as the initial condition, where
the constant ¢ € RT is the radius of the initial spherical domain.

4. Compute the viscosity solution of the underlying Hamilton-Jacobi equation. Integrate
the underlying Hamilton-Jacobi equation backwards in time. Set a computational
period, say AT, and a limit on the total evolution time, say T,. A new level set
function ¢(z,t — AT) and a new estimate Sy(¢(x,t — AT')) can be obtained. Then,
let ¢(x,t — AT) be the initial condition and integrate the underlying equation until
the level set ¢(x,t) remains unchanged or the total evolution time reaches 7.

In this method, there is no optimal method for choosing the computational grid in Step 1.
However, it is typically taken as a uniform grid over the state space and the increments
can be decreased by trial and error to achieve a higher degree of accuracy. In Step 3, since
% > 0 we need to provide an initial condition such that its zero sub-level set contains
the asymptotically stable equilibrium point and is contained in the ROA. A conservative
estimate of the ROA can be determined by linearizing the system about z,. In particular,
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we want to compute a quadratic Lyapunov function and use its sub-level set to generate an
initial underestimate of the ROA (typically this produces a conservative underestimation).
Letting A denote the Jacobian of the system (3.1) about x4, we solve the Lyapunov equation
for P

PA+ ATP = —-Q. (5.5)

Here () is a symmetric positive definite matrix which is usually taken as the identity matrix.
Since x5 is an asymptotically stable equilibrium point, the matrix A is Hurwitz (i.e. possess-
ing eigenvalues with negative real part) so the Lyapunov equation has a unique symmetric
solution ([17]). Thus, the level set of the quadratic Lyapunov function V(z) = 2T Pz can
be used to estimate Af(z;). Consider the sublevel set Q. = {a:TPx —c< 0} for some
¢ > 0. If V(z) = 2f(x)" Pz is negative definite in {Q, — z,}, then Q. C A; (z,). Hence
do(x) = 2T Pz — ¢ can be used as an initial condition and a suitable ¢ can be determined
by computing 2f(x)" Px and which fits the largest level set in the valid region.

The key part of this method is the choice of the numerical method that computes the
viscosity solution of the Hamilton-Jacobi method. Several methods have been proposed for
this, but the level set method [27] is extensively used due to its efficient scheme. In the level
set method, the state space is discretized into a grid and the solution of the Hamilton-Jacobi
equation is represented implicitly through a level set function ¢(z,t), hence the name of this
method. Due to the inherent sensitivy of this method to spacial accuracy, the high-order
accurate method is employed to estimate spatial derivatives d¢/0z up to high accuracy.
Therefore, Equation (5.1) can be rewritten as

2 - i, (%) e 5

Thus, once the Hamiltonian is obtained, the value of ¢(z,t) can be obtained on each grid
node by time integration via explicit Runge-Kutta schemes.

5.3 Numerical Implementation

Here we present some examples employing the method outlined in Section 5.2. Moreover,
we compare the results of the numerical experiments of this section to those of Section 3.3.
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5.3.1 Van Der Pol Oscillator

We recall the equations of motion for the Van Der Pol Oscillator are

.ﬁtl = —T9

. 9 (5.7)
To =21+ (3:1 — 1) Ts.

We choose the Vander Pol Oscillator as it is a simple and serves as a good comparison as

the dynamics does not involve an input u. Firstly, we check the consistency of the algorithm

described in Section 5.2 by first comparing the phase plot.

e
s =il

X

Figure 5.1: Phase space plot of the Val Der Pol oscillator without controller. From this
image we can form an idea for the actual ROA.

Now that the phase plot is consistent, the computational grid is a rectangular Fuclidean
mesh bounded by xy € [—4,4] and x5 € [—4, 4], the size of grid cell is set to 0.01. Since the
equations of motion are simple, we simply choose the initial condition as the function ¢,
that has the circle of radius 0.5 centered at the origin as its level curve. Here in Figure 5.2,
the estimates of the ROA and boundary of different evolutionary times are plotted. In that
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figure, ten curves are plotted with each curve differing by an evolution time of 1 second.
The terminal evolutionary time corresponds to the largest curve at time 10 seconds. Figure
5.3 plots the estimated boundary obtained by the proposed methodology after 10 seconds
of evolution onto the phase portrait.

Figure 5.2: Estimates of the ROA and boundary of different evolutionary time

Note that compared to Section 3.3, the estimates of the ROA are much larger and closely
match the actual ROA of the Van Der Pol Oscillator. However, the down side of this
method is that the level set produces a set that does not appear to be forward invariant
with respect to the phase portrait. Moreover, unlike the learning methodology this process
requires a well modeled differential equation and so, in the presence of data, the dynamics
first have to be learned and there is no way to obtain formal guarantees that the simulated
ROA is close (in some kind of set metric, with a possible candidate being the Hausdorff
distance) to the actual ROA.
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Figure 5.3: The level set function ¢(z, 10) and the phase portrait of the system.

5.3.2 Chiang and Thorp Differential Equation

This is an example studied in Chiang and Thorp [%]. Here s = (0.02801, 0.06403) is the
equilibrium point whose ROA is to be determined. The equations of motion are given by

&1 = —sinz; — 0.5sin (x; — 23) + 0.01,

. . . (5.8)
9 = —0.5sinxy — 0.5sin (29 — 1) + 0.05.

Applying the proposed methodology to this system, the computational grid is a rectangular
Euclidean mesh bounded by x; € [—6,6] and x5 € [—6, 6], the size of grid cell is set to 0.01.
In this example, the initial condition is computed by solving the Lyapunov equation with
the Jacobian matrix A and symmetric positive definite matrix ). Then

—-1.5 0.5 3 =2 0.84 —0.48
A’”{ 0.5 —1]’ Q_{—Q 2 ] PN[—O.48 0.76 ]
The following function provides an initial condition
¢(x,0) = " Pr — 1.
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A sequence of ROA estimates of different evolutionary times is plotted in Figure 5.4 (a).
Curve D (in black) is the exact boundary. Curve A is the zero-level set of the initial
condition. Curve B is the estimated boundary obtained by the proposed methodology after
2 seconds of evolution and curve C is the estimated boundary after 10 seconds of evolution.
We note that the boundary in curve C is almost indistinguishable from the exact boundary.
Figure 5.4 (b) is the level set function ¢(x, 10) and the phase portrait. Indeed, the sequence
of estimated ROA is an increasing sequence which is contained in and converges to the
exact ROA. Here we see that the level set appears to be forward invariant with respect to
the phase portrait. Therefore, invariance seems to be problem dependent and it would be
interesting to develop conditions that guarantee invariance of the level set computed by
this methodology.
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(a)

Figure 5.4: (a) Estimates of the ROA and boundary of different evolutionary time. (b) The
level set of the curve ¢(z,10) and the phase portrait of the system.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

In Chapter 3, we developed a methodology for performing system identification given
measurements of the vector field and learned a valid Lyapunov function based on the
learned dynamics. The main innovation of this method is performing verification with SMT
as the main tool and developing a method using the Lipschitz constants for verifying the
validity of the learned Lyapunov function for the actual dynamics. The main difficulty of
using this methodology is due to the inability of the SMT solver to verify the Lyapunov
conditions in some neighborhood of the origin. Therefore, we introduced assumptions
under which some technical results can be proven so that the learned Lyapunov function
achieves practical stability about the origin. Another potential downside of this method is
the inability to scale to a high dimensional setting. This method suffers from the curse of
dimensionality for the same reason as many popular statistical learning methods such as
least squares. Simply put, in higher dimensions more data points are required to achieve
the same separation and this leads to massive training times.

To counter this problem of the neural network method, in Chapter 4, we introduce the
eDMD algorithm which is numerically very efficient as it is recasting least squares in the
context of finding a high dimensional linear representation of the dynamics. The eigenfunc-
tions of the Koopman operator can be used as Lyapunov functions for the system (assuming
the real part of the eigenvalues are negative). We subsequently, used the results regarding
the convergence of the eDMD operator to the Koopman operator to develop guarantees for
these Lyapunov functions. Finally, in Chapter 5, we introduced a method for determining
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the ROA of a dynamical system based on solving the Yuan-Li PDE. This method works
well, however due to approximation errors that occur when solving a PDE numerically,
there is no guarantee that the obtained region will be forward invariant.

6.2 Future Work

The research presented in all chapters can still be improved upon. We suggest the following
as questions that could potentially lead to interesting new results and research:

1. The data set used to train the unknown dynamics and learn the Lyapunov function
is generated from the trajectories of solutions to ordinary differential equations, but
in practice the actual measurements of the states are typically noisy, and sometimes
it is difficult to have direct access to the states measurements and obtain a significant
number of data points. For the learning methodology to become useful, we need to
understand how to learn the unknown dynamics and a robust Lyapunov function
with different values of § in (3.9) to guarantee stability with noisy measurements.
Furthermore, the implementation of this algorithm on real dynamical systems will be
investigated as well afterwards.

2. To complement the analysis in Section 4.3.1 and Section 4.3.2, we should focus on
non-asymptotic analysis of optimal basis functions. That is, for any n € N, how
should the basis functions f € Fy be chosen to minimize some metric. One possible
methodology would be to learn the basis functions with neural networks with N
functions outputted in parallel and trained to minimize HIC N — K, ;NH as the loss
function. In this problem, the loss function should also contain terms such that
the space Fy should contain observables that provide 'rich’ measurements of the
state. Providing a formal definition of this and encoding this into the loss function
is a challenging task. Therefore, it be interesting to compare a successful learning
algorithm with the existing attempts at choosing the basis functions.

3. More thought should be given to the results of Section 4.3.1 and Section 4.3.2 to
formulate formal guarantees on the existence of Lyapunov functions and Lyapunov
densities respectively. To the best of my knowledge, no rigorous guarantees on the
existence of a Lyapunov function or a Lyapunov density computed by the eDMD
algorithm exists in the literature. Formulating such a result will offer insight into
the types of problems that can possibly yield Lyapunov functions via the eDMD
algorithm.
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4. Learning based methods, especially those related to physics informed neural networks
(PINNS) typically used to solve PDEs should be used to learn the auxiliary function
while simultaneously solving Zubov’s PDE to obtain the Lyapunov function. It is
possible that by tweaking the loss functions and structure of the neural network
that the same methodology used for our NeurIPS submission can be adapted to this
problem.
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Appendix A

Background on Measure Theory

A.1 Primer on Measure spaces

In the Appendix we quickly include the most pressing results on measure theory required
to read this thesis.

Definition 11. Let X be a set. A collection A of subsets of X is called a o-algebra of sets
in X if the following three statements are true:

1. The set X is in A.
2. If Ae A, then A° € A, where A¢ is the complement of A in X.
3. IfA, € AforallneN, and if A=,—, A, then A € A.

A set X together with a o-algebra A is called a measurable space and is denoted by (X, .A).
The elements A € A are known as measurable sets.

Definition 12. Let (X,.A) be a measurable space. A scalar-valued function f with domain
X is called measurable if f~(V) € A whenever V is an open set in the scalar field.

Definition 13. Let (X, A) be a measurable space. A set function p: A — [0,00] is said to

be countably additive if
p <U Aj) = n(4),
j=1 J=1
whenever (A;)>°

j=1 1 a sequence of pairwise disjoint measurable sets. By pairwise disjoint
we mean A; N Ay = Qwhenever j # k.
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A countably additive set function p : A — [0, 00] such that () = 0 is called a positive
measure on A. In such a case, we call the triple (X, .4, 1) a positive measure space. If the
o-algebra is understood, we often write (X, ) for the positive measure space and say p is
a positive measure on X.

Example A.1.1. The Borel o-algebra on R is the smallest o-algebra that contains all of
the open intervals in R. A measure defined on the Borel o-algebra on R is called a Borel
measure on R.

In the context of probability theory, measurable functions are called random variables and
probability measures are simply measures such that p(X) = 1. Like real valued functions,
Borel measures also have notions of convergence. One such is called weak convergence
(which should not be mistaken with convergence in the weak* topology, although the two
coincide if the underlying space X is compact).

Definition 14. A sequence of Borel measures u; converges weakly to a measure p if
limy oo [ fdp; = [ fdp for all continuous and bounded f.

The following are criterion for when a sequence of probability measures has a weakly
convergent subsequence. The proof of the theorem can be found in [2].

Definition 15. A sequence of probability measures P, on metric space S is defined to be
tight if for every e > 0 there exists ny and a compact set K C S, such that P,(K) > 1 —¢
for all n > nyg.

Theorem 19. (Prohorov’s Theorem). Suppose sequence P, is tight. Then it contains a
weakly convergent subsequence Py = P.

Remark 12. Note that by normalization we have that the previous theorem also applies to
finite measures.

A.2 Projections on Measure Spaces

Definition 16 (Hilbert Space). A Hilbert space H is a complete normed vector space
equipped with an inner product (-, -)

An example of a Hilbert space that is crucial to this thesis is L?(u) where p is a (positive)
measure on M. The space L*(p) is defined as the collection of all measurable functions
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¢ : M — C satistying

16ll2ae) = \/ /M 6(2) Pdu(x) < oo

On this space, the inner product that induces the norm is given by

ww:Aww

Projections on Hilbert spaces are analogous to their finite dimensional counterparts with
the exception that subspaces in finite dimensions are automatically closed. The following
theorem asserts that for closed subspaces, the projection operator is well defined.

Theorem 20. If M is a Hilbert space, K is a closed subspace of M and h € M then
there exists a unique point ko in K such that

|h — kol| = dist(h, K) := inf{||h — k : k € K}.

Moreover, h — kg 1. M and the projection operator P : M — K is defined to be the point
Ph such that h — Ph 1. M.

Assuming then that K is a closed subspace of L?*(u), Theorem 20 says that the Lo(ju)-
projection of a function ¢ € Lo(u) onto K C Lo(p) is defined by

Pltg — argmin|lf — 61,0 = arg min/ \F = o2dp. (A1)
feEK fEK M
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Appendix B

Proof of Theorem 6

The idea will be to first approximate f by a smooth function and then approximate this
smooth function by a neural network. In this end, define n € C*°(R") by

n(z) = C'exp (W%J if |z] <1
0 if |[x| > 1

where the constant C' is some normalizing constant, that is C' > 0 is selected so that
Jgn ndz = 1. Some standard properties of n(x) is that n > 0, n € C*(R") and spt(n) C
B (0) which is the unit ball in R". For each € > 0, set

ne(x) == Elnn (x)

€

We call n the standard mollifier. The functions 7. are C*° and satisfy
/ nedr = 1,spt (n.) C B(0,€).

Then, by taking the convolution of f with the mollifier 7., denote f. = f x . which can be

68



further simplified to

fe(x) = . Fy)ne(z — y)dy

= /. flx —y)n(y)dy

=t

€ JB(0,e)

zl%nﬂx—wmwMy

It is well known that f. € C*. Additionally, by the Lipschitz continuity of f, uniform
convergence holds on R™:

\ﬂw—ﬁmﬂs/

B(0,1)

(o =) = Femldy <L [ feyllntw)dy

B(0,1)

< Le/ ne(y)dy < Le.
B(0,1)

However, to define f., we need this function to be defined on R™. Therefore, we need a
specific case of the following lemma called the Kirszbraun theorem. The proof of this result
can be found in [37].

Lemma 6. Suppose that U C R™. For any Lipschitz map f : U — R™ there exists a
Lipschitz-continuous map

F:R"—> R™
that extends f and has the same Lipschitz constant as f.

We are now ready to prove Theorem 6.

Proof. As the proof of (a) is analogous to the proof of (b) and simpler, we elect to prove
(b) only. Since f is L-Lipschitz in the uniform norm, we have that the component functions
fi are L-Lipschitz. Since neural networks can be stacked in parallel, it suffices to prove this
result for the case that m = 1. Moreover, since K is compact, by taking the approximation
on some hypercube containing K and then restricting onto K we can also assume without
loss of generality that K is convex. The uniform norm is still well-defined as the restriction
of a continuous function is continuous. By the Kirszbraun theorem there exists an extension
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F to R™ with the same Lipschitz constant L so we can suppose without loss of generality
that f is defined on R™ and has Lipschitz constant L. Denote f. := f *n.. Since we have
that fo(z) = [p. f(x — y)ne(y)dy from the above calculation, we see that

|fe(w1) — fe(x2)| < | (f(z1 —y) = flz2 —y)) ne(y)dy

R

< . |(f(z1 —y) = f(z2a —y)) ne(y)| dy

< Lz — o] / ne(y)dy
Rn

= L”[El — JZQH

This shows that f. is L-Lipschitz. Since f. — f uniformly we can choose € > 0 sufficiently
small so that ||f — f|| < ¢/2. Therefore, by Theorem 3, there exists a neural network ¢
such that sup, .k | f(z) — ¢(z)| < €/2 and sup,x ’g_:i(x) - g—i(x)] <e/2forali=1,... n.
Since f is L-Lipschitz it follows that ||V f||s < L. By the uniform bound on the partial
derivatives and the following inequality, (a + b)* < (14 €)a* + (1 + 1/€)b?, this gives

- 96 2 96 2
||v¢||2—\/(a—m) " +(axn)
of €\’ of €\’
V(o) o (Za)
< (1+e)<(%) +...+<%))+

§L+e(—”n+n/€+L>

\/256\/1+1/e
2

Therefore, by the mean value theorem and the convexity of K, it follows that ¢ is L +

€ ( VARSI L) Lipschitz. O
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