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Abstract 

Lake Erie is a source of drinking water, recreation, and commercial opportunity for both the United 

States and Canada, making the protection of its water quality essential. In the past decades, Lake 

Erie's ecosystems have been adversely affected by recurring toxic algal blooms. These algal blooms 

are attributed to nitrogen (N) and phosphorus pollution from agricultural runoff. Despite recent 

efforts to reduce N application in the Lake Erie basin, high levels of N concentration persist in 

surface and groundwater systems. One of the reasons for this apparent stasis in N concentrations is 

legacy stores of N in landscapes that contribute to lag times in water quality response, even after 

inputs have ceased. Legacy N is stored in the soil and slow-moving groundwater and makes up a 

large portion of current N contamination. Quantifying these available legacy N stores is essential for 

creating nutrient reduction targets. 

 

In this thesis, the variance of N inputs and legacy N across different sub-watersheds in the 

transboundary Lake Erie basin (LEB) are explored. First, I synthesised 2-century-long (1800-2016) N 

input and output datasets for 45 sub-watersheds across the basin. Specifically, I accounted for manure 

application, fertilizer, biological N fixation, domestic wastewater N, atmospheric N deposition, and 

agricultural N uptake. I then used the ELEMeNT modelling framework with these inputs to simulate 

N loading at the outlet for all 45 sub-watersheds and quantified N retention across the watershed over 

time. The models performed well overall with a median PBIAS of 1.9% (IQR: 0.7% -3.1%) and a 

median KGE (Kling Gupta Efficiency) of 0.75 (IQR: 0.66 to 0.88) between modelled and measured 

N loading across the sub-watersheds. Additionally, the models were able to simulate accumulated soil 

organic nitrogen (SON) values quite well, with a median PBIAS of 12.6% between modelled and 

measured SON.  
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The results show that N surplus (the difference between N inputs and non-hydrological N outputs) 

has been rising across most Lake Erie sub-watersheds since 1950 and has only started to plateau or 

decrease around 2000. Agricultural inputs from manure, fertilizer, and biological fixation were the 

lead contributors to N surplus in agricultural watersheds, and domestic N was the lead N contributor 

in urban sub-watersheds. Since 1950, between 4% and 44% of N has been stored as legacy N (23% 

median). On average 92% of this N legacy is retained in the soil and 8% is in the groundwater.  

Through correlation analysis I have found that higher fractions of groundwater N and SON legacy 

accumulation are correlated with slower travel times and lower tile drainage, while wastewater 

denitrification emerged as the dominant component in urban sub-watersheds. These results provide 

insight about drivers of legacy N and N release in sub-watersheds, which could aid in targeted 

nutrient management across the watershed. 
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Chapter 1: Introduction 

1.1 The nitrogen cycle in the Anthropocene  

Today's global population is almost three times what it was a century ago (Roser, Ritchie, and 

Ortiz-Ospina 2013). Since the 1990s, human activity has dramatically altered the nitrogen (N) 

cycle, increasing global fluxes of reactive N by 70% (Galloway and Cowling 2021). As the human 

population grows and agricultural intensity increases, more manure and fertilizer are added to 

fields, usually in excess of crop nutrient requirements. These excess nutrients can pollute 

waterways. In the U.S., for example, it is reported that only half of the applied fertilizer is removed 

by crops, while the rest is left available to leach into water systems (Swaney, Howarth, and Hong 

2018).  

 

Excess N can have detrimental effects on surface and groundwater systems. N contamination in 

surface water contributes to eutrophication, creating hypoxic zones.  Eutrophication is a global 

issue, affecting the ecosystems of fresh and saline water bodies (Wurtsbaugh, Paerl, and Dodds 

2019) and their multitude of ecosystem services. Excess N can also severely contaminate 

groundwater. Drinking water provided by groundwater sources like wells and aquifers often 

exceeds the commonly recommended nitrate concentration of 10 milligrams per litre (EPA 2012). 

More than 20% of shallow wells sampled in the U.S. exceeded this limit (Dubrovsky et al. 2010). 

As global populations continue to increase, protecting the water quality of surface water and 

groundwater should be prioritized.  

1.2 Human efforts to reduce nitrogen contamination  
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Several countries implemented efforts to mitigate the water quality effects of nitrogen pollution by 

setting targets to reduce point and non-point sources of nutrients. These nutrient reduction efforts 

ranged from the local to the international level (Le Moal et al. 2019; D’Elia et al. 2019; Iho et al. 

2015). Europe introduced the Helsinki Commission, founded in 1970 to tackle algal bloom issues 

in the Baltic Sea. Their efforts inspired the Baltic Sea Action Plan (Helcom 2007), which outlines 

nutrient reduction plans for the watershed. Similarly, the United States launched the Gulf of 

Mexico Watershed Nutrient Task Force in 2008 to reduce the size of algal blooms in the Gulf by 

2015 (Epa & OW 2014).      

 

Despite global reduction efforts, N concentrations in coastal areas have remained steady or 

continue to increase, and groundwater N concentrations remain high in agricultural regions 

worldwide (Brookfield et al. 2021; Van Meter et al. 2015, 2016, 2017). One of the reasons behind this 

apparent stasis in N concentrations is legacy stores of N in landscapes that contribute to lag times 

in water quality response, even after inputs have ceased (Baily et al. 2011; Grimvall, et al. 2000; 

Van Meter et al. 2016). 

1.3 Legacy nitrogen and time lags 
 

Landscapes often accumulate nitrogen (N) from decades of N surplus. N surplus is equal to the 

difference between N inputs and non-hydrological N outputs. Inputs of N into the landscape 

include fertilizer, manure, wastewater, atmospheric deposition, and biological fixation, while non-

hydrological outputs include crop removal and livestock grazing. While surplus N can exit the 

system through land denitrification or stream N export, a large fraction can remain in the system 
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and accumulate as soil organic N (SON) or mineralized groundwater N. This accumulated SON 

and groundwater N in the landscape is referred to as ‘legacy’ N (Van Meter et al. 2016; 2017).  

 

Accumulation of legacy N can lead to time lags in water quality response after decreases in N 

application since the accumulated legacy can enter receiving water bodies long after inputs have 

ceased. Surplus N applied to the landscape interacts with groundwater and the soil profile, each of 

which can introduce long residence times between application and release. SON is most often the 

largest terrestrial pool of nitrogen (Jaffe 1992), while slow groundwater travel times contribute to 

the delayed release of N after it enters the groundwater. Figure 1 illustrates the potential pathways 

of surplus N in the landscape; some surplus has the potential to immediately and directly run off 

into surface water, but a considerable portion slowly travels through the soil and groundwater. 

Several studies have demonstrated legacy N and the associated time lags between N application 

and its hydrologic release. These time lags are not trivial; Meals et al. (2010) report some time lags 

ranging from the yearly to decadal scale. Vero et al. (2018) also reviewed N time lags across North 

America and Europe; suggesting that N turnover periods can reach up to a century in length due to 

legacy N and are highly influenced by the rise of commercial fertilizers. Further, Van Meter et al. 

(2016) investigated legacy N in the Mississippi River watershed. They modelled the accumulation 

of SON in the watershed over time and found that an estimated 53±25% of N inputs accumulate in 

the soil as SON.  
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Figure 1: A conceptual diagram of nitrogen surplus pathways 

 
 

While the existence of legacy N is well established in the literature, simulating this legacy 

computationally is relatively new. Many nutrient-polluted watersheds would benefit from models 

to quantify the amount of legacy N s.. This thesis aims to extend this field of work to quantify N 

legacies at the watershed scale.  

1.4 Quantifying legacy N and current limitations  
 

To plan realistic actions to reduce N pollution in watersheds, quantifying legacy N dynamics at the 

watershed scale is crucial. Stakeholders who make nutrient reduction strategies need to understand 

precisely how much of the N that contaminates water ecosystems was applied recently and what 

portion was applied decades ago. Measuring these N pools directly is not feasible; instead, 
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computational models are required to simulate accumulation dynamics to differentiate between 

legacy and recently applied N.  

1.4.1 Building long-term N input/output datasets 

 
To address N contamination concerns and to better understand long-term N dynamics, it is 

necessary to build long-term N input and output datasets that quantify exactly how much N is 

entering the landscape. Such long-term datasets are what allowed Van Meter et al. (2017) to run 

their models for the Mississippi and Susquehanna River basins in the United States described in 

section 1.4.3. On a larger spatial scale, Swaney et al. (2018) developed an N mass balance dataset 

covering the entire U.S., but at a much shorter time scale than covered by Van Meter et al. (2017). 

Most recently, Byrnes et al (2020, 2022) have created an N mass balance dataset for the 

contiguous U.S.. The dataset covered both a large spatial scale (the entire contiguous U.S., 

discretized to the county scale) as well as a long-time scale (1930-2017, discretized to the annual 

scale). There are also Canadian scale N mass balance studies, such as the residual soil nitrogen 

(RSN) indicator model developed by AAFC (Drury et al. 2007), which includes an agricultural N 

mass balance. Similarly, Karimi et al. (2020) calculated an updated national N mass balance for 

Canada. Even more recently, McCourt & MacDonald (2021) completed a provincial N footprint 

assessment in Canada to estimate drivers of reactive N emissions across Canada. In a recent study, 

Hamlin et al. (2020) developed the Spatially Explicit Nutrient Source Estimate Map (SENSEmap) 

which included N inputs to the landscape. However, this study only included the U.S. side of the 

transboundary Great Lakes and focused on a short timeframe of 8 years (2008 to 2015). In order to 

run models for watersheds that cross the Canadian and U.S. border, such as Lake Erie, data 

harmonization is required to capture long-term, spatially consistent N input/output trends.  
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1.4.2 Water quality modelling and legacy N  

 
Several water quality models are available today which simulate nutrient fluxes at varying spatial 

and temporal scales. These water quality models can generally fall under two categories: empirical 

models and process-based models. Empirical water quality models rely on statistical relationships 

between nutrient inputs and outputs. These models establish regression relationships between the 

measured N applied to the landscape and its measured release into water bodies to simulate 

subsurface N fluxes. Examples of such models include SPARROW and Global NEWS (Chen et al. 

2018). Process-based models use mechanistic equations to transform observed N applied to the 

landscape into N concentrations at the watershed outlet. Examples of these models include SWAT, 

HYPE, and HBV (Chen et al. 2018). 

 

While several watershed models are theoretically capable of capturing N legacy dynamics, they are 

too computationally expensive and intricate to run at the century-scale needed to best capture long-

lasting legacy stores and to model all subsurface pathways. Recently, some water quality models 

have been built specifically to capture legacy N pools and dynamics. Models that have been used 

to explicitly capture N legacies are the SWAT-LAG model, the LM3TAN model, and the 

Exploration of Long‐tErM Nutrient Trajectories (ELEMeNT) model (Ilampooranan et al. 2019; 

Lee et al. 2014; Van Meter et al. 2017; Van Meter and Basu 2015). I aimed to choose a legacy 

modelling framework that can accurately capture legacy dynamics and has a simple enough 

framework to be applied across a large temporal and spatial space. 

 



7 
 

1.4.3 The ELEMeNT model 

 
For this thesis, I used a model called ELEMeNT (Exploration of Long‐tErM Nutrient 

Trajectories); a watershed nutrient legacy model which simulates N loading at the outlet as well as 

its legacy storage across the landscape. Details about ELEMeNT’s modelling framework are 

provided in section 2.2.  

 

The ELEMENT model has successfully been applied to several study sites in Europe and North 

America. The modelling framework was used to model N legacy dynamics in Germany’s largest 

national river basin: the Weser River (Sarrazin et al. 2022). In the U.S., ELEMeNT was applied to 

the 2.9 million km2 Mississippi River Basin (MRB) and the 70 thousand km2 Susquehanna River 

Basin (SRB), two agriculturally dominated watersheds (Van Meter et al. 2017). With simulation 

periods of almost two centuries, both models utilized the watersheds’ histories of N surplus to 

capture long-term legacy N stores. The models revealed that about 55% of the current N loading in 

the MRB and 18% of the current N loading in the SRB was older than 10 years old (Van Meter et 

al. 2017). This late release of legacy N has significant implications for the future health of the Gulf 

of Mexico (into which the MRB drains) and the Chesapeake Bay (into which the SRB drains). 

Even if N reductions are intense today in these areas, much of the N loading contributing to 

blooms will continue to be released from legacy sources.  

 

More recently, ELEMeNT was applied to the Grand River Watershed (GRW) in Ontario, Canada 

(Liu 2020). The GRW is a 6800 km2 agricultural watershed that drains into Lake Erie. The model, 

applied to several small watersheds across the watershed, revealed a spatial variation of legacy N 
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across the watershed, with 33% to 69% of surplus N is stored as legacy N and 49% to 72% of this 

legacy N is in the soil as SON across sub-watersheds.  

1.5 Thesis objectives  

 
The overall objective of this study is to understand nitrogen legacy dynamics across the 

transboundary Lake Erie basin. To achieve this objective, I (1) developed spatially-harmonized, 

long-term trajectory of N inputs and outputs for the Lake Erie basin, (2) built watershed models for 

several sub-watersheds across the basin to estimate N legacies, and (3) used model parameters to 

understand how landscape and management characteristics affect N legacy dynamics.  

The process-based legacy N model ELEMeNT was applied to achieve this objective. This multi-

watershed approach provides insight into how various soil, landscape, and climate patterns drive 

the legacy accumulation and depletion trajectories spatially across the basin.  

 

 

 

 

 

 

 

 

 



9 
 

2. Chapter 2: Methods and data sources  

2.1 Study Area 

 
Lake Erie is the shallowest, warmest, and has the most agriculturally dominated watershed of all 

the Great Lakes, with a volume of 484 cubic kilometres and a maximum depth of only 64 metres 

(Reutter, 2019). The lake’s watershed stretches across the U.S./Canada border, is home to over 

12 million people, and is severely human-altered (Us Epa 2014). With the increase in fertilizer 

use after WWII and intense agricultural activity, nutrient pollution in the Lake (including N) is a 

concern (Ho et al. 2017). Throughout the 1970s, Lake Erie experienced an extreme increase in 

nutrient concentration and still experiences recurring nutrient-induced eutrophication events 

today (International Joint Commission, 2014). 

 

The Lake Erie basin (LEB) has undergone significant land use changes over the past century and 

its land cover varies spatially today. While the watershed includes several major cities including 

London ON, Kitchener ON, Detroit MI, and Cleveland OH; its main land use is agriculture, with 

the land modified immensely to meet growing agricultural needs (Figure 2). The watershed is 

also heavily tile-drained, with almost every region of the basin artificially drained to some 

extent. In addition to human modification, morphology and soil properties also vary across the 

basin.  
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Figure 2: Spatial physical characteristics of the Lake Erie basin including land cover, tile drainage, agriculture, and elevation at 

250m (Great Lakes Land Cover figure sourced from Canadian Geographic).  

2.2 The ELEMeNT model framework 

2.2.1 Overview of the ELEMeNT model  
 
I will be utilizing the ELEMeNT model to simulate N storage and fluxes across Lake Erie’s sub-

watersheds. ELEMeNT (Exploration of Long-Term Nutrient Trajectories for Nitrogen) is a 

process-based, parsimonious model which simulates the source zone depletion dynamics in the 

soil and groundwater and of the transport of N using a convoluted groundwater travel time 

distribution ( Van Meter et al. 2016). Uniquely, ELEMeNT does not break a watershed down 

into spatial units; rather, it breaks the watershed into non-spatial landscape units, where each unit 

experiences a distinct land use pattern over time. This breakdown allows ELEMeNT to maintain 
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the memory of land use types not for only its present time but for the entire simulation period 

while also remaining computationally efficient. This memory maintenance increases the 

accuracy of the simulation of legacy N over time.  

 

A conceptual framework diagram of ELEMeNT is shown below in Figure 3.  To model N 

loading at the watershed outlet, ELEMeNT treats the landscape like a bundle of stream tubes 

each with its own travel trajectory to the outlet. N loading [M/L2/T] at the outlet of the watershed 

at time t [T], Mout(t), is simulated using the following equation:  

 

𝑀!"#(𝑡) 	= ∫ 𝐽$(𝑡 − 𝜏)𝑓(𝜏, 𝑡 − 𝜏)𝑒%&'𝑑𝜏
(
) 	+ (1 − 𝜆*!*)𝑊(𝑡)        (1) 

 
 

where Js(t-𝜏) is the source zone function, describing the flux of N from the mineral soil pool to the 

groundwater [M/L2/T], f(𝜏, 𝑡) represents the transient groundwater travel time distribution function 

with travel time 𝜏 [T], and 𝛾 is a constant describing hydrologic N removal through denitrification 

[T-1]. Finally, W(t) is N from domestic waste [M/L2/T] and 𝜆*!* is a constant describing waste N 

removal through denitrification [-]. The details of these equations are further explained in sections 

2.2.2 - 2.2.4. 

 

As mentioned above, ELEMeNT breaks its modelled watershed into distinct land use units using 

a land use array, LU, which is built using the watershed’s measured crop and pasture area 

fraction over time. Each unit, 𝑠 represents an index in the land-use array, which spans over time 

𝑡. Specifically, LU is built using the following equation:  
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𝐿𝑈(𝑠, 𝑡) = 	 7
	1,					𝑠 ≤ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑
	2,					𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑 < 𝑠	 ≤ 𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑	𝑎𝑛𝑑	𝑝𝑎𝑠𝑡𝑢𝑟𝑒𝑙𝑎𝑛𝑑
	3,					𝑠 > 𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑐𝑟𝑜𝑝𝑙𝑎𝑛𝑑	𝑎𝑛𝑑	𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑝𝑎𝑠𝑡𝑢𝑟𝑒𝑙𝑎𝑛𝑑

            (2) 

 

      

where s is each unit’s index and t is time. Thus, the watershed, at each time step, has a distinct 

ratio of cropland, pastureland, or non-agricultural land.  

 

 

 
Figure 3: Conceptual ELEMeNT model framework for predicting catchment scale time lags as a function of hydrologic and 

biogeochemical legacies in the landscape. The source zone box illustrates the flow of N through soil organic matter. The middle box 

illustrates the convolution of mass from the source zone with the groundwater travel time distribution. Then, the right box describes 

N loading trajectories at the catchment outlet. (Source: Van Meter et al, 2017).  

 

2.2.2 ELEMeNT model: source zone dynamics 
 

2.2.2.1 SON in the source zone 
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Non-point sources of N surplus enter the source zone of the watershed. Here, N is stored as SON 

until mineralized into its inorganic forms and transported through the groundwater. SON in the 

source zone (𝑀$(𝑠, 𝑡))  [M/L2/T] can be broken down into its active and protected components: 

𝑀+(𝑠, 𝑡) and 𝑀*(𝑠, 𝑡) respectively. Both pools undergo N accumulation and depletion, but the 

active pool has much faster kinetics than the protected pool which is more stable.  The N 

dynamics for the active and protected SON pools vary across different land-use trajectory 

changes and are described by the following differential equations:  

 

!
!"
𝑀#(𝑠, 𝑡) = 	 +

(1 − ℎ)𝑁$(𝑠, 𝑡) − 𝑘#𝑀#(𝑠, 𝑡),																								𝐿𝑈(𝑠, 𝑡) ≠ 1, 𝐿𝑈(𝑠, 𝑡 − 1) = 1
(1 − ℎ)𝑁$(𝑠, 𝑡) + 5𝑀%(𝑠, 𝑡) − 0.7𝑀%&'$"9, 𝐿𝑈(𝑠, 𝑡) = 1, 𝐿𝑈(𝑠, 𝑡 − 1) ≠ 1              (3)           

!
!"
𝑀%(𝑠, 𝑡) = 	+

ℎ𝑁$(𝐿𝑈(𝑠, 𝑡), 𝑡) − 𝑘%𝑀%(𝑠, 𝑡),																								𝐿𝑈(𝑠, 𝑡) ≠ 1, 𝐿𝑈(𝑠, 𝑡 − 1) = 1
ℎ𝑁$(𝐿𝑈(𝑠, 𝑡), 𝑡) + 5𝑀%(𝑠, 𝑡) − 0.7𝑀%&'$"9, 𝐿𝑈(𝑠, 𝑡) = 1, 𝐿𝑈(𝑠, 𝑡 − 1) ≠ 1

              (4)           

 
 
 
where 𝑀+(𝑠, 𝑡) and 𝑀*(𝑠, 𝑡) are the active and protected SON pools [M/L2/T],  𝑀*!"#$% is the 

protected SON stocks under pristine land use conditions [M/L2/T], and 𝑁$(𝐿𝑈(𝑠, 𝑡), 𝑡) is the 

land-use-specific N surplus array [M/L2/T] at time t [T] for LU type LU(s,t).  Finally, h is a 

protection coefficient that mediates surplus N’s partitioning into either the active or protected 

SON pools. 

 

2.2.2.2 Mineralized N in the source zone 
 
Eventually, N in the SON pool becomes mineralized (𝑀$(𝑠, 𝑡), [M/L2/T]) and it can either 

undergo denitrification or leach into the groundwater. This process is summarized in the equation 

below:  
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!
!"
𝑀$(𝑠, 𝑡) = 	𝑘#𝑀#(𝑠, 𝑡) + 𝑘%𝑀%(𝑠, 𝑡) − 𝜆$𝑀$(𝑠, 𝑡) − 𝐽$(𝑠, 𝑡)                                                       (5) 

 

where 𝑀+(𝑠, 𝑡) and 𝑀*(𝑠, 𝑡) are the active and protected SON pools [M/L2/T]; 𝑘+and 𝑘*are 

mineralization rate constants for the active and passive SON pools respectively [T-1]; 𝜆$	is a first-

order soil denitrification rate constant [T-1]; and 𝐽$(𝑠, 𝑡) is the leaching flux to groundwater.  

 

To calculate the flux of N from the mineral pool to groundwater (	𝐽$(𝑠, 𝑡)) [M/L2/T], ELEMeNT 

models 𝑀$(𝑠, 𝑡), the source zone mineral pool for each spatial unit at time t [M/L2/T] 

 

 

𝐽$(𝑠, 𝑡) = 	 <
	𝑀$(𝑠, 𝑡)

((")
+!

,												𝑄(𝑡) < 𝑉,
	𝑀$(𝑠, 𝑡),																				𝑄(𝑡) > 𝑉,

                                                                                     (6) 

 
 

where 𝑄(𝑡) is the annual stream discharge [L3/T] and 𝑉, is the volume of water in the soil 

column [L3]. 

 

2.2.3 ELEMeNT model: travel time distribution  
 
The groundwater flow of N, after it has leached from the source zone and flows as nitrate N, is 

modelled using a transient travel time distribution. I use a revised travel time distribution 

formulation, used by Sarizin et. al (2022). I assume complete mixing in the groundwater, and 

thus an exponential formulation for the travel time distribution:  

 

 𝑓(𝜏, 𝑡 − 𝜏) = !
"#(%)

𝑒'∫ 		 -
./(0)*+

1
123             (7) 
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where 𝑓(𝜏, 𝑡 − 𝜏) is the groundwater travel time distribution function, at time t [T] with travel 

time 𝜏 [T]. The mean of the travel time distribution,	𝜇′(𝑡) [T], is calculated using the following 

equation:  

 

𝜇′(𝑡) 	= 	
!⋅#!"#
!(%)

                (8) 

 

where 𝑄 is mean discharge at the outlet [L/T], 𝑄(𝑡) represents discharge at the outlet at time t 

[L/T], and 𝜇$"- is the harmonic mean [T] of 	𝜇′(𝑡). 

2.2.4 ELEMeNT Model: domestic wastewater input 

 
The final component of ELEMeNT’s main flux equation (1) is wastewater N (W(t)). Domestic 

waste N over time is obtained for each modelled sub-watershed using human population data and 

an estimated N excretion parameter of 5 kg/ha/year/person (described further in section 2.4.5). 

W(t) is multiplied by (1- 𝜆*!*) where  𝜆*!* is a constant describing the fraction of waste N 

removal through denitrification. 

2.3 Model domain and water quality data 

2.3.1 Sub-watershed gauge selection  

In order to understand nitrogen legacy dynamics spatially across the LEB, I chose to study 

smaller sub-watersheds across the basin which had sufficient discharge and water quality data. 

Gauge data for water quality and discharge are provided by the Provincial Water Quality 

Monitoring Network  (Ontario Ministry of Environment, Conservation, and Parks 2020) and the 
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Canadian Hydrometric Database (National Hydrological Service, 2016) respectively for the 

Canadian portion of the watershed, and by the USGS  (US Geological Survey, 2020) for the 

watershed on the U.S side of the border. The U.S. dataset was supplemented with stream gauge 

data from the Michigan Department of Environmental Quality (MIDEQ) and the Ohio 

Environmental Protection Agency (OHEPA). The gauges on the U.S side of Lake Erie have N 

concentration data and flow data that are co-located. The Canadian side, however, separate 

gauges are maintained for flow and concentration data. Thus, for each Canadian sub-watershed, a 

water quality gauge and a flow gauge were paired. Paired gauges were chosen based on the 

following criteria: at most a 10% discrepancy between the drainage area for both gauges a 

minimum of 10 years of overlapping data for both gauges, and at least 25 years of flow data. 

Table 1 presents a finalized list of all of the sub-watersheds studied in this thesis. There are a 

total of 45 sub-watersheds: 25 in Canada (8 non-nested) and 20 in the US (14 non-nested). Each 

sub-watershed has been given a short form: ‘Cx’ for Canadian basins and ‘Ux’ for U.S sub-

watersheds. These short forms are used throughout this thesis, and this table can be used as a 

reference. Additionally, the location of these sub-watersheds and their gauges are visualized in 

Figure 4.  

 
Table 1: List of all studied sub-watersheds 

 

Canadian Sub-watersheds U.S Sub-watersheds 

Watershed Name Drainage 
Area [km2] 

Watershed Name Drainage 
Area [km2] 

 North Thames River Below Fanshawe Dam (C1) 1416  Clinton River At Sterling Heights, MI (U1) 309 

 North Thames River Near Thorndale (C2) 1337  Clinton River At Gratiot Avenue,, MI (U2) 734 
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 Thames River At Thamesville (C3) 4540  River Rouge At Detroit, MI (U3) 187 

 Thames River At Innerkip (C4) 150  Huron River At Ann Arbor, MI (U4) 729 

 Sydenham River Near Alvinston (C5) 704  River Raisin Near Monroe, MI (U5) 1042 

 Big Otter Creek Above Otterville (C6) 99  Auglaize River Near Fort Jennings, OH (U6) 332 

 Big Otter Creek At Calton (C7) 655  Auglaize River Near Defiance, OH (U7) 2318 

 Big Creek At Walsingham (C8) 565  Maumee River Near Defiance, OH (U8) 5545 

 Lynn River At Simcoe (C9) 140  Maumee River At Waterville, OH (U9) 6330 

 Nanticoke Creek At Nanticoke (C10) 179  Honey Creek At Melmore, OH (U10) 149 

 Grand River At Galt (C11) 3487  Rock Creek At Tiffin, OH (U11) 35 

 Grand River At Brantford (C12) 5100  Sandusky River Near Fremont, OH (U12) 1251 

 Nith River At New Hamburg (C13) 549  Huron River At Milan, OH (U13) 371 

 Speed River Below Guelph (C14) 526  Vermilion R Nr Vermilion, OH (U14) 262 

 Speed River (C15) 547  Black River At Elyria, OH (U15) 396 

 Grand River Below Shand Dam (C16) 788  Rocky River Near Berea, OH (U16) 267 

 Grand River Near Marsville (C17) 665  Cuyahoga River At Independence, OH (U17) 707 

 Conestogo River At Glen Allan (C18) 573  Chagrin River At Willoughby, OH (U18) 246 

 Grand River At York (C19) 6015  Grand River Near Painesville, OH (U19) 685 

 Fairchild Creek Near Brantford (C20) 360  Cattaraugus Creek At Gowanda, NY (U20) 436 

 Mckenzie Creek Near Caledonia (C21) 174  
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 Speed River Near Armstrong Mills (C22) 176 

 Eramosa River Above Guelph (C23) 232 

 Grand River At West Montrose (C24) 1157 

 Whitemans Creek Near Mount Vernon (C25) 397 
 

 

 

 

 

 
Figure 4: Lake Erie sub-watershed outlet locations including 20 gauging stations in the U.S. side of the Lake Erie basin, and 25 

gauging station locations on the Canadian side, as well as associated non-nested sub-watersheds  

 

2.3.2 Estimation of flow-weighted N concentration  
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For both the U.S. and Canada gauges, N concentration data is sparser than discharge data. 

Discharge is usually reported daily, whereas concentration data measurements are usually 

collected only a handful of times per year. To transform sparse concentration data to the daily 

scale, I used the WRTDS (weighted regression on time, discharge, and season) method (Hirsch, 

2010). WRTDS estimates missing concentration data using available daily discharge data and is 

based on the following equation:  

 

𝑙𝑛(𝑐) 	= 	𝛽) + 𝛽.𝑡	 +	𝛽/𝑙𝑛(𝑄) +	𝛽0	𝑠𝑖𝑛(2𝜋𝑡) + 𝛽2𝑐𝑜𝑠(2𝜋𝑡) + 𝜖                                  (9) 

 
 

where the 𝛽’s are regression coefficients, Q is streamflow, c is N concentration, and 𝜀 is an error 

term. By completing a WRTDS model for each sub-watershed, I obtained daily N concentration 

[M/L3] and stream discharge [L3/T], which are both used to calculate N loading [M/L2/T].  

2.4 Nitrogen inputs and outputs 

To better understand long-term N dynamics, and to run the ELEMeNT model, it is necessary to 

build long-term N input and output datasets for the LEB. This section outlines each N input and 

output component, and how each was constructed. It should be noted that data comes from 

different sources across the Canadian-US border. Thus, harmonization was required. I used the 

TREND dataset for the US side of Lake Erie (Byrnes et. al, 2020; Byrnes et. al, 2022).  The 

TREND dataset is a county-scale N input (fertilizer, manure, fixation, and deposition) and output 

(crop uptake) dataset from 1930 to 2017. For the Canadian side of the watershed, I developed 

methods to retrieve each N component in a way that was consistent with the TREND dataset. 

The data sources used, and their details are summarized in Appendix A.  Annual N inputs 

include biological N fixation, livestock manure N, atmospheric N deposition, mineral N 
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fertilizer, and N from domestic waste. Annual non-hydrological N outputs consist of agricultural 

N crop uptake and livestock pasture N consumption. I refer to N ‘surplus’ (Ns; M/L2/T) which is 

the difference between these inputs and outputs, defined by following equation: 

 

𝑁$ = 𝐹𝐸𝑅𝑇 +𝑀𝐴𝑁 + 𝐷𝐸𝑃 + 𝐵𝑁𝐹 +𝑊𝐴𝑆𝑇𝐸 − 𝐶𝑅𝑂𝑃 - GRASS                              (10) 

 
 

where MAN refers to N from manure applied to the land [M/L2/T]; FERT refers to mineral 

fertilizer N applied to the land [M/L2/T]; BNF refers to biological N fixation through vegetation 

[M/L2/T]; DEP refers to atmospheric N deposition [M/L2/T], WASTE refers to N from human 

wastewater [M/L2/T],  CROP refers N removed from agricultural activity [M/L2/T], and GRASS 

refers to N removed by the grazing livestock  [M/L2/T].     

2.4.1 Biological N fixation  

Biological N fixation (BNF) is the process by which nonreactive atmospheric N is fixed by plants 

and transformed into reactive forms of N [M/L2/T]. Major N-fixing crops in the LEB are beans, 

alfalfa, hay, and soybeans. For U.S counties, BNF data was collected directly at the county scale 

via the TREND dataset in kg/ha/year [M/L2/T] (Byrnes et al, 2020; Byrnes et. al, 2022). For 

Canadian counties, BNF [M/L2/T] is calculated using the following equation,  

 

𝐵𝑁𝐹 = 𝑃34!* 	× 𝑁34!*               (11) 

 

where Pcrop is crop production [M/L2/T] and Ncrop is an N mass fraction fixation for each crop type 

[M/M]. Production data were obtained using crop area and yield data from Statistics Canada 

(Statistics Canada, 2016a & 2016d). Fixation rates were based on values used in TREND (Table 

2). 
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Table 2: Crop-specific biological N fixation rates 

 (From Byrnes et al. 2020; Byrnes et al. 2022) 

Biological N Fixation Rates 

Crop Type Fixation Rate [kg N/kg/year] 

 Soybeans 0.0657 

 Alfalfa Hay 0.0310 

 Non-alfalfa Hay 0.0154 

 Beans 0.0395 

 

2.4.2 Livestock manure N 

Manure N (MAN) inputs represent all waste excreted from livestock. For U.S. counties, MAN was 

collected at the county scale directly from the TREND dataset in kg/ha/year [M/L2/T]. For 

Canadian counties, MAN inputs were estimated using the same approach and were estimated using 

the following equation, 

 

𝑀𝐴𝑁	 = 	𝑃𝑂𝑃 × 𝑁5634                                                                                                              (12)            

 

where POP is livestock population [headcount/L2/T] and Nexcr is the N content of the manure 

generated per animal [M/headcount]. Livestock headcount data (POP) were provided by the 

Canadian Census of Agriculture (Statistics Canada, 2016a). N content (Nexcr) conversion 

parameters for different livestock types were estimated based on conversion values used in 

TREND (Table 3). To account for the fluctuation in the weight of different livestock over time, I 

scaled a 2008 livestock N excretion parameter forward and backward in time using weight scale 

factors for each livestock type (also done in TREND). For the model, I then divided the livestock 
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into either unconfined or confined fractions (Kellogg et al, 2000; Smil, 1999) and assumed 

unconfined livestock manure was applied right onto pastureland and that unconfined livestock 

graze on pastureland grasses during one-third of the year. Loss due to volatilization was assumed 

to be 36% of the total mass of the manure (Smil, 1999). 

 

 
Table 3: Livestock-specific N excretion parameters 

(From Byrnes et al. 2020; Byrnes et al. 2022) 

Manure N Parameters 

Livestock Type N excretion rate in 2008       
[kg N/kg/year] 

 Beef Cows 69.54 

 Milk Cows 151.73 

 Other Cows 61.64 

 Hogs and Pigs 13.8 

 Sheep and Lambs 7.45 

 Chicken (not broilers) 0.58 

 Broilers 0.41 

 Turkeys 1.24 

 Horses and Ponies 44.7 

 Goats 7.45 

 

2.4.3 Atmospheric N deposition  

Atmospheric N deposition is the process where reduced forms of N (ammonia) and oxidized 

forms of N (nitrates) are deposited to land from the atmosphere. For both the Canadian and U.S. 

sides of the basin, N deposition was extracted using a gridded N deposition dataset spanning 
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from 1950 to 2013 (Wang et al. 2017). Deposition, before 1850, was scaled back using  

emissions data from the Carbon Dioxide Information Analysis Center (Boden et al. 2009), and 

deposition for the years 2014-2016 was linearly extrapolated.  

2.4.4 Mineral N fertilizer  

Fertilizer N (FERT) is N applied to crops through synthetic mineral fertilizers. For U.S. counties, 

FERT was collected at the county scale directly from the TREND dataset in kg/ha/year [M/L2/T]. 

For the Canadian side of Lake Erie, FERT estimates were obtained at the county scale from 1945 

to 2016. Estimates for county-scale fertilizer use were based on fertilizer sales data from Statistics 

Canada (Statistics Canada, 2016b) and county-scale crop areas from the Canadian Census of 

Agriculture (Statistics Canada, 2016a). I assumed that all fertilizer sold in Canada in a year was 

applied to the land that year and also assumed fertilizer N was applied on cropland only after , as 

non-significant amounts were applied prior to World War II. For years without sales data (1945-

1951), linear extrapolation was used to fill in the gaps. Fertilizer amounts were then allocated to 

cropland or pastureland for each year based on the fraction of crop and pasture.   

2.4.5 Domestic waste N  

Domestic waste (WASTE) is N entering the landscape from human waste.  For U.S sub-

watersheds, WASTE inputs were collected directly at the county scale from the TREND dataset in 

kg/ha/year [M/L2/T].  For Canada, WASTE inputs were estimated using human population census 

data (Statistics Canada, 2016c) [headcount/L2/T] and converted to N using annual N excretion 

rates (5 kg-N/cap/yr) (Hong, Swaney, and Howarth 2011), this rate was also used for the TREND 

dataset. 
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2.4.6 Agricultural N uptake and livestock N uptake 

Crop N uptake (CROPuptake) is the N removed from the soil by harvested crops. For U.S counties, 

Crop N uptake was collected directly at the county scale from the TREND dataset in kg/ha/year 

[M/L2/T]. For the Canadian side of the basin, CROPuptake [M/L2/T] was calculated using the 

following equation,  

 

𝐶𝑅𝑂𝑃"*#+75 = 𝑃34!* × 𝑁𝐶34!*              (13) 

 

 

where Pcrop is crop production harvested [M/L2/T] of a particular crop and NCcrop is a N content 

fraction parameter for that particular crop [M/M]. Crop area data and crop yield data (mass of crop 

per crop area) were obtained from Statistics Canada (2016a, 2016d). Crop area data were collected 

every 10 years from 1901-1951 and then every 5 years after that.  The N-content conversion values 

were estimated based on conversion parameters used in TREND and literature estimates for crops 

not included in the TREND framework (Table 4).  

 
Table 4: Crop N uptake parameters 

 (From Byrnes et al. 2020; Byrnes et al. 2022; Hong and Swaney. 2013 (**)) 

Crop N Parameters 

Crop Type N Content [kg N/kg/year] 

 Alfalfa 0.0252 

 Barley 0.0188 

 Beans 0.0592 

 Buckwheat 0.0190 
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 Canola 0.0354 

 Corn for fodder ** 0.0130  

 Corn for grain 0.0130 

 Flaxseed 0.0346 

 All hay 0.0252 

 Hay (non-alfalfa) 0.0110 

 Mixed grains ** 0.0220 

 Oats 0.0183 

 Other Crops 0.0270 

 Peas ** 0.0650 

 Potatoes 0.0036 

 Rye 0.0191 

 Soybeans 0.0592 

 Sugar beets 0.0020 

 Sunflowers 0.0286 

 Tobacco 0.0319 

 Triticale 0.0269 

 Turnips ** 0.0160 

 Wheat 0.0190 

 

 

The last surplus component is N removed from the land through livestock grazing (GRASS). For 

U.S. counties, GRASS was collected at the county scale from the TREND dataset in kg/ha/year 

[M/L2/T]. For Canadian counties, GRASS [M/L2/T] was obtained for each livestock type using the 

following equation:  

 

𝐺𝑅𝐴𝑆𝑆	 = 	𝑃𝑂𝑃	 ×	𝑁3!8$ ×	
.
0
               (14) 
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where I assume livestock graze 	.
0
 of the year. Here, POP is the number of a specific livestock type 

[headcount] and 𝑁3!8$ is the N consumption rate for that livestock type [M/headcount] (Table 5). 

Total pastureland N uptake is the sum of all livestock consumption. Consumption parameters were 

chosen to be consistent with the TREND dataset methodology (Table 5).  

 

Table 5: Livestock-specific N consumption parameters 

 (From Byrnes et. al, 2020; Byrnes et al. 2022) 

Livestock N Parameters 

Livestock Type N consumption rate in 
2008 [kg N/kg/year] 

 Beef Cows 79.33 

 Milk Cows 195.61 

 Other Cows 70.32 

 Hogs and Pigs 20.12 

 Sheep and Lambs 8.89 

 Chicken (not broilers) 0.89 

 Broilers 0.76 

 Turkeys 1.97 

 Horses and Ponies 50.06 

 Goats 8.89 

 

 

2.4.7 Downscaling model inputs 

 
The Lake Erie agricultural N inputs and N outputs were collected at the county scale (as described 

in section 2.4.2-2.4.6) because census data are reported at this scale. The ELEMeNT model runs at 
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the sub-watershed scale; however, several of the sub-watersheds in this study are smaller than a 

single county. Downscaling county data is done to account for spatial variation of agricultural land 

at smaller scales and within counties. For the U.S. side of the watershed, I utilized downscaling 

work done by Chang & Byrnes et al (in review) where the entire TREND county dataset (Byrnes 

et. al, 2022) was downscaled to a 250m-by-250m grid.  For the Canadian side of the watershed, I 

matched the downscaled TREND methodology and used the gridded Annual Crop Inventory (ACI) 

(Agriculture and Agri-Food Canada, 2016a) to map our county surplus component into gridded 

agricultural and non-agricultural grids. For years before 2011, I assumed the same distribution of 

agricultural land as in 2011, as the ACI is temporally limited.  I could then convert our county-

scale N input and output data to gridded datasets, where N was re-distributed only to areas with 

agricultural land rather than assumed constant across each county. Ultimately, after downscaling, I 

developed downscaled, gridded maps for mineral N fertilizer, crop N uptake, manure N, and 

biological N fixation (deposition was already gridded in its original form).  These downscaled 

grids could then be clipped to any sub-watershed across the entire LEB to provide a more spatially 

precise estimate of N input and output data at the sub-watershed scale. 

2.5 Watershed land use trajectories 

In addition to N surplus inputs (section 2.4) and water quality inputs (section 2.3), ELEMeNT 

requires a historical trajectory of land use (LU) for each of the modelled sub-watersheds. This 

LU trajectory is what allows the model to break up N surplus inputs into its crop, pasture, and 

non-agricultural components. For each sub-watershed in our study area, I constructed a 316-year 

(1700-2016) LU trajectory, which summarized the proportion of land covered by crop, pasture, 

or non-agricultural land. To do this, I used census-reported crop and pastureland for 1930-2016. I 

then supplemented this data with the Historical Croplands Dataset (Ramankutty and Foley 1999) 
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which is a gridded global dataset modelling crop and pastureland area fractions yearly from 1700 

to 2007. The average LU history across all of the Lake Erie studied sub-watersheds, is shown in 

Figure 5. 

 

 

Figure 5: Land use trajectory for the Lake Erie basin including the average of cropland and pastureland area fraction trajectories for  

all 45 studied sub-watersheds.
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2.6 Model parameter selection 

 

2.6.1 Parameter range estimation  
 
The ELEMeNT model requires eleven parameters that represent physical characteristics of the 

modelled watershed. These parameters and their details are summarized in Table 6. Of these 

parameters, eight are calibrated, two are based on measured soil data, and one is set constant 

based on literature values. I chose which parameters to calibrate based on a sensitivity analysis 

done by Liu et. al (2021).  

 

 
Table 6: ELEMeNT model parameter descriptions 
 

ELEMeNT Parameters 

Parameter Description [units] Selection  

Ms Soil organic N content in pristine conditions [kg ha-1] Calibrated 

Ka Mineralization rate of active soil pool [yr-1] Calibrated 

 λ  Denitrification rate constant for soil [yr-1] Calibrated 

hc Cultivated humification rate constant [-] Calibrated 

hnc Non-cultivated humification rate constant [-] Calibrated 

µ Mean travel time [yr] Calibrated 

 λw Denitrification rate constant for groundwater [yr-1] Calibrated 

 λpop Denitrification rate constant for wastewater [yr-1] Calibrated 
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s Soil Saturation [-] Measured 

n Porosity [-] Measured 

bnfn BNF net inputs in pristine conditions [kg/ha] Literature (Cleveland et al. 1999) 

 

Non-calibrated parameters were chosen using measured data available for each sub-watershed. 

Soil saturation (s) and porosity (n) were calculated for each sub-watershed using watershed-

averaged soil attributes from the Soil Landscapes of Canada database (Agriculture and Agri-

Food Canada, 2016b) for Canadian sub-watersheds and the USGS Soil Properties Dataset for 

U.S. sub-watersheds (Boiko et. al, 2021). Pristine biological fixation (bnfn) was set constant to 3 

kg/ha across all sub-watersheds (Cleveland et al. 1999). 

 

Any calibrated parameters should be constrained by reasonable parameter ranges. These ranges 

are summarized in Table 7. I chose these ranges based on the Grand River Watershed (GRW) 

work done by Liu et al. (2021), where each range was selected using a data-driven and literature-

based approach. The only parameters which had wider ranges than those used by Liu et al. 

(2021) were Ms (pristine SON content) and 𝜆pop (wastewater denitrification). Ms was given an 

upper limit of 19,000 kg/ha because several sub-watersheds in the LEB have a much higher SON 

stock than the GRW (Liu et al. 2021); specifically for the U.S. side of the watershed. Similarly, 

in consideration of the urban nature of some of the Lake Erie sub-watersheds outside of the 

GRW, the upper limit of 𝜆pop was raised to 0.95 to account for extensively urban sub-watersheds 

with more sophisticated wastewater treatment plants.  
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Table7:  ELEMeNT model parameter calibration ranges 

 

Calibrated 
ELEMeNT Parameter Ranges 

Parameter Units  Lower Limit Upper Limit 

Ms [kg ha-1] 7250 19000 

Ka [yr-1] 0.09 0.17 

 λ  [yr-1] 0.25 0.75 

hc [-] 0.14 0.26 

hnc [-] 0.28 0.75 

µ [yr] 3 34 

 λw [yr-1] 0.07 0.13 

 λpop [-] 0.56 0.95 

 

2.6.2. Model calibration 

 
For calibration, I used an optimization software called OSTRICH (Asadzadeh and Tolson 2013; 

Tolson and Shoemaker 2007). OSTRICH is a model-independent optimization tool that can 

utilize several different parameter optimization algorithms to select a set of best-performing 

model parameters. I ran OSTRICH 5 times, each time with 200 iterations for each of the 45 

subwatersheds. Thus, each model was calibrated using a total of 1000 model iterations.  
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I chose 3 objective functions (1) maximize the Kling-Gupta Efficiency (KGE) of modelled vs 

measured N loading at the outlet (Gupta et al., 2009), (2) minimize the percent bias (PBIAS) of 

modelled vs measured N loading at the outlet, and (3) minimize the PBIAS between the 

modelled and measured current SON. The equations for these objective functions are listed 

below. The equation for KGE is  

 

𝐾𝐺𝐸(𝑜𝑏𝑠, 𝑠𝑖𝑚) 	= 1 − _(𝐶𝐶 − 1)/ + (
9$#&
9'($

− 1)/ + (:$#&
:'($

− 1)/	                                     (15) 

 

 

where obs is the observed data; sim is the modelled data; CC is the Pearson correlation 

coefficient between obs and sim; 𝜇$;<and 𝜇!-$are the means of sim and obs; 𝜎$;<and 𝜎!-$are the 

standard deviation of sim and obs. In this case, sim and obs are modelled and measured N 

loading at the outlet respectively.  A KGE of 1 indicates a perfect match between observed and 

simulated loads, and a KGE of -√2 indicates that the model only performed as well as the mean 

of the observed loads (Knoben et al. 2019). The equation for PBIAS is: 

 

𝑃𝐵𝐼𝐴𝑆(𝑜𝑏𝑠, 𝑠𝑖𝑚) 	= =(!-$%$;<)
=(!-$)

	                                                                                          (16) 

 

where obs is the observed data, and sim is the modelled data. In this case, sim and obs are 

modelled and measured N loading at the outlet for the second objective function (2), and 

modelled and measured SON content for the third (3). PBIAS ranges between 0% and 100%.  

 

Given these objective functions, I chose to run OSTRICH using its built-in Pareto-Archived 

Dynamically Dimensioned Search (PA-DDS) algorithm. PA-DDS is a multi-objective search 
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algorithm, which searches for and generates parameter sets within a user-defined range of 

acceptable parameters. With each iteration of the algorithm, it chooses a ‘dominating’ solution 

that performs the best across all objective functions. It then randomly perturbs this dominating 

solution (within the accepted parameter range) for each OSTRICH iteration and compares the 

solution to the archived solutions. This perturbation search algorithm continues until OSTRICH 

has compiled a set of non-dominated solutions (parameter sets), as well as dominated solutions. 

 

2.6.2.1 Acceptance criteria for calibrated parameter sets  

After running calibrations, I obtained 1000 dominated and non-dominated parameter sets for 

each sub-watershed. The parameters I accepted into the model ensembles were chosen by setting 

acceptance criteria. The acceptance criteria were (1) KGE of N loading was at least 50%, (2) 

PBIAS of N loading was at most 10%, and (3) PBIAS of SON was at most 25%. For sub-

watersheds that could not satisfy all three of these conditions, I accepted the top 15% of 

parameter sets with respect to N loading KGE.  By running models with these selected ranges of 

parameters, I introduced a range of outputs that capture the inherent uncertainty the parameters 

possess.  
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Chapter 3: Results and discussion  

 
In this section, I will describe the results of calculating long-term N input and output trajectories 

across the LEB at the sub-watershed scale, and of applying the ELEMeNT model to these sub-

watersheds to capture N legacy effects. First, section 3.1 examines the inputs and outputs of N 

across all 45 studied sub-watersheds over time, as well as each sub-watershed’s stream N 

concentration. Section 3.2 explores the performance of the 45 models after calibration with 

respect to their ability to model N loading at the outlet and current SON levels. Section 3.3 

explores the variation in calibrated parameter values across the basin and how these values relate 

to measurable physical land characteristics. Finally, in section 3.4, I analyze the modelled legacy 

pools of N across the sub-watersheds to capture the spatial variation of legacy retention.  

3.1 Nitrogen surplus and load trajectories 

3.1.1 N Inputs and non-hydrological outputs across the basin 

I developed century-scale trajectories for agricultural N input (fertilizer N, manure N, biological 

N fixation) and output components (crop uptake) across the entire LEB from 1930-2016 at a 

250-m grid scale (Figure 6). Agricultural nitrogen input and output patterns varied widely across 

the basin, with higher inputs concentrated in the western end of the basin, around the Maumee 

(U9) sub-watershed and in the northern parts of the basin in southern Ontario, around the 

Thames (C3) and Grand (C19) sub-watersheds (locations mapped in Figure 4). These areas have 

high agricultural activity and thus it is reasonable to see the majority of agricultural N 

application and uptake here.  
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Figure 6: Downscaled agricultural N inputs and outputs in the Lake Erie basin over time.  Four years of agricultural N surplus 

components across the LEB are shown (a subset of the annual 1930-2016 dataset) and these components include crop N uptake, 

N fixation, fertilizer N, and manure N. These data have been downscaled to a 250m2 grid. 

 

These agricultural input trajectories were used in conjunction with N deposition and domestic N 

use to estimate N surplus trajectories for each of the 45 sub-watersheds. Temporally, over the 

last 80 years, N surplus trends are similar: I see a relatively low N surplus (<20 kg/ha) across 

sub-watersheds until the period of 1950 to 2000, when N surplus increases noticeably. Then, I 

see a gradual decrease in N surplus across the sub-watersheds, where N continues to decrease or 

remain constant (see Figure 7g). While this general pattern is followed across the sub-

watersheds, there is still a great deal of heterogeneity across the sub-watersheds. Peak N surplus 

levels vary from 34-108 kg/ha, and peaks occur in years between 1980-2001 among the 45 sub-

watersheds. In 2016, surplus levels varied between the sub-watersheds. In 2016, N surplus across 

the sub-watersheds varies from 21 to 71 kg/ha.   
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The components of N surplus vary spatially and temporally across the LEB. Figure 7, shows the 

variation in N surplus components from 1930 to 2016 among the sub-watersheds. Fertilizer N 

application increased across all sub-watersheds after 1945, and gradually decreased or remained 

stagnant after 1980, but at different rates between the different sub-watersheds (Figure 7a). 

Fertilizer N application in 2016 varies from 0.04-73 kg/ha across the LEB sub-watersheds and 

got as high as almost 100 kg/ha.  Crop uptake of N and biological N fixation trajectories also 

vary greatly across the sub-watersheds; crop N and BNF mostly increased across sub-watersheds 

throughout the modelling period; however, several sub-watersheds saw very little change in 

these categories or even experienced a decrease, likely due to urbanization (Figure 7b,f). Manure 

N application continuously increased for most sub-watersheds, but for some, manure N 

decreased after 1950 (Figure 7c). Manure N application in 2016 varies from 0.01-65 kg/ha. N 

from deposition followed the same pattern across the LEB sub-watersheds; it peaked in the 80s 

and then decreased significantly after that, likely due to a reduction in emissions (Figure 7d). 

Deposition in 2016 ranges from 7-12 kg/ha in 2016 but reached over 20 kg/ha at its peak in 

1988.  Crop uptake in 2016 ranges from 0.06-127 kg/ha in 2016. N from human waste is the 

smallest N surplus component for most sub-watersheds, however, for some of the urban 

watersheds, domestic N greatly increased over the modelling period; in 2016 domestic N waste 

ranges from 1.8-35 kg/ha. (Figure 7e).   
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Figure 7: Percentile range [5%-95%] of N input and output trajectories for 45 studied Lake Erie sub-watersheds where N inputs 

include (a) fertilizer N, (b) biological N fixation, (c) Manure N, and (d) N Deposition. N outputs include (f) Crop N uptake. Surplus 

N (g) is the difference between N inputs and outputs.  

 

 

To further demonstrate the variability of N surplus and their component trajectories, I highlight a 

sample of three sub-watersheds, one in Canada and two in the U.S. (Figure 8). The River Rouge 

sub-watershed (U3, close to Detroit, Figure 4) is mostly urban, and thus its surplus consists of 

very few agricultural inputs and outputs. Contrastingly, the Auglaize River sub-watershed (U7, 

Figure 4) in Ohio and Big Otter creek sub-watershed (C7, Figure 4) in Canada are predominantly 

agricultural, and so the surplus trajectories are mainly driven by fertilizer application, manure 

application, and crop uptake. Between the agricultural sub-watersheds, there is variation in 

surplus component magnitudes. The Auglaize River’s surplus is dominated by fertilizer N inputs, 
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whereas Big Otter Creek’s surplus is driven by manure, so, even while their surplus trajectory is 

similar in nature, the components of this surplus are drastically different. The decrease in surplus 

for the agricultural sub-watersheds is driven by an increase in crop uptake, while for the River 

Rouge, the decrease is driven by N deposition reduction (decreased emissions).  

 
Figure 8: Watershed-scale N surplus trajectories and components for three Lake Erie sub-watersheds: (a) Big Otter Creek, (b) River 

Rouge, and (c) Auglaize River 
 

 

3.1.2 Relationship between N surplus and hydrological N export  

 
For each sub-watershed, I further examined how the annual N surplus o relates to annual 

hydrological N export (flow weighted N concentration at the stream outlet, FWC). Figure 9 

shows that N inputs and hydrological N exports are decoupled across the LEB.  In many of the 
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sub-watersheds I see a decreasing or stationary trend in N surplus, while N export continues to 

increase in this period (examples include the Lynn River (C9), Speed River (C15), and the River 

Raisin (U5), these locations are mapped in Figure 4). In other cases, I see just the opposite: a 

decrease in N export concentrations (FWC) but no corresponding reductions in N surplus 

(examples include the River Rouge (U3) and the Cuyahoga River (U17), these locations are 

mapped in Figure 4). These findings indicate the existence of ‘legacy N’ in the landscape (N 

stored for long periods of time in the soil and groundwater), which create a time lag between N 

application and N river concentrations. The variation in the application and release relationships 

across the various LEB sub-watersheds further demonstrates how the land cover and land use 

affect the release or retention of N in the system. To uncover the causes of this variability, I used 

a process-based modelling approach to simulate each sub-watershed’s legacy and time lag 

dynamics and found spatially varying landscape controls on N retention and release. 
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Figure 9: Surplus trajectories compared with flow weighted concentration (FWC) at the outlet for the 45 studied sub-watersheds in the Lake Erie basin between 1960 and 2016 

(trajectories are plotted using a 3-year moving mean). Concentration is on the right y-axis (black), and surplus is on the left y-axis purple). 
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3.2 Model performance  

 
We developed separate models for all 45 Lake Erie sub-watersheds using the ELEMeNT 

modelling framework. Inputs to the model included N surplus and its components (Section 3.1), 

model parameters, and land use data, while river load and concentration data were model 

outputs. Each sub-watershed was calibrated, and best-performing parameters were accepted and 

used to create a set of ensemble runs for each sub-watershed. The models were calibrated to the 

entire time period that N concentration data were available, to optimize the performance of the 

calibration. 

3.2.1 Simulating N loading  
 
The models were able to capture N loading patterns across all 45 sub-watersheds remarkably 

well, with a median KGE of 0.75 (IQR: 0.66 to 0.88), and a range of KGE from 0.18 - 0.91 

(Figure 10), which is a very good performance for a parsimonious model (Ilampooranan et. al, 

2019). The median PBIAS for loading was 1.9% (IQR: 0.7% - 3.1%), further confirming that 

despite some error in a few sub-watersheds, overall, the models were able to simulate N loading 

at the outlet very well. There were six sub-watersheds (U1, U3, U7, U14, U15, and U17) that had 

all of their ensemble KGE values less than 0.5. Sub-watersheds U1 (median KGE: 0.32) and U3 

(median KGE: 0.44) are located near Detroit and are primarily urban, and this probably 

contributed to their low KGE values. Basins U7, U14, and U15 have large gaps in their observed 

loading data which might explain their low KGE scores (0.47, 0.18, and 0.42 respectively).  Sub-

watershed-specific load performance metrics are presented in Appendix B.
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Figure 10: Modelled and measured loading at the outlet for 45 studied Lake Erie sub-watersheds from 1960 to 2016 [kg ha−1 y−1]. The KGE values represent the median KGE value 

for each of the sub-watershed’s ensemble runs. The black line represents the median loading for each sub-watershed’s ensemble runs and the grey bounds are the ensembles upper 

and lower limit for loading. The green points represent measured N loading.
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3.2.1 Simulating SON magnitudes 
Each sub-watershed model was also calibrated to current-day SON values (Liu, 2013) using 

PBIAS as a metric. Generally, the models were able to simulate accumulated SON values quite 

well, with a median PBIAS of 12.6%.  Figure 11 shows a plot of observed SON in 2011 against 

the median, modelled SON in 2011. Generally, the model was able to capture the higher SON 

accumulation for sub-watersheds with high measured SON values and captured lower SON 

accumulation in sub-watersheds with lower measured SON values.  

 

 
Figure 11: Modelled and measured SON for Lake Erie sub-watersheds in 2011. The solid circles represent sub-watersheds that had 

PBIAS between measured and modelled loading that was below 25% and stars are for sub-watersheds with PBIAS > 25%. The 

green line represents a one-to-one relationship between modelled and observed SON values  

 

 

While most sub-watersheds fall close to the one-to-one line (where observed SON equals 

measured SON), there is still some deviation. Out of the 45 modelled sub-watersheds, there were 

7 which did not meet the  25% PBIAS criteria are starred. This deviation between modelled and 
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measured SON exists for sub-watersheds with relatively low observed SON, for these sub-

watersheds, the model overpredicted SON values. This error may be model related, but it is also 

possible that this mis-match is a product of limited SON data. While it would be ideal to have 

modelled and measured SON match perfectly, I expect some deviation as there exists uncertainty 

not only in the model but in the soil datasets from which observed SON was retrieved. The 

unified SON database, while harmonized across the U.S. and Canadian border, is quite coarse 

(0.25 degrees) and so, especially for smaller sub-watersheds, measured SON might be mis-

represented. Sub-watershed-specific SON PBIAS metrics are included in Appendix B. 

 

3.3 Relationship between watershed characteristics and key model parameters  

 
While, in general, temporal trends in surplus were similar amongst the LEB sub-watersheds 

(section 3.1), I saw a much larger disconnect in temporal trends for modelled N loading and SON 

retention (section 3.2) which indicates that landscape heterogeneity likely plays a large role in 

how N inputs are retained and released. The parameter sets that each sub-watershed acquired 

through calibration also varied significantly across the LEB. This section aims to find 

relationships between these parameters and landscape characteristics in order to better 

understand how different landscape features drive modelled N fluxes.  

 

Four parameters in the model are related to soil, groundwater and wastewater treatment plant 

(WWTP) denitrification: groundwater travel time μ, soil denitrification λ, groundwater 

denitrification λw, and wastewater denitrification λpop; these vary widely across the LEB (Figure 

12). 
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Travel times range from 5 to over 30 years across the basin, indicating that some sub-watersheds 

store N in the groundwater for a longer period than others. Median soil denitrification rates range 

from 0.25 to 0.65 yr-1 across the sub-watersheds, and are greater than the median ranges for 

groundwater denitrification rate constants (0.07 to 0.12 yr-1) . This is reasonable since 

denitrification in groundwater is often carbon limited, and thus lower. The proportion of human 

waste treated in WWTP ranges from 0.6 to 0.9, with higher values apparent for the more urban 

sub-watersheds, such as sub-watersheds U1-U4 near Detroit (Figure 4). This is reasonable given 

urban watersheds often have more advanced wastewater treatment plants, and lower proportions 

of septic wastes. Understanding what landscape features drive these parameter differences 

provides insight into how and why some sub-watersheds experience a higher N application to 

release lag time than others.  
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Figure 12: Calibrated rate parameter ranges across 45 sub-watersheds in Lake Erie. Each bar represents each calibrated sub-

watershed’s inter-quartile range for parameters: (a) travel time, (b) soil denitrification, (c) groundwater denitrification, and (d) 

wastewater denitrification  

 

I found a significant negative relationship (R2 = 0.39, p < 0.0001) between the mean travel time 

and fraction tiled area in a watershed, with greater travel times corresponding to areas with a 

higher tile drain area fraction (Figure 13a and Table 8). Tile drains are human-made artificial 

drainage systems put in place to remove excess surface water. As the density of watershed tile 

drains increases, N can flow quicker through the subsurface, most likely contributing to the 

negative relationship. This relationship with tile drains is similar to Liu et al. (2021), where in 

sub-watersheds across the Grand River (GRW), tile drainage percent was significantly negatively 
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correlated with mean travel time (R2 = 0.72, p = 0.02). Liu et al. (2021) used only 14 sub-

watersheds in their study, so it is interesting to see the same pattern persist across 45 sub-

watersheds in Canada and the U.S. Like the GRW study, I also found a negative relationship (R2 

= 0.16, p < 0.01)  between mean travel time and % silt and clay in the sub-watersheds (Table 8). 

This counter-intuitive relationship most likely arises because less permeable soils are 

preferentially drained by tile drains that contribute to shorter travel times. This suggests that 

human management systems, such as tile drains, have a greater affect on N fluxes than natural 

features like soil-type. 

 

I  also found significant negative relationships (R2 = 0.17, p < 0.01) between the landscape scale 

denitrification rate constant (groundwater and soil denitrification) and the tile-drained area 

fraction (Figure 13b and Table 8). Higher tiled fractions lead to possible lowering of the water 

table that contributes to oxygenated soils and thus lower denitrification rates. Damkohler 

(groundwater denitrification rate multiplied by groundwater travel time) numbers showed a 

significant negative correlation (R2 = 0.38,  p < 0.01) with percent tiled areas, highlighting that 

tiled regions contribute to less N lost by denitrification due to both a hydrological effect 

(decrease of travel times) and biogeochemical effect (decrease of denitrification rate constant).  

 

Finally, I see a significant positive correlation (R2 = 0.25, p < 0.001) between population density 

and wastewater denitrification fraction (Figure 13c and Table 8). This is reasonable as in more 

urban watersheds with higher population densities, there tend to be larger, more sophisticated 

wastewater treatment plants, and thus a greater proportion of N is removed.  
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.  

Figure 13: Correlation analysis between model parameters and watershed characteristics showing the relationships between  (a) tile 

drainage and travel time (μ), (b) tile drainage and landscape denitrification (the sum of groundwater and soil denitrification, λw+ λ) , 

and (c) log of population density and wastewater denitrification (λpop) 

 

Table 8: Correlation analysis summary for various landscape characteristics vs model parameters 
A * indicates a negative relationship and bold indicates a significant relationship (p value < 0.05) 

 
 R2 (p value)  

Landscape 
Characteristics 

GW travel time  
(μ) 

Soil 
denitrification 

(λ) 

Groundwater 
denitrification 

(λw) 

Waste 
denitrification 

(λpop) 

Damkholer 
(μ ⨉ λw) 

Landscape 
denitrification 

(λw+λ) 

Tile Drained Area 
(%)  

*0.39 (<0.01) *0.16 (<0.01) *0.05 (0.14) *0.4 (<0.01) *0.38 (<0.01) *0.17 (<0.01) 

Population Density 
Log 

0.03 (0.27) 0.06 (0.11) 0.03 (0.28) 0.25 (<0.01) 0.03 (0.22) 0.06 (0.1) 

Silt and Clay (%) 0.16 (<0.01) *0.006 (0.62) 0.02 (0.38) *0.17 (<0.01) *0.10 (0.02)  *0.003 (0.7) 
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3.4 Modelled N fluxes and stores across the Lake Erie Basin 

I next used the model results to quantify how N inputs on the landscape can be released into the 

river through N loading, stored as a legacy in the soil or groundwater, removed from the system 

via denitrification (soil or groundwater), or can undergo wastewater denitrification at WWTPs. 

The models were able to quantify how much N inputs have been stored as legacy N in the LEB. 

Notably, across the LEB, from 1950 to 2016, up to 910 kg per ha of N has been stored in the soil 

(median: 542 kg/ha) and as much as 187 kg/ha has been stored in the groundwater (median: 43 

kg/ha). Together, this means that up to 952 kg/ha of N is stored as legacy in the studied sub-

watersheds (median: 603 kg/ha). The relative proportions of these components varied across the 

LEB (Figure 14).  

 

Over the last 66 years (1950-2016), across the sub-watersheds, 5-53% (median: 20%) of the 

cumulative N surplus was exported through the river network, 15% - 62% was removed via soil 

and groundwater denitrification (median: 44%), while 2% - 65% was released via wastewater 

denitrification (median: 6%). This leaves 4% - 44% of N stored as legacy N (median: 23%). On 

average 92% of this legacy N was in the soil and 8% was in the groundwater. These ranges are 

similar to an earlier study in the Grand River watershed (Liu et al. 2021) that found between 

1930 and 2016, approximately 27% of cumulative N surplus had been exported to the stream, 

35% was removed via land denitrification, 10% was lost through wastewater denitrification, and 

the remaining 30% was stored as legacy N.  
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Figure 14 shows the proportion of N stored and released during the 66-year period from 1950 to 

2016 across the LEB as well as the cumulative N fluxes and stores for 3 major LEB sub-

watersheds. While the breakdown of N surplus is similar to the GRW, the ranges for each 

component are widened across the entire LEB. This is likely due to the added variety in sub-

watershed types added to this study. This analysis includes sub-watersheds that have a higher 

urban area fraction, lower agricultural urban fraction and a higher forest coverage than are 

present in the GRW. Thus, I are able to capture a wider range of accumulated N storage. Sub-

watersheds U1-U3, for example, are three urban sub-watersheds near Detroit, so the majority of 

N applied to these watersheds is removed through wastewater denitrification, and their legacy N 

accumulation is very low. Since 1950, these urban sub-watersheds only have had 5% to 14% of 

their inputs stored as legacy N, while a cumulative 55% to 65% of N inputs were released via 

wastewater denitrification (much higher than in the GRW, where only about 10% of N was lost 

to wastewater denitrification). More agricultural sub-watersheds, like the Auglaize sub-

watershed (U6), experienced a higher proportion of N storage like the GRW sub-watersheds. In 

the Auglaize River, for example, since 1950, 25% of N inputs remain in the system as legacy N.  

Across the entire LEB, as much as 43% and as little as <5% of N inputs have been stored as 

legacy N across different sub-watersheds. 
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Figure 14: Fate of applied N since 1950: Cumulative N fluxes and N stores across the Lake Erie basin from 1950 to 2016 (N stores 

include groundwater and SON accumulation and N fluxes include cumulative stream N loading, WWTP N removal, and landscape 

denitrification)  in the (a) Grand River, ON (C19), (b) Maumee River (U9), and (c) Cuyahoga River (U17). (d) The proportion of N 

attributed to each of the fluxes and stores is shown for modelled sub-watersheds ** Note, results are presented for only 38 of the 45 

sub-watersheds. I omitted 7 sub-watersheds since SON accumulation patterns looked suspect in them, despite being able to describe 

outlet loadings (SON was negative in recent years, which is unrealistic and necessitates more investigation). 
 
 
Next, I looked at how landscape features might affect the fate of N in a watershed over time. For 

each modelled sub-watershed I compared how percent tile drainage and percent agricultural area 

correlated to the fates of N. Tile drainage was significantly positively correlated (R2 = 0.56, 
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p<0.001) with the proportion of N that is hydrologically released (rather than stored).As tile-

drainage density increases, legacy N storage declines and is increasingly released directly into 

streams.. These results are consistent with the Grand River study, where high values of travel 

time (µ) correlated with high SON and GW accumulation, and where high levels of tile drainage 

correlated with low values of travel time (µ).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



53 
 

Chapter 4: Conclusions 

4.1 Summary 

 
The overall objective of this thesis was to understand legacy nitrogen dynamics across the 

transboundary LEB, using a combination of data synthesis and process modelling, I developed 

datasets and models for 45 sub-watersheds across the LEB, 25 in Canada and 20 in the U.S.  

 

Across all 45 sub-watersheds, surplus N began to increase after 1950 and peaked between 1980 

and 2000; ranging from 34 to 108 kg/ha. The source breakdown of this surplus varied across the 

LEB. In highly urban sub-watersheds, domestic waste N comprised the majority of N surplus, 

whereas, for the majority of the agricultural sub-watersheds, the rise in N surplus was driven by 

an increase in fertilizer application and high rates of biological N fixation. After the peak period, 

a steady decline in N surplus occurs across the majority of the sub-watersheds until 2010, which 

is likely driven by improved fertilizer use efficiency (more crop N uptake per applied fertilizer 

and manure). Flow-weighted N concentrations for the sub-watersheds do not respond linearly to 

changes in the N surplus; rather, they show a disconnected, lagged response.  

 

To quantify the fluxes of N applied across the LEB, I developed and calibrated models for 45 

sub-watersheds and simulated over a century of riverine N loading for each. Overall, the models 

performed well and were able to appropriately simulate N loading trajectories using only eight 

calibrated parameters. The median KGE and PBIAS for modelled vs measured loading across the 

sub-watersheds were 0.75 and 1.9% respectively. The models were also able to capture current-

day SON. The median PBIAS for measured vs modelled SON was 12%.  
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I found that the calibrated model parameters vary considerably across the LEB. Groundwater 

travel times range from 5 to 35 years and was significantly negatively correlated with the amount 

of tile drainage in the sub-watershed.  Soil and groundwater denitrification rates also vary across 

the LEB and are also negatively correlated with the degree to which tile drainage is used in the 

watershed. As more of a sub-watershed is drained artificially, water in the subsurface flows 

quicker, leaving less opportunity for N denitrification. Thus, more applied N ends up in the 

stream before it can undergo denitrification. Wastewater denitrification rates were positively 

correlated with the population density of sub-watersheds, so the more urban the watershed, the 

higher the wastewater denitrification rates. This is likely a result of larger, urban cities having 

larger, more sophisticated WWTPs that can remove a higher percentage of N through 

denitrification.  

 

The stores of legacy N across the LEB have been increasing from 1950 to 2016. Sub-watersheds 

have experienced up to 952 kg/ha of legacy N storage (median: 603 kg/ha). Up to 910 kg/ha of N 

has been stored in the soil and as much as 187 kg/ha has been stored in the groundwater. Across 

all of the sub-watersheds, only 5% to 53% of applied N has reached the stream (20% median); 

the rest has been either denitrified or stored as legacy N. Among the sub-watersheds, up to 44% 

of surplus N has had the potential to build up as legacy N. The percentage of accumulated legacy 

N  is correlated to the tile drainage of the watershed. Sub-watersheds with a higher density of tile 

drainage are correlated with shorter groundwater travel times and retain less N than those with 

less artificial drainage.  
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4.2 Implications and future work  

4.2.1 Implications 
 
The Lake Erie basin is a large, heterogeneous landscape that includes many land cover types and 

jurisdictions. By quantifying N surplus across the LEB and modelling N dynamics in multiple 

sub-watersheds, I were able to quantify N legacies across the watershed and what drives them. 

Watershed N management regulations that only set targets for N application (N surplus) do not 

account for N already stored as legacy across the watershed: large stores of soil organic N as 

well as N dissolved in slow-moving groundwater. Depending on a watershed's physical 

characteristics and land-management practices, N can remain in the system for decades before 

reaching the outlet (Van Meter et al., 2018; Ilampooranan et al., 2019; Liu, 2020). The thesis 

results have the potential to influence watershed management practices. By explicitly quantifying 

N legacies in Lake Erie sub-watersheds, stakeholders can consider legacy N stores when setting 

nutrient reduction targets to make reasonable and informed decisions about how to reduce N in 

the lake. 

 

By modelling several sub-watersheds across the LEB, I were also able to capture the 

heterogeneity of N legacy patterns. This allows for a more local and targeted nutrient 

management approach for the watershed. One can identify the predominant storage type of 

legacy N in each sub-watershed to target management practices to. In agricultural sub-

watersheds with ample legacy SON, cover crops and reduced fertilizer application rates could 

effectively reduce the amount of N loading in the stream. Sub-watersheds with slow travel times 

and, thus, higher groundwater N accumulation might benefit from the addition of wetlands to 

intercept the subsurface flow of N and provide the opportunity for denitrification. I have also 
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demonstrated how travel times in a sub-watershed influence how N is retained in the system; 

watersheds with quick travel times have shorter lag times and retain less N. Thus, watersheds 

with high SON stores and quick travel times (usually heavily tile drained watersheds) should be 

managed first, as reducing N in these sub-watersheds should, theoretically, lead to the fastest 

improvement in stream water quality.  

 

Finally, the harmonized N surplus, soil, and landcover data for the LEB compiled here for the 

first time has the potential to facilitate further meaningful nutrient and water quality analyses. 

Models are often only applied to one side of the U.S./Canada border because of the lack of data-

consistency between the countries. This thesis aggregated data from both sides of the border; this 

cross-border data can be clipped to sub-watersheds of varying scales across the LEB, and used 

for further analysis and modelling endeavours. 

4.2.2 Future work 
 
While this thesis was able to successfully model 45 sub-watersheds across the LEB and 

identified several trends between land cover characteristics and model parameters and results, 

more work is needed to further refine the results. First, calibration and parameter selection will 

need to be explored for sub-watershed models which had unexpected results (either with respect 

to model performance (section 3.2) or with respect to unusual SON legacy stores (section 3.4)). 

For these sub-watersheds, I need to explore parameter ranges or model assumptions to ensure I 

best capture their physical reality. Next, while this study covered many of the sub-watersheds in 

the LEB, some sub-watersheds remain unmodelled due to lack of N concentration or stream 

discharge data. For these areas, I can make use of  the parameter relationships defined in section 

3.3 and use parameter transfer techniques to estimate N legacy stores across the entire LEB. 
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Finally, once all the models have been refined, future sub-watershed simulations could consider 

scenarios with differing N surplus application changes (increases or decreases). Using these 

changes, the models could simulate how long it would take to achieve N loading reductions 

given different nutrient reduction strategies. 
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Appendix A: Data Summary for non-hydrological N input and N output data 

Country  Input/Output Category Data Required Spatial Resolution, 
Extent 

Temporal Resolution, Time Span Data Source 
 

 
 
 
 
 

 

 

Biological N Fixation  Biological N fixation rates - - Byrnes et. al, 2020; Byrnes et. al, 2022 

Livestock Manure N  Livestock headcounts County, Canada Census Years, 1901-2016 Canadian Census of Agriculture 

Livestock nutrient 
parameters 

- - Byrnes et. al, 2020; Byrnes et. al, 2022 

Atmospheric N Deposition  Atmospheric N deposition  1.2 x 1.2 degrees, Global Annual, 1850,1960, 1970, 1980, 1990, 1997-2013 Wang et. al, 2017 

Carbon emissions Country resolution, Global  Annual, 1785-2014 Carbon Dioxide Information Analysis Center (CDIAC)  

Mineral N Fertilizer Fertilizer Salces Provincial scale, Canada Annual, 1951-2016 Stats Canada, Table: 32-10-0039-01 

Domestic N Waste Population  County scale, Canada Census Years, 1901-2016 Canadian Census of Agriculture 

Provincial scale, Canad Census Years, 1951-2016 Canadian Census 

Crop N Uptake  Crop area County scale, Canada Census Years, 1901-2016 Canadian Census of Agriculture 

Crop yield Provincial scale, Canada Annual, 1908-2016 Stats Canada, Table: 32-10-0359-01 

Crop nutrient parameters - - Byrnes et. al, 2020; Byrnes et. al, 2022; Hong and Swaney, 
2013 

Downscaling Landcover Data Gridded Land Cover Data 30 x 30 m, Canada Annual, 2011-2016 Annual Crop Inventory Canada (ACI) 

 
 
 

 

Biological N Fixation  Biological N fixation  County Scale, U.S. Annual 1930-2017 Byrnes et. al, 2022 

Livestock Manure N  Livestock N excretion  County Scale, U.S. Annual 1930-2017 Byrnes et. al, 2022 

Atmospheric N Deposition  Atmospheric N deposition  1.2 x 1.2 degrees, Global Annual, 1850,1960, 1970, 1980, 1990, 1997-2013 Wang et. al, 2017 

Carbon emissions Country resolution, Global  Annual, 1785-2014 Carbon Dioxide Information Analysis Center (CDIAC)  

Mineral N Fertilizer Mineral N Fertilizer County Scale, U.S. Annual 1930-2017 Byrnes et. al, 2022 

Domestic N Waste Domestic N waste County Scale, U.S. Annual 1930-2017 Byrnes et. al, 2022 

Crop N Uptake  Crop N uptake County Scale, U.S. Annual 1930-2017 Byrnes et. al, 2022 

Downscaling Landcover Data Gridded Land Cover Data 250 x 250 m, U.S. Annual, 1938-1992; 2001, 2003, 2006, 2008, 2011, 
2013, 2016 

Sohl et al, 2016; NLCD, USGS 

C
an
ad
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Appendix  B: Summary of all median performance metrics for each sub-watershed 

Basin KGE PBIAS Load 
PBIAS 
SON Basin KGE 

PBIAS 
Load 

PBIAS 
SON Basin KGE 

PBIAS 
Load 

PBIAS 
SON 

C1 0.67 0.03 0.06 C17 0.71 0.04 0.07 U8 0.55 0.04 0.13 

C2 0.78 0.01 0.14 C18 0.86 0.04 0.19 U9 0.6 0.04 0.1 

C3 0.68 0.03 0.07 C19 0.9 0.03 0.16 U10 0.82 0.03 0.12 

C4 0.76 0.18 0.26 C20 0.65 0.04 0.15 U11 0.9 0.04 0.1 

C5 0.69 0.02 0.53 C21 0.91 0.02 1.28 U12 0.73 0.06 0.09 

C6 0.71 0.03 0.09 C22 0.89 0.01 0.48 U13 0.88 0.03 0.06 
C7 0.87 0.02 0.1 C23 0.9 0.03 0.19 U14 0.18 0.15 0.13 

C8 0.68 0.03 0.05 C24 0.78 0.05 0.04 U15 0.42 0.09 0.03 

C9 0.52 0.1 0.03 C25 0.84 0.03 0.04 U16 0.65 0.03 0.03 

C10 0.86 0.04 0.12 U1 0.32 0.04 1.89 U17 0.31 0.03 0.16 

C11 0.7 0.04 0.13 U2 0.5 0.02 0.13 U18 0.69 0.04 0.12 

C12 0.77 0.05 0.13 U3 0.44 0.34 3.78 U19 0.89 0.04 0.03 

C13 0.82 0.03 0.22 U4 0.72 0.18 1 U20 0.86 0.03 0.23 

C14 0.76 0.03 0.23 U5 0.9 0.02 0.01     

C15 0.89 0.03 0.24 U6 0.75 0.04 0.09     

C16 0.76 0.04 0.02 U7 0.48 0.42 0.02     
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Appendix  C: Summary of all sub-watersheds and their cumulative N fluxes and stores, 

including sub-watersheds omitted in the main analysis (starred). 

 

 

 

 

 


