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A B S T R A C T

The large-scale integration of distributed energy resources into the energy industry enables the fast transition
to a decarbonized future but raises some potential challenges of insecure and unreliable operations. Multi-
energy Microgrids (MEMGs), as localized small multi-energy systems, can effectively integrate a variety of
energy components with multiple energy sectors, which have been recently recognized as a valid solution to
improve the operational security and reliability. As a result, a massive amount of research has been conducted
to investigate MEMG energy management problems, including both model-based optimization and model-free
learning approaches. Compared to optimization approaches, reinforcement learning is being widely deployed
in MEMG energy management problems owing to its ability to handle highly dynamic and stochastic processes
without knowing any system knowledge. However, it is still difficult for conventional model-free reinforcement
learning methods to capture the physical constraints of the MEMG model, which may therefore destroy its
secure operation. To address this research challenge, this paper proposes a novel safe reinforcement learning
method by learning a dynamic security assessment rule to abstract a physical-informed safety layer on top
of the conventional model-free reinforcement learning energy management policy, which can respect all the
physical constraints through mathematically solving an action correction formulation. In this setting, the secure
energy management of the MEMG can be guaranteed for both training and test procedures. Extensive case
studies based on two integrated systems (i.e., a small 6-bus power and 7-node gas network, and a large 33-
bus power and 20-node gas network) are carried out to verify the superior performance of the proposed
physical-informed reinforcement learning method in achieving a cost-effective MEMG energy management
performance while respecting all the physical constraints, compared to conventional reinforcement learning
and optimization approaches.
1. Introduction

Over the last decades, the energy industry has undergone major
changes due to various technical, economic, and environmental factors.
One of the most remarkable things is related to deregulation and
decarbonization, which promise a global energy transition and open up
new challenges on both the generation and distribution sides [1]. Dis-
tributed energy resources (DERs) (e.g., conventional diesel generators
(DGs), renewable energy resources (RESs), and energy storage systems
(ESs)) are rapidly becoming attractive due to their high efficiency,
increased reliability, and less environmental impact [2]. However,
the large-scale integration of DERs into distribution networks also
imposes significant operational issues, e.g., demand–supply imbalance,
power quality, voltage instability, etc. [3]. Furthermore, the increasing
integration of variable and uncertain RESs can influence the secure
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operation of multi-energy systems (MESs) due to the close interconnec-
tion between different energy vectors [4]. In this context, multi-energy
microgrids (MEMGs), as an effective and secure coordinated man-
agement solution integrating multiple energy vectors, have recently
attracted great interest from both the academy and the industry in
various aspects, e.g., supporting system demand–supply balances, re-
ducing energy costs, deferring or avoiding generation and transmission
reinforcements, etc. [5].

Driven by this desire, there have been substantial efforts focused
on the areas of MEMG operation control and energy management at
the distribution system level, including both model-based optimization
and model-free learning approaches. On one hand, the optimization
approaches acquire the complete knowledge (e.g., operation models
of DERs and distribution networks) of the system and formulate it as
vailable online 30 January 2023
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Nomenclature

Indices and Sets

𝑡 ∈ 𝑇 Index and set of time steps (hours)
𝑏 ∈ 𝐸𝐵 Index and set of electric buses (EBs) in

power network
𝑏 ∈ 𝐺𝐵 Index and set of gas nodes (GBs) in gas

network
𝑙 ∈ 𝑃𝐿 Index and set of branches (PLs) in power

network
𝑙 ∈ 𝐺𝐿 Index and set of pipelines (GLs) in gas

network
𝑔 ∈ 𝐷𝐺 Index and set of diesel generators (DGs)
𝑔 ∈ 𝐺𝐺 Index and set of gas-fired generators (GGs)
𝑔 ∈ 𝐺𝑊 Index and set of gas wells (GWs)
𝑘 ∈ 𝐸𝑆 Index and set of energy storage systems

(ESs)
𝑘 ∈ 𝐺𝑆 Index and set of gas storage systems (GSs)
𝐵𝑝𝑔𝑑 Bus set of upstream power grid
𝐵𝑔𝑔𝑑 Bus set of upstream gas grid
𝐵𝑒𝑑 Bus set of electric demand (ED) 𝑑
𝐵𝑔𝑑 Node set of gas demand (GD) 𝑑
𝐵𝑑𝑔 Bus set of DG 𝑔
𝐵𝑔𝑔 Bus set of GG 𝑔
𝐵𝑔𝑤 Node set of GW 𝑔
𝐵𝑒𝑠 Bus set of ES 𝑘
𝐵𝑔𝑠 Node set of GS 𝑘
𝐵𝑟𝑒𝑠 Bus set of renewable energy sources (RES)

𝑔

Parameters

𝛥𝑡 Time resolution (1 h)
𝜆𝑝+𝑡 Grid active power buying price at time 𝑡

(£/kWh)
𝜆𝑝−𝑡 Grid active power selling price at time 𝑡

(£/kWh)
𝜆𝑞+𝑡 Grid reactive power buying price at time 𝑡

(£/kVARh)
𝜆𝑞−𝑡 Grid reactive power selling price at time 𝑡

(£/kVARh)
𝑐𝑑𝑔,𝑝𝑔 Production cost of active power of DG 𝑔

(£/kWh)
𝑐𝑑𝑔,𝑞𝑔 Production cost of reactive power of DG 𝑔

(£/kVARh)
𝑐𝑔𝑔,𝑝𝑔 Production cost of active power of GG 𝑔

(£/kWh)
𝑐𝑔𝑔,𝑞𝑔 Production cost of reactive power of GG 𝑔

(£/kVARh)
𝑃 𝑒𝑑𝑑,𝑡 Active demand 𝑑 at time 𝑡 (kW)
𝑄𝑒𝑑𝑑,𝑡 Reactive demand 𝑑 at time 𝑡 (kVAR)

𝑃
𝑑𝑔
𝑔 Maximum active power of DG 𝑔 (kW)

𝑃 𝑑𝑔𝑔 Minimum active power of DG 𝑔 (kW)

𝑄
𝑑𝑔
𝑔 Maximum reactive power of DG 𝑔 (kVAR)

𝑄𝑑𝑔
𝑔

Minimum reactive power of DG 𝑔 (kVAR)

𝛿𝑑𝑔𝑔 Rated power factor of DG 𝑔

a constrained optimization problem. In this setting, all the physical
constraints can be satisfied. However, it is normally impractical to
obtain accurate system knowledge due to aging and privacy issues [6].
2

𝑃
𝑔𝑔
𝑔 Maximum active power of GG 𝑔 (kW)

𝑃 𝑔𝑔𝑔 Minimum active power of GG 𝑔 (kW)
𝑄
𝑔𝑔
𝑔 Maximum reactive power of GG 𝑔 (kVAR)

𝑄𝑔𝑔
𝑔

Minimum reactive power of GG 𝑔 (kVAR)
𝛿𝑔𝑔𝑔 Rated power factor of GG 𝑔
𝑏𝑔𝑔𝑔 Coefficient for gas consumption of GG 𝑔

(𝑆𝑚3/kWh)
𝑃
𝑒𝑠
𝑘 Active power capacity of ES 𝑘 (kW)

𝐸
𝑒𝑠
𝑘 Energy capacity of ES 𝑘 (kWh)

𝐸𝑒𝑠𝑘 Maximum depth of ES discharge 𝑘 (kWh)
𝜂𝑒𝑠𝑐𝑘 Charging efficiency of ES 𝑘 (%)
𝜂𝑒𝑠𝑑𝑘 Discharging efficiency of ES 𝑘 (%)
𝐺
𝑔𝑤
𝑔 Maximum gas output of GW 𝑔 (𝑆𝑚3∕ℎ)

𝐺𝑔𝑤𝑔 Minimum gas output of GW 𝑔 (𝑆𝑚3∕ℎ)
𝐹
𝑔𝑠
𝑘 Inflation/deflation capacity of GS 𝑘

(𝑆𝑚3∕ℎ)
𝐺
𝑔𝑠
𝑘 Gas capacity of GS 𝑘 (𝑆𝑚3)

𝑉 Maximum permissible voltage (p.u.)
𝑉 Minimum permissible voltage (p.u.)
𝐵𝑙 Susceptance of line 𝑙 (p.u.)
𝐺𝑙 Conductance of line 𝑙 (p.u.)
𝑆𝑙 Capacity limit of line 𝑙 (kVA)
𝑃
𝑝𝑔𝑑
𝑔 Active power import limit of upstream

power grid 𝑔 (kW)
𝑃 𝑝𝑔𝑑𝑔 Active power export limit of upstream

power grid 𝑔 (kW)
𝑄
𝑝𝑔𝑑
𝑔 Reactive power import limit of upstream

power grid 𝑔 (kVAR)
𝑄𝑝𝑔𝑑
𝑔

Reactive power export limit of upstream
power grid 𝑔 (kVAR)

𝐺𝑙 Capacity limit of gas pipeline 𝑙 (𝑆𝑚3∕ℎ)
𝜆𝑙 Compression factor of compressor on gas

pipeline 𝑙
𝜂𝑙 Parameter for gas flow and pressure rela-

tionship on gas pipeline 𝑙 (𝑆𝑚3/(ℎ⋅𝑏𝑎𝑟2))
𝐺
𝑔𝑔𝑑
𝑔 Gas supply limit of upstream gas grid 𝑔

(𝑆𝑚3∕ℎ)

Variables

𝑃 𝑑𝑔𝑔,𝑡 Active power generation of DG 𝑔 at time 𝑡
(kW)

𝐹 𝑔𝑠𝑐𝑘,𝑡 Inflating gas of GS 𝑘 at time 𝑡 (𝑆𝑚3∕ℎ)
𝐹 𝑔𝑠𝑑𝑘,𝑡 Deflating gas of GS 𝑘 at time 𝑡 (𝑆𝑚3∕ℎ)
𝐺𝑔𝑠𝑘,𝑡 Energy content of GS 𝑘 at time 𝑡 (𝑆𝑚3)
𝑃 𝑝𝑔𝑑𝑔,𝑡 Active power exchange with the upstream

power grid 𝑔 at time 𝑡 (kW)
𝑄𝑝𝑔𝑑𝑔,𝑡 Reactive power exchange with the upstream

power grid 𝑔 at time 𝑡 (kVAR)
𝐺𝑔𝑔𝑑𝑔,𝑡 Gas supply from the upstream gas grid 𝑔 at

time 𝑡 (𝑆𝑚3∕ℎ)
𝑉𝑏,𝑡 Voltage magnitude at EB 𝑏 at time 𝑡 (p.u.)
𝛿𝑏𝑝,𝑡 Voltage angle difference between EB 𝑏 and

bus 𝑝 at time 𝑡 (◦)
𝑃 𝑒𝑥𝑏,𝑡 Active power exchange between EB 𝑏 and

other buses at time 𝑡 (kW)

Furthermore, solving an optimization problem for each state condition
is time-consuming, especially when taking various system uncertainties
and dynamics into account [7]. On the other hand, the model-free
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𝑄𝑒𝑥𝑏,𝑡 Reactive power exchange between EB 𝑏 and
other buses at time 𝑡 (kVAR)

𝑄𝑑𝑔𝑔,𝑡 Reactive power generation of DG 𝑔 at time
𝑡 (kVAR)

𝑃𝑙,𝑡 Active power of PL 𝑙 at 𝑡 (kW)
𝑄𝑙,𝑡 Reactive power of PL 𝑙 at 𝑡 (kVAR)
𝑃 𝑟𝑒𝑠𝑔,𝑡 Active power output of RES 𝑔 at time 𝑡 (kW)
𝐺𝑙,𝑡 Gas flow of GL 𝑙 at time step 𝑡 (𝑆𝑚3∕ℎ)
𝜌𝑏,𝑡 Gas pressure of GB 𝑏 at time step 𝑡 (bar)
𝑃 𝑔𝑔𝑔,𝑡 Active power generation of GG 𝑔 at time 𝑡

(kW)
𝑄𝑔𝑔𝑔,𝑡 Reactive power generation of GG 𝑔 at time

𝑡 (kVAR)
𝑃 𝑒𝑠𝑐𝑘,𝑡 Charging power of ES 𝑘 at time 𝑡 (kW)
𝑃 𝑒𝑠𝑑𝑘,𝑡 Discharging power of ES 𝑘 at time 𝑡 (kW)
𝐸𝑒𝑠𝑘,𝑡 Energy content of ES 𝑘 at time 𝑡 (kWh)
𝑢𝑒𝑠𝑘,𝑡 Binary indicating the battery status of

charging (𝑢𝑒𝑠𝑘,𝑡 = 1) or discharging/idle
(𝑢𝑒𝑠𝑘,𝑡 = 0)

𝐺𝑔𝑤𝑔,𝑡 Gas output of GW 𝑔 at time step 𝑡 (𝑆𝑚3∕ℎ)

learning approaches can be deployed in real-time control and do not
depend on any prior knowledge of the system. Furthermore, the well-
learned control policies can adapt to various state conditions of the
system uncertainties and dynamics. However, it is difficult for the
model-free learning approaches to capture the physical constraints of
the studied system, which can be prone to insecure operations. This
is because the system model is assumed to be a black-box, and the
microgrid central controller (MGCC) has no idea how to safely operate
the studied system without its complete knowledge. As such, this
paper proposes a novel physical-informed reinforcement learning (RL)
approach for the secure operation of MEMGs that can satisfy all the
physical constraints appropriately while also ensuring their effective
energy management.

1.1. Literature review on model-based approaches

So far, model-based optimization approaches have contributed to
most of the existing literature on microgrid (MG) energy management
problems [8]. In [9], a game-theoretic modeling approach is proposed
to integrate the supply-side and demand-side responses for the ef-
fective energy management of an isolated MG. However, this paper
assumes perfect forecasts of demand profiles and renewable energy.
The obtained solutions, thus, may not be consistent with reality and
practicality. In order to capture system uncertainties of RESs, demand,
and electricity prices, a risk-constrained stochastic framework has been
developed in [10] for the joint energy and reserve scheduling of au-
tonomous MGs. In [11], a two-stage robust bi-level energy sharing
framework is proposed to overcome the impact of uncertainties asso-
ciated with market prices and RESs for a prosumer MG. Furthermore,
in a shorter amount of time, an online optimization approach based
on model predictive control (MPC) has been developed in [12] for the
real-time energy management of MGs. However, it is worth noting that
MPC-based approaches need to consider the impact of future scenarios
for MG operations and solve a time-coupled physical model at each time
step, which can be time-consuming [13]. Additionally, the length of the
rolling horizon is empirical and normally difficult to select.

Apart from MGs involving only power sector, integrated MEMGs
have recently attracted much interest in terms of energy management
owing to their various advantages, such as increased system reliability
3

and efficiency, reduced fuel consumption, energy cost, and carbon
emissions [4]. For instance, in [14], a two-stage stochastic optimiza-
tion approach based on scenario analysis is proposed for the energy
management of MEMGs, considering the stochastic processes of wind
power generation and demand profiles. In [15], an adjustable and
robust formulation is developed for the optimal energy management
of MEMGs, capturing uncertainties associated with energy demand
and RESs. In [16], a multi-timescale coordinated adaptive robust op-
timization approach is suggested for the energy management problem
of industrial MEMGs to handle the uncertain renewable generation.
However, all the above papers entirely ignore the network modeling of
integrated MESs, which cannot capture technical constraints related to
system stability properties, e.g., nodal voltage and power flow limits
in power networks as well as nodal pressure and gas flow limits in
gas networks. In [17], a two-stage robust framework involving internal
energy network constraints is proposed for the multi-temporal time-
ahead energy management of smart MEMGs. In [18], the operational
constraints of both gas and power networks are included in an edge-
based MEMG modeling framework. In [19], a distributed multi-period
operational model is proposed for the energy management of MEMGs,
characterized by the detailed modeling of coupled power, heating, and
gas energy networks.

Overall, extensive efforts have been made to develop model-based
optimization approaches to study MG or MEMG energy management
problems for different purposes. However, the limitations of the above
research cannot be erased and are summarized hereafter. First, all the
above papers rely on the accuracy of uncertainty forecasting, which
is normally impractical [20]. Second, uncertainties are handled via
stochastic programming or robust optimization approaches in most of
the above research, which may only be able to capture a small number
of representative scenarios or lead to very conservative optimization
results. Meanwhile, stochastic programming approaches can be time-
consuming, especially when a large number of scenarios are involved.
Hence, they are not capable of providing timely services for real-time
MEMG energy management. Third, considering the highly stochastic
and dynamic real-world environment, it is difficult to explicitly acquire
the mathematical models and technical parameters of all resources
and networks inside the investigated MEMG, which are crucial for
model-based MEMG energy management to obtain secure solutions.

1.2. Literature review on model-free RL approaches

In view of the aforementioned shortcomings in model-based opti-
mization approaches, reinforcement learning (RL) [21] is a model-free
control method for studying the sequential decision-making process
of an agent who can gradually learn the optimal control strategies
based on the experiences gained from repeated interactions with the
environment, without a prior knowledge. Furthermore, being an online
learning method, RL can make efficient use of growing amounts of
data from the environment, thereby capturing system uncertainties and
adapting to various state dynamics. Finally, once the RL method is well
trained, its policy can be delivered to the online test set on timescales
of milliseconds without requiring any identification. Therefore, RL is
claimed as an effective tool for real-time automatic energy management
problems.

As reviewed in [8], previous work has successfully utilized various
RL methods to solve MG or MEMG energy management problems.
For example, a conventional Q-learning (QL) method is used to learn
the optimal strategies for energy management and demand schedul-
ing of an MG [22]. However, QL depends on a look-up Q-table that
discretizes both the state and action domains, thereby suffering from
the curse of dimensionality [21]. To address this issue, a deep Q-
network (DQN) [23] method is proposed to learn the comprehensive
state features through a deep neural network (DNN) to approximate the
Q-value function. In the literature, DQN has been applied to enhance
the energy management system of an MG that coordinates different

flexible sources [24]. To further represent the continuous action space,



Applied Energy 335 (2023) 120759Y. Wang et al.
the policy-based RL methods such as deep deterministic policy gradient
(DDPG) [25] and proximal policy optimization (PPO) [26] have been
successfully applied to the MG energy management problems. Regard-
ing the application of RL methods in MEMGs, a real-time autonomous
energy management strategy combining the DDPG method with prior-
itized experience replay is proposed in [7] for the energy management
of a residential MEMG. In [27], the scheduling policies of different
types of loads in MEMGs are optimized via a PPO method. In [28],
a model-free safe RL method is proposed to solve the optimal control
problem of a renewable-based MEMG while satisfying the operating
constraints of all its controllable devices. However, it is worth noting
that the RL methods developed in the above papers drive MGs and
MEMGs to make energy management decisions without considering
any physical constraints of the power and/or gas networks inside the
operation model, e.g., nodal voltage limit, power line capacity, nodal
gas pressure limit, and pipeline capacity, which can lead to insecure
operations. This is because the DNN training process for conventional
RL methods is an unconstrained learning problem that ignores system
physical constraints.

To address this practical issue, [25,26] have formulated the physical
constraint violations as penalty terms added to the reward function,
which aims to satisfy the operation constraints of battery energy capac-
ity and main grid power exchange limit. However, designing a reward
function becomes a complicated and challenging task, especially as the
number of constraints increases. As a result, the constrained Markov
decision process (CMDP) based on the Lagrange multipliers is proposed
in [29] for MGs, which formulates the power flow constraints into a
gradient descent algorithm during the training process. In [30], a con-
strained soft actor–critic (SAC) method based on a CMDP framework
is proposed to solve the voltage control problem of active distribution
networks (ADNs). In [31], a safe RL method based on CMDP has
been developed to solve the optimal operation problem of distribu-
tion networks with the objectives of voltage regulation and energy
cost minimization. However, running gradient descent with every pol-
icy query (i.e., forward propagation) requires sophisticated in-graph
implementation and is computationally intensive, while the gradient
calculation can cause numerical instabilities and long convergence
times, and requires careful step-size selection [32]. Additionally, deter-
mining gradient factors (i.e., Lagrange multipliers) in a CMDP requires
complete knowledge of distribution network models and parameters.
Furthermore, it is noted that reliability and security issues are crucial
in energy systems, so the safety of the system operation model has to be
guaranteed even during the initial exploration of RL training process,
which is unattainable in the above papers.

To ensure the safe operation of the entire RL training process, a
CMDP is proposed in [33] to solve the optimal voltage control problem
of an ADN, while a safety layer is introduced to correct the voltage
control actions to maintain all bus voltages within the acceptable
range. The rationale behind the safety layer is to approximate voltage
constraints with a first-order linear programming. After that, this safety
layer can be added on top of the RL policy to solve a constrained opti-
mization problem with a closed-form analytical solution of the voltage
action corrections. However, the proposed safety layer is pre-trained
and does not continue updating during the RL training process, which
may lead to an inaccurate approximation of the voltage constraints
when a growing number of new system states are generated. In [34],
a model-augmented RL method featuring a safety layer is proposed
for the same voltage control problem of an ADN, where a mutual
information regularizer (i.e., safety layer) is developed to improve the
approximation quality of the voltage constraints. However, it is worth
noting that the two above papers only focus on avoiding the violations
of voltage constraints, while ignoring other technical constraints, such
as the power flow constraints and the DER operating constraints, which
cannot completely ensure the operation security of the studied system.
Additionally, the approximation of an ADN focuses on the power
4

network sector rather than an integrated MEMG setup that is capable
of capturing both the power and gas networks. Finally, the above two
papers assume a virtual ADN environment to represent the RL state
transition. This is, however, inaccurate since the virtual version cannot
exactly simulate the real ADN, which may raise potential safety issues
when applied to real-world test models.

1.3. Paper contributions

To highlight the contributions of this paper, existing literature
associated with the energy management problems of both MG and
MEMG has been systematically organized in Table 1. On one hand,
compared to the model-based optimization methods [9–12,14–19],
this paper employs a model-free safe RL method that can learn the
energy management control policy of an MEMG, while ensuring the
secure network operation. On the other hand, compared to the existing
RL methods [7,22,24–31,33,34], a significant research gap has been
identified, which drives the motivation behind this paper: no previous
work has developed a safe and automatic control method for the real-
time energy management of MEMGs that can satisfy all the physical
constraints pertaining to the MEMG model. To fill this research gap, this
paper proposes for the first time a novel physical-informed RL method
that integrates the benefit of physical models for secure MEMG energy
management, inspired by recent advances in human intervention [35]
and shielding system [36] towards safe RL concept. More specifically,
this paper employs a safety layer that can correct unsafe actions to
satisfy the network constraints of nodal voltage limits, bus pressure
limits, as well as power and gas flow limits. It should be noted that
these constraints can even be satisfied during the RL training process.
In more detail, the contributions of this paper have been summarized
as below:

(1) Application: In contrast to previous work [25,26,29–31,33,34]
that only models the power operation, this paper employs an
MEMG that integrates both electricity and gas sectors. As a
result, the flexibility and synergy among the multi-energy sectors
of the MEMG can be obtained. The MEMG energy management
problem is then formulated as a finite CMDP [21] subject to
all the physical constraints. In this context, the mathematical
models and technical parameters related to the MEMG are un-
necessary. Meanwhile, the system uncertainties and dynamics
can be captured without requiring their statistical knowledge.

(2) Security assessment : In contrast to previous work that uses pe-
nalization method added to the reward function [25,26], con-
strained policy gradient method [29–31], and conventional safety
layer capturing voltage constraint only [33,34], this paper pro-
poses a more robust dynamic security assessment model. Specif-
ically, the security assessment rule is trained by supervised
learning techniques to classify whether an MEMG operating
point (operation under voltage, pressure, power, and gas flow
constraints) is secure or not via a binary classification (1 if
secure; 0 otherwise). Once the security assessment rule is well
trained, it can be extracted to formulate a safety layer for
action corrections when an unsafe operating point does exist.
Furthermore, the pre-trained security assessment rule can be
further updated through new operating points generated from
the RL training procedure.

(3) Safe policy : A novel physical-informed (PI) RL method called PI-
SPPO is proposed to efficiently solve the CMDP by casting the
security assessment rule of the MEMG into a safety layer on top
of a PPO policy [37]. The safety layer corrects the unsafe action
in a mathematical manner by solving an optimization problem
to discover the minimal change to the original PPO-based action

that satisfies all the physical constraints.



Applied Energy 335 (2023) 120759Y. Wang et al.

a
I
m
t
r
a

b
m
p
(
e
t
a
t
n
b
p

1

t
v
t
M
t
s
i
S
e

2

o
p
a
(
b
a

Table 1
Summary of existing literature associated with the MG/MEMG energy management problem.

Paper Method MG model Uncertainties Algorithm Physical constraints (solution)

[9] Model-based MG Deterministic Bi-level optimization No
[10] Model-based MG RES, demand, price Stochastic programming Voltage, power flow (optimization)
[11] Model-based MG RES, price Robust optimization No
[12] Model-based MG RES, demand Model predictive control No
[14] Model-based MEMG RES, demand Stochastic programming No
[15] Model-based MEMG RES, demand Robust optimization No
[16] Model-based MEMG RES Robust optimization No
[17] Model-based MEMG RES, demand Robust optimization Power, gas, heat flow (optimization)
[18] Model-based MEMG RES Dynamic programming Power and gas flow (state transition)
[19] Model-based MEMG RES, demand, price Consensus-based ADMM Power, gas, heat flow (optimization)
[22] Model-free MG RES, demand Q-learning No
[24] Model-free MG RES, demand, price DQN No
[7] Model-free MEMG RES, demand DDPG No
[27] Model-free MEMG RES, demand, price PPO No
[28] Model-free MEMG RES, demand DDPG No
[25] Model-free MG RES, demand DDPG Power balance (penalty)
[26] Model-free MG RES, demand PPO Power exchange (penalty)
[29] Model-free MG RES, demand PG Voltage, power flow (CMDP)
[30] Model-free ADN RES, demand SAC Voltage (CMDP)
[31] Model-free ADN RES, demand, price PG Voltage, power flow (CMDP)
[33] Model-free ADN RES, demand DDPG Voltage (safety layer)
[34] Model-free ADN RES, demand AC Voltage (safety layer)
This Model-free MEMG RES, demand, price PPO Voltage, pressure, gas and power flow (safety layer)
To the best of the authors’ knowledge, this is the first work to adopt
safe RL method to study the MEMG energy management problem.

t is believed that this work contributes to the field of MEMG energy
anagement problems. Moreover, the proposed PI-SPPO method con-

ributes to the methodology for both the dynamic security assessment
ule of a coupled power-gas network as well as the development of an
dvanced safe RL method.

Given the above list of contributions, extensive case studies have
een carried out to verify the effectiveness of the proposed safe RL
ethod. In detail, the proposed PI-SPPO firstly shows its superior
erformance in handling the physical constraints of the MEMG model
e.g., nodal voltage, line capacity, nodal gas pressure, pipeline capacity,
tc.) for both the training and test processes compared to the conven-
ional RL methods. Secondly, the proposed PI-SPPO method produces

real-time and automatic energy management policy that can adapt
o various system state conditions in a 6-bus power and 7-node gas
etwork. Thirdly, the scalability of the proposed PI-SPPO method has
een demonstrated via three interconnected MEMGs in a larger 33-bus
ower and 20-node gas network.

.4. Paper organization

The rest of this paper is organized as follows. Section 2 describes
he studied problem and presents the mathematical formulations of
arious MES components and the integrated power-gas network. Sec-
ion 3 provides the detailed CMDP formulation of the proposed secure
EMG energy management problem. Section 4 demonstrates the de-

ailed algorithm of the proposed PI-SPPO that can efficiently solve the
tudied problem. The input data and experiment setup are presented
n Section 5, followed by case studies and discussion developed in
ection 6 and Section 7, respectively. Finally, conclusions and future
xtensions are drawn in Section 8.

. Problem formulation

As illustrated in Fig. 1, we focus on the energy management problem
f a multi-energy microgrid (MEMG), which includes an integrated
ower and gas network. In the power network, a group of DERs
re appropriately installed, categorized into conventional generation
e.g., diesel generators (DGs)), gas-fired generators (GGs), renewable-
ased generation (e.g., photovoltaics (PVs) and wind turbines (WTs)),
nd energy storage systems (ESs). The electric demands (EDs) capturing
5

normal energy consumption are also located in the power network.
In the gas network, gas wells (GWs), gas storage systems (GSs), gas
demands (GDs), and GGs are deployed on certain nodes suitably. It
is worth noting that the power network and gas network are coupled
through GGs.

In order to effectively manage the above utilized energy components
(i.e., DGs, GGs, ESs, GWs, and GSs) in both power and gas networks, the
MEMG equips a microgrid central controller (MGCC) that can regulate
the power and gas dispatches based on (1) the grid information of
power and gas price signals; (2) the local information of demand and
renewable generation; and (3) the battery information of ES and GS
energy content. It is, however, noted that the integrated power and gas
network is regarded as a black-box for MGCC, which means unknown
network topology, line parameters, uncertain renewable generation and
demand fluctuation as well as uncertain price signals associated with
the grid electricity prices, including the prices for buying electricity
from the upstream grid and selling electricity to the upstream grid.
Therefore, the MGCC has to use the limited and observable system
information to learn the optimal energy management scheme and make
scheduling decisions for secure operation. To better understand the
operation model of the examined MEMG, the following subsections
aim to express the operational characteristics of its controllable energy
components and the constraints of its power and gas networks.

2.1. Operational characteristics of controllable components

This subsection aims at providing the detailed mathematical models
of three types of energy generators (DGs, GGs, GWs) and two types of
storage units (ESs, GSs).

2.1.1. Dispatchable diesel generators
Small-scale DGs are rapidly becoming attractive in MEMG due to

their advantages of easy installation and high reliability. In general,
the operational characteristics of a DG unit 𝑔 can be formulated as:

𝑃 𝑑𝑔𝑔 ≤ 𝑃 𝑑𝑔𝑔,𝑡 ≤ 𝑃
𝑑𝑔
𝑔 ,∀𝑔 ∈ 𝐷𝐺,∀𝑡 ∈ 𝑇 , (1)

𝑄𝑑𝑔
𝑔

≤ 𝑄𝑑𝑔𝑔,𝑡 ≤ 𝑄
𝑑𝑔
𝑔 ,∀𝑔 ∈ 𝐷𝐺,∀𝑡 ∈ 𝑇 , (2)

|𝑄𝑑𝑔𝑔,𝑡| ≤ 𝑃 𝑑𝑔𝑔,𝑡 tan(cos
−1 𝛿𝑑𝑔𝑔 ),∀𝑔 ∈ 𝐷𝐺,∀𝑡 ∈ 𝑇 , (3)

where 𝑃 𝑑𝑔𝑔,𝑡 and 𝑄𝑑𝑔𝑔,𝑡 correspond to the active and reactive power outputs
of the DG unit 𝑔, which are restricted by their power limits 𝑃

𝑑𝑔
∕𝑃 𝑑𝑔
𝑔 𝑔



Applied Energy 335 (2023) 120759Y. Wang et al.
Fig. 1. The utilized MEMG integrating power and gas networks.
in (1) and 𝑄
𝑑𝑔
𝑔 ∕𝑄𝑑𝑔

𝑔
in (2), respectively. Constraint (3) refers to the

influence of its rated power factor 𝛿𝑑𝑔𝑔 on active and reactive power
generation of the DG unit 𝑔 [38].

2.1.2. Energy storage systems
As a flexible option, ESs can assist the MEMG to deal with various

uncertainties and dynamics via reasonable charging and discharging
behaviors, in which the operational characteristics of an ES unit 𝑘 can
be formulated as:

𝐸𝑒𝑠𝑘,𝑡+1 = 𝐸𝑒𝑠𝑘,𝑡 + 𝑃
𝑒𝑠𝑐
𝑘,𝑡 𝜂

𝑒𝑠𝑐
𝑘 𝛥𝑡 +

𝑃 𝑒𝑠𝑑𝑘,𝑡 𝛥𝑡

𝜂𝑒𝑠𝑑𝑘
,∀𝑘 ∈ 𝐸𝑆,∀𝑡 ∈ 𝑇 , (4)

𝐸𝑒𝑠𝑘 ≤ 𝐸𝑒𝑠𝑘,𝑡 ≤ 𝐸
𝑒𝑠
𝑘 ,∀𝑘 ∈ 𝐸𝑆,∀𝑡 ∈ 𝑇 , (5)

0 ≤ 𝑃 𝑒𝑠𝑐𝑘,𝑡 ≤ 𝑃
𝑒𝑠
𝑘 𝑢

𝑒𝑠
𝑘,𝑡,∀𝑘 ∈ 𝐸𝑆,∀𝑡 ∈ 𝑇 , (6)

𝑃
𝑒𝑠
𝑘 (𝑢

𝑒𝑠
𝑘,𝑡 − 1) ≤ 𝑃 𝑒𝑠𝑑𝑘,𝑡 ≤ 0,∀𝑘 ∈ 𝐸𝑆,∀𝑡 ∈ 𝑇 , (7)

where Eq. (4) refers to the battery’s energy dynamics that take the
energy losses caused by charging and discharging efficiencies 𝜂𝑒𝑠𝑐𝑘 , 𝜂𝑒𝑠𝑑𝑘
into account. The battery energy content 𝐸𝑒𝑠𝑘,𝑡 as well as the charging
and discharging power 𝑃 𝑒𝑠𝑐𝑘,𝑡 , 𝑃

𝑒𝑠𝑑
𝑘,𝑡 are constrained in (5)–(7), where

the binary variable 𝑢𝑒𝑠𝑘,𝑡 is introduced to indicate the battery status of
charging (𝑢𝑒𝑠𝑘,𝑡 = 1) or discharging (𝑢𝑒𝑠𝑘,𝑡 = 0), since the charging and
discharging statuses cannot occur simultaneously.

2.1.3. Gas-fired generators
The GGs realize the coupling between the power and gas networks.

In general, GGs consume natural gas as a demand in the gas net-
work and supply electricity as a source to the power network. The
operational characteristics of a GG unit 𝑔 can be formulated as:

𝑃 𝑔𝑔𝑔 ≤ 𝑃 𝑔𝑔𝑔,𝑡 ≤ 𝑃
𝑔𝑔
𝑔 ,∀𝑔 ∈ 𝐺𝐺,∀𝑡 ∈ 𝑇 , (8)

𝑄𝑔𝑔
𝑔

≤ 𝑄𝑔𝑔𝑔,𝑡 ≤ 𝑄
𝑔𝑔
𝑔 ,∀𝑔 ∈ 𝐺𝐺,∀𝑡 ∈ 𝑇 , (9)

𝑃 𝑔𝑔𝑔,𝑡 = 𝐺𝑔𝑔𝑔,𝑡∕𝜂
𝑔𝑔
𝑔 ,∀𝑔 ∈ 𝐺𝐺,∀𝑡 ∈ 𝑇 , (10)

|𝑄𝑔𝑔𝑔,𝑡| ≤ 𝑃 𝑔𝑔𝑔,𝑡 tan(cos
−1 𝛿𝑔𝑔𝑔 ),∀𝑔 ∈ 𝐺𝐺,∀𝑡 ∈ 𝑇 , (11)

where 𝑃 𝑔𝑔𝑔,𝑡 and 𝑄𝑔𝑔𝑔,𝑡 correspond to the active and reactive power outputs
of the GG unit 𝑔, which are restricted by the power limits 𝑃

𝑔𝑔
𝑔 ∕𝑃 𝑔𝑔𝑔 in

(8) and 𝑄
𝑔𝑔
𝑔 ∕𝑄𝑔𝑔

𝑔
in (9), respectively. The energy conversion between

the power generation 𝑃 𝑔𝑔𝑔,𝑡 and the gas consumption 𝐺𝑔𝑔𝑔,𝑡 of the GG unit
𝑔 at time step 𝑡 is expressed by Eq. (10), where 𝜂𝑔𝑔𝑔 represents the
energy conversion coefficient in Sm3∕kWh. Constraint (11) refers to the
influence of its rated power factor 𝛿𝑔𝑔𝑔 on active and reactive power
generation of the GG unit 𝑔.
6

2.1.4. Gas wells
GWs are the main source of the gas network. They are wells drilled

specifically for natural gas and contain little or no oil [39]. In general,
the operation of a traditional GW unit 𝑔 is limited by:

𝐺𝑔𝑤𝑔 ≤ 𝐺𝑔𝑤𝑔,𝑡 ≤ 𝐺
𝑔𝑤
𝑔 , ∀𝑔 ∈ 𝐺𝑊 , ∀𝑡 ∈ 𝑇 , (12)

where 𝐺𝑔𝑤𝑔 and 𝐺
𝑔𝑤
𝑔 correspond to the lower and upper limits of GW

output, respectively.

2.1.5. Gas storage systems
As a flexible option in the gas network, GSs are deployed to store

unusable natural gas and then release the stored natural gas to the gas
network during the peak period of natural gas demand [39], which can
be formulated as:

𝐺𝑔𝑠𝑘,𝑡+1 = 𝐺𝑔𝑠𝑘,𝑡 + 𝐹
𝑔𝑠𝑐
𝑘,𝑡 𝜂

𝑔𝑠𝑐
𝑘 𝛥𝑡 +

𝐹 𝑔𝑠𝑑𝑘,𝑡 𝛥𝑡

𝜂𝑔𝑠𝑑𝑘

,∀𝑘 ∈ 𝐺𝑆,∀𝑡 ∈ 𝑇 , (13)

𝐺𝑔𝑠𝑘 ≤ 𝐺𝑔𝑠𝑘,𝑡 ≤ 𝐺
𝑔𝑠
𝑘 ,∀𝑘 ∈ 𝐺𝑆,∀𝑡 ∈ 𝑇 , (14)

0 ≤ 𝐹 𝑔𝑠𝑐𝑘,𝑡 ≤ 𝐹
𝑔𝑠
𝑘 𝑢

𝑔𝑠
𝑘,𝑡,∀𝑘 ∈ 𝐺𝑆,∀𝑡 ∈ 𝑇 , (15)

𝐹
𝑔𝑠
𝑘 (𝑢𝑔𝑠𝑘,𝑡 − 1) ≤ 𝐹 𝑔𝑠𝑑𝑘,𝑡 ≤ 0,∀𝑘 ∈ 𝐺𝑆,∀𝑡 ∈ 𝑇 , (16)

where Eq. (13) refers to the GS energy dynamics that take inflating
and deflating efficiencies 𝜂𝑔𝑠𝑐𝑘 , 𝜂𝑔𝑠𝑑𝑘 into account. The GS energy content
𝐺𝑔𝑠𝑘,𝑡 as well as the gas inflation and deflation quantities 𝐹 𝑔𝑠𝑐𝑘,𝑡 , 𝐹

𝑔𝑠𝑑
𝑘,𝑡 are

constrained in (14)–(16), where the binary variable 𝑢𝑔𝑠𝑘,𝑡 is introduced to
ensure that gas inflation and deflation cannot happen simultaneously.

2.2. Constraints and limits of power and gas networks

This subsection aims at providing the detailed limits and constraints
of the power and gas networks that shall maintain the MEMG secure
operation.

2.2.1. Power network
For each time step 𝑡, the secure operation of the power network

should be always guaranteed, which corresponds to the following limits
and constraints:
∑

𝑔∈𝐵𝑝𝑔𝑑

𝑃 𝑝𝑔𝑑𝑔,𝑡 +
∑

𝑔∈𝐵𝑑𝑔

𝑃 𝑑𝑔𝑔,𝑡 +
∑

𝑔∈𝐵𝑔𝑔

𝑃 𝑔𝑔𝑔,𝑡 +
∑

𝑔∈𝐵𝑟𝑒𝑠

𝑃 𝑟𝑒𝑠𝑔,𝑡

=
∑

𝑑∈𝐵𝑒𝑑

𝑃 𝑒𝑑𝑑,𝑡 +
∑

𝑘∈𝐵𝑒𝑠

(𝑃 𝑒𝑠𝑐𝑘,𝑡 + 𝑃 𝑒𝑠𝑑𝑘,𝑡 ) + 𝑃
𝑒𝑥
𝑏,𝑡 ,∀𝑏 ∈ 𝐸𝐵,∀𝑡 ∈ 𝑇 ,

(17)

∑

𝑔∈𝐵𝑝𝑔𝑑

𝑄𝑝𝑔𝑑𝑔,𝑡 +
∑

𝑔∈𝐵𝑑𝑔

𝑄𝑑𝑔𝑔,𝑡 +
∑

𝑔∈𝐵𝑔𝑔

𝑄𝑔𝑔𝑔,𝑡 =
∑

𝑑∈𝐵𝑒𝑑

𝑄𝑒𝑑𝑑,𝑡 +𝑄
𝑒𝑥
𝑏,𝑡,∀𝑏 ∈ 𝐸𝐵,∀𝑡 ∈ 𝑇 ,

(18)
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𝑃 𝑒𝑥𝑏,𝑡 =
∑

𝑝∈𝐵
𝑉𝑏,𝑡𝑉𝑝,𝑡(𝐺𝑏𝑝 cos 𝛿𝑏𝑝,𝑡 + 𝐵𝑏𝑝 sin 𝛿𝑏𝑝,𝑡),∀𝑏 ∈ 𝐸𝐵,∀𝑡, (19)

𝑒𝑥
𝑏,𝑡 =

∑

𝑝∈𝐵
𝑉𝑏,𝑡𝑉𝑝,𝑡(𝐺𝑏𝑝 sin 𝛿𝑏𝑝,𝑡 − 𝐵𝑏𝑝 cos 𝛿𝑏𝑝,𝑡),∀𝑏 ∈ 𝐸𝐵,∀𝑡 ∈ 𝑇 , (20)

2
𝑙,𝑡 +𝑄

2
𝑙,𝑡 ≤ 𝑆𝑙 ,∀𝑙 ∈ 𝑃𝐿,∀𝑡 ∈ 𝑇 , (21)

≤ 𝑉𝑏,𝑡 ≤ 𝑉 ,∀𝑏 ∈ 𝐸𝐵,∀𝑡 ∈ 𝑇 , (22)

𝑝𝑔𝑑
𝑔 ≤ 𝑃 𝑝𝑔𝑑𝑔,𝑡 ≤ 𝑃

𝑝𝑔𝑑
𝑔 ,∀𝑔 ∈ 𝑃𝐺𝐷,∀𝑡 ∈ 𝑇 , (23)

𝑝𝑔𝑑
𝑔

≤ 𝑄𝑝𝑔𝑑𝑔,𝑡 ≤ 𝑄
𝑝𝑔𝑑
𝑔 ,∀𝑔 ∈ 𝑃𝐺𝐷,∀𝑡 ∈ 𝑇 , (24)

here the nodal active/reactive power balance at a certain bus 𝑏 and
he AC power flow equations capturing the power network topology
re presented in (17)–(18) and (19)–(20), respectively [40]. The sets
𝑝𝑔𝑑 , 𝐵𝑒𝑑 , 𝐵𝑟𝑒𝑠, 𝐵𝑑𝑔 , 𝐵𝑔𝑔 , and 𝐵𝑒𝑠 correspond to the bus sets connected
ith the upstream power grid, EDs, RESs, DGs, GGs, and ESs located at
us 𝑏, respectively. Constraints (21) and (22) represent the operational
onstraints of line power flow and nodal voltage magnitudes, restricted
y line capacity 𝑆𝑏𝑝 and voltage limits 𝑉 , 𝑉 , respectively. Constraints

(23)–(24) restrict the power exchange at the substation between the
MEMG and the upstream power grid, where 𝑃 𝑝𝑔𝑑𝑔,𝑡 and 𝑄𝑝𝑔𝑑𝑔,𝑡 denote the
ctive and reactive power exchange, respectively.

.2.2. Gas network
Regarding the natural gas network, a steady state natural gas opera-

ion is proposed [41], in which the secure operation of the gas network
hould be always guaranteed, corresponding to the following limits and
onstraints:
∑

𝑔∈𝐵𝑔𝑔𝑑

𝐺𝑔𝑔𝑑𝑔,𝑡 +
∑

𝑔∈𝐵𝑔𝑤

𝐺𝑔𝑤𝑔,𝑡 =
∑

𝑑∈𝐵𝑔𝑑

𝐺𝑔𝑑𝑑,𝑡 +
∑

𝑘∈𝐵𝑔𝑠

(𝐹 𝑔𝑠𝑐𝑘,𝑡 + 𝐹 𝑔𝑠𝑑𝑘,𝑡 ) +
∑

𝑑∈𝐵𝑔𝑔

𝐺𝑔𝑔𝑔,𝑡

+
∑

𝑝𝑏∈𝐺𝐿
𝐺𝑝𝑏,𝑡 −

∑

𝑏𝑝∈𝐺𝐿
𝐺𝑏𝑝,𝑡,∀𝑏 ∈ 𝐺𝐵,∀𝑡 ∈ 𝑇 ,

(25)

𝜌𝑏,𝑡 ≤ 𝜌𝑝,𝑡 ≤ 𝜆𝑙𝜌𝑏,𝑡, ∀𝑙 ∈ 𝐺𝐿𝑎𝑐𝑡, ∀𝑡 ∈ 𝑇 , (26)

𝑏
≤ 𝜌𝑏,𝑡 ≤ 𝜌𝑏, ∀𝑏 ∈ 𝐺𝐵, ∀𝑡 ∈ 𝑇 , (27)

2
𝑙,𝑡 − 𝜂𝑙(𝜌

2
𝑏,𝑡 − 𝜌

2
𝑝,𝑡) = 0, ∀𝑙 ∈ 𝐺𝐿𝑖𝑛𝑎, ∀𝑡 ∈ 𝑇 , (28)

𝑙 ≤ 𝐺𝑙,𝑡 ≤ 𝐺𝑙 , ∀𝑙 ∈ 𝐺𝐿, ∀𝑡 ∈ 𝑇 , (29)

𝑔𝑔𝑑
𝑔 ≤ 𝐺𝑔𝑔𝑑𝑔,𝑡 ≤ 𝐺

𝑔𝑔𝑑
𝑔 ,∀𝑔 ∈ 𝐺𝐺𝐷,∀𝑡 ∈ 𝑇 , (30)

where the nodal gas balance at a certain node 𝑏 is presented in (25).
The sets 𝐵𝑔𝑔𝑑 , 𝐵𝑔𝑑 , 𝐵𝑔𝑤, 𝐵𝑔𝑠, and 𝐵𝑔𝑔 correspond to the upstream gas
grid, GDs, GWs, GSs, and GGs located at node 𝑏, respectively. Pipelines
without compressors are denoted as inactive pipelines belonging to
𝐺𝐿𝑖𝑛𝑎, while those with compressors are active pipelines belonging
to 𝐺𝐿𝑎𝑐𝑡. The nodal gas pressure 𝜌𝑏,𝑡 for a compressor with the gas
flow from node 𝑏 to node 𝑝 in 𝐺𝐿𝑎𝑐𝑡 is constrained by (26), where 𝜆𝑙
indicates the compressor’s compression factor at pipeline 𝑙. Constraint
(27) ensures that gas pressure at each node stays within a preset range.
For an inactive gas pipeline 𝑙 with gas flow from node 𝑏 to node 𝑝
in 𝐺𝐿𝑖𝑛𝑎, the relationship between gas flow and nodal gas pressure is
represented by (28), where 𝜂𝑙 represents the relationship between gas
flow and pressure based on Weymouth equation [41]. Furthermore, as
expressed in (29), the gas flow is limited by the pipeline capacity, while
7

constraint (30) restricts the gas supply from the upstream gas grid. 
2.3. Objective function of the MEMG

The objective function of the MEMG is the expectation of cost
minimization, taking over the randomness of system uncertainties and
stochastic control variables, which can be expressed as:

min
𝑇
∑

𝑡=1
E
{

𝜆𝑝+𝑡
∑

𝑔∈𝑃𝐺𝐷
[𝑃 𝑝𝑔𝑑𝑔,𝑡 ]+ + 𝜆𝑝−𝑡

∑

𝑔∈𝑃𝐺𝐷
[𝑃 𝑝𝑔𝑑𝑔,𝑡 ]− + 𝜆𝑞+𝑡

∑

𝑔∈𝑃𝐺𝐷
[𝑄𝑝𝑔𝑑𝑔,𝑡 ]

+

+ 𝜆𝑞−𝑡
∑

𝑔∈𝑃𝐺𝐷
[𝑄𝑝𝑔𝑑𝑔,𝑡 ]

− +
∑

𝑔∈𝐷𝐺
𝑐𝑑𝑔,𝑝𝑔 𝑃 𝑑𝑔𝑔,𝑡

+
∑

𝑔∈𝐷𝐺
𝑐𝑑𝑔,𝑞𝑔 |𝑄𝑑𝑔𝑔,𝑡| +

∑

𝑔∈𝐺𝐺
𝑐𝑔𝑔,𝑝𝑔 𝑃 𝑔𝑔𝑔,𝑡 +

∑

𝑔∈𝐺𝐺
𝑐𝑔𝑔,𝑞𝑔 |𝑄𝑔𝑔𝑔,𝑡|

+
∑

𝑔∈𝐺𝐺𝐷
𝜆𝑔𝑡 𝐺

𝑔𝑔𝑑
𝑔,𝑡 +

∑

𝑔∈𝐺𝑊
𝑐𝑔𝑤𝑔 𝐺𝑔𝑤𝑔,𝑡

}

(31)

here the max/min operator [⋅]+∕− = max ∕min{⋅, 0} indicates taking
he maximum/minimum value between ⋅ and 0. In detail, the operation
ost includes: (1) the electricity net cost with the upstream power grid;
2) the DG generation cost; (3) the gas supply cost from the upstream
as grid; and (4) the GW generation cost. Furthermore, in (31), 𝜆𝑝+𝑡
nd 𝜆𝑝−𝑡 indicate the buy and sell prices of grid active power 𝑃 𝑝𝑔𝑑𝑔,𝑡 ; 𝜆𝑞+𝑡
nd 𝜆𝑞−𝑡 indicate the buy and sell prices of grid reactive power 𝑄𝑝𝑔𝑑𝑔,𝑡 ;
𝑑𝑔,𝑝
𝑔 and 𝑐𝑑𝑔,𝑞𝑔 indicate the generation costs of DG active power 𝑃 𝑑𝑔𝑔,𝑡
nd reactive power 𝑄𝑑𝑔𝑔,𝑡 ; 𝑐

𝑔𝑔,𝑝
𝑔 and 𝑐𝑔𝑔,𝑞𝑔 indicate the generation costs of

G active power 𝑃 𝑔𝑔𝑔,𝑡 and reactive power 𝑄𝑔𝑔𝑔,𝑡; 𝜆
𝑔
𝑡 indicates the price

f gas supply 𝐺𝑔𝑔𝑑𝑔,𝑡 from the upstream gas grid; and 𝑐𝑔𝑤𝑔 indicates the
eneration cost of GW gas output 𝐺𝑔𝑤𝑔,𝑡 .

.4. Challenges

Solving the above constrained optimization for an MEMG energy
anagement problem is very challenging. First, the MGCC becomes

lueless if the mathematical models and technical parameters of the
tilized energy components and networks are unknown, since the opti-
ization problem (1)–(31) cannot be even formulated [6]. Second, the
EMG is characterized by various uncertainties (e.g., demand, renew-

ble generation, and price signals); nevertheless, it is difficult to obtain
ccurate probability distributions of uncertainties so as to not capture
he model representation. Third, solving a time-coupled optimization
roblem may take a long time, especially when a vast number of high-
imensional stochastic variables are required to optimize [7]. Fourth,
t is hard to develop a generalized control scheme that can be applied
o any state condition of the MEMG environment, since an independent
ptimization needs to be resolved for a new state condition.

To this end, an alternative data-driven model-free RL-based method
ould be proposed to solve the above MEMG energy management prob-
em. In this setting, the MGCC does not require the system knowledge
ut learns the optimal scheduling decisions by interacting with the
nknown environment. In addition, extensive interactions with the
nvironment throughout the learning process can effectively capture
ystem uncertainties. Once the RL method has been trained thoroughly,
he control policies can be deployed in milliseconds for realistic energy
anagement decisions in response to any new state condition. Finally,

o ensure secure operations, the RL method shall also be capable of
aking all the physical constraints of the MEMG setup into account,
hich leads to the requirement for a physical-informed safe RL method.

. Constrained Markov decision process

Since the MGCC needs to manage the energy schedules of MEMG’s
ontrollable components in a dynamic process with Markovian de-
isions respecting all the physical constraints of the power and gas
etworks, it is reasonable to formulate the above MEMG energy man-
gement problem (1)–(31) as a Constrained Markov decision process
CMDP) [42], as depicted in Fig. 2. The CMDP is defined by ⟨ ,,,  ,

, 𝛾⟩, including:
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Fig. 2. Architecture of the proposed CMDP.

• a state space 𝑠 ∈ ;
• an action space 𝑎 ∈ ;
• an immediate scalar reward 𝑟(𝑠, 𝑎) ∶  × → R;
• a state transition  (𝑠, 𝑎, 𝜔) ∶ ×× →  following a conditional

probability function 𝑃 (𝑠′|𝑠, 𝑎, 𝜔) ∶ ××× → R, where 𝜔 ∈ 
indicates the stochasticity (e.g., renewable, demand, price) in the
environment  ;

• a set of immediate constraint functions  = {𝑐(𝑠, 𝑎) ∶  × → R},
where 𝑐(𝑠, 𝑎) is defined as the safety signal influenced by the state
𝑠 and action 𝑎;

• a discount factor 𝛾 ∈ [0, 1) used to expect the long-term return
of the agent’s objective, i.e., cumulative discounted reward 𝑅 =
∑𝑇
𝑡=0 𝛾

𝑡𝑟𝑡.

In this case, the MGCC is defined as the agent who employs a
policy 𝜋 to interact with the CMDP and emits a trajectory of states,
actions, safety signals, and rewards: 𝑠1, 𝑎1, 𝑐1, 𝑟1, 𝑠2, 𝑎2, 𝑐2,… , 𝑟𝑇 over
×× → R. In detail, at each time step 𝑡, the agent chooses an action
𝑎𝑡 according to the policy 𝜋(𝑎|𝑠) ∶  → 𝑃 () based upon the current
state 𝑠𝑡 observed from the environment. The MEMG environment then
moves into the next state according to the state transition function
 (𝑠, 𝑎, 𝜔) conditioned on the current state 𝑠𝑡, the executed action 𝑎𝑡, and
the stochastic parameters 𝜔𝑡. The agent then obtains a reward 𝑟𝑡 and
a new state 𝑠𝑡+1. At the same time, the environment also generates the
safety signals 𝑐𝑡 upon the observed state 𝑠𝑡 and the associated action 𝑎𝑡.
To summarize, we study a constrained policy optimization of the CMDP
to maximize the cumulative discounted reward:

max
𝑎𝑡∼𝜋(𝑠𝑡)

E[
𝑇
∑

𝑡=0
𝛾 𝑡𝑟(𝑠𝑡, 𝑎𝑡)] (32)

s.t. 𝑐𝑡(𝑠𝑡, 𝑎𝑡) ≤ 𝑐,∀𝑡 ∈ 𝑇 , (33)

here the executed action 𝑎 is sampling from the constrained policy 𝑎 ∼
(𝑠). The safety signals 𝑐(𝑠, 𝑎) at each state–action pair (𝑠, 𝑎) are upper
ounded by the corresponding physical limits 𝑐. In this CMDP, the time

interval between two consecutive time steps 𝛥𝑡 = 1 h, while 𝑇 = 24
hours is the time horizon of the operation problem. In this context, the
main components of the proposed CMDP formulation, including state,
action, constraints, state transition, and reward, can be expressed in the
following subsections.

3.1. State

The state 𝑠𝑡 observed by the MGCC agent at time step 𝑡 can be
defined as:

𝑠𝑡 = [𝜆𝑝+𝑡 , 𝜆
𝑝−
𝑡 , 𝜆

𝑔
𝑡 , 𝑃

𝑒𝑑
𝑑,𝑡 , 𝐺

𝑔𝑑
𝑑,𝑡, 𝑃

𝑟𝑒𝑠
𝑔,𝑡 , 𝐸

𝑒𝑠
𝑘,𝑡, 𝐺

𝑔𝑠
𝑘,𝑡],∀𝑡 ∈ 𝑇 , (34)

which consists of two parts: (1) the exogenous state representing the
local information not affected by the action, including the electricity
grid buy and sell prices of active power 𝜆𝑝+, 𝜆𝑝− (the electricity grid
8

𝑡 𝑡
buy and sell prices of reactive power 𝜆𝑞+𝑡 , 𝜆
𝑞−
𝑡 are not considered since

they follow the same pattern as the active prices [43]), the price of gas
supply from the upstream gas grid 𝜆𝑔𝑡 , the ED 𝑃 𝑒𝑑𝑑,𝑡 , the GD 𝐺𝑔𝑑𝑑,𝑡, and the

ES 𝑃 𝑟𝑒𝑠𝑔,𝑡 ; and (2) the endogenous state serving as the feedback signals
f its executed action, including the current energy storage content 𝐸𝑒𝑠𝑘,𝑡
f the ES unit 𝑘 and the current gas storage content 𝐺𝑔𝑠𝑘,𝑡 of the GS unit
.

.2. Action

The action 𝑎𝑡 at time step 𝑡 indicates the energy schedules of all
ontrollable components in the MEMG, which can be defined as:

𝑡 = [𝑎𝑑𝑔,𝑝𝑔,𝑡 , 𝑎
𝑑𝑔,𝑞
𝑔,𝑡 , 𝑎

𝑔𝑔,𝑝
𝑔,𝑡 , 𝑎

𝑔𝑔,𝑞
𝑔,𝑡 , 𝑎

𝑒𝑠
𝑘,𝑡, 𝑎

𝑔𝑤
𝑔,𝑡 , 𝑎

𝑔𝑠
𝑘,𝑡],∀𝑡 ∈ 𝑇 , (35)

here actions 𝑎𝑑𝑔,𝑝𝑔,𝑡 , 𝑎
𝑑𝑔,𝑞
𝑔,𝑡 ∈ [0, 1] correspond to the active and reactive

ower generation magnitudes of the DG unit 𝑔 as a percentage of its
ower capacities [𝑃 𝑑𝑔𝑔 , 𝑃

𝑑𝑔
𝑔 ], [𝑄𝑑𝑔

𝑔
, 𝑄

𝑑𝑔
𝑔 ]; actions 𝑎𝑔𝑔,𝑝𝑔,𝑡 , 𝑎

𝑔𝑔,𝑞
𝑔,𝑡 ∈ [0, 1] corre-

spond to the active and reactive power generation magnitudes of the
GG unit 𝑔 as a percentage of its power capacities [𝑃 𝑔𝑔𝑔 , 𝑃

𝑔𝑔
𝑔 ], [𝑄𝑔𝑔

𝑔
, 𝑄

𝑔𝑔
𝑔 ];

ction 𝑎𝑒𝑠𝑘,𝑡 ∈ [−1, 1] represents the magnitude of charging (positive)
nd discharging (negative) power of the ES unit 𝑘 as a percentage of
ts power capacity [−𝑃

𝑒𝑠
𝑘 , 𝑃

𝑒𝑠
𝑘 ]; actions 𝑎𝑔𝑤𝑔,𝑡 ∈ [0, 1] correspond to the

as output magnitude of the GW unit 𝑔 as a percentage of its capacity
imit [𝐺𝑔𝑤𝑔 , 𝐺

𝑔𝑤
𝑔 ]; and action 𝑎𝑔𝑠𝑘,𝑡 ∈ [−1, 1] represents the magnitude of

gas inflation (positive) and deflation (negative) of the GS unit 𝑘 as a
percentage of its power capacity [−𝐹

𝑔𝑠
𝑘 , 𝐹

𝑔𝑠
𝑘 ].

3.3. Constraints

The physical constraints considered in this MEMG have been dis-
cussed in Sections 2.1 and 2.2, which can be generally categorized into
two parts: (1) the operational constraints of all controllable compo-
nents, i.e., DG (1)–(3), ES (4)–(7), GG (8)–(11), GW (12), and GS (13)–
(16); and (2) the operational constraints of power network (17)–(24)
and gas network (25)–(30).

In the first category, constraints (1)–(2), (6)–(10), (12), and (15)–
(16) associated with power and gas capacities are time-independent
and represented by their corresponding lower and upper bounds, which
can be directly handled by the following expressions:

𝑃 𝑑𝑔𝑔,𝑡 = 𝑎𝑑𝑔,𝑝𝑔,𝑡 (𝑃
𝑑𝑔
𝑔 − 𝑃 𝑑𝑔𝑔 ) + 𝑃 𝑑𝑔𝑔 ,∀𝑔 ∈ 𝐷𝐺,∀𝑡 ∈ 𝑇 , (36)

𝑄𝑑𝑔𝑔,𝑡 = 𝑎𝑑𝑔,𝑞𝑔,𝑡 (𝑄
𝑑𝑔
𝑔 −𝑄𝑑𝑔

𝑔
) +𝑄𝑑𝑔

𝑔
,∀𝑔 ∈ 𝐷𝐺,∀𝑡 ∈ 𝑇 , (37)

𝑃 𝑔𝑔𝑔,𝑡 = 𝑎𝑔𝑔,𝑝𝑔,𝑡 (𝑃
𝑔𝑔
𝑔 − 𝑃 𝑔𝑔𝑔 ) + 𝑃 𝑔𝑔𝑔 ,∀𝑔 ∈ 𝐺𝐺,∀𝑡 ∈ 𝑇 , (38)

𝑄𝑔𝑔𝑔,𝑡 = 𝑎𝑔𝑔,𝑞𝑔,𝑡 (𝑄
𝑔𝑔
𝑔 −𝑄𝑔𝑔

𝑔
) +𝑄𝑔𝑔

𝑔
,∀𝑔 ∈ 𝐺𝐺,∀𝑡 ∈ 𝑇 , (39)

𝐺𝑔𝑤𝑔,𝑡 = 𝑎𝑔𝑤𝑔,𝑡 (𝐺
𝑔𝑤
𝑔 − 𝐺𝑔𝑤𝑔 ) + 𝐺𝑔𝑤𝑔 ,∀𝑔 ∈ 𝐺𝑊 ,∀𝑡 ∈ 𝑇 , (40)

𝑃 𝑒𝑠𝑐𝑘,𝑡 = [𝑎𝑒𝑠𝑘,𝑡𝑃
𝑒𝑠
𝑘 ]

+,∀𝑘 ∈ 𝐸𝑆,∀𝑡 ∈ 𝑇 , (41)

𝑃 𝑒𝑠𝑑𝑘,𝑡 = [𝑎𝑒𝑠𝑘,𝑡𝑃
𝑒𝑠
𝑘 ]

−,∀𝑘 ∈ 𝐸𝑆,∀𝑡 ∈ 𝑇 , (42)

𝑔𝑠𝑐
𝑘,𝑡 = [𝑎𝑔𝑠𝑘,𝑡𝐺

𝑔𝑠
𝑘 ]+,∀𝑘 ∈ 𝐺𝑆,∀𝑡 ∈ 𝑇 , (43)

𝐹 𝑔𝑠𝑑𝑘,𝑡 = [𝑎𝑔𝑠𝑘,𝑡𝐺
𝑔𝑠
𝑘 ]−,∀𝑘 ∈ 𝐺𝑆,∀𝑡 ∈ 𝑇 . (44)

However, the power network constraints (17)–(24), the gas network
constraints (25)–(30), the power factor constraints (3) and (11), as well
as the energy content constraints (5) and (14) cannot be handled via
the above straightforward manner. This is because the above mentioned
constraints are not directly determined by the action 𝑎 with a certain
level of percentage ratio, but are affected by many factors. On one
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hand, the power and gas flow constraints (17)–(24) and (25)–(30) as
well as power factor constraints (3) and (11) are highly complex and
coupled, while these constraints cannot be handled individually. On the
other hand, the storage energy contents (5) and (14) are time-coupling
constraints, which are not only affected by the charging/discharging
quantities and energy loss efficiencies at the current time step but also
affected by the value of energy content in the previous time step. To this
end, we develop a set of immediate constraint functions  to describe
these unmanageable constraints.

{(17) − (24), (25) − (30), (5), (14), (3), (11)} = ,∀𝑡 ∈ 𝑇 . (45)

3.4. State transition

The state transition process from time step 𝑡 to 𝑡 + 1 is governed
by 𝑠𝑡+1 =  (𝑠𝑡, 𝑎𝑡, 𝜔𝑡) with a probability function 𝑃 (𝑠𝑡+1|𝑠𝑡, 𝑎𝑡, 𝜔𝑡),

hich is influenced by the combination of environment current state
𝑡, agent’s action 𝑎𝑡, and environment stochasticity 𝜔𝑡. In this problem,
𝑡 = [𝜆𝑝+𝑡 , 𝜆

𝑝−
𝑡 , 𝑃

𝑒𝑑
𝑑,𝑡 , 𝑃

𝑟𝑒𝑠
𝑔,𝑡 , 𝐺

𝑔𝑑
𝑑,𝑡] corresponds to the exogenous state that is

ndependent of the agent’s action and has intrinsic variability. Since 𝜔𝑡
is influenced by numerous exogenous factors, such as market pricing
schemes, energy usage behaviors, solar radiation, wind speed, etc.,
it poses substantial challenges to discover appropriate probabilistic
models that can fully represent such unpredictability. In the machine
learning area, RL can overcome this issue by introducing a data-driven
solution that does not depend on precise probability distributions for
various uncertainties but instead learns state features from the dataset
itself [21].

By contrast, the state transition for the endogenous state features
𝐸𝑒𝑠𝑘,𝑡 and 𝐺𝑔𝑠𝑘,𝑡 are determined by the actions 𝑎𝑒𝑠𝑘,𝑡 and 𝑎𝑔𝑠𝑘,𝑡, respectively.
As discussed in Section 3.3, the ES’s charging and discharging power
quantities 𝑃 𝑒𝑠𝑐𝑘,𝑡 , 𝑃

𝑒𝑠𝑑
𝑘,𝑡 as well as the GS’s inflation and deflation quantities

𝐹 𝑔𝑠𝑐𝑘,𝑡 , 𝐹
𝑔𝑠𝑑
𝑘,𝑡 have been expressed in (41)–(42) and (43)–(44), respec-

tively. The state transition 𝐸𝑒𝑠𝑘,𝑡+1 of the ES unit 𝑘 and the state transition
𝐺𝑔𝑠𝑘,𝑡+1 of the GS unit 𝑘 from time step 𝑡 to 𝑡 + 1 can be automatically
calculated as (4) and (13), respectively.

3.5. Reward

The reward function for the MGCC agent at time step 𝑡 is designed as
the negative operation costs of the MEMG (31), which can be expressed
as:

𝑟𝑡 = − 𝜆𝑝+𝑡
∑

𝑔∈𝑃𝑈𝐺
[𝑃 𝑝𝑢𝑔𝑔,𝑡 ]

+ − 𝜆𝑝−𝑡
∑

𝑔∈𝑃𝑈𝐺
[𝑃 𝑝𝑢𝑔𝑔,𝑡 ]

− − 𝜆𝑞+𝑡
∑

𝑔∈𝑃𝑈𝐺
[𝑄𝑝𝑢𝑔𝑔,𝑡 ]

+

− 𝜆𝑞−𝑡
∑

𝑔∈𝑃𝑈𝐺
[𝑄𝑝𝑢𝑔𝑔,𝑡 ]

−

−
∑

𝑔∈𝐷𝐺
𝑐𝑑𝑔,𝑝𝑔 𝑃 𝑑𝑔𝑔,𝑡 −

∑

𝑔∈𝐷𝐺
𝑐𝑑𝑔,𝑞𝑔 |𝑄𝑑𝑔𝑔,𝑡| −

∑

𝑔∈𝐺𝐺
𝑐𝑔𝑔,𝑝𝑔 𝑃 𝑔𝑔𝑔,𝑡 −

∑

𝑔∈𝐺𝐺
𝑐𝑔𝑔,𝑞𝑔 |𝑄𝑔𝑔𝑔,𝑡|

−
∑

𝑔∈𝐺𝐺𝐷
𝜆𝑔𝑡 𝐺

𝑔𝑔𝑑
𝑔,𝑡 −

∑

𝑔∈𝐺𝑊
𝑐𝑔𝑤𝑔 𝐺𝑔𝑤𝑔,𝑡 , ∀𝑡 ∈ 𝑇 .

(46)

4. Proposed physical-informed reinforcement learning

In order to properly solve the above CMDP, we propose a novel
safe RL method called PI-SPPO, with its general architecture being
depicted in Fig. 3. Specifically, PI-SPPO generates three practical imple-
mentation details for the studied MEMG energy management problem
respecting all the physical constraints:

(1) Security assessment rule: approximate a safe operation region of
the safety constraint set  in (45) of the examined MEMG,
and then embed the approximated security assessment rule in a
physical-informed safety layer on top of the model-free RL-based
9

control policy.
(2) Model-free PPO control policy : utilize the actor–critic architecture
of the proximal policy optimization (PPO) algorithm [37] that is
capable of handling the high-dimensional continuous state and
action spaces of the MEMG energy management problem, with a
stable learning performance, high sampling efficiency, and little
hyperparameter tuning.

(3) Physical-informed safety layer : construct a safety layer that can
auto-correct the action computed from the model-free PPO con-
trol policy to maintain the secure operation of the safety con-
straint set  by mathematically solving an analytical optimiza-
tion problem subject to the security assessment rule.

In this context, the proposed PI-SPPO is realized as a completely
model-free method, which means the MGCC agent has no knowledge
about the investigated MEMG environment. However, the MGCC agent
can learn the system characteristics and the control policy through its
interactions with the MEMG environment. It is worth noting that the
three implementation details listed above are all coupled and highly
interacted with each other. On one hand, the security assessment rule
can be pre-trained offline via a supervised learning (SL) technique and
then be embedded into the physical-informed safety layer on top of
the model-free PPO control policy, which can assist the MGCC agent
to generate safe MEMG operating actions that respect all the physical
constraints. On the other hand, the model-free PPO control policy can
be combined with the safety layer to continuously generate new oper-
ating points for the online learning update of the approximated security
assessment rule during the RL training procedure, which enhances the
ability of the safety layer to adapt to new MEMG operating points for
more accurate classification. In detail, the security assessment rule, the
model-free PPO control policy, and the physical-informed safety layer
are described in the following subsections.

4.1. Supervised learning for security assessment

We consider a supervised learning (SL) classification method that
can predict the security of an MEMG operating point involving all the
components. For such a task, the common approach is to use a binary
class label (i.e., safe or unsafe) corresponding to the state of the MEMG
system subject to a set of user-specified binary criterion (e.g., line
overloads, over-voltages, over-pressure, etc.) [44]. In this case, let 𝑥𝑡 =
[𝑥𝑑𝑔,𝑝𝑔,𝑡 , 𝑥

𝑑𝑔,𝑞
𝑔,𝑡 , 𝑥

𝑔𝑔,𝑝
𝑔,𝑡 , 𝑥

𝑔𝑔,𝑞
𝑔,𝑡 , 𝑥

𝑒𝑠
𝑘,𝑡, 𝑥

𝑔𝑤
𝑔,𝑡 , 𝑥

𝑔𝑠
𝑘,𝑡] be a normalized MEMG operating

point (equivalent to RL action 𝑎𝑡) at time step 𝑡 that includes DGs,
GGs, ESs, GWs, and GSs, respectively. The system’s security can be then
expressed as a function:

𝑓 𝑠(𝑥𝑡) → 𝑦𝑡 =

{

1, safe
0, unsafe,

∀𝑡 ∈ 𝑇 , (47)

where 𝑦𝑡 ∈ {0, 1} corresponds to the class (binary) label, i.e., 𝑦𝑡 = 1 and
𝑦𝑡 = 0 signifying safe and unsafe MEMG operations, respectively. Given
the operating point 𝑥𝑡, the probability 𝑓 𝑠𝛽 (𝑥𝑡) of 𝑦𝑡 = 1 can be estimated
as:

𝑓 𝑠𝛽 (𝑥𝑡) = Pr(𝑦𝑡 = 1|𝑥𝑡) =
1

1 + exp(−𝛽 ⋅ 𝑥𝑡)
,∀𝑡 ∈ 𝑇 , (48)

where the vector of parameter 𝛽 can be optimized via gradient descent
algorithm that aims to search the optimal parameters that a hyper
plane can partition the data points into its respective classes with
maximum accuracy [45]. In the training procedure, the performance
of the classifier with an operating point can be measured based on the
cross-entropy:

𝐿𝑠𝑎𝑓𝑒(𝛽) = −[𝑝𝑡log𝑝𝑡 + (1 − 𝑝𝑡)log(1 − 𝑝𝑡)],∀𝑡 ∈ 𝑇 , (49)

where 𝑝𝑡 represents the true probability of 𝑦𝑡 = 1. Then backpropa-
gation is employed to fine-tune the weights and bias of the DNN for
minimizing 𝐿𝑠𝑎𝑓𝑒. Finally, it is noted that the pairs of operating points
and labels [𝑥, 𝑦] used for training the security assessment rule can be
obtained via the offline simulation of the power and gas networks
(17)–(30).
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Fig. 3. Architecture of the proposed PI-SPPO method.
4.2. Reinforcement learning for energy management

PPO is an advanced policy gradient method that can achieve a bal-
ance between the ease of implementation, sampling efficiency, and ease
of tuning [37]. In other words, training a relatively good performance
in the vanilla policy gradient method is very challenging, since it is very
sensitive to the learning rate, i.e., a small learning rate takes a long
time to make the training converge, while a large learning rate easily
falls into the local optimum. In addition, the vanilla policy gradient
method updates the policy network based on the transitions generated
by the current policy network, thereby suffering from the poor sampling
efficiency, since the prior transitions cannot be utilized frequently to
update the policy network. However, PPO can improve the sample
efficiency by making use of the importance sampling technique [46]
to obtain the data for training. The idea of importance sampling is
sampling the training data from a proposal distribution to approximate
the expectation on average. In this context, PPO proposes two policy
networks: a new policy 𝜋𝑝𝑝𝑜𝜙 (𝑎|𝑠) and an old policy 𝜋𝑝𝑝𝑜𝜙old(𝑎|𝑠). Specifi-
cally, the new policy 𝜋𝑝𝑝𝑜𝜙 (𝑎|𝑠) is evaluated with samples collected from
the old policy 𝜋𝑝𝑝𝑜𝜙old(𝑎|𝑠). To further reduce the variance of the estimate
between these two policies, PPO constructs a probability ratio between
the new and old policies, and then clips them within a stable interval.
In this case, the policy of PPO can be updated within a trust region.
Similar to many policy gradient methods, PPO is also characterized
by an actor–critic architecture and is applicable to high-dimensional
continuous state and action spaces.

To model the action characteristics in (35), a set of Gaussian dis-
tributions are generated for the actor network parameterized by 𝜙 to
output the corresponding mean and standard deviation for all energy
schedules, and then sample the optimal action 𝑎𝑡 in environment state 𝑠𝑡
using the stochastic policy 𝜋𝑝𝑝𝑜𝜙 (𝑎|𝑠). Specifically, the stochastic policy
𝜋𝑝𝑝𝑜𝜙 (𝑎|𝑠) is updated using the PPO algorithm [37], which maximizes
its clipped surrogate objective that considers the restriction of policy
update:

𝐿𝑐𝑙𝑖𝑝(𝜙) = Ê𝑡
[

min(𝜁𝑡𝐴̂𝑡, clip(𝜁𝑡, 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡)
]

,∀𝑡 ∈ 𝑇 , (50)

where the first term 𝜁𝑡𝐴̂𝑡 within the operator min{⋅} indicates the
normal policy gradient, while the second term clip(𝜁𝑡, 1 − 𝜖, 1 + 𝜖)𝐴̂𝑡
within the operator min{⋅} trims the policy gradient by clipping the
probability ratio 𝜁𝑑𝑡 between [1− 𝜖, 1+ 𝜖]. The hyperparameter 𝜖 ∈ [0, 1]
is used to truncate the gradient update of the new policy from the old
version. In other words, the advantage function 𝐴̂ will be clipped if the
10

𝑡

probability ratio goes beyond the range [1− 𝜖, 1+ 𝜖]. In the PPO policy,
the probability ratio 𝜁𝑡 can be expressed as:

𝜁𝑡 =
𝜋𝑝𝑝𝑜𝜙 (𝑎𝑡|𝑠𝑡)

𝜋𝑝𝑝𝑜𝜙old(𝑎𝑡|𝑠𝑡)
,∀𝑡 ∈ 𝑇 , (51)

In addition, the generalized advantage function 𝐴̂𝑡 in (50) can be
expressed as:

𝐴̂𝑡 = 𝛿𝑡 + 𝛾𝛿𝑡+1 +⋯ + 𝛾𝑇−𝑡+1𝛿𝑇−1,∀𝑡 ∈ 𝑇 , (52)

where

𝛿𝑡 = 𝑟𝑡 + 𝛾𝑉𝜃(𝑠𝑡+1) − 𝑉𝜃(𝑠𝑡),∀𝑡 ∈ 𝑇 , (53)

here 𝑉𝜃(𝑠) is the state-value function, which is approximated by the
critic network parameterized by 𝜃.

4.3. Physical-informed safety layer

As previously stated, deploying the action 𝑎𝑝𝑝𝑜𝑡 computed by the PPO
policy directly to the environment may result in physical constraint
violations of power and gas networks. In order to address this issue
properly, the pre-trained security assessment rule is embedded into
a safety layer on top of the PPO policy to ensure the MEMG secure
operation with the minimum interference, as depicted in Fig. 3. In other
words, the original action 𝑎𝑝𝑝𝑜𝑡 resulting from the PPO policy 𝜋𝑝𝑝𝑜𝜙 (𝑎𝑡|𝑠𝑡)
will be corrected as little as possible (only if it endangers the safety)
to the safe action 𝑎𝑠𝑎𝑓𝑒𝑡 , following the security rule 𝑓 𝑠𝛽 (𝑎

𝑠𝑎𝑓𝑒
𝑡 ) → 1.

Mathematically, the safety layer added on top of PPO policy aims to
solve:

arg min
𝑎𝑠𝑎𝑓𝑒𝑡

1
2
‖𝑎𝑠𝑎𝑓𝑒𝑡 − 𝑎𝑝𝑝𝑜𝑡 ‖

2 (54)

s.t. 𝑓 𝑠𝛽 (𝑎
𝑠𝑎𝑓𝑒
𝑡 ) ≥ 0.5,∀𝑡 ∈ 𝑇 , (55)

where the objective (54) is finding the safe action 𝑎𝑠𝑎𝑓𝑒𝑡 that perturbs
the original PPO action 𝑎𝑝𝑝𝑜𝑡 as little as possible in the Euclidean norm
in order to ensure secure MEMG operations, i.e., satisfying the physical
safety constraints of the integrated power and gas network  in (45).
In this technique, the correction optimization program of actions can
be solved in a mathematical manner and further ensure the secure
operation of the power and gas networks per time step and environment
state, even during the training process. It can be found that if there
is no constraint violation, the PPO action 𝑎𝑝𝑝𝑜𝑡 can be converted into
real energy schedules according to (36)–(44) and then directly executed
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to the environment, meanwhile the corresponding reward (46) can be
calculated and obtained by the MGCC agent. However, if the power
and gas network constraints  are not satisfied (e.g., over the limits of
ine capacity, bus voltage, and nodal pressure), the PPO action 𝑎𝑝𝑝𝑜𝑡 are
orrected to 𝑎𝑠𝑎𝑓𝑒𝑡 with the minimum interference to ensure safe MEMG
perations. Afterwards, 𝑎𝑠𝑎𝑓𝑒𝑡 can be transferred back to the component
nergy schedules, and then the reward 𝑟𝑡 and the next state 𝑠𝑡+1 can be
btained accordingly.

.4. Training process

During the training process, PI-SPPO runs for MGCC agent by its
PO old policy 𝜋𝑝𝑝𝑜𝜙old(𝑎|𝑠) together with the safety layer 𝑓 𝑠𝛽 (𝑎) to generate

safe action for each training episode (𝑇 time steps), and then collects
the trajectory 𝜏 = [𝑠1, 𝑎1, 𝑐1, 𝑟1, 𝑠2,… , 𝑟𝑇 ] via the interactions with the
environment. After a batch of trajectories are gathered from the RL
buffer  = {𝜏𝜄}𝐽𝜄=1, the MGCC agent can then utilize them to calculate
the discounted reward-to-go 𝑅̂𝜄,𝑡 =

∑𝑇
ℎ=𝑡 𝛾

ℎ−𝑡𝑟𝜄,ℎ and the advantage
function 𝐴̂𝜄,𝑡 for each trajectory 𝜄 and time step 𝑡. Then, the actor
network is trained by maximizing its objective as below:

𝑐𝑙𝑖𝑝(𝜙) = 1
𝐽 × 𝑇

𝐽
∑

𝜄=1

𝑇
∑

𝑡=1
min

(

𝜁𝜄,𝑡𝐴̂𝜄,𝑡, clip(𝜁𝜄,𝑡, 1 − 𝜖, 1 + 𝜖)𝐴̂𝜄,𝑡
)

, (56)

here 𝐽 indicates the training batch size. The critic network is trained
y minimizing the loss function of mean-squared error:

𝑙𝑜𝑠𝑠(𝜃) = 1
𝐽 × 𝑇

𝐽
∑

𝜄=1

𝑇
∑

𝑡=1

(

𝑅̂𝜄,𝑡 − 𝑉𝜃(𝑠𝜄,𝑡)
)2. (57)

Given the above optimizations, the network weights of actor and
critic can be respectively updated as below:

𝜙 ← 𝜙 + 𝛼𝜙∇𝜙𝑐𝑙𝑖𝑝(𝜙), (58)

𝜃 ← 𝜃 + 𝛼𝜃∇𝜃𝑙𝑜𝑠𝑠(𝜃), (59)

where 𝛼𝜙, and 𝛼𝜃 indicate the learning rates of the gradient ascent and
descent algorithms for actor and critic networks, respectively.

It is worth noting that the corrected action 𝑎𝑠𝑎𝑓𝑒𝑡 in optimization
(54)–(55) might be still possible to cause the violations of physical
constraints , since the approximated security assessment rule cannot
be 100% accurate theoretically [31,34]. In addition, the dynamic in-
teractions with the environment during the RL training process may
introduce new operating points that are unseen in the pre-training
procedure. To this end, we continue the online training procedure of
the embedded security assessment rule to further improve its accuracy
and adaptability to new operating points. Specifically, during the RL
training process, the action corrected by the safety layer will be sent
to a real MEMG environment for the final verification of safety. If the
action is safe, it will be labeled with 1; otherwise, 0. In this context, a
new pair of MEMG operating point and label [𝑥, 𝑦] is generated, which
can be added into the SL data buffer  for online training:

𝑠𝑎𝑓𝑒(𝛽) = − 1
𝑀

𝑀
∑

𝑚=1
[𝑝𝑚log𝑝𝑚 + (1 − 𝑝𝑚)log(1 − 𝑝𝑚)] (60)

then, the network weights of the approximated security assessment rule
can be updated as below:

𝛽 ← 𝛽 + 𝛼𝛽∇𝛽𝑠𝑎𝑓𝑒(𝛽), (61)

where 𝛼𝛽 indicates the learning rate of the gradient descent algorithm
for training the security assessment rule network. In this case, the se-
curity assessment rule can be updated with new MEMG operating data
during the RL training process, which leads to enhanced classification
ability, especially for the system state features generated by the RL
algorithm. Furthermore, even though there are occasional unsafe RL
actions due to stochasticity, poor observations, etc., bad data detection
11
mechanisms are normally deployed in modern energy systems, which
can effectively detect these actions that do not meet the physical
constraints and thus prevent the system from potential damage [47].

Finally, the pseudo-code of PI-SPPO for training process is shown as
Algorithm 1:
Algorithm 1 PI-SPPO for training process
1: Initialize weights 𝜙, 𝜃, and 𝛽 for actor, critic, and security networks,

respectively
2: Set learning rates 𝛼𝜙, 𝛼𝜃 , and 𝛼𝛽 for actor, critic, and security network,

respectively. Set clip factor 𝜖
3: Set RL buffer  and SL buffer 
4: for episode (i.e., day) 𝑒 = 1 to 𝐸 do
5: Initialize the environment state 𝑠0
6: Set an empty trajectory 𝜏 = []
7: for time step (i.e., 1 hour) 𝑡 = 1 to 𝑇 do
8: Select action 𝑎𝑝𝑝𝑜𝑡 according to PPO policy 𝜋𝑝𝑝𝑜𝜙 (𝑎|𝑠)
9: Correct PPO action 𝑎𝑝𝑝𝑜𝑡 to safe action 𝑎𝑠𝑎𝑓𝑒𝑡 using (54))-(55) according

to the security rule 𝑓 𝑠𝛽 (𝑎) → 1
10: Execute the safe action 𝑎𝑠𝑎𝑓𝑒𝑡 to the real MEMG environment
11: Observe reward 𝑟𝑡 and next state 𝑠𝑡+1
12: Collect the safety signal 𝑐𝑡
13: Store one experience to trajectory 𝜏 += [𝑠𝑡, 𝑎𝑡, 𝑐𝑡, 𝑟𝑡, 𝑠𝑡+1]
14: Store the new pair of MEMG operating point and label to the SL

buffer 
15: Update state 𝑠𝑡 ← 𝑠𝑡+1
16: end for
17: Collect the batch of trajectories from RL buffer {𝜏𝜄}𝐽𝜄=1 ∼ , then

compute advantage function 𝐴̂𝜏,𝑡 and discounted reward-to-go 𝑅̂𝜏,𝑡 for
each trajectory 𝜏 and time step 𝑡

18: Update actor and critic network weights 𝜓, 𝜃 in (58)-(59)
19: Update security network weight 𝛽 in (61) using the training data from

SL buffer 
20: end for

5. Experiment setup and input data

5.1. Experiment setup

The examined MEMG includes a 6-bus power and 7-node gas net-
work modified from [48], as illustrated in Fig. 4. Components, includ-
ing 1 DG, 1 GG, 1 PV, 1 WT, 1 ES, 1 GS, and 2 GWs, are appropriately
deployed in the integrated power and gas network. The operation data
of ED and RES generation in the power network are obtained from
a real-world open-source dataset Ausgrid [49]. The operation data of
GD in the gas network is obtained from [48]. The grid active power
buying prices of electricity are collected from Nord-Pool group [50],
while the grid reactive power buying prices of electricity are 10%
of the grid active power buying prices [43]. Furthermore, the grid
active and reactive power selling prices are both assumed to be 50%
of their buying prices, respectively. In order to capture uncertainties
associated with demand, RES generation, and electricity price signals,
a yearly dataset capturing various data characteristics is utilized. For
illustration, the daily mean and standard deviations of these time-series
data over the year are plotted in Fig. 5. Afterwards, we split it into two
pieces, with the first 11 months being the training data and the last
month being the test data, for the purpose of RL method evaluation.
Finally, the gas price is provided by the British Gas tariff plan supplier
fixed at 0.0325 £/kWh [51].

The technical parameters of 1 DG, 1 GG, 1 ES, 2 GWs, and 1 GS are
presented in Table 2. The amplitudes of all bus voltages are bounded
between 0.95 p.u. and 1.05 p.u. [52]. In addition, the reactive power
cost is assumed equal to 10% the value of active cost for DG and GG

generation costs [43].
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Table 2
Technical parameters of DG, GG, and GW.
Component Parameters Values

DG 𝑃 𝑑𝑔 , 𝑃
𝑑𝑔

, 𝑄𝑑𝑔 , 𝑄
𝑑𝑔

0 kW, 75 kW, −40 kVAR, 50 kVAR
GG 𝑃 𝑔𝑔 , 𝑃

𝑔𝑔
, 𝑄𝑔𝑔 , 𝑄

𝑔𝑔
, 𝑏𝑔𝑔 0 kW, 50 kW, −30 kVAR, 35 kVAR, 0.5 Sm3/kWh

GW1 𝐺𝑔𝑤, 𝐺
𝑔𝑤

0 Sm3/h, 150 Sm3/h
GW2 𝐺𝑔𝑤, 𝐺

𝑔𝑤
0 Sm3/h, 200 Sm3/h

ES 𝐸𝑒𝑠, 𝐸
𝑒𝑠

, 𝑃
𝑒𝑠

, 𝜂𝑒𝑠𝑐∕𝜂𝑒𝑠𝑑 0 kWh, 200 kWh, 50 kW, 0.9
GS 𝐺𝑔𝑠, 𝐺

𝑔𝑠
, 𝐹

𝑔𝑠
, 𝜂𝑔𝑠𝑐∕𝜂𝑔𝑠𝑑 0 Sm3, 240 Sm3, 60 Sm3/h, 0.95
Fig. 4. MEMG of a 6-bus power and 7-node gas network.

5.2. Benchmarks

In order to validate the superior performance of our proposed
PI-SPPO in the examined MEMG energy management problem, we com-
pare it against two model-based optimization approaches (Perfect-MILP
and Stochastic-MPC) and one state-of-the-art RL method (Penalty-PPO)
described as below:

(1) Perfect-MILP [9]: the MGCC agent solves a deterministic MILP
for the daily optimization problem. To apply MILP to the ex-
amined MEMG energy management problem, a model-based
optimization is constructed with the objective function (31)
and constraints (1)–(30), which assumes the perfect informa-
tion of the investigated MEMG’s mathematical models, technical
parameters, and system uncertainties.

(2) Stochastic-MPC [12]: the MGCC agent solves an hourly-specific
stochastic MPC optimization problem that allows the current
time step to be optimized while taking future time steps into
account and satisfying a set of constraints. To apply MPC to
the examined MEMG energy management problem, model-based
optimization is constructed with the objective function (31) and
constraints (1)–(30), which assumes the perfect information of
the investigated MEMG’s mathematical models and technical pa-
rameters, but captures the stochasticity of system uncertainties
via scenario generation and reduction techniques.

(3) Penalty-PPO [25]: the MGCC agent adopts a model-free PPO
method with penalty terms added to the reward function (46) to
penalize the violations of physical safety constraints  in (45).

5.3. Implementations

5.3.1. Supervised learning for security assessment
The network structure of the proposed security assessment model is

presented in Table 3 and explained as follows: the input is the operating
12
Table 3
The general specifications of supervised learning and reinforcement learning models.
Model Network structure
Security linear(x_dim, 16) → ReLU() → sigmoid(16, y_dim)
Actor linear(s_dim, 64) → ReLU() → sigmoid(64, a_dim) + softplus(64, a_dim)
Critic linear(s_dim, 64) → ReLU() → linear(64, 1)

point in X_DIM = 7 dimensions and the output is the probability
in Y_DIM = 1 dimension with a sigmoid activation function. The
hidden layer is constructed with 64 units using a ReLU activation
function. To train this security assessment model, we use the Adam
optimizer [53] with a learning rate 𝛼𝛽 = 10−3 and a binary cross-
entropy loss function. The total number of batch sizes and training
epochs is 32 and 500, respectively. The size of the SL data buffer is
set at 8,000. More specifically, we split the data set of the SL buffer
into 7,200 training data and 1,800 test data.

5.3.2. Reinforcement learning for energy management
The detailed specification of actor and critic networks for the pro-

posed PPO model is presented in Table 3. The input of the actor
network is the observed state in S_DIM = 8 dimensions, while the
output is the executed action in A_DIM = 7 dimensions, constructed by
a Gaussian policy with sigmoid and softplus activation functions
corresponding to its mean and standard deviation, respectively. For the
critic network, a linear activation function is used for the output layer,
while its input includes S_DIM = 8 dimensions. Finally, we construct
one hidden layer with 64 units using ReLU as the activation function
for both actor and critic networks.

To make the experiments comparable, we run 3,000 episodes with
𝑇 = 24 time steps for the proposed RL algorithm to evaluate their
training performance with the same 10 random seeds for the environ-
ment and weights initialization. During the training process, we use the
Adam optimizer [53] for actor and critic networks with a learning rate
𝛼𝜓 = 10−4 and 𝛼𝜃 = 10−3, respectively. The batch size 𝐽 = 24 refers to
the number of collected trajectories per episode for updating networks.
We employ a clip rate 𝜖 = 0.2 and a discount rate 𝛾 = 0.9 used to expect
a long-term return within an operation day of 24 time steps.

6. Case studies

6.1. Performance evaluation of safe RL

This section evaluates the training and test performance of the pro-
posed PI-SPPO method for the examined MEMG energy management
problem. Since the learning procedure of the proposed PI-SPPO consists
of two parts: (1) supervised learning for the security assessment model
and (2) reinforcement learning for the energy management model, we
would like to evaluate their learning performance separately for each
of the parts.

6.1.1. Security assessment model
Fig. 6(a) and (b) respectively illustrate the accuracy score and loss of

both training and validation parts against the number of epochs during
the training process, while Fig. 6(c) evaluates the well-trained security
assessment model on the test data by using the confusion metric.
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Fig. 5. Daily profiles of electric demand, gas demand, PV and wind power generation, and grid (active power buying) prices of electricity. Lines and areas respectively indicate
the mean and standard deviations over the year.
Fig. 6. The performance of security assessment model in (a) training accuracy, (b) training loss, and (c) test metric.
Fig. 7. The performance of energy management model in (a) training cost, (b) normalized constraint violation, and (c) test cost.
First of all, it can be observed from Fig. 6(a) and (b) that the
training accuracy and loss of the security assessment model show
continued improvement for the duration of 500 epochs and reach
convergence around 400 epochs. Specifically, the train accuracy goes
up to 99.85% and the train loss drops down to 0.0109. Except for the
train set, the validation accuracy (99.87%) and loss (0.0091) also show
good performance that is close to the train results. Once the security
assessment model is well trained, we can evaluate the model using the
evaluate() method, which returns a test accuracy of 99.83% and
a test loss of 0.0137 upon the test set. Finally, the confusion metric in
Fig. 6(c) shows that there are only 3 samples with incorrect predictions
among the 1800 test samples.

6.1.2. Energy management model
Fig. 7(a) illustrates the convergence curve of the episodic cost for

Penalty-PPO (sum of energy cost and penalty cost) and PI-SPPO (energy
cost only) methods, where the solid lines and the shaded areas respec-
tively depict the moving average over 100 episodes and the oscillations
of the cost during the training process. Fig. 7(b) shows the normalized
constraint violations of the constraint function  for Penalty-PPO and
PI-SPPO methods. Finally, Fig. 7(c) shows the cumulative daily cost
over the 31 test days for Penalty-PPO and PI-SPPO methods, as well
as the model-based Perfect-MILP and Stochastic-MPC methods, where
their corresponding values are illustrated on the right vertical axis of
the figure.

Our first observation from Fig. 7(a) is that Penalty-PPO (blue) and
PI-SPPO (orange) both exhibit a continuous downward trend during the
training process, and finally reach convergence within 3,000 episodes.
However, the convergence speed of PI-SPPO (around 1,000 episodes) is
13
much faster than Penalty-PPO (around 2,500 episodes), this is because
learning PI-SPPO with cost minimization only is easier than Penalty-
PPO that additionally considers the penalty of . Moreover, PI-SPPO
shows superior performance over Penalty-PPO in terms of lower op-
eration cost and higher stability (i.e., lower standard deviation). Go
further, we can observe from Fig. 7(b) that the normalized constraint
violation of  in Penalty-PPO is reduced with the increase of episode
number. Nevertheless, violation value cannot reduce to zero, thus still
destroying the secure operation of the MEMG. On the other hand, the
empirical results shown in Fig. 7(b) demonstrate the effectiveness of
the security assessment model in handling the physical constraints of
MEMG and can always ensure its safety.

Once two RL policies are well-trained, they can be directly deployed
to the test performance. It can be observed from Fig. 7(c) that PI-
SPPO reaches close to the theoretical optimal Perfect-MILP (6.57%
difference), while 16.56% and 41.17% lower than Penalty-PPO (with
penalty cost) and Stochastic-MPC, respectively. Finally, it is noted that
there is completely no constraint violation of MEMG in PI-SPPO, but
56.74 kW line power flow limit violation; 0.26 p.u. nodal voltage limit
violation; 105.16 Sm3∕h pipeline gas flow limit violation; 183.85 bar
nodal gas pressure limit violation; 11.05 kWh ES energy content limit
violation; and 14.32 Sm3 GS gas content limit violation in Penalty-PPO
averaged over the 31 test days.

6.2. MEMG energy management analysis

Having evaluated the performance of the proposed security rule and
demonstrated the superiority of the proposed PI-SPPO over the conven-
tional Penalty-PPO and two optimization (Perfect-MILP and Stochastic-
MPC) methods in both training and test processes, this section aims to
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Fig. 8. Charging and discharging behaviors and SoC of (a) ES and (b) GS.
Fig. 9. Active and reactive power generation of (a) DG and (b) GG, and gas generation of (c) two GWs.
Fig. 10. Active and reactive power supply from upstream (a) power grid and gas supply from upstream (b) gas grid.
nalyze the detailed energy management of the examined MEMG. To
his end, we plot the averaged power charge and discharge of ES as
ell as the averaged gas inflation and deflation of GS over the 31 test
ays in Fig. 8; the averaged active and reactive power generation of DG
nd GG as well as the averaged gas generation of two GWs over the 31
est days in Fig. 9; additionally, the averaged active and reactive power
upply from the upstream power grid as well as the gas supply from the
pstream gas grid over the 31 test days in Fig. 10.

It can be observed from Figs. 8 and 9 that the power and gas
ispatches of all the components in the studied MEMG can be managed
ithin their operation limits. Firstly, the ES charges power in the early
orning and midday, as shown in Fig. 8(a), when the electricity price

s at the lowest level and PV generation is extremely high, respectively.
n the other hand, the ES mainly discharges power in the evening, as

hown in Fig. 8(a), when electric demand is at its peak. It is noted
hat the combination of ES charging and discharging behaviors can
ffectively reduce the MEMG operation cost via energy arbitrage and
itigate the PV curtailment via RES absorption. Similarly, the GS

nflates gas in the early morning and midday when gas demand is
elatively low, while deflating gas into the gas network in the evening
hen gas demand significantly increases, as illustrated in Figs. 8 (b).
he SoC dynamics of the ES and GS are also presented in Fig. 8(a)
14

nd (b), respectively. The energy contents of both ES and GS are fully
utilized given the SoC of zero by the end of the day. Secondly, the
DG and GG units provide both active and reactive power support for
the MEMG, especially in the evening, as shown in Fig. 9(a) and (b)
respectively, since both active and reactive demands reach their peak
in this period of most test days. Meanwhile, two GW units provide
gas generation for the gas network as shown in Fig. 9(c), especially
in the evening and the morning, respectively. This is because GW1
is mainly used to supply the gas demand at nodes 4 and 2, which
reach the peak level in the evening, while GW2 is close to the gas
demands at node 1 and node 3, which reach the peak level in the
morning. Finally, as shown in Fig. 10, the MEMG needs to import a
certain level of electricity (active and reactive power) and gas from
the upstream power and gas grids, respectively, to satisfy the energy
deficits of power and gas systems apart from the energy supplied from
various components.

6.3. Power and gas network operation analysis

In order to investigate the impact of the proposed physic-informed
safety layer on the secure operation of the studied MEMG, this section
also analyzes the status of line power flows and bus voltage magnitudes

pertaining to the power network as well as the status of pipeline gas
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Fig. 11. Line (a) power flows and (b) nodal voltages with limited and unlimited power and gas networks.
Fig. 12. Pipeline (a) gas flows and (b) nodal pressures with limited and unlimited power and gas networks.
lows and node pressure magnitudes pertaining to the gas network.
pecifically, two scenarios with limited and unlimited MEMG energy
lows are conducted for comparison (i.e., in the unlimited scenario,
here is no safety layer), of which their averaged power line flows and
odal voltages, as well as the pipeline gas flows and nodal pressures
ver the 31 test days are illustrated in Figs. 11 and 12, respectively.

As far as the line power flows and nodal voltages are concerned,
here are apparent constraint violations of line thermal capacity at
ine ID 1, 2, and 8 under the unlimited scenario of Fig. 11(a). Under
he unlimited scenario, the maximum power flows of these three lines
each 90 kVA, 90 kVA, and 140 kVA, respectively, far exceeding their
ine capacities of 60 kVA, 80 kVA, and 120 kVA. However, when the
roposed safety layer is employed, all the line power flows can be
estricted within their line capacity limits, leading to zero constraint
iolations, as illustrated in the limited scenario of Fig. 11(a), i.e., there
s no red color in the surface area. Regarding nodal voltages, constraint
iolations (below 0.95 p.u.) do exist at bus ID 3, 4, and 6 under the
nlimited scenario of Fig. 11(b). In particular, the averaged voltage
evels of bus 4 even drop to 0.92 p.u. between hours 19–22, which
an cause severe safety issues in practice, e.g., line outages. However,
he nodal voltages can always be restricted between 0.95 and 1.05
.u. under the limited scenario of Fig. 11(b). Similarly, in the gas
etwork, apparent constraint violations (over 300 Sm3∕h) of pipeline

capacity occur at pipeline ID 1, 2, and 7 under the unlimited scenario
of Fig. 12(a), while severe constraint violations (over 75 bar) occur at
node ID 1, 6, and 7 under the unlimited scenario of Fig. 12(b). On
the contrary, when the proposed safety layer is employed, there are no
constraint violations in both gas flow and nodal pressure, as depicted
in the limited scenario of Fig. 12(a) and (b). It can be concluded from
the above comparison that the proposed safety layer in PI-SPPO shows
its effectiveness in ensuring secure MEMG network operation.

6.4. Multi-agent setup in a 33-bus power and 20-node gas network

To further investigate the scalability of the proposed PI-SPPO for
the MEMG energy management problem, a larger operation system (an
15
integrated 33-bus power and 20-node gas network) is utilized in this
subsection, including 1 DG, 5 PVs, 3 WTs, 3 GGs, 3 ESs, 4 GWs, and
3 GSs, of which its network structure is shown in Fig. 13. It can be
found that the large integrated power-gas network is separated into
three regions corresponding to three MEMGs, since using a single agent
for the entire network operation may cause the curse of dimensionality,
thereby exploding the learning performance. The implementation steps
of this multi-agent setup are similar to those of the single-agent setup
in the previous 6-bus power and 7-node gas network. Specifically, each
MGCC (1) approximates the safety constraint set of its own region and
then embeds the approximated security assessment rule into a safety
layer on top of the RL-based control policy; (2) trains an RL-based
control policy based on the PPO algorithm, with the action dimensions
represented as all the DER power dispatches of the considered region;
and (3) manages its own DERs via the trained PI-SPPO policy respecting
all its regional network constraints.

It can be observed from Figs. 14 and 15 that the power and gas
dispatches of all the components in these three MEMGs are still re-
stricted by their operating limits. Specifically, ESs in Fig. 14(a) present
reasonable charging and discharging behaviors, e.g., charging in the
morning and midday when electricity price is low and PV generation
is high while discharging in the evening when electric demand is high.
Similarly, GSs in Fig. 14(b) inflate in the morning and afternoon and
deflate in the evening. DGs and GGs in Fig. 15(a) mainly choose to
generate active and reactive power in the evening when the electric
demand is high, while GG2 in MEMG 2 provides a large amount of
active and reactive power for the power network over the day due to
its relatively low generation cost. Regarding GWs in Fig. 15(b), GW 1 in
MEMG 1, and GWs 2 and 3 in MEMG 2 contribute almost entirely to the
gas demand and reach their capacity during the high demand periods.
The gas output of GW 4 in MEMG 3 is relatively low due to the high
generation cost. Finally, as shown in Fig. 16(a) and (b), these MEMGs
also imports a certain level of active and reactive power and gas from
the upstream grids to meet the remaining demand requirements of
the whole multi-energy system. Regarding the safe operation of these
MEMGs, it can be observed from Figs. 17 (a)–(d) that line power flows,
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Fig. 13. The 33-bus power and 20-node gas network with three MEMGs.
Fig. 14. Charging and discharging behaviors and SoC of (a) three ESs and (b) three GSs.
Fig. 15. Active and reactive power generations of (a) two DGs and (b) two GGs, and gas generations of (c) four GWs.
nodal voltages, pipeline gas flows, and nodal pressures are all restricted
within their acceptable limits without any constraint violation, which
further verifies the effectiveness of the proposed PI-SPPO in ensuring
secure and reliable MEMG energy management and network operation.

7. Discussion

7.1. Key findings from empirical results

As presented in Section 6, the case studies include the performance
evaluation of both dynamic security assessment rule and PPO control
policy, the energy management analysis as well as the power and gas
network operation of a small 6-bus power and 7-node gas network, and
a multi-agent setup in a large 33-bus power and 20-node gas network.
Overall, the key findings are summarized as below:
16
(1) The training and test performance of the SL-based security as-
sessment model and the RL-based energy management model
have been evaluated in Section 6.1.1 and Section 6.1.2, re-
spectively. On one hand, numerical results show that the secu-
rity assessment model achieves good performance with 99.85%
training accuracy, 99.87% validation accuracy, and 99.83% test
accuracy for the 6-bus power and 7-node gas network. On the
other hand, the proposed PI-SPPO achieves better performance
than the benchmark Penalty-PPO in both the operation cost
and constraint violation. Furthermore, the cumulative operation
cost of the proposed PI-SPPO is only 6.57% higher than the
Perfect-MILP with theoretic solutions, over the 31 test days.

(2) The scheduling behaviors of all components are well learned in
PI-SPPO to fully supply power and gas demands in the examined



Applied Energy 335 (2023) 120759Y. Wang et al.
Fig. 16. Active and reactive power supply from upstream (a) power grid and gas supply from upstream (b) gas grid.
Fig. 17. (a) power flows, (b) nodal voltages, (c) gas flows, and (d) nodal pressures in the integrated 33-bus power and 20-node gas network.
MEMG, while GGs are efficiently utilized through the energy
transitions from gas to power sectors. Meanwhile, the impact of
the proposed safety layer is investigated in Section 6.3 by ana-
lyzing the status of line power flows and bus voltage magnitudes
pertaining to the power network as well as the status of pipeline
gas flows and node pressure magnitudes pertaining to the gas
network between two scenarios with and without a safety layer.

(3) The scalability of the proposed PI-SPPO has been demonstrated
in the context of a large 33-bus power and 20-node gas net-
work. In order to avoid exploding the learning performance, the
large network has been divided into three regions, where each
region is represented by an MEMG managed and operated by
its individual MGCC. As a result, the 33-bus power and 20-node
gas network can be reformulated into three networked MEMGs.
The numerical results show that the proposed PI-SPPO can be
effectively deployed to a larger network with reasonable DERs’
dispatches while also satisfying all the physical constraints of
both power and gas networks.

7.2. Real-world applications

Extensive case studies have been carried out to show that the
proposed PI-SPPO method has the ability to ensure secure MEMG
energy management without constraint violations. It is worth noting
that this feature is extremely important for advancing the real-world
applications of RL methods in integrated energy systems that are nor-
mally regarded as critical infrastructures in modern societies. As such,
it is anticipated that such a safe RL method has a better chance to be
deployed in real-world scenarios than conventional RL methods.

In fact, there is no research deploying and testing their trained
RL policies in real-world energy system applications [54]. To achieve
such a practical implementation, as a start, the well-trained PI-SPPO
method may be extended to cover a broader range of parameter settings
(e.g., use of finer decision time-slots), and then be validated with
hardware circuit experiments or semi-physical simulation experiments,
which can further improve the safety and interoperability of RL meth-
ods. After the comprehensive validation, the proposed safe RL method
may be able to be deployed in industrial applications and conduct
real-world operational tests.

To train a good RL policy with high efficiency and accuracy, nu-
17

merous real-world datasets are normally a necessity, which leads to the
challenges associated with data quantity, data quality, and data avail-
ability [54]. On one hand, virtual sample generation techniques may
be a potential option to construct larger-scale training samples from
existing operational datasets; on the other hand, advanced sensors,
smart meters, and other communication technologies can be deployed
to improve data quality and availability. Additionally, data privacy
should be preserved during the RL training process, which leads to the
requirements for blockchain and cyber security technologies.

Decentralization and digitalization are rapidly transforming the en-
ergy industry, leading to the requirements for the decentralized setup of
multi-interconnected MEMGs. In this context, each MEMG may actively
seek energy trading opportunities with neighboring MEMGs in order to
reduce its own energy costs, while handling secure energy management
in its own region. To apply the proposed PI-SPPO method to this sce-
nario, a multi-agent extension is necessary as presented in Section 6.4.
Furthermore, integrating reasonable reputation or credit-based market-
ing mechanisms [55] into RL methods can also be of high importance
for effective energy trading among these MEMGs. For instance, when
there are a group of interconnected MEMGs in the network that can
trade energy with each other for profits, an MGCC agent may prefer
to first interact with MGCCs with relatively high safety performance.
In other words, the security of energy management in an MEMG may
be linked to its reputation or credit, and this may influence its priority
in energy trading markets, incentivizing the MEMG to pursue a higher
level of safety by improving the accuracy of its safe RL method.

8. Conclusions and future work

This paper has proposed a novel physical-informed safe reinforce-
ment learning algorithm named PI-SPPO to solve an MEMG energy
management problem involving various energy resources (e.g., diesel
generators, gas-fired generators, energy storage systems, gas wells, and
gas storage systems) in an integrated power-gas network environment.
The proposed PI-SPPO algorithm (1) takes advantage of the conven-
tional Proximal Policy Optimization algorithm on sampling efficiency
and hyperparameter tuning, thereby being able to address the high-
dimensional continuous state and action space; (2) uses supervised
learning techniques to train a security assessment rule for the MEMG,

which is formulated as a safety layer on top of the Proximal Policy
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Optimization policy to mathematically solve an action correction for-
mulation for MEMG secure operations; (3) captures uncertainties asso-
ciated with grid price signals, renewable energy resources, and demand
profiles through the learning procedure. Extensive case studies based
on two MEMGs (i.e., a small 6-bus power and 7-node gas network, a
large 33-bus power and 20-node gas network) have demonstrated the
effectiveness of the proposed PI-SPPO algorithm in generating realistic
energy scheduling decisions, reducing energy management costs, and
maintaining the secure operation of the investigated MEMGs.

Future extensions of this work can move in the following three
directions. First, this paper only focuses the energy management prob-
lem of one MEMG. Future work will include the coordinated en-
ergy management of multiple networked MEMGs and solve it using
multi-agent reinforcement learning algorithm with reputation-based
marketing mechanisms. Second, this paper only considers the energy
integration between power and gas sectors. Future work will capture
the additional heating and cooling sectors. Third, the exogenous state
features (e.g., system demand, PV generation, price signals) unaffected
by actions can slow down the training process by injecting uncontrolled
variation into the reward signal. Future work will develop a fast
and robust learning algorithm for the exogenous state (noise) of the
experiment environment.
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