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Abstract— A key issue with palm vein images is that slight 
movements of fingers and the thumb or changes in the hand pose 
can stretch the skin in different areas and alter the vein patterns. 
This can produce palm vein images with an infinite number of 
variations for a given subject. This paper presents a novel 
filtering method for SIFT-based feature matching referred to as 
the Mean and Median Distance (MMD) Filter, which checks the 
difference of keypoint coordinates and calculates the mean and 
the median in each direction in order to filter out the incorrect 
matches. Experiments conducted on the 850nm subset of the 
CASIA dataset show that the proposed MMD filter can 
maintain correct points and reduce false positives that were 
detected by other filtering methods. Comparison against 
existing SIFT-based palm vein recognition systems 
demonstrates that the proposed MMD filter produces excellent 
performance recording lower Equal Error Rate (EER) values.  
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I. INTRODUCTION 
The field of Biometrics has grown significantly over the 

last decade due to increasing worldwide demands and 
challenges in contactless digital security. Biometric traits are 
characterized by unique features and patterns that can be used 
to identify and recognize individuals and provide much more 
security over traditional authentication methods such as 
passwords or pin codes [1]. Palm vein biometrics recognition 
systems use the vein networks under the palm skin to establish 
a person’s identity. Every human has their unique vein 
network pattern which does not subject to significant changes 
as they age. Hence, vascular biometrics is recognized to be 
more secure and reliable, and they provide greater details on 
their texture. 

Palm vein recognition systems are contactless, hygienic, 
non-invasive, and user-friendly which enhances their user 
acceptance [2]. The deoxidized veins under the skin surface 
absorb Near-Infrared (NIR) light that penetrates the skin and 
appear darker. However, palm vein images have poor contrast 
and appear to be blurry as the skin scatters the NIR light 
radiance. These low contrast images are further degraded with 
image sensor noise, making the processing and feature 
extraction very challenging. Therefore, an appropriate 
contrast enhancement should be applied prior to feature 
extraction. Another key issue with palm vein images is that 
slight changes in the hand pose such as moving a finger, the 
thumb, or stretching the skin can alter the vein patterns. This 
can produce an infinite number of variations in palm vein 
images of the same person. 

In [3], a contrast enhancement method has been proposed 
to address the issues associated with current image 
enhancement techniques used with palm vein recognition. 
This method is referred to as Multiple Overlapping Tiles 
(MOT). The performance of the MOT method has been tested 
on existing palm vein recognition systems with Scale 
Invariant Feature Transform (SIFT) and RootSIFT features. 
SIFT can be used to detect distinctive features on images. 
SIFT computes a feature descriptor which can then be used to 
match features between two images and find matching 
keypoint pairs. These features are tolerant to scale, translation, 
or rotation changes between two images. 

This research used the MOT method to enhance image 
contrast and examined SIFT feature matching using Euclidian 
Distance (ED) [4], k-nearest neighbour (KNN) [5] matching 
methods, and Lowe’s distance ratio test (RT) [6]. However, 
given the similarity of palm features, these methods still 
preserve a significant number of false positive matches. 

To remove these false positives and enhance the 
performance of palm vein recognition, this research presents 
a novel filter which considers the mean and median distances 
between the horizontal and vertical distances of the geometric 
locations of matched keypoints, then use a set of rules to 
determine false positives. This filter is referred to as the Mean 
and Median Distance (MMD) filter. The experiment results 
has been compared with existing palm vein recognition 
systems based on SIFT [3], [7]–[10]. In section III the pseudo-
code of the proposed MMD filter is presented. In section III 
Fig. 1, a workflow diagram of the proposed method is 
presented. 

The remainder of the paper is structured as follows. A 
review of existing work is presented in Section II. The 
proposed method and experimental results have been 
discussed in section III and section IV, respectively. 
Section V contains the conclusions as well as 
recommendations for further developments.  

II. RELATED WORK 
Zhou and Kumar [11] introduced two line-based methods 

for palm vein recognition: Local Radon Transform (LRT) and 
Hessian Matrix-based feature extraction based methods. To 
start with, the contrast was enhanced by subtracting the 
estimated background intensity from the input image and 
applying Histogram Equalization. The features were extracted 
using Local Randon Transform (LRT) and matched using 
hamming distance. Then local dominant curvature was 
extracted from palm vein images using Hessian Matrix, which 
calculates the magnitudes from second order derivative 
eigenvalues of a palm vein image. LRT is encoded with six 
orientations. Hence, it is tolerant to translation variations. 
However, the Hessian matrix-based method produces 



redundancy in the feature vector and does not utilize all the 
information from training samples. Furthermore, it performs 
poorly when the images are blurry or unclear, which is an 
intrinsic problem with palm vein images.  

Zhang and Hu [12] replicated the concept of minutiae 
points from fingerprint recognition into palm vein recognition. 
Using a database of 180 images, they report an EER of 1.82%. 
However, the structures of palm veins are more irregular to 
fingerprints and are very sensitive to small changes in the hand 
pose, making minutiae points not suitable to use with medium 
to large databases. 

Lee [13] used a modified form of two directional two-
dimensional linear discriminant analysis ((2D)2LDA) to 
extract features from palm vein images. The background 
intensity has been subtracted from the input image to enhance 
the contrast and a median filter has been used to reduce noise. 
However, this method produces a smaller feature vector and 
requires 10 images for training per subject to achieve a higher 
accuracy. 
Wu et al. [14] based their method on wavelet transform and 
Partial Least Square (PLS) using a database of 300 images 
captured from 50 subjects. PLS is prone to small sample 
sizes, which they have addressed using wavelet 
decomposition. They obtained a correct recognition rate of 
99.86% using level 3 decomposition of Haar wavelets. 
However, their database is relatively small, and they do not 
present the EER values, which is critical to compare their 
performance with other palm vein recognition systems. 

Wang et al. [15] proposed a Gabor wavelet-based method 
for palm vein recognition. They start with using Contrast 
Limited Adaptive Histogram Equalization (CLAHE) for 
contrast enhancement. The palm prints were removed using a 
low pass filter, followed by segmentation and thinning. Then 
correlation coefficient and features required for classification 
were extracted using Eigenvectors. They report higher 
performance than Local Projection Pattern (LPP), Principal 
Component Analysis (PCA), and minutiae features. However, 
they have used a small database of 178 images for their 
experiments which is not sufficient to establish the 
performance measurement of a palm vein recognition 
technique. Further, vital information is discarded during pre-
processing by thinning and segmentation.  

Fischer et al. [16] proposed a method referred to as 
Enhanced Local Gabor Binary Patterns Histogram Sequence 
(ELGBPHS). They applied Gabor filters in various scales and 
orientations, and features were extracted using Local Binary 
Pattern (LBP). They subdivide the image into smaller tiles to 
calculate histograms which is then used for matching using 
histogram interaction. However, they do not report the EER 
of the system but report a False Reject Rate (FRR) of 1.7% 
and False Accept Rate (FAR) of 0%, which is not sufficient to 
compare the performance with other work. 

Sun and Abdulla [17] combine Gabor filters with Curvelet 
transform features using a score level fusion method for 
matching using hamming distance. Gabor filters with 6 
orientations were obtained and encoded into 3 bits. They 
reported an EER of 0.1023% Using the PolyU dataset. 
However, as this approach uses two methods to obtain a fused 
result this could be computationally expensive and may not be 
suitable for real-time systems.  

A common limitation of all the aforementioned systems is 
that that they are sensitive to scale and rotation changes 
between the images. As palm vein images are subject to 
variations a scale and rotation invariant-based matching 

system such as SIFT is more suitable for palm vein 
recognition.  

III. THE PROPOSED METHOD 
The workflow of the proposed palm vein recognition 

system is presented in Fig. 1. The extracted region of interest 
(ROI) of the palm vein images are first enhanced using the 
MOT image enhancement method. The extracted SIFT 
keypoints and descriptors are then stored in the database. At 
the feature matching stage, pre-processing and feature 
extraction steps were repeated, and then matched against the 
stored templates from the database and applied with the MMD 
filter. 

A. The Anatomy of SIFT 
SIFT analyses the scale-space of an image by employing 

variable scale Gaussian kernels[4]. The process starts with 
upsampling the input image by a factor of 2, and progressively 
blurring to generate layers of Gaussian images. Then each of 
the blurred layers are subtracted from the previous layer to 
generate difference of Gaussian (DoG) images. A set of these 
Gaussian images are referred to as an octave. This operation 
is repeated to generate an image pyramid. In the next octave, 
the last Gaussian image of the current octave is downsampled 
with a factor of 2 and used as the input image.  

Each pixel in a DoG image is compared with its 8 
neighbouring pixels of the current image, then with each set 
of 9 neighbouring pixels of the Gaussian scales below and 
above to identify local extrema to produce keypoints. Pixels 
which have larger or smaller values than all the neighbouring 
pixels are selected. A keypoint is accurately localized by 
analysing its nearby data for the scale, location, orientation 
and principal curvature ratio [6]. 

B. SIFT Feature Descriptor and Matching 
The magnitudes and the orientation of the image gradient 

is first sampled around a keypoint to determine its orientation. 
The keypoint scale is used to calculate the amount of Gaussian 
blur required for the image. Then to generate the feature 
descriptor, gradient magnitudes and orientations are 
calculated from a patch of 16×16 pixels around the keypoint. 
To make the feature descriptor invariant to orientation, a 
Gaussian window is used to add weights to each pixel in this 
patch. The coordinates of this patch are rotated in relation to 
the detected keypoint orientation. Then the information 
calculated from 4×4 sub patches is used to produce 16 
orientation histograms, each consisting of 8 orientation bins. 
To avoid the impact of sudden changes on the image, gradient 
information is interpolated into adjacent histogram bins To 
generate a feature descriptor, the histograms are formed into a 
128-element vector and normalized to unit length to minimize 
the impact from illumination variances [18].  

Feature matching is generally conducted by comparing 
these feature descriptor vectors. A feature descriptor of a 
keypoint from image A is compared with all the keypoints of 

 
Figure 1: Proposed palm vein recognition system using MMD filter 



image B to identify the closest match. The pair of points with 
a minimum Euclidian distance (ED) between their feature 
descriptor vector is selected as a match. This is referred to as 
closest-neighbour matching. 

Fig. 2 demonstrates closest-neighbour matching with 
SIFT+ED of two palm images from the same subject 
consisting of 492 matches. A threshold can be used with ED 
to filter out the matches below a set value. However, this 
approach is not reliable as it can filter in many incorrect 
matches. 

As an efficient solution to this issue, Lowe [6] suggests 
matching with the second closest- neighbour and comparing 
the distance ratio to determine a match. If this ratio is below a 
set threshold, the closest-neighbour keypoint pair is selected 
as a match. This is referred to as the ratio test (RT). Fig. 3 
demonstrates second closest-neighbour match with 
SIFT+k Nearest neighbour (KNN)+RT, using a distance ratio 
of 0.7 [6]. It can be observed from Fig. 3 that with KNN+RT 
matching all the false positive matches have been filtered out.  

Clusters of these keypoint pairs are used to perform a 
geometric fit into the images for object recognition [5]. 
However, as subtle changes in palm pose, finger or thumb 
positioning can introduce significant changes in the local area 
of a keypoint, using such point clusters are not suitable for 
palm vein recognition.  

Further, Fig. 4 demonstrates KNN+RT applied to palm 
vein image pairs of a different subject to that of Fig. 3. It can 
be observed from Fig. 4 that KNN+RT has not filtered out 
some of the false positive matches, which will have a direct 
impact on the accuracy and the error rates of a palm vein 
recognition system.  

C. Mean and Median Distance (MMD) Filter 
MMD filter is based on the hypothesis that the distances 

between false positive match pairs should be greater than of 
the true positive matches, and that the x and y coordinate 

distances of true positive match pairs should be minimal. 
When a pair of palm vein images are perfectly pre-aligned 
and superimposed on a cartesian plane, true positive match 
pairs should reside on the same x and y coordinates. Then the 
false positive matches could only be detected from different 
x and y coordinates, and the distance between these 
coordinates will be greater than 0. However, hand pose 
variations, image noise, rotation, and scale variations are still 
presented in pre-aligned palm vein images which can produce 
virtually infinite number of variations between two palm vein 
images of the same subject. As a result, the respective 
distances between x and y coordinates of a pair of true 
positive matches are always greater than 0.  

This distance should not be confused with matching with 
the Euclidian distance of the SIFT feature descriptor. Feature 
descriptor distance checked by ED, KNN and RT is the 
Euclidean norm or the L2 norm of the differences. As 
discussed above, the SIFT feature descriptor is a 128-
dimension vector. MMD filter is based on the geometric 
placement of SIFT keypoints. MMD filter checks the length 
of the space (as number of pixels) between respective x and 
y coordinates of matching SIFT keypoint pairs (Fig 5[a]-
[b]). A similar geometric-based SIFT filtering technique for 
palm print recognition which is referred to as the SGR filter 
was presented in [19]. The SGR filter calculate the geometric 
distances and angles between every SIFT match. The MMD 
filter only calculate the geometric distance between the points 
using lesser computations and use algorithm to determine a 
match. 

When matching SIFT features between two palm images 
g and p, for every matched keypoint pair (Mi), measure the 
horizontal (x) and vertical (y) distances (Dix, Diy) between their 
coordinates. Then calculate the respective mean (μx, μy) and 

 
Figure 2: Closest-neighbor matching with SIFT + ED on the same 

subject. 

 
Figure 3: Second closest-neighbor match with 

SIFT + k-Nearest neighbor (KNN) + RT 

 
Figure 4: KNN+RT matching on the same subject.  

A considerable number of false matches are still preserved. 

 
Figure 5: [a] Matched SIFT keypoints. [b] Horizontal (Dix) and 

vertical (Diy) distances between each pair of keypoints are calculated 
for the MMD filter. 
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median (x͂x, x͂y) distances on both axes. Then count the 
respective number of match pairs when both of these distances 
are below or equal to the mean (Dix ≤ μx and Diy ≤ μy) as NL, 
and when both of these distances are above their respective 
mean (Dix > μx and Diy > μy) as NH. Two thresholds are 
introduced to accommodate rotation and scale variations of 
the images, as a maximum mean threshold (Tμ) and a 
maximum distance threshold (TD). 

 The pseudo-code for the MMD filter is shown in 
Algorithm 1 MDD Filter. 

To consider if a pair of palm vein images are likely to 
belong to the same subject, one of the following conditions 
should be met. If not, the algorithm assumes that there are 0 
positive matches and reject the image as a negative match. 

• The total number of match pairs when their horizontal 
and vertical distances are below or equal to the mean, 
are higher than or equal to that of the total number of 
match pairs when these distances are above their 
respective mean (NL ≥ NH). 

• The horizontal and vertical mean values are equal or 
below their respective thresholds (μx<=Tμ and 
μy<=Tμ). 

• The horizontal and vertical median values are equal or 
below their respective mean distances (x͂x <= μx and 
x͂y <= μy). 

If the image meets with the above selection criterion, then to 
determine if a pair of keypoints is a true positive match, all the 
following conditions should be met.  

• Horizontal distance is lower than the horizontal mean 
and the threshold (Dix < μx and Dix < TD). 

• Vertical distance is lower than the vertical mean and 
the threshold (Diy < μy and Diy < TD). 

Fig. 6 demonstrates SIFT matching on images from the 
same subject. In Fig. 6[a] SIFT features were matched using 
KNN and then applied with distance ratio (RT), In Fig. 6[b] 
the MMD filter was applied to Fig. 6[a]. When KNN+RT is 
applied to palm vein images from different subjects, a 
considerable number of false matches are still retained 
(Fig. 7[a]), and most of these false matches are filtered out 
when applied with the MMD filter (Fig. 7[b]).  

From Fig. 6[b] it can be observed that the MMD filter has 
discarded all the false positive matches and some of the true 
positive matches. The thresholds Tμ and TD can be adjusted to 

 
Figure 6: Matching on the same subject. 

 [a] KNN + RT 
[b] KNN + RT + MMD 

 
Figure 7: Matching on different subjects.  

[a] KNN + RT 
[b] KNN + RT + MMD 

Algorithm 1 MMD Filter 
Input: x, y coordinates of the matching feature points 
Output:  

1: for each Mi  
2:  Dix ← xg-xp 
  Diy ← yg-yp 
3: end for 
4: μx ← mean of Dix 
5: μy ← mean of Diy 
 x͂x ← median of Dix 
 x͂y ← median of Dix 
6: if (NL > NH) or (μx ≤Tμ and μy≤Tμ)  

                    or (x͂x ≤ μx and x͂y ≤ μy) then 
7:  for each Mi do 
8:   if (Dix < μx) and (Dix < TD) 

                   and (Diy < μy)   
                   and (Diy < TD) then 

9:              accept Mi as a true positive 
10:   else reject match 
11:   end if 
12:  end for 
13:  else reject the entire image 
14: end if 

 



control the sensitivity of the system as well as to accommodate 
the scale and rotational variances between the images. 

Fig. 8 demonstrates how the thresholds can be used to 
control the sensitivity of the system. Fig. 9 and Fig. 10 
demonstrate how the TD threshold can be used to 
accommodate changes in rotation and scale. A fixed threshold 
of 25 pixels were used for Tμ. In Fig. 9 pre-aligned images 
were used, in Fig. 9[b] a threshold of 10 pixels were applied 
to TD and Tμ of the MMD filter. 

In Fig. 10 the right-hand side image used in Fig. 9 were 
rotated by 15 degrees and a threshold of 30 pixels were applied 
to TD and Tμ. The images already are in different scales as the 
whole palm has been used as the ROI. 

IV. EXPERIMENTS AND RESULTS 
CASIA public dataset has been captured under 460, 630, 

700, 850, 940 nanometres, and white lights, and contains 6 
images per hand captured from 100 participants totalling 1200 
images. Images are provided in JPEG format which contains 
lossy compression artifacts and image sensor noise. No skin 
damage or scars are visible in any of the images in the dataset. 
Vein images captured under the light of wavelengths between 
820nm-880nm have better contrast [20]. Therefore, this 
research used the 850nm subset from the CASIA [21] 
multispectral dataset in 1 to many (1:m) closed set testing 
approach. A total of 240 images (20%) and 960 images (80%) 
of the dataset were used for training and testing respectively. 
Left and right hands were treated as separate subjects to 
maximize the sample count, except for the left and right palms 
from the same subject were not matched with each other. 

For the experiments, all the images were first 
downsampled by 60%, and the entire palm was used for the 
region of interest (ROI), which produced variable sized ROIs. 
Thumbs and fingertips were identified using the convex-hull-
based approach presented by [22]. A binary image was 
extracted by thresholding and using image contours, which 
were then applied with an erosion filter to produce a 

mask. Feature points detected close to the edges of the contour 
were filtered out. Images were pre-aligned prior to any 
processing. 

The MOT method from [3] was used as the image 
enhancement method with 16×16 pixel image tiles. The 
performance of the MOT method was assessed by 
implementing several existing SIFT-based palm vein 
recognition systems. These systems base their experiments on 
the CASIA dataset. The 3 stages of a SIFT-based palm vein 
recognition system consists of are image enhancement, feature 
extraction, and feature matching. In [7] [8], the authors used 
ED with SIFT features, while [9] used ED+RANSAC and [10] 

 

 
Figure 8: Effect of the threshold using ED+MMD.  

[a] Tμ threshold set to 10 pixels with.  
[b] Tμ threshold set to 25 pixels. 

 

 
Figure 9: Matching with 0-degree rotation.  

The Tμ threshold is set to 10 pixels.  
[a] KNN + RT  

[b] KNN + RT + MMD 

 

 
Figure 10: Matching with a 15-degree rotation to the image on the 

right. The threshold is set to 30 pixels.  
[a] KNN + RT  

[b] KNN + RT + MMD 



used ED + bidirectional-matching. Further [8] used 
KNN + RT + bidirectional-matching with RootSIFT features. 
In [3] the image enhancement methods of the previous work 
were replaced with the MOT method to verify its 
performance. EER values were reported using multiple 
registration images (1-5) with ED, ED+RANSAC, KN+RT, 
and KNN+RT+RANSAC. To verify the performance of the 
MMD filter from this research, the benchmarking is based 
upon the results presented in [3] for SIFT descriptor matching 
and replaced the false positive filtering method with MMD. 
Thresholds of 25 and 30 pixels were used for Tμ and TD 
respectively. 

TABLE I.  PERFORMANCE COMPARISON WITH EXISTING PALM VEIN 
RECOGNITION SYSTEMS. UNLESS OTHERWISE NOTED, THE RESULTS ARE 

PRESENTED USING 1 REGISTRATION IMAGE. 

Recognition and filtering technique EER % 

(DoG-HE + SIFT) ED [8] (3 registration images) (Left hand) 
2.87 

(MOT + SIFT) ED (3 registration images) (Left hand) 
1.478 

(MOT + SIFT) ED + MMD (3 registration images) (Left hand) 
1.118 

(CLAHE + block stretch + SIFT) ED + RANSAC [9] 14.7 

(MOT + SIFT) ED + RANSAC [3] 4.292 

(MOT + SIFT) ED + MMD 3.013 

ECS-LBP + SIFT (ED) [7] (L/R hands) 
3.12/3.25 

(MOT + SIFT) ED [3] (L/R hands) 
2.75/2.876 

(MOT + SIFT) ED + MMD L/R hands) 
2.46/2.622 

To find feature point pairs with minimum distances, Yan 
[10] applied a bidirectional feature matching method, where 
distance is measured between each feature point in the 
template to all points in the probe image (forward matching), 
and each feature point in the probe image to all points in the 
template image (backward matching). If a corresponding 
feature points pair from forward matching is reidentified from 
backward matching, and the Euclidian distance is below a set 
threshold the pair of points is accepted as a match. They report 
EERs of 0.65% and 1.84% for ORB and SIFT features 
respectively using 850nm images of the CASIA multispectral 
dataset.  

In [8] KNN+RT was used with RootSIFT features and 
employed the bidirectional method from [10]. They further 
report results with SIFT+ED+Bidirectional-matching. They 
used the 850nm images from the CASIA dataset with 3 
reference images to produce the matching template. They 
further reported an EER value using ED. SIFT+KNN+RT and 
RootSIFT+KNN+RT+Bidirectional-matching were used to 
verify the performance of the MOT method in [3]. However, 
the implantation of the Bidirectional algorithm in [3] 
performed poorly. The experiments with MOT+SIFT+ED 
recorded an EER value of 3.333% and performed better than 
MOT+SIFT+ED+Bidirectional matching which recorded an 
EER of 7.769%. 

In [9] mismatches of SIFT+ED matching were removed 
with RANSAC. The reported EER value is 14.7% and the 
AUC is 90.8% using the CASIA dataset. [7] presented 
SIFT+ED matching and using ECS-LBP as the image 
enhancement method. They separated the left and right hand 
images into two subsets reducing the number of interclass 
matches by a factor of 0.5 resulting in lower EER values [3]. 

The parameters used in the aforementioned systems were 
not discussed except for [8] where they used a threshold of 0.8 
with RT when using RootSIFT features. The performance 
comparison of the palm vein recognition systems is measured 
using the Equal Error rate or the EER and presented in Table 
I. The proposed MMD filtering method reduces the EER 
values against the compared filtering methods [9] [7] [8]. The 
RANSAC filtering based recognition method from [9] 
reported the highest EER value of 14.7%. Lowe [6] suggests 
that RANSAC filtering is not suitable when many outliers are 
presented.  

The MMD filter was tested with ED+MMD and 
KNN+RT+MMD using 1-5 templates or registration images. 
Results are presented in Table II against ED and KNN+RT. 
The threshold used for RT in all the experiments is 0.7 [6]. 
EER values were reduced with every additional image used 
for the registration template. The highest performance gain 
was observed between ED and ED+MMD. When using 1 
registration image, ED+MMD reported a higher EER of 
3.013% than of 2.873% with KNN+RT. With 2-5 registration 
images ED+MMD reported better results than of KNN+RT. 
The lowest EER values are recorded when using the 
KNN+RT+MMD method (0.139%) followed by the 
ED+MMD method (0.194%) with 5 registration images. In [3] 
the MOT method outperformed the image enhancement 
methods compared from previous work. In this research, the 
MMD filter outperforms other filtering methods used in [3] 
with the MOT method. This confirms that the MMD filter 
outperforms the existing filtering methods used for SIFT-
based palm vein recognition.  

TABLE II.  EER % VALUES WITH SIFT, USING 1-5 REGISTRATION 
IMAGES COMPARED WITH AND WITHOUT USING THE MMD FILTER 

Registration 
images ED [3] ED+ 

MMD 
KNN+RT 

[3] 
KNN+RT+

MMD 
1 3.333 3.013 2.873 2.326 
2 1.677 1.459 1.725 1.448 
3 1.715 1.31 1.663 1.257 
4 0.53 0.232 0.61 0.265 
5 0.31 0.194 0.278 0.139 

V. CONCLUSION 
Palm vein recognition is a challenging problem as palm 

vein images can produce an infinite number of variations due 
to the changes of the hand poses resulted from movements of 
fingers, thumb, and twist roll of the hand. The filtering 
methods proposed with current SIFT-based recognition 
systems still produce higher EER values.  

This research proposed a novel filtering method referred 
to as the Mean and Median Distance (MMD) filter to filter out 
outliers or false positive matches of SIFT-based palm vein 
recognition, which is robust to variations in scale and rotation. 
The proposed MMD filter is based on the concept that if two 
images are aligned and superimposed, the geometric distance 
of the matching keypoints should be minimal. MMD filter 
check the mean and median distances separately in horizontal 
and vertical directions to accommodate the scale and rotation 
variations. The sensitivity of the filter can be adjusted using 
two thresholds.  

Experiments were conducted using the MMD filter with 
Euclidian distance and the k-nearest neighbour and distance 
ratio test algorithms, using 1-5 registration template images. 
The results indicate that the proposed MMD filter 
outperformed the other filtering methods used with SIFT for 
palm vein recognition. Further, the MMD filter only requires 
performing a small number of calculations and low 



computations. The MMD filter is not limited to SIFT and can 
be used to filter the outliers from any type of feature matching. 
The MMD filter only consider the median and mean distances 
from the matching pairs. This can be further improved using 
machine learning techniques to learn these distances for true 
positive and false positive matches for a given dataset to 
improve the accuracy of the algorithm. 
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