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Abstract

Using an all-electron, first principles, Landau-type theory, we study the nature of short-range

order and compositional phase stability in equiatomic refractory high entropy alloys, NbMoTa,

NbMoTaW, and VNbMoTaW. We also investigate selected binary subsystems to provide insight

into the physical mechanisms driving order. Our approach examines the short-range order of the

solid solutions directly, infers disorder/order transitions, and also extracts parameters suitable

for atomistic modelling of diffusional phase transformations. We find a hierarchy of relationships

between the chemical species in these materials which promote ordering tendencies. The most

dominant is a relative atomic size difference between the 3d element, V, and the other 4d and 5d

elements which drives a B32-like order. For systems where V is not present, ordering is dominated

by the difference in filling of valence states; pairs of elements which are isoelectronic remain weakly

correlated to low temperatures, while pairs with a valence difference present B2-like order. Our

estimated order-disorder transition temperature in VNbMoTaW is sufficiently high for us to suggest

that SRO in this material may be experimentally observable.

I. INTRODUCTION

A recent development in the field of materials science is the discovery of the so-called high-

entropy alloys (HEAs)[1–4], of which the first examples were synthesised by Cantor et al. [1]

and Yeh et al. [2]. Yeh et al. attributed the stabilisation of the single phase solid solution

to the large contribution to the free energy of the system from the configurational entropy,

hence the term ‘high-entropy’. These systems are also referred to as ‘multicomponent’ or

‘multi-principal element’ alloys, and systems with three (or sometimes four) elements are

occasionally referred to as ‘medium entropy’. They are metallic alloys in which three or more

elements are combined in roughly equal proportions to form a single phase solid solution,

with a simple underlying lattice structure. Although these systems possess compositional

disorder, it is known from both theory and experiment that atoms in these materials do not

arrange themselves entirely randomly, and a degree of atomic short-range order (SRO) is

both theoretically predicted and has been experimentally observed[5–10].

It is understood that SRO affects material properties[10–15], and therefore a key challenge

for computational modellers and theorists is not only to predict what multicomponent single

phase alloys can form but also understand the nature of SRO in those that do. This should
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assist in the design of new HEAs and also assist in the production of these materials for

applications by guiding the annealing process and suggesting required temperatures to either

promote or impede the development of SRO. The space of candidate HEAs alloys is vast

and, therefore, techniques which are computationally expensive or which scale poorly with

increasing number of chemical species should be used sparingly. Modelling techniques are

needed which are both accurate and computationally efficient.

A family of techniques which satisfies these requirements and is arguably well suited to

modelling HEAs and their inherent disorder at scale contains effective medium theories[16–

18], such as the coherent potential approximation (CPA)[19]. Typically, to examine com-

positional order, such approaches, combined with density functional theory (DFT), seek to

analyse the energetic favorability of particular chemical fluctuations when instigated in high-

temperature, disordered solid solution phases using the concentration wave formalism[5, 8,

20–25].

Other modelling techniques have also been used to study compositional phase behaviour

in HEAs. These include large scale super-cell calculations with energies evaluated via DFT,

molecular dynamics simulations based on interatomic potentials, CALPHAD and semi-

empirical calculations[26–35]. Machine learning approaches and cluster expansions have

been applied to develop Hamiltonians with which to perform atomistic modelling[6, 36–38].

Supercell calculations on HEAs with energies evaluated via DFT are limited to a subset of

possible configurations, even when studying relatively small supercells, because of the high

computational cost of such calculations. A more complete exploration of the phase space

is provided by atomistic models, but the parameters used as inputs to these models come

from a range of origins, and the underlying physics driving ordering is not always explored.

In an earlier work, we outlined our approach to studying compositional order in HEAs

with an ab initio electronic structure model and applied it to the Ni-based, face-centred

cubic (fcc) Cantor-Wu systems[39, 40], arguably the prototypical HEAs. We were able to

demonstrate that interactions in those systems extended beyond nearest-neighbour distance

and also that interactions were poorly approximated as pseudobinary. The Cantor-Wu

systems are well-studied both computationally and experimentally, and our method gave

good agreement with existing literature on SRO in these systems for minimal computational

cost. We now turn our attention to another well-studied set of high-entropy materials, the

refractory HEAs, which form on a body-centred cubic (bcc) lattice. Originally synthesised by
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Senkov et al. [41, 42], these materials possess extraordinary physical properties on account of

the base elements from which they are constructed, comparable to or even superior than the

Ni-based HEAs, and are therefore good candidates for next-generation engineering materials,

particularly for high-temperature fission and fusion applications[6, 43, 44].

We choose to study the two original equiatomic refractory HEAs, NbMoTaW and

VNbMoTaW, along with the medium-entropy, equiatomic NbMoTa. This represents a

series of a three-component, four-component, and five-component equiatomic alloys with in-

creasing configurational entropy, all of which are known to form single-phase solid solutions

[13, 41, 42]. Although the literature on compositional order in these systems is not as large

as for the Cantor-Wu alloys, a number of earlier works have highlighted some interesting

behaviors and suggest these systems warrant further study [6, 45–49].

Our aim is not just to describe the nature of compositional order in these specific materi-

als, but also to elucidate its origins in terms of the materials’ electronic structure and obtain

physical insight into the origins of compositional order stability to aid material design. To

that end, we study a number of binary subsystems within the same formalism as used for the

multicomponent systems to extract qualitatively the mechanisms driving ordering in alloys

consisting of refractory metals. For the materials chosen, we provide a complete description

of the nature of SRO and the temperatures at which it emerges. We provide insight into its

origins in terms of the electronic structure of the solid-solution. We also provide pairwise

interchange parameters suitable for further atomistic modelling on these systems which we

demonstrate.

This paper is laid out as follows. First, in II, we outline briefly the underlying theory and

our methodology for studing compositional order in multicomponent alloys. Then, in section

III, we provide results from electronic structure calculations for the solid solutions, linear

response analysis of atomic SRO, and atomistic modelling of the phase stability for the three

considered systems. Rather than just providing predictions for the nature of compositional

order in these materials, we also use details of the materials’ electronic structure to give

qualitative insight into its origins, transferable to other multi-component alloys. Finally, in

IV, we summarise our results and give an outlook on further work.
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II. THEORY

Our technique for modelling compositional order in multicomponent alloys differs from

many alternative techniques and uses a Landau-type expansion of the free energy of the

system to obtain the two-point correlation function, a SRO parameter, ab initio. Effects

on the electronic structure and the rearrangement of charge, in response to an applied

inhomogeneous chemical perturbation, are fully included [39, 40]. This is an extension of

the S(2) theory developed for binary alloys [21, 22]. Our calculations assume a fixed ideal

lattice, bcc for the studies in this paper, which represent the averaged positions of the

atomic positions in the multicomponent solid solutions and is a major reason for the low

computational cost. For an alloy, descriptors for the modelling of “small” atoms, like V,

mixing with “big” atoms, like Ta, turn out to be effective charge transfers to the small from

the big atoms, screened by the valence electrons.

The theory has its groundings in statistical physics and the seminal papers on concen-

tration waves by Khachaturyan [20] and Gyorffy and Stocks [21]. A substitutional alloy is

described by a set of site-wise occupancies, {ξiα}, where ξiα = 1 if site i contains an atom

of species α and ξiα = 0 otherwise. We denote the average value of ξiα by

ciα ≡ ⟨ξiα⟩ (1)

and the value of the total overall concentration of species α is given by cα = 1
N

∑
i ciα,

where N is the number of lattice sites. Above any order/disorder transition temperature,

in the solid solution phase, the {ciα} will be spatially homogeneous and each will simply

take the value of the total overall concentration of species α, cα. Below an order/disorder

transition temperature they will acquire a spatial dependence as the translational symmetry

is broken. These are therefore our long-range order (LRO) parameters. It is most convenient

to lattice Fourier transform and describe ordering in reciprocal space via concentration

waves, cα(k) [20, 21]. An ordered structure can then be represented by

ciα = cα +
∑
k

eik·Ricα(k). (2)

Examples of some binary ordered structures on the bcc lattice and the concentration waves

describing them are given in Figure 1.

To assess SRO, we examine the so-called two point correlation function,

Ψiα;jα′ ≡ ⟨ξiαξjα′⟩ − ⟨ξiα⟩⟨ξjα′⟩, (3)
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which is non-zero except in the high-temperature limit and can be directly related to the

second derivative of the system’s free energy. It tells us about the dominant atom-atom

correlations in the system above any compositional order-disorder transition temperature.

A. Linear Response

A full derivation and discussion of the linear response theory for multicomponent alloys

we use is given in references [39, 40]. Here we provide a brief outline of the formalism. Within

the coherent potential approximation (CPA) [19], we start with an expression for a mean

field approximation to the free energy of a system with an inhomogeneous concentration

distribution, {c̄iα},

Ω(1)[{νiα}, {c̄iα}] = − 1

β

∑
iα

c̄iα ln c̄iα −
∑
iα

νiαc̄iα + ⟨Ωel⟩0[{c̄iα}], (4)

where c̄iα represents the mean-field average concentration of species α on site i. The first

term represents the so-called ‘point entropy’, or ‘entropy of mixing’[50]. Each νiα in the

second term represents the local Lagrange parameter, specifying the concentration c̄iα on a

given site. The final term denotes the average value of the electronic and nuclear contribution

to the free energy, formulated within Density Functional Theory, where the average is taken

with respect to the ensemble generated by the mean-field Hamiltonian and consistent with

the inhomogeneous concentration distribution, {c̄iα}. We then expand the free energy of the

system around a homogeneous reference state, i.e the disordered solid solution, {c̄iα = cα},
writing

Ω(1)({c̄iα}) = Ω(1)({cα}) +
∑
iα

∂Ω(1)

∂c̄iα

∣∣∣
{cα}

∆c̄iα

+
1

2

∑
iα;jα′

∂2Ω(1)

∂c̄iα∂c̄jα′

∣∣∣
{cα}

∆c̄iα∆c̄jα′ + . . . . (5)

The symmetry of the high-temperature, homogeneous state - the solid solution - and the

requirement that any imposed fluctuation conserves the overall concentrations of each chem-

ical species, ensures that the first-order term vanishes. We also set derivatives involving

the on-site chemical potentials to zero as their variation is not important to the underly-

ing physics [39]. Therefore, to second-order, the change in free energy due to a fluctuation
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{∆c̄iα} is written

δΩ(1) =
1

2

∑
iα;jα′

∆c̄iα[β
−1C−1

αα′ − S
(2)
iα,jα′ ]∆c̄jα′ , (6)

where C−1
αα′ =

δαα′
cα

is associated with the entropic contributions. The key quantity here

is the second-order concentration derivative of the average energy of the disordered alloy,

− ∂2⟨Ωel⟩0
∂c̄iα∂c̄jα′

≡ S
(2)
iα;jα′ , related directly to the two-point correlation function. It is this quantity

that our linear response theory evaluates.

As discussed in references 39 and 40, this linear response theory accounts carefully for

DFT charge density perturbation effects. This is similar to the consideration given in Den-

sity Functional Perturbation Theory (DFPT) [51, 52], used to describe lattice dynamics ab

initio and response functions for phonons etc. Formally the free energy ⟨Ωel⟩0[{c̄iα}] for a

specific inhomogeneous concentration distribution, {c̄iα}, is prescribed by a DFT minimiza-

tion with respect to the appropriately averaged charge and magnetization densities. There

is consequently an interdependence of the changes to the atomic occupation of the lattice

sites, registered by the {∆c̄iα}, and the changes to the lattice site-resolved charge and mag-

netization densities which leads to a set of coupled equations [39] from which the two-point

correlation function is determined. In practice these equations are solved by taking advan-

tage of the translational symmetry of the lattice-based system and a Fourier transform to

produce the correlation function S
(2)
αα′(k) in reciprocal wavevector space and the change in

free energy is written

δΩ(1) =
1

2

∑
k

∑
α,α′

∆c̄α(k)[β
−1C−1

αα′ − S
(2)
αα′(k)]∆c̄α′(k) (7)

=
1

2

∑
k

∑
α,α′

∆c̄α(k)[β
−1Ψ̄−1

αα′(k)]∆c̄α′(k). (8)

The matrix in square brackets we refer to as the chemical stability matrix and is related to

an estimate of the SRO, Ψiα;jα′ . As we consider decreasing temperature, we look for when

the lowest lying eigenvalue of this matrix, for any k-vector in the irreducible Brillouin Zone

(IBZ), passes through zero. We infer an order-disorder transition at that temperature Tus

with mode kus and chemical polarisation ∆cα given by the associated eigenvector.
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B. Effective Pairwise Interactions

Having obtained S
(2)
αα′(k), it is then possible to fit to a real-space pairwise interaction

suitable for on-lattice atomistic modelling. The Hamiltonian for our system has then the

conventional Bragg-Williams [53, 54] form, written:

H =
1

2

∑
iα;jα′

Viα;jα′ξiαξjα′ +
∑
iα

ναξiα, (9)

where the ναs are chemical potentials. For such a model Viα;jα′ is equivalent to −S
(2)
iα;jα′ .

From our linear response theory [39] outlined in section II, the direct correlation functions

S
(2)
iα;jα′ are calculated in reciprocal space and the Viα;jα′ are recovered from them by fitting to

a real-space interaction. It should be emphasised that the earlier instability analysis is only

rigorous for second-order transitions and highlight the dominant atom-atom correlations,

but the Viα;jα′ can be used to infer transitions which are first-order. With this mapping, we

have atom-atom interchange parameters that can be used for modelling at any temperature.

This step assumes that the Viα;jα′ calculated for the disordered solid solution (high-T , ho-

mogeneous limit) are the same as for low-T states with order developing. The procedure by

which these pairwise interactions are obtained, via analysis of the free energy cost of com-

positional fluctuations around the disordered phase, makes them an unbiased best choice,

being unrelated to fits to energies of specific configurations.

In practice, to obtain an effective pairwise interaction in real space, we sample a number

of k points distributed in the irreducible wedge of the first Brillouin zone, including along

lines linking the special points [20]. We then fit to a function of the form

S
(2)
αα′(k) ≈ −

N∑
n=0

V
(n)
αα′

∑
{Ri}n

eik·Ri

 , (10)

where {Ri}n denotes the set of vectors pointing to all lattice sites on the nth neighbour shell,

andN denotes the maximum number of shells considered. The V
(n)
αα′ are the coefficients fitted.

It is important to ensure that enough k points are sampled and enough lattice shells are

included to obtain a fit which is well-converged. Typically fewer than 100 k points in the

irreducible section of the Brillouin Zone are required to fit interactions up to the first 10

coordination shells.

It is appropriate at this point to mention an important difference between the direct cor-

relation function approach discussed here, using the S
(2)
αα′(k) quantities, and related methods
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such as the Generalized Perturbation Method (GPM) [55–57]. The key difference is that

the GPM approach makes an approximation that the charge densities on sites occupied by

the different atomic species remain unchanged from those for the homogeneously disordered

alloy when the concentration distribution becomes inhomogeneous. It therefore does not

include the full DFT perturbation effect on the electronic density (i.e. effects of charge-

transfer and charge-response) which our approach does address. The screened GPM [58]

includes part of the effect via its calculation of an electrostatic contribution to the SGPM

potential. These approximations nonetheless enable effective interactions to be calculated

directly in real space.

C. Monte Carlo simulations

To explore the phase behaviour of these systems with this atomistic model, we use the

Metropolis Monte-Carlo algorithm with with only swaps permitted to conserve overall

concentrations of each chemical species, known as Kawasaki dynamics[59]. This method has

been used with success to study the physics of alloy formation [60, 61].

We initialise the occupation numbers at random, with the only restriction being the over-

all number of atoms of each species to set the concentrations. A pair of sites (not necessarily

nearest neighbours) are selected at random, and the change in energy ∆H from swapping

the site occupancies is calculated. If the change in energy is negative the move is accepted

unconditionally, while if the change is positive the swap is accepted with probability e−β∆H .

It is important to make sure that the system is properly equilibrated at a given tempera-

ture. Our implementation applies periodic boundary conditions in all three directions. To

measure the configurational contribution to the specific heat capacity (SHC) of the system,

we use the fluctuation-dissipation theorem[62]. In equilibrium, an estimation of the specific

heat is given by

C =
1

kbT 2

(
⟨E2⟩ − ⟨E⟩2

)
, (11)

and it is this which we calculate to obtain our SHC curves.

To quantify SRO in our simulations, we generate the Warren-Cowley SRO parameters

[63, 64] adapted to the multicomponent setting,

αpq
n = 1− P pq

n

cq
, (12)
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where n refers to the nth coordination shell, P pq
n is the conditional probability of an atom

of type q neighboring an atom of type p on shell n, and cq is the overall concentration of

atom type q. When αpq
n > 0, p-q pairs are disfavored on shell n, while when αpq

n < 0 they

are favored. The value 0 corresponds to the ideal, random, solid solution.

III. RESULTS AND DISCUSSION

A. Electronic Structure Calculations

To model the electronic ‘glue’ bonding atoms together and driving SRO, we first gen-

erate the self-consistent, single-electron potentials of density functional theory (DFT) [65],

which are used as the basis for performing linear response calculations. The potentials are

generated in the Korringa-Kohn-Rostoker (KKR) formulation of DFT, using the coherent

potential approximation (CPA) to produce an effective medium reflecting the average elec-

tronic structure of the high-temperature, high-symmetry, disordered solid solution [66–68].

We use the all-electron HUTSEPOT code [69] to generate these potentials although, in

principle, any KKR-CPA code would also be suitable. We perform scalar-relativistic cal-

culations within the atomic sphere approximation (ASA)[70] with an angular momentum

cutoff of lmax = 3 for basis set expansions, a 20 × 20 × 20 Monkhorst-Pack grid[71] for

integrals over the Brillouin zone, and a 24 point semi-circular Gauss-Legendre grid in the

complex plane to integrate over valence energies. We use the local density approximation

(LDA) and the exchange-correlation functional is that of Perdew-Wang[72].

Along with NbMoTa, NbMoTaW, and VNbMoTaW, we study three equiatomic binary

subsystems. NbTa is selected as an example of a 4d/5d binary where the two components

are isoelectronic. NbMo is selected as an example of a 4d/4d system where there is a valence

difference. VTa is selected as an example of a 3d/5d system where there is an atomic size

and d-bandwidth difference. For completeness, we studied the other seven possible binary

subsystems, for which the relevant results are included in the supplementary material[73].

We obtain lattice parameters for all considered systems ab initio, finding the value of the

lattice parameter (and therefore cell volume) for which the total DFT energy is minimised.

HUTSEPOT-optimised lattice parameters for the six considered systems are tabulated in I.

We expect there to be a small, but systematic underestimation of lattice parameter when
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compared to experimental values, a well-known feature of calculations using the LDA.

For the optimised lattice parameters, we show the electronic densities of states (DoS) for

the NbMoTa, NbMoTaW, and VNbMoTaW alloys, along with the three selected binaries

in Fig.2. The distinguishing features in the DoS in these systems arise from the partially

filled d-electron states. V, being a 3d transition metal, has by far the narrowest d-band. Nb

and Mo as 4d elements have narrower d-bands than Ta and W, but the width discrepancy

is far smaller. We expect the 3d-4d/5d bandwidth difference to impact ordering in a similar

manner to the Ni-Pt system, where ordering is dominated by the difference in atomic size

between Ni and Pt[74]. This is manifested by 3d-4d/5d-hybridized bonding states forming

at lower energies and effective charge transfer to the smaller 3d atoms from the larger 4d/5d

atoms. A comment should also be made about the valence of these systems. 4d/5d pairs

such as Nb/Ta and Mo/W are isoelectronic (same valence) so their d-bands will naturally lie

close to one another, which we expect to lead to these elements interacting weakly. Where

there is a valence difference interactions are likely to be stronger.

B. Linear Response Analysis

Starting from the self-consistent potentials and electron densities of the ideal solid solu-

tion, we use our theory to construct the chemical stability matrix in reciprocal space. In

Figure 3, we plot the eigenvalues of this matrix along various symmetry lines of the irre-

ducible Brillouin Zone (IBZ) for the six considered systems evaluated at 1200K. As for the

DoS, plots for all possible equiatomic binary systems are included in the supplementary

material[73]. Then, in Table II, we give our predicted ordering temperatures, associated

modes, and chemical polarisations. We emphasise that these ordering temperatures are

computed within a mean-field theory and are therefore expected to be overestimates of

exact ordering temperatures in these systems.

When the eigenvalue plots of Fig. 3 are considered, we first look at the three binaries

to understand the multicomponent systems. The mode present in NbMo, dipping at H

and peaking at Γ is associated with a difference in valence between the two species and is

indicative of B2-like ordering tendencies. The exceptionally flat mode present in NbTa is

associated with very weak interactions and has its origins in the fact that Nb and Ta are

isoelectronic. Finally, for VTa, the mode which has a strong peak at H and dips at P can
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be associated with the effects of differing atomic size and bandwidth between 3d and 4d/5d

elements and is indicative of B32-like order.

In our calculations this appears as an effective charge transfer to the small V atoms from

the bigger Ta atoms screened by the valence electrons; in general, for these multicomponent

systems, our calculations find electron density to be transferred from the 3d transition metal

atoms to the 4d/5d ones. For an equiatomic binary system on the BCC lattice, when

considering first and second nearest neighbour shells, the B2 structure has 8 unlike and 6

like neighours, while the B32 structure has 10 unlike and 4 like neighbours. A screened

Coulombic interaction will therefore favor the B32 structure over B2. We find this happens

strongly for VW, a predicted B32-former[75], where the size effects dominate the valence

difference. We find the ordering temperature for VW to be 905K. The associated data can

be found in the supplementary material[73].

Modes associated with the above mechanisms can be observed in the multicomponent

systems, albeit with mixing between the modes. Sample eigenvalues and associated eigen-

vectors of the chemical stability matrix at special points of the IBZ are tabulated in the

supplementary material.

Looking at the tabulated transition temperatures and predicted ordering, we predict

B2-like ordering in the ternary NbMoTa at a temperature of 511K. The polarisation in

concentration space indicates one sublattice rich in Nb and Ta, with the other rich in Mo.

This indicates that it is energetically favourable for nearest neighbors in this system to have

a valence difference.

Our results for NbMoTa are also consistent with the quarternary NbMoTaW system,

in which we again find a B2-like ordering at 559K, with Nb and Ta segregating onto one

sublattice, Mo and W on the other. This type of ordering is consistent with previous theo-

retical works on this system [5, 45–49, 76], demonstrating the robustness of our approach.

Our ordering temperature for this system is also consistent with some earlier works. Ref. 48

used the projector-augmented wave (PAW) method with chemical disorder simulated using

special quasi-random structures (SQS) and included effects of vibrations, electronic excita-

tions, and configurational entropy. A transition temperature of 717K was found without

lattice relaxations, while with lattice lattice relaxations it was reduced to 508K. More re-

cently, Ref. 76 used interatomic potentials generated via machine learning to predict an

ordering temperature to a B2 phase of approximately 600K without atomic relaxations, and
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approximately 300K when their effects are included.

For the quinary VNbMoTaW system, we find ordering to be dominated by V and is B32-

like, with a predicted ordering temperature of 742K. This is consistent with Ref. 6, which

used a cluster expansion Hamiltonian to predict B32-like order emerging at around 750K,

which is also consistent with the analysis of the V-W binary system[73, 75].

A comment should be made about the importance of including effects of charge-transfer

and charge-response in these calculations, which is the principal difference of our approach

from other CPA-based approaches such as the GPM as discussed in section II. If we use

the so-called “band-only” approximation in our linear response calculation and assume

the one-electron potentials to be insensitive to the configurational environment, we obtain

markedly different results for these materials. Indeed, we find that, for the five-component

VNbMoTaW system, V is predicted erroneously to phase-segregate out of the solid solution

at a very high temperature. For the four component NbMoTaW system, within the band-

only approximation, we find that the minimum eigenvalue does not pass through zero at

the H-point exactly, which would indicate long-ranged interactions and anomalous order as

suggested in some earlier work on this system[46, 49]. Including fully the effects of charge-

transfer and charge-response remedies both of these issues; V is found to integrate well in

the five-component system and simple, B2-like ordering is predicted in the four-component,

with no significant long-ranged interactions. We noted that these effects were also significant

in our study of compositional order in the Cantor-Wu systems [40], and suggest that they

need to be accounted for carefully in any theory of phase stability in multicomponent alloys.

C. Pairwise Interactions

Table III shows V
(n)
αα′ for n = 1, 2, 3, 4 for the three multicomponent systems. It can be

seen that the interactions are dominated by first- and second-nearest neighbours, and we

therefore conclude that any model limited to nearest-neighbour distance only will fail to

capture the relevant physics. Interactions being strongest on the first two neighbour shells

is also consistent with recent results obtained using effective pair interaction generated using

machine learning on a DFT data-set[38].

By far the strongest interacting element is V, consistent with both the pointers from

the DoS plots and the results of the linear response analysis. Significantly, a number of

13



interactions involving V are larger on the second shell than on the first, consistent with

B32-like order.

D. Atomistic Modelling

Using the obtained pairwise interactions, we performed lattice-based Monte Carlo (MC)

simulations for NbMoTa, NbMoTaW, and VNbMoTaW to better understand the nature of

SRO in these systems and probe ordering below the initial order-disorder transition tem-

perature. A lattice-based model is suitable for these systems because the BCC structure

is capable of accommodating large atomic size discrepancies[77]. All calculations used a

16× 16× 16 cubic unit cells, each with 2 lattice sites per unit cell, for a total of 8192 atoms.

Periodic boundary conditions were applied. The systems were prepared in an initially ran-

dom configuration, then annealed from 1200K to 10K in steps of 1K, with 103 MC steps per

atom at each temperature.

Figure 5 shows plots of the Warren-Cowley SRO parameters and SHC curves for NbMoTa,

NbMoTaW, and VNbMoTaW, while Figure 4 shows sample visualised configurations from

our simulations.

In NbMoTa, little SRO is observed, although it is consistently seen that Nb and Ta

favour Mo as a nearest neighbour, indicative of a B2-like ordering and consistent with our

earlier linear response analysis. The visualised low-temperature configuration shows no clear

single-phase ground state, although this is to be expected at this stoichiometry.

For the well-studied four component NbMoTaW, it can be clearly seen that Mo-W and

Nb-Ta pairs (isoelectronic) are disfavored as nearest neighbours, while pairs Nb-W, Mo-Ta,

Nb-Mo, and Ta-W (pairs with a valence difference) are favored, indicative of B2-like order,

consistent again with our linear response analysis and also with earlier literature. This B2-

like ordering is followed at lower temperatures by ordering on each of the two sublattices,

resulting in a Heusler-type ground state, as can be seen in the visualised configurations.

The ordering between Mo and W on one sublattice emerges earlier than between Nb and

Ta in our simulations. The ground state obtained in our simulations is not the same as in

some other works, notably Ref. 76, which predicted a layered arrangement. However, our

approach is most valid at high temperatures, where the pairwise parameters for atomistic

modelling are extracted, so we do not view this low-temperature disagreement as an issue.

14



Finally, for the five component VNbMoTaW, the picture is less clear-cut. The strongest

trends are towards Mo-Ta and Nb-Mo pairs at nearest neighbour distance, which could be

interpreted as B2-like ordering, as for the four component. However, at second-nearest

neighbour distance, V-W pairs are highly favored, suggesting instead B32-like order. When

we visualise our configurations, the picture becomes clear, however, because there is clear

multiphase behaviour emerging, with seperate regions of B32-like V-W and patches of B2-

like order involving the other elements present, although this emerges at low temperatures

and is unlikely to be experimentally observable.

IV. CONCLUSIONS

Our results suggest that there is a set of simple underlying mechanisms driving atomic

SRO in refractory HEAs. Pairs of 4d/5d elements which are isoelectronic interact weakly,

mix well and make little or no contribution to SRO in a material. Pairs of 4d/5d elements

with a valence difference are favored as nearest neighbours and drive B2-like ordering. For

NbMoTa we find a B2-like (Nb, Ta; Mo) ordering, and for NbMoTaW we find a similar

B2-like (Nb,Ta;Mo,W) ordering.

The addition of the 3d element V, with its smaller atomic size and narrower d-band drives

a different, B32-like order, competing with and eventually dominating the B2-like state. We

suggest that this small atom-big atom effect is important in understanding phase stability

in many 3d-4d/5d multicomponent alloys. Our calculations on VNbMoTaW also give order

more consistent with a B32-like structure emerging at a sufficiently high temperature that

SRO in this system may be experimentally obersvable given suitable heat treatment. The

results are further validated by our analysis of all possible equiatomic binary systems, given

in the Supplementary Material.

Our results on SRO are consistent with earlier works on these systems, and we provide

insight into the underlying physics driving ordering by studying the electronic structure of

the disordered solid solution. Moreover, by using an effective medium theory, the CPA, and

a simple pairwise model, we are able to obtain our results using a fraction of the computing

resources taken by studies which require large numbers of DFT calculations on supercells

to train potentials. All figures in this work were produced using less than 500 CPU hours

on the Orac cluster at the University of Warwick, which uses Intel E5-2680 v4 (Broadwell)
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processors.

In conjunction with our earlier study on the Ni-based Cantor-Wu alloys, we take our

results as evidence that our approach provides accurate results for very little computational

cost, and is therefore an ideal candidate for searching for new HEA compositions and novel

intermetallic compounds for a variety of applications. We are in the process of adapting

our codes for high-throughput calculations to rapidly explore this vast space of candidate

materials.
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FIG. 1: Examples of ordered structures based on the bcc lattice which can be described by

concentration waves. A2 represents a disordered alloy. B2 can be described by modes

k = {0, 0, 1}, while B32 is described by modes k =
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FIG. 2: Plots of the total and species-resolved density of states for NbTa, NbMo, VTa,

NbMoTa, NbMoTaW, and VNbMoTaW around the Fermi energy. (The Fermi energy for

each system is denoted by a grey, dashed, vertical line.) The total DoS curve is given by

the average of the components from the separate species. NbTa is selected as an example of

a 4d/5d binary where the two components are isolectronic. NbMo is selected as an example

of a 4d/4d system where there is a valence difference. VTa is selected as an example of a

3d/5d system where there is an atomic size and bandwidth difference. It can be seen that,

as for the binaries, in the multicomponent systems, isoelectronic species have DoS curves

lying almost on top of one another, while species where there is a valence difference are

separated. Being a 3d transition metal, the curves for V have a different profile those of the

4d and 5d elements and show the 3d-4/5d hybridized bonding states at the lower energies.
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FIG. 3: Plots of the eigenvalues of the chemical stability matrix around the IBZ for NbTa,

NbMo, VTa, NbMoTa, NbMoTaW, and VNbMoTaW at T = 1200K. The isoelectronic

binary, NbTa, has one very flat mode, associated with weak ordering tendencies. The

NbMo system, in which there is a valence difference, has a mode which dips at H and rises

at Γ, indicative of B2-like ordering. The VTa system is dominated by atomic size and

bandwidth differences and its mode dips at P and peaks at H, indicative of B32-like

ordering. The modes present in the multicomponent systems can be interpreted as

combinations of these behaviors. Flat modes are associated with correlations between

isoelectronic species, modes dipping at H are associated with valence differences and

associated with B2-like ordering, while modes dipping at P are V-dominated and

associated with B32-like ordering.
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(a) NbMoTa
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(b) NbMoTaW

10K 300K 1200K

(c) VNbMoTaW

FIG. 4: Visualised configurations from Monte Carlo simulations for the three considered multicomponent

systems at temperatures of 1200K, 300K and 10K. V, Nb, Mo, Ta, and W are coloured blue, green, pink,

yellow, and grey respectively. A cut has been made through the simulation cell to make ordered structures

more clearly visible. In the case of NbMoTaW, the emergence of a layered, B2-like structure can be seen

in the T = 300K configuration. For the ternary NbMoTa, some layering can be seen relative to the 1200K

configuration, but it is less clear than for the quarternary. For the five component system, the system

demonstrates multiphase behaviour, with patches of B32-like order between V and W, and other patches

of order akin to that observed in the ternary NbMoTa. Images generated using OVITO [78].
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FIG. 5: Plots of the Warren-Cowley SRO parameters and configurational contribution to

the SHC as a function of temperature for the three multicomponent systems considered

from lattice-based Monte Carlo simulations using our extracted pairwise parameters. We

show αpq
n for n = 1, 2. NbMoTa shows little SRO, with the only notable feature being

towards pairs with a valence difference on the first shell, and away from those pairs on the

second shell, indicative of B2-like ordering. The same trend can be seen more strongly in

NbMoTaW. The most notable trend on the five component plots is that V-W is largely

indifferent on the first shell, but highly favoured on the second, a precursor to a B32-like

structure.
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TABLES
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Material aDFT (Å)

VTa 3.105

NbMo 3.147

NbTa 3.226

NbMoTa 3.173

NbMoTaW 3.173

VNbMoTaW 3.173

TABLE I: Hutsepot optimised lattice parameters for the considered alloys.
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Material Tus(K) kus ∆c1 ∆c2 ∆c3 ∆c4 ∆c5

VTa 691
{

1
2
, 1
2
, 1
2

}
0.707 −0.707

NbMo 513 {0, 0, 1} 0.707 −0.707

NbTa 86 {0, 0, 0.4} 0.707 −0.707

NbMoTa 511 {0, 0, 1} −0.406 0.816 −0.410

NbMoTaW 559 {0, 0, 1} −0.383 0.594 −0.595 0.383

VNbMoTaW 742
{

1
2
, 1
2
, 1
2

}
−0.824 0.012 0.085 0.252 0.500

TABLE II: Transition temperatures, modes, and chemical polarisations for the six

considered systems. The chemical polarisation is the eigenvector in composition space

associated with the eigenvalue passing through zero. The numbering of components is

indicated by the composition in the left hand column, e.g. Nb=1, Mo=2, Ta=3, W=4 in

NbMoTaW, while V=1, Nb=2, Mo=3, Ta=4, W=5 in VNbMoTaW. As an example, in

NbMoTaW, the B2 ordering is indicated by kus = {0, 0, 1}, and the chemical polarisation

indicates that it comprises one cubic sublattice rich in Nb and Ta, with the other

sublattice rich in Mo and W.
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V
(1)
αβ Nb Mo Ta V

(2)
αβ Nb Mo Ta

Nb 0.173 −0.594 0.423 Nb 0.139 −0.173 0.034

Mo −0.594 1.354 −0.765 Mo −0.173 0.279 −0.106

Ta 0.423 −0.765 0.343 Ta 0.034 −0.106 0.072

V
(3)
αβ Nb Mo Ta V

(4)
αβ Nb Mo Ta

Nb −0.010 −0.004 0.014 Nb −0.008 0.008 −0.001

Mo −0.004 0.117 −0.114 Mo 0.008 −0.012 0.004

Ta 0.014 −0.114 0.101 Ta −0.001 0.004 −0.003

V
(1)
αβ Nb Mo Ta W V

(2)
αβ Nb Mo Ta W

Nb 0.509 −0.938 0.931 −0.501 Nb 0.539 −0.208 0.278 −0.608

Mo −0.938 0.926 −0.998 1.010 Mo −0.208 0.274 −0.225 0.159

Ta 0.931 −0.998 1.050 −0.982 Ta 0.278 −0.225 0.205 −0.258

W −0.501 1.010 −0.982 0.473 W −0.608 0.159 −0.258 0.708

V
(3)
αβ Nb Mo Ta W V

(4)
αβ Nb Mo Ta W

Nb 0.008 −0.085 0.078 −0.000 Nb −0.002 −0.036 0.025 0.013

Mo −0.085 0.176 −0.173 0.083 Mo −0.036 0.034 −0.033 0.035

Ta 0.078 −0.173 0.172 −0.076 Ta 0.025 −0.033 0.030 −0.021

W −0.000 0.083 −0.076 −0.007 W 0.013 0.035 −0.021 −0.026

V
(1)
αβ V Nb Mo Ta W V

(2)
αβ V Nb Mo Ta W

V −1.330 0.319 −1.253 1.681 0.583 V 4.105 −0.201 −0.441 −1.225 −2.237

Nb 0.319 0.350 −0.633 0.536 −0.572 Nb −0.201 0.302 −0.296 0.381 −0.186

Mo −1.253 −0.633 1.558 −0.978 1.305 Mo −0.441 −0.296 0.300 −0.127 0.565

Ta 1.681 0.536 −0.978 0.279 −1.517 Ta −1.225 0.381 −0.127 0.627 0.344

W 0.583 −0.572 1.305 −1.517 0.202 W −2.237 −0.186 0.565 0.344 1.514

V
(3)
αβ V Nb Mo Ta W V

(4)
αβ V Nb Mo Ta W

V 0.099 −0.082 −0.006 −0.026 0.015 V −0.615 0.023 0.161 0.108 0.323

Nb −0.082 0.033 −0.057 0.087 0.020 Nb 0.023 0.011 −0.036 0.023 −0.021

Mo −0.006 −0.057 0.192 −0.192 0.063 Mo 0.161 −0.036 0.010 −0.081 −0.054

Ta −0.026 0.087 −0.192 0.201 −0.069 Ta 0.108 0.023 −0.081 0.035 −0.084

W 0.015 0.020 0.063 −0.069 −0.028 W 0.323 −0.021 −0.054 −0.084 −0.163

TABLE III: Interchange parameters for the three multicomponent systems considered,

fitted from S(2)s evaluated at T = 1200K for the specified equiatomic composition. All

values in mRy. Interactions are dominated by the first two shells.
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4

Element aDFT (Å) aExp. (Å)

V 2.904 3.039

Nb 3.222 3.301

Mo 3.086 3.147

Ta 3.225 3.303

W 3.106 3.158

TABLE I: HUTSEPOT-optimised lattice parameters for each of the pure elements, with

their experimental values for comparison.

Material aDFT (Å) aVegard (Å)

VNb 3.093 3.063

VMo 3.011 2.995

VTa 3.105 3.065

VW 3.035 3.005

NbMo 3.147 3.154

NbTa 3.226 3.224

NbW 3.156 3.164

MoTa 3.146 3.156

MoW 3.098 3.096

TaW 3.157 3.166

NbMoTa 3.173 3.178

NbMoTaW 3.173 3.109

VNbMoTaW 3.173 3.160

TABLE II: HUTSEPOT-optimised lattice parameters for the considered alloys compared

to the prediction of Vegard’s law based on the optimised lattice parameters for the pure

elements. For the Vegard’s law prediction, we take a weighted average of the

HUTSEPOT-optimised lattice parameters for the pure elements.
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Material Point Eigenvalue δc1 δc2 δc3 δc4 δc5

NbMoTa H 0.0131 −0.408 0.816 −0.410

0.0254 −0.708 0.002 0.706

Γ 0.0223 0.745 −0.083 −0.662

0.0445 0.334 −0.812 0.478

P 0.0216 −0.800 0.543 0.256

0.0238 −0.166 −0.610 0.775

NbMoTaW H 0.0162 −0.383 0.594 −0.595 0.383

0.0305 0.599 −0.423 0.529 −0.456

0.0393 0.494 0.467 −0.286 −0.675

Γ 0.0285 0.516 0.474 −0.399 −0.591

0.0304 −0.541 0.468 0.529 −0.456

0.0752 0.436 −0.554 0.557 −0.440

P 0.0245 0.636 0.087 0.042 −0.765

0.0303 0.581 −0.614 −0.360 0.394

0.0321 −0.086 −0.604 0.786 −0.097

VNbMoTaW H 0.0234 0.079 0.328 −0.638 0.591 −0.360

0.0375 −0.254 0.064 0.625 0.255 −0.690

0.0386 0.191 −0.827 0.036 0.521 0.079

0.1235 −0.832 0.062 −0.003 0.339 0.435

Γ 0.0347 0.307 0.434 0.349 −0.521 −0.569

0.0380 0.013 0.487 −0.520 −0.487 0.506

0.0452 −0.792 0.535 0.159 0.218 −0.120

0.0862 0.281 0.297 −0.619 0.494 −0.454

P 0.0145 −0.824 −0.012 0.085 0.252 0.500

0.0359 0.286 −0.704 0.122 −0.279 0.575

0.0380 −0.059 −0.512 0.510 0.516 −0.456

0.0412 −0.188 0.206 0.720 −0.626 −0.112

TABLE III: Eigenvalues at selected special points of the IBZ evaluated at T = 1200K and

their corresponding eigenvectors, or polarisations, in concentration space.
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Material Tus(K) kus δc1 δc2 δc3 δc4 δc5

VNb 504
{

1
2
, 1
2
, 1
2

}
0.707 −0.707

VMo 593
{

1
2
, 1
2
, 1
2

}
0.707 −0.707

VTa 691
{

1
2
, 1
2
, 1
2

}
0.707 −0.707

VW 905
{

1
2
, 1
2
, 1
2

}
0.707 −0.707

NbMo 513 {0, 0, 1} 0.707 −0.707

NbTa 86 {0, 0, 0.4} 0.707 −0.707

NbW 462
{

1
2
, 1
2
, 1
2

}
0.707 −0.707

MoTa 602 {0, 0, 1} 0.707 −0.707

MoW 242
{

1
2
, 1
2
, 1
2

}
0.707 −0.707

TaW 488 {0, 0, 1} 0.707 −0.707

NbMoTa 511 {0, 0, 1} −0.406 0.816 −0.410

NbMoTaW 559 {0, 0, 1} −0.383 0.594 −0.595 0.383

VNbMoTaW 742
{

1
2
, 1
2
, 1
2

}
−0.824 0.012 0.085 0.252 0.500

TABLE IV: Transition temperatures, modes, and chemical polarisations for all considered

refractory alloy systems. 4d/5d binaries in which the two species are isoelectronic, NbTa

and MoW, have very low predicted ordering temperatures. Systems containing V have

higher predicted ordering temperatures and order in a B32-like structure. 4d/5d binaries

in which the two species have a valence difference, NbMo NbW TaW MoTa, are predicted

to have B2-like order, apart from NbW, which can be understood in a similar way to the

V-based binaries. Of the multicomponent systems considered, B2-like order is favoured

when V is not present, while when V is present, B32-like order is preferred.
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