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Rigorous evaluation of artificial intelligence (AI) systems for image classification is essential before deployment into 
health-care settings, such as screening programmes, so that adoption is effective and safe. A key step in the evaluation 
process is the external validation of diagnostic performance using a test set of images. We conducted a rapid literature 
review on methods to develop test sets, published from 2012 to 2020, in English. Using thematic analysis, we mapped 
themes and coded the principles using the Population, Intervention, and Comparator or Reference standard, 
Outcome, and Study design framework. A group of screening and AI experts assessed the evidence-based principles 
for completeness and provided further considerations. From the final 15 principles recommended here, five affect 
population, one intervention, two comparator, one reference standard, and one both reference standard and 
comparator. Finally, four are appliable to outcome and one to study design. Principles from the literature were useful 
to address biases from AI; however, they did not account for screening specific biases, which we now incorporate. The 
principles set out here should be used to support the development and use of test sets for studies that assess the 
accuracy of AI within screening programmes, to ensure they are fit for purpose and minimise bias.

Introduction 
Many screening programmes, such as breast cancer or 
diabetic eye screening, use medical images to detect early 
disease. Human image interpretation is usually 
subjective, labour-intensive, and resource-intensive. 
Advances in computing power and algorithm design, 
and increasing access to large datasets are accelerating 
the development of artificial intelligence (AI) systems to 
support image interpretation. Indeed, several AI products 
claim similar or more accurate diagnostic performance 
compared with human interpretation.1,2 Developing AI 
for use in screening is a multistep process, which 
includes the evaluation of the accuracy, clinical effect, 
cost-effectiveness, and ethical implications of AI. This 
evaluation ensures that decisions to implement AI in 
screening are supported with robust evidence and that 
deployment can be safely achieved.

There are three datasets in the development and 
evaluation of AI: a training set to develop the AI, a tuning 
set to tune hyperparameters, and a test set to evaluate 
diagnostic performance.3 Although development data are 
often reused to fine-tune the AI (termed internal 
evaluation), a test set (also termed a validation test) of 
data or images that have not been used for its 
development are assessed for external evaluation (termed 
validation). External evaluation is a crucial early step to 
evaluate diagnostic performance. External evaluation is 
usually a retrospective study on previously collected 
images and is conducted after developing the algorithm 
but before prospective evaluation in clinical practice 
when it is deployed in a real-world service setting.4

The exact nature of this test set and the study design of 
this phase of evaluation remains a subject of debate and 
there is no consensus to support developers or regulators 
to determine test-set quality.5,6 Therefore, we aimed to 

propose a set of principles that could be used when 
curating test sets and designing studies using these sets 
to assess the performance of AI for image classification 
in screening. To achieve this aim, we conducted a rapid 
review and evidence synthesis of the existing literature 
on methods to develop test sets and consulted on 
identified principles with an expert group. Finally, we 
tested the applicability of the principles by applying them 
to two studies investigating the accuracy of AI using 
test sets.1,2 The focus of this guidance is on test sets only 
and considering the principles of development datasets 
is outside its scope.3

Principles for developing and using a test set for 
AI evaluation 
We used thematic analysis for the qualitative synthesis, 
extracting themes from the literature and mapping them 
to a framework. We used the Population, Intervention, 
and Comparator or Reference standard, Outcomes, and 
Study design framework for coding the list of principles, 
which is the main framework used by the UK’s National 
Institute for Health and Care Excellence, the US Food 
and Drug Administration, and other major health 
technology assessment bodies. It is a framework that 
facilitates comparative effectiveness research and can be 
used to guide evaluation studies of AI systems.

The list of principle themes found in the literature was 
shared with the UK National Screening Committee’s AI 
task group. The group reviewed the themes and added 
screening-specific considerations to reach a final list of 
principles via consensus through an iterative process. 
The final list of principles is reported in this paper along 
with their source.

The key principles for developing a test set for AI 
evaluation are divided into those found in the literature 
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and those proposed by the expert group (table). These 
principles are discussed in more detail here and examples 
of how they can be applied to breast and diabetic eye 
screening are discussed in the appendix (pp 11–14).

Population 
The test set should be representative of the target 
population
The test set should represent the target population that 
the AI will be applied to. The number of included positive 
and negative cases is crucial and must reflect the 
intended AI use case.4,7–12 There is consensus that preva
lence has an effect on the performance of AI.3,4,9–13 This 
impact can occur mostly by having a prevalence rate in a 
test set that is not representative of the target population.14 
The test set should include all healthy, benign, and 
pathological states relevant to the intended use of AI to 
minimise spectrum bias. Spectrum bias can occur when 
the test set does not appropriately represent the full 
range of findings identified in the target population.

Test sets should also include all variations in patient 
demographics.10,11 To facilitate understanding of the 
demographics of the population represented by a test set, 
the Minimum Information for Medical AI Reporting 
standards15 propose the minimum information necessary 
to generalise findings. The following demographic 
variables are included: age, sex, race, ethnicity, and 
socioeconomic status. Specifically, for a national 
screening programme, the test set should be large 
enough to represent the full range of risks that the target 
population could constitute. For example, in breast 
screening, a test set would need to include people with 
low risk of cancer, as well as those with a higher risk such 
as those with dense breasts.

The test set should be independent of the development 
datasets 
The test set should be completely independent of the 
development dataset to adequately avoid overfitting and 
avoid data snooping.3,7,9–12,16–18 Reusing development data 
for evaluation could overestimate the accuracy in a test-
set study, and not reflect real-world performance.

Both temporal and geographical independence are 
proposed in the literature, although no explicit definitions 
are provided.12,19 Broadly, temporal independency refers 
to the use of data collected in different time periods but 
from the same institutions that provided development 
data. Geographical independency refers to data collected 
from geographically remote institutions.12 Geographical 
independency provides a more reliable estimate of AI’s 
generalisability than temporal evaluation as individuals 
from the same institutions or locations share similar 
characteristics. Images from different institutions can 
also capture natural and unavoidable variations in 
scanner and image acquisition parameters (eg, scanners, 
staff, protocols, and contrast material). Generalisability 
from temporal validation studies could be particularly 

problematic for screening test sets as often the same 
individuals’ old data might be part of the development 
dataset and their new data part of the test set. Therefore, 
truly independent datasets should be used to assess 
generalisability to the population of interest.10,13,19

The test set should be multicentred 
Test sets should be multicentred because the diversity of 
data collected and the probable representativeness of the 
population sampled is increased. A multicentred dataset 
would enhance the generalisability of results, especially 
for cases in which the spectrum of disease, population 
characteristics, or the technical characteristics of imaging 
could vary according to site.10,12,16,18,19

The dataset should consist of images collected 
consecutively (or randomly) 
Collecting data selectively in a case-control manner to 
ensure a certain ratio between patients who are disease 
positive and those who are disease negative should be 
avoided for the test set.10–12,19 The artificial ratio between 
two extreme populations of individuals who are disease 
positive and disease negative introduces spectrum bias 
and an atypical ungeneralisable disease cohort, that 
could inflate diagnostic accuracy measures such as 
sensitivity and specificity. A diagnostic cohort design, in 
which patients are recruited consecutively or randomly, 
is recommended for the test set. This method is because 
the clinical setting and patient eligibility criteria are 
prospectively defined on the basis of the target population 
(eg, those who attend screening) and not around their 
screening or diagnostic outcome. Consequently, the test 
set is more likely to represent the target population and 
spectrum of disease in clinical practice.

However, consecutive data collection might not allow 
rare pathologies to be captured unless very large samples 
are used, which might not be feasible. Therefore, 
enrichment of positive cases might be necessary. To do 
this enrichment with minimal bias, hybrid studies could 
be useful. Hybrid studies are better than case-control 
studies as they allow all consecutively enrolled individuals 
with the disease, and a randomly selected sample of 
consecutively enrolled individuals without the disease, to 
be included (similar to a nested case-control study). This 
method does mean, however, that the range of individuals 
without disease to inform specificity is not as wide as in a 
pure consecutive sample.20

The test set should account for technical variations in 
image acquisition, including image quality 
Technical image acquisition parameters and quality differ 
across centres and patients. When testing AI performance, 
including images that represent these variations so that 
their effect on accuracy can be assessed is important. For 
example, breast screening test sets should include films of 
mixed compression, exposure factors, filters, positioning, 
technical repeats, and number or types of views.

See Online for appendix
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Evaluation results should include the proportion of 
individuals for whom AI did not analyse images because 
of technical reasons such as poor image quality.8 When 
AI is proposed as the first of multiple readers in a 
screening programme, the threshold of technical recalls 
can then be compared with the existing rates of technical 
recalls for that programme. For example, the UK breast 
cancer screening programme standards have a less 
than 0·7% acceptable threshold for technical recalls and 
less than 2·0% for technical repeats whereas the data 
encryption standards have a 2·0–4·0% acceptable level of 
ungradable images.21,22 However, the use of retrospective 
test sets could be problematic in this regard if only the 

final set of images from clinical practice is recorded; it 
might be difficult to know how many times the image 
was re-taken until it could be read by a clinician.

Intervention or index test 
A particular test set should only be used a limited 
number of times on different versions of the same AI 
system and repeated testing should be explicit
Running multiple versions of the same AI system with 
different hyperparameters, then testing them all against 
the same test set, and then retrospectively choosing the 
parameters that achieve the highest diagnostic accuracy 
increases the likelihood that accuracy is inflated 

Identified in the literature Further considerations proposed by the UK National Screening Committee Artificial Intelligence task group

Population The test set should represent the whole spectrum 
of pathological and normal findings encountered 
in the target population as well as the key 
demographics

The dataset should be representative of the real screening population, including the full age and ethnic diversity of the 
UK population; it should be sufficiently large to represent women with varying levels of risk and have uncommon 
events such as rare breast pathologies and varied mammographic features

Population The test set should be independent of the 
development datasets

Specific to screening, generalisability from temporal validation studies could be problematic for test set studies in 
screening settings as often the same individuals’ old data might be part of the development dataset and their new 
data part of the test set

Population The test set should be multicentred No further comment

Population The dataset should consist of images collected 
consecutively (or randomly)

However, consecutive data collection might not allow rare pathologies to be captured unless very large samples are 
used, which might not be feasible; random data collection could be helpful in this case; for example, hybrid studies 
could be used when all consecutively enrolled individuals with disease are included and a randomly selected sample of 
the consecutively enrolled individuals without disease (similar to a nested case-control study); this method is likely to 
ensure that rare pathologies are captured

Population The test set should account for technical 
variations in image acquisition, including image 
quality

For breast cancer screening, the test set should include films of mixed technical quality (eg, compression, exposure 
factors, filters, and positioning; including technical repeats, and number and types of views); when AI is proposed as 
the first reader of multiple readers in a screening programme, the threshold of technical recalls due to an inability to 
process the data for AI scrutiny can then be compared with the existing rates of technical recalls for that programme; 
with respect to image quality, there could be a systemic issue in the use of retrospective test sets if they are only taken 
from the final set of images from clinical practice; knowing how many times the image was taken (ie, a clinician could 
not read the image, so it was re-taken until it could be read) could be difficult; this issue should be taken into account 
when test sets are being considered

Intervention A particular test set should only be used a limited 
number of times on different versions of the same 
AI system and repeated testing should be explicit

No further comment

Comparator The level of expertise in the comparator should be 
similar to the standard of care

In the study, the level of expertise of readers in the comparator group should be compared against the standard of 
care and the comparator reading should take place in a clinical practice; national screening programmes have pre-
specified requirements for the training and performance requirements for human reader grading and reporting

Comparator Not identified The comparator reading should take place in clinical practice

Reference standard Mislabelling should be minimised (ie, 
misclassification)

The choice of an appropriate reference standard to avoid mislabelling will also depend on its intended clinical pathway 
(eg, replacing a human reader, triage, or add on); screening programmes aim to detect disease early and are subject to 
additional sources of bias that can affect the choice of a reference standard such as lead time bias, length bias, 
differential verification bias, and overdiagnosis

Reference standard 
or comparator

Interobserver agreement should be reported No further comment

Outcome The analysis of the test set should report relevant 
outcomes

The analysis should report test accuracy including sensitivity and specificity, and positive and negative predictive 
value at UK screening prevalence; the area under the receiver operating curve is useful for deciding the threshold 
during the training and tuning steps; it is less useful in screening than these outcomes as it fails to consider results at 
diagnostically important thresholds, which is pivotal in screening when the decision is binary (ie, to recall or not)

Outcome The analysis of the test set should report the 
threshold at which accuracy estimates are 
reported

The choice of the threshold should not be arbitrary but should be determined by the way the AI system will be used in 
the pathway (eg, to maximise sensitivity, specificity, or both); for example, if AI in diabetic eye screening is used as a 
pre-screening tool or replacement of level one graders, maximising sensitivity is more important

Outcome The choice of outcome measures should consider 
the presence of class imbalance

No further comment

Outcome Evaluation outcomes should be reported with CIs No further comment

Study design A formal sample size calculation should be shown The test set should be large enough to include uncommon events such as rare breast pathologies and varied 
mammographic features and be powered to identify artificial intelligence capability in these individuals

Table: List of principles identified in the literature and those proposed by the UK National Screening Committee Artificial Intelligence task group
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compared with daily practice. This testing of different 
versions is similar to the tuning step and to running 
multiple statistical tests on the same dataset and 
selectively reporting those that achieve statistical 
significance (ie, p-hacking bias). In effect the dataset is 
being used for hypothesis generation rather than 
hypothesis testing. Only a limited number of versions of 
one AI system should ever be tested against the same 
test set, and the criteria for selecting which models will 
be tested should be explicit a priori.10

Comparator 
Level of expertise 
The comparator in a test-set study should be the standard 
of care and will often involve test interpretation by a 
qualified individual. Authors should report the level of 
expertise for each reader (eg, subspecialty training, years of 
clinical experience, and volume of individuals positive for 
disease reported each year).10,18 The level of expertise 
required should be aligned to the standard of care to avoid 
straw man bias, in which the performance of an AI 
algorithm is compared against human reviewers who do 
not have representative expertise.10 Often national 
screening programmes have pre-specified requirements 
for the training and performance of human interpretation.23

The comparator reading should take place in clinical 
practice 
Human reading should take place in clinical practice and 
not in a laboratory setting, as the latter can introduce bias 
due to the laboratory effect.

Reference standard—outcome 
Minimise mislabelling (ie, misclassification) 
Methods of labelling (ie, classifying medical images) 
include using historical radiology reports, expert 
consensus, reference standard imaging or laboratory 
examinations, clinical outcomes, and surgical or 
pathological confirmation. Although some methods of 
labelling are better than others (ie, the gold standard 
methods), they are not always feasible or achievable. For 
example, gold standard labelling of breast cancer in 
mammography includes biopsy in breast screening but, as 
an invasive procedure, it is not appropriate for individuals 
who are screen negative. Unavailability of the gold 
standard can lead to mislabelling in the test set, which can 
be a serious issue.10 Misclassification might also arise from 
human readers. Humans are fallible, and therefore 
defining the gold standard or ground truth by their 
subjective judgement is problematic.16 AI that in reality 
outperforms a human reader will appear inferior because 
it will disagree with an imperfect reference standard.9 This 
situation is unavoidable in some diseases, such as diabetic 
retinopathy, as the reference standard is always human 
(eg, a grader or ophthalmologist).14 In such cases, readers 
should be adequately qualified and, when possible, an 
expert consensus panel will be the preferred choice.8

The choice of an appropriate reference standard to avoid 
mislabelling depends on the use case of AI in the clinical 
pathway, and screening pathways, in particular, are subject 
to sources of bias such as verification bias and over
diagnosis, that can affect the choice of a reference standard. 
For example, in the case of breast cancer screening, further 
testing, such as biopsy, or long-term follow-up of interval 
cancers can be used as the reference standard. If the role of 
AI in screening is to find cancer missed by the human 
reader (ie, as an add on), then using the interval cancer rate 
as the reference standard would achieve more generalisable 
and valid results than a human reader. However, when AI 
is aiming to replace a human reader, the validity of a test set 
depends on whether individuals who are positive are 
limited to those who are detected by an imperfect human 
reader, or whether they also include individuals who were 
diagnosed with cancer but were reported as negative by the 
human reader. In this setting, the test set will need to use 
biopsy for individuals who are screen positive and detection 
of interval cancers from long-term follow-up for individuals 
who are screen negative (ie, differential verification). 
Including the long-term follow-up will then minimise 
verification bias, although it will not completely remove it.20

Reference standard or comparator 
Interobserver agreement should be reported 
Interobserver agreement among readers should always 
be reported as it is an important feature of the reliability 
of observer opinion, especially when used as the 
reference standard.4,10,16 The use of maps that visualise 
areas of uncertainty has been proposed to help reflect 
variability of expert opinion regarding the same images.16 

Applying uncertainty maps could have implications on 
how the dataset is collected, requiring in some cases 
prospective data collection. Cases with low interobserver 
agreement should not be removed as spectrum bias 
could be introduced.

Outcome measures 
The analysis of the test set should show relevant 
outcome measures 
Using the outcome measure of number of correct 
predictions versus total number of predictions can be 
misleading as it depends on disease prevalence.10 For 
example, a binary classifier that diagnosed a rare 
condition present in only 0·1% of individuals would 
achieve 99·9% accuracy simply by calling all cases 
negative. Instead, outcome measures such as positive 
and negative predictive values at appropriate prevalence 
rates, sensitivity, and specificity are recommended. 
Studies should also show accuracy for clinically 
important pathology subtypes and by relevant participant 
characteristics, for example, age and ethnicity.

The area under the receiver operating characteristic curve 
is a frequently reported performance metric that combines 
sensitivity and specificity in a single metric and is often 
requested by regulatory bodies such as the US Food and 
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Drug Administration. The use of this performance metric 
should reflect the context of the development stage. The 
area under the receiver operating characteristic curve is 
useful to determine the positivity threshold during training 
and tuning steps but might not consider results at 
diagnostically important thresholds, which is pivotal in 
screening when the decision is binary (ie, to recall or not) 
and when the consequences of false-positive versus false-
negative decisions are not equivalent. For example, if AI in 
diabetic eye screening is used as a pre-screening tool or 
replacement of level one graders, maximising sensitivity is 
more important than maximising specificity. The area 
under the curve is therefore of less value than providing 
sensitivity, specificity, and positive and negative predictive 
values, with supporting contingency tables.

The test-set analysis must show the thresholds at which 
accuracy estimates are reported 
As a minimum, contingency tables (ie, including true 
positives, true negatives, false positives, and false 
negatives), should be shown at justified pre-specified 
thresholds.3,4,18,24 The choice of the threshold should not 
be arbitrary but should depend on the use case of AI (for 
example, if AI is used in the data encryption standard as 
a pre-screening tool or as level one graders, a threshold 
that maximises sensitivity is required).

The choice of outcome measures should take into 
consideration the presence of class imbalance 
Class imbalance arises when disease categories or classes 
are not represented equally in the dataset, which is 
common in screening programmes. Again sensitivity, 
specificity, and negative and positive predictive values are 
the recommended outcomes in this context, whereas the 
area under the curve will overestimate AI performance.

Precision, recall, F1 measures (ie, an overall measure 
of a model’s accuracy that combines precision and recall), 
and area under the precision-recall curve have also been 
mentioned in the literature for use in the presence of 
class imbalance.16,25 However, the F1 score assigns an 
equal cost to false-negative and false-positive results, 
which is not often true for screening, as mentioned 
previously.10 The area under the precision-recall curve 
shows the trade-off between precision and recall across 
different decision thresholds and is suggested as a better 
metric than the area under the curve.24

Evaluation outcomes should be shown with CIs 
A confidence interval should be shown for the outcome 
measures, for example 95%, to adequately capture uncer
tainty around the results’ generalisability to the 
population.10,13,16

Study design—statistics 
A formal sample size calculation should be shown 
The sample size should be shown and justified.3,12,18,19,25 As 
a minimum, the test-set sample size will be determined 

according to the study hypothesis (eg, equivalence, non-
inferiority, or superiority), the intended use (eg, binary 
classification vs diagnosis of multiple outcomes), and the 
minimal difference considered clinically acceptable. For 
example, in breast cancer screening, the test set should be 
large enough to include uncommon events such as rare 
breast pathologies and varied mammographic features 
and be powered to identify AI capability in these cases.

Discussion 
Well designed test sets are key to provide unbiased 
evaluations of an AI system’s diagnostic accuracy after 
training and tuning. This guidance is the first of its kind 
to identify a set of principles for the development and use 
of test sets that are fit for purpose when assessing the 
diagnostic accuracy of AI image classification in screening. 
Although the proposed principles from the literature 
aimed at addressing the main sources of bias for AI image 
classification (such as spectrum bias, overfitting, straw 
man bias, data snooping bias, and p-hacking bias), they 
did not account for the intricacies of screening. As the 
purpose of screening is early and presymptomatic 
detection, additional biases such as verification bias and 
overdiagnosis require consideration in developing test 
sets. By proposing these additional considerations, we 
have not only reviewed, but also furthered, the discussion 
in this area. The identified principles should improve the 
validity and generalisability of estimates of AI performance 
in imaging-based screening programmes.

Applying the proposed principles might be challenging 
in some cases because of feasibility concerns. For example, 
although test sets should be representative of the target 
population,15,26 as emphasised by the concept of Health 
Data Poverty (the importance of having representative data 
when developing data-driven technologies),27 existing 
studies often do not adequately describe such parameters.8,15 
Hard to reach populations often have limited engagement 
with research or health-care services and might be under-
represented in datasets. Additionally, access to the required 
data, such as ethnicity and socioeconomic status, could be 
considered sensitive information and hindered by 
information governance restrictions. This difficulty could 
leave some groups of people unable to benefit, or even 
harmed, from AI further widening the gap in health 
inequalities. A potential solution when patients’ 
confidential data is not accessible for research, is for data 
providers to provide summary statistics. When the 
research team does have access to confidential information, 
that cannot be made publicly available, researchers can 
report summary statistics at the population level. For 
example, the screening attendance rate by deprivation level 
for a consecutively included population can be reported as 
a surrogate for socioeconomic status.

Several included papers discussed the issue of sample 
size calculation and the need to establish an appropriate 
hypothesis and choose a clinically significant effect 
size.3,9,12,19,25 In previous systematic reviews of AI in medical 
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imaging, only two of 171 papers provided a sample size 
estimation.3,19 The clinically significant effect size will vary 
depending on the use case or outcome and reference 
standard. For example, although not AI-related, the 
PROSPECTS trial (NCT03733106), that investigates the 
role of tomosynthesis in the UK Breast Cancer Screening 
Programme, estimated that a sample size of 100 000 women 
attending screening will be required to show a difference 
of 1 of 1000 women with interval cancers.

Publicly available datasets for the development of AI 
systems exist; however, the suitability of these datasets for 
the evaluation of AI is unknown. A review of AI for diabetic 
retinopathy screening showed that Messidor-2 and Kaggle-
DR were used as test sets in eight (ie, four each) of the 
11 listed studies.8 Messidor-2 includes images of relatively 
high quality, and only 4% are deemed of insufficient image 
quality, which might not be a good representation of data 
from screening programmes.28 For breast cancer screening, 
the UK-based Optimam and the Swedish Cohort of Screen-
Aged Women databases include a large number of 
mammograms representative of their respective national 
screening programmes.29,30 In both databases, screening 
decisions and clinical outcome data were also collected by 
linkage. The list of principles reported here can be used to 
appraise such datasets and improve their quality.

Present methodological limitations for the development 
of test sets could in the future be addressed by technical 
advances. For example, methods such as transfer learning, 
a machine learning method in which a model developed 

for a task is reused as the starting point for a model on a 
second task, could help optimise an AI system for a new 
target population.31 The use of occlusion testing could help 
improve our ability to explain misclassifications and 
weighted-error scoring could help assess the effect of 
those misclassifications.32 Finally, the use of deep learning 
algorithms for automated labelling across new image 
modalities could help replace the use of human expert 
consensus for defining a gold standard with objective 
information obtained from a different imaging modality.33

Strengths of this paper include that it is the first paper 
summarising principles of developing and using test sets 
that are generalisable across medical imaging and that it 
provides further considerations that reflect the specifics 
of screening programmes; we used a systematic search 
and experts in the field; and the guidance is presented 
using the Population, Intervention, and Comparator or 
Reference standard, Outcomes, and Study design 
framework facilitating its use by health technology 
assessment bodies. Some limitations should be noted. 
The search was limited to 2012–20, potentially missing 
relevant publications. However, this time limitation is 
aligned with other systematic reviews in this field.3 
Publications from 2021 to 2022, while the paper was 
undergoing peer review, were not included. We also 
complemented our search with snowballing without date 
limits thus minimising the risk of missing publications. 
Only 20% of the search results and data extractions were 
double checked. Although this could have potentially 
increased the possibility of error, the nature of the review 
focusing on qualitative synthesis rather than quantitative 
makes the effect of such error less likely.

Conclusion 
The list of principles set out in this paper should help 
developers and researchers curate high-quality test sets, 
suitable for pre-deployment evaluation. Health service 
gatekeepers such as regulators, health technology assess
ment bodies, and screening service providers can also 
apply the principles set out here to assess the quality of 
test sets and the quality of evaluation conducted in such 
studies, providing them with greater confidence. As this 
field will evolve and we will learn from the experience of 
evaluating different AI algorithms, our understanding of 
the principles will also evolve, and these recommendations 
can be further refined.
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