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Abstract

Alzheimer’s Disease (AD) is highly heterogenous, both clinically and 
biologically. This variability is exacerbated by the ways within which, the 
clinical presentation is assessed with cognitive measures. This inhibits 
clinical trial success and earlier diagnosis of individuals. Marrying the clinical 
presentation to the pathology of the disease has so far proved troublesome. 
This thesis will look at how cognitive measures can best capture the clinical 
presentation of AD and how these measures can link to the underlying 
pathology using machine learning methods.  

This thesis studied this problem across four analyses and two cohorts. Each 
study looked at a different aspect of cognitive testing within AD. This was 
done with the overarching aim to interrogate the cognitive variability across 
the spectrum of AD.

Study 1 showed a novel discrepancy score is different to memory measures 
at screening for AD. It also showed it tracks with AD severity, in the same 
way memory recall does. Studies 2 & 3 uncovered broad psychometric 
variance within amnestic measurement of impairment due to AD. This was 
done in two different populations across two different constructs of amnestic 
measurement, story recall and verbal list learning. These tests are frequently 
used interchangeably. These two studies show they should not be. Finally, 
Study 4 built models from cognitive measures to predict AD pathology. The 
performance of these models was moderate showing that even with novel 
cognitive measures, further work is needed to link the clinical and amyloid 
related biological presentations of AD.  

Bridging the gap between clinical presentation and pathology of AD using 
clinical and cognitive markers alone is not possible. Even when using a novel 
measure of discrepancy score. The discrepancy measure shows promise but 
was limited due to the inability of the MMSE to measure verbal ability. 
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Conceptually a discrepancy score remains a promising avenue of research 
for screening, but broader language measures, as well as other AD 
biomarkers are needed to further test the construct validity of this measure. 



4

Table of Contents

ABSTRACT 2
LIST OF TABLES & FIGURES 7

FIGURES 7
TABLES 7

ACKNOWLEDGEMENTS 8
AUTHORS DECLARATION 9
DEFINITIONS & GLOSSARY OF TERMS 10

PSYCHOMETRIC PROPERTIES & VALIDITY DEFINITIONS 13

CHAPTER I –THESIS OUTLINE & REVIEW OF THE LITERATURE 14
Thesis Overview 14
General Aims & Thesis Outline 14
Literature Review Outline 16

DEFINING ALZHEIMER’S DISEASE 17
The History of AD Diagnosis & Classification (1906-2016) 17
Amyloid, Tau & Neurodegeneration (ATN) Diagnostic Criteria (2016-Present) 19
ATN & Cognition 22

THE AMYLOID HYPOTHESIS & DISEASE BIOMARKERS 27
Autosomal Dominant AD 28
Tau Pathology 29
Tau’s Function 29
Measurement of Tau in vivo 30
Genetic Risk Factors & APOE 31
Neurogranin 31
Neurofilament light chain (NFL) 32
Treatments: Memantine & Acetylcholinesterase Inhibitors 33
Treatments: Current Issues & Future Directions 35

NEUROIMAGING 37
MRI 37
The Default Mode Network (DMN) & fMRI 38
PET 39
FDG PET 39
Amyloid PET 40
Tau PET 42
Summation of Current Imaging Methods 43

COGNITION IN AD 44
Measuring Cognition & AD Disease Staging 44
Amyloid Burden & Cognitive Domains 45
Episodic Memory 46
Semantic Memory 47
Working Memory & Executive Function 48
Imaging & Cognition 49
Tau Pathology & Cognition 50
Factors Influencing Cognition 51
Cognitive Reserve/Education 51
APOE 52
Gender 52
Age 53
Testing instruments 53



5

MMSE 54
Clinical Dementia Rating Scale (CDR) 55
ADAS-Cog 57
The Validity of These Measures 58
Cognitive Composites & Index/Discrepancy Scores 59
Preclinical Alzheimer’s Cognitive Composite (PACC) 59
Alzheimer’s Disease Composite (ADCOMS) 60
Discrepancy Scores within AD 61

ADDRESSING GAPS IN OUR CURRENT UNDERSTANDING 62

CHAPTER II: METHODOLOGICAL CONSIDERATIONS 64
DATASET COMPOSITION 64
COGNITIVE MEASURES 68

Clinical Dementia Rating (CDR) Scale 68
Alzheimer’s Disease Assessment Scale Cognitive Subscale – 14 item version (ADAS-Cog14) 68
Mini Mental State Examination (MMSE) 70
International Shopping List (ISLT) 71
Cogstate Brief Battery (CBB) 71
Weschler Memory Scale – Logical Memory (WMS-LM) 72

COHORT HETEROGENEITY 73
DISCREPANCY SCORE ANALYSIS – CHAPTER III 75
COMPARISONS OF VERBAL MEMORY MEASURES – CHAPTER IV 77
CLASSIFICATION METHODOLOGIES – CHAPTER V 79
CHAPTER SUMMARY 82

CHAPTER III – DISCREPANCY SCORES WITHIN AD 83
CHAPTER OUTLINE 83
INTRODUCTION 83

Discrepancy Scores Within AD – Fluid & Crystallised Composites/Differences 84
Discrepancy Scores Within AD – Validity Of This As A Measure 86
Discrepancy Scores Within AD – Individual Test Comparisons 88
Proxies of Crystallised Ability – Language & Vocabulary Measures 90
Discrepancy Scores Within AD – This Study 90

METHODS 92
Study 1 Details 92
Assessments & Composite Measures Composition 92
Crystallised Composite 92
Fluid Composite 93
Discrepancy Measures 93
Participants 94
Statistical Analysis 94

RESULTS 95
Dataset handling 95
Computing Crystallised & Fluid Composite Scores 96
MMSE Concordance & Regional Disparities 97
Calculating Discrepancy Scores 98
Relationship Between Discrepancy Score & Memory Assessment 98
Assessing This Relationship By CDR Stage 100

DISCUSSION 102

CHAPTER IV – COMPARISONS OF VERBAL MEMORY MEASURES 105
CHAPTER OUTLINE 105
INTRODUCTION 105

Practice effects related to AD 106
APOE allele influence on cognition in AD 107
Trial inclusion/diagnosis of MCI/AD 108



6

Verbal List Learning Measures 108
Logical Memory & Alternate Forms 109
Study Outlines 111

STUDY 2 112
METHODS 112

Study details 112
Assessments 112
Participants 113
Statistical Analysis 113

RESULTS 114
STUDY 2 CONCLUSIONS 118
STUDY 3 120
METHOD 120

Study Details 120
Assessments 120
Participants 121
Statistical Analysis 122

RESULTS 122
STUDY 3 CONCLUSIONS 126
CHAPTER CONCLUSIONS: STUDIES 2 & 3 128

CHAPTER V – BIOMARKER STRATIFICATION MODELLING 130
CHAPTER OUTLINE 130
INTRODUCTION 130

ATN & Cognition 130
Marrying biological classification to the clinical phenotype 131
Machine Learning/Models For Prediction Applications In Clinical Trials & AD 133

METHODS 135
Study Details 135
Participants 136
Assessments 136
Amyloid Classification 137
Machine Learning Approach - Feature Selection & Performance Evaluation 137

RESULTS 138
Demographic & Cognitive Comparisons 138
Multi-variable Classifier Results 139

DISCUSSION 141

CHAPTER VI – CONCLUSIONS 144
CHAPTER OUTLINE 144
RESEARCH IN CONTEXT 144
OVERALL FINDINGS FROM THIS RESEARCH 146
RESTRICTIONS ON THESE ANALYSES 151
FUTURE DIRECTIONS 152
FINAL SUMMARY 154

APPENDICES 155
APPENDIX I – CURRENT CLINICAL TRIAL SUMMARY 156

BACE Inhibitors 156
Immunotherapeutics targeting Aβ 158
Tau Therapeutics: Modulation, Stabilisation & Immunotherapy 162

APPENDIX II – PATHOLOGICAL AMYLOID BIOLOGY, COMPOSITION & DOWNSTREAM 
PROCESSES 164

Amyloid Composition 164



7

Immune response & TREM2 166

APPENDIX III – R CODE FOR ALL STUDIES 169
STUDY 1 169
STUDY 2 175
STUDY 3 177
STUDY 4 180
STUDY 4 ADDITIONAL CONSOLE OUTPUT 186

APPENDIX IV - REFERENCES 192



8

List of Tables & Figures
Figures

Figure 
1.1

History of AD diagnosis

Figure 
1.2

Trajectories of biomarkers across the AD spectrum

Figure 
1.3

Cascade of amyloid related events across the AD spectrum

Figure 
2.1

Flow diagram of screening procedures for cohort 1 (Mission AD)

Figure 
3.1

Box and whisker plot for CBB

Figure 
3.2

Correlation graph of years of education and z-scored 
crystallised composite

Figure 
3.3

Scatter plot of immediate memory recall and discrepancy score

Figure 
3.4

Scatter plot of delayed memory recall and discrepancy score

Figure 
3.5

Scatter plot of immediate memory recall and discrepancy score 
by CDR group

Figure 
3.6

Scatter plot of delayed memory recall and discrepancy score by 
CDR group

Figure 
4.1

Scatter plot of delayed memory recall from the LM and AS

Figure 
4.2

Bland & Altman plot for agreement between LM and AS

Figure 
4.3

Scatter plot of delayed memory recall from the LM and AS – 
Group 1

Figure 
4.4

Scatter plot of delayed memory recall from the LM and AS – 
Group 2

Figure 
4.5

Bland & Altman plot for agreement between LM and AS – Group 
1

Figure 
4.6

Bland & Altman plot for agreement between LM and AS – Group 
2

Figure 
4.7

Scatter plot of immediate memory recall from the ISLT and 
ADAS-Cog 

Figure 
4.8

Scatter plot of delayed memory recall from the ISLT and ADAS-
Cog

Figure 
4.9

Bland & Altman plot for agreement between immediate recall 
from the ISLT & ADAS-Cog

Figure 
4.10

Bland & Altman plot for agreement between delayed recall 
from the ISLT & ADAS-Cog

Figure 
5.1

ROC graph for SVM classification performance for amyloid 
positivity prediction



9

Tables

Table 1.1 ATN biomarker categories
Table 1.2 ATN cognitive & biomarker categories
Table 2.1 Cohort compositions
Table 2.2 ADAS-Cog subscale descriptions
Table 3.1 Correlation matrix for all cognitive measures
Table 3.2 Descriptive values for the CBB
Table 3.3 Tukey Post Hoc p-values For Regional Cognitive Comparisons
Table 3.4 Descriptive statistics by CDR group for memory recall and 

discrepancy score
Table 3.5 p-values for correlation coefficients of relationships by CDR 

group
Table 4.1 Descriptive statistics for study 2
Table 4.2 Descriptive statistics for study 3
Table 5.1 Demographic & cognitive group level statistics
Table 5.2 Model performance characteristics for amyloid positivity 

prediction 

Acknowledgements

For Phyliss

Memory, of all the powers of the mind, is the most delicate and 
frail.

Ben Jonson, 1640

With thanks to, Katie, Caroline, Alan, Anna & Kimbie. A big thank you to my 
supervisory team; Professor Catherine Loveday, Professor Tom Buchanan & 
Dr Samuel Evans. Many thanks to Dr Michelle Gee, Professor Bruce Albala & 
Dr Michael Irizarry for their assistance in sourcing the data from Mission AD. 

As well as to Dr Bob Smith, Dr Jeri Morris and Michael Smith for their 
assistance with data collection for the Alternate Story Recall dataset. 



10

Word Count – 76,732



11

Authors Declaration

I declare that all material contained in this thesis is my own work



12

Definitions & Glossary of Terms
A Amyloid

AAMI Age Associated Memory Impairment
Aß Amyloid Beta protein

ACE-III Addenbrookes Cognitive Examination Version 3
AChEI Acetylcholinesterase Inhibitor

AD Alzheimer’s Disease
ADAD Autosomal Dominant Alzheimer’s Disease 

ADAM10/17 A Disintegrin and metalloproteinase domain-containing protein (10/17)
ADAS-Cog Alzheimer’s Disease Assessment Scale – Cognitive Subscale (# reflect 

# of items)
ADCOMS Alzheimer’s Disease Composite Scale

ADCS Alzheimer’s Disease Co-Operative Study
ADL Activities of Daily Living

ADNI Alzheimer’s Disease Neuroimaging Initiative
AE Adverse Event
AI Artificial Intelligence

AIBL Australian Imaging, Biomarker & Lifestyle Flagship Study of Aging
AICD Amyloid Intracellular domain
ALC Absolute Lymphocyte Count

ANOVA Analysis of Variance
APP Amyloid Precursor Protein

APOE Apolipoprotein E (polymorphic alleles – e2, e3, e4; epsilon 2,3,4) 
ARIA E/H Amyloid Related Imaging Abnormality – Vasogenic Edema/Micro-

Haemorrhage
AS Alternate Story Recall

ATN Amyloid, Tau, Neurodegeneration diagnostic framework
AT(X)N ATN Framework + additional unknown (X) measures to be included 

later
BA Bland & Altman Method Of Measuring Agreement

BACEi BACE inhibitor
BACE1/2 Beta site APP cleaving enzyme (1 or 2)

BAN2401 Compound name of Lecanemab
BBB Blood Brain Barrier
BNT Boston Naming Test

BP Blood Pressure
CAA Cerebral Amyloid Angiopathy
CAD Computer Aided Diagnosis

CAMD Coalition Against Major Diseases
CBB Cogstate Brief Battery

CERAD Consortium to Establish a Registry for Alzheimer’s Disease
CIBIC The Clinician's Interview-Based Impression of Change
CD33 sialic acid binding Ig-like lectin 3

CDR/-SB/-GS Clinical Dementia Rating Scale/ Sum Of Boxes / Global Score
CN Cognitively Normal/Cognitively Unimpaired

CNS Central Nervous System
CPAD Critical Path for Alzheimer’s Disease
CRBM Conditional Restricted Boltzmann Machine
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CR1 Complement Receptor 1
CSF Cerebral Spinal Fluid
CT Computerised Tomography

CTF(89/99) c-terminus fragment
CU Cognitively Unimpaired/Cognitively Normal
CV Cardiovascular

CVLT California Verbal Learning Test
C99 Cell Membrane fragment 99
DET Detection Test from the Cogstate Brief Battery

DIAD Dominantly Inherited Alzheimer’s Disease
DIAN/DIAN-

TU
Dominantly Inherited Alzheimer’s Disease Network (Trials Unit)

DKEFS Delis-Kaplan Executive Function System
DLPFC Dorso-lateral Pre-Frontal Cortex

DMN Default Mode Network
DRS Dementia Rating Scale

DS Discrepancy Score
DSST Digit Symbol Substitution Test

EC Ethics Committee
ECG Electro-cardiogram

ELISA Enzyme-linked immunosorbent assay
EMA European Medicines Agency

EMEA Europe, The Middle East & Africa
EMIF-AD European Medical Information Framework – Alzheimer’s Disease

EPAD European Prevention of Alzheimer’s Disease
EQ-5D-5L EuroQoL (Quality of Life) Scale – 5 dimension – 5 levels

FAQ Functional Assessment Questionnaire
FCD Functional Cognitive Disorder

FCSRT Free & Cued Selective Reminding Task
FDA Food & Drug Administration
FDG Fluorodeoxyglucose (PET)

FLAIR Fluid Attenuation Inversion Recovery - MRI sequence
fMRI Functional Magnetic Resonance Imaging

g General Intelligence Factor
GDS Geriatric Depression Scale

GWAS Genome Wide Association Study
HVLT Hopkins Verbal Learning Test

IDE Identification Test from the Cogstate Brief Battery
INR International Normalised Ratio of Prothrombin protein

IQ Intelligence Quotient
IRB Institutional Review Board

ISLT International Shopping List Task
ISLTDR Delayed recall score from the ISLT
ISLTTR Immediate recall score from the ISLT

IST Isaacs Set Test
LDA Linear Discriminant Analysis 
LLN Lower Limit of Normal

LLOA Lower Limit of Agreement
Log10 Logarithmic Scale Base 10

LTP Long term potentiation
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N Neurodegeneration
NART National Adult Reading Test

NFL Neurofilament Light chain protein
NFT Neurofibrillary Tangles

ng Neurogranin
NHST Null Hypothesis Significance Testing

NIA-AA National Institute of Aging – Alzheimer’s Association
NMDA N-methyl-D-aspartic acid
NPI-10 Neuropsychiatric Inventory – 10 item questionnaire 

NPV Negative Predictive Value
mAbs Monoclonal Antibodies

MANOVA Multivariate Analysis of Variance
MAP1/2 Microtubule Associated Proteins 1a,1b, 1, 2

MCI Mild Cognitive Impairment
MD Mean Difference

MoCA Montreal Cognitive Assessment
MRI Magnetic Resonance Imaging

MAO-A/B Monoamine Oxidase A/B
ML Machine Learning

MMSE Mini Mental State Examination
MSD Meso Scale Discovery Immunoassay
OCL One Card Learning Test from the Cogstate Brief Battery
OLE Open Label Extension
ONB One Back Test from the Cogstate Brief Battery

PACC Preclinical Alzheimer’s Disease Cognitive Composite
PCA Principal Components Analysis
PD Pharmacodynamic

PGx Pharmacogenomic
PK Pharmacokinetic

PLS Partial Least Squares
PET Positron Emission Topography 
PiB Pittsburgh Compound B PET ligand

PHF Paired Helical Filament
PPV Positive Predictive Value

PSEN1/2 Presenilin protein 1 or 2
p-tau Phosphorylated tau protein

QoL-AD Quality of Life – Alzheimer’s Disease Scale
RAVLT Rey Auditory Verbal Learning Test
RBANS Repeatable Battery for the Assessment of Neuropsychological Status

RNA Ribonucleic Acid
ROC Receiver Operating Characteristic
sAPP Soluble amyloid precursor protein - extracellular fragment (alpha or 

beta)
SD Standard Deviation

SEZ6 Seizure Protein 6
SIB Severe Impairment Battery

SNAP Suspected non-AD Pathology
SPECT Single Photon Emission Computerised Tomography

sTREM2 Soluble Triggering Receptor Expressed On Myeloid Cells 2 
SUVr Standard Uptake Value Ratio – MRI measurement
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SVM Support Vector Machines
T Tau

t-tau Total tau
TB Tuberculosis

TDP-43 Transactive response DNA-binding protein 43
TMT Trial Making Test

TREM2 Triggering Receptor Expressed On Myeloid Cells 2 
TSH Thyroid Stimulating Hormone
ULN Upper Limit of Normal

ULOA Upper Limit of Agreement
US/USA United States of America

VIP Variable Importance Projection
VLL Verbal List Learning

vMRI Volumetric Magnetic Resonance Imaging
VRM Verbal Recognition Memory
VRT Visual Retention Test

W-TAR Weschler Test of Adult Reading
WAIS-R Weschler Adult Intelligence Scale - Revised
WISC-R Weschler Intelligence Scale for Children - Revised

WMS/-LM Weschler Memory Scale (Logical Memory Subscale)
xMAP Proprietary Luminex multiplex assay 

ZBI Zarit Burden Interview
3R/4R tau 3/4 repeated chain of proteins within a tau protein

11C Carbon-11 ligand base
18F Fluorine-18 ligand base

Psychometric Properties & Validity Definitions

Content How well do measures accurately index domains they are 
designed to measure 

Criterion How well do measures index the disease process itself within AD 
Cross-

Cultural
Do measures perform the same way across different 
demographics

Construct How well scores from a measure, reflect the domain being 
measured

Concurrent How well do measures with the same construct provide the 
same outcome

Convergent How alike are measures that measure the same domain

Ecological How a measure matches the real-world context it is being 
evaluated for

Interpretabi
lity

How do measures relate to everyday performance/a clinical 
presentation
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Chapter I –Thesis Outline & Review of the 
Literature

Thesis Overview

Alzheimer’s Disease (AD) is the most widely researched neurodegenerative 
disorder, yet the number of individuals living with the disease is expected to 
double nearly every twenty years (Prince et al., 2015). The diagnosis of the 
disease has greatly changed over the last decade due to a large number of 
small breakthroughs, new biomarkers, imaging methods and better 
agreement on disease staging criteria. Whilst great strides have been made, 
there are many yet to take. Cognitive impairment still remains the first and 
critical symptom of the disease, yet is not the first pathological domain. 
Marrying the clinical presentation to the early pathology of the disease still 
remains difficult despite many efforts. This thesis will look to how cognitive 
measures can best capture the clinical presentation of AD and how cognitive 
measures can be used to index cognitive performance and link this to the 
underlying pathology.

The lack of confluence of the clinical presentation and pathology within AD, 
has meant AD currently has no therapeutics that cure or modify the disease 
course. Since the last therapies were approved in the mid 90s, the diagnostic 
criteria have vastly changed in line with our understanding. Cognitive 
measures have always been used to find decline and measure treatment 
response. However, there are no set or agreed upon measures to find this 
impairment. Many are used and most were developed decades ago to 
measure mild to severe AD, with only 50% of currently used measures 
having published information about their validity (Soobiah et al., 2019). In 
order to link clinical disease to pathology, a better understanding of the 
variability of these measures is critical and a fundamental pillar of this thesis.  

The focus of this thesis revolves around understanding this discrepancy 
within clinical trials for AD. Clinical trials provide a unique opportunity to 
reach more individuals than a conventional research study and provide 
highly controlled settings for cognitive measurement. The first cohort under 
study here is taken from the two largest clinical trials even conducted in AD 
and spans 29 countries. This should allow for wide contextualisation and 
scope of findings from this thesis.

General Aims & Thesis Outline

The general aim of this thesis is to better understand the measurement of 
impairment for diagnosis and classification of AD. This will be achieved 
through creating and assessing a discrepancy score of cognitive functions 
and exploring how these existing and new cognitive measures can help 
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bridge the gap between clinical presentation and the underlying biological 
pathology within AD. To accomplish this, our measurement of memory within 
AD needs to be better understood. Chapter 1 will give an overview of the 
issues facing the field and the key topic areas for this thesis; Diagnosis & 
Classification, The Amyloid Hypothesis & Disease Biomarkers, Neuroimaging 
and finally Cognition Within AD. Chapter 2 will detail the study outlines and 
general concepts regarding the studies to be undertaken. Plus, also going 
into great detail on the cohorts and scales under investigation. This will be 
done in order to answer a number of research questions.

This thesis aims to provide important new insights into the following 
questions;

– Why do cognitive measures vary so much within clinical trials and 
cohort studies? 

– Why have all trials to date failed to meet their cognitive endpoints? 
– How can you accurately diagnose Alzheimer’s Disease with cognitive 

tests?
– Can you use existing (and commonly used) cognitive measures in a 

new way to better understand cognitive performance over the course 
of the disease

This will be achieved by addressing the following research questions and 
hypotheses;

– How does a novel discrepancy measure relates to memory 
measures for AD diagnosis?

– What can this novel discrepancy score tell us about cognitive 
processes in general?

– Does this novel discrepancy score capture different cognitive 
processes to that of amnestic impairment? 

– How does this novel discrepancy score change throughout the 
progression of the disease?

– Can commonly used verbal list learning (memory) measures be 
used interchangeably?  

– How do these measures perform within different populations; 
o Are they consistent enough for use in clinic screening?
o How do they perform within individuals with confirmed AD and 

high levels of pathology?
– Does this measurement of amnestic impairment also apply across 

measures of memory with different construct paradigms?
– Can this new knowledge of cognitive measures in AD be used to 

predict amyloid pathology, the cornerstone of AD pathology? 
– Can this help link the biological classification of AD to the clinical 

presentation?

Chapter 3 will aim to address the first four research questions on 
discrepancy scores. This will be done by first taking the full screening cohort 
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and computing a discrepancy measure from the existing cognitive measures, 
using a crystallised language score from the MMSE and a fluid cognitive 
score from the Cogstate Brief Battery. The analysis will look to understand 
how this discrepancy score relates to amnestic performance. The cohort will 
then be staged based upon level of impairment (as measured by the CDR) to 
understand how this relationship between amnestic performance and 
discrepancy score changes with disease severity.

Moving on to focus on the amnestic memory measures further, Chapter 4 
will analyse the psychometric validity of four commonly used memory 
measures within AD. This will be done across two studies using two separate 
cohorts and two separate pairs of measures but identical analyses. These 
pairs of measures are both purported to measure episodic memory, in that 
the first pair is a word list recall and the second pair is based upon story 
recall.

The fourth and final analysis in Chapter 5 will then use these findings to 
explore whether it is possible to predict amyloid pathology within confirmed 
AD individuals, using existing and cognitive measures and the newly 
established discrepancy scores. This will be done using a machine learning 
framework for classification called support vector machines. The main 
findings from all of these studies will be discussed in Chapter 6 followed by 
a discussion of the implications of these along with any issues that arise and 
future directions for research.

Literature Review Outline

The following literature review covers four fundamental areas of AD 
research: classification of AD, biomarkers, neuroimaging and cognition. As 
detailed in the thesis outline, diagnosis and classification is the ultimate goal 
of performing cognitive tests, so this cornerstone of AD research is discussed 
in detail along with how current approaches, tackle the clinical and biological 
phenotypes of the disease. The literature review then moves to look in more 
depth at the cognitive domains and measures used to identify and assess 
the course of the disease. Finally, the ways pathology is measured using 
neuroimaging and other biomarker modalities are broadly discussed, as this 
is key to helping bridge the gap between clinical presentation and AD 
pathology. To note, further reviews of the current clinical trial landscape as 
well as more details on pathology composition can be found in Appendix 1 
& 2 respectively.

A comprehensive literature search was performed in order to identify the 
publications that investigated the four areas of review. Longitudinal studies 
and cross-sectional analysis were discriminated where appropriate and 
extensive studies across a single area corresponding to the discussion were 
sought in order to give a complete overview of the constituent research area. 
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Firstly, a broad literature search of electronic databases Medline, 
clintrials.gov, University of Westminster Library and Science Direct was 
performed, using dates respective of the individual subject area relevance. 
Search terms were based upon each heading and sub heading within the 
review below.  Eligible articles were those reporting the results, reviews or 
meta-analysis of studies investigating the diagnosis of Alzheimer’s Disease, 
cognitive indices within the course of Alzheimer’s Disease pathogenesis and 
progression and drug trials related to the key disease modifying treatments 
currently under development of Alzheimer’s Disease. Cochrane databases 
were also searched for appropriate reviews of treatments and cerebrospinal 
fluid (CSF) biomarkers within the spectrum of Alzheimer’s Disease. The 
search of clinical trials through the US database was also done to uncover 
current status, inclusion criteria, prior study results and cognitive measures 
employed within the studies.
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Defining Alzheimer’s Disease

The History of AD Diagnosis & Classification (1906-2016)

Alzheimer’s Disease as it became known was first discovered by Alois 
Alzheimer way back in 1906, when he discovered ”an unusual disease of the 
cerebral cortex”. He made this discovery when studying the brain of a 
patient of his, over many years, Auguste Deter. Using staining techniques 
Alzheimer identified pathological anomalies in her brain that were amyloid 
plaques and neurofibrillary tangles (Hippius & Neundorfer, 2003). These two 
pathologies form the fundamental basis of the post-mortem diagnosis of AD. 
Clinically this patient presented with paranoia, progressive sleep and 
memory disturbance, aggression and confusion, which were present 
consistently up until her death, 5 years later. This pathological and clinical 
presentation was first documented as Alzheimer’s Disease in 1910 in the 3rd 
edition of Psychiatrie (Kraepelin, 1910). Alzheimer also published 3 further 
cases whereby they only had a presence of plaques (which were 
subsequently determined to consist of amyloid), without any tangle 
pathology. Upon re-examination these cases were confirmed to be different 
stages of the same process (Maurer, Volk & Gerbaldo, 1997). Thus, 
confirming the progressive nature of AD in initial studied cases.

Up until the mid 80’s this was generally described as senile dementia and 
commonly viewed as a natural process of aging. The reality is clearly 
fundamentally different. In 1984, the first international consensus clinical 
diagnostic criteria were developed (McKhann et al., 1984). This defined the 
clinical presentation of dementia with memory changes and another 
cognitive impairment. This was primarily done by ruling all other diagnoses 
and diseases out before AD. What is important to highlight here is the 
ambiguous and varying use of different domains or measures to used to find 
these changes/impairments. This is something that has been carried through 
to the 2021 criteria (Figure 1.1.).  After the 1984 criteria, there began a 7-
year period between 2007 and 2014 whereby the diagnostic criteria began to 
be updated for research and clinical settings (Dubios et al., 2007; 2010; 
2014; Mckhann et al., 2011; Albert et al., 2011; Sperling et al., 2011). This 
was done four times as the field rapidly developed in vivo techniques to 
measure amyloid and tau pathology. This was down to the development in 
our understanding of the pathological processes that drive the 
neurodegeneration of the cortex. With the rapid advent of pathologic 
biomarkers in-vivo for AD, Mild Cognitive Impairment (MCI) due to AD and 
progressed AD has evolved (see Figure 1.1. for measurements of these). On 
top of this preclinical AD was also defined more clearly and considered to 
occur when these aforementioned markers are present in cognitively normal 
individuals (McKhann et al., 2011). The concept of preclinical AD primarily 
arose in the late 20th century, with it initially defined as individuals who 
were cognitively unimpaired but who also displayed brain lesions of AD 
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nature upon post-mortem examination (Hubbard et al., 1990). However, the 
frameworks in 2011 and 2014 began the movement towards extending the 
disease from one merely of symptoms to one that pre-dates symptoms by up 
to two decades. However, even with the changes in framework the ambiguity 
of clinical measurement of cognitive impairment remained. This is highly 
relevant for symptomatic and disease-modifying trials within AD. As within 
these trials, the treatments that are tested aim to improve cognition and 
function (Vellas et al., 2008; Andrews et al., 2019).
At this point it is also important to mention the definition of atypical variants 
of AD. These rare variants include the behaviour-frontal, posterior-cortical 
and logopenic-language variants of AD. These atypical variants are currently 
estimated to represent around 6% of AD cases in the elderly (Graff-Radford 
et al., 2021; Koedam et al., 2010). Given their distinctive clinical presentation 
they are easily diagnosed when seen by clinicians, with the exception of the 
posterior-cortical variant which needs further imaging to be diagnosed 
(Dubios et al., 2014). 

On top of these variants, pathological comorbidities are broadly common 
within the general elderly population (Ferreira, Nordberg and Westman, 
2020). Recent observational and memory clinic cohort studies have also 
shown, that broad comorbidities are present in normal elderly, MCI and AD 
individuals (de Jager et al., 2018). Whilst within a singular disease there will 
be prominent related pathology it is likely that other pathological processes 
are at play. Disentangling the heterogeneity of a singular neurodegenerative 
disease from a pathological standpoint is particularly critical when assessing 
drugs aimed at targeting a singular pathology. However, given the absence 
of in-vivo imaging methods for other pathological abnormalities such as 
alpha-synuclein and TDP-43 amongst others, bridging pathology and clinical 
presentation requires methodological improvements from both aspects, 
concurrently. Recently there has also been further definition of LATE 
pathology, Limbic-predominant Age-related TDP-43 Encephalopathy (Nelson 
et al., 2019). This is currently thought to be only really present in those 80 
and above, with the pathology seen post mortem defined as separate from 
AD due to the predominance of TDP-43 pathology. However, measurement of 
TDP-43 in vivo remains challenging and given that this disease presents 
clinically in a very similar way to AD understanding the disease process in 
this older age group becomes, shows the heterogeneity of pathology only 
gets broader the older the individual becomes. The crux of the current 
landscape is the distinction between the clinical phenotype of AD and the 
biological definition of AD. Both carry great importance and are equally as 
important to see further understanding within.
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Figure 1.1. Evolution of the diagnostic criteria for AD from biological and 
clinical perspectives. Adapted from Hampel et al., 2022.
Amyloid, Tau & Neurodegeneration (ATN) Diagnostic Criteria (2016-
Present)

The conceptual shift and a push for earlier detection has resulted in the 
development of clear diagnostic frameworks founded in the biological 
understanding of the pathological process within AD, termed the ATN 
framework (Dubois et al., 2016; Jack et al., 2013; 2014; 2016; 2018; 2021). 
This framework explores in much greater detail the earlier stage of the 
disease and splits the continuum of AD into six discrete yet continuous 
stages. This merging of modalities and classification update is however, not 
intended for clinical care yet and sits within the interventional and 
observational research spaces. The differences between the two entities 
have led to two distinct ways of describing AD: prototypical clinical 
syndromes, without biomarker/imaging verification and verified AD 
neuropathologic changes. Whilst the importance and relevance of clinical 
symptomology must not be underestimated, a syndrome is by definition a 
clinical manifestation of one or more diseases and not an aetiology. Shifting 
towards a biological empirically quantifiable definition of AD allows for a 
greater understanding, primarily of the mechanisms driving the clinical 
manifestations across the disease course. And importantly with new 
interventions having specific pathological targets, having a biological 
definition allows for more rigorous population categorisation and targeting 
earlier in the disease course. Which is in line with the current avenues drug 
development is accelerating towards (Cummings et al., 2021). 

Development of AD biomarkers and cogent disease progression indicators 
have been copious and consequently well validated (Hansson, 2021). With 
new measures coming through consistently, any criteria must be flexible 
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enough to include these new measures for future classifications. This is 
particularly prevalent within AD classification as various imaging and 
cerebrospinal fluid (CSF) biomarkers are implemented within AD research 
and it is upon such biomarkers this updated disease staging is founded. This 
ATN classification refers to Amyloid [aggregated amyloid beta (Aβ) or 
associated pathological state], Tau [aggregated tau – neurofibrillary tangles 
or associated pathological state] and Neurodegeneration [marker/s of 
neurodegeneration or neuronal injury measured in vitro] (Jack et al., 2016; 
2017). These three general groups mirror the nature of the pathological 
process within AD, biomarkers of Aβ [A] are currently cortical PET amyloid 
ligand binding and low levels of CSF Aβ (Fagan et al., 2007; Mattsson et al., 
2009; Visser et al., 2009). Tau [T] includes markers of phosphorylated tau (p-
tau) elevated in CSF and cortical PET tau ligand binding (Mattsson et al., 
2009; Buerger et al., 2006; Brier et al., 2016; Chhatwal et al., 2016). The 
final part of this diagnostic criteria is Neurodegeneration [N], which is 
indexed through CSF total tau (t-tau), Fluorodeoxyglucose (FDG) PET 
hypometabolism and atrophy present on an MRI scan (Blennow, 2010; Seab 
et al., 1988; Fox et al., 2001; Minoshima et al., 1997; Besson et al., 1990; 
Dickerson et al., 2009; Knopman et al., 2013; Landau et al., 2011). The N 
component also portrays the lack of convergence with neuropathic findings 
for diagnosis of AD and is not specific in the way A and T are within the 
pathogenesis of AD. Nevertheless, as N is more ambiguous and lacking a 
direct correspondent to a diagnosis of AD, it is open to more flexibility. With 
the speed biomarkers such as neurofilament light chain (NFL) and 
neurogranin are becoming highly specific and utilised more widely, this 
criterion allows for potential future markers of neurodegeneration to be 
integrated into any model and is a key to the adoption of it into wider clinical 
and research practices.

Consequently, moving into new territory brings a new set of challenges. For 
many of these aforementioned modalities, moving away from a clinical 
classification to a biomarker one, involves having a single cut point in order 
to define a positive or negative grouping. Having such stringent criteria does 
help clearly define AD classification but also hinders a more nuanced 
approach that has a degree of flexibility in clinic. Clifford Jack and colleagues 
(2018) suggested looking to the oncology field where they have a grading 
system of 0-2 for each of their biomarkers allowing for two, rather than a 
singular, cut points giving a more nuanced view of the disease spectrum in 
relation to these biomarkers. This has however yet to be widely adopted into 
routine practice within AD, which currently still leaves the field with inherent 
sensitivity issues and dichotomised patients in both clinical settings and 
global trials.  

Another key element to this is the consistency and validity of the ligands, 
assays and other measures being employed to identify these biomarkers. For 
PET ligand binding there are currently three tracers commercially available 
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all with differences in how they bind to Aβ and tau (see the imaging and 
biomarker sections below for full discussion). This inhibits consistency in 
trials and comparisons across cohorts if different compounds are being used 
in each one. The difference is not large but as already mentioned, when 
there is a single cut point to define AD diagnosis, then this can lead to 
heterogeneity of individuals within a single ‘homogenous’ group. Further to 
this, cerebral spinal fluid (CSF) and blood-based assays contain analogous 
inherent flaws. CSF samples for AD, are predominantly analysed by single-
analyte enzyme-linked immunosorbent assay (ELISA), a multiplexing xMAP 
assay, or an immunoassay with electrochemoluminescence detection. These 
and other assays that measure biomarker levels, have been found to differ 
among studies, which could be the result of a number of preanalytical, 
analytical, or assay-related considerations. On top of this, previous collection 
methods, particularly for Aβ have been imprecise, as this protein is very 
sticky and collection and storage procedures need to be maintained and 
standardised for cross comparisons of samples (Bjerke et al., 2010; 
Andreasson et al.,2012; Sancesario et al., 2010). The discrepancies seen 
within laboratories and within assays has led to several efforts to standardise 
these both across assays and across regions. The largest of these has been 
undertaken by the Alzheimer’s Association (Mattsson, 2011). Nine rounds of 
testing were undertaken across 84 laboratories. Three samples were sent to 
each participating laboratory in each round, these samples came from a 
human CSF pool prepared by a central laboratory who conducted a number 
of standard procedures during the processes of preparation to ensure the 
homogeneity of the samples being sent out (Mattsson et al., 2013). The key 
finding was that across all assays of the key AD proteins (Aβ42, P-Tau & T-tau) 
the coefficient variance for inter-laboratory measurements was between 20-
30% and when looking at the inter-run variance of the actual assays the 
ELISA showed consistently sub 4% across all rounds of testing, whereas 
xMAP and MSD 6E10 assays had between 2.5-7% and 2-6% variances 
respectively. 

This does not suggest that these measures are not suitable for diagnostic 
use in AD, it does however show that employing single point cut scores on 
assays is not a current workable concept when conducting reproducible and 
global studies, unless a single central laboratory is utilised (as in clinical 
trials). The intra-run variations shown within the assays is still something 
that needs to be improved if single point cut scores are to be employed 
outside clinical trials, with the ELISA being shown to be the currently most 
consistent and reliable assay for all three AD biomarkers. This new ATN 
diagnostic criteria has subsequently led to a model of comprising of a 
number of different combinations of pathology, some related to AD and 
some which are not (Table 1.1). 

 Table 1.1. Biomarker profiles & categories
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For diagnosis of AD it is a widely held view that amyloid biomarkers 
represent the earliest evidence of AD neuropathology in vivo and as such in 
combination with paired helical filament tau (p-tau) are seen as categorical 
determinants for the definition of AD pathology (Montine, et al., 2012; 
Hyman et al., 2012). Furthermore, abnormal amyloid being the earliest 
pathologic change can be argued to be the defining signature of AD (Jack et 
al., 2018). As seen in Table 1.1., a positive amyloid biomarker is critical for 
the categorisation of AD. Without it, any positive biomarker is indicative of 
suspected non-AD pathologic change and without a positive amyloid AND tau 
biomarker a positive N biomarker is suggestive of concomitant non-AD 
pathology. As suggested earlier this methodology is envisioned to define AD 
more so as a biological construct. One that is permissive to a more 
etiologically based, biologic characterisation, to explain the pathologic 
cortical events that lead to cognitive impairment in AD, as well as delivering 
a model of wider multifactorial aetiology of other possible dementias.  

Whilst this new ATN criteria is fundamental to our current biological 
definition of AD, the marriage to the clinical phenotype requires further work. 
Frisoni and colleagues (2022) recently published a position paper on how to 
best combine the two. They suggest that AD be treated as three separate 
diseases in a probabilistic model of AD. Sporadic AD is split by APOE 
genotype (carrier of the ε4 allele and those who do not) and the third 
subtype is autosomal dominant AD. Non APOE- ε4 sporadic AD is driven by 
varied genetic and environmental factors. Whilst this model shows promise it 
is yet to be fully accepted within research contexts. The marriage of the 
clinical phenotype with that of the biological categorisation model still needs 
work. But it is critical to consider when looking at applicability of results 
within these frameworks. 

ATN & Cognition
Marrying the biological definition and clinical presentation also means having 
a fine-tuned fundamental understanding of how to measure cognition within 
the typical clinical presentation of AD. Currently, the relationship with 
cognitive impairments and ATN biology is equally important. Cognition is 

AT(N) Profiles Biomarker Category
 A-T-(N)- Normal AD Biomarkers
A+T-(N)- AD pathologic change
A+T+(N)- AD
A+T+(N)+ AD
A+T-(N)+ AD & concomitant non AD pathology
A-T+(N)- Non AD pathologic change
A-T-(N)+ Non AD pathologic change
A-T+(N)+ Non AD pathologic change
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fairly well characterised at the latter stages of AD and has been 
fundamentally defined across mild, moderate and severe AD, however it is 
less so at the very earliest stages of the disease and as such is where the 
main focus of this thesis will be. Cognition is one thing that is highly variable 
both across the population and has a number of confounding variables that 
interact to influence an individuals’ ability and performance. Thus, in order to 
accurately incorporate cognition into any model, a fundamental 
understanding of the reasons behind the clinical and cognitive variability is 
crucial.

Cognitively impaired, in the context of AD, is at the very first stage of the 
clinical presentation of the disease (subsequent to preclinical AD) an 
individual has an impairment on a cognitive measure that is equivalent to or 
greater than 1-1.5 standard deviations below the appropriate normed 
population scores. The definition throughout all criteria is not specific to the 
cognitive domains or measures used. However, for the clinical presentation 
of typical AD individuals normally present with memory issues, if there is no 
memory impairment the definition within this spectrum is questionable. As 
seen with the biomarker categorisation, individuals who fall into some of 
these categories of cognitive impairment, may not have AD or even 
concomitant pathologies. Those who present with cognitive impairment to 
the aforementioned degree but without an amnestic aspect are very much 
questionable in terms of a diagnosis of AD. 

Traditionally cognition in AD has been categorised into three distinct 
categories, cognitively unimpaired or preclinical AD, mild cognitive 
impairment (MCI; or prodromal AD) and dementia (mild, moderate or severe 
AD). This staging is somewhat at odds with the idea of cognition as a 
continuum with the same drawbacks as the biomarker definitions detailed 
above. Syndromal categorical staging such as this, is applicable to all 
members of a cohort as individuals across all biomarker groups will also have 
a corresponding cognitive profile too. Thus, regardless of the biomarker 
diagnosis, an individual will also slot into one of these three categories of 
cognition making it more difficult to differentiate AD diagnosis on cognition 
alone. Hence within the AD continuum, biomarkers are ubiquitous to the 
cognitive staging and diagnosis. Outside this however, the cognitive profiles 
can be somewhat conflated, as in the majority of cases individuals do not 
have longitudinal cognitive profiles and there are routinely cross-sectional 
profiles of individuals which may not present a univocal depiction of their 
cognitive abilities. The only way to circumvent this is to undertake large 
cohort-based studies at great time and expense which is not routinely 
feasible in primary care settings. Nevertheless, validated and standardised 
cognitive instruments employed within cohorts and subsequent studies 
across AD, do benefit from ample normative data which allows comparison 
based upon wider population-based data.  
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Regardless of biomarkers, when looking at the wider definitions within 
cognitive function and dysfunction, the focus is upon both individual 
performance and comparison to population normative data (Jack et al., 
2018). Individuals who are termed cognitively unimpaired, perform within 
the expected range for that individual based upon all available information, 
such as prior testing performance if present but can also be based upon 
clinical judgement as well as, or in place of, cognitive performance. This 
grouping also allows for individuals performing outside the normal range of 
population-based norms for a range of tests and furthermore allows for 
individuals to have subtle serial cognitive deterioration or subjective 
cognitive impairment on serial cognitive testing. In essence a definition of 
cognitively unimpaired without AD biomarkers can mean a number of things 
depending upon previous testing, individual performance level and the test/s 
being employed to measure the individual’s cognition. However, normative 
data does not always exist for all measures, thus limiting the applicability of 
this staging approach and again, giving further reason for individual 
measures having not to have been suggested within this framework.

When it comes to the next grouping, MCI, it becomes more nuanced. 
Individuals at this stage exhibit impaired cognitive performance below an 
expected range for that individual based upon either prior performance, 
clinical judgement and/or population-based norms. In addition, a decline in 
cognition from a baseline assessment must also be present, and can come 
from the individual or an observer who is able to report on a longitudinal 
change in the individual. The individual may also present primary symptoms 
that are non-amnestic, have some neurobehavioural changes and have very 
mild functional impairment related to the decline in cognitive abilities. These 
stages allows the incorporation of function, cognitive and neurobehavioural 
symptoms, however as seen with all three stages in this model, the 
impairment is very loosely defined without any stringent criteria relating to 
cognitive impairment/s. However, again amnestic impairment covers a broad 
range of memory domains and measures, the lack of specific suggestions 
hampers how this should be interpreted clinically.

The final stage is that of frank dementia, this can be broken down further 
into mild, moderate or severe dementia depending upon the level of 
impairment. Individuals at this stage have a substantial cognitive impairment 
that has progressed and continues to do so, as reported by performance on 
cognitive measures or reported by the individual or the observer. The level of 
impairment is also such that the cognitive impairment may be coupled with a 
prominent neurobehavioural change which has resulted in a significant 
functional impairment that clearly impacts daily life. With the sub-stage of 
dementia defined by this level of functional impairment exhibited by the 
subject. At this stage individuals have typically progressed in the disease and 
display a variety of impairments in cognition, function and some behavioural 
deficits, at this stage, cognition and function become more overlapped as 
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when deficient to a greater degree, the more homogenous these two 
domains become. 

Overall, this model’s approach is to simplify and broaden a scope of 
impairment and how this is indexed for an individual, is somewhat 
oversimplified, which leads to a lack of clarity at each stage in how to 
accurately measure the cognitive processes in question. Both in relation to 
which cognitive domain and which measure/s to use. In order to address this, 
it is argued to further divide the three stages of cognitively unimpaired, MCI 
and dementia, to give a more nuanced view of cognition and the decline in 
each of the domains of cognitive impairment as not all follow the same 
trajectory, both in AD and outside it. To try and bring the biological definition 
and cognitive staging together, criteria has been suggested to be combined. 
Also incorporating key elements of the FDA draft guidance for Early AD (FDA, 
2018) is also key to make this more widely accessible and as such allows for 
potential beneficial implication to patients and carers alike, further along the 
research and development pipeline. The resulting amalgamation adapted 
from Jack et al 2018 is displayed in Table 1.2.

Table 1.2 Cognitive & Biomarker Profiles within AD Staging
Syndromal Cognitive Stage

Cognitively 
Unimpaired

MCI Dementia

 A-T-

(N)-
Normal AD 
biomarkers & CU

Normal AD 
biomarker with 
MCI

Other 
Dementia

A+T-

(N)-
Preclinical AD Prodromal AD AD Dementia

A+T+(
N)-

Preclinical AD Prodromal AD AD Dementia

A+T+(
N)+

Preclinical AD Prodromal AD AD Dementia

Biomark
er 

Profile

A+T-

(N)+
AD pathology with 
concomitant 
neuropathology

Prodromal AD 
with concomitant 
neuropathology

AD Dementia 
with 
concomitant 
neuropatholog
y

Focusing purely upon cognitive profiles of those within the Alzheimer’s 
continuum, the proposed staging of cognition is a clinical one, but it still 
lacks specificity of cognitive measures (Jack et al., 2018). For someone to be 
on the Alzheimer’s continuum they must at least have a positive amyloid 
biomarker. Whereas the previous model has three distinct categorisations, 
by including biomarkers this model gives an enunciated model of AD and 
cognition comprising of six stages. As this model is key to the core research 
aims of this project it is described in full below (from Jack et al., 2018).
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Numeric clinical staging—Applicable only to individuals in the 
Alzheimer’s continuum
Stage 1
• Performance within expected range on objective cognitive tests. Cognitive test performance may 

be compared to normative data of the investigators choice, with or without adjustment (the choice 
of the investigators) for age, sex, education, etc.1

• Does not report recent decline in cognition or new onset of neurobehavioral symptoms of concern.
• No evidence of recent cognitive decline or new neurobehavioral symptoms by report of an 

observer (e.g., study partner) or by longitudinal cognitive testing if available.
Stage 2
• Normal performance within expected range on objective cognitive tests.
• Transitional cognitive decline: Decline in previous level of cognitive function, which may involve 

any cognitive domain(s).
• May be documented through subjective report of cognitive decline that is of concern to the 

participant. Represents a change from individual baseline within past 1–3 years, and persistent for 
at least 6 months. May be corroborated by informant but not required.

• Or may be documented by evidence of subtle decline on longitudinal cognitive testing but not 
required.

• Or may be documented by both subjective report of decline and objective evidence on longitudinal 
testing.

• Although cognition is the core feature, mild neurobehavioral changes—for example, changes in 
mood, anxiety, or motivation—may coexist. In some individuals, the primary compliant may be 
neurobehavioral rather than cognitive. Neurobehavioral symptoms should have a clearly defined 
recent onset, which persists and isn’t explained by life events.2

• No functional impact on daily life activities
Stage 3
• Performance in the impaired/abnormal range on objective cognitive tests.
• Evidence of decline from baseline, documented by the individual’s report or by observer (e.g., 

study partner) report or by change on longitudinal cognitive testing or neurobehavioral 
behavioural assessments.

• May be characterized by cognitive presentations that are not primarily amnestic.3
• Performs daily life activities independently, but cognitive difficulty may result in detectable but 

mild functional impact on the more complex activities of daily life, that is, may take more time or 
be less efficient but still can complete, either self-reported or corroborated by a study partner.

Stage 4
Mild dementia
• Substantial progressive cognitive impairment affecting several domains, and/or neurobehavioral 

disturbance. Documented by the individual’s report or by observer (e.g., study partner) report or 
by change on longitudinal cognitive testing.

• Clearly evident functional impact on daily life, affecting mainly instrumental activities. No longer 
fully independent/requires occasional assistance with daily life activities.

Stage 5
Moderate dementia
• Progressive cognitive impairment or neurobehavioral changes. Extensive functional impact on 

daily life with impairment in basic activities. No longer independent and requires frequent 
assistance with daily life activities.

Stage 6
Severe dementia
• Progressive cognitive impairment or neurobehavioral changes. Clinical interview may not be 

possible.
• Complete dependency due to severe functional impact on daily life, impairment in basic activities, 

including basic self-care.

This research framework was deliberately left vague by the authors in order 
to encourage wider adoption, however it can be argued that there needs to 
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be a clear agreement to implement the adjustments on cognitive measures 
where applicable, as it has been widely shown that age, sex, educational 
level and socio-economical status all impact cognition to varying degrees. 
Thus, in order for a measure to be utilised across multiple countries and 
centres it needs to have these adjustments in place to have generalisability 
to the whole population. If not taken into account these variables will mask 
any potential subtle, or in the case of education; not so subtle, cognitive 
impairments that are potentially associated with AD (discussed in detail 
below). 

The key additions are in the three formative stages 1-3; with the latter three 
stages all comprising of increasing states of dementia, which are well 
characterised by the symptoms and clinical manifestations individuals at 
these stages exhibit. It is in these first three stages where further discussion 
is warranted. An extra ‘transitional’ stage (ie 2.5) between cognitively 
unimpaired and MCI gives a greater account for fluctuations in cognition that 
may be transient and can occur in this model without the subsequent 
diagnosis of MCI. When looking at the differences between the first two 
stages (1 & 2), there would be an absence of functional differences which 
may lead to the suggestion they are not distinguishable, however aside from 
the clinical manifestations, differences would be measurable in terms of 
cognitive decline between stage 1 and stage 2. The clinical meaningfulness 
of this is difficult to establish and the cognitive decline is normal within the 
normal ranges for the measures being implemented (Aisen, 2018). But again, 
this could be highly variable depending on which domain and measure is 
used for measurement of cognition here. The real onset of measurable 
cognitive decline is by definition subclinical and is currently thought to be 
present after the gradual amyloidosis over a decade prior to this. However, 
as Aisen and others have posited, this measurable subclinical decline may 
precede amyloid positivity (PET or CSF diagnosis) giving a window for the 
detection of symptoms very early in the disease course to allow for possible 
early intervention and treatment. Fundamentally what is missing from these 
descriptions is a measure/s and/or cognitive domains that should be 
measured in order to marry these descriptions to a clinical presentation 
across all six stages. Furthermore, subtle impairment requires consistent 
measurement and a fundamental understanding of how cognition and clinical 
presentation marries to that of pathological biomarkers. Something that is 
yet to fully achieved and is a key aspect of what this thesis hopes to achieve. 

The overarching body of work for classification of AD, using the ATN 
biological framework and the clinical presentation of AD can best be seen 
through a graph of trajectories over the disease course. These are iteration 
of the graphs first derived by Clifford Jack and colleagues (2013). This most 
comprehensive current version is shown in Figure 1.2. taken from work by 
Palmqvist and colleagues (2019) and Hansson (2021). The composition of 
these staging criteria results in a disease trajectory best outlined by looking 
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at discrete pathological markers as described above. The graph also includes 
shaded areas which represent current knowledge of progressive amyloid and 
tau pathology. To note the final section pertaining to symptomatic AD covers 
the disease once symptoms are present up to death. As discussed 
previously, the nuance of impairments seen within cognitive and functional 
domains is ambiguous hampering the confluence between the clinical 
presentation of the disease and the pathological processes undertaken. 
However, this graph does allow for some broader relationships to be inferred 
between global cognition and Tau PET and MRI measured atrophy. The 
cognitive picture is far more nuanced than this, all of which is described in 
more detail further below.

Figure 1.2. The trajectories of different fluid and imaging biomarkers in the 
AD continuum. Green, blue and yellow shaded areas depict pathology prior 
to symptom onset, the red shaded area depicts MCI through to severe AD 
(Stages 1-6). Graph adapted from Hansson, 2021 and based upon other prior 
studies (Palmqvist et al., 2019; Janelidze et al., 2020a&b; Barthelemy et al., 
2020; Mattsson-Calgren et al., 2020).

Disease Progression Over Time
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The Amyloid Hypothesis & Disease Biomarkers

These measures and the 
classification methodologies 
described above are all 
founded upon the amyloid 
hypothesis of AD. This has 
been the cornerstone driving 
research and drug 
development alike for the 
past three decades. For over 
a century it has been well 
accepted that a progressive 
build-up of disparate forms 
of amyloid protein, in an 
array of organs, has been a 
causal factor for many 
devastating diseases. 
However, it was only in 1984 
that the idea of amyloid-beta 
may have a central role in 
AD was put forward by 
George Glenner (Glenner & 
Wong, 1984). Over the past 
two decades this has been 
the cornerstone of AD 
research and has been 
dubbed the amyloid 
hypothesis of Alzheimer’s 
Disease. In incipient sporadic 
cases it is proposed that 
amyloid beta monomers 
gradually begin to build up, 
slowly clumping together to 
form insoluble 
oligomers/fibrils then latterly 
larger amyloid plaques 
(Beyreuther & Masters, 
1991; Hardy & Allsop, 1991; 
Selkoe, 1991; Hardy & 
Higgins, 1992). Despite 
recent conjecture this is the 
dominant model of AD 
pathogenesis and has been 
the lynchpin that has guided 
drug development over this 

Figure 1.3. The cascade of pathological 
events that lead to AD proposed by the 
amyloid cascade hypothesis
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time period (Cummings et al., 2018; Selkoe & Hardy, 2016). There are many 
reasons why this has been so revered and unwavering as a theory, however 
there are still many unknowns and unanswered questions, all of which will be 
discussed further in Appendix 2. When looking at non-dominant forms of 
AD, most common of which is ‘sporadic’ AD, there are a cascade of events 
that eventually lead to dementia. This amyloid cascade hypothesis has been 
developed consistently since its inception and the current consensus is 
shown below in Figure 1.3 (Selkoe & Hardy, 2016). 

In the normal processing of the amyloid precursor protein (APP), it is cleaved 
close to the membrane by an extracellular protease known as α-secretase. 
This liberates a soluble extracellular fragment, sAPPα. Alternatively, APP is 
cleaved by an aspartyl protease referred to as β-secretase (or β-site APP 
cleaving enzyme 1, BACE1) generating a soluble extracellular fragment 
(sAPPβ) and a cell-membrane-bound fragment (C99). C99 is cleaved within 
the membrane by an enzymatic complex formed of four proteins (presenilin, 
nicastrin, anterior pharynx-defective 1 and presenilin enhancer 2), known as 
γ-secretase. Presenilin is the catalytic subunit of γ-secretase and is encoded 
by either the PSEN1 or PSEN2 gene, these genes have deterministic 
importance to progression rates of AD (Suzuki et al., 1994; Duff et al., 1996; 
Scheuner et al., 1996). The γ-secretase cleavage releases an intracellular 
peptide known as amyloid intracellular domain (AICD) and the Aβ peptide. Aβ 
has many different lengths, the most abundant being of 40 amino acids and 
the less soluble of 42 amino acids. Aβ aggregates to form oligomers (two or 
more proteins), protofibrils (singular groups of proteins), fibrils (larger groups 
of the same protein) and ultimately plaques (sticky abundance of proteins), 
which are fundamental hallmarks of AD pathology.

Autosomal Dominant AD
Key findings that have helped to shape and reinforce the amyloid hypothesis 
come from further study of the genetically inherited form of the disease, 
autosomal dominant AD (ADAD) otherwise known as dominantly inherited AD 
(DIAD) (Figure 1.3). This genetic mutation accounts for approximately 1% of 
all AD cases (Bateman et al., 2012). Mutations in one of three key genes 
(APP, PSEN1 and PSEN2) involved in the processing of Aβ have been shown 
to lead to early onset AD with complete penetrance (Scheuner et al., 1996). 
These mutations to APP and its processing leads to an elevation of Aβ42 & 
Aβ43 peptides and begin the aforementioned cascade of pathology.

Importantly, these genetic mutations tend to have a predictable age of onset 
(Lopera et al., 1997), which are dependent upon mutation type and 
background family genetics, thus making this form of AD ideal for studying 
the initial pathogenesis of the disease (Wijsman et al., 2011). Within these 
mutations there is also increasing evidence to show an overlap with sporadic 
forms of AD (Cruchaga et al 2012). However, these mutations are incredibly 
rare and as such require increased awareness to locate these individuals, 
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many of them are in small community pockets due to the nature of the 
genetic underpinnings of this variant. The worldwide initiative to study this 
form of AD; DIAN and DIAN-TU (Dominantly inherited Alzheimer’s 
Network/Trials Unit) has made great strides in the effort to learn more about 
the disease and treat individuals who are at risk of developing the disease 
due to their known genetics and family history. These trials are still ongoing 
but it is hoped that the currently available therapeutics will arrest any 
decline in cognition and function, or stop it from occurring altogether 
(Bateman et al., 2017). Batemans group published some formative results 
from this initiative which has reinforced the pathogenesis of AD. They found 
ADAD was associated with a number of pathological changes over decades, 
these results showed abnormal CSF biomarkers of AD; brain amyloid 
deposition and brain metabolism as well as significant progressive cognitive 
and functional impairment akin to that seen in sporadic AD (Bateman et al., 
2012). The homogenous nature of these findings with those seen in late 
onset/sporadic AD, led further credence to the early pathogenesis of AD 
occurring 15-20 years prior to that or the onset of clinical symptoms.

Tau Pathology 
Conversely to the focus placed upon amyloid within the disease, AD is also a 
tauopathy. This pathology has been conclusively shown to occur after the 
cascade of effects from amyloid deposition and the innate immune response 
within the cortex, with the hallmarks of this stage of pathology coming in the 
form of neurofibrillary tangles (NFT) (Felsky et al., 2019). This target is still 
yet to be fully probed, manipulated and results produced within a full clinical 
trial or research program. Nevertheless a growing body of evidence points 
towards a promising concept for the amelioration of AD pathology and 
symptoms when this target is engaged (Small & Duff, 2008; Karran & De 
Strooper, 2016; Herrup, 2015; Cummings et al., 2018; Yanamandra et al., 
2013). 

Tau’s Function
Two key functions of tau are its ability to promote assembly and to preserve 
the structure of microtubules (Weingarten et al., 1975). Phosphorylation of 
tau is also critical and key for neurite outgrowth and axonal transport 
mechanisms, but it is clear this becomes aberrant during AD (Kowall & Kosik, 
1987). This destabilisation and lack of neuronal growth/maturation is another 
downstream pathological effect, but is commonly thought to be key to the 
continued decline in an individual (DeKosky et al., 1990). Within AD the six 
isoforms of tau known to exist, have all been shown to be 
hyperphosphorylated and aggregated into paired helical filaments (PHF) 
(Grundke-Iqbal et al., 1986a; Grundke-Iqbal et al., 1986b; Iqbal et al., 1989; 
Iqbal et al., 1986; Lee et al., 1991; Goedert et al., 1992). These groupings of 
tau are according to their tubulin-binding domains as 3-repeat (3R) and 4-
repeat (4R) tau proteins. In the normal brain and within PHF-tau equal 
amounts of each exist but changes in the 3R and 4R tau ratio can cause 
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abnormal tau accumulation (Harada et al., 2016). Whilst key conformational 
and truncational changes (Jicha et al., 1997; Jicha et al., 1999a; Jicha et al., 
1999b; Novak et al., 1991; Gamblin et al., 2003; Cotman et al., 2005) have 
been observed to this protein, post hyperphosphorylation (Delobel et al., 
2008), it can be argued that the strongest rationale for the dysfunction of tau 
in AD, is the distinct abnormal hyperphosphorylation of the protein itself 
(Grunke-Iqbal et al., 1986b; Alonso et al., 1994; Iqbal et al., 1986). As this 
toxicity of phosphorylated tau appears to be solely due to its abnormal 
hyperphosphorylation as when these proteins are dephosphorylated the 
diseased tau converts it into a normal version of the tau protein and behaves 
as such (Alonso et al., 1994; Li et al., 2007; Wang et al., 1995; Wang et al., 
1996).

Within the AD cortex, tau is recovered in three forms, soluble, oligomeric and 
fibrils (Kopke et al., 1993; Iqbal et al., 1986; Bancher et al., 1989). Whereas 
in a non pathological cortex almost all forms of tau are soluble in nature. 
Normal tau is at comparative levels in healthy elderly and those with AD, 
however, levels of total tau (t-tau) are between four and eight times greater 
in those with AD due to the presence of these oligomeric and fibrillar 
conformations (Khatoon et al., 1992). Of this increase around 40% is 
oligomeric and sedimentary, with these oligomers being comprised of both 
hyperphosphorylated and non hyperphosphorylated tau (Kopke et al., 1993; 
Iqbal et al., 1986). Thus, showing the basis for the increase in this protein in 
the CSF seen within AD. However, the tau in NFT has been shown to be inert, 
with around 40% of the abnormally hyperphosphorylated tau in AD brain 
actually present in the cytosol and not polymerised into larger conformations 
such as NFT & PHF (Kopke et al., 1993; Iqbal et al., 1986; Bancher et al., 
1989). This abnormally hyperphosphorylated tau (p-tau) inhibits assembly 
and disrupts microtubules (the polar opposite of its normal behaviour) 
(Alonso et al., 2004; Li et al., 2007; Wang et al., 1995) and this toxic 
behaviour also critically involves evoking normal tau in this process (Iqbal et 
al., 2010; Alonso et al., 2004; Alonso et al., 1996), as well as two other 
microtubule associated proteins (MAP) MAP1a/b & MAP2 (Alonso et al., 1997). 
This seconding of healthy tau by the neurotoxic p-tau, suggests tau is 
actually a key factor much earlier in the disease course of AD. Whilst not 
forming in large deposits in the way amyloid conglomerates, tau could be 
argued to spread in a smaller less noticeable way, with further research 
using newly validated imaging ligands key to this endeavour. 

Measurement of Tau in vivo
CSF measurement of p-tau and t-tau has been the only available biomarker 
in this regard, but it is difficult to relate this directly to the pathology cascade 
within AD. As tau in many forms have been shown to be present in many 
other neurodegenerative diseases, this may be indexing other forms of 
neurodegeneration unrelated to any AD pathology (defined as NFT & PHF) 
and without the topography may relate to comorbid cell death or synaptic 
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dysfunction. More reliable and attributable to the T criteria (Jack et al., 2018) 
is p-tau which underpins the NFT & PHF formations in the cortex (Kopke et 
al., 1993; Iqbal et al., 1986; Bancher et al., 1989). However, with around 40% 
of this p-tau inert and not polymerised into these formations it is more 
difficult to directly correlate this p-tau in CSF measures to that of tangle load 
in vivo. The inception of the tau PET ligands, of which there are now a 
number of validated entities to choose from, have shown in numerous 
validation studies to provide a higher inherent specificity and sensitivity akin 
to the in vivo tau load (Brier et al., 2016; Josephs et al., 2016; Choi et al., 
2018; Smith et al., 2018). As with Aβ, autopsy studies have shown that tau 
pathology accumulates in a distinct spatial topography throughout the 
disease (Braak & Braak, 1991; Thal et al., 2002). These have been previously 
constrained to histopathological studies owing to the lack of ligands for 
measuring tau pathology in vivo via PET.

As a result of existing amyloid biomarkers available in vivo, the distinct 
topography and its relationship with cognition has been well defined (Villian 
et al., 2012). Tau deposition is hypothesised to more closely correlate with 
cognitive decline than compared directly to Aβ load (Jack et al., 2018; 
Hansson, 2021; Figure 1.2) and as such engaging this target may improve 
cognitive symptoms. Target engagement with compounds affecting this 
protein’s conformations are yet to produce any results from clinical trials so 
it is still unknown whether altering these conformations elucidates any 
amelioration or cessation to pathological, functional or cognitive decline. But 
given the evidence described above and the specific uniformity of decline 
with a number of global cognitive processes, this indicates some change 
should be expected.
Genetic Risk Factors & APOE
One of the major breakthroughs of the last few decades was the finding of 
the risk variant on the Apolipoprotein E (ApoE) phenotype with carriers of the 
ε4 allele having an increased risk of developing incipient AD earlier and 
having a sharper decline once the disease takes hold (Corder et al., 1993). 
This is the strongest and most common genetic risk factor for late onset AD 
(Corder et al., 1993; Bu, 2009; Huang et al., 2012). The human form of the 
ApoE gene exists in three polymorphic alleles; ε2, ε3 and ε4, which have 
been shown to have an approximate worldwide incidence of 8.4%, 77.9% 
and 13.7%, respectively (Farrer et al., 1997). However, this dramatically 
increases to ~40% with the ε4 allele in patients with AD, suggesting a major 
role in the disease process. ApoE’s normal behaviour is as a major 
cholesterol carrier, regulating lipid homeostasis (Mahley & Rall, 2000), 
supporting lipid transport as well as membrane repair and synaptic plasticity 
within the cortex (Slezak & Pfrieger, 2003). Outside AD and the CNS ApoEε4 is 
implicated in hyperlipidaemia and hypercholesterolemia (both leading to 
atherosclerosis), coronary heart disease and stroke (Mahley & Rall, 2000; 
Lahoz et al., 2001). The ε4 allele has also been shown to interact with 
cerebrovascular disease to impede clearance mechanisms which may be a 
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key exacerbating factor to the progression of the disease (Veitch et al., 
2019). These implications are still relevant to AD as any disruption of blood 
flow will have downstream effects. The relationship between the 
dysfunctional variant and AD pathogenesis can be argued to impact 
homeostasis as well as increased dysfunction of synaptic plasticity, which is 
known to have downstream cognitive and function effects (Huang et al., 
2010; Kanekiyo et al., 2014; Heneka et al., 2015). This major genetic 
phenotype is something to be cognisant of in any analysis as this significant 
variation between individuals can have strong implications for any 
subsequent findings. 
 
Genome Wide Association Studies (GWAS) have also played a key part in 
uncovering new potential avenues of research and hypothesis of inception 
and dysfunction within AD. They have identified polymorphisms in or near 
several genes that are associated with AD risk (Harold et al., 2009; Naj et al., 
2011; Hollingworth et al., 2011; Bertram et al., 2008). A meta analysis of 
GWAS in AD also produced a further 12 loci to investigate (Lambert et al., 
2013). However, none have the sizable impact that APOE does on the 
disease course (Karch & Goate, 2015) however, there are still some key 
genetic variants that have been uncovered. The R47H variant of TREM2 has 
been shown to triple the risk of AD in GWAS studies (Guerreiro et al., 2013; 
Jonsson et al., 2013; Song et al., 2018), as this variant of TREM2 impairs the 
interaction between neurons and Aβ plaques (Song et al., 2018). The 
identification of novel genetic loci affecting sporadic AD risk is critical to the 
understanding of the underlying aetiology of AD. The identification of 
common variants that have small effects on AD risk is crucial as it creates a 
wider picture of the pathological processes that contribute and are involved 
in the disease. These variants identified through GWAS are in genes involved 
in lipid metabolism, the inflammatory response, and endocytosis all which 
are outside the main proteinopathies within AD.

Neurogranin
Along with CSF markers further compounds have been elucidated more 
recently with the advancement of proteomics methodologies and assays, one 
of these is neurogranin. This postsynaptic protein is known to be involved in 
regulation of calmodulin after neuronal excitation (Baudier et al., 1991; Diez-
Guerra et al., 2010) as well as long term potentiation and related cognitive 
functions (Wu et al., 2002; Huang et al., 2004; Mons et al., 2001). Levels of 
neurogranin are predominantly measured through a CSF assay and within 
normal aging levels of the protein are highest in cortical areas associated 
with its primary function (Bogdanovic et al., 2002).

Synaptic dysfunction is widely believed to be intrinsic to cognitive 
dysfunction and has been widely thought of as a central pathological 
mechanism within AD (DeKosky et al., 1990). This synaptic dysfunction is 
believed to occur before neuronal degeneration and death and as such an 
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indicator to this is highly valuable to tracking progression (Dekosky et al., 
1990; Davies et al., 1987; Bertoni-Freddari et al., 1997). Within AD, synaptic 
loss is also seen to be more strongly correlated with cognitive decline than 
either amyloid or tau pathology load (Masliah et al., 2001; Scheff et al., 
2007; Sze et al., 1997). Because of the relationship between neurogranin 
function and synaptic function, it has been shown that neurogranin has 
normal age related decreases in levels across several brain regions including 
the hippocampus which is known to be involved in the early pathology of AD 
(Mons et al., 2001). As such, decreases in synapse numbers has been shown 
to correlate with worsening memory impairment within AD (Heinonen et al., 
1995; Scheff et al., 2007). Neurogranin levels have also been shown to be 
lower within AD models in the hippocampus and frontal cortex (Davidsson et 
al., 1998; Reddy et al., 2005) and neurogranin levels have also recently been 
shown to be impaired in those with AD as well as individuals with MCI 
(Kvarstberg et al., 2015). This study also showed the levels of neurogranin 
correlate with cognitive decline in prodromal AD. Results also indicated that 
neurogranin predicts conversion from MCI to AD, with higher neurogranin 
levels predicting a faster rate of cognitive decline within confirmed amyloid-
positive prodromal AD individuals. This was further replicated in other 
cohorts suggesting its additional suitability to CSF biomarker panels, in 
particular to indicate future cognitive decline (Hampel et al., 2018; Tarawneh 
et al., 2016; Lista & Hampel, 2017; Portelius et al., 2015). Further study into 
a longitudinal analysis of this protein is still needed to fully understand its 
interplay with the main pathological process of AD, but as such is included in 
the (N) criteria of the recent research guidelines (Jack et al., 2018) showing 
its suitability as a valuable biomarker of synaptic 
dysfunction/neurodegeneration.   

Neurofilament light chain (NFL)
Whilst tau is an inherent measure of microtubule stability, wider axonal 
measures can also be gleaned from CSF (and soon plasma too). One such 
protein is neurofilament light chain (NFL), which is a structural component of 
the neural cytoskeleton, suggesting increased levels of this protein 
correspond to axonal degradation (Lee et al., 1993). This has been shown to 
have raised CSF levels within AD corresponding to white matter 
lesions/axonal degradation (Sjogren et al., 2001), with this finding again 
being replicated in subsequent cohort studies such as ADNI (Zetterberg et 
al., 2016). NFL levels are increased at the clinical stage of AD and are related 
to the cognitive deterioration and structural brain changes at this stage of 
the disease. This finding supports the assertation that degeneration of large-
calibre axons is an important feature of AD neurodegeneration.

One key difference with NFL is that is can be accurately measured in the 
blood too, with the supposed holy grail of a blood based test for AD still a 
way off, this is one measure that shows increased values within plasma, 
corresponding with increases in CSF values as well (ρ = 0.59; Mattsson et al., 
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2017). Mean plasma NFL values were shown to be increased in patients with 
MCI (42.8 ng/L) and AD (51.0 ng/L) compared with controls (34.7 ng/L) and 
had high diagnostic accuracy comparable to established CSF biomarkers. 
However, these small discrepancies between groups suggest further 
validation is needed in larger samples to explore the levels of variations 
across the disease spectrum. Overall, whereas neurogranin can be utilised 
early in the disease course, NFL is thought to be more accurate within the 
latter stages of AD, although in depth longitudinal analysis is still needed to 
fully elucidate the interplay between NFL and disease progression across the 
spectrum of AD.  

Treatments: Memantine & Acetylcholinesterase Inhibitors
The last truly new molecular entity for AD was approved by the Food & Drug 
Administration (FDA) in 2003 and the European Medicines Agency in 2002 
(FDA, 2003; EMEA, 2004). Memantine was licenced shortly after the advent 
of three somewhat diverse acetylcholinesterase inhibitors (AChEI) and was 
targeted at unresponsive individuals who were in the moderate to severe 
stages of AD. Memantine is a symptomatic treatment which does not alter 
the disease course in any way but may provide some improvement in some 
of the common symptoms exhibited by individuals at the latter stages of the 
disease (McShane et al., 2006). These include memory, attention and some 
aspects of language. Then the main efficacy endpoint for approval in AD is 
usually the ADAS-Cog (Rosen et al., 1984), however in the more severe 
spectrum, in which Memantine is approved in, the Severe Impairment 
Battery (SIB) was utilised (Schmitt, 1997). The SIB indexes seven domains 
and is scored between 0 and 100, when looking at pooled trial data 
Memantine shows a significant improvement of 2.97 points at six months 
(McShane et al., 2006).  

Memantine is an NMDA receptor antagonist and has low affinity with 
glutamate receptors. The primary focus of symptomatic treatment in AD was 
the augmentation of cholinergic transmission, which this does not alter. 
Nevertheless, on top of Memantine, other possible therapeutic approaches 
have been hypothesised that are based upon neurotransmitter enhancement 
or modulation, these include serotoninergic, noradrenergic substances or 
neuropeptides and compounds acting on excitatory amino acid receptors, 
such as for glutamic acid (Emre & Qizilbash, 2001). The hypothesis that this 
mechanism of action might prove beneficial in AD is due to the abundance of 
L-glutamate in the CNS and it having been implicated in long term 
potentiation (LTP), learning and memory functions as well as neuronal 
plasticity (Sucher, 1996; Riedel et al., 2003; Thomas & Grossberg, 2009). 

In the Cochrane review of both published and unpublished trial data 
(McShane et al., 2006) they concluded that whilst Memantine was well 
tolerated, it showed no significant clinical benefit in mild to moderate AD but 
pooled data in moderate to severe AD indicate a beneficial effect both on 
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cognition and activities of daily living, corroborating a manifestation in the 
clinical impression of a change on a subject level. However, this 
improvement whilst clinically detectable was small in effect (0.28 points on 
the seven-point CIBIC). Improvement in symptomatology was only present 
for a short period before a continuing cognitive and functional decline in line 
with the disease course. Concurrently to this, combination therapy with 
AChEI’s has yielded conflicting results with some authors suggesting a 
significant benefit (Thomas & Grossberg, 2009). Whereas a more rounded 
review looking at the all the available data at the time showed that whilst 
there may be a small benefit at six months, there is no benefit to function 
nor any improvement in clinical impression of disease, which could be 
argued to be somewhat subjective anyway and is dependent upon which 
studies (the inclusion of the extended release trials) are included in the 
analysis (Farrimond et al., 2012). With a lack of clinical efficacy in the mild to 
moderate spectrum of AD (Farrimond et al., 2011; McShane et al., 2006), 
Memantine is only approved at the moderate to severe stages of AD (FDA, 
2003; EMEA, 2004).

Prior to Memantine, clinicians can prescribe one of three AChEI’s; Donepezil, 
Rivastigmine and Galantamine (all of which are now off patent). These all 
work in a very different way to Memantine and enhance the amount of time 
acetylcholine is present in the synapse by blocking a protease that degrades 
this neurotransmitter. Loss of cholinergic function and neurons in the 
forebrain has been highly associated with sporadic and incipient AD (Francis 
et al., 1999), therefore anything to alter this pathway should have 
therapeutic benefits. This class of compounds have been shown to improve 
memory function both in murine models, clinical trials and in clinic. 
Donepezil, or Aricept as it was branded, is the most commonly prescribed 
out of the three (≈60% in EMEA, Pariente, 2008), this was in part down to it 
being first to market but also the compound that showed the best side effect 
profile in clinical AD (Birks & Flicker, 2006; Birks & Harvey, 2018). Donepezil 
has consistently shown a highly favourable side effect profile, with its 
preferential binding ratio to acetylcholinesterase over butylcholinesterase, in 
comparison to the other two compounds (Rivastigmine and Galantamine). 
Resulting in significantly less adverse events (AEs) of dyspepsia, nausea, 
vomiting and diarrhoea (Rogers et al., 1998; Schiender & Farlow, 1995). 
Nevertheless, whilst the symptomatic benefits of treatment with Donepezil 
and other compounds in this class are clear, they are deemed to lack 
interaction with the neuropathology of AD (Ellul et al., 2007). Further to this, 
these compounds have been shown to only have transient effects on the 
symptomatology of AD which slows the cognitive and functional decline for a 
short period before continuing on its neurodegenerative course, this was one 
of the key rationales for continued drug development in AD and one key 
findings of the Cochrane review of AChEI’s was that after such a period of 
around 6-12 months these four drugs yielded little clinical effect (Birks, 
2006).
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Another Cochrane review comparing the three compounds revealed that all 
three are efficacious in mild to moderate AD and whilst they all have slightly 
different mechanisms of action there is no evidence to suggest any singular 
compound is more efficacious than the other (Birks, 2006). However, when 
compared directly, Donepezil had a more favourable side effect profile at this 
stage of the disease. As it is a smaller single tablet of delivery, at more 
progressed stages of AD this carries significant benefits. This is due to 
Rivastigmine and Galantamine both requiring multiple tablets at higher 
dosages, which has been argued to be part of the discrepancy in side effect 
profiles. Whilst there are no differences in efficacy, these extraneous 
differences have led to the prescribing divergences as mentioned above.

Nevertheless, in the only comparative clinical trial that has been conducted 
between these compounds, Donepezil and Rivastigmine performed 
comparably on measures of cognition and behaviour, however Rivastigmine 
was argued to provide greater benefit in activities of daily living and global 
functioning as these measures were statistically significantly different 
between these two treatment groups (Bullock et al., 2005). Overall, there is 
strong evidence that acetylcholinesterase inhibition may offer continued 
therapeutic benefit for up to two years in patients with moderate AD and 
Donepezil still continues to be the most widely prescribed and researched of 
the three. 

Treatments: Current Issues & Future Directions

Nevertheless, the fundamental issue with Memantine and the three AChEI’s, 
is that they do not interact with the pathology of the disease. And with it 
being over fifteen years since there have been any new treatment options, 
there is a huge unmet clinical need for disease modifying compounds. This is 
not through a lack of effort or investment on the part of the pharmaceutical 
industry, but through a lack of understanding of the pathological process at 
the very earliest stages of AD, the insensitivity of the primary efficacy 
endpoints, poor population selection and in a number of cases poor target 
engagement.

As has been shown in both BACEi and antibody trials a significant reduction 
in Aβ42 measured via CSF and PET imaging has not yet resulted in a 
consistent improvement or halting of decline in cognition (see Appendix 1 
for full details). The compounds are clearly interacting with the pathogenesis 
of the disease and altering and reducing the production of Aβ. In some cases, 
reducing the amyloid burden to a negative PET read on the individual’s brain 
scans. However, the results are mixed with only two antibodies showing 
positive results in two separate trials. Many arguments have been made as 
to why this might be. It has been suggested that the previous trials have 
contained a substantially heterogeneous population, this was found to be 
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such an issue that over 26% of individuals in one of the trials were found to 
be amyloid negative on PET scans (Voss et al., 2016). When trying to 
measure a drug that alters the disease pathology, having over a quarter of 
your individuals without the specified disease is cataclysmically destructive 
for measuring efficacy. Something that is only compounded when it is in a 
global phase III trial. Along with MMSE ranges within the tested domain (MCI, 
Mild, Moderate or Severe), cognitive impairment to either a clinical or 
functional measureable degree is a key criterion to inclusion in these trials. It 
has only been within the last few years that trials now contain amyloid 
positivity as one of their inclusion criteria on any study within the AD field. 
This prior heterogeneity could have meant that comorbidities played a 
significant part in these trials and they were not measuring AD pathology but 
another form of dementia or cognitive impairment that was present, 
transient or not there altogether. The latter explanation of the absence of 
cognitive impairment can be argued to be down to another suggested 
causality for the trial failures; a lack of sensitivity and/or reliability of the 
chosen instrument for measuring the efficacy of these compounds. 

One further criticism that is present in nearly all drug studies that fail to 
meet their primary efficacy endpoints is that of a lack of target engagement. 
This is either due to suboptimal dosing, in neurological conditions lack of 
brain penetration, poor interaction with the targeted molecules or receptor 
types or the drug isn’t exposed enough to the target to make any interaction 
with the target site and is either metabolised or doesn’t reach there at all in 
some cases. However, in both the studies of the BACEi’s and the antibodies 
treatments for Aβ clear target engagement was seen with highly significant 
reductions across the board in all of these trials when looking at CSF Aβ 
decreases between the treatment groups and the placebo (Cummings et al., 
2018; van Dyck, 2018). These reductions are only possible if the compounds 
in question are brain penetrant (an issue for the larger antibody molecules 
and not the inhibitors) so it is easy to rule out a lack of target engagement, 
suboptimal dosing and exposure durations for the absence of efficacy. As if 
these things were problematic the compounds would not reduce Aβ levels to 
any significant degree at all.

Further to the heterogeneity of the prior cohorts, due to disease 
incongruence, the rates of clinical decline in AD have been shown to be 
highly variable due to plethora of different environmental and genetic factors 
(Karch & Goate, 2015; Corder et al., 1993;
Saunders et al., 1993; Stern et al., 1994; O’Donoghue et al., 2018). The new 
ATN criteria (Jack et al., 2018) as well as the further disease staging 
suggestions by Frisoni and colleagues (2022) further emphasise these new 
suggestions of heterogeneity. If a subject is amyloid positive (A+) then 
knowing where they are in the other two biomarkers can give a much clearer 
idea of the rate at which they are likely to decline. Combined with the 
insensitivity of the efficacy endpoints, the other main argument rests on the 
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fact that the disease begins 15-20 years prior to our current understanding 
of symptom onset, by which point it is hypothesised that the biological 
damage of Aβ has already peaked (Jack et al, 2018). As a result of this 
programs are now looking earlier, at the preclinical stage of the disease. 
Whereby it is thought the disease trajectories can be affected to a significant 
extent by amyloid altering compounds. However, this is not as simple as it 
appears to be, finding people who it is currently thought have none or minor 
symptoms without an available treatment to offer them is incredibly difficult. 

Overall, a number of clear issues exist with current clinical trial design. This 
thesis will look to answer some of these. Primarily through providing a 
greater understanding of the measures used to index cognitive impairment 
within AD, but also by looking to bridge the gap between the clinical and 
biological presentations of AD. 
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Neuroimaging

As seen with the complicated heterogeneous nature of clinical trials in AD, 
pathologic confirmation is key for both target engagement and tracking of 
disease progression. Thus neuroimaging has been at the forefront of the 
advancements in research and clinical trial methodologies within AD over the 
past decade (Jagust et al., 2018). The inception of amyloid and tau PET 
ligands has allowed us to accurately phenotype individuals. MRI’s are also 
being used to rule out pathologic comorbidities that may cloud any 
treatment effects as well as more recently to show early indicators of 
functional network changes. This section will explore the key instruments 
and methods that are utilised in clinic and research within AD.  

MRI
Magnetic Resonance Imaging (MRI) has long been used to uncover brain 
abnormalities and within AD this is no different. MRI is unable to distinguish 
the amyloid or tau protein build ups but key indicators such as hippocampal 
volume, whole brain atrophy and cortical thickness can be gleaned from 
these scans. With MRI being the primary imaging modality for many years a 
significant amount of research has been conducted in understanding what 
MRI scans can indicate within AD. The primary focus of this has been upon 
hippocampal volume and brain atrophy rates (Jack et al., 1999). However, 
studies of AD patients have shown brain metabolism (Ossenkoppele et al. 
2012), neuronal activation (Golby et al. 2005), resting-state functional 
connectivity (Nuttall et al. 2016) and overall brain structure (Jin et al. 2017) 
all deteriorate throughout the AD spectrum.

Numerous studies have shown smaller hippocampal volume within 
individuals diagnosed with AD compared with healthy controls (Shi et al., 
2009; for review). However, at earlier stages of the disease the evidence is 
less well-formed, with conflicting evidence suggesting atrophy in prodromal 
AD/MCI due to AD is more variable between individuals. This may be 
however due to the absence of confirmed pathology in some of these 
individuals (as reported in some trials up to 30% of individuals were amyloid 
negative [Siemers et al., 2016]), due to the lack of validity of diagnostic 
measures available at the time. Nevertheless, hippocampal atrophy is 
thought to be a significant contributing factor to the cognitive and functional 
deficits exhibited by individuals across the disease spectrum (Shi et al., 
2009). As such, MRI measures of atrophy were treated as surrogate markers 
for disease progression and showed that these rates of atrophy influenced 
the rate of cognitive and functional decline within MCI and AD groups (Jack et 
al., 2005; Shi et al., 2009; Jack et al., 1999). A meta-analysis of 42 studies 
across MCI and AD showed a progressive atrophy between these 
classifications with effect sizes of d=1-1.7 and the left and right hippocampi 
showed asymmetry that maintained throughout this progression, something 
that is argued to be a characteristic that could suggest the onset of the 
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illness (Shi et al., 2009). Across these studies, as with many MRI studies, 
there was a significant amount of heterogeneity; the strength of the MRI 
machine (1.5-4T), ApoE status, delineation methods of the hippocampi and 
acquisition protocols. These are the inherent difficulties when comparing 
imaging results from this method, hence coherent protocols across imaging 
centres are created for such standardisation purposes, such as those in ADNI 
(Alzheimer’s Disease Neuroimaging Initiative) (Kruggel et al., 2010; Jack et 
al., 2008). Due to this co-operation and pooling of data and resources 
between centres such as these initiatives, collaborative cohorts such as 
these have become bastions for novel findings over the last decade.     

The Default Mode Network (DMN) & fMRI
Additionally, whilst volumetric MRI is focused upon structural AD related 
pathology, its benefits can also be utilised by using a time course analysis to 
measure the function of specific regions and areas of the cortex. Functional 
MRI (fMRI) procedures have suggested a number of difference deficits in AD, 
with one of the most promising is the early association with dysfunction of 
the default mode network (DMN) at the very earliest stages of AD (Villeneuve 
et al., 2015; Palmvqist et al., 2017; Hahn et al., 2019). This area is a large-
scale connected group of brain regions, primarily composed of the medial 
prefrontal cortex, posterior cingulate cortex/precuneus and angular gyrus. In 
order to understand the very beginning of the potential cascade it is 
therefore key to fully understand non pathological processes in healthy 
elderly individuals. To this extent several studies have found associations 
between increases in amyloid load and increases in brain connectivity 
(Sperling et al., 2003; Mormino et al., 2011; Lim et al., 2014). This has been 
argued to be possibly due to early compensatory mechanisms within the 
brain trying to adapt to this increase in pathology. 

It is still unknown where the pathological cascade begins within the cortex, 
however further investigations into non demented individuals have shown 
that regions most prone to the earliest accumulation of Aβ are some of the 
areas involved in the DMN (Villeneuve et al. 2015; Gonneaud et al. 2017; 
Palmqvist et al. 2017). With abnormal levels of CSF Aβ42 being detected prior 
to a positive PET signature (Bateman et al., 2012; Blennow et al., 2012; 
Fagan et al., 2009; Mattsson et al., 2014; Morris et al., 2010) in preclinical 
AD, these methods were used to study this in the earliest preclinical AD 
subject from two existing cohorts; BIOFINDER & ADNI. Palmqvist and 
colleagues (2017) showed that Aβ accumulation preferentially starts in the 
precuneus, medial orbitofrontal and posterior cingulate cortices, which are 
several of the core regions of the DMN. This suggests that Aβ starts to 
accumulate predominantly within parts of the DMN in preclinical AD which 
also effect brain connectivity at this early stage. They also indicated that the 
earliest Aβ accumulation is linked with hypoconnectivity within the DMN and 
between the DMN and frontoparietal network, however not with overall brain 
atrophy or glucose hypometabolism. Subsequent research from the same 
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group has further explored this, with amyloid uptake in these regions with 
resting-state fMRI functional connectivity in a large sample of non-demented 
elderly individuals (Hahn et al., 2019). Notably, the sample was comprised of 
only PET negative individuals (indexed by visual read), without clinically 
relevant global amyloid deposition. The findings were also independent of 
known confounding factors such as age, sex, ApoE status, presence of SCD 
and gray and/or white matter structural alterations. This further suggests 
that the very earliest Aβ accumulation significantly affects brain function. 
These findings have also been replicated in autosomal dominant AD, again 
strongly implicating the medial parietal cortex in early Aβ deposition as the 
primary measurable biochemical event in the development of AD (Gordon et 
al., 2018; McDade et al., 2018).

Overall, this altered functional connectivity can be strongly argued to 
represent a compensatory mechanism within the cortex as an inherent 
response in order to maintain cognitive function, despite the increasing 
presence of amyloid. All of this evidence indicates the need for future studies 
to determine whether changes in functional connectivity, may be clinically 
relevant to predicting individual cognitive and functional decline, as well as 
overarching disease progression.  

PET
Positron Emission Topography (PET) scans are based upon nuclear medicine 
with radioactive ligands. The scanner is able to detect pairs of gamma rays 
emitted by these radio tracers/ligands which inherently bond to the 
previously designated molecular conformations. These ligands are 
predominantly labelled with fluorine-18 (18F) or carbon-11 (11C) both of which 
are radioactive and depending on their chemical combinations have half-
lives that allow for enough time to be made, transported to the clinic and 
administered to the subject within a day. As such complex and precarious 
compounds that require a high degree of operational efficiency, they tend to 
be the most expensive of diagnostics. Despite the cost, the scientific benefit 
of being able to measure disease, in vivo carries great diagnostic accuracy 
and benefit. However, in most western countries PET is only employed within 
clinical trial paradigms, rather than primary care. This is primarily due to the 
cost but currently as no disease modifying compounds exist for AD many 
health service providers opt for CSF measurement over PET. Analysis can be 
voxel wise which is a unit of measurement on brain images or by using the 
Standardised Uptake Value Ratio (SUVR), which is the ratio of the 
concentration on the image to the concentration injected (which is another 
ratio of the body weight of the subject to the injected radioactivity level). 
Time since dosing can also be incorporated into the calculation, but the 
standardisation of this is not always optimum. One of the critical things to 
using this modality is to have an imaging protocol (as with MRI). This 
standardises the machine in question, usually through a ‘phantom scan’ and 
aligns the scanners produces images in a certain order after the radiotracer 
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is administered as well as pre-specifying analysis, combining of the images 
and artefact (errors or blur) removal. If this is not done in a uniform way this 
leads to messy data and incongruent images across the population being 
researched. 

FDG PET
One of the earliest measurements to be developed for PET was 
flurodeoxyglucose or FDG. This operates by bonding to glucose uptake 
transporters in the blood giving an indication, not exclusively but in this case 
specifically within brain imaging, of which areas of the cortex are being used. 
This is primarily done over a period of time or a duration of a specific task by 
measuring the intensity of glucose metabolism of neurons, higher values 
indicating greater energy being expended. This gives a picture of distinct 
spatial topographies being utilised overall or under certain conditions.

Within AD, this is less frequently employed than the majority of other 
neuroimaging modalities as it is not as disease specific as protein ligands 
described below. However, a great deal of research was done within this 
modality prior to the inception of these AD specific ligands. One study by 
Kuhl and colleagues (1982) showed a 26% decrease in glucose metabolism 
at 78 years of age compared to those aged 18 years in 40 normal 
individuals. Whilst the n is comparatively small compared to cognition, the 
data is more reliable and therefore a smaller sample size is warranted, 
coupled with the cost of the scans, imaging studies arguably yield more data 
from less individuals. Nevertheless, across a meta analysis of 27 studies, 
FDG-PET has been shown to have a pooled sensitivity and specificity of 91% 
and 86% in discriminating probable AD from controls (Bloudek et al., 2011). 
However, when incorporating a comparison to MCI and either controls or AD, 
it is not as discriminant, with smaller more variable decreases shown in a 
range of brain areas (Mosconi et al., 2008). Herholz and colleagues (2002) 
also showed that in a sample of around 500 individuals FDG-PET has a 
diagnostic sensitivity of around 84% for probable prodromal AD (>24 MMSE).

When comparing across 119 studies of differing imaging modalities, a 
systematic review showed FDG-PET to have a superior diagnostic accuracy 
than the other currently available biomarkers at that time; MRI, CT, SPECT 
and CSF (Bloudek et al., 2011). This differentiation doesn’t lend itself to an 
ability to track disease progression well, with changes being defined within 
certain groupings not tracking with the pathology and only can be suggested 
that the cause of this is AD without confirmed pathology. Primarily again due 
to cost and PET availability, CSF indices remained the diagnostic method of 
choice with clinicians, trialists and many researchers until the advent of 
amyloid imaging.
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Amyloid PET
Amyloid PET is fundamentally a specific diagnostic concerned about the 
levels of bonding a ligand has with the large conformations of Aβ 
(predominantly plaques). As the ligand bonds with this instead of glucose, it 
gives a different indication to the structural and functional characteristics of 
the individuals’ cortex. In the case of amyloid PET, positivity is usually 
defined as the uptake of the ligand in cortical regions in relation to a 
reference region which is believed not to accumulate amyloid, which is most 
commonly the cerebellum. Prior to the first compound being used in humans, 
amyloid was well established as a key protein within AD (Glenner & Wong, 
1984; Beyreuther & Masters, 1991; Hardy & Allsop, 1991; Selkoe, 1991; 
Hardy & Higgins, 1992). However, it was only with the inception of Pittsburgh 
Compound B (11C-PiB) that gave the ability to measure amyloid in vivo 
(Mathis et al., 2002). 11C-PiB has been shown to have high affinity and 
specificity for fibrillar conformations of Aβ (Mathis et al., 2002; Klunk et al., 
2004). Discriminant validity of the SUVRs between AD individuals and 
controls yielded differences between 1.94 and 1.52 in the initial studies and 
was rapidly utilised throughout research centres worldwide. However due to 
its ≈20-minute half-life, this restricted its usage to sites who had their own 
cyclotron to synthesise this ligand. As other radiotracers were developed to 
sustain their radioactivity for longer periods, based upon 18F to maximise the 
half-life duration, this allowed for a wider usage by the research and clinical 
community.

[18F]-Florbetapir (Wong et al., 2010, Amyvid/Lilly), [18F]-Florbetaben (Rowe et 
al., 2008, LMI) and [18F]-flutemetamol (Rinne et al., 2012, GE) were 
subsequently commercially developed and are the three currently approved 
amyloid imaging probes for human use (Marcus et al., 2014). All three have 
been shown to have significant correlations with histological findings on 
autopsy, showing the warranted pathological bonding within humans (Clark 
et al., 2011; 2012 [both Florbetapir]; Sabri et al., 2015 [Florbetaben]; 
Salloway et al., 2017 [Flutemetamol]). These three compounds have been 
the primary agents utilised in research and clinical settings and were 
developed in order to sustain their radioactivity for longer durations whilst 
having comparable sensitivity and specificity values to those of 11C-PiB. In a 
systematic review and meta-analysis of all studies undertaken with these 
three compounds, there were no marked differences between the diagnostic 
accuracy of these tracers (Morris et al., 2016). All three also performed 
better when looking at healthy controls to AD individuals than when 
incorporating MCI, however this may be due to the heterogeneity of the prior 
definitions of MCI, the lack of standardisation of the machinery and 
measurement of the images/SUVRs. When looking at visual reads rather than 
quantified ones, there were also strong discriminant values for the tracers 
over other modalities with no significant differences between the three. The 
meta-analysis also showed very high sensitivity and specificity for all three 
tracers which were above those of CSF but comparable with FDG-PET when 
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looking for AD individuals. The comparisons with prior meta-analyses (Zhang 
et al, 2014; Bloudek et al., 2011) showed this comparable performance with 
other modalities remains strong, but nevertheless given the underlying 
interaction with the pathology, amyloid PET remains the discriminant 
diagnostic tool of choice when available.

Differing cut points have been put forward to discriminate amyloid positive 
individuals from amyloid negative. As [11C]-PiB is chemically different to that 
of the [18F] family of ligands, this has a SUVR cut of 1.1-1.4 (Villeneuve et al., 
2015), however with the [18F] have been suggested to have between 1.42-
1.56 units (Jack et al., 2017) but this is still varied between groups with ADNI 
suggesting a 1.11 SUVR cut off for Florbetapir (Landau et al., 2012; 2015; 
Jagust et al., 2015). In comparison, different groups use a visual read instead 
which standardises groupings in other ways with similar levels of specificity 
and sensitivity (Morris et al., 2016). The indicative positive/negative 
discrimination is indexed by whichever method the group conducting 
analysis prefers, however, whilst human reads will be fairly consistent, there 
is always going to be stronger consistency in quantification if a standardised 
value is taken. However, the disagreements between cut offs across 
research groups for SUVR values therefore mean visual reads have become 
in some ways more consistent and more widely utilised.  

Quantitative analysis has been argued to be superior to visual reads in 
patients in whom the importance of detecting smaller amounts of Aβ is 
greater, such as in the early disease stages and for monitoring the effect of 
drugs that interact with amyloid, which are inherently produced to alter 
accumulation of Aβ and as such greater granularity in measurement is 
needed (Mckhann et al., 2011; Barthel et al., 2011; Ikonomovic et al., 2008; 
Schmidt et al., 2015). Nevertheless, visual analysis is normally performed 
using a binary scale while quantitative analysis usually involves sensitivity 
and specificity analysis without pre-specified cut-off values in most cases. 
Due to this, these data can be subject to over-fitting of the ROC model which 
can be argued to result in inflated sensitivity and specificity indices (Bacskai 
et al., 2007; Altman & Bland, 1994). Conversely, visual interpretation 
depends on the reader’s experience and this can lead to a lack of clear cut-
off values between normal and pathological categorised scans yielding 
unnecessary variation in the dataset. Which method is employed is not 
without its own flaws but both are utilised in different scenarios depending 
upon, research group preference, subject disease demographics and scan 
setting (clinical vs research).

Tau PET
All of these issues with interpretation of results still ring true when it comes 
to tau ligands, however, the weight of evidence within these tracers is still in 
its infancy. Tau PET tracers, now in their second generation, have recently 
been shown to track AD pathology by comparing scans to post-mortem brain 
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tissue (Villemagne et al., 2018). With a number of competing compounds in 
clinical trials, there is yet to be a clear preference in the field as most of the 
data is in its infancy (Okamura et al., 2018). Nevertheless, data thus far has 
yielded strong evidence that a number of compounds track disease 
topography and bond with the right targets. Currently there are ten first- and 
second-generation tracers in development, all with only research level of 
approvals thus far, none are commercially available for wider use 
(Villemagne et al., 2018). 

The key difference between tau tracers and amyloid bonding compounds is 
the need to discriminate between diseases. This is because tau is a key 
player in a number of other neurological conditions not only in AD, whereas 
Aβ42 is present in others but is only the first and most abundant hallmark of 
the disease in AD (Jack et al., 2018). The spatial distribution of tau deposits 
has been shown to be different for each individual tauopathy and is strongly 
related to the clinical phenotype of these diseases (Villemagne et al., 2015; 
Harada et al., 2016; Vogel et al., 2019; Schwarz et al., 2018). Contrastingly 
to the diffuse and widespread distribution of amyloid bonding ligands across 
the cortices, the retention of tau ligands is mainly observed in the inferior 
temporal and parietal cortices of AD patients (Okamura et al., 2018). 
However, within the normal aging process PHFs have also been shown to 
accumulate in the medial temporal lobe (Scholl et al., 2016). Therefore, a 
certain amount of tracer retention in this area is needed in order to classify a 
subject as tau positive (T+). But as tau is a downstream effect of AD this 
cannot be discriminately diagnostic in the way amyloid tracers are for AD 
(Jack et al., 2018). 

Of all the currently available ligands [18F]-flortaucipir has been the most 
widely studied and validated (Xia et al., 2013; Chien et al., 2013; Chien et al., 
2014). Whilst only approved for research use, thus far, it is still developed in 
a commercial setting. The topography of the tracer is in line with expected 
AD pathology and has been shown post mortem to follow the NFT Braak 
staging in AD (Marquie et al., 2019; Harada et al., 2018; Braak & Braak, 
1991; Schwarz et al., 2018). However, a significant amount of off target 
binding has been shown to occur (Ikonomovic et al., 2016; Lowe et al., 2016; 
Harada et al., 2016). Some studies have suggested that a very significant 
amount of binding (≈35-50%) is due to tracer interaction with MAO-A and 
MAO-B, as reductions to this degree are founds when an inhibitor of MAO-B is 
administered (Ng et al., 2017). However, this has been disputed and 
evidence for this off target binding of [18F]-Flortaucipir is mixed (Hansen et 
al., 2018; Smith et al., 2018). Off target binding with MAO-B is also an issue 
for some of the other first generation tau ligands [18F]-THK5351 & [11C]-
PBB3] (Jang et al., 2018; Villenmagne et al., 2018; Vermeiren et al., 2017; 
Okamura et al., 2018). This lack of selectivity somewhat inhibits these 
tracers from wide clinical use as off-site binding clouds and impairs any 
signal gleaned from on-site binding. These tracers, such as [18F]-flortaucipir, 
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have also shown discrepant data between preclinical and clinical binding 
profiles (Marquie et al., 2015; Lowe et al., 2016) as well as between ante-
mortem and post-mortem findings (Marquie et al., 2017a; Marquie et al., 
2017b). Importantly, these inconsistencies have been shown to only apply to 
straight 4R tau filaments found in other tauopathies and not to the 3R or 4R 
(repeat isoforms) of PHF-tau found in AD. But whilst the coherent AD profile 
of binding for tau itself with these ligands has been demonstrated, these 
discrepancies in findings can actually result from tracer binding to an 
alternative target and increase the likelihood of a false positive/engender 
lower specificity, giving further cause for the unreliability of such ligands.This 
has led to further development from other groups to improve the 
pharmacokinetics and binding properties of the available ligands. Several are 
in development still however, some have shown distinct improvements in off-
target binding with [18F]RO-948 showed high affinity for NFT and excellent 
selectivity over other protein formations in AD (Honer et al., 2018). 
Preclinical and in human data also indicated lower binding affinity to MAO-
A&B than that of first-generation tracers [18F]-Flortaucipir and [18F]-THK5351 
(Wong et al., 2018; Honer et al., 2018; Gobbi et al., 2017). By contrast to the 
first-generation ligands, pre-clinical studies show that [18F]-PI2620 (Stephens 
et al., 2017) binds not only to PHF-tau and 4R tau but also to 3R tau. Proof of 
concept studies are underway to ascertain whether [18F]-PI2620 also binds to 
3R tau in vivo. Both [18F]-MK-6240 and [18F]-PI2620, are currently the only 
tau ligands to have shown minimal evidence of off-target binding thus far, 
although both show positive results further proof of concept studies are 
needed to fully validate these ligands in AD (Walji et al., 2016; Stephens et 
al., 2017; Goedert, 2018; Okamura et al., 2018).

Overall, tau PET ligands are still in their infancy with imaging to autopsy 
studies needed to confirm the topographical distribution of the ligand binding 
truly reflect the requisite tau deposits in the cortex. It is also important to 
establish accurate quantification of tracer binding given the prospective 
utilisation of these ligands. Currently there are limitations to our knowledge 
around the progression, speed and cortical direction of tau pathology during 
normal aging and AD, as such these ongoing longitudinal studies are key to 
help clarify the progression of PHF formation. It will be a critical point to 
assess how the different spatial progressions map onto the clinical 
presentation of AD. In particular if these cortical “subtypes” present different 
cognitively. With tau antibody approaches similar to those undertaken for Aβ 
soon to undergo the clinical development process in AD, fully understanding 
the properties of these ligands will be critical to accurately analysing the 
pharmacological properties of these new compounds (Sigurdsson, 2018). 

Summation of Current Imaging Methods
Numerous neuroimaging methods are now available for both diagnostic 
purposes and measuring AD cross-sectionally and longitudinally. With the 
inception of pathology-based ligands it is easier than ever to track and 
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measure this specific AD related proteinopathies in vivo. This has led to the 
improvement of diagnostic criteria (Jack et al., 2018) and increased our 
understanding of the disease, however there are still a number of 
unanswered questions. These ligands have become the primary sources of 
disease measurement where available. But primarily due to cost, primary 
care needs and ligand availability, they are not routinely employed outside 
clinical trials. However, in this regard they are indispensable. The ability to 
not only track decline and measure target engagement carries obvious 
benefits for new compounds in development. These modalities will be crucial 
to our further understanding of AD and potential therapies. Previous 
measures such as FDG-PET and fMRI are not redundant but play a smaller 
role now in this regard but can provide useful measures of AD when other 
alternatives are unavailable.  
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Cognition in AD

Simply put, cognition is thinking, it’s all of the mental processes that underlie 
the majority of human thought. From reasoning and decision making to 
sensory interpretation of stimuli to memory and information retention, all of 
these are cognitive processes. The senescence of cognition is as with other 
parts of the body. However, in Alzheimer’s disease this is far more 
pronounced and a more rapid decline (Jack et al., 2013). Cognition is the 
point within AD when the pathology manifests itself as noticeable 
measurable deficits in a subject. This section will address the cognitive 
aspects of the disease, how they are measured and what more can be done 
to better address this condition, especially in the very earliest stages of the 
disease.

Measuring Cognition & AD Disease Staging
When it comes to using a cognitive measure within a disease such as AD, 
two key factors are important to consider, how a measure tracks with the 
decline of the disease and secondly, how likely is it to be a good indicator of 
the presence or absence of the disorder from a single administration 
(predictive utility). These two things are discernibly diverse and whilst not 
mutually exclusive they often do not occur for an individual test of cognition 
used within AD (Soobiah et al., 2019). Longitudinal sampling as well as 
standardisation of scoring are both ways to increase the ability of detecting 
impairment and decline respectively for these two areas. Increasing the 
number of time points for an individual subject increases the available 
information and therefore the more noticeable deviations from their ‘normal’ 
or baseline performance are. Nevertheless, this isn’t without its 
complications and extraneous factors and also relies upon the inherent 
measurement stability of the scale in question. All of this amounts to an 
individual measure/scale/test to require a large quantity of normative data 
both at individual time points on healthy individuals, individuals with specific 
disease confirmations and longitudinal sampling within samples. Thus, these 
complexities and mass of data points needed yield very little deviation, from 
“well-validated” or widely utilised tests which have been employed for 
significant periods of time (decades), when choosing the best measure for a 
research, trial or clinic setting. 

Tracking the decline of the disease is often related to the pathology, but in 
AD the complicated disease pathology has led to a complicated interplay 
between biomarkers and cognition. This has meant treating cognition more 
like an inherent biomarker itself and tracking its decline over the ≈20-year 
disease course in relation to the functional impairment exhibited by 
individuals due to their cognitive impairments (Jack et al., 2018; Albert, 
2011; Jack et al., 2016). However as shown in these studies and discussed at 
length earlier amyloid is shown to be the first large pathological signature 
and as such relating this pathology to cognitive processes is key. 
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The term MCI or mild cognitive impairment, is not unique to AD but is widely 
used as the diagnostic to determine the early signs of disease progression 
that have manifested themselves in a detectable manner in everyday 
conditions. MCI is defined as being below one standard deviation worse than 
the normal performance for an individual’s age (Jack et al., 2018; McKhan et 
al., 2011). Depending on which measure is being looked at, this can (and 
should) also take into account age, gender and education level. These 
factors will be explored in more detail later. MCI is commonly inter-spliced 
with prodromal AD in Europe, with both definitions expound subtle cognitive 
worsening from a normal level. However, prodromal AD specifically refers to 
a confirmed diagnosis of AD through biomarker pathology (Dubois & Albert, 
2004). MCI does not always infer a diagnosis of AD and can have many other 
causative factors (Peterson et al., 1999), such as diet (Lourida et al., 2013) or 
a vitamin B12 deficiency (Malouf & Evans, 2008). Much research was 
conducted around the concept of MCI in the late 1990s to 2010, classifying 
subtypes, amnestic vs non-amnestic both outside dementia and AD and 
within it. However, as discussed at length earlier, with the improvements in 
disease understanding and biomarkers that are hypothesised to track 
pathological decline in vivo, the diagnostic terminology has evolved into 
prodromal and preclinical AD (McKhann et al., 2011; Dubois et al., 2014). MCI 
still refers to the earliest of cognitive change but it does not engender the 
same diagnostic classification as it was in the late 1990s. Previous 
incarnations of this terminology have been Age Associated Memory 
Impairment (AAMI, Crook et al., 1986) and “benign senescent forgetfulness” 
(Krul et al., 1962). Whatever the terminology, this represents the very initial 
progression of a decline in cognition into AD and as such, warrants pervasive 
levels of research. Although there are many instruments to measure this 
which will be discussed in detail later, first the focus will be on the domains 
of interest in AD and how, and if, this maps to the disease progression.

Most measures index one or more cognitive domains, these are more distinct 
abilities or processes that include episodic memory (ability to remember 
locations, times and places for example), processing speed, attention and 
planning (also contained within a wider, higher order group of cognitive 
processes, termed executive functions). How a measure is determined to 
index individual domains is down to the component task paradigms. Say a 
measure of how many words an individual can remember from a list 
inherently indexes an individual’s episodic memory due to the nature of the 
stimuli they are being asked to recall. As such whilst construct validity and 
testing paradigms may vary slightly across different measures characterising 
by domains allows for cross comparison without restrictions to an individual 
measure. 
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Amyloid Burden & Cognitive Domains
A number of recent papers have reviewed the literature around this and 
produced meta-analyses of a large number of cohort studies that have 
tracked progression across time in both healthy individuals and those with 
various stages of AD (Mortamais et al., 2017; Backman et al., 2005; Hedden 
et al., 2013). With the new diagnostic criteria for research at the earliest 
stages of AD (preclinical & prodromal) it is key to ascertain how best to index 
the -1 standard deviations below the normal performance for someone who 
comparable to the demographics of the individual being assessed. What is 
not clear is if that is the first indicator of cognitive decline or if there are 
other earlier indicative domains or impairments in cognition exhibited by 
amyloid positive individuals. 

Cognitive measures currently used to describe AD focus upon contrasting 
differences between AD and non-AD (healthy elderly) individuals, 
nevertheless this is inappropriate when looking at the earliest indicators of a 
decline in cognition at the prodromal and preclinical stages of the disease. 
The very earliest cognitive changes, should they exist, are likely to be subtle 
and as such necessitate highly sensitive measures that index the inherent 
brain regions affected by the disease course (Mortamais et al., 2017). As 
shown in the latest research criteria (Jack et al., 2018), amyloid deposition is 
the first indication of disease pathology in this model of the disease. As such, 
relating amyloid deposition to cognition at the earliest stages is key to 
understanding the cognitive changes within AD itself.

Episodic Memory
Amyloid deposition has been shown to occur decades before the onset of 
clinical presentation, with poorer performance on tasks involving episodic 
memory being frequently associated with higher amyloid burden, leading to 
a strong hypothesis for this being one of the first indicators of cognitive 
decline within the disease (Mortamais et al., 2017). A recent meta-analysis of 
over 1,200 individuals from 16 cohorts reaffirmed this finding using mostly 
cross-sectional studies (Hedden et al., 2013). On an individual study level, 
results are divergent to this, with heterogeneous findings, this variation has 
in part been due to the cognitive measures employed and the method of 
amyloid burden estimation. One such method is by using the most well 
validated amyloid tracer, Pittsburgh Compound B (PiB), this showed 
significance on a measure of verbal list learning (California Verbal Learning 
Test [CVLT]) only when looking at their relationship with amyloid burden as 
measured by the PiB uptake index (Perrotin et al., 2012). Whereas outside 
this, a study using staging-based visual reads found no relationship (Song et 
al., 2015). This is likely to be down to the inconsistency of visual reads on 
scans such as these, enforcing the need for a quantifiable measurement of 
amyloid burden applied consistently throughout an individual cohort. Another 
similar episodic memory task, the WMS-LM (story/paragraph recall), has 
yielded more consistent results with amyloid burden. Both an 18-month 
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study by Doraiswamy and colleagues (2012) and a cross sectional study by 
Reisa Sperling and her group (2013) showed increased amyloid burden 
resulted in poorer performance on this subtest of the WMS. 

Contrastingly, longitudinal studies following individuals from the very earliest 
stages of the disease, using a range of amyloid tracers, have yielded 
consistent results with an increasing amyloid burden, significantly greater 
decline in a range of episodic memory measures (WMS-LM, CVLT, FCSRT 
[Free and Cued Selective Reminding Task], CBB [Cogstate Brief Battery], 
HVLT [Hopkins Verbal Learning Test], VRM [Verbal Recognition Memory] and 
VRT [Visual Retention Test]) has been shown (Lim et al., 2013; Lim et al., 
2015; Mormino et al., 2014; Pietrzak et al., 2015; Yotter et al., 2013; 
Villemagne et al., 2013; Stonnington et al., 2014; Farrell et al., 2017; Rabin 
et al., 2018; Donohue et al.,2017; Buckley et al., 2017). These findings were 
predominantly across 6 globally diverse cohorts suggesting the robustness of 
this outcome regardless of cultural differences, amyloid deposition 
measurement and episodic memory measure employed. These episodic 
memory deficits also coincide with individuals showing significantly more 
amyloid deposition in the temporal lobe (Stonnington et al., 2014; Yotter et 
al., 2013), thus indicating a neurobiological interplay between the AD 
pathology and cognitive processes impaired. However, as demonstrated by 
this broad finding, many different measures are used to index this domain, 
with all having different nuances important to take into account when 
measuring cross-sectionally. All aforementioned measures differ in terms of 
their construct and testing paradigm, making cross comparison between 
measures difficult and inducing unneeded variance into wider adoption of 
these findings.

The Dallas Lifespan Brain Study also showed when dichotomising their cohort 
by amyloid status yielded fewer effects on individual cognitive domains than 
a continuous SUVR measurement. However, amyloid positive individuals 
increasing baseline SUVR values led to an increase in the decline in episodic 
memory, as measured by HVLT and VRM composite. This study also showed 
a “dose” response in standard uptake value ratio (SUVR) increases (SUVR 
values of 1.0, 1.2, 1.4 & 1.6) and cognition, these findings remained the 
same even after controlling for baseline amyloid burden, clearly indicating an 
interaction between pathology and cognition (Farrell et al., 2017).    

In a recent meta-analysis (Baker et al., 2017) of this phenomenon pooled a 
total of 30 cross-sectional (N = 5005) and 14 longitudinal (N=2584) cohorts. 
Cross sectional Aβ related cognitive impairment was observed for global 
cognition (MMSE; d=0.32), visuospatial function (d=0.25), processing speed 
(d=0.18), episodic memory and executive function (both d’s=0.15). Declines 
observed related to Aβ were also found for global cognition (d=0.30), 
semantic memory (d=0.28), visuospatial function (d=0.25), and episodic 
memory (d=0.24). However, the findings also showed that Aβ deposition 
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related impairment was moderated by a number of factors such as age, 
amyloid index, inclusion of control variables such as gender and educational 
level for both cross sectional and longitudinal analysis. This finding shows 
that when looking cross sectionally it can be argued that cognitive 
impairment is much more widespread than a single domain, however, the 
irrefutable evidence longitudinally is for significant early decline in episodic 
memory in relation to amyloid load. 

Semantic Memory
Whilst these robust deficits shown in episodic memory in relation to amyloid 
burden, semantic memory is less well known, with this primarily being due to 
the lack of variation to the tasks employed which are inherently rudimentary 
(category fluency and naming). Cross sectional evidence across multiple 
cohorts has stoutly shown no association between semantic memory and 
amyloid load (Johnson et al., 2014; Perrotin et al., 2012; Song et al., 2015; 
Doraiswamy et al., 2012; Sperling et al., 2014). However, within the AIBL 
(Australian Imaging, Biomarkers and Lifestyle) cohort small impairments on 
the Boston naming test (BNT) have been associated with increasing amyloid 
load longitudinally (Pietrzak et al., 2015; Ellis et al., 2013). However, this 
finding has not been shown at every AIBL analysis paper indicating this small 
finding within a single group requires further study outside this cohort in a 
longitudinal analysis to expound upon any possible relationship with Aβ load. 
A meta-analysis of both longitudinal and cross-sectional cohort studies 
(N=2584 [longitudinal]; N=5005 [cross sectional]) by Baker et al (2017) did 
show semantic memory to have the largest effect size (-0.28) of all individual 
cognitive domains when indexing differences between AD and non-AD 
individuals. Global cognition remained the strongest indicator of difference 
between groups from this analysis with -0.32 and -0.3 cross sectionally and 
longitudinally respectively.

Anatomically it is currently thought that the inception point of the AD 
amyloid pathology is in the trans-entorhinal cortex/perirhinal cortex, which is 
an area that has been shown to be responsible for semantic memory 
processing (Hirni et al., 2013; Braak et al., 2006; Braak & Braak, 1991). The 
pathology is then thought to spread to the entorhinal cortex and 
hippocampus which are key for episodic memory processing (Hirni et al., 
2013). Thus, from a theoretical standpoint impairment in tasks of semantic 
memory should be seen to be preeminent in the course of AD. However, a 
plethora of prospective cohort studies in preclinical AD have shown the exact 
opposite, with episodic memory being the antecedent cognitive domain of 
decline (Doraiswamy et al., 2012; Ellis et al., 2013; Farrell et al., 2018; 
Hedden et al., 2013 [Meta-Analysis], Lim et al., 2014; Lim et al., 2015; 
Mormino et al., 2014; Roe et al., 2013; Villemange et al., 2013). 

There is nevertheless some evidence that suggests this may not be the case, 
with one 9-year long cohort study and a 14-year follow up study, indicating 
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the initial cognitive domain of decline is semantic memory (Amieva et al., 
2008; Amieva et al., 2005). Both of these studies have shown this finding 
using the Isaacs Set Test (IST) (Isaacs & Akhtar, 1972). Whilst not being 
widely employed in cohort studies, this congruency between measure and 
finding, leads to an argument of the validity of this domain or more strongly 
the test itself. Further failings elsewhere within other semantic memory 
measures, indicate inherent implicit flaws in the construct and praxis that 
are dubitable to this cognitive domain. The duplication of findings for this 
task is in the inherent characteristics of naming and categorical recall that 
are argued to be reliant upon concept formation which, is deemed part of the 
executive function umbrella (Dimitrov et al., 1999). This leads to the 
conclusion that better more specific measures and wider research of 
semantic memory is needed to properly index this domain early in the 
pathogenesis AD. Concurrently as with episodic memory, semantic memory 
has been shown to be significantly lower up to a decade prior to symptom 
onset in AD and likewise also shows a descendent inflection in parallel, with 
an acceleration a few years prior to diagnosis, along with hippocampal 
shrinkage (Ritchie et al., 2016). Whilst the evidence of semantic memory’s 
relationship to amyloid is murky, the findings within specific measures 
warrants further more nuanced research. 

Working Memory & Executive Function
Looking at the working memory domain, it is further compounded by the 
inability to accurately discriminate this from other memory processes on 
measures that engage this cognitive function (Collette & Van der Linden, 
2002). Nevertheless, small differences have been found when dichotomising 
the AIBL cohort on the one back and one card learning measures from the 
CBB over 18 months and 3 years (Lim et al., 2015; Hollands et al., 2015). 
However, the majority of studies have found the absence of a robust 
relationship between amyloid load and this measure (Johnson et al., 2014; 
Amariglio et al., 2012; Lim et al., 2014; Pietrzak et al., 2015). Until further 
studies are undertaken using more coherent working memory tasks, showing 
a clear and distinct relationship between performance and amyloid burden it 
is suggested that these cognitive processes are not deficient at the earliest 
stages of AD. 

In contrast to episodic memory, there has been an abundance of studies that 
have found an absence of an association between executive function and 
amyloid burden (Mortamais et al., 2017). This finding remains regardless of 
testing paradigm, within this broad domain, or experimental design (Johnson 
et al., 2014; Perrotin et al., 2012; Song et al., 2015; Amariglio et al., 2012; 
Sperling et al., 2013; Lim et al., 2014; Roe et al., 2013; Ellis et al., 2013; 
Baker et al., 2017; Dubios et al., 2018). A small number of studies have 
shown some associations using executive function measures within AD 
cohorts; Doraiswamy and colleagues (2012) showed differences between the 
digit symbol substitution test (DSST) and amyloid burden. Further to this, 
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another association is between an executive composite measure (comprising 
category switching, letter fluency and a one back paradigm from the CBB) 
and amyloid PET SUVR (Pietrak et al., 2015). Nevertheless, both of the 
measures employed in these two aforementioned studies are not domain 
specific and have strong episodic memory components, which are argued to 
be the drivers of these findings. A further study by Doherty and colleagues 
(2015) is one of only two studies to show significant differences between 
amyloid positive and negative individuals. They found greater age-related 
decline in the stroop interference trial and the Trial Making Test (TMT) A and 
B when their cohort was dichotomised by amyloid status. Both of these 
measures have a strong attentional component which could be argued to 
influence this finding, thus arguably giving further credibility to the absence 
of earlier executive impairment within AD. However, it is broadly agreed 
from these findings that executive function declines at a later stage of the 
disease to that of episodic and semantic memory.  

Imaging & Cognition
In addition to the concordance with amyloid deposition other structural and 
functional neuroimaging studies have looked into the relationships with 
cognition. The primary focus of these studies was centred around the 
structural changes to the hippocampus and related temporoparietal 
structures. When looking at these changes cross-sectionally a number of 
studies have found no significant associations with composite memory 
scores in preclinical stages of AD (Besson et al., 2015; Toledo et al., 2015; 
Wirth et al., 2013). However, in an eighteen-month longitudinal study, 
Seidenberg and colleagues (2013) found that the RAVLT had a steeper slope 
of decline across this time period which was significant, with smaller bilateral 
hippocampi (as measured with vMRI) at baseline as well as across this period 
of decline. The outcome measures from the RAVLT were the sum of the initial 
trials (1-5) and also the index of delayed recall. Thus indicating a relationship 
between immediate and delayed verbal recall and volumetric decline in the 
hippocampus. However, no other studies have shown comparative findings 
and whilst the number of individuals is small (n =78), the theoretical 
background of the finding, explains why a task dependent upon new memory 
recall is impaired with a change in hippocampal size. 

Looking at brain wide cross sectional data changes in the temporal lobe and 
posterior cingulate cortex cortical thickness as well as brain atrophy, have 
shown significant associations with poorer performance on composite scores 
of memory and executive function (Toledo et al., 2015; Wirth et al., 2013; 
Dore et al., 2013). These regions have also been found to have significant 
associations in early AD between increased hypometabolisms and poorer 
performance on composite executive function and memory scores (Wirth et 
al., 2013; Toledo et al., 2015). However, a study by Besson and colleagues 
(2015) found the absence of an association between increased 
hypometabolism in these brain regions and poorer composite memory and 
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executive function scores. The key difference between these studies was a 
mean age group difference of around ten years, with the Benson study 
comprised of individuals who were much younger (65-67 mean age) 
potentially suggesting that this variation is age related.

Overall combining measures of cognitive functions with imaging and 
pathological markers engenders the strongest possible ability to indicate 
deterministic relationships. Whilst important discrepancies can be elucidated 
from cross sectional analysis, using cohort studies that are measuring 
individuals longitudinally is central to a better understanding of disease 
progression, both in relation to amyloid load and for greater understanding 
of domain specific impairments. These impairments should also be held in 
the context of the scales underpinning their assessment, with domains such 
as semantic memory being assessed with a dearth of highly specific 
measures. Current longitudinal evidence suggests the initial decline in 
episodic memory is seen across many different measures, however more 
nuanced measures of semantic memory are needed to fully explore this 
domain within AD. Cross-sectional indications are more varied, however 
strong evidence suggests a general decrease in global measures are driven 
by attention, executive function and memory which is contradictory to the 
longitudinal findings.   

Tau Pathology & Cognition 
As broad Tau pathology is not thought to occur to a detectable degree until 
amyloid plaques are abundant, this does not engender the earliest stages of 
the disease. However, some interesting findings have been shown. And with 
the growing number of trial failures within amyloid targeting compounds, 
greater focus has now been placed upon the relationship between cognition 
and tau pathology (Giacobini & Gold, 2013; Pedersen & Sigurdsson, 2015). 

As discussed previously, the spread of pathology is widely agreed to 
originate in the trans-entorhinal cortex/perirhinal cortex then spreading to 
the entorhinal cortex and hippocampus spreading to the frontal, then 
parietal lobes before engulfing the whole cortex (Hirni et al., 2013; Braak et 
al., 2006; Braak & Braak, 1991) and it is in these latter stages where tau has 
been implicated to drive the cognitive and functional decline to a degree. 
Detailed in an overarching manner on the Jack graphs (Jack et al., 2016; 
2014; 2011 & Figure 1.2 above, Hansson, 2021), the initial cognitive 
impairment occurs after the build-up of amyloid has already predominantly 
happened and levels of tau are also starting to peak. Greater cognitive and 
subsequent functional decline also coincides with progressed 
neurodegeneration, which can also be attributed to increases in tau 
pathology, due to the stagewise approach with ATN (Soldan et al., 2017; Jack 
et al., 2017). 
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Studies have also shown that tau PET has better sensitivity than Aβ PET for 
detecting early cognitive changes in preclinical AD (Ossenkoppele et al., 
2019). However, as this methodology is still in its infancy longitudinal studies 
with ligands with no off-target binding are yet to read out. Nevertheless, due 
to well validated CSF assays the progression of tau pathology and cognitive 
decline is well documented (Samgard et al., 2010).  Some studies suggest 
that high CSF t-tau, but not CSF p-tau, levels correlate positively with more 
clinical symptoms as well as the degree and speed of cognitive decline 
(Wallin et al., 2006; Stefani et al., 2006; Samgard et al., 2010; Veitch et al., 
2018; Brier et al., 2016). Whereas CSF p-tau levels have been shown to 
increase during the earlier stages of cognitive decline and progression to AD 
(Andersson et al., 2008; Hansson, 2021) suggesting that p-tau may be useful 
as a longitudinal marker of the neurodegenerative process earlier in the 
disease, whereas t-tau is more akin to latter stages of the disease where 
greater neurodegeneration occurs.

The very latter stages of the disease (MMSE <12), when AD dementia occurs, 
are defined by widespread impairment, as once the disease progresses to 
full AD dementia, cognitive and functional deficits become abundant, more 
debilitating and extensive (McKhann et al., 1984; APA, 2000). At this point 
the cognitive and functional deficits make assessment more challenging and 
as such global measures are routinely utilised to minimise patient burden. 
These late stages of the disease are when pathology overwhelms the cortex, 
atrophy is more progressed and widespread and ultimately leads to the end 
of life. In order to maximise efforts to prevent people from reaching this, the 
earliest intervention is needed, as such with impairments in cognition being 
the initial outward manifestation of AD finding the earliest possible signs of 
these deficits is critical to this.  

Factors Influencing Cognition
In order to find such deficits an individual has to be measured against 
themselves or a large population of healthy individuals (normative data) to 
be able to tell if they have a specific deficit. The majority of people don’t 
have a baseline measure prior to the existence of a condition, therefore 
neuropsychologists utilise population normative data most frequently to 
compare each person’s individual scores to. However, with an 
overwhelmingly heterogeneous population a vast array of factors need to be 
taken into account in order to give an accurate presentation of a individuals’ 
performance, especially for comparison to normative data, as well as trying 
to index the state of their own decline. Given enough individuals the 
variation should mimic that of a gaussian distribution, allowing for the ability 
of measurement of an individual against a normative population. 

Cognitive Reserve/Education 
This cognitive heterogeneity becomes less of an issue when factors 
influencing this variance are taken into account. One of these key factors is 
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termed cognitive reserve or cognitive resilience. This is the notion that some 
individuals with AD are able to withstand the amyloid burden placed upon 
the cortex during AD pathogenesis by maintaining their cognitive level 
(Katzman 1993; Stern 2012) and as such delaying or reducing the risk of 
developing AD symptoms (Bennett et al. 2003; Stern 2009). Many factors are 
thought to comprise and input to cognitive reserve including intelligence 
quotient (IQ), education, engagement in complex occupations, physical 
exercise and cognitively stimulating activities (Bennett et al. 2003; Rentz et 
al. 2017; Scarmeas et al. 2009; Scarmeas et al. 2003; Stern 2009; Stern et 
al. 1994; Wilson et al. 2003b; Wilson et al. 2003a; Wilson et al. 2007). Using 
Aβ PET research has shown that amyloid burden has a small but persistent 
effect on cognition and that cognitive reserve moderates that effect (Rentz 
et al., 2017; Kemppainen et al. 2008; Rentz et al. 2010; Roe et al. 2008; 
Giovacchini et al., 2019). When looking at tau pathology the association 
between cognitive reserve and tau in predicting MMSE has been found to be 
significant (Rentz et al., 2017; Hoenig et al., 2017). The interaction of tau on 
this measure of global cognition compared to Aβ may be related to the 
greater proximal association of tau to cognitive impairment (Delacourte et al. 
2002; Nelson et al. 2012), but confirms that tau takes over precedent after 
Aβ deposition along the AD trajectory. However, these effects are 
confounded by many healthy controls scoring at ceiling on the MMSE, as this 
is not particularly suitable at the earliest stage of the disease. Nevertheless, 
evidence to date indicates that cognitive reserve may be protective to a 
degree against the early onset of sporadic AD processes and as such enable 
some individuals to remain cognitively stable despite elevated tau and Aβ 
burden prior to decline into AD (Soldan et al., 2017; Pettigrew & Soldan, 
2019). 

Cognitive reserve is commonly measured using a proxy such as educational 
attainment. Facal et al., (2018) have shown the importance cognitive reserve 
(education levels) play in the decline from MCI to AD. Key to any analysis 
within cognitive reserve is how to split education level. This can be looked in 
a number of ways; chunking into formal education years under the 
presumption everyone finished school, treating the values in a continuous 
manner, by grouping the top and bottom quartiles or by chunking this into 
five-year bins. These approaches are likely to yield differing results based 
upon sample selection. Within the current cohort this variable has been 
gathered as a one continuous in nature and will initially be treated as such.

APOE
The apolipoprotein E gene (APOE) has been shown to influence cognition by 
increasing speed of decline and baseline cognition (Seo et al., 2016; Li et al., 
2017; Liu et al., 2013; Raber et al., 2000). It has been widely shown to be the 
most important gene for driving sporadic AD (Sleegers & Van Duijn, 2001; 
Frisoni et al., 2022). Each individual has two copies of the allele which is ε2, 
ε3 or ε4. Those that carry one or more copies of the ε4 variant have an 
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increased risk for developing AD and reduces the age of onset of AD 
symptoms by around 12 years (Belloy et al., 2019; Corder et al., 1993; 
Roses, 1996; Myers et al., 1996; Slooter et al., 1998). Two thirds of those 
with amyloid positive MCI carry the ε4 risk allele (Mattsson et al., 2018), with 
the prevalence dropping to 38% of those with clinically diagnosed AD and 
14% of cognitively unimpaired individuals (Yamazaki et al., 2019). Whilst 
carriers of the risk allele for APOE have a greater risk for AD, it is does not 
follow an autosomal dominant pattern in the same way as the variants in APP 
and PSEN. Neverthless it is still strongly associated with a familial history of 
dementia in general (Jansen et al., 2019). Given the earlier onset of cognitive 
impairment and differential trajectory of decline, cognition APOE status is a 
key factor to take into account when conducting any analysis of cognition 
within all stages of AD.

Critically there is a move from the field to diagnose those carriers of the risk 
allele to be diagnosed as a separate clinical and biological phenotype of AD 
(Frisoni et al., 2022). As a number of clinical and epidemiological studies 
suggest that this risk allele infers a distinct clinicopathological entity 
(Burnham et al., 2020; Toledo et al., 2019; Schmechel et al., 1993).

Gender
Across the last few decades of research AD is something that has always 
been found to disproportionately affect women more than men; with two 
thirds of the estimated AD population in the USA being women (AA, 2019). 
Sex differences have been observed in normal subtle age-related cognitive 
decline (Beeri et al., 2006). Cross-sectional analysis has shown that women 
perform better on verbal memory tasks whereas men perform better on 
visuospatial tasks (Proust-Lima et al., 2008; van Exel et al., 2001; van 
Hooren et al., 2007). However, longitudinal analysis has been inconsistent 
with some studies reporting greater annual rates of cognitive decline in men 
(Wiederholt et al., 1993), women (Proust-Lima et al., 2008), or no sex 
differences at all (Barnes et al., 2003). From a pathological standpoint 
baseline hippocampal volume and APOE status has been shown to be 
predictive of conversion from MCI to AD in women, but not in men 
(Spampinato et al., 2016; Caldwell et al., 2017). Greater hippocampal 
atrophy and cognitive decline in women were driven by interactions between 
sex and amyloid load on measures of memory and executive function, and 
between sex and t-tau on executive function only. All of which suggests an 
increased susceptibility of women more so than men to the clinical effects of 
AD pathology. In a review of the literature on sex differences in AD, Mielke 
and colleagues (2014) found that there was strong evidence that social and 
economic factor across the current elderly generation may have influenced 
the gender prevalence of AD. Factors such as higher occupational and 
educational attainment for men was the case many decades ago whereas 
now the opposite is beginning to be true, at least in part for educational 
attainment (Ryan & Siebans, 2012). With clear current gender differences 
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within the current most susceptible generation for AD, gender is needed to 
be taken into account with any analysis as this could have confounding 
effects on any study results analysed.

Age
Cortical atrophy and enlargement of the ventricles is a part of the benign 
senescence that comes during normal aging. Subtle cognitive decline is 
observed longitudinally across the lifespan in the elderly (Hickman et al., 
2000; Nichols & Basu, 1994) with normal aging contributing to this very 
subtle decline. However, recent research suggests that the picture is far 
more complex than this, with older adults exhibiting both losses and gains in 
cognitive abilities as they age (Spreng & Turner, 2019). This shift in cognitive 
architecture is thought to parallel with changes in cortical functional network 
architecture. These observations manifest in greater functional connectivity 
across lateral prefrontal regions and the DMN, implicating detectable 
alterations in cognitive control, memory and semantic processing as part of 
the normal aging process. This research needs to be probed further as 
integrated theory of cognitive aging in its infancy. However, age remains a 
key mitigating factor and must be accounted for in any analysis.

Overall, these nuances have been shown to influence cognitive performance 
to a level that could have implications for efficacy analysis both in research 
and clinical settings. Accounting for these variables within forthcoming 
analysis will be critical. As factors such as aging and ApoE status have been 
found to add significant heterogeneity to a population. 

Testing instruments
One of the key distinctions to make at the outset, is that cognitive testing, 
other than when it is domain specific, primarily falls into two distinct 
categories short cognitive tests and longer test batteries (which are usually 
comprised of domain specific tests). Shorter cognitive measures are 
primarily designed to condense these longer test batteries into shorter, 
quicker to administer, subject friendly measures. The upsides are speed of 
administration and patient burden. The downsides are a lack of scoring 
range, lack of psychometric validity and applicability to the disease in 
question. These short measures commonly provide snapshots into each of 
the domains and a global impression of cognition. The recognition and 
assessment of individuals thought to have MCI or more advanced forms of 
dementia, is done using these short cognitive tests and functional 
questionnaires (Arevalo-Rodriquez et al., 2013; Moyer, 2014) in the majority 
of settings (primary care, community dwelling or secondary care). Examples 
of this are the Mini Mental State Examination (MMSE, Folstein et al., 1975), 
Montreal Cognitive Assessment (MoCA, Nasreddine et al., 2005), 
Addenbrookes Cognitive Examination (ACE-III, Mathuranath et al., 2000). 
These measures are routinely employed in elderly populations and clinic 
settings due to speed of administration and perceived propriety in indexing 
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the constituent cognitive domains. Much like the Wechsler intelligent 
quotient (IQ) scales, the short cognitive tests use constituent domains to 
present an overall global measure for the test itself. 

For a detailed technical description of each of the measures being used for 
analysis within this thesis please see Chapter 2.

MMSE
The Mini Mental State Exam (MMSE) is the most widely utilised test, both in 
clinic and research, to screen for dementia. It is a thirty-item questionnaire 
comprised of very rudimentary components that mapped onto 
Awareness/Orientation, Language, Attention, Working Memory, Delayed and 
Immediate Memory and Executive function cognitive domains because of 
their inherent paradigms. Currently the MMSE is still under copyright but it 
has been widely utilised in western medicine as a quick screen for basic 
cognitive impairment, as it only takes approximately 5-10 minutes to 
administer and score. It is widely used across the world for this reason. The 
eight domains of the MMSE were designed to cover all key cognitive 
processes whilst excluding questions around behaviour which when designed 
were seen to be separate issues that would cloud measurement of cognition. 

Several studies have indicated that sociocultural variables, age and 
education could affect individual scores (Bleecker et al., 1988; Brayne & 
Calloway, 1990; Crum et al., 1993). Therefore, local standards have been 
developed for each population and cultural context being evaluated, with 
most populations akin to this having validation studies conducted (Diniz et 
al., 2007; Kulisevsky et al., 2009; Shiroky et al., 2007; Trenkle et al., 2007; 
Kang et al., 1997). For example, some Asian countries having unique 
variation across the repetition aspects of the MMSE and some specific 
adjustments being made for nomenclature for orientation to place items and 
education adjustments for individuals with little formal education (Shim et 
al., 2017; Ng, 2007; Murphy et al., 2019). The psychometric limitations of the 
MMSE such as learning effects and large ceiling and floor scoring have been 
shown to vastly limit their diagnostic accuracy in AD (Tombaugh et al., 1992; 
Sperling et al., 2012; Mitchell, 2009; Spencer et al., 2013). 

Cut off scores are something that varies between research groups with non-
concordance seen between clinical trials throughout the early stages of AD 
(Cummings et al., 2018; Chapman et al., 2016). The Alzheimer’s Association 
(2019) currently defines the cut offs as the following; 25-30 MCI/Normal, 24-
21 Mild, 20-13 Moderate and <12 Severe. However, these are subject to 
regional and cultural variations as detailed above. Within a sample of 
>23,000 US-based individuals MMSE cut offs were highly inaccurate at 
diagnostic classification in normal cognition, MCI and AD dementia (Chapman 
et al., 2016). This study also demonstrated consistently low PPVs (64% in 
some cases) and AUCs (<0.75), across multiple cut points on the global 
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score, suggesting whilst target populations may utilise the MMSE as an 
inclusion criterion, using this alone suggests that subject selection may be 
biased and highly varied across cognition and function potentially masking 
study results.

The majority of clinical trials within AD utilise the MMSE as part of their 
inclusion criteria, this is primarily in order to engender homogeneity of global 
function and disease level quickly within the cohort (Chapman et al., 2016). 
However, no significant treatment effects have been shown on the MMSE 
across every study undertaken in the last two decades (Lasser et al., 2015; 
Cummings et al., 2018; Siemers et al., 2016; Sims et al., 2017; Egan et al., 
2019; Sevigny et al., 2016). Whether this is due to lack of sensitivity as an 
endpoint or simply a complete failure of the compounds to alter cognition, is 
unanswered due to lack of an approved compound to alter AD progression. 
Longitudinally looking at the placebo groups it does tend to track with 
declines in function but lacks the sensitivity of individual domains. It is also 
argued that the continued use of the MMSE, albeit brief and inexpensive, for 
inclusion into AD trials may lead to inaccuracy of efficacy and other study 
findings not because of a lack of efficacy of the compounds, but due 
inappropriate subject populations. 

As a tool the MMSE is not particularly adept at standalone progression 
predication of an individual. A recent Cochrane review found no evidence 
supporting a substantial role of MMSE as a stand-alone single-administration 
test in the identification of MCI patients who could develop dementia 
(Arevalo-Rodriguez et al., 2015). Its predictive utility for wider dementia 
syndromes is much better. As another Cochrane review demonstrated, with 
specificity and sensitivity measures around 85% and 90% respectively 
(Creavin et al., 2016). But even within this review and meta-analysis there 
were multiple cut points demonstrating the variations between definitions in 
primary care, research and clinic and also indicating a need for validated cut 
off points akin to other markers of disease or function.  

The MMSE is widely utilised and useful for obtaining a quick snapshot in 
clinical settings. It appears to be more useful as a 30-point staging tool 
whereby doctors no matter their location can routinely gain a quick overall 
picture of function and rough current level of ability from a score on this test. 
However, as would be expected of a short cognitive test, it lacks deeper 
domain specificity when dealing with constituent cognitive processes. As 
such whilst an adequate tool for primary care use, other measures are 
needed to give a more in-depth representation of an individuals’ cognitive 
ability both cross sectionally and longitudinally to better track decline. Using 
this as a standalone measure is highly unadvisable due to its documented 
poor discriminate ability within the AD continuum as well as poor 
psychometric properties such as large floor and ceiling effects as well as 
strong learning biases. 
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Clinical Dementia Rating Scale (CDR)
The clinical dementia rating scale (CDR) was developed in the 1980s as a 
staging tool for dementia and is still the main measure used for clinical trial 
outcomes 40 years later (Hughes et al., 1982; Morris, 1993; Lowe et al., 
2012). It comprises 6 domains, which span broad cognitive abilities (mainly 
measured through an interview rather than completed by the individual) and 
functional day to day activities. The semi structured interview takes around 
45 minutes for each person (individual and significant other/study partner) 
and the clinician raters each of the six domains either 0, 0.5, 1, 2 or 3, plus 
giving the individuals an overall global score on the same scale (CDR-GS). 
Scores for each domain are totalled which provides studies with the primary 
outcome measure termed the sum of boxes (CDR-SB). The three cognitive 
domains are very broad and are very basic verbal assessments of cognition 
(memory, orientation and judgement & problem solving), which is often why 
supplementary domain specific cognitive measures are assessed in 
conjunction with the CDR. The functional domains consist of community 
affairs, home & hobbies and personal care, with a heavy emphasis on the 
latter domain. This component of the CDR gives broad details on everyday 
life of an individuals, in much greater depth than a standard question and 
answer measure. Currently, in conjunction with the MMSE the CDR is widely 
employed within clinical trials for staging of dementia severity, based upon 
the six-domain framework of the measure. Whilst this gives a broad view of 
functional level, its applicability to cognitive performance is questionable. 

Comparing the CDR and MMSE is important to understand how they compare 
diagnostically. The level of agreement between the MMSE and CDR scores 
has been shown to improve across the AD spectrum, further suggesting its 
suitability for picking up marked deficits rather than subtle cognitive 
changes. Using previously validated MMSE cut offs for CDR global scores 
(Perneczky et al., 2006) values were the worst for individuals with MCI 
κ = 0.15, slight agreement going up to κ = 0.48, moderate agreement for 
severe dementia. This suggests that whilst both scales index pronounced 
levels of impairment, they do not index the same constituent processes. 

The CDR is widely utilised in many different countries, it has been cross-
validated against other interview style measures through the CERAD 
initiative and is available in over fifteen different languages (Morris et al., 
1989). In a large sample of community-dwelling elderly, akin to a population-
based sample, results showed the CDR has strong internal consistency 
(Cronbach’s α 0.83–0.84) and inter rater reliability of 0.95 for the global 
score, with test-retest reliability of κ = 0.80 (Nyunt et al., 2013). A further 
study of inter rater reliability also showed moderate to high overall kappa 
scores across clinical trial expert raters (Rockwood et al., 2000). Criterion 
validity for both CDR-GS and individual domains scores has been shown by 
correlation with the MMSE, BNT and measures of survival (Fillenbaum et al., 
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1996). Importantly the CDR-GS is indexing comparative cognitive 
impairments in individuals across a period of three decades indicating the 
general stability for the assessment of dementia (Williams et al., 2009). 

However, whilst the CDR-GS has great reliability it has inherent issues for 
measuring change over time. The CDR-SB score can range from zero to 
eighteen and as such is often the endpoint of choice when measuring 
individuals longitudinally. It is argued that the CDR takes into account 
cognitive processes through its interviews, as executive functions play a 
large role in the ability for activities of daily living (problem solving, home & 
hobbies from the CDR), as well as measuring overall memory function with 
the memory box domain. These factors, as well as the in-depth nature of the 
scale, differentiate from the short form questionnaires of activities of daily 
living (ADL). 

The CDR-SB index has been shown to have excellent two-year internal 
responsiveness, for disease progression, indicating it is a prime candidate as 
a sole primary endpoint in disease modifying trials (Coley et al., 2011; 
Williams et al., 2013; Cedarbaum et al., 2013). However, further exploration 
of the usefulness of this as an endpoint earlier in the disease is needed as it 
is still unclear how some of the early changes are clinically relevant. This 
index is also well documented to follow the progression of AD pathology, 
with higher levels of pathology (both Aβ and tau) showing increased rates of 
decline on the CDR-SB score (Samtani et al., 2014; Weiner et al., 2017; 
Veitch et al., 2019).

Overall, the CDR is a validated and a tool capable of indexing the disease 
staging of a subject across the AD spectrum. Where it does fall down as a 
measure, is in the earlier stages of the disease (prodromal/preclinical AD). 
Whereby it doesn’t have the domain specificity to uncover subtle cognitive 
decline within single or multiple cognitive domains. Nevertheless, this is a 
worthwhile measure and provides clinical and functional information on a 
subject through the gleaning of information across the administration period. 

ADAS-Cog
For the past three decades the eleven-item version of the Alzheimer’s 
Disease Assessment Scale - Cognitive Subscale (ADAS-Cog11) has been 
ubiquitous with clinical trials in AD across the disease spectrum (Podhorna et 
al., 2015). However, with the shift in trial populations towards preclinical and 
prodromal AD the ADAS-Cog11 has been shown to have inadequate 
sensitivity to detect changes at this early stage of the disease (Doraiswamy 
et al., 2001). This is due to many individuals with MCI scoring at ceiling on 
eight of the domains of the ADAS-Cog 11 (Winblad et al., 2008; Grundman et 
al., 2004; Hobart et al., 2013; Llano et al., 2011; Graham et al., 2004; 
Ueckert et al.,2014; Raghavan et al., 2013; Pyo et al., 2006; Zanotta et al., 
2014). As a result, new measures were added to the form to give the ADAS-
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Cog-13. This comprises of Word Recall, Naming Objects and Fingers, 
Commands, Constructional Praxis, Ideational Praxis, Orientation, Word 
Recognition, Language, Digit Cancellation, Delayed Word Recall and a Maze 
test (Rosen et al., 1984; Mohs et al., 1997). The full ADAS as well as the 
cognitive subscale was originally designed to assess the severity of 
dysfunction in mild to severe AD (Rosen et al., 1984). The full ADAS takes 
around forty-five minutes to administer and is scored from 0 to 150 (Cog 
scale 0-70 [11], 0-85 [13], 0-90 [14]) by summing errors made on each task, 
as such higher scores indicate greater impairment. There have been many 
variations made of this measure however overall in a review of the numerous 
variations of the ADAS-Cog results suggested that the original ADAS-Cog is 
not an optimal outcome measure for pre-dementia studies (Kueper et al., 
2018). Nevertheless, with the ubiquitous prominence of the ADAS-Cog in AD 
clinical trials, replacement outcome measures require much validation. 
Thirty-one modified versions of the ADAS-Cog were found within the 
literature review. Modification approaches that appear most beneficial 
include altering scoring methodology or adding tests of memory, executive 
function, and/or daily functioning. Although modifications improve the 
performance of the ADAS-Cog, this is at the cost of introducing heterogeneity 
that may limit between-study comparison.

All three acetylcholinesterase inhibitors that were approved in the 1990’s 
showed improvements (lower scores) on the ADAS-Cog on treatment (Birks, 
2006). As a result of this and the absence of new positive results since then, 
the ADAS-Cog has stayed as a primary efficacy measure of choice to this day 
in the vast majority of phase III clinical trials in AD. As suggested by the 
authors at its inception (Rosen et al., 1984) and by a recent review of the 
variants of the task (Kueper et al., 2018) this is not fit for purpose within the 
early stages of the disease due to its poor psychometric properties and lack 
of published validity data (Soobiah et al., 2019). However, with this measure 
being utilised in a steadfast manner across clinical trials, researchers have 
turned to other nuanced ways of improving this index without removing it 
from the efficacy analysis as a primary or secondary endpoint. These have 
come in the form of cognitive composite scales.

The Validity of These Measures

The biggest question surrounding these measures is are they fit for purpose 
within the earlier stages of AD. As discussed above the MMSE, CDR and 
ADAS-Cog are stalwart measures for AD. They measure a variety of cognitive 
domains and day to day function (Lezak, 2004). However, whilst the 
performance and accuracy of these measures has been shown in mild and 
progressed AD (Kueper et al., 2018; Schmand et al., 2011; Vellas et al., 
2008), it is far more questionable for measuring subtle impairment earlier in 
the disease (Mura et al., 2014; Podhorna et al., 2016; Mortamais et al., 
2017). Failures for adequate measurement in these early stages of AD, is 
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probably largely due to the floor and ceiling effects for these measures 
within these populations (Mura et al., 2014; Baker et al., 2017; Duke Han et 
al., 2017; Karin et al., 2014; Cano et al., 2010). These tests are nearly always 
administered in combination, as such the testing length of these 
assessments typically spans several hours leading to fatigue effects on 
performance. So not only do the tests take too long and don’t measure the 
early stage of the disease, they do not fully translate to day-to-day function 
and by proxy therefore limit their clinical relevance to the clinical 
presentation of AD (Rockwood et al., 2007; Royall et al., 2007). 

As these tests often comprise assessment of a variety of cognitive domains, 
such as episodic memory, semantic memory, attention, language and 
executive function. The questions become:
– how well do these measures accurately index these domains they are 

designed to measure (content validity)? 
– How well do measure the disease process itself within AD (criterion 

validity)? 
– How does it perform across different regions and demographic groups 

(cross-cultural validity)?
– Does the outcome measures/output scores from a measure, reflect the 

domain being measured (construct validity)?
– Can measures with the same underlying construct be used 

interchangeably to provide the same outcome (concurrent validity)?
– Even when measures share the same domain of interest, do they measure 

the same domain (convergent validity)?
– And finally, how do they relate to everyday performance/a clinical 

presentation (interpretability)?

These questions form the basis of psychometrics when designing cognitive 
measures. However, a recent review of cognitive measures used within 
clinical trials in AD, designed to assess treatment response/efficacy of 
compounds, showed only 50% of the measures used as the primary outcome 
measure in a given trial, had published information about their validity 
(Soobiah et al., 2019). Whilst it is important to state these measures have 
been broadly translated and used in multiple countries and in multiple 
clinical trials, the cross-cultural validity, is broadly unknown. The CDR in 
particular only has published information on how it performs in relation to 
other measures of the same construct (convergent validity). Whilst it does 
have strong internal consistency and inter-rater reliability information 
published, given that the only published validation efforts made are to align 
to prior measures, not AD itself, there is a strong argument to be made it is 
not fit for purpose in early AD. The picture for the MMSE and the ADAS-Cog is 
similar. These two measures only have published validation efforts in relation 
to how the measures perform when comparing between measures at the 
same time (concurrent validity). They both have test re-test and inter-rater 
reliability metrics which are fairly strong, however the fundamental question 
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remains the same, how can researchers be sure they are measuring the 
disease course or even the right domains accurately within AD itself.

This fundamentally underlines the issue of the validity of these measures 
and the issues facing the field. A fundamental aim of this thesis is to improve 
this understanding of these commonly used measures within AD by 
understanding their validity as measures with the early stages of the 
disease. But also, the clinical meaningfulness of them by linking them to 
disease stage and pathology at the core of AD.

Cognitive Composites & Index/Discrepancy Scores
With the plethora of testing instruments available covering different 
domains, and the immovability of the current key outcome measures in 
clinical development, the field has somewhat shifted towards composite 
endpoints. The FDA (2017; 2018) have also indicated that they have a 
favourable opinion on having validated composite measures as part of the 
efficacy package within clinical trials. Made up of different domain measures 
from the widely validated tests and other domain specific measures, 
composites have come to play a key role both in clinical trials and academic 
research with two key composite measures being developed for preclinical 
and prodromal AD (Sabbagh et al., 2019).

Preclinical Alzheimer’s Cognitive Composite (PACC)
The preclinical Alzheimer's cognitive composite (PACC) was developed 
(Donohue et al., 2014) using data from three observational cohort studies 
(AIBL, ADNI, and ADCS Prevention Instrument Study) in Aβ positive and 
negative individuals. It is comprised of the MMSE (Folstein et al., 1975), 
Logical Memory (LM) Delayed Story Recall (Wechsler & Stone, 1987), the 
Digit-Symbol Substitution Test (DSST; Wechsler, 1981) and recall from the 
Free and Cued Selective Reminding Test (FCSRT; Grober et al., 2009). These 
measures were selected on the basis of studies showing changes in these 
cognitive measures many years prior to functional decline being exhibited 
(Bateman et al., 2012; Amieva et al., 2008; Salmon et al., 2013). Other 
measures have been proposed to be added such as semantic memory but 
are yet to be as well validated as the initial composite (Papp et al., 2017). In 
preclinical AD, a large number of individuals require screening to find those 
with preclinical AD, as by definition none are exhibiting impairment. These 
cognitive measures have a number of advantages over biomarkers or 
imaging methodologies, such as cost and patient burden as well as being 
closely related to the core symptomology of AD and akin to disease 
progression. But most importantly for clinical trials they have proven 
sensitivity at the latter stages of the disease to treatment effects.

Studies on the level of amyloid load in the brain (in essence between 
preclinical AD and prodromal AD) have shown large and significant effect 
sizes (d=0.85) between cognitive decline after three years in these groups 
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(Bransby et al., 2019). This was found regardless of MMSE inclusion or not. 
The debate around the inclusion of the MMSE, as discussed earlier, has 
shown evidence of a lack of sensitivity earlier in the disease course of AD 
and lack of strong psychometric properties (Lim et al., 2016). However, this 
was not the case in this most recent study on this composite. Critically 
across the three initial cohorts studied with this composite there was 
significant separation between the cognitive decline between Aβ+ and Aβ- 
individuals as early as 12 months (Donohue et al., 2014). However, as all 
early AD trials have A+ positivity as stringent inclusion criteria, this analysis 
only goes to show the sensitivity compared to cognitively normal individuals 
and as such the subsequent effect size findings between differential early 
stages of AD (prodromal vs preclinical) suggest strong suitability for inclusion 
as an efficacy endpoint in preclinical clinical trials.

Alzheimer’s Disease Composite (ADCOMS)
The ADCOMS composite has demonstrated increased sensitivity to pAD/aMCI 
than the constituent measures that comprise it (Edgar et al., 2016; Swanson 
et al., 2019; Hendrix et al., 2019; Logovinsky et al., 2019; Tahami et al., 
2019; Bajaj et al., 2019). Whilst some of these phase II trials have shown 
promise, the largest trial to show positive results was the phase II trial of 
Lecanemab (Swanson et al., 2019). The ADCOMS outperformed all other 
cognitive or functional variables within the dataset. It can be argued that this 
is showing a true treatment effect due to its increased sensitivity shown 
outside of this trial. 

With the near total failure of AD phase III trials over the last two decades and 
the lack of validity of the ADAS-Cog to find treatment benefit, the FDA has 
finally sought to relax their guidance. In their most recent paper, their 
guidance was to shift towards the notion that a change in cognition is 
clinically meaningful. However, this is dependent upon concordant biomarker 
change (reflecting underlying AD pathological changes) as well as the 
disease stage of the participants. Incorporated into this shift, is the 
assertation that the clinical meaningfulness can be established through a 
composite endpoint, that reflects the change in cognition across multiple 
domains and is pervasive in nature (Sabbagh et al., 2019; Edgar et al., 2018; 
FDA, 2013; 2018). However, the key criteria still remain components of the 
MMSE, ADAS-Cog & CDR.

The ADCOMS was developed for use in prodromal/MCI to mild AD (Albert et 
al., 2011; Dubois et al., 2010). The analysis of the pAD/MCI due to AD data 
set, comprised of 4 study placebo groups from studies completed between 
2004-2010 n=1160 (Wang et al., 2016). However, CSF biomarkers were only 
available for a subsection of this cohort (n=405). The mild AD analysis 
comprised of three datasets gathered within the same timeframe as the 
pAD/MCI due to AD data, n=469. This was then validated against a further 
dataset from each population, pAD/MCI due to AD n=784 (Peterson et al., 
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2005), mild AD n=236 (Rogers et al., 1998), however, neither study 
comprised an amyloid positivity assessment. This could be argued to 
impinge on the efficacy of this composite as there could, based upon recent 
trial data, be up to 30% of individuals in the combined cohort that are 
amyloid negative (Egan et al., 2018). 

The development of this composite was produced through a method of 
partial least squares (PLS) regression. This method allowed for the 
description of a model for linear decline, allowing the functional and 
cognitive declines to be linearly modelled. Thus, giving AD a singular 
trajectory rather than multiple discordant ones across many domains. By 
alleviating the effects of any measures that concurrently measure identical 
components (such as orientation measures as PLS downweighs these in the 
model), this allows for more model accuracy and far lower chance of 
coincidental correlations. To ensure only suitable measures were included in 
the composite measure a threshold was set at 0.8 for the variable 
importance of projection (VIP) as per Wold’s criterion for predictor deletion, 
akin to an effect size (Wang et al., 2016). This led to 12 measures comprising 
the composite. Each one was weighted based upon their relevance to the 
explained variance in the model of decline from the PLS regression analysis. 
This linear decline was also only calculated across 12 months which could be 
argued to be far too short a timeframe. This is because disease progression 
within early-stage AD occurs across multiple years (Jack et al., 2018) and is 
not always uniform in nature (van Maurik et al., 2019; Ferretti et al., 2020).  

A number of criticisms have been given to the ADCOMS since its inception, 
the arbitrary weights given to the variables have drawn considerable 
criticism from a number of research groups (Schinder & Goldberg, 2020). 
Also, as recent research has demonstrated individuals with amyloid positivity 
and tau positivity decline at a more rapid rate (Mattsson et al., 2020), 
something that was not incorporated into the initial methodology. Further to 
this, with the amyloid heterogeneity of the original development cohorts now 
also confounded by presumed tau heterogeneity, this can be argued to be a 
factor that could significantly influence the decline of the cohort and 
therefore inducing questions into the construct validity of the weights and 
the measures included within the composite. Further criticisms stem from 
the duration for disease modification. In clinical trials for AD this is commonly 
18-24 months whereas the ADCOMS was based upon a 12-month decline. To 
account for the magnitude of expected treatment effect and by proxy, power 
calculation and sample size, the studied timeframe has to be long enough to 
see separation in line with the disease course. Despite all of the 
aforementioned flaws with the ADCOMS it remains more sensitive to decline 
than either the ADAS-Cog or the CDR. And in the absence of a positive 
alternative, has been widely employed within phase III trials of AD, even 
though, it can be argued to be still undergoing validation it remains the best 
hope of finding any efficacy there is.
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Discrepancy Scores within AD 
Following on from the manipulation of existing endpoints, one aspect of the 
short cognitive tests commonly used across all stages of AD, is the 
discrepancies between constituent cognitive domains. This methodology is 
widely utilised in IQ testing and looks to find an individual profile of a subject 
across a large number of domains (Wechsler, 2008; 1981).  

This paradigm within preclinical AD was first undertaken by a group is the US 
in the early noughties (Jacobsen et al., 2002). They looked at a group of 20 
healthy elderly individuals and 20 individuals with what at the time was 
termed preclinical AD. These analyses were taken from data of the 
individuals who subsequently met diagnostic criteria early AD when they 
were still considered healthy controls at the time of the test administration. 
All diagnosis for all individuals were based upon independent annual 
examinations from two senior neurologists with the individuals classified into 
the preclinical AD group participating as control individuals for an average of 
4.6 years prior to a subsequent change in diagnosis. The clear differences 
now are the diagnostic criteria and availability of Aβ indices which may lead 
to Aβ- individuals within the sample. However, with the longitudinal follow of 
these individuals it was clear that they all went on to have dementia which 
suggest the presence of pathology, albeit likely some non-AD varieties.

The two groups in this study were matched on age, education and gender 
and were assessed on a cognitive battery comprising of the Dementia Rating 
Scale (DRS; Mattis et al., 1976), CVLT (Delis et al., 1987) long delay free 
recall, Boston Naming Test (BNT; Kaplan et al., 1983), the Block Design 
subtest from the WISC-R (Wechsler, 1974) and the WAIS-R vocabulary sub-
test (Weschler, 1981). The measures index semantic and episodic memory, 
shown earlier to be key indicators of early disease pathology which was 
unknown at the time of selection here. Further to this the two components of 
the Wechsler batteries are short yet key indicators of cognitive processes 
known to be at their peak towards the latter stages of maturation of 
cognition (Spreng & Turner, 2019). This cognitive battery maps on very 
neatly to our current understanding of preclinical AD and pathology. The 
results from this small study showed statistically meaningful significant 
differences in the asymmetry/discrepancy score between these cognitive 
domains and subject group. Whereas the DRS and CVLT scores also were 
significantly different between the groups, the size of the effect was not as 
large as that of the discrepancy measure. Thus, suggesting that as seen with 
other measures profiling IQ, discrepancy analysis may indicate some of the 
earliest changes within preclinical AD. 

Whilst these findings come from a small sample, their relation to current 
understanding should not be under-valued, as such replicating this study 
within new criteria and corresponding biomarker and imaging indices is 
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highly warranted. Incorporating an analysis such as this but with the most 
widely used measures is also a further strong avenue of potential research. 

Addressing Gaps in Our Current Understanding 

Overall, it is widely agreed that initial impairments at the earliest stages of 
the disease are best indexed by domain specific cognitive measures. 
However, there is no agreement on which measure to use. Whilst typical AD 
manifests itself through amnestic impairment, that is still a highly varied 
cognitive process. And as the earliest domains of impairment are semantic 
and episodic memory, which are not best measured using global indices. 
These global measures need to be further looked at in greater detail to 
better understand what they precisely measure. 

Further to this, global cognitive measures are often utilised in conjunction 
with other staging measures. These measures bare slight relevance to 
cognitive domains of impairment, but primarily focus upon presenting an 
overall picture of cognition and function, depending on which measure is 
employed. As validating new instruments is prohibitive, a better 
understanding of these measures is required. 

Consequently, more nuanced ways of using existing measures are being 
sought. As seen with the ADCOMS composite, this is hoped to give greater 
sensitivity to the measurement of cognitive impairments due to AD. To 
better characterise and elucidate the earliest stages of this impairment, 
pathology must corroborate and be related to cognitive impairment. This 
improvement in a confluence, between the clinical and cognitive 
presentation of AD and the pathological markers of AD, will also help rule out 
co-morbidities known to cause such impairments. These biomarkers and 
imaging modalities play a critical role in diagnosis and progression of AD. 
However, non-invasive, cheap and quick to administer cognitive measures, 
currently take precedence. But they have not changed for nearly 3 decades. 
Nevertheless, until a better understanding of pathology and its relationship 
to cognitive impairment and clinical presentation of AD these measures 
cannot be replaced. It is therefore critical to develop a better understanding 
of these measures to explain variability, highlight areas for improvement and 
bridge the diagnostic gap that exists between clinical presentation and 
pathology. 

This project will look to build upon our current understand of these cognitive 
impairments. It will explore the hypothesis that the discrepancy measures 
may indicate early disease symptomologies prior to individual cognitive 
domain decline. It will also look to explore the potential sources of variance 
within cohorts and how the relationships between measures of verbal and 
episodic memory may not always be concordant. These hypotheses will be 
explored within highly phenotyped cohorts with biomarker, functional, 
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cognitive and imaging measures associated with each subject allowing for 
wider comparisons and implications to be gleaned from these analyses.

Each chapter and study will focus on one (or more) part/s of validity for these 
key scales in question. Chapter 3 will look to ascertain the criterion and 
convergent validity of a new measure within AD, a discrepancy score 
computed from commonly used measures. Whilst also exploring the cross-
cultural validity of the full battery of tests. Chapter 4 will delve into great 
detail on the concurrent, convergent and construct validity of amnestic 
memory measures within 2 different AD-related populations. And finally, 
Chapter 5 will focus on criterion validity of these measures and the overall 
interpretability of these measures in relation to marrying the biology and 
clinical phenotypes of AD.
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Chapter II: Methodological Considerations
Whilst academic studies rightly or wrongly stray away from the stalwart AD 
measures (CDR, MMSE & ADAS-Cog), they tend to explore other measures 
with greater construct validity and disease course specificity. This is a luxury 
that is normally not applicable to clinical trials. Currently, despite many 
efforts, all phase III trials remain cemented in these perennial measures. To 
this end, the goal of the proposed analysis and methodology is to look at 
potential causes of variation within these measures, how they can be 
comprised in a different way and to use machine learning methods to predict 
biomarker grouping from cognitive and clinical measures. This will be 
undertaken to help improve and understand these measures. The hypothesis 
is this better understanding will help improve trial designs, disease 
characterisation and diagnosis in primary care. This chapter will give full 
details of the cohorts used for all subsequent analyses, as well as the 
methodology and rationale for each analysis. 

Dataset Composition

The main dataset under investigation is taken from the screening and 
baseline dataset of two large global phase III trials of Elenbecestat (E2609-
G000-301 or MissionAD1 & E2609-G000-302 or MissionAD2) in early AD. 
Elenbecestat is an oral BACE-1 inhibitor that has been shown to reduce the 
Aβ level in the cerebrospinal fluid (CSF) (Majid et al., 2016). The population 
consisted of individuals with a diagnosis of MCI due to AD and no more than 
25% diagnosed as early stage mild dementia due to AD. The cohort consists 
of 2212 randomised individuals and a cohort of 9758 screened individuals. 
As these studies were terminated early, only 959 individuals had reached 
one-year of the study, hence the focus of these analysis will be cross-
sectional based upon baseline and screening data. The author was of the 
study team across both studies and had a key role in the recruitment of 
individuals to this cohort, advising sites and discussing ways in which to aid 
individual cognitive pre-screening and study uptake on a site by site basis.

The screening paradigms were broken down into five tiers of individuals 
aged 50-85. This was to reduce participant burden by not subjecting them to 

Tier
 1 Informed Consent

Demographics

Medical History
Clinical Diagnosis &
Disease Staging

MMSE
ISLT

CDR
Modified Hachinski
Ischemic Scale

Tier
 2

C-SSRS
EQ-5D

QOL-AD
ZBI

Tier
 3 Bloods (chemistry,

haematology, coagulation,
thyroid function, vitamin B12,
PD Biomarkers,
Pharmacogenomics, Viral
screen, pregnancy test)
Urinalysis
ECG
Vital Signs
Physical, Dermatologic &
Neurological Examination

Tier
 4

MRI: vMRI & fMRI Tier
 5

Amyloid PET
CSF sampling via
Lumbar Puncture (PD &
eligibility)
Tau PET
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assessments that were more invasive towards the end of the screening 
paradigms.
Figure 2.1 Flow diagram of the screening tiers. Bolded assessments had to 
be passed to move onto subsequent tiers (or randomisation).

Individuals had to complete and meet criteria at each tier of screening before 
moving onto the next tier of screening. Tier 1 consisted of participant 
demography and medical history as well as meeting cognitive/clinical 
assessment criteria: Mini Mental State Examination (MMSE; total score of 24 
or greater), International Shopping List Task (ISLT; scored against normative 
data, criteria of 1 standard deviation below the age and sex related mean 
score on either the immediate or delayed recall component), Clinical 
Dementia Rating Scale (CDR; global score of 0.5 & memory box score of 0.5 
or greater) and the modified Hachinski ischemic score of less than 5. The 
Cogstate Brief Battery (CBB) was also administered in the 20 to 30 minutes 
between the ISLT total recall and delayed recall tests as a common distractor 
task. All individuals will be confirmed as meeting the diagnostic criteria for 
either MCI due to AD or the early stages of mild AD, and that they do not 
have other medical conditions which may interfere with study participation. 
All of these criteria had to be met before the participant could move onto the 
second tier of screening. Full details of each of the key cognitive 
assessments are described in the next section of this chapter.

Tier 2 of screening consisted of the Columbia Suicide Severity Rating Scale 
(C-SSRS), EQ-5D-5L, QOL-AD and the Zarit Burden Interview (ZBI). Other than 
a positive answer to suicidal ideation on the C-SSRS, there were no other 
criteria for these scales that had to be met to proceed to Tier 3.

Tier 3 assessments include a complete physical examination with 
dermatologic review, a full neurologic exam, measurement of vital signs 
(body temperature, sitting heart rate, and sitting BP), measurement of height 
and weight, and a single 12-lead ECG. Blood samples were taken for 
measures of clinical chemistry, haematology, thyroid function, vitamin B12, 
and a viral screen. Blood samples were also taken for pharmacogenomic 
(PGx) analyses, PD, exploratory biomarker assays, and for immunologic 
assessments. A urine sample was also taken in order for urinalysis and a 
serum pregnancy test for females of child-bearing potential. If these samples 
showed, Absolute lymphocyte count (ALC) below Lower Limit of Normal (LLN) 
or below 800, TSH above the normal range, abnormally low Vitamin B12, 
immunoglobulin (Ig) deficiency or other immunodeficiency disorders, viral 
hepatitis, TB, shingles, herpes simplex virus, INR ≥ 1.7, bilirubin ≥ 1.5 × 
ULN; albumin < LLN; ascites or hepatic encephalopathy then an individual 
was excluded from further procedures.

Tier 4 comprises an MRI scan for brain abnormalities which may exclude 
study participation. Additional scanning sequences for vMRI and fMRI 
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assessments were run immediately following the eligibility MRI sequences in 
all individuals. Contraindications and pathological findings on the eligibility 
MRI included but weren’t limited to; an area of superficial siderosis, evidence 
of cerebral vasogenic edema, evidence of cerebral contusion, 
encephalomalacia, aneurysms, vascular malformations, or infective lesions, 
evidence of multiple lacunar infarcts or stroke involving a major vascular 
territory, severe small vessel, or white matter disease, space occupying 
lesions, brain tumours (however, lesions diagnosed as meningiomas or 
arachnoid cysts and less than 1 cm at their greatest diameter need not be 
exclusionary criteria). 

Within the cohort in question, these aforementioned MRI findings were 
treated as exclusionary if they appeared on an MRI scan for a participant. 
However, the most common machine available to sites was a 1.5T scanner 
meaning some of the smaller details may not have been visible to the central 
readers. As previously elucidated in more recent research post data 
collection, some of these cortical microinfarcts may not have been visible 
and as such the root cause of individuals’ cognitive impairment in the 
absence of (or indeed in conjunction with) amyloid pathology. This will be 
discussed further in this chapter below. 

Individuals who have met all eligibility criteria from tiers 1-4, were then 
assessed for biomarkers of brain amyloid pathology with either amyloid PET 
(Screening amyloid PET) or cerebrospinal fluid Aβ(1-42) (Screening CSF) or 
both. There were 4051 individuals who had assessment of amyloid pathology 
undertaken in total. These individuals all met criteria for MCI due to AD or 
Mild AD with cognitive impairment of varying degrees with many other 
potential causes of cognitive impairment ruled out apart from confirmation of 
amyloid (prior to these assessments taking place). From these 4051 
individuals, 2212 were randomised to Elenbecestat or placebo and undertook 
further assessments prior to dosing to their assigned treatment arm. The 
MMSE, CDR, ADAS-cog14, functional assessment questionnaire (FAQ) and 
Neuropsychiatric Inventory ten item questionnaire (NPI-10) were all 
completed prior to this first dosing.

Whilst this cohort is one that has been highly characterised and relatively 
homogenous in nature, it is also taken from 644 clinical sites across 29 
different countries spanning all regions of the world. This can be argued to 
be fundamentally representative of the global AD population. This unique 
cohort requires substantial considerations when dealing with data prior to 
any analysis which will be discussed in relation to each analysis chapter 
below. 

The second cohort under investigation is one taken from memory clinics 
across the USA, Canada & the United Kingdom. This cohort had no screening 
criteria, but presented to a memory clinic to be screened for part of a clinical 
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trial. These individuals either presented due to believing they had memory 
impairment, had no memory impairment but a significant other believed 
they did or were being monitored by the site in question longitudinally. The 
recruitment of these subjects and how they came to each clinic varied 
greatly by country and clinic. As site/clinic and individual level information on 
recruitment methods was not captured this was not available to report.

Each site was trained on the administration of the WMS-LM and by the author 
on the alternate version of this measure. The alternate form of the WMS-LM 
was based upon the original alternate version developed by Morris and 
colleagues (1997) found on linguistic and psychometric comparative 
principles detailed in the original paper. The alternate version of the WMS 
was developed to be country specific, with specific context around normal 
activities differing between the 3 country specific versions. For example, in 
the US one story was about a football game, whereas in the United Kingdom 
it was around a rugby game. All three short and long form stories were 
adapted using the same principles and relevant to each country in question. 
The 196 subjects undertook the alternate version first then underwent 
testing on the WMS-LM. To note these individuals had no known clinical 
comorbidities or other known reasons for any cognitive impairment they may 
be experiencing. The order of administration was set due to the necessity of 
the screening procedures at all memory clinics. The training occurred by the 
author virtually and data was captured via pencil and paper administration 
with upload to a central repository and data transcription from those forms 
was made into a singular spreadsheet. 
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Table 2.1 Cohort Composition For MissionAD (MAD) Cohort and Secondary 
Cohort From Chapter 4 (VLL). Green for clinical and cognitive measures, red 
for imaging, yellow for other biomarkers.
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Cognitive Measures 

Variable MAD 
Screening

MAD 
Baseline

VLL 
Cohort

Demographics & 
Maximums 9758 2208 196

ISLT 8562 - -
CBB 8497 - -

MMSE 9114 2208 -
CDR 6551 2208 -

ADAS-cog14 - 2193 -
FAQ - 2039 -

NPI-10 - 2039 -
EQ-5D-5L - 2039 -
QOL-AD - 2039 -

ZBI - 2039 -
Sleep/Dream 

Questionnaire - 2039 -

WMS-LM - - 196
Morris Paragraphs - - 196

vMRI 1782 1279 -
Amyloid PET 3728 1281 -

Tau PET - 30 -
CSF Ab42, 40, t-tau & 

p-tau, ng 323 78 -

Plasma Ab 1-x - 1597 -
Plasma NFL - 943 -
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Cognitive instruments and their outcome measures will form a fundamental 
cornerstone of all analyses within this thesis. All chapters will contain one or 
more of the cognitive instruments described here with full details of all 
measures used across all analyses are be outlined below.

Clinical Dementia Rating (CDR) Scale
The CDR (Hughes et al., 1982; Morris, 1993) is a multi-domain global 
functional scale used to denote the presence and severity of dementia and is 
widely used across AD clinical trials (Lowe et al., 2012). The CDR is 
considered the gold standard for staging dementia severity, primarily 
focused upon functional impairment but it was designed to give an overall 
holistic view of the individuals’ disease severity. The scale is formed of six 
domains and is administered through a semi-structured interview with the 
patient and then the caregiver, they are scored either 0, 0.5, 1, 2 or 3 and 
comprise a global score (CDR-GS) and a total score termed sum of boxes 
(CDR-SB). The domains are memory, orientation, judgement and problem 
solving, community affairs, home and hobbies, and personal care. As the 
global score can only be one of five outcomes, variation and suitability for 
tracking pathology is limited, however it is primarily employed within the 
framework of a staging approach, similar to a simplified MMSE score. The 
CDR is widely used in many different countries, it has been validated through 
the CERAD initiative and is available in over fifteen different languages 
(Morris et al., 1989). Specifically, the CDR has been standardised for 
worldwide use and as such has demonstrated strong inter-rater reliability 
and convergent validity (Morris, 1997). The CDR-SB score can range from 
zero to eighteen and as such is often the measure of choice when assessing 
individuals longitudinally. 

Alzheimer’s Disease Assessment Scale Cognitive Subscale – 14 item 
version (ADAS-Cog14)
The ADAS-Cog is a subscale of the broader AD assessment initiative that was 
developed by consortia in 1984 (Rosen et al., 1984). The ADAS was designed 
to measure both cognitive and non-cognitive aspects of mild to severe AD. 
There are 21 tasks in total but the focus of the bolus of work is on the 
cognitive aspects of the scale which were initially designed to have 11 items. 
This has since been adapted to many different variations (see Chapter 1 for 
a discussion on this). The version most widely used and in the vast majority 
of clinical trials in early stages of AD (and in MissionAD 1&2), is the 14-item 
version. This has a total score out of 90 whereby a higher score indicates a 
greater level of impairment which in essence is error scoring. Table 2.2. 
details each subscale within the 14-item version and how it is scored.

Table 2.2 ADAS-Cog14 Subscale descriptions and scoring conventions. 
Adapted from ADAS-Cog Scoring & Administration Manual (FDA, 2012).



85

Task Description Scoring
Word Recall A list of 10 words is read by the 

participant, and then the 
participant is asked to verbally 
recall as many of the words as 
possible. Three trials of reading 
and recalling are performed.

Mean number of 
words not recalled 
across the three 
trials; scoring range is 
0 to 10.

Commands The participant is asked to 
perform commands that involve 
one to five steps. For example, 
the two-step command is to 
“Point to the ceiling, then to the 
floor.”

Scored from 0 to 5 
based on the largest 
number of steps that 
are correctly 
performed (score is 0 
if five step command 
is correctly 
performed).

Constructional 
Praxis

The participant is shown four 
geometric forms (circle, two 
overlapping rectangles, rhombus, 
cube) and asked to copy them on 
a piece of paper.

Scored from 0 to 5 
based on the number 
of correctly drawn 
forms.

Delayed Word 
Recall

The participant is asked to recall 
as many words as possible from 
the 10 words
presented during the WORD 
RECALL task. There is one trial of 
recall. This task should follow 
immediately after completion of 
the COMMANDS and 
CONSTRUCTIONAL PRAXIS items.

Scored 0-10 based on 
the number of words 
not recalled

Naming 
Objects & 
Fingers

The participant is asked to name 
the fingers of their dominant 
hand as well as twelve objects: 
flower (plastic), bed (doll house 
furniture), whistle, pencil, rattle, 
mask, scissors, comb, wallet, 
harmonica, stethoscope, and 
tongs.

The number of fingers 
and objects correctly 
named; scoping range 
is 0 to 4.

Ideational 
Praxis

The participant is asked to 
pretend to send a letter to 
themselves: fold letter, put letter 
in envelope, seal envelope, 
address envelope, and put a 
stamp on the envelope.

Scored from 0 to 5 
based on difficulty of 
performing the five 
components.
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Orientation The participant is asked the date, 
month, year, day of the week, 
season, time of day, place, and 
person.

The number of correct 
responses; scoring 
range is 0 to 8.

Word 
Recognition

The participant reads twelve 
words aloud, and then these 
twelve words are randomly 
shuffled with twelve new words, 
and the participant is asked 
whether they have previously 
seen each of the twenty-four 
words. Three trials are 
performed.

Mean number of 
correct responses 
across the three 
trials; scoring range is 
0 to 12.

Remembering 
Test 
Instructions

The rater provides an assessment 
according to the number of times 
that the participant needed to be 
reminded of instructions for the 
Word Recognition task.

The rater provides a 
score from 1 to 5

Comprehension This task also relies on the ten 
minutes of open-ended 
conversation. The rater provides 
an assessment of how well the 
participant can understand 
speech.

The rater provides a 
score from 0 to 5.

Word Finding 
Difficulty

During the aforementioned open-
ended conversation, the rater 
assesses how much difficulty the 
participant has in finding desired 
words.

The rater provides a 
score from 0 to 5.

Spoken 
Language 
Ability

After the administration of the 
Word Recall task (Q1) ten 
minutes of open-ended 
conversation occur between the 
rater and participant, before the 
remainder of the tasks are 
presented. These ten minutes of 
conversation are used to assess 
language ability.

Quality of speech is 
given a global rating 
by the rater that 
ranges from 0 to 5.

Maze Task The participant is required to find 
the path to the exit of a drawn 
maze from a start point. This task 
includes an example/practice 
maze to familiarize the 
participant with the task and the 
test maze, which is scored. 

Scores calculated on 
the number of 
seconds to complete 
the task and/or when 
two errors are made 
and the task is 
stopped. Thresholds 



87

relating to the score 
of 0-5.

Number 
Cancellation

A sheet of jumbled numbers is 
presented to the participant and 
they are informed (with a 
demonstration) that they must 
cross out all of a certain number 
and to keep going until instructed 
to stop. This tasks last for 45 or 
60 seconds.

Scores are calculated 
using the number of 
targets hit minus the 
number of errors 
minus number of 
times reminded of the 
task instructions. 
Scores between 0-5 
with threshold scores 
for each point (0-5).

Total Score Summation of all domain scores. 
If any are missing or incomplete 
then this results in the ADAS-Cog 
not being totalled

Total score of 0-90

Mini Mental State Examination (MMSE)
The Mini Mental State Exam (MMSE) is the most widely used test, both in 
clinic and research, to screen for dementia. It is a thirty-item questionnaire 
comprised of very rudimentary components that include; orientation to time, 
orientation to place, registration, attention & calculation, recall, language, 
repetition and complex commands (Folstein et al., 1975). These can be 
mapped onto Awareness/Orientation, Language, Attention, Working Memory, 
Delayed and Immediate Memory and Executive function cognitive domains 
because of their inherent paradigms. Currently the MMSE is still under 
copyright but it has been widely used in western medicine as a quick screen 
for basic cognitive impairment, as it only takes approximately 5-10 minutes 
to administer and score. It was also officially translated into ten languages in 
2010 (French, German, Dutch, Spanish for the US, Spanish for Latin America, 
European Spanish, Hindi, Russian, Italian and Simplified Chinese) but was 
widely used across the world prior to this. As described by Folstein and 
colleagues (1975) the eight domains of the MMSE were designed to 
“thoroughly cover the cognitive realm” whilst excluding questions around 
mood, abnormal mental experiences and the form of thinking, all of which 
were deemed to not be “cognitive aspects of mental functions”. The other 
key reason for the inception of this measures was reducing the time for 
administration due to “elderly patients cooperate well for only short periods”. 
The measure itself has barely changed since its inception in 1975.

International Shopping List (ISLT)
The ISLT is an episodic memory test used to find impairment likely due to AD 
or MCI due to AD (Thompson et al., 2011). It is fundamentally a verbal list 
learning test with individuals trying to memorise 12 common food items that 
are read out loud to them by a rater. These items are language and country 
specific, with over 90 specific groups of words within the test. The words are 
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chosen from a larger word bank of 30 words that has undergone a formal 
validation process for that language and country. The test itself is made up 
of an initial immediate recall condition, which is made up of 3 trials. A 20-30 
minute delay then occurs (with non-verbal cognitive testing allowed), that is 
then followed by 1 trial of delayed recall of the word list read out at the start 
of the test. The ISLT is administered using a computer program, enabling the 
reading of the shopping list items to the participant by trained staff at a 
consistent pace. The measure itself contains 2 key outcome measures of 
immediate recall (sum of all 3 trials) and delayed recall (raw score of the 1 
trial). The scores are automatically computed using Cogstate’s automated 
and secure data processing server and is also scored against age- and 
gender-based norms, providing unbiased and immediate results.

Cogstate Brief Battery (CBB) 
The Cogstate Brief Battery (CBB) is a brief, computer administered cognitive 
test battery that takes around 10 minutes to complete. It consists of four 
cognitive tasks that measure psychomotor function, attention, working 
memory and memory. The administration, scoring and reporting is 
automated and standardised. Each task is constructed using playing cards as 
stimuli with the participant required to answer only “yes” or “no” on each 
trial in accord with a simple rule. These four tasks have been widely 
validated as a battery of cognitive tests (Maruff et al., 2013; Darby et al 
2012; Lim et al., 2012; 2015; Stricker et al., 2020).

The first test is called Detection (DET). It is a simple reaction time test shown 
to measure psychomotor function. In this task, the participant must attend to 
the card in the centre of the screen and respond to the question “has the 
card turned over?” Individuals were instructed to press the “Yes” button as 
soon as the card turns face up. The face of the card is always the same 
generic joker card. The task ends after 35 correct trials have been recorded. 
The primary performance measure for this task was reaction time in 
milliseconds (speed), which was normalised using a logarithmic base 10 (log 
10) transformation.

The second test is Identification (IDN). This is a task of choice reaction time 
shown to measure visual attention. In this task, the participant must attend 
to the card in the centre of the screen, and respond to the question “Is the 
card red?”. Individuals were required to press the “Yes” button if it is and the 
“No” button it is not. The face of the cards displayed were either red or black 
joker cards in equivalent numbers in random order. These cards are different 
to the generic joker card used in the DET task. The task ends after 30 correct 
trials. 
The primary performance measure for this task was reaction time in 
milliseconds (speed), which was normalised using a log 10 transformation.
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The third is a One Card Learning (OCL) test. This is a continuous visual 
recognition learning task that assesses visual learning within a pattern 
separation model (Yassa et al. 2010). This task the participant must attend 
to the card in the centre of the screen and respond to the
question “have you seen this card before in this task?” If the answer was 
yes, individuals are instructed to press the “Yes” button, and the “No” button 
if the answer was no. Normal playing cards were displayed (without joker 
cards). In this task, six cards are drawn at random from the deck and are 
repeated throughout the task. These four cards are interspersed with 
distractors (non-repeating cards). The task ends after 80 trials. The primary 
performance measure for this task was the proportion of correct answers 
(accuracy), which was normalised using an arcsine square-root 
transformation.

The final test is a One-Back (ONB) test of working memory and attention. 
Similar in presentation to the OCL task, individuals must attend to the card in 
the centre of the screen and respond to the question “is this card the same 
as that on the immediately previous trial?” If the answer was yes, individuals 
were instructed to press the “Yes” button, and the “No” button if the answer 
was no. The task ends after 30 correct trials. The primary performance 
measure for this task was the proportion of correct answers (accuracy), 
which was normalised using an arcsine square-root transformation.

The overall battery can be given an overall score by averaging the four 
individual z-scores produce by the automated scoring system. There are also 
other composite measures within the battery grouping the first two and last 
two measures. These form an attention and memory composite respectively. 
However, the main outcome measure is the CBB average z-score across all 4 
measures.

Weschler Memory Scale – Logical Memory (WMS-LM)
The WMS-LM is part of the larger WMS battery. The logical memory is a 
measure of story recall. The WMS-LM had three different stories, one short 
form and two long form stories. For individuals that were aged under 65 both 
long form stories were used. This began with a trained rater reading out the 
first long form story in full, the individual then had to recall as much of the 
story as they could. This process was then repeated for the second long form 
story. Between 20 and 30 minutes then elapsed, without any intermediary 
cognitive testing, and individuals were asked to recall as much of the first 
story as they could remember. If no details could be recalled a set prompt 
was given and an opportunity was given for recall of that story. This process 
was then repeated in full for the second story. Scores are taken from a sum 
of both immediate recalls and both delayed recalls to give representative 
scores for each condition for each individual. For those over 65, the first 
short form story was replaced by a short form story totalling half the number 
of sentences (3) of the long form story (6). This short form story was 



90

repeated twice during the immediate recall condition. The rater reads the 
story, asked for as much information as could be recalled, before repeating 
the same story again, then again followed by an immediate recall of the 
same story. The same 20-30 minute delay occurred before a single recall of 
the short form story (however, no prompt was allowed for this short form 
story), followed by a single recall of the long form story (this was allowed the 
same set prompt as given in the younger age group condition). Scores from 
both components are measured against a standardised scoring index from 
the WMS. Therefore, scores from either the immediate or delayed 
components can be used to find impairment, such as that for MCI (1 standard 
deviation below the mean). 

Cohort Heterogeneity

All trials are based on the foundation and core assumption, that included 
within the cohort being studied, is a homogeneous population of individuals 
with a common stage of AD. The extrapolation of this, is that the placebo 
group should decline in a projected manner and by proxy, if the treated 
group has slower decline, this signals treatment efficacy. In essence, much 
of the perceived effect of any given drug is influenced by the performance of 
the placebo. This is why selection criteria of individuals is so critical to 
ascertaining efficacy and understanding the true decline due to AD 
pathology. Recent memory clinic-based studies have shown, that broad 
comorbidities are present in normal elderly, MCI and AD individuals (de Jager 
et al., 2018). Across both cohorts within this thesis, clinical AD had a larger 
prevalence of multiple other conditions and nonimpaired individuals 
predominantly harboured complex pathologies (Ferreira et al., 2020). 
However, it should be noted that not all individuals had confirmed amyloid 
pathology. Further to this, post mortem studies have indicated around 90% 
of confirmed AD cases have mixed pathology by the end of their lives (James 
et al., 2016). This finding is not surprising due to the vascular pathology, 
accumulation of comorbid proteins and the interplay of the degeneration of 
the cortices present as AD progresses. 

The homogeneity of an individual cohort therefore has to balance the issue 
of natural population sampling, which select individuals who have 
comorbidities, against the need to accurately measure individual disease 
related impairments. This quandary is evident in most clinical trials within 
not just AD but neurodegenerative disorders in general. Clinical trial cohorts 
are among the most highly characterised, with highly stringent criteria above 
and beyond many academic datasets, leading to comparatively superior 
homogeneity. However, some limitations still persist.

Within trial cohorts such as the one under investigation there are stringent 
inclusion and exclusion criteria. These criteria comprise cognitive, functional 
and medical history questions. Any disorder or comorbidity that is likely to or 
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has been shown to impact cognition, such as geriatric depression (measured 
using the Geriatric Depression Scale [GDS]) is exclusionary, this is the 
foundation to progress a potential participant for more detailed imaging work 
ups, such as PET and MRI within AD trials. These modalities further 
discriminate which neurological disorder a participant may have and helps 
triage suitable individuals for selection into trial cohorts. This method of 
stepwise screening procedures was followed for the cohort under 
investigation, giving a highly homogeneous sample for randomisation into 
the MissionAD studies. 

The balance in cohort selection is maintained by in depth neurological exams 
and MRI scans excluding clinically significant findings that may be related to 
other pathologies, but some concurrent pathology may be overlooked or not 
picked up. These are any minor small vessel disease state findings that can 
influence cognitive function. One such MRI finding is cortical microinfarcts 
from vascular pathology within the cortex. They are found in patients with 
vascular dementia (62%), Alzheimer’s disease (43%), and demented patients 
(33%) compared with nondemented older individuals (24%) (Brundel et al., 
2012). To note, recent findings have shown that these vascular pathologies 
are only visible in 27% of cases at 3T (Van Veluw et al., 2015a; 2015b) and 
the prevalence of these cortical microinfarcts has been found in 18% cases 
in a memory clinic setting (Ferro et al., 2019). As minute foci, they are shown 
to cause neuronal loss, gliosis, pallor, or more cystic lesions and as such, 
these small cortical microinfarcts in large numbers could cause cognitive 
impairment (Skrobot et al., 2016; Brundel et al., 2012; Soontornniyomkij et 
al., 2010; Smith & Beaudin, 2018; Smith et al., 2012). Furthermore, as they 
are found in all brain regions, possibly more so in the cerebral cortex, the 
impact of their cognitive impairment could be highly diverse.

Most commonly clinical trial sites tend to have access to scanners at 1.5T-3T, 
which will not elucidate these findings based upon these aforementioned 
studies. Even with central readers, the image clarity is such that it will not be 
optimum due to the dearth of field strength available. As such, undetected, 
this pathology may induce unwelcome heterogeneity into cohorts such as 
those in a clinical trial setting. These cortical microinfarcts could be resultant 
of other neuropathology and be the hallmark of a divergent disease course 
(Brundel et al., 2012; Soontornniyomkij et al., 2010; Kalaria, 2016; Jellinger, 
2005; 2007; 2013; Skrobot et al., 2016). However, this should be overcome 
in part by amyloid assessments. Dependent upon the stage of the disease 
these cortical microinfarcts should only be relevant to later stage disease 
individuals who have the amyloid pathology as well as these and may only 
relate to an inflation in screen fails where the participant has cognitive 
decline due to cortical microinfarcts and result in amyloid negativity when 
this is assessed. 
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Microbleeds are a further complication that could be the effect of a cognitive 
impairment not due to amyloid. However, they are seen in 18-29% of 
confirmed AD cases (Loitfelder et al., 2012). These are again picked up to a 
lesser or greater degree based upon the field strength of the scanner in 
question but are caught in a far higher instance of cases and do not rely 
upon 7T field strength for detection (Greenberg et al., 2009). Along with 
convexal subarachnoid haemorrhages and cortical superficial siderosis, 
microbleeds are commonly caused by cerebral amyloid angiopathy (CAA), 
causing leakage and inflict cognitive impairment (Beitzke et al., 2015). As 
this is an alternative disease pathology, this rules individuals out of 
participation in clinical trials for AD but is worth noting as concordant 
findings that may not have been as well discriminated in prior cohorts.

White matter hyperintensities are the final current concomitant finding on 
MRIs that have been shown to influence cognitive function. They have been 
shown to greatly effect processing speed of tasks, argued to be dependent 
upon their focalisation in the cortex (Duering et al., 2014).  Regardless of 
aetiology of the white matter hyperintensities, they have been shown to 
affect the clinical expression of AD (Puzo et al., 2019; Jagust et al., 2019) and 
contribute to cognitive heterogeneity in the early stages of disease (Lee et 
al., 2016; Yoon et al., 2013; Delano-Wood et al., 2009; Libon et al., 2010).

Further to these cortical microinfarcts, other vascular changes, such as those 
that can be detected on MRI, affect most patients with AD, the threshold of 
significance is something that is an unknown, as well as the interplay 
between these vascular pathologies and the degree of presence of amyloid. 
These can be present without the latter proteinopathy and as such can 
confound any cognitive impairment. With around 30-40% of individuals with 
significant cognitive impairment not meeting the threshold for amyloid 
positivity (Roberts et al., 2021), this could be argued to be a significant 
factor underlying the cognitive impairment seen. However, due to the 
absence of conclusive relationship between these MRI findings, due to their 
lack of discoverability and the high rates of comorbidities in this age group, it 
is difficult to conclude on a rationale for cognitive impairment in an amyloid 
negative population.

Despite the lack of knowledge of the source of the cognitive impairment, this 
could be argued to be conclusively different to that of AD, yet share some 
fundamental constructs. This is something to consider when understanding 
outcome analysis with multi-country clinical trial cohorts, as whilst each one 
will have a standardised imaging protocol, the field strength is variable 
depending upon machine availability in each site location. Thus, having the 
potential, in some individuals, to lead to undiagnosed vascular pathologies 
contributing to amyloid/amyloid negativity rates and individuals could 
display similar cognitive impairment profiles but distinct uncaptured 
neuropathologies. Individuals may have tau positivity but not amyloid, this 
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has been shown to a greater degree and could reflect AD or alternative 
pathology (Jack et al., 2018). For the premise of this research and in line with 
ATN research guidelines on AD, individuals who has confirmed amyloid 
pathology will be the only individuals who are designated as AD positive. 

Discrepancy Score Analysis – Chapter III

Encompassing the need to use composite measures within AD, the aim of the 
initial analysis chapter is to understand the concordance between memory 
impairment and that of a discrepancy measure based upon intra-individual 
change. This will be investigated across the AD spectrum in a stage-wise 
model based on CDR-SB scores similar to the Jutten et al (2020) paper. This 
will be examined through a number of measures with particular focus on 
constituent component scores and discrepancy measures computed from the 
cognitive battery from the initial stages of the program; MMSE and CBB, with 
comparison drawn against the ISLT measures. 

As has been shown across multiple studies, amyloid positivity rates vary 
dramatically based upon, age, apoe status and demographic factors. One 
alternative methodology to use these constituent component scores from the 
key cognitive measures (whilst maintaining differentials between domains) is 
to look to the field of IQ. The WAIS commonly employs discrepancy measures 
to give a picture of a participant’s intelligent quotient or subset of skills. This 
technique has been sparsely used outside of IQ. There is some evidence that 
these discrepant measurements could be beneficial at identifying individuals 
who have AD (Jacobsen et al., 2002). Discrepancy scores will be computed 
from the cognitive battery within the first cohort and will be sought to give 
an understanding of a participant’s cognitive profile.

Combing measures allows for a reduced impact of range restrictions, 
improved temporal reliability and alleviates the issue of statistical 
multiplicity within domains. Clearly there are insurmountable issues with 
using current measures alone, within earlier stages of the disease. So, 
looking within measures, within domains and differential scores to the 
global/overall scores is widely needed in AD. There is inherent debate in 
these composite measures is in the fact that picking apart measures, which 
have shown prior efficacy, has been argued to be a form of manipulation of 
the efficacy measures (Jin et al., 2018). Contrary to this, it is argued that this 
has given greater nuance to our understanding of the disease, it’s 
trajectories and the cognitive impairments this entails across the differing 
stages of AD. Nevertheless, the measurements have not changed at all. It is 
difficult to argue to maintain the usage of a measure, which was once used 
to measure a population that is heterogeneous now, as the difference in the 
population characteristics to one that would be recruited now are striking. 
However, the regulatory authorities and indeed, physicians maintain these 
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measures due to their prior approval history, quickness and ease of 
interpretation. 

Fundamentally it can be argued that the MMSE, CDR & ADAS-Cog all function 
as composite measures in and of themselves. As they have measures for 
individual cognitive and functional domains but also give an overall score, 
they operate in much the same way. However, they were not all developed 
based upon statistically combining tests to yield a single measure, but were 
developed to index multiple domains broadly yet shallowly. Much like IQ an 
MMSE, CDR and ADAS-Cog give a global/total score for participant, which is 
prodigious for classification but as with most things, the devil is in the 
details. At different stages of AD different cognitive function become 
impaired (Jutten et al., 2020). As Mortamais and colleagues (2017) have 
shown, semantic and episodic memory components are the first to become 
impaired and deficits sensitive to decline at a later stage (such as executive 
functions) do not decline in the early stages of AD. However, all of the 
aforementioned measures to a greater or lesser degree compress all 
cognitive domains into these global scores. By selecting component 
measures of indices that show greater sensitivity to decline whilst removing 
identical and/or confounding variables, this allows for increased sensitivity 
not only to the disease course but also the amelioration of the modelled level 
of disease impairment. 

It can also allow for single timepoint measurement when indexing a decline 
from a prior level. By utilising an intra-individual measure based upon 
constituent cognitive functions, that are shown to have very little age-related 
change, a comparison can be drawn against those that do have age related 
change such as memory. Therefore, a performance whereby a language 
performance below those of processing speed or executive function indices 
would indicate a performance below what is expected. The measure of fluid 
ability as with prior work will comprise commonly used cognitive domain 
measures for executive function, attention and reaction time. This will be 
compared to a crystallised intelligence score which will be computed from 
the five language domains of the MMSE (totalling 8) and z-scored against the 
full cohort. The discrepancy score will be in the form of a z-score for each 
subject and will be calculated using the following equation: fluid composite – 
crystallised composite = discrepancy score.

The full screening cohort will be used for this analysis which totals nearly 
10,000 individuals. All will have all presented to a memory clinic, primary 
care physician or clinical trial site with some concern about their cognitive 
function, primarily memory issues. However, a large minority will not have 
any memory impairments (~40%). In order to compare these measures to 
those typically used for screening for symptomatic AD, the relationships 
between these measures will be analysed, using simple correlation and 
regression methods, as well as group level comparisons based upon CDR 
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staging. These methods have been chosen to be used as this is a novel 
approach within this setting and as such, there is no basic information about 
these measures within a screening population for AD. Thus, in order to 
discover how a discrepancy score performs in relation to that of common 
memory measures, comparisons will need to be made in different forms, 
both on an individual and group level.

Comparisons Of Verbal Memory Measures – Chapter IV

AD is incredibly heterogeneous, even when looking at those who are amyloid 
positive, 30% of cognitive normal individuals will never go on to develop AD 
dementia (Jack et al., 2019). There are also large differences between 
clinically and biologically defined AD. With biological AD (aka amyloid 
positivity) three times more prevalent at any age than the clinical syndrome. 
This is in line with the understanding of the 15-20 years preceding the onset 
of symptoms within AD (Jack et al., 2018). However, whilst there is a degree 
of alignment, the argument persists that amyloid is not a prerequisite for 
developing AD dementia. It is only once tau pathology becomes more 
abundant does any clinical decline occur. This current understanding is far 
from crystal clear. Nevertheless, what is understood is that pathological 
amyloid persists for decades prior to symptom onset, with pathological tau 
accumulating subsequent to the presence of amyloid pathology (Frisoni, et 
al. 2022).

The sources of heterogeneity are being widely studied from a biological 
perspective, however, little consistent insight is offered into cognitive 
heterogeneity within AD (outside that related to biology). This is primarily 
due to the lack of agreement into which measures to use. All of which has 
resulted in a very siloed approach when it comes to clinical trials and 
academic cohort studies. Resulting in over 50% of measures used for finding 
treatment effects in clinical trials have incomplete psychometric validity 
published on them (Soobiah et al., 2019). The premise of a lack of 
comparative studies being if the study is using one measure to index 
episodic memory for an individual why put them through a second 
similar/identical measure. Whilst most researchers will not expect a 99% 
concordance for results between any two measures, there is very much a 
fundamental trust that because two measurement paradigms are similar, 
they will produce similar results. This chapter will look to ascertain this 
validity of this statement using the two different cohorts. Firstly, using two 
measures of story recall from a new screening population who may or may 
not have a memory impairment. This will look to understand variability within 
a population presenting to memory clinics for screening with unconfirmed 
pathology or diagnosis. The second will look at the confirmed amyloid 
positive individuals within the large cohort discussed earlier. This analysis 
will look specifically at those with confirmed clinical AND pathological AD and 
how two measures of verbal list learning differ in this population. In both 
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analysis these measures are assumed to be highly concordant and these 
analyses will look to uncover if they indeed are.

For diagnosis there is little, if any, agreement on which measure best 
indexes AD (amnestic) related cognitive impairment. This is shown 
abundantly in the ambiguity in all diagnostic classifications since 1984 (see 
Chapter 1 for full discussion). Because of this discordance in test selection, 
these different measures are assumed to be closely aligned in terms of the 
cognitive domains they are indexing. Cognitive variability within AD is 
something that is commonly found on the MMSE (Duchesne et al., 2005), 
with 2-3 point variations between scores found with those diagnosed with 
MCI. However, when looking at domain specific measures, such as those 
used to measure memory impairment, these variations with repeated testing 
are often more stable (Patton, et al., 2005; Kueper et al., 2018).   

One commonly employed method of comparison is that developed by Bland 
and Altman (1978). Whereby two measures are analysed to see how closely 
aligned the two measurements are to the same thing (or in this case the 
individual). The means and differences between the two measures on an 
individual case by case basis are computed and graphically represented. 
Limits of agreement are then calculated using standard deviations to give a 
representation of the two measures under investigation. The closer the mean 
score is to zero the better. And the closer the limits of agreement are to one 
another the more comparable the measures are. This simple yet 
comprehensive technique allows for concordant interpretation of both group 
and individual level data. 

This has been studied within prodromal AD/MCI using the broad Cantab 
battery and other common AD measures; ADAS-Cog, FCSRT, CDR, MMSE 
(Abbott et al., 2019). This was analysed using the phase III trial of 
gantenuramab (SCarlet roAD), whereby repeated timepoints of the same 
measures were looked at to understand the relationship between these 
domain specific measures and those commonly used within trials of AD. 
Relationships between the measures were poor (r=0.1-0.4), however when 
looking at the consistency of these domain specific measures the limits of 
agreement for most measures, as well as the Cantab memory composite, 
were small. Thus, indicating good reliability across measurement timepoints 
for the battery. 

As the measures are being compared to one another as a whole rather than 
individual component comparisons, some typical psychometric analysis 
methods (such as Cronbach’s alpha) are not fit for these analyses. One 
method that is similar though, is that of equivalence testing. This uses 
inferential confidence intervals to test for statistical equivalence between 
two measures as an adjunct to null hypothesis significance testing (NHST). 
This was shown within psychometric testing of healthy adults comparing two 
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forms of the Controlled Oral Word Association Test (Ross et al., 2007). 
Typical descriptive confidence intervals empirically can’t capture the same 
amount of variance as NHST to 5% threshold (Tyron, 2001; Nickerson, 2000). 
Therefore, this method uses inferential confidence intervals to better capture 
the variance between two measures, which is the core aim of this analysis. 
However, whilst this methodology is more sensitive to group differences than 
NHST, the Bland & Altman method also allows for visualisation of individual 
level differences too. And when coupled with other methods such as NHST 
gives a broader picture of measure performance. It is also preferable to 
equivalence testing on the basis of prior use within AD and coupling with 
correlation analysis as well as NHST will give the broadest level of 
understanding of the performance of these two pairs of measures within the 
populations under investigation. To note the same analysis will be performed 
for both studies within this chapter to allow for a comparison of results.

Classification Methodologies – Chapter V

Whilst AD clinical diagnosis is based upon clinical judgement and doesn’t 
always align with pathology, the significant presence of amyloid is irrefutable 
evidence of the biological hallmark of this neurogenerative disorder 
(Mckhann et al., 1984). Amyloid positivity assessment is often not done in 
primary care due to cost, time and experience of physicians (James et al., 
2020). Utilising new techniques, such as machine learning to find ways to 
use common measures used in AD settings could help alleviate misdiagnosis, 
participant burden and allow individuals access to potential treatment and 
drug trials in a timelier manner. Even by improving the classification rate of 
amyloid positivity in a clinical trial context, can results in massive cost 
savings as well as increasing the speed of recruitment into these trials, which 
is beneficial for the companies, individuals and AD field alike.  

A lot of work has been put into machine learning techniques using these 
more complex methods to increase the classification accuracy of diagnosis. 
Being able to predict a biological phenotype of AD from a clinical 
presentation is something that is broadly sought to help align the two 
diagnostic frameworks and aid overall diagnosis. This is primarily in settings 
where routine PET imaging, blood tests and CSF lumbar puncture are not 
widely available due to cost, physician knowledge or healthcare system 
offerings. However, predicting amyloid positivity is still as challenging as 
ever, regardless of the testing measure employed, no clinical or cognitive 
measures have been shown to correctly categorise amyloid positive 
individuals prior to PET or CSF measurements. In recent years with the 
spread of machine learning techniques into fundamental neurosciences, 
researchers have begun to apply this methodology to clinical trials as well as 
academic cohorts. Building models to predict this classification is one 
method of repurposing existing data to aid future trial design. 
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Prior research has shown there is no one size fits all approach for choosing a 
classification methodology. Machine learning methods are more 
sophisticated statistically but standard machine learning methods provide 
predictions and associations without necessarily having biologically or 
clinically grounded casual insights of the outcomes. This can lead to 
unbalanced models and skewed positive or negative classification values. 
Many have been used, with methods used expanding with the growing use of 
machine learning techniques and artificial intelligence paradigms. In a recent 
review of 60 papers within AD using some form a machine learning for 
classification, Tanveer and colleagues (2020) showed that support vector 
machines (SVM) is used in the majority of papers (mainly looking for 
differences between CU and AD individuals) and in 83% of papers when 
imaging modalities were the main focus. This paper showed a 
preponderance for method selection at the behest of the authors rather than 
supportive literature within AD or dementia. As the aforementioned studies 
all show a range of methods that have been previously used, with a number 
having consistent strong levels of accuracy in classification within AD.

However, the literature is far from clear cut. Bansal and colleagues (2018) 
conducted a literature search of four machine learning algorithms within 
dementia diagnosis and found decision trees and naïve Bayes classifiers to 
have >99% classification accuracy before and after attribute selection 
(reduction). Bayes’ theorem is fundamental for inferential statistics and 
many machine learning models. Bayesian reasoning is a logical approach to 
updating the probability of hypotheses in the light of new evidence, and it 
therefore highly applicable to many scientific hypothesis’ (Berry & Stangl, 
1996). Whereas the aforementioned methods look towards regression and 
variance, this takes a probabilistic approach to the likelihood of groupings. 
This classification method has also shown strong classification properties in 
neurodegenerative disorders and dementia in particular (Bansal et al., 2018; 
Khan & Usman, 2019). However, its utilisation within AD specifically is still 
unclear.

Further to this, Bucholc et al, (2019) showed additional support for SVM, 
using ADNI-2 data. Across 6 machine learning methods, SVM had superior 
classification when given a wide range of functional, imaging and cognitive 
variables. Concurrent research by Khan & Usman (2019) showed again Bayes 
based classifiers improve clinical AD diagnostic accuracy up to 96.4%. 
However, a comparison of ten traditional and non-parametric classifiers for 
the prediction of dementia showed a different pattern (Maroco et al., 2011). 
PCA-LDA showed leading sensitivity and specificity. Further support for this 
methodology within AD comes from imaging results showing high 
classification of SPECT and PET images utilising PCA and LDA, whilst SVM 
showed high classification values after the PCA was employed on the image 
identification (Salas-Gonzalez et al., 2010; Lopez et al., 2009). SVM, neural 
networks and decision tree methodologies have shown further favourable 
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classification properties, but whilst having high specificity (SVM Me= 0.9 
AUC) they had low specificity when compared to other methods (SVM 
Me=0.3). In a recent comparison paper Grassi and colleagues (2018) also 
showed superior accuracy of SVM for diagnostic classification based upon 
cognitive, functional, demographic and imaging variables. However, whilst 
their AUC of 0.96 was supported by a bootstrapping AUC of 0.92, their 
sample size was very limited for a study of this size (n=184) impairing its 
wider generalisability. Something this analysis will not be limited by.

Conversely, machine learning methods haven’t always shown superior 
accuracy in diagnosis or classification more broadly. A recent ADNI paper 
looking to predict AD from genetic data showed a best of 72% classification 
performance from the Random Forest method (Oriol et al., 2019). This can 
be argued to be down to the input into the model (only genetic markers 
rather than more detailed variables previously shown) rather than the 
models themselves. A further paper from the DIAN cohort in preclinical AD, 
also showed poor accuracies (AUC=0.74) utilising PiB-PET features alone in 
an SVM and k-mean clustering model (Castillo-Barnes et al., 2020). A further 
ADNI paper (Ezzarti et al., 2019) also looked at these models and found SVM 
and k-nearest neighbour models performed worse when all features were 
included. They found model performance is partially dependent on feature 
selection and characteristics of the dataset. Furthermore, this method gives 
an alternative yet unlimited hierarchical way to treat the data within the 
cohort. As shown in the Sampson and colleagues’ paper (2011) SVM have 
strong utility within classification problems with many variables (greater than 
the number in this cohort) and whilst this is not identical it is synonymous in 
its approach, other comparative analyses as discussed previously have 
shown SVM to have high classification results within AD (Bucholc et al., 
2019).

Depending upon the number of variables in question, classification can either 
be used in full by the model of a factor analysis/principal components 
analysis or can be conducted to select only the appropriate variables. This is 
the traditional method of ascertaining classification and latent factor within 
datasets which is fundamentally the hypothesis of this analysis seeks to 
determine. Comparisons between PCA then LDA and PLS has shown model 
parsimony in classification performance, however, the key differential is in 
the feature reduction aspects of these methods. PLS is particularly well 
suited to analysing a large array of related predictor variables (Kettaneh et 
al., 2005; Carrascal et al., 2009) which is not specifically true of this dataset. 
Again, it is best suited with a sample size not large enough compared to the 
number of independent variables. PLS-DA was the method used within the 
initial ADCOMS development paper (Wang et al., 2016), which has been 
widely successful within clinical trials. 
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As within other biological disciplines, machine learning in AD has been 
predominantly used to index imaging and genetic modalities for 
classification purposes or to improve signal detection. Computer Aided 
Diagnosis (CAD) has aided in classification studies but has not been widely 
adopted, models for SUVR values in PET however, have shown promise, but 
the majority of clinical trials still use central readers and comparisons 
between the two methodologies has yielded highly congruent results. One 
recent study of importance was from the Coalition Against Major Diseases 
(CAMD), who developed an unsupervised machine learning model called a 
Conditional Restricted Boltzmann Machine (CRBM) to simulate detailed 
patient trajectories (Fisher et al., 2019). This work demonstrated the ability 
of a machine learning model to accurately and consistently predict changes 
in total ADAS-Cog score for 18-months of decline. This neural network 
treated the decline as a latent factor and predicted with high accuracy 
individual patient decline and is an example of how this can be applied to 
future clinical trials. However, given the cross-sectional nature of this 
proposed analysis this method will not be employed.

Overall, given the breadth of its use and fairly consistent top of the class 
classification values, the method to be employed within this analysis will be 
SVM. This machine learning based approach negates the need to treat 
outliers with removal and allows for misclassification within the model. 
Nevertheless, whilst SVM is a sophisticated classifier, it is somewhat prone to 
overfitting. This can be overcome using soft margin classifiers to allow for 
multiple misclassifications for individual variables. But in order for any model 
to be found, there is a need for a training and testing datasets. As this 
dataset comprises such a large number of individuals, the cohort will be split 
into 2 equal datasets. After the randomised data split, the cohorts will be 
limited to the key variables in questions which will be derived from the 
results of the prior analysis within this thesis. As with all classification 
problems the model bias/variance trade off will be monitored closely and 
looked at in detail for each result. Within the dataset the classifications for all 
variables are labelled. However, in order to train the model/algorithm semi-
supervised learning methodologies will be employed, using tuning 
parameters within the SVM model function. Initially the SVM models will be 
built/trained on a labelled dataset to employ supervised learning algorithms 
before testing and validating this on subsequent unlabelled datasets.

Chapter Summary 

In summary this chapter has covered the broad outline of the techniques and 
measures to be employed in all main analyses within the thesis. It has also 
covered in detail the nature of the dataset under investigation, the screening 
procedures for all individuals that has led to these data points and how these 
tiered procedures impact the homogeneity of the cohort in question. Moving 
forward the next chapters will all begin the analyses, starting by exploring 
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the relationship and feasibility of a discrepancy score within this clinical trial 
cohort. 
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Chapter III – Discrepancy Scores Within AD
Chapter Outline

Finding cognitive impairment in AD is typically done cross-sectionally. This 
method has many flaws as measuring neurodegeneration/AD requires a 
change from normal function. Discrepancy scores can find a normal function 
of an individual, cross-sectionally, by comparing current performance to 
stable cognitive functions such as language ability. This chapter will explore 
this concept within a very large cohort comprised of individuals with AD and 
explore if these measures can be derived from short global cognitive 
assessments. The study will examine the how this measure behaves 
throughout AD (criterion validity) and how it compares to that of the 
established memory measure within this cohort (convergent validity). This 
chapter will also explore how well the full battery of measures perform 
across regions (cross-cultural validity).

Introduction

Memory impairment is a cornerstone of the diagnosis of Mild Cognitive 
Impairment (MCI) likely due to Alzheimer’s Disease (AD). Currently, this is 
understood to be the first outward cognitive symptom of this disease. 
Finding impairment in subjects likely to have MCI or AD is either done cross 
sectionally or longitudinally. Longitudinal measurement is the gold standard 
but something that is rarely available when screening subjects prior to 
clinical trials. Cross sectional measurement is commonplace and is compared 
to normative samples or within individual comparisons using contrast or 
discrepancy scores. The latter of which will be explored further in this 
chapter. 

Fundamental to clinical trial success is the reliance on individual trajectories 
but they look for changes based upon reported functional change from a 
baseline score. These baselines can be highly changeable on a day-to-day 
basis, thus one score may not be representative of a normal level of function 
for an individual. Utilising a discrepancy measure for an individual allows for 
a greater level of precision on an individual’s level at a given timepoint, 
which is always in relation to their function and their potential change in 
function. But is importantly, measured in a different way to the commonly 
used measures such as CDR or ADAS-Cog, which are both based upon overall 
levels/scores that may mask any changes across singular cognitive domains. 

Tests of cognition are primarily designed to index a singular cognitive 
function or domain. Their construct validity, is often questionable, as most of 
these “domain specific” measures place demands on other cognitive 
domains at the same time (Soobiah et al., 2019). As an example, a measure 
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wanting to index processing speed consists of something as simple as 
eliciting a response/s from an individual to collect a measure processing 
speed, but requires attention as well as comprehension of verbal or written 
instructions. To better understand the domain specificity of a measure, this 
is sometimes done concurrently with neuroimaging. This helps understand 
the locality and brevity of cortical exertion undergone during a cognitive 
test. Whilst each region or network has a preponderance for a singular 
cognitive function or domain, there is a dominance for certain brain regions 
to be involved in specific tasks. For example, the Dorsolateral pre-frontal 
cortex (DLPFC) is highly involved in decision making, goal-directed 
behaviours and higher order thinking, termed executive functions (Elliot, 
2003). With smaller regions such as the right inferior frontal gyrus have been 
strongly implicated in inhibition (Hampshire et al., 2010). These regional 
distinctions are important when looking at neurodegenerative disorders as in 
many they tend to follow specific patterns of degeneration and dysfunction. 
Understanding this better can help lead to earlier detection and aid 
treatment decisions earlier in their disease process.

Specifically, within AD the entorhinal cortex then the hippocampus are the 
areas thought to be initially affected by beta-amyloid and subsequently tau 
aggregation. These build ups of pathological proteins then lead to biological 
deficiencies in signalling pathways in these areas (Huijbers et al., 2014; 
Maass et al., 2018; Jack et al., 2018). The downstream effects of these 
dysfunctions result in impairment in the cognitive domains associated with 
these cortical regions. Within typical AD, longitudinal studies have robustly 
shown that episodic memory declines first, followed by executive function 
and processing speed later in the disease course (Nathan et al., 2017; 
Mortamais et al., 2017; Boraxbekk et al., 2015; Grober et al., 2008; Mistridis 
et al., 2015; Schmid et al., 2013). The deposition of these abnormal proteins 
is thought to commonly occur decades before the start of the decline of 
these cognitive functions. Current methods of identifying the early stages of 
AD, predominantly rely on biomarker measurements that are currently 
expensive, invasive and not always accessible by all communities and 
regions (Sperling, Jack, & Aisen, 2011). An alternative to biomarkers (in the 
absence of a blood test) to diagnose AD, is to develop an earlier cognitive 
marker for clinical diagnosis. This would measure underlying cognitive 
dysfunction and accurately predict future cognitive and functional decline, as 
a result of AD pathology (Mortamais et al., 2017). The current guidance from 
regulators and academic trends has seen cognitive endpoints recommended 
to be personally relevant and related to an individual’s premorbid level of 
function (Rentz & Weintraub, 2000; Weintraub et al., 2018; FDA, 2018). 
These key criteria are the foundations of an individual discrepancy score.

Discrepancy Scores Within AD – Fluid & Crystallised 
Composites/Differences
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Broad and time-consuming neuropsychological batteries, such as the RBANS, 
WAIS and CERAD are often composed of a number of different measures that 
index diverse cognitive domains. These are primarily administered as a 
whole battery and give an in-depth outline of a subject’s level of cognition, 
across domains. As part of these batteries an overall score is computed as 
well as domain scores of similar cognitive functions, but importantly these 
batteries also compute difference scores or discrepancy measures for each 
subject. Discrepancy measures or contrast scores, compare specific 
cognitive functions against each other. These are usually in the form of 
standardised z-scores in order for the comparisons to be drawn. 

Recent evidence has suggested that a discrepancy between language skills 
and other cognitive domains (most notably episodic memory) & executive 
functions is found in early AD (McDonough & Popp, 2020). The dichotomy of 
these skills is broken down into fluid ability (memory, executive function and 
general cognitive skills) and crystallised ability (language skills). Indexing 
fluid ability gives an approximation of the efficiency of a cognitive domain/s 
and encompasses a raft of constituent cognitive processes (Wechsler, 1944, 
1997).  Tasks such as these are implicitly constructed to minimise usage of 
prior learned skills or knowledge (Johnson et al., 2004; Kaszniak, 1986; 
Lezak, 1995; Wechsler, 1944). Measures designed to index crystallised ability 
are created to explicitly index exactly those prior skills and knowledge 
learned through experience and education. This is routinely measured 
through vocabulary (Ekstrom et al., 1976; Wechsler, 1944; Zachary & 
Shipley, 1986) or less commonly, word pronunciation tasks (Blair & Spreen, 
1989). 

Results from this recent research (McDonough & Popp, 2020) indicated that 
greater amyloid deposition in early AD-related regions (precunus, temporal 
cortex and posterior & anterior cingulate) are associated with a larger 
discrepancy score. This study also showed amyloid deposition was significant 
and independently associated with a greater positive ability discrepancy 
score and these relationships were significant in both positive and negative 
discrepancy groups for this amyloid deposition. The rationale for comparing 
and contrasting these two domains within AD is that on an individual level, 
crystallised (language) abilities should enforce a ceiling on fluid (broad 
cognitive) abilities and thus measuring the discrepancy on an individual level 
could give a better indication of a decline of that subject over a comparison 
to a control population (Cattell, 1971; Kaufman et al., 2009). Those control 
group comparisons when appropriately administered and adjusted for age, 
education and other necessary demographic factors, is not always something 
that is available. Moreover, when this is available it is commonly not 
culturally specific, ecologically valid and doesn’t account for educational 
attainment in most cases. The alternative within individual comparison using 
discrepancy scores have shown recent promise within AD.
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Within the majority of cognitive neuroscience, it is expected to have 
educational attainment in one form or another as a covariate. This is done to 
account for underlying level of general cognitive ability. However, this is 
somewhat a nominal figure that rarely pertains to individual function and 
more a grouping based upon educational attainment level (e.g. High School, 
University or Post-Graduate).  Educational attainment has long been mooted 
as a protective factor in the development of AD (Stern et al., 1994).  This is 
commonly referred to as a cognitive reserve that is normally indexed via 
years of education or via a NART/IQ measure. However, these measures 
have a prolonged assessment timeframe and are not part of any clinical trial 
within AD. As such years of education is captured as a proxy measure. Years 
of education has been shown to correlate strongly with average ability 
discrepancy within a study of the Harvard Aging Brain cohort (McDonough & 
Popp, 2020). Therefore, it is expected that fluid ability declines prior to that 
of crystallised ability (O’Carroll & Gilleard, 1986; Wechsler, 1944). This also 
fits succinctly into the cognitive reserve hypothesis whereby an individual 
with larger crystallised abilities (or high IQ’s/language performance) delay, 
disrupt or halt cognitive decline in AD (Stern et al., 1994; Stern, 2006). This 
differential decline leads to large discrepancies between the two abilities, a 
rate which has been shown to be indicative of the rate of AD symptom 
progression (Albert et al., 2011; Bastin & Salmon, 2014; McKhann et al., 
2011; Schmid, Taylor, Foldi, Berres, & Monsch, 2013). Any change to the 
discrepancy score over time is suggested to be indicative of cognitive 
decline. Whereas, measuring this cross-sectionally may allow for an earlier 
signal of pathological change in AD, if subjects have a negative discrepancy 
score (ie lower fluid score compared to a crystallised score).

In comparison with single domain impairment, such as memory, the 
utilisation of this discrepancy measure has been sparse. However, a growing 
body of literature suggest this discrepancy differs in those with AD to 
cognitively normal subjects (McDonough & Popp, 2020) and increases in 
discrepancy as the disease progresses (Dierckx et al., 2008; Lezak, 1995; 
McCarthy et al., 2005). Importantly, and in line with the current direction of 
clinical trial populations, discrepancy measures have also been found to 
differ in preclinical AD subjects (McDonough et al., 2016). This study showed 
the difference between these groups with a score below zero, to be 
associated with greater level of amyloid beta as measured by PET. A score of 
close to zero or above, is indicative of healthy aging. Further to this, a lower 
(close to zero and positive) ability discrepancy score also has been 
associated with psychosocial factors such as, greater social and physical 
activity (O’Shea et al., 2018). That, in turn, has been associated with 
preserved functional integrity throughout the aging process and with greater 
levels of cognitive reserve (Christensen & Mackinnon, 1993; Fratiglioni, 
Paillard-Borg, & Winblad, 2004; Karp et al., 2006). 
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Discrepancy Scores Within AD – Validity Of This As A Measure

The findings from studies in early AD looking into discrepancies between 
fluid and crystallised abilities, still have some pitfalls. These are worthy of 
discussion and further research before widely implementing them into 
research and clinical frameworks. As previously discussed, an ability 
discrepancy relies on a composite of different fluid abilities, bringing 
together multiple cognitive domains which decline at differential rates within 
AD can be argued to mask any actual deficit if not analysed as constituent 
cognitive domains. However, within AD, subtle cognitive declines are not 
expected to be detectable until very late in the preclinical AD stage (Sperling 
et al., 2011) or early MCI (Jack et al., 2013). Detecting individual cognitive 
abnormalities prior to the onset of MCI is the next step in early diagnosis for 
AD but, by its very definition it is not clear how effective a cognitive marker 
ultimately would be to detect preclinical AD. However, due to the lack of 
congruency with AD biomarkers in the initial stages of the disease, the 
differential rates of decline and lack of concordance across memory 
measures, these discrepancy measures can be argued to make this new 
methodology worthy of further exploration. 

A common issue with the prior studies on discrepancy measures, is that 
individual cross-sectional performance covaries with lifelong values of 
IQ/g/overall intelligence, making the distinction inseparable within analyses 
of this nature. For example, individuals starting out with a lower level of 
cognition in any domain might appear to be on the path of cognitive decline, 
despite no actual change in ability since their youth and thus no evidence of 
abnormal cognitive decline related to their own ability. Even when 
accounting for educational attainment in analysis the problem still remains. 
The primary benefit of a discrepancy score over a single domain measure is 
that it helps to control for individual differences in overall ability more 
robustly than proxy measures such as educational attainment. Subsequently 
serving as a measure for within-individual changes in cognition when no 
longitudinal assessment is available. Therefore, an advantage of the 
fluid/crystallised discrepancy measure, over individual domain scores is that 
this would allow for the ability to control for individual differences in overall 
ability and thus serving as a proxy for within-individual changes in cognition, 
something current measures struggle to do. The implication is that it 
possible, longitudinal studies might have shown different levels of sensitivity 
of their measures, had they accounted for individual differences/variances 
due to crystallised ability. 

Critical to the validity of these discrepancy scores is the trajectory of the 
relationship between these two abilities within healthy aging. The dominant 
theory in this space is the cognitive dedifferentiation hypothesis (Baltes et 
al., 1980; Reinert, 1970), whereby cognitive abilities become more 
interrelated in old age. This is thought to be in part due to an increased 
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reliance on common underlying processes. A recent longitudinal study of this 
hypothesis has indicated the stability of these abilities in old age (Salthouse, 
2010), whereas other research has shown weaker correlations in older adults 
compared to younger adults (Cunningham et al., 1975; Eisdorfer et al., 1959; 
Rabbitt, 1993) or younger adults having greater fluid than crystallised 
abilities whereas older adults have greater crystallised than fluid abilities 
(Park et al., 2002; Salthouse, 2010). These findings suggest that healthy 
aging also might be accompanied by an ability discrepancy. Contrastingly, 
other research has found stronger correlations between fluid and crystallised 
abilities in old age in relation to younger adults (Cunningham, 1980; 
Lindenberger & Baltes, 1997; McHugh & Owens, 1954; Reinert, 1970). In 
essence the age of some of these studies precludes the majority of our 
understanding of AD by some distance. To this end, these cohorts would 
have likely contained a raft of subjects with undiagnosed pathology and 
some subjects would arguably have had preclinical AD. This makes it 
somewhat difficult to draw any comprehensive conclusions as to the stability 
of these measures as it is not clear whether fluid abilities longitudinally 
decline to a faster extent than crystallised abilities in healthy aging. 
Nevertheless, recent work by McDonough & Popp (2020) showed age was 
independently associated with ability discrepancy after accounting for 
cortical thickness and Aβ deposition. Thus, using recent methods and 
measures, showing the reliability of a measure such as this across the 
lifespan within the context of current AD research. Furthermore, as the 
magnitude of these prior studies found discrepancies in healthy aging are 
small it is argued that any discrepancies that might occur in healthy aging 
would be much smaller than the differences found in AD, yielding a potential 
differential early marker of cognition.

The other key component to the validity of the discrepancy score is in the 
similarities of fluid abilities in early AD. Recently research has looked into 
this within a cardio-vascular disease population with some subjects having 
diagnosed MCI. This study found that 74/104 subjects had an ability 
discrepancy (outside +/- 1 SD) using a composite score of fluid measures, 
including memory (Takaiwa et al., 2018). They also compared a stable 
crystallised ability measure to a range of individual (fluid) domains and found 
the most frequent discrepancies in MCI subjects to occur in immediate verbal 
memory (66%) and attention (60%) from the RBANS. Whilst these findings 
are novel, the sample in question had no AD biomarkers and were recruited 
from a cardio-vascular disease population. Which whilst having links to the 
onset of AD, should be treated as a separate entity when compared to those 
at the early stages of AD without any comorbid CV conditions. 
Discrepancy Scores Within AD – Individual Test Comparisons 

Discrepancy scores as a definition covers a wide base of measures. As such 
alternative discrepancy measures to those already discussed have also 
shown some promise within early AD. But before exploring the other studies, 
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it is necessary to mention the differences in classification of AD now, 
compared to when these studies were published (see Chapter 1 for full 
discussion). As such any discussions and findings should take the lack of 
biomarker confirmation into account with any interpretation of the following 
results. It is also worth noting the following studies explore different aspects 
of potential discrepancy scores in AD using many measures and all of the 
work is carried out by the group who developed the DKEFS executive 
function battery. Importantly they found there to be differences between 
verbal and visuospatial abilities in what was termed “preclinical AD” 
(Jacobson et al., 2002). In particular with this initial research by Jacobsen and 
colleagues (2002), they looked at a group of 20 healthy elderly subjects and 
20 subjects with what at the time was termed preclinical AD (likely now 
termed early/prodromal AD). These analyses were taken from data of the 
subjects who subsequently met diagnostic criteria early AD when they were 
still considered healthy controls at the time of the test administration. All 
diagnosis for all subjects were based upon independent annual examinations 
from two senior neurologists with the subjects classified into the preclinical 
AD group participating as control subjects for an average of 4.6 years prior to 
a subsequent change in diagnosis. The clear differences now are the 
diagnostic criteria and availability of Aβ indices which may lead to Aβ- 
subjects within the sample. However, with the longitudinal follow-up of these 
subjects, it was clear that they all went on to have dementia which suggest 
the presence of neurodegeneration (N) at a minimum.

These two studied groups were matched on age, education and gender, and 
were assessed on a cognitive battery comprising of the Dementia Rating 
Scale (DRS; Mattis et al., 1976), CVLT (Delis et al., 1987) long delay free 
recall, Boston Naming Test (BNT; Kaplan et al., 1983), the Block Design 
subtest from the WISC-R (Wechsler, 1974) and the WAIS-R vocabulary 
subtest (Weschler, 1981). The measures index semantic and episodic 
memory, shown earlier to be key indicators of early disease pathology which 
was not as well-known at the time. Further to this, the two components of 
the Wechsler batteries are short yet key indicators of cognitive processes 
known to be at their peak towards the latter stages of maturation of 
cognition (Spreng & Turner, 2019). Nevertheless, this cognitive battery maps 
on very neatly to our current understanding of preclinical AD and pathology. 
The discrepancy score here was made up of fluid (Block Design, CVLT) and 
crystallised (Vocab, BNT) components transformed to the same scale. The 
results from this small study showed statistically meaningful significant 
differences in the discrepancy (asymmetry) score between these cognitive 
domains and subject group. Whereas the DRS and CVLT scores also were 
significantly different between the groups, the size of the effect was not as 
large as that of the discrepancy measure. Thus suggesting, that as seen with 
other measures profiling IQ, discrepancy analysis may indicate some of the 
earliest changes within preclinical AD.
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This was further expanded upon within studies of cognitively unimpaired 
adults with genetic risk for AD (Fine et al., 2008; Houston et al., 2005; 
Jacobson et al., 2005). All three studies utilised a similar small cohort who 
were found to be cognitively unimpaired on the dementia rating scale (Matis, 
1988). There are a number of issues with using this to rule out impairment 
due to AD. The initial normative data against which the cognitive impairment 
is made against is one without AD biomarker confirmation meaning some of 
the cognitively unimpaired subjects will be preclinical AD and a significant 
proportion of the impaired subjects will have impaired due to erroneous 
reasons outside of AD (Coblentz et al., 1973; Lucas et al., 1998). Also 
importantly the DRS shows greater sensitivity to large cognitive changes in 
those patients with severe dementia (Woodard et al., 1996). The use of the 
DRS as a measure of global cognition is argued to be akin but more in depth 
than the MMSE as it indexes similar domains to that of the MMSE and other 
common neuropsychological measures (such as WAIS, WMS & WCST; Brown 
et al., 1999). But due to its larger scoring range gives a more nuanced 
breakdown of a subject’s cognitive performance. It has shown a significant 
correlation with MMSE of between r=0.78 - 0.82 (Woodard et al., 1996). 
Further to this, the aforementioned discrepancy studies all looked at 
different measures to comprise the discrepancy scores. Fine and colleagues 
(2008) found differences in APOE positive and negative groups in the 
cognitive switching discrepancies within the stroop task. They also found the 
discrepancy superior to APOE status in predicting cognitive decline in the 
sample of 24 subjects. Nevertheless, Housten and colleagues (2005) found 
there to be a higher proportion of discrepancies within the verbal and design 
fluency measures from the DKEFS. However, again there was no AD 
biomarker confirmation within the cohort of 52 subjects allowing for limited 
relations to early AD detection. Jacobson et al. (2005) also showed group 
differences for APOE e4 carriers compared to non-carriers in a slightly 
smaller sample of 42 on a discrepancy measure between digit and spatial 
span measures. 

Whilst it is well documented that general cognitive domains decline in early 
AD and more rapidly as the condition progresses, there is also some 
suggestion of this discrepancy score to be dysfunctional in later stage 
dementia (Strite, et al., 1997). However, whilst the study looked into 
discrepancy scores, the subjects who were thought to have a diagnosis of AD 
(McKhann et a., 1984) were excluded and only subjects with dementia were 
included and were also categorised as Mild AD with scores of 22-30. Whilst it 
is important to note the finding as some of the study population may have 
met current diagnostic criteria, as with the prior Jacobsen group studies, the 
diagnostic classification of the study renders little comparative findings as a 
result of their study population.

Key to assessing the intra-individual difference between amyloid groups is 
also to control for genotype within all stages of AD. As it has been strongly 
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demonstrated, APOE carriers decline at a quicker rate than non-carriers 
(Corder et al.,1993; Farrer et al., 1997; Tilvis et al., 2004; Rawle et al., 2018) 
and there is also growing evidence of an absence of decline in those 
individuals who carry the protective e2 variant of this key AD gene (Li et al., 
2020; Zalocusky et al., 2019). Some have even gone as far to suggest a 
differentiation of AD disease type of the basis of APOE genotype (Frisoni et 
a., 2022). As shown in Jacobsen and colleagues (2005) these discrepancy 
scores have also been shown to be asymmetric within these genotype 
subgroups albeit with a relatively small sample size, this is hypothesised to 
be due to differing biomarker profiles for these individuals within the 
spectrum of AD.

Overall taken together, these findings show the possibility that many types 
of cognitive discrepancies may exist across the AD process, but not all may 
be equally sensitive to AD biomarkers. However, whilst all studies showed an 
increased prevalence of asymmetric cognitive profiles in the AD group 
compared to controls (Jacobson et al., 2002; Fine et al., 2008; Houston et al., 
2005; Jacobson et al., 2005) these studies had very low sample sizes and 
uncharacterised cohorts. This can be argued to lead to spurious findings 
given that larger samples and more meaningful effects are needed for wider 
generalisation to clinical and research settings.  

Proxies of Crystallised Ability – Language & Vocabulary Measures 

Taking a step back from the prior literature, the overall intent of the 
discrepancy measure is to describe an intra-individual change based upon 
their pre morbid level of function. Vocabulary and semantic skills are 
commonly seen as the initial areas impacted with AD pathology but are not 
the first area to show impairment, this instead is primarily seen within the 
domain of episodic memory, which is normally an area impacted later in the 
pathological process of AD (Mortamais et al., 2017). The lack of impairment 
seen in AD subjects in semantic tasks could be due to the lack of subject 
specific construct validity as inter-individual differences in semantic 
processing and acuity are highly variable. As such, a one size fits all 
test/measure may not accurately capture this impairment. Both on an 
individual level or extrapolating across a cohort study. By measuring verbal 
(semantic) acuity against fluid cognition may present an earlier way to index 
AD pathology. Something that is gravely needed both in daily practice, 
academia and clinical trial recruitment.  

Verbal acuity has been shown to be incredibly stable across the lifetime prior 
to functional and cognitive decline. This allows for a strong comparison to be 
made from an objective measure, rather than a partner or self-reported 
change in performance. Individual’s level of insight into their own disease 
progression has been shown to be low (Logsdon et al., 1999; 2002; Vogel et 
al., 2004). Whereas impairment is either typically measured against a 
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comparative population, to determine a level of impairment from an aged 
matched healthy control, this allows for direct comparisons within an 
individual earlier than an impairment in a constituent cognitive domain.

Discrepancy Scores Within AD – This Study

The directionality of the discrepancy measure is critical to the interpretation 
of the outcomes. 
Concurrent with prior research the fluid composite measure is subtracted 
from the crystallised ability score to give the subject specific discrepancy 
score (McDonough & Popp, 2020; Jacobsen et al., 2002). The essence of this 
measure is to understand how prior knowledge interacts with acquired 
knowledge. As such, it is key to the interpretation of the outcomes that the 
components of the fluid and composite measure have strong measurement 
validity. As described in McDonough & Popp (2020), a positive discrepancy 
score, whereby fluid abilities are lower than crystalised abilities, or in other 
words prior knowledge is not matched by current cognitive ability, 
represents a lack of adequate retrieval or an absence of fulfilment of 
maximum ability. The reverse of this, a negative discrepancy score, whereby 
crystallised abilities are greater than fluid ability, or current ability is below 
prior knowledge would indicate ability to learn new information and skills 
would be impaired. In individuals with higher crystallised ability they are 
expected to have higher fluid ability and vice versa. Therefore, a large much 
greater crystallised ability would suggest an abnormal decline selectively in 
fluid ability. Between these two points would be indicative of no discrepancy, 
with scores around zero are indicative of the absence of abnormal cognitive 
profile.

Moreover, within the progression of AD fluid abilities are commonly agreed to 
decline earlier than crystallized abilities (O’Carroll & Gilleard, 1986; 
Wechsler, 1944). This fundamental differential in timings of decline leads to 
large discrepancies between the two abilities, the rate of which is indicative 
of the rate of AD symptom progression (Albert et al., 2011; Bastin & Salmon, 
2014; McKhann et al., 2011; Schmid et al., 2013). However, this is usually 
indexed within a singular domain of memory, primarily episodic, as this is the 
first domain normally shown to exhibit cognitive impairment within early AD. 

Within this cohort a number of questions need to be addressed, primarily the 
constituent components that will comprise each functional composite and 
what the scores for this cohort will be compared to in the absence of any 
normative data. The cohort in question is absent of standardised crystallised 
measures such as the NART, Boston Naming Test, Category Fluency or 
Verbal Fluency, but does contain language measures. The NART is often used 
as a proxy for education, general literacy and overall intellectual ability prior 
to any disease state (Ryan & Paolo, 1992). However, the measure of 
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language, consisting of the component part of the MMSE, does not have 
comparable normative data.

The language domain of the MMSE has long been argued to be stable 
throughout the initial stages of cognitive impairment due to AD. Research to 
this extent from Choe and colleagues (2020) investigated the constituent 
component domains of the MMSE within the ADNI cohort. They found the 
language domain to be comparable in the MCI progressors and non-
progressors with identical means and standard deviations in these cohorts 
and a non-significant groupwise difference. They also showed that MMSE 
subscores for orientation and construction, as well as for memory, are useful 
predictors of conversion from MCI to AD. This is in part due to the nature of 
the advancement of AD with orientation being one of the differentiators to 
the functional impairment associated with progression to AD. This finding 
was also replicated in a natural old age cohort of 500 elderly care home 
residents. Poor performance on the MMSE orientation domain is associated 
with faster rate of decline on total MMSE scores over time, although this may 
be due to the fact the orientation domain consists of a third of the points for 
the overall global score (Guerrero-Berroa et al., 2010). Language items have 
been shown to decline much later into the disease with a number of papers 
showing their decline being indicative of moderate to severe AD (Ashford et 
al., 1989; Small et al., 1997; Blair et al., 2007). This is in line with the notion 
of the crystallised composite discussed previously and can be argued to be a 
highly suitable proxy for a crystallised score within this cohort. 

This differential change will be included in part of this analysis by utilising 
the staging from Jutten & colleagues (2020). This study will assign values to 
each individual to reflect their disease stage. This will be done in four stages 
(1;CDR-SB=0.5, 2;CDR-SB=1, 3; CDR-SB=1.5-4, 4:CDR-SB=4.5+). The prior 
work using this staging showed longitudinal differential declines in a range of 
measures that varied by stage over one year and three years. These 
measures spanned semantic memory, episodic memory, global cognition 
(MMSE), executive function and processing speed. Critically to this analysis, 
both immediate and delayed memory only showed impairment (-1SD) at 
stage 4. Executive function, processing speed, attention and working 
memory were again shown to be stable across the one-year time course for 
all of the first three stages with very little differentiation in terms of score for 
each stage also. At stage 4 these measures dropped to around -0.5 SD and 
as with the memory measures showed a slight decline across the one-year 
time course. These results show the similarities between these measures at 
each of these four stages based upon CDR scores.

The relationship between discrepancy scores and both memory and CDR 
staging is unknown, as is the ability to utilise ubiquitous AD screening 
measures to comprise a crystallised (language) ability score. It is 
hypothesised that the discrepancy scores for subjects will be significantly 
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related to the immediate and delayed memory measures. This will be further 
analysed by splitting the cohort by CDR stage (as per Jutten et al., 2020) with 
the hypothesis that at the earliest stages of AD there will be an absence of a 
relationship, which becomes apparent as the disease progresses.

Methods

Study 1 Details

This analysis will look to validity of being able to compute a discrepancy 
score from commonly used measures within AD clinical trials. This 
discrepancy score will comprise composite measures determined from the 
MMSE for verbal acuity and broader cognitive domain tests from the CBB. 
These two composites will be based upon indexing crystallised and fluid 
cognitive abilities of each subject, without being composed of 
episodic/semantic memory indices used for comparison purposes. The two 
measures will be compared to find a cognitive discrepancy score for each 
subject. The study will look to uncover the strength of the relationship 
between a discrepancy score and memory measures. And understand how 
this changes throughout the disease course of AD. 

As this is the first analysis undertaken for this thesis it is also key to 
understand the differences in regional variation. Given this dataset 
comprises 29 different countries the data for each component measure will 
be assigned a region and analysed to see if any significant differences exist. 
If there are, this will be taken into account with further analysis.

Assessments & Composite Measures Composition

Crystallised Composite
Within this cohort, the battery of tests primarily consists of memory, 
functional and executive function measures. There is a dearth of stand-alone 
vocabulary measures which could be used to comprise crystallised abilities. 
However, some sub components of the MMSE do index this. The issues with 
the MMSE have been widely discussed in Chapter 1, however it is important 
here to reiterate the lack of comparative normative data and regional 
cultural sensitivity. These issues are particularly prevalent for language tasks 
as the cultural salience will not be always comparable with the direct 
translations utilised within the data collection. For this proposed comparison 
another factor to consider is the age matched normative data that will allow 
a direct comparison to a z-score. However, this is not something available or 
widely utilised for the MMSE. The measure was directly translated and as 
such is argued to relate to the normative data pertaining to the original 
version as no cultural adaptation was undertaken in light of the different 
languages of administration. Taking this measure for the crystallised 
composite was done for two reasons. Primarily this analysis was originally 
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composed to look exclusively at the endpoints utilised within clinical trials, as 
such, none of the crystallised measures from the McDonough & Popp (2020) 
paper are normally undertaken within a Phase III trial in early AD. Secondly, 
from the measures from the screening population these component 
measures from the MMSE were the only aspects that pertained to language 
indices. This includes the naming, repetition, comprehension, instruction, 
reading questions from the MMSE and is scored out of 8. However, as there 
is no standardised normative data, for the constituent components of the 
MMSE across all 29 countries, z-scored indices will be computed from the 
near 10,000 individuals that comprise the screening population. The 
computed z-score will be restricted to that of the crystallised composite.

These computed z-scores will be validated in part by comparing them to the 
years of education for each subject. A perfect correlation is not sought, but a 
weak but significant correlation is hypothesised due to the nature of the 
construct of the crystallised measure. If the null hypothesis is instead met, a 
factor analysis will be run to find constituent measures that would comprise 
a factor related to crystallised abilities. This factor will then be used to 
contrast to the fluid score to ascertain an individual discrepancy score for 
each subject.

Fluid Composite
An overall z-score from the Cogstate Brief Battery (CBB) will comprise the 
fluid composite. The CBB is a widely used and highly researched battery of 
tests and gives a good broad range of fluid abilities; processing speed, 
attention, visual learning and working memory. This is a set battery and is z-
scored against a normative dataset within the Cogstate system, giving an 
automatic z-score as the primary outcome measure for each individual test. 
These 4 individual z-scores can then be averaged to form the final fluid 
composite measure for each subject. 

Discrepancy Measures
As subjects are dichotomised by impairment in the verbal learning task 
(ISLT) and the overlapping crystallised and fluid nature of the stimuli this will 
be excluded from comprising the discrepancy measure. The discrepancy 
score for each subject will be calculated using the following equation: fluid 
composite – crystallised composite = discrepancy score. 

A positive discrepancy score would indicate higher fluid ability and a 
negative discrepancy score would indicate an impairment in fluid ability 
compared to expectations based upon the subject’s crystallised ability. 
Important in the interpretation of discrepancy scores is setting a cut off 
apriori that seeks to correctly categorise groups who are showing an issue on 
this measure. Prior studies have set a cut off of 1 standard deviation (+/-1) 
as a threshold, whereas other subsequent analysis has used a 0.7 criterion 
for the threshold of impairment. In line with diagnostic criteria pertaining to 
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cognition (albeit with a focus on memory) the working group thresholds are 
set at 1 standard deviation or greater to signify impairment in a cognitive 
domain. This is also in line with wider psychometric philosophy utilised 
widely across multiple therapeutic areas.  

Participants

This study looks to address the issues of prior research comprehensively by 
analysing a sample size of nearly 10,000 subjects (n=9759). The cohort 
comprises subjects who have presented to memory centres and consented 
for testing for the possibility of taking part in a clinical trial in early AD. Each 
subject has undergone a fully informed consent process consistent with each 
country/states IRB and EC guidelines. The screening criteria for inclusion into 
the study mandated the exclusion of medication affecting cognition, known 
comorbidities prior to brain imaging and depressive illness within the last 
five years. Full extensive details of this cohort can be found in the methods 
chapter. 

Statistical Analysis

Initial analysis will involve preparing the dataset for analysis and answering 
some basic questions on the demographics of the cohort itself and how this 
relates to the cognitive endpoints. Box plots and descriptive statistics will be 
run on the fluid composite measures (full cogstate brief battery), as well as 
using correlation analysis to understand the relationships between all 
measures. Analysis will also be conducted to look at the impact regional 
differences had on this screening data, with each region being compared 
across the three key measures (CDR, ISLT, MMSE). Discrepancy scores will 
be computed using two individual composites (fluid & crystallised). With both 
composites and the discrepancy score itself will be in the form of z-scored 
values and computation for the individual composites is described above. 
The crystallised composite will be correlated with the years of education 
measure to understand the extent of the relationship between the two. 

Subsequently, correlation and linear regression analysis will be performed to 
understand the relationship between discrepancy score and immediate and 
delayed memory recall. After these analysis have been run, the cohort will 
be split by CDR group and the correlation and linear regression analysis will 
be re-run for each CDR group. 

The questions this analysis aims to address is the strength of the relationship 
between discrepancy scores and those on conventionally assessed verbal list 
learning measures that index immediate and delayed verbal recall. And 
secondly, how impairment in a discrepancy score predicts impairment in one 
of these verbal memory domains at cut off’s akin to MCI criteria.



116

Results

Dataset handling
The dataset initially contained 9,759 screening visits that contained data for 
the MMSE, ISLT, CBB and CDR. Of these, 879 sessions were rescreened 
subjects, these were removed from the analysis set to not confound any 
results due to practice effects or longitudinal variation in these measures. 
Further to this, basic descriptive statistics were run on the main cognitive 
variables within the data set to analyse the normality of each variable, this 
was done on all 4 z-scores of the CBB and the overall MMSE score. ISLT 
values for both immediate and delayed remained untouched due to the 
proposed analysis utilising these as independent variables. As with the ISLT, 
the raw scores for all CBB measures are automatically z-scored by the 
Cogstate system against their normative database, giving each subject a z-
score per measure. 

Table 3.1 Correlation Matrix For All Measures (Significant values in bold)
ISLT 

Delaye
d Recall 

ISLT 
Immediat
e Recall

CBB 
Detectio

n

CBB 
Identificatio

n

CBB 
One 
Back

CBB One 
Card 

Learnin
g

CDR-
SB

MMS
E 

Total
ISLT Delayed 

Recall 
ISLT 

Immediate 
Recall

0.566

CBB Detection -0.016 0.092
CBB 
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CDR-SB -0.194 -0.185 -0.057 -0.111 -0.123 -0.093
MMSE Total 0.235 0.268 0.109 0.135 0.190 0.232 -0.258

Figure 3.1. Box & Whisker Plot For Each Fluid Composite Measure
Table 3.1 shows the covariance of all key measures within the dataset. The 
CBB has some covariance across the initial two simple measures 
(identification and detection) and less covariance with the more executive 
tasks. Memory tasks have some covariance with one another but not with 
the other measures. Whereas the MMSE has some small level of covariance 
with all measures and only with the CDR-SB does it have a negative 
covariance. All four measures were normally distributed but had some larger 
values in the negative direction (Figure 3.1). Table 3.2 shows the 
descriptive statistics for each of the fluid composite measures.

Due to the target population for this analysis & original cohort being early AD 
subjects with an MMSE of 17 or below were also taken away from the dataset 
to enable better homogenisation of the cohort. Furthermore, subjects with an 
incomplete set of measures needed for this analysis were also excluded. A 
total of 1798 datapoints were removed, giving a total of 7082 subjects. 

Table 3.2. Descriptive Values for The Cogstate Brief Battery (CBB) – 
Figure 3.1 

 Whilst there can be a strong argument to be made for a large number of 
CBB (fluid) scores significantly deemed to be erroneous due to the level 
below the norm they are performing at. However, this is contrary to Cogstate 
administration guidelines (Fredrickson et al., 2010), all of these 
administrations met the integrity criteria built into the system and were 

Cogsta
te Brief 
Battery

Minimu
m

1st 
Quarti

le
Media

n Mean
3rd 

Quarti
le

Maximu
m

Botto
m 

Whisk
er

Top 
Whisk

er

Standa
rd 

Deviati
on

Reactio
n Time 
(DET)

-8.760 -2.595 -
1.244

-
1.541 -0.274 3.310 -6.077 3.208 1.716

Attenti
on 

(IDE)
-11.860 -3.252 -

1.479
-

1.945 -0.349 13.125 -7.607 4.005 2.146

Workin
g 

Memor
y 

(ONB)

-7.623 -2.628 -
1.316

-
1.509 -0.226 5.438 -6.231 3.377 1.777

Learnin
g (OCL) -5.851 -1.896 -

1.127
-

1.083 -0.385 4.120 -4.162 1.880 1.097



118

completed in line with these guidelines and were therefore included in their 
entirety.

Computing Crystallised & Fluid Composite Scores

The fluid composite was comprised of the entire Cogstate brief battery (CBB) 
which encompasses similar cognitive domains to that of the fluid composite 
from McDonough & Popp (2020). Within the CBB are tests of reaction time 
(Detection), Attention (Identification), Memory (One-Back Memory) and 
Executive Function (One Card Learning). These 4 measures are automatically 
z-scored by the Cogstate system and were averaged to give an overall fluid 
composite measure for each subject. 

The crystallised composite was developed by utilising constituent domains of 
the MMSE. The object naming, repetition, commands and writing aspects of 
the MMSE were selected to form the crystallised composite, these are also 
the domains detailed under the language section by the test developers 
(Folstein et al., 1975). These gave subjects a score out of 8 and each 
measure was then z-scored against the entire screening population of 7082 
who had a complete fluid and crystallised score, who scored above 17 on the 
MMSE and were not rescreens.

MMSE Concordance & Regional Disparities 

In the absence of a stand-alone language paradigm and in keeping with the 
wide utilisation of the MMSE, the language components of the MMSE were 
utilised to this end. However, prior to the computation of this composite 
measure further detailed analysis of the MMSE needed to be undertaken. In 
order to try to account for some of the variability in such a vast dataset, a 
regional analysis was undertaken to ascertain the viability of utilising the 
MMSE within this analysis and for any future analyses that involve this 
dataset.

As such comparisons were made to ascertain any regional differences in this 
measure. No overall differences were found within the total MMSE score 
[F(1,8930)=1.050, p=0.300] for all subjects and no individual group 
differences were seen either based on the regional split by 4 regions using 
Tukey’s HSD post hoc test; (1)North America, (2)Europe & South Africa, 
(3)Asia Pacific & (4)South America (1-2 p=0.986, 1-3 p=0.999, 1-4 p=0.106, 
2-3 p=0.977, 2-4 p=0.086, 3-4 p=0.141).

Furthermore, after computing the crystallised composite and z-scoring the 
measure, this analysis was rerun. Findings showed a significant model effect 
[F(1,8939)=26.900, p<0.001] across regions and a significant group 
differences between APAC and all other regions (1-3 p=0.00, 2-3 p=0.00, 3-4 
p=0.00). Subsequent analyses were also run on the key endpoints for each 
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measure, CDR-Sum of Boxes (CDR-SB), ISLT total (immediate) recall 
(ISLTTR), ISLT delayed recall (ISLTDR) as well as the fluid composite 
measure. ANOVAs for the CDR-SB [F(1,6413)=47.6, p<0.001], ISLTTR 
[F(1,8402)=140, p<0.001) and ISLTDR [F(1,8402)=265, p<0.001] were all 
significant, however the model for the fluid composite by region was not 
[F(1,8294)=2.01, p=0.16]. p-values for each model’s post hoc analysis using 
the Tukey HSD test is displayed below in Table 3.3. 

Table 3.3. p-values for Tukey HSD post-hoc tests

Region CDR-SB
ISLT 

Immediate 
Recall

ISLT 
Delayed 
Recall

Fluid 
Composite

1-2 0.591 <0.001 <0.001 0.748
1-3 <0.001 <0.001 <0.001 0.120
1-4 0.048 <0.001 <0.001 <0.001
2-3 <0.001 0.488 <0.001 0.628
2-4 0.013 <0.001 0.004 <0.001
3-4 0.757 0.009 0.848 <0.001

Calculating Discrepancy Scores 

Removing any subjects without a complete discrepancy score the final 
number of cases for analysis were 7082. First, the crystallised composite was 
correlated with years of education within the cohort, there was a weak 
statistically significant positive correlation (r(6918)=0.110, p=<0.001) 
[Figure 3.2]. To note, subjects with scores over 40 for years of education 
were removed from this analysis, leaving 6918 subjects for this comparison 
alone.

Discrepancy scores for each subject were calculated by subtracting each 
crystallised composite score from the fluid composite score, consistent with 
McDonough & Popp (2020). The crystallised and fluid composites were 
positively (yet weakly) correlated with one another, (r(7080)=0.132, 
p=<0.001). 
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Figure 3.2. Correlation of Years Of Education & Crystallised 
Composite Z-Score. 

Relationship Between Discrepancy Score & Memory Assessment

Part of the underlying hypothesis for this measure is its relationship with 
impairment on standard memory measures used within early AD clinical 
trials. To this end correlations were run across the two key endpoints from 

  -8.87       -7.27         -5.67         -4.08         -2.48        -0.88         
0.72
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the ISLT to ascertain the strength and statistical relationship between these 
endpoints and the discrepancy measure (DS). 

Both relationships were statically significant and positively associated, with 
immediate recall (Figure 3.3) r(7078)=0.193, p<0.001and delayed recall 
(Figure 3.4) r(7078)=0.170, p<0.001, having very similar weak correlations 
with a subjects discrepancy measure.

Figure 3.3. Scatter plot with linear regression line and confidence 
intervals of discrepancy score (DS) and immediate memory recall z-
score (ISLTTRZ) for each subject
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Figure 3.4. Scatter plot with linear regression line and confidence 
intervals of discrepancy score (DS) and delayed memory recall z-
score (ISLTDRZ) for each subject
Assessing This Relationship By CDR Stage

As the population was vast and a broad reflection of subjects presenting to 
research centres, memory clinics, hospitals and private healthcare sites, the 
analysis utilised the CDR-SB score for each of the subjects to categorise 
them into AD stage in line with the research by Jutten and colleagues (2020). 
In the absence of amyloid status for the full cohort, this measure serves as a 
proxy for disease progression. As such and in line with NIA-AA (2018) & FDA 
(2018) criteria the cohort was grouped by CDR-SB score. Descriptives for 
each group are detailed below in Table 3.4. As not all subjects completed 
the CDR, the dataset was restricted to 5578 subjects.

Table 3.4. N’s, Means & (Standard Deviations) for each group on 
each endpoint

CDR Group 
(CDRSB) N Discrepancy 

Score
Immediate 

Recall
Delayed 
Recall

1 (0-0.5) 
[Preclincial AD] 245 -1.21 (1.25) -1.14 (0.89) -1.17 (1.02)

2 (1) [Verly Early 
AD] 605 -1.54 (1.50) -1.41 (0.86) -1.42 (0.93)

3 (1.5-4) [MCI] 4395 -1.77 (1.45) -1.66 (0.84) -1.73 (0.89)
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4 (4.5+) [Mild 
AD] 333 -2.15 (1.58) -1.86 (0.89) -1.93 (0.92)

An ANOVA with Tukey HSD post hoc test was also run to ascertain the 
differences between the discrepancy scores across groups. This was 
significant [F(1,5383)=105.1, p<0.001], with all individual groups being 
statistically different from one another too (1-3 p=0.005, 1-4 p<0.001, 2-3 
p<0.001, 2-4 p<0.001, 3-4 p=0.01), apart from group 1 and 2 (p=0.11).

As shown in the descriptive statistics in Table 3.2, the groupings were 
unequal with the majority of subjects being classed into group 3 (CDR-SB, 
1.5-4). Mean scores also increased with grouping in line with the 
hypothesised progression that determined the grouping with the CDR-SB 
score. Pearson’s correlation analysis was conducted on relationships 
between the ISLT and discrepancy scores. Only group 3 (CDR-SB 1.5-4) 
showed significant associations between discrepancy score and both aspects 
of the memory measure (immediate & delayed conditions). Further to this, 
groups 2 (CDR-SB=1) and 4 (CDR-SB=4.5+) had significantly related 
relationships between only the immediate memory recall and discrepancy 
score. The r values for all of these relationships were poor with the greatest 
strength between the immediate memory and discrepancy score was in the 
most impaired group (4; r=0.180). All r-values (& p-values) are displayed in 
the Table 3.5 and Figure 3.5 below.

Table 3.5. Pearson correlation coefficients for each variable in 
relation to discrepancy score by CDR Group (r value [p=value] 
significant results in bold)

CDR Group Immediate Recall Delayed Recall
1 (0-0.5) [Preclinical AD] 0.043 (p=0.500) 0.007 (p=0.920)

2 (1) [Very Early AD] 0.160 (p<0.001) 0.068 (p=0.094)
3 (1-5-4) [MCI] 0.100 (p<0.001) 0.061 (p<0.001)

4 (4.5+) [Mild AD] 0.180 (p<0.001) 0.090 (p=0.100)
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Figure 3.5(a,b,c,d) & 3.6(a,b,c,d). Scatter plot with linear regression 
line and confidence intervals of discrepancy score (DS) against 
immediate memory recall z-score (ISLTTRZ) & delayed memory 
recall z-score (ISLTDRZ) for each subject by CDR Group (Group 1= 
Preclinical AD, 2=Very Early AD, 3= MCI, 4= Mild AD)
Discussion

The findings from this analysis showed a weak but statistically significant 
relationship between a subject’s discrepancy score and their level of 
impairment on immediate memory recall in all impaired conditions (2-4). 
However, this was not replicated in the delayed more cognitively taxing 
domain of delayed memory recall. The only significant relationship between 
delayed memory performance and discrepancy score was in the MCI group 
(3, CDR-SB=1.5-4), however the strength of the association was very close to 
zero and therefore demonstrates very little relationship between these two 
measures.

The strength of the relationship between discrepancy score and immediate 
memory was weak, although fairly uniform across groups 2, 3 & 4 (r=0.16, 
0.1, 0.18 respectively). The lack of relationship with the first group shows the 
relative lack of impairment seen within this subgroup from a functional and 
proxy cognitive perspective as measured by the CDR. The prior research 
indicated that a discrepancy score may show up early for those who have 
amyloid pathology present in the progression of AD. However, as no amyloid 
markers were utilised in this analysis, and although a number of these 
subjects were subsequently diagnosed with AD based on biomarkers criteria, 
this population were presenting to memory clinics and may have unknown 
multiple pathologies and/or co-morbidities. This analysis shows that within a 
screening population for a clinical trial discrepancy measures, built utilising 
common measures for AD, index something different to that of traditional 
memory measures. The lack of a relationship with the primary index of 
memory, delayed recall, suggests that across the stages of AD, a 
discrepancy measure is not related to that of the primary initial domain of 
impairment within an amnestic presentation of AD. This can be argued to be 
due to the composition of the fluid composite score comprising half of the 
discrepancy measure and this includes memory indices but not a delayed 
component of recall. This therefore suggest that a discrepancy score and 
memory measures used for diagnosis do not have convergent validity and 
should be explored further to assess their relationship within screening and 
diagnosis for AD. Further to this, it is important to note that the relationship 
mirrors the expected impairments across AD whereby a discrepancy score 
becomes significantly related to that of memory the more progressed an 
individual’s AD is deemed to be (as measured by the CDR). This 
demonstrates the criterion validity for a discrepancy measure such as this 
within AD.
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Consistent with prior work (e.g., Cattell, 1965; Kaufman et al., 1996), the 
crystallised and fluid composites were positively (yet weakly) correlated with 
one another. This may go some way to explaining the dearth of relationships 
between these measures. The lack of stand-alone language measures and 
the exploration as to the suitability of common AD screening measures for 
this component of the discrepancy score limited the range of performance 
with the majority of the cohort performing at ceiling on the MMSE language 
domains. 

There are also several other limitations of this analysis that are important to 
consider in any generalisation. There was a weak relationship between 
crystallised composite and years of education which demonstrates the lack 
of suitability for utilising the language domains of the MMSE as a proxy for 
crystallised ability. The significant relationship demonstrates the validity of 
exploring this as an option for overall language ability but the strength of the 
relationship and large number of subjects at ceiling restricts the applicability 
for future research.

When comparing this analysis to prior work and findings, it is important to 
differentiate the make-up of the composite measures. Whilst the crystallised 
composite is theoretically similar to that of the prior work of McDonough & 
Popp (2020), the fluid composite in this analysis is divergent. As the 
objectives of this analysis were different to that of this prior research, the 
crystallised composite computed here within, related to uncovering the 
serviceability of common AD screening measures and their relationship to 
common severity indicators. The fluid composite by nature of the analysis 
had to be composed of other cognitive domains in order to compare this 
score to their relationship to common severity indicators (delayed memory 
recall). This engendered differences that may explain the lack of early-stage 
relationships between discrepancy scores and both immediate & delayed 
recall. The fluid composite was composed of indices of processing speed, 
working memory, short-term memory & attention (Fredrickson et al., 2010), 
which is in contrast to that of the prior composite of short-term and long-
term memory, as well as processing speed & attention (McDonough & Popp, 
2020). Within the McDonough & Popp paper, the differences between fluid 
and crystallised ability were manifested through memory and executive 
function, whereas this analysis showed these differences between fluid 
ability to be weaker when this paradigm is altered. This underlines the 
inability of the MMSE language domain to comprehensively index crystallised 
ability within a screening cohort, but still shows the potential for this 
measure to uncover an alternate index to that of typical cognitive domain 
measures. Overall, this absence of fully concordant results with prior 
research shows that a) discrepancy scores index different domains to that of 
delayed memory recall and b) within a screening population this is not a 
useful indicator of impairment when utilising the MMSE language domains for 
crystallised ability. 
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Due to the high rate of ceiling effects on the crystallised composite, the fluid 
measures (CBB) comprised the majority of the variations in discrepancy 
score. It is important to note here whilst the CBB was completed under 
supervision and administration guidelines, as well as having effort tests and 
thresholds for incompletion built into the measure, the CBB was done as a 
distractor task in between the immediate and delayed conditions of the 
verbal memory measure and as such carries with it the confound of such an 
distractor task, in that, subjects may not engage with it in the same way if 
they have been given advice to the contrary of the administration guidelines, 
due to the CBB not being part of the inclusion criteria for the trial from which 
the dataset was taken from.

Conversely, the regional analysis is something that uncovered broad 
variation across these three common screening measures for clinical trials 
within AD (MMSE, CDR, ISLT). The differential pattern of divergence showed 
that the screening population for this trial was significantly different in the 
Asia-Pacific region, with subjects being objectively impaired on the ISLT to a 
greater degree but had lower CDR values compared to other regions. This is 
suggestive of caregiver bias commonly seen in this region based upon 
cultural practices when it comes to elderly care and not wanting to seem as 
though an individual’s family does not take care of their relatives well by 
scoring highly on the CDR interview. The opposite was true for North America 
whereby subjects on the whole showed much less impairment than that of all 
other regions on both indices of the memory measure (ISLT). However, this 
calls into question the cross-cultural validity of these measures, they can be 
used in these regions and completed, however they produce divergent 
results. Looking forward to future analyses, the region should be included as 
a covariable for any future analysis on this dataset.

The overall strength of these relationships between the measures analysed 
here precludes any strong conclusions however, there are some key 
takeaway points and future considerations for any further analysis utilising 
this cohort. The small relationship shows the absence of similarities but 
indicates a different index of cognitive performance, further research is 
needed with variables linking proteinopathy and biomarkers, to these clinical 
presentations as shown in prior work research into this area (McDonough & 
Popp, 2020). Nevertheless, this does not remove the ability of this measure 
from having the potential for finding earlier impairment, however this 
disease specific biomarker information is crucial to this endeavour. The 
criterion validity of this as a measure within AD can be supported by this 
study as it tracks as expected with memory indicating progression akin to 
that seen in AD. Furthermore, this study also calls into question the cross-
cultural validity of these measures as the clear significant regional 
differences shows the differences in screening populations across the globe.
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Chapter IV – Comparisons of Verbal Memory 
Measures

Chapter Outline 

Previously we have shown that you can derive discrepancy scores from 
global cognitive measures. However, its validity as a measure of verbal 
acuity is limited. This discrepancy score measures something different to 
that of amnestic memory at screening, with that relationship changing 
across the disease stage of AD, demonstrating its criterion validity. To 
further understand the variances within specific measures of amnestic 
memory, this chapter will examine this aspect of psychometric validity within 
two different cohorts. One with a confirmed AD diagnosis, both pathologically 
and clinically. The other smaller cohort without unconfirmed diagnosis and 
unknown comorbidities. These studies aim to understand cognitive variability 
of memory measures within key AD-related populations by exploring their 
concurrent, convergent, construct and content validity. 

Introduction

Commonly, many measures of memory are frequently interchanged with one 
another, on the basis they produce concordant results. This chapter will 
explore the validity of this across four memory measures commonly used to 
find impairment within AD. This is key to understanding sources of 
heterogeneity in cognitive performance of individuals across the spectrum of 
AD.

Variations in cognitive performance are something that researchers try their 
best to minimise. Within AD there are many reasons for variations within a 
single “homogenous” cohort. Within this thesis I explore how much of this is 
down to clinical trial design. How much is down to the fundamental diagnosis 
and pathology of individuals. And finally, how much is down to the 
psychometric validity (or lack thereof), of these endpoints. This chapter will 
explore the latter two aspects of this, looking at between-measure 
comparisons.

Finding out if an individual is exhibiting cognitive impairment can be done in 
three ways. Firstly, and most commonly within screening paradigms, a 
comparison is made to that of a normative data set. A second way is 
comparing within individual performance across cognitive domains. This is 
done by measuring expected performance using a stable measure such as 
IQ, NART or vocabulary ability, against a single or multiple domains of 
interest, to give a composite score or discrepancy score. Thirdly, the gold 
standard, is to measure a subject longitudinally on a single domain to 
minimise other factors that may induce variability. This is especially 
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important within neurodegenerative disease where individuals decline from 
prior levels of ability and function. However, longitudinal measurement is 
rarely available and often a costly endeavour.

Across all three paradigms, tests that are thought to measure the same 
domain are often used interchangeably. For example, there are many 
different versions of list learning measures, all of which are often seen as 
measuring the same things, both within research and clinical trials. However, 
there is limited knowledge about the comparisons between these measures 
themselves and some have very divergent constructs. It can be argued that 
this is an oversight and is something that induces cognitive variance in 
results and contextual interpretations of study results.  

Across the AD continuum cognitive deficits present in differential domains at 
different stages of the disease. This can also vary greatly from person to 
person based upon a wide variety of factors, but heterogeneity within AD is 
argued to comprise three distinct areas; risk factors, protective factors and 
concomitant AD pathology (Ferreira et al., 2020). From a cognitive 
perspective, the trajectory of impairments is fairly well characterised. 
Preclinical AD is characterised by normal cognition, but has shown signs of 
absence of practice effects in some cohorts (Hassenstab et al., 2015). This is 
also something to consider when looking at any variances between measures 
within a single cohort. The inception point of symptomatology for AD in 
>80% cases is amnestic impairment (Albert et al., 2011). Recent research 
has also shown a relationship between genetic risk factors and visuospatial, 
attention-based measures of memory (Lu et al., 2021). All of which is 
important to consider when indexing impairment. The final stage of cognitive 
interaction is the relationship between AD biomarkers and cognitive 
impairment longitudinally. This primary interaction is related with tau and to 
a lesser extent amyloid pathology (Hanseeuw et al., 2019; Mortamais et al., 
2017). 

All of these disease specific differences further elucidate the intricacies of 
cognitive domains across the course of AD. This is compounded by the lack 
of congruency between the common measures employed to index the same 
hypothesised cognitive function. A greater psychometric understanding is 
required to better understand the relationship between these commonly 
employed measures of amnestic memory in early AD. As currently the 
assumptions are these different measures index the same impairments and 
result in homogenous populations, when often the reality is hypothesised to 
be highly cognitively heterogeneous cohorts. 

Practice effects related to AD

In order to properly examine any differences due to measure variability, it is 
important to first understand the interplay between AD disease pathology 
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and cognitive performance. Recent evidence, enabled by more frequent 
cognitive testing paradigms, has shown some indications that subjects early 
in the disease course show a lack of improvement, alternatively termed 
practice effects, when repeated testing is undertaken (Jutten et al., 2020). 
Repeated testing within subjects, who are amyloid positive but cognitively 
unimpaired, show an absence of improvement on common 
neuropsychological testing paradigms (Hassenstab et al., 2015). One 
explanation for these deficits is that this may be the result of disruption to 
Medial Temporal Lobe in preclinical AD that manifest as deficits in learning 
rather than as a progressive decline in memory recall, thus manifesting in 
subtle impairment rather than scores well below normal performance. This is 
something that is only picked up by more frequent testing than the typical 3-
6 months period employed in research and clinical trial settings. Lim and 
colleagues (2020) used a test and paradigm of repeated measurements in 
learning ability over 6 days, whereby subjects had to learn new language 
characters, specifically Chinese symbols. The results showed cognitively 
normal participants who were amyloid positive had significantly worse 
learning trajectories than cognitively normal participants who were not 
amyloid positive. 

Looking at the wider literature within this area, a recent review has shown 
the consistency of impaired practice effects being useful markers of early 
cognitive decline (Jutten et al., 2020). As shown within this literature review 
there has been a consistent, whilst small in size, diminished practice effects 
associated with either current diagnosis and/or indicative of future cognitive 
decline. Primarily the focus of these re-testing papers focused on testing 
across 1 week. When restricting these studies to those looking specifically at 
early AD, this absence of practice effects have been associated with known 
AD risk factors, such as APOE (Oltra-Cucarella et al., 2018) and overall 
amyloid deposition (Duff et al., 2014; 2017; Ihara et al., 2018; Galvin et al., 
2005), although these studies have been limited by small numbers of 
participants and findings have not always been consistent in relation to APOE 
status (Duff et al., 2014; Hassenstab et al., 2015; Wilson et al., 2018) and 
amyloid deposition (Wilson et al., 2018). Recent progressions in the staging 
of AD, have not been investigated in relation to practice effects. Further 
research is warranted to inform how other biomarkers such as tau and 
neurodegeneration fits into the overall interplay of the absence of practice 
effects being a hypothesised early indicator of AD. To note these studies 
have primarily used verbal list learning measures as indicators of memory 
performance in both control participants and as well as though with a 
diagnosis of MCI or AD. 

Interestingly some studies have found that whilst the absence of practice 
effects is widely associated with amnestic recall and learning ability, it is also 
prevalent across other cognitive domains (Duff et al., 2010). However, again 
results in these domains are often limited by sample sizes and incongruency 
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of domains. This may be down to a poor understanding of the constituent 
cognitive measures employed in these studies and lack of broader biomarker 
testing, resulting in heterogenous cognitive and pathological status’ within 
cohorts.

APOE allele influence on cognition in AD

On top of ATN biomarkers discussed in detail previously, many 
environmental and genetic factors affect risk of developing sporadic AD. The 
strongest genetic risk factor being APOE ε4 (Roses, 1996). This gene being 
primarily responsible for lipid metabolism with carriers of the ε4 allele being 
at increased risk of AD. With evidence showing a quicker disease progression 
and earlier onset (Haan et al., 1999; van der Flier et al., 2011). However 
recent research has suggested a potential benefit of this allele, in that 
carriers of the same abrogating gene have a superior ability in a task of 
visual working memory (Lu et al., 2021). They presented strong evidence 
that within amyloid carriers who were cognitively normal this improvement 
remained (although to a smaller degree). Thus, indicating a subtle interplay 
of divergent cognitive functions early in the disease. It is clear however, this 
is only specific to short term memory, as carriers of this allele are impaired 
in long term memory in healthy elderly (Zokaei et al., 2019). This 
juxtaposition indicates nuance to the development of impairments in 
cognitive functions as there are bad and good parts to APOEε4 carrier status. 
This improvement in specific tasks indicates a possibility for APOE to impart 
resilience to certain systems within the cortex responsible for encoding short 
term visual memories. Understanding these mechanisms within AD and 
interaction with risk factors could preclude insight into the wider suggested 
phenotypic variability within AD as a whole. This emphasises the importance 
of understanding the cognitive measures used at a given stage of AD. The 
heterogeneity of cognitive measures is something that should be better 
understood and is an unabridged source of variance, which can and should 
be, mitigated against. Ultimately being vehemently avoided through 
thorough research and understanding of each constituent measure within 
the studied population. 

Trial inclusion/diagnosis of MCI/AD

Conversely, it is currently agreed that the first and easiest deficit exhibited 
by individuals with probable AD is one of amnestic, usually episodic, memory 
impairment (Karr et al., 2018; Mortamais et al., 2017). In line with research 
(Jack et al., 2018) and clinical criteria, both for MCI due to AD (Albert et al., 
2011) and early AD (McKhann et al., 2011), impairment below the mean of 1 
to 1.5 standard deviations is at the very essence of the disease. However, 
many different assessments have been utilised to measure such impairment.  
Measures of episodic memory share a predominant construct validity but, 
their fundamental paradigms are unique to each.
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However, there is no standardisation in scale selection across trials, resulting 
in a siloed approach by company and compound. With each compound under 
development reliant upon a different assessment to the detriment of 
consistency across trials and compounds, further burdening the field as well 
as clinical trial sites. In the case where an individual site is running multiple 
trials in one area of AD, sites potentially have to decide which trial to 
propose to a subject based upon the concordance between the inclusion 
scale and the subjects’ current level of impairment. This quandary also gives 
rise to higher screen fail rates, leading to longer development timelines, 
greater patient burden and increased cost.

The gold standard way to uncover MCI on memory measures is by comparing 
an individual’s performance to the normal performance for their age, 
education and gender. It is also highly preferable to have multiple 
assessments of individuals cognitive performance to accurately index any 
cognitive decline from a baseline level. Tracking over time can also give 
greater levels of reassurance to an individual by confirming that the 
impairment they are exhibiting isn’t transient and is likely not to have an 
alternative aetiology. Larger and highly successful clinical trial sites 
commonly employ this continuous measurement of subjects in their 
database. This leads to quick and efficient screening of their trial database 
and getting potential treatments to individuals quicker. Which episodic 
memory measure a site uses widely varies and is driven by site’s experience, 
level of qualification of staff, preference of paradigm and cost/availability.

Verbal List Learning Measures

There are a wide variety of measures that sites can employ. Verbal list 
learning measures such as the California Verbal Learning Test (CVLT; Delis et 
al., 1987), the Rey Auditory Verbal Learning Test (RAVLT; Rey, 1941; Taylor, 
1959), Hopkins Verbal Learning Test (HVLT; Brandt, 1991), the International 
Shopping List Test (ISLT; Thompson et al., 2011), Verbal Recognition Memory 
(VRM; Robbins et al., 1994) and other word list measures share a concurrent 
paradigm. But measures such as the Wechsler Memory Scale Logical Memory 
measure (WMS-LM/LM; Wechsler, 2009) and the Free & Cued Selective 
Reminding Test (FCSRT; Grober et al., 1988) have very different constructs 
and can be argued to index slightly different cognitive processes. These 
measures are often used very interchangeably but have differences in 
underlying constructs. 

The stability and validity of these measures is also fundamental to 
comparisons of performance in AD. The ISLT has been shown to highly stable 
across an 18-month repeated testing paradigm (measurements every 3 
months) (Lim et al., 2021). In amyloid negative cognitively normal subjects 
scores on both the delayed and immediate recall on average remained 



133

within a 1-point range across the time period. However, in amyloid positive 
MCI subjects, as well as amyloid positive AD subjects, an almost linear 
decline occurred in both groups across both conditions, with those with MCI 
showing a slightly more precipitous decline. This study also showed minimal 
declines over a 3-month period in line with other measures of memory within 
AD populations, showing gradual decline over many years. 

The concordance between these memory measures has been an ongoing 
point of contention without resolution. This has been studied in prior decades 
with different diagnosis paradigms for AD. Studies such as Rabin & 
colleagues (2009) has looked at this, showing CVLT to best distinguish MCI 
subjects from healthy controls more accurately than the LM. However, they 
did not have amyloid confirmation within their subject groups. This lack of 
confirmation has been shown to lead to a 20-30% amyloid negativity (aka 
non-AD subjects) within cohorts such as these (Egan et al., 2019). Further to 
this, the ADNI memory composite (Crane et al., 2012) utilised a number of 
episodic memory components. ADNI’s sample was selected to best resemble 
a clinical trial population (Petersen et al., 2010), thus making this a highly 
suitable sample to look for memory congruencies within. Within the ADNI 
composite, indices of the LM, ADAS-Cog and RAVLT are combined. The ADNI 
memory composite was slightly better at detecting change than total RAVLT 
recall scores, which performed best within the sample out of all the memory 
indices. Further to this, a confirmatory factor analysis (Park et al., 2012) of 
the full ADNI neuropsychological measures, showed an excellent absolute fit 
of the memory composite. However, model modification indices revealed the 
largest source of misfit arose from constraining memory factor loadings, 
particularly for RAVLT short and long delay recall, to be equal across groups. 
This study didn’t include the LM measure within the factor analysis and the 
levels of unexplained variability in memory items were greater in the less 
functionally impaired group than in the more functionally impaired group. 
This indicates suitability of some measures in certain subgroups more so 
than in other subgroups. Overall, further study on a direct comparison with 
ATN biomarkers and expanded episodic memory measures, would be highly 
beneficial for the field. 

Logical Memory & Alternate Forms

Story recall is often used interchangeably with verbal list learning, but has a 
fundamentally different construct. Story recall is argued to be clustered into 
chunks of information therefore, when compared to other memory measures, 
giving the recall of the story a slightly elementary slant. This is thought to 
allow subjects with greater executive deficits, whose ability to “cluster” is 
impaired, improved recall on this paradigm. In contrast to this are verbal list 
learning measures, where the often-random nature of the word lists, requires 
subjects to utilise their ability to cluster independently of the test paradigm. 
As executive deficits manifest slightly later in AD compared to amnestic 
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ones, this could lead to cognitive variability confounding comparisons across 
studies using these two measurement constructs.

The WMS-LM is used widely within clinical trials due to its initial utilisation 
within one of the first academic longitudinal cohorts, ADNI (Mueller et al., 
2005). This is the primary measure used when indexing story recall and has 
been well validated as part of the wider WMS battery (Schnabel, 2012; 
Sullivan. 2005; Taler et al., 2020). However, the fundamental story has not 
changed since its inception decades ago, leading to familiarity with repeated 
testing as there are no official alternative versions. For clinical trials this 
problem is often compound by the use of direct translations. In order to have 
culturally valid stories this would require complex and timely validity studies, 
something which is often not in line with development programs. These 
direct translations can often carry biases and not accurately reflect regional 
discrepancies in phrases or cultural nuances. Direct translations can often 
mean something stands out more to a native speaker and as such becomes 
more memorable resulting in a better score than would have normally 
occurred in culturally sensitive cognitive testing. This results in subjects who 
are actually cognitively more impaired than they are testing at due to poor 
culturally insensitive testing paradigms leading to within country cognitive 
variations (Kave et al., 2021). Which when translated longitudinally, often 
means divergent biomarker profiles and disease trajectories. However, the 
alternative is to have unvalidated measures that are divergent to that of the 
original measure. This would mean the literature validation from its 
development would be lost. Nevertheless, cultural nuance is often missed 
and as such, cognitively heterogeneous populations are often recruited 
within screening for clinical trials.

Alternate forms of these memory scales are critical to enable wider 
understanding of both the measures and how they perform within disease. 
These measures allow for repeated testing longitudinally whilst still allowing 
for comparisons against normative data, the best of both worlds. Prior work 
has shown the validity of an alternate form of the WMS-LM, often termed the 
Morris paragraphs (Morris et al., 2014; 1997). The alternate Morris 
paragraphs were developed in concordance with the phonetic and 
psychometric principles applied to the original WMS story recall. Originally 
these were developed for the third version of the WMS (Morris et al., 1997), 
then updated to reflect the updated version four of the WMS based upon the 
same founding principles (Morris et al., 2014). Each composition is lexically 
and linguistically comparable to the original WMS, based on specifications 
used to originally develop the re-test stories equivalent to those in WMS-
III/IV. Importantly direct translations are not used but translations are slightly 
adapted to fit not only the language in question but also the country 
targeted for use.
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Looking outside the Morris versions, several other alternate story measures 
have been developed for use in place of traditional WMS-LM paragraphs for 
the purposes of repeat testing (Trifilio et al., 2021; Taler et al., 2021; 
Bolognani et al., 2015; Schnabel, 2012; Sullivan, 2005; Newcomer et al., 
1994). However, not all have been matched to the scoring or administration 
guidelines of the WMS-LM subtest. This can lead to divergent concordance 
between these measures. Further to this, and key to utilising this measure 
within an elderly cohort, age matched normative data and age specific test 
variants are fundamental to wider usability of the scale. This is something 
which is not possible without the linguistic validity of alternate versions of 
any scale. As such the Morris paragraphs represent the best alternative to 
the WMS from a psychometric standpoint based upon the prior validity 
studies undertaken by their authors (Morris et al., 2014; 1997). This allows 
the scoring of the Morris paragraphs to mirror the cut offs for the WMS-LM 
and as such be deemed as an unofficial alternate form, based upon the prior 
research studies. The premise of Study 2 is to understand if an alternate 
form of the Morris stories mirrors the performance of the original WMS-LM in 
a screening cohort across countries.

Study Outlines

Study 2
Key to understanding the interplay of AD pathology on participants memory 
ability and memory performance, is to look for congruencies and differences 
when observing memory indices within these populations. The concurrent 
and convergent validity of these measures will be assessed using statistics 
for measuring agreement between measures. The second study of this thesis 
looks at ascertaining the concordance of two story recall measures, taken 
from a memory clinic cohort looking to be screened for a clinical trial. This 
was a multicentre study carried out across three countries in two languages 
(English & Spanish). 

Study 3
The third study of the thesis will look at a different measure construct for 
assessing in a confirmed amyloid positive population. This will be studied 
across two, word list memory measures, with differing levels of ecological 
validity. The concurrent and convergent validity of these measures will again 
be assessed using the same statistics for measuring agreement between 
measures. By comparing word list recall which has been tailored to each 
location and language and a test using direct translations, testing paradigms 
often expected to yield identical test can be better understood. Also, within 
participants who have the prevalence of amyloid pathology, these measures 
can also be explored for the absence of practice effects across the disease, 
which is important given the absence of improvement is often found as a 
hallmark of early AD. This will further help explore the criterion validity of 
measuring memory with these tests within AD.
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Overarching Objective
By assessing the concordance of episodic memory measures based around 
two divergent constructs in two populations, this can help tease out 
differences between measures widely utilised and often deemed to be 
similar. Overall, these findings will help explore the construct and content 
validity of these memory measures allowing greater understanding of their 
inherent measurement of cognition.
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STUDY 2
Methods

Study details
This study was designed to understand the relationship between two 
measures of episodic memory impairment commonly used for indexing MCI 
deficits thought to be related to AD. Participants in this study were pre-
screened at sites conducting the Eisai Clarity AD phase III clinical trial. They 
first underwent testing on the Alternate Story (AS; Morris Alternate 
Paragraphs) paradigm before being screened in full for Clarity AD. At the 
investigator’s discretion, but primarily based upon scores on the AS 
measure, subjects were then screened for the Clarity AD study whereby they 
underwent cognitive testing on the WMS-LM. Clarity AD was an 18-month 
treatment, multicentre, double-blind, placebo-controlled, parallel-group study 
with open-label extension in subjects with early AD. To be eligible for the 
study, subjects must have objective impairment in episodic memory as 
indicated by at least 1 standard deviation below age-adjusted mean in the 
WMS-LM. Site raters were trained to undertake both measures and were 
given stringent guidelines on how to administer both measures and 
importantly, the time between administrations. For the WMS-LM, all 
administrations were recorded and reviewed for accuracy of administration 
and scoring errors by a clinical psychologist. For the AS measure no review 
took place and was undertaken at the direction of the sites principal 
investigator (PI).

Assessments
For this study the two measures of story recall were the WMS-LM & AS. Each 
measure had three different stories, one short form and two long form 
stories. For individuals that were aged under 65 both long form stories were 
used. This began with a trained rater reading out the first long form story in 
full, the individual then had to recall as much of the story as they could. This 
process was then repeated for the second long form story. Between 20 and 
30 minutes then elapsed, without any intermediary cognitive testing, and 
individuals were asked to recall as much of the first story as they could 
remember. If no details could be recalled a set prompt was given and an 
opportunity was given for recall of that story. This process was then repeated 
in full for the second story. Scores were taken from a sum of both immediate 
recalls and both delayed recalls to give representative scores for each 
condition for each individual. For those over 65, the first short form story was 
replaced by a short form story totalling half the number of sentences (3) of 
the long form story (6). This short form story was repeated twice during the 
immediate recall condition. The rater read the story, asked for as much 
information as could be recalled, before repeating the same story again, 
then again followed by an immediate recall of the same story. The same 20-
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30 minute delay occurred before a single recall of the short form story 
(however, no prompt was allowed for this short form story), followed by a 
single recall of the long form story (this was the same set prompt as given in 
the younger age group condition). 

This paradigm is identical for both the WMS-LM and AS. Both measures were 
employed to measure memory ability in the same cohort. Individuals 
underwent testing on the AS first then undertook the WMS-LM. The time 
between assessments was recommended to be between 3-8 weeks (21-60 
days). Initial analysis comprised all individuals, however if this testing 
paradigm was diverged from then sessions outside of this range were put 
into group 2, with those within the suggested time range in group 1, in a 
subsequent sensitivity analysis. The AS forms were given to sites in the 
appropriate for country and primary language, who were participating in the 
Clarity AD phase 3 clinical trial. Sites staff were trained on the AS by the 
author. No prior experience of scales was mandated for those administering 
this measure. Subsequently, at the investigator’s discretion, but partly based 
upon scores on this measure, subjects were then consented, and formally 
screened for the Clarity AD study, whereby they underwent cognitive testing 
on the WMS-LM. To note the WMS-LM were direct translations of the original 
text with only names changed. This is in direct contrast to the linguistic 
translations for the AS which were subtly changed to reflect culturally and 
linguistic properties pertaining to the language in question. The WMS-LM was 
part of a battery of tests for inclusion into the clinical trial. This battery 
included the MMSE, WMS-LM and the CDR.

Participants
In total 196 individuals underwent testing on the AS and then subsequently 
the WMS-LM. Each individual had undergone a fully informed consent 
process consistent with each countries IRB and EC guidelines. Those who 
were screened for this study underwent a full consent process both prior to 
the AS being undertaken then further full study consent prior to the 
administration of the WMS-LM. The screening criteria for inclusion into the 
study mandated the exclusion of medication effecting cognition, known 
comorbidities prior to brain imaging and depressive illness within the last 5 
years. These exclusionary factors were investigated prior to the first 
measure being undertaken within this study. Individuals were seeking 
consultation for suspected memory impairment with the view to screening 
for a clinical trial for AD. To note none had confirmed amyloid pathology or 
progressed signs of AD at the time of entry into this study. The cohort 
comprised of 161 US English speakers, 17 US Spanish, 4 Canadian English 
and 14 British English. Each individual had language appropriate forms of 
each measure.
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Statistical Analysis
The primary analysis looks to ascertain the concordance of two story recall 
measures commonly used within MCI and early AD populations. The AS 
measure was developed on the basis of being a direct analogue of the WMS-
LM measure. Psychometric analysis was undertaken for the comparison of 
these two measures, this began with simple t-tests in order to look at group 
differences. Correlation analysis was then run to look at the strength of the 
relationship and finally Bland & Altman (1968) methodology for looking for 
agreement between two measurements methods was run (a full discussion 
of this methodology and why it was selected can be found in Chapter 2). By 
looking for group differences and the strength of the relationship between 
the two measures on an individual level, this can help better uncover if 
participants display a concordant level of performance across two measures 
that have identical underlying psychometric constructs and properties. Given 
the large range in durations between assessments and the potential for this 
to confound any findings, participants were subsequently split into those who 
underwent WMS within 20-60 days of AS testing, which was per guidance 
and those outside of this range of dates, both less than 20 days between 
administrations and 60 days or greater.
Results
Group data is displayed in Table 4.1. Descriptive statistics for the whole 
group and the subsequent split groups was run. To note 80 subjects had no 
date for pre-screening so were excluded from the second analysis. Group 
level analysis showed significant differences between the delayed recall from 
the alternate Morris paragraph and from the logical memory stories (t(1,195) 
=-4.59, p=0.0001). Correlation analysis revealed a significant, yet moderate, 
positive relationship between the two measures of delayed recall (r=0.64). 
Individuals scored nearly 2 points higher on the logical memory as compared 
to the similar AS measure. 

Table 4.1. Descriptive & psychometric properties of all groups

Whole 
Group

Within Pre-screening 
Guidelines (Group 1)

Outside of Pre-
screening 

Guidelines (Group 
2)

N 196 49 67

Alternate Story 
Mean 6.41 6.31 6.15

Logical Memory 
Mean 8.14 9.00 7.72

Alternate Story 
SD 4.65 4.22 4.16
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Logical Memory 
SD 6.87 7.10 6.11

Bland & Altman 
Bias -1.74 -2.69 -1.57

Bland & Altman 
Limit Of 

Agreement Range
8.62 – -
12.10 10.47 – -15.86 8.07 – -11.20

r 0.64 0.60 0.39

Figure 4.1. Scatter plot of individual scores on Logical Memory & 
Alternate Story Recall. r=0.64
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Figure 4.2. Plot of individual mean scores against individual 
differences between 2 measures

Further analysis utilising Bland & Altman (1968) methods of agreement 
showed reasonable agreement between these two measurements, with over 
95% of subjects falling within bounds. The overall group had a mean 
difference of -1.73 points, however the limits of agreement were wide. An 
upper limit of agreement of 8.63 and a lower limit of agreement of -12.1.

Looking into these findings further, individuals were grouped into categories 
based upon duration between administrations. Individuals who fell between 
20-60 days of an interlude between administrations were grouped as 
1(within guidelines) and those outside of this timeframe grouped as 
2(outside guidelines). 67 subjects were in group 1 with a range of interlude 
of 21-60 days. In group 2 there were 49 subjects who had an interlude range 
of 0-20 & 61-232 days between assessments. 80 subjects had no date for 
their administration of the initial assessment and were excluded from this 
analysis.

Dichotomising the cohort by this grouping, all analysis were re-run. Again 
significance differences were found between measures across both groups 
[1(t(1,48)=6.05, p<0.00); 2(t(1,66)=-2.61, p=0.01)]. Pearson correlation 
coefficient values were again significant for both groups, however, both 
values were below the overall group value [1 (r=0.387, p=0.01); 2 (r=0.600, 
p<0.00)]. These two independent group level correlations were compared 
and were not significantly different from each other (p=0.139).
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Figure 4.3. Group 1 Scatter plot of individual scores on Logical 

Memory & Alternate Story Recall. 

Figure 4.4. Group 2 Scatter plot of individual scores on Logical 
Memory & Alternate Story Recall. 

Agreement between these two measures by group utilising the Bland & 
Altman methods showed poor agreement between these two measures 

r=0.3
87

r=0.6
00
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within both groups with much larger upper and lower limits of agreement 
[1(MD=-2.69, ULOA=10.46, LLOA=-15.86); 2(MD=-1.57, ULOA=8.07, LLOA=-
11.20)]. However over 95% of subjects fell within the limits of agreement in 
both groups.

Figure 4.5. Group 1 Plot of individual mean scores against individual 
differences between 2 measures
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Figure 4.6. Group 2 Plot of individual mean scores against individual 
differences between 2 measures
Study 2 Conclusions

This study demonstrates the concurrent fundamental underlying constructs 
between the AS and WMS-LM. Overall, the agreement between the tests was 
good. However, this was negatively influenced by the lack of adherence to 
the administration timelines. This measure shows strong concordant scores 
to that of the logical memory paradigm from the WMS. However, it should 
not be described as an alternate form, based on these results. The 
applicability for wider use of this story recall is well founded but requires 
further research within the bounds of administration guidelines. This was the 
first use of this measure in a number of new cultural and language settings, 
within which, these findings support future wider use within similar settings 
in the future. The results show clear evidence that repeated testing within a 
certain timeframe is a pre-requisite for homogeneity between these two 
measures.

One factor not captured within this cohort was a level of education. There 
may be some who have been highly educated and therefore performed 
better than someone else at the same stage of AD, or have more progressed 
pathology and therefore greater variation of performance from visit to visit. 
However, without these data the effect biomarkers for AD may have is 
unknown. Given that these subjects are not fully worked up to the point of a 
diagnosis of AD or MCI, it is difficult to draw strong conclusions for 
performance between the two measures as there is likely high clinical 
variability within the cohort. Factors such as undiagnosed depression and 
poor cardiovascular health are common within the elderly and often have 
similar cognitive difficulties to that of early AD/MCI (Ferreira et al., 2020). 
There are also the probable divergent AD biomarker profiles within this 
cohort to consider. As discussed earlier, those at the preclinical stage of AD 
often exhibit impairment in practice effects which might explain some of the 
variance between the two measures, however without these additional data 
points for individuals it is difficult to suggest the level of influence this may 
have on the results. 

There are often many common factors that can affect cognitive testing that 
happen to everyone, not just those with MCI/AD. These include duration of 
sleep, dysphoria, caffeine intake, stress levels and diet, all of which influence 
test performance. Intra-individual variation is expected to a small degree due 
to these factors. However, this is exacerbated due to the population in 
question displaying significant memory impairments. For example, with the 
widely utilised MMSE measure, 3/4-point variations are commonly seen 
across yearly visits in cognitively normal subjects (Hensel et al., 2007; Clark 
et al., 1999). Repeated testing can be influenced to a greater degree to 
these environmental confounds from one visit to the next, on the basis of 
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chance alone, whereas, those of greater duration tend to have greater 
preparation for them and as such are less susceptible to chance and can be 
rescheduled if required. Another factor outside the control of the study was 
rater change between the two measures. All raters were trained on both 
measures by neuropsychologists and whilst some variation could be 
expected between administrations, the non-subjective nature of the scoring 
guides meant variance due to rater change should have been minimal.

The fixed design of this study meant the administration order of the two 
measures was fixed as counterbalancing was not possible. This was due to 
the scenario of screening for the clinical trial in question which utilised the 
WMS-LM. As such, the AS measure had to be utilised first as a prescreener as 
not to engender bias or variance in the screening procedures for the clinical 
trial. This study design issue may explain the increased score on the WMS-
LM as it was always administered second. Although other factors such as 
differences in translation method may also have factored into this. The WMS-
LM was a direct translation, whereas the AS was subtly changed to take into 
account cultural and language specific phrasings. This may have resulted in 
improved recall for the WMS-LM in comparison to that of the AS as words or 
sentences that may not be akin to everyday speech could be easier to recall. 
However, due to the predominance of US English in the cohort this may have 
only be a small factor in the study’s findings.   

This study shows that whilst these aforementioned factors are taken into 
account, particularly duration between administrations, the performance and 
concordance on these measures are not exact. This indicates the need for 
constrained administration procedures when repeatedly testing participants 
and a concordance between the two translation processes. Enforcing these 
constraints would no doubt lead to an improvement in concordance between 
these two measures as shown with the group sensitivity analysis. However, 
even with these constraints, there still wouldn’t be an exact correlation 
between scores across visits. Therefore, the AS should be seen as a close 
analogue of the WMS-LM, but not an alternate form in these different 
languages. Though, even without counterbalancing the administration order, 
there was a consistent improvement on the WMS-LM from the AS on all 
analysis. This shows there are clearly some underlying commonalities 
between the two measures. Further research is needed with the confounding 
factors described being accounted for and minimised.

This first study shows that even within identical test paradigms of story 
recall, these measures have far from the level of concurrent validity needed 
to be used interchangeably within this population. Whilst there is a level of 
convergent validity between these two measures, the way they are used 
suggests the performance should mirror one another more closely, the 
results indicate this is far from being the case within a memory clinic 
population for screening for signs of early AD.
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STUDY 3
The second study will aim to look test variance in a cohort of individuals with 
concordant amyloid profiles, who were part of a fully diagnosed clinical trial 
population. This comparison will look at two similar measures of word list 
learning, the ISLT and the word list recall from the ADAS-Cog. Both verbal list 
learning measures require participants to learn new words with only the 
salience of the word lists differing between the two measures. The ISLT looks 
at ecologically valid words akin to a shopping list specific to the country and 
language of administration, whereas the ADAS-Cog word list is set and 
contain random words which is directly translated for each language it is 
administered in.

Method

Study Details
This study is designed to assess the fundamental relationship between two, 
word recall measures within a diagnosed, amyloid positive cohort of AD 
individuals. Site raters were trained to undertake both measures and were 
given stringent guidelines on how to administer both measures. The time 
between administrations was determined by the speed that a site managed 
to undertake the full complement of screening procedures for the clinical 
trial in question (detailed in full in Chapter 2). This was an average of 52 
days from the initial administration of the ISLT to that of the ADAS-Cog14 (26-
103 day range). All subjects were from the randomised population of the 
MissionAD program. The MissionAD program in Early AD was a Phase III 
program conducted across more than 500 sites in 29 countries and was 
designed to assess the efficacy of elenbecestat. Diagnosis of MCI due to AD 
or Mild AD was required, an MMSE score ≥24 and a CDR Global score of 0.5 
and a CDR Memory Box score of ≥0.5. Cognitive impairment of at least 1 SD 
from age-adjusted norms was also required and the objective test of episodic 
memory that was used in these studies was the ISLT. Once these 
assessments were passed, confirmation of brain amyloid pathology by either 
amyloid PET or CSF assessment or both was also required as well as blood, 
ECG and medical examinations which had to be passed (Roberts et al., 
2020).

Assessments
For this study two measures of verbal list learning were used to compare 
performance within the same group of individuals. Both measures require 
the list of words to be read out loud to an individual. Upon the completion of 
this, the individual is then asked to recall as many words from that list as 
they can. Correct answers, as well as incorrect words recalled, are counted. 
This is then repeated for three trials. A total for immediate recall is then 
summed for all of the trials giving an overall score. A delay or intermediary 
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period then takes places which lasts between 20 and 30 minutes. During this 
time other cognitive testing that is non-verbal and non-memory reliant is 
undertaken. After this delay individuals are then asked again to recall as 
many words as they can from the word list they have been told prior to the 
delay. This is a single trial with the total from this comprising a delayed recall 
score. This paradigm is the same for both of these measures with only the 
word list length (10 for the ADAS-Cog, 12 for the ISLT), word salience and 
distractor tasks, differing between the two.

The first measure is the ISLT, which was undertaken as part of the screening 
procedures of a Mission AD clinical trial. The ISLT is an ecologically based 
verbal memory measure designed to mirror a real-life shopping list by having 
culturally and location relevant lists (Lim et al., 2014). 12 words are shown 
initially with three trials of immediate recall for subjects to retain the full set 
of words. Distractor tasks are then undertaken with a set 20-30 minute delay 
before the delayed recall condition is administered (Thompson et al., 2012). 
These distractor tasks begin with a basic detection task to orientate an 
individual with a card paradigm. This is followed by a simple reaction time 
task. The final two measure incorporate aspects of working memory in a one 
back task, followed by a one item learning task. All of these four distractor 
tasks are collectively known as the Cogstate Brief battery (CBB). This battery 
has been widely studied both in healthy adults and those with MCI/AD.  
Importantly these four tasks are non-verbal, with the stimuli being playing 
cards. Therefore, they do not interfere with the verbal recall of ISLT word list. 
The ISLT word list shown to individuals never varies in length but always 
varies in context. The words shown will be randomised from a bank of 50 for 
each language but also location. For example, there is a Korean word-list for 
those in America. This is how the test has greater ecological validity than the 
ADAS-Cog. 
 
Approximately five weeks after the ISLT was administered, the ADAS-Cog 
word list was then administered to the same participants as part of the wider 
ADAS-Cog battery. Each participant is given three trials to learn a list of ten 
high-frequency, high imagery nouns. A delay of approximately 20 minutes 
occurs between the immediate and delayed recall conditions, this is based 
upon the length of two distractor tasks, commands and constructional praxis 
(full details of these tasks can be found in Chapter 2). These two measures 
are fundamentally divergent measures to that of word recall and are do not 
engage any aspect of verbal or episodic memory. The order of administration 
of the ADAS-Cog is set and has been widely studied within healthy controls 
and MCI/AD individuals ever since its inception (Baker et al., 2017).

Participants
There were a total of 2176 individuals that undertook all procedures within 
this study. Each individual had undergone a fully informed consent process 
consistent with each country/states IRB and EC guidelines. They had been 
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screened for other MRI, blood, ECG or medical abnormalities, had prior 
confirmed cognitive impairment, a confirmed threshold (or greater) presence 
of amyloid beta (assessed through CSF collection via lumbar puncture or PET 
imaging) and the absence of any other co-morbidities and taking any 
medication, known to influence cognition (again full details of this cohort are 
contained within Chapter 2). Individuals within this cohort were recruited at 
over 500 trial sites in 29 different countries making this a highly diverse 
population. As shown in the Chapter 3, the individuals screened for this trial 
had diverse cognitive profiles however, the individuals within this cohort are 
only those who passed all screening measures and as such all have 
concordant clinical and biological presentation. This means that whilst there 
is known regional variation in screening populations such as this, the cohort 
here under investigation can be analysed in full as the variations seen at 
screening are not present for this cohort. 

Statistical Analysis
Given the nature of the cohort, the analysis will look to expand upon and 
follow similar statistical methods to Study 2 in this chapter. The primary 
analysis looks to ascertain the concordance of two verbal recall measures 
one specifically developed to be an ecologically valid measure and the other 
a stalwart of every AD study undertaken both in academia and clinical trials. 
Understanding the relationship between the more ecologically valid ISLT and 
the ADAS-Cog wordlist within a clinically diagnosed AD clinical trial 
population who are amyloid positive, is key to furthering the understanding 
of these verbal memory measures. Psychometric analysis was undertaken 
for the comparison of these two measures, initially this will be correlation 
analysis to look at the strength of the relationship and then Bland & Altman 
(1968) methodology for looking for agreement between two measurements 
methods will be run. Finally given the additional data (including APOE 
information on individuals) within this dataset, MANOVA analysis will be 
performed controlling for a number of confounding variables known to 
influence cognitive performance within AD.

Results 

Table 4.2. below shows the breakdown of the demography of the group 
under investigation in Study 3. Group level comparisons are not made here 
as all subjects underwent the same testing battery and did not do so under 
different testing conditions or order. 

Table 4.2. Descriptive Statistics
Raw Whole Group Statistics Value/Mean (SD) [Range]

N 2091
Age 72.0 (7.1) [50-85]
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Sex (Female %) 51.3%
Years of Education 13.5 (4.1) [0-28]

APOEe4 + 63.3%
ADAS-Cog Immediate Recall* (/10) 5.3 (1.4) [0-9.33]

ADAS-Cog Delayed Recall* (/10) 7.1 (2.3) [0-10]
ISLT Immediate Recall (/36) 14.3 (3.7) [3-29]

ISLT Delayed Recall (/12) 2.8 (1.9) [0-9]
*ADAS-Cog is reversed scored so values represent the number incorrectly 
recalled.

In order to allow for direct comparisons of the two measures the ADAS-Cog 
scores were reversed so that the score for each individual represents how 
many correct answers they recalled, with graph axis’s mirroring one another. 
Immediate scores were also multiplied by three as the scoring convention 
takes a mean of the three immediate recall trials. To note scores for each 
scale had different maximum scores the ISLT contained a possible twelve 
words to recall for each trial whereas the ADAS-Cog has ten words across 
both recall conditions.

Correlation analysis was run to ascertain the strength of the relationship 
between the two measures by recall condition. This showed statistically 
significant moderately strong positive correlations between both measures in 
both conditions, with delayed recall having a stronger Pearsons r value of 
r=0.55 (p<0.001), compared to r=0.46 (p<0.001) for the immediate recall 
condition. The correlations for each condition (immediate and delayed) were 
significantly different from each other (p<0.001).
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Figure 4.7. Scatter plot of individual scores on immediate recall 
from ISLT & ADAS-Cog r=0.46

Bland and Altman analysis was then run which showed uniform levels of 
agreement between the two scales on the immediate recall condition 
(Figure 4.9). Less than 95% of individuals fell within the bounds of 
agreement indicating poor agreement between these measures. This was 
also run for the delayed condition which again showed uniform agreement 
between the two scales (Figure 4.10). The upper and lower limits of 
agreement were much smaller for delayed recall in comparison to the 
immediate condition [Immediate Recall (MD=2.75, ULOA=11.64, LLOA=-
6.15); Delayed Recall (MD=0.67, ULOA=5.20, LLOA=-3.86)]. However, again 
less than 95% of individuals fell within the bounds of agreement.

Figure 4.8. Scatter plot of individual scores on delayed recall from 
ISLT & ADAS-Cog. r=0.55
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Figure 4.9. Plot of individual mean scores against individual 
differences between 2 measures of immediate recall
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Figure 4.10. Plot of individual mean scores against individual 
differences between 2 measures of delayed recall

Finally, in order to understand the influence of APOE status (e4 carriers 
versus non-carriers) had on the performance, both on delayed and 
immediate recall indices from both measures, a MANOVA was run for each 
condition (immediate & delayed) across both measures. Within the MANOVA 
the independent variables were APOE status (carrier vs non-carrier) the 
dependant variables were the memory recall measure scores, which were 
either both immediate recall conditions or both delayed recall conditions 
from the WMS-LM and the AS.

The multivariate result was significant for APOE status for delayed recall, 
Pillai’s Trace = .03, F = 13.99, df = (2,2063), p<0.001, indicating a 
difference in the performance on both delayed recall measures by APOEe4 
carriers and non-carriers. However, the result was not significant for 
immediate recall, Pillai’s Trace = 0.00, F = 0.25, df (2,2063), p=0.91, 
indicating an absence of significant differences between APOEe4 status 
groupings and immediate recall performance across both measures.
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Study 3 Conclusions

This study demonstrates the intricacies of the relationship between two 
fundamentally similar tests of immediate and delayed memory recall. Given 
the well characterised cohort, being amyloid positive, with confirmed AD, 
(with level of cognitive and functional impairment fundamentally similar) this 
allows for wider generalisation of the findings of the analysis. Overall, there 
was poor agreement between the two measures, with moderate yet 
statistically significant correlations between the two measures, with a slightly 
stronger relationship between the delayed recall measures. The significant 
effect of APOEe4 status has on the delayed recall on both measures was also 
demonstrated. This further emphasises the importance of factoring this key 
AD risk allele into analysis and investigations within any AD population. This 
also suggests further subtlety of this risk allele in the interplay of cognition 
across the disease course. And confirms that at this stage of AD, APOE 
carrier status has an effect on longer term memory recall.

There are some drawbacks in the analysis, with common factors associated 
with changes in cognitive performance such as level/years of education, age, 
gender and geographical location, have not been taken into account. These 
factors should be considered when looking at subsequent analysis and 
should be considered when assessing the applicability of the results from this 
study. They were not incorporated into this analysis due to the statistical 
method employed.

The broader common issues associated with variability in cognitive 
performance are important to acknowledge. This includes duration of sleep, 
dysphoria, caffeine intake, stress levels and diet. These factors can be 
influenced to a greater degree to these environmental confounds from one 
visit to the next, on the basis of chance alone, whereas, those of greater 
duration tend to have greater preparation for them and as such less 
susceptible to chance and can be rescheduled if required. The size of the 
effect of each of these issues is small however, they are factors that can 
affect intra-individual variation on the relationship between two measures. 
This is something that is also exacerbated within the population in question, 
as all subjects have significant memory impairments as well as confirmed AD 
pathology and diagnosis. 

As discussed previously the absence of practice effects within repeated 
testing is often seen at the early stages of the disease (preclinical AD), 
however, this is clearly not seen here as there is clear group level 
improvements between measures. This absence of practice effects at this 
stage of the disease confirms prior findings in this regard. Although this 
group level improvement can be argued to be, at least in part, due to an 
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issue with the study design was the absence of counterbalancing the order of 
assessments. It was not possible to swap the administration order of the two 
measures in a 2x2 factorial design, due to the scenario of screening for the 
clinical trial in question. The trial utilised the ISLT as the initial stages of 
inclusion and the ADAS-Cog was undertaken at a subsequent clinic visit. The 
study design was the set order of administration for this study. This resulted 
in higher scores on the ADAS-Cog verbal recall measures (immediate & 
delayed) compared to the ISLT, which can clearly be argued to influence the 
strength of the relationship between the two measures. 
Fitting this into a broader cognitive picture, it is often found that the largest 
practice effects seen across repeated administrations is seen between the 
first and second administrations, which is the same as these two 
administrations analysed here. In future it would be of benefit to look for 
subsequent longitudinal assessment to mitigate against any influence 
practice effects may have had on this analysis, as well as counterbalancing 
the assessments. 

Another factor outside the control of the study was rater change between the 
two measures. However, all raters were trained on both measures, which 
was conducted by trained professionals and whilst some variation could be 
expected between administrations, the non-subjective nature of the scoring 
guides necessitated a constrained approach to measurement of performance 
of these subjects. The ISLT rater certification was less stringent than that of 
the ADAS-Cog, with no prior level of qualification needed to administer the 
ISLT due to its computerised automated administration, there is a small 
likelihood there was a different rater for the two assessments. The ADAS-Cog 
required a much greater level of prior experience as well as training on the 
measure. However, given the strict requirements for the ADAS-Cog rating 
and automated administration of the ISLT, rater change here would not be 
enough to engender large discrepancies that would significantly influence 
the relationship between the two measures.

Fundamentally these two measures are designed as such that they index the 
same cognitive domains and have concordant paradigms. The findings show 
there is still variation between the two measures even within a highly 
homogenised population. The subtleties in assessment composition may go 
some way to account for this. The ISLT is designed to be highly analogous to 
everyday memory tasks, with strong ecological validity for the words recall in 
each country and dialect spoken (Lim et al., 2014). This is not the case for 
the ADAS-Cog, where words are translated from the original word list and 
have no ecological validity to normal day to day tasks or indeed shopping. 
These subtle design differences may go some way to elucidating the 
statistical differences between the measures and is important to consider 
when interpreting clinical findings within this population. As discussed above 
often, similar measures such as these are habitually interchanged and 
interpreted to show exactly the same impairments, when the findings from 
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this study would suggest the opposite to be the case. There is clear variation 
within a highly homogenous population. As such this indicates these subtle 
differences in psychometrics within AD are worth considering when 
interpreting any cognitive or clinical endpoints and should not be used 
interchangeably in the future.

Further to this, there is a clear influence of APOEe4 carrier status has on 
delayed memory recall. As shown widely in prior research, APOEe4 status 
infers greater levels of cognitive impairment, faster cognitive decline and 
divergent disease progression to those who are not APOEe4 allele carriers. 
Recent research suggesting a different disease classification for APOEe4 
carriers to that of non-carriers (Frisoni et al., 2022) would also be supported 
by this finding as, within this homogenised population, there are clear 
cognitive differences purporting to divergent disease trajectories (however 
this would need further longitudinal research to confirm this). Given that not 
all amyloid positive subjects go on to develop dementia, clear differences 
exist within our current understanding of AD diagnosis and pathology which 
should be taken into account in further studies and clinical trials alike.
Overall, this study demonstrates a moderate and imperfect concordance 
between two measures commonly used to index memory recall within AD 
populations. The divergence in this relationship is argued to be down to 
three main drivers of variance. Firstly, the fundamental constructs of the two 
measures have different levels of ecological validity which would enable 
improved recall on the ISLT which has greater ecological validity due to the 
familiarity of the stimuli utilised. This however was not what was found 
within this analysis, the opposite was in fact the case. This is argued to be 
down the influence of the other two drivers of variance. Firstly, the lack of 
counterbalancing of the two measures led to an improvement across the two 
measure with inflated scores found in the ADAS-Cog compared to that of the 
ISLT. Secondly, the influence of APOEe4 carrier status was statistically 
significant across the delayed components of both measures. Indicating this 
risk allele to factor into the homogeneity of the studied population and thus 
inducing variance on cognitive performance across measures. Nevertheless, 
this study demonstrates clear evidence of moderate concordance between 
these measures and highlights the importance of understanding the 
fundamental constructs of any measure being employed within cohort 
studies, for the evaluation of findings and results within an AD population 
such as this. It also emphasises that these measures should not be treated 
as analogues of one another.

Chapter Conclusions: Studies 2 & 3

This chapter aimed to uncover the concordance and relationships between 
measures that are widely used interchangeably to uncover memory 
impairment across the spectrum of AD. Overall, the measures show fair to 
moderate correlations with moderate to poor levels of agreement. The 
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statistical relationships between the two pair of measures all are imperfect 
and far from concordant enough to allow for direct comparisons of “amnestic 
impairment” within populations across the spectrum of AD.

Nevertheless, taking into account the issues with counterbalancing, that 
were unavoidable across both studies, the analysis the AS and LM measures 
show to be good, but imperfect analogues of each other when undertaken 
within the administration guidelines. However, given the divergent ecological 
validity of the ISLT and ADAS-Cog it could be argued these to be 
fundamentally different measures, however the results of this study would 
suggest similar levels of concordance to that of the AS and LM which share 
indistinguishable constructs. However, the cohort for the AS & LM is highly 
heterogenous in comparison to that of the ISLT and ADAS-Cog, which is 
highly homogenous and argued to comprise subjects at a limited stage of 
AD. Whereas the AS & LM cohort included subjects without diagnosis or that 
were worked up and as such where likely not all subjects with AD. These 
differences in cohort composition, are important when understanding the 
implications of the findings from the two studies. 

Looking at the Bland & Altman analysis across the two studies, clear 
similarities exist across both sets of measures. However, the large limits of 
agreement of the AS & LM cohort are suggested to be in part due to a 
fundamental lack of adherence to the administration guidelines and 
heterogeneity of disease pathology within the cohort itself. The limits of 
agreement within the ISLT & ADAS-Cog cohort again show the imperfect 
concordance of the measures that fall within this amnestic paradigm. This 
further emphasises that these measures share some convergent validity but 
differ enough to have an absence of concurrent validity. The homogeneity of 
the cohort can be strongly argued to influence the concordance of the 
relationship between cognitive measures, as this second analysis was highly 
homogenised both cognitive and clinically. The Bland & Altman analysis also 
demonstrated the influence that the lack of counterbalancing had on the 
concordance between the two measures in both studies, with both sets of 
analyses showing improvements in the scores for the measure administered 
second. This was shown by the Mean Difference (MD) being negative for 
Study 2, as the second measure was the Logical Memory and by the MD 
being positive for Study 3, whereby the second measure administered was 
the ADAS-Cog. Where possible, this study design implication should be 
incorporated into future studies in order to remove a clear source of variance 
and remove the impact of repeating cognitive measures on the results for 
improved interpretations. 

The wider implications of these analyses are that future studies need to 
place greater importance on the construct of the measure selected to index 
“amnestic impairment/immediate recall/delayed recall” within the spectrum 
of AD. Whilst there is a clear relationship between fundamentally similarly 
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constructed measures, within a homogenised population that relationship is 
nowhere near strong enough to allow for direct analogous comparisons to be 
draw. This is fundamentally critical when looking at clinical trial results where 
these measures vary across nearly every clinical trial and compound in 
development. It is also an important point to consider when looking at 
patients in the clinic, with the ecological validity of a measure important to 
assess when trying to ascertain level of impairment. Clearly a comparison to 
a normative cohort is key within this scenario but measure selection is also 
critical to a broad understanding apriori of the outcome of the cognitive 
assessment in question.

Overall, the aim of this chapter was to look at the relationships between 
measures of memory, commonly utilised to index this domain within AD 
cohorts. These studies have shown that across cohorts and across similar 
measures, variability exists and even when looking at subjects with 
confirmed biomarkers amnestic impairment, cognitive performance on both 
immediate recall and delayed recall can vary from measure to measure. The 
convergent validity of memory measures is something that exists but 
concurrent validity does not. The interchangeable nature of the way 
measures are used, is at odds with the findings of Study 2 & 3. This has 
broad implications for the use of cognitive measures within AD as these 
measures are used interchangeably throughout AD research.
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Chapter V – Biomarker Stratification 
Modelling

Chapter Outline

The first three studies of this thesis have revealed the variances in cognitive 
measures widely used within AD diagnostics and clinical trials. These studies 
have also looked at using a novel discrepancy score within AD, and explored 
how this measure performs in an AD clinical trial population. It has long been 
a fundamental goal of trialists to predict AD pathology from the clinical 
presentation, and to bridge the gap between clinical presentations and 
biological classifications. This is particularly relevant when it comes to 
patient selection for clinical trials, which has been an area of broad failure 
over the last two decades. The current chapter will build upon the prior 
studies by furthering the understanding of the interpretability and criterion 
validity of these measures, by trying to marry this with the biological 
phenotype of AD. This is being sought by using additional discrepancy 
measures and machine learning methods to build sophisticated models for 
classification of amyloid positivity, the biological cornerstone of AD. 

Introduction

While many factors are thought to contribute to the high attrition rate in AD 
clinical trials, a major contributor is currently argued to be cohort 
heterogeneity, both in terms of the cognitive and clinical presentation, as 
well as divergent ATN biomarker profiles. The challenges of assessing 
treatments of neurodegenerative disorders in clinical trials includes 
heterogeneity in an individual’s drug response, the underlying disease 
pathology, the length of disease course and the trajectory of the decline, 
amongst other factors. Only by bringing in biomarker endpoints, specifically 
amyloid, the cornerstone of an AD biological diagnosis, can we begin to 
bridge the gap. This chapter aims to achieve this by using more complex 
classification methodologies, specifically through machine learning, a 
technique growing quickly in popularity and widely used in other areas of AD 
research. Being able to predict AD pathology without invasive and expensive 
techniques has long been a big goal for the field. If this is achieved, this will 
enable quicker and broader diagnosis of AD, saving costs and also allowing 
quicker access to any potential disease modifying AD treatments, through 
quicker clinical trials. 

ATN & Cognition

As outlined in detail within Chapter 1, ATN is recognised as defining AD as a 
biological construct, in order to select more homogenous patient 
populations. The difficult step is marrying the cognitive staging and clinical 
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presentation into this model. Cognition is fairly well characterised at the 
latter stages of AD and has been fundamentally defined across mild, 
moderate and severe AD. However, it is less so at the very earliest stages of 
the disease. As shown in the prior studies, cognition is one thing that is 
highly variable across this population, and there are a number of 
confounding variables that influence an individuals’ ability and performance 
at any given timepoint. Thus, in order to accurately incorporate cognition 
into ATN, a more accurate staging approach of the clinical and cognitive 
presentation is needed – one that takes into consideration these prior 
findings and variables.

Within AD, research has robustly shown that decline first occurs 
approximately 15-20 years after the start of the formation of amyloid 
plaques in the brain (Jack et al., 2018). This cognitive impairment is argued 
to be the first clinical manifestation of AD. Cognitively impaired, in the 
context of AD, is widely agreed to be an impairment on a cognitive measure 
that is equivalent to or greater than 1-1.5 standard deviations below the 
appropriate normed population scores (McKhann et al., 2011). However, 
there is still no agreement on which measure or particular memory domain 
this should be. As shown with the ATN categorisation method, individuals 
who fall into some of these categories can in fact have the absence of AD or 
even concomitant pathologies, this is the same with cognition (see Chapter 
1 for full discussion). Those with a recognised cognitive impairment but 
without specific amnestic decline, are very much questionable in terms of a 
diagnosis of “frank AD”, “MCI due to AD” or “possible AD dementia”. Cohort 
studies have estimated that non-amnestic/atypical AD occurs in around 5-
10% of diagnosed AD cases (Graff-Radford et al., 2021). These cases are 
often argued to have comorbid pathologies, however currently many of these 
pathologies are only able to be diagnosed post mortem as in-vivo techniques 
are currently not as abundant as the pathologies.

Marrying biological classification to the clinical phenotype

Moving into new diagnostic territory with the ATN classification system 
brings a new set of challenges. For many of these modalities, moving from a 
clinical classification to a biomarker one tends to involve having a single cut 
point in order to define a positive or negative grouping. This is the norm for 
clinical trials in AD. However, having such stringent criteria does help clearly 
define AD classification but also hinders a more nuanced approach that has a 
degree of flexibility in clinic. This ATN diagnostic criteria has subsequently 
led to nuanced model comprising of a number of different combinations of 
pathology, some related to AD and some which are not. For a biological 
diagnosis of AD it is a widely held view that amyloid biomarkers represent 
the earliest evidence of AD neuropathology in vivo. As such, in combination 
with phosphorylated paired helical filament tau (p-tau) they are seen as 
categorical determinants for the definition of AD (Montine, et al., 2012; 
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Hyman et al., 2012, Frisoni et al., 2022). Furthermore, abnormal amyloid 
being the earliest pathologic change, can be argued to be the defining 
signature of AD (Jack et al., 2018). This positive amyloid biomarker is critical 
for the categorisation of AD as without it, any positive biomarker is indicative 
of non-AD pathologic change and without a positive amyloid AND tau 
biomarker, a positive (N) biomarker is suggestive of concomitant non-AD 
pathology. These definitions allow for further subtyping of the biological 
presentation to allow for a homogeneous look at the complexity of AD 
pathology.

Nevertheless, this biological construct is somewhat at odds to the clinical 
phenotype. Approximately 30% of those diagnosed with clinical AD do not 
have amyloid pathology. On top of which, of those who are amyloid positive 
not all will decline to AD or progress from MCI to AD dementia. A longitudinal 
study of the Mayo Clinic database showed that of those who were amyloid 
positive at baseline, only 30% of them declined after 5 years (Jack et al., 
2019). Their population data also showed biologically defined AD is also 
three times more prevalent at 85 years of age than the clinically defined 
phenotype. This is argued to suggest amyloid alone is not enough to infer 
future decline. This is only when tau positivity is found on top of amyloid 
positivity. However, looking at the longitudinal modelling done on this 
cohort, at age 70, 30% are amyloid positive with 10% exhibiting MCI or 
worse, at 80, 55% are amyloid positive with 30% exhibiting MCI or worse. 
This suggests that whilst amyloid isn’t immediately a prerequisite for decline 
or AD dementia, it does infer a much greater risk of future cognitive decline. 
This is in line with our current understanding of AD as a disease, with a 20-
30% prevalence of disease and with a number of risk and protective factors 
that significantly interact with an individual’s disease trajectory. As with all 
neurodegenerative diseases, AD is highly complex both clinically and 
biologically and its aetiology is not currently fully understood. 

Further to this, disease and pathological comorbidities are common within 
the general elderly population (Ferreira, Nordberg and Westman, 2020). This 
is also common even within clinical trial cohorts aimed at a singular disease 
or process homogenising the trial population. Nevertheless, trials for 
diseases such as AD, have clinical populations that still tend to display 
divergent protein and other biomarker values, arguably indicating that they 
are at differing stages of the disease. This provides fundamental support of 
heterogeneity being common even within complex homogenised clinical trial 
populations. Disentangling the heterogeneity of a neurodegenerative 
disorder such as AD is critical in order to get the right disease-modifying 
drugs to the right patients, at the right time. This biological evidence has 
shown indications of AD heterogeneity on top of the ATN framework referred 
to as the ATX(N) continuum where additional X represents additional 
candidate biomarkers such as neuroimmune dysregulation, synaptic 
dysfunction and blood-brain barrier alterations (Jack et al., 2018; Hampel et 
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al., 2021). These recent suggestions propose distinct subtypes of AD (Frisoni 
et al., 2022) with additional evidence of further subtypes yielded from 
machine learning methodologies on RNA datapoints (Tijms et al., 2020; Neff 
et al., 2021). Studies of multiple cohorts with inter-disciplinary data (Ferreira 
et al., 2020) also strongly argue for three distinct drivers of heterogeneity 
which include risk factors, protective factors and concomitant non-AD 
pathology, all of which need to be addressed within clinical trial populations 
to better address the underlying disease process. Further to this, prior phase 
trials can yield important information that informs a go or no-go decision. As 
outlined in Wessels et al, prior cognitive data as well as biomarker outputs 
can fundamentally drive future development (Wessels et al., 2021). 
However, these two strands of research need amalgamation before any real 
progress is seen.

Positive steps are being taken though as clinical trial datasets are incredibly 
rich and highly characterised. And with the constant developments in 
research, they have the potential to inform future trial designs on these 
complex classification issues. Stratifying patients with a disease such as AD 
into subgroups based on these multiple factors will ensure a greater 
accuracy in predicting a patient’s response to a drug in a trial that targets a 
specific phenotype of the disease. However, as discussed above the clinical 
presentation doesn’t always overlap with the biological one. AD causes 
dementia but is influenced by many variations in an individual’s genetic 
profile, which can be argued to precipitate disease trajectory and result in 
subtle pathological variations. This is the fundamental crux of the 
probabilistic theory of AD based upon PSEN & APP mutations in 
familial/dominantly inherited AD and APOE genotype in sporadic AD (Frisoni 
et al., 2022). Those who are not carriers of those specific mutation then infer 
a broad plethora of risk factors and minor risk alleles and develop AD. It is 
suggested that these genetics are fundamental factors in driving these 
divergent disease trajectories. Within the cohort being studied the APOE 
gene are the only applicable factors and are incorporated into the models 
being built.

All of this current work leads to the argument that patient selection and 
stratification, both within clinical trials and broader research, should take 
these considerations into account to find the patients at the right 
pathological stage/trajectory of AD. Despite the attraction of simplicity, 
phenotypic stratification systems are currently not reliable predictors of 
disease progression or subtype and more complex methods such 
stratification by multiomic scores are most practical for the generation of 
homogeneous groups, but are not particularly feasible within clinical trial 
paradigms or to measure drug response and baseline underlying disease 
status. This is something that machine learning methods are able to be 
employed for, as they are able to deal with multiple disease stages, 
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endpoints for classification purposes, or when looking longitudinally, 
trajectories of decline.

Machine Learning/Models For Prediction Applications In Clinical 
Trials & AD

When contemplating trial design and patient selection, patients’ stage of 
disease along with anticipated future decline, cognitive performance and 
biomarkers endpoints are key factors for success. With trials only lasting 18 
months, in diseases that typically span decades, matching the right 
individuals to the right compound at the right time is fundamental to clinical 
trial outcomes. These factors can be used to characterise the majority of 
past, repeated, clinical trial failures. By refining patient selection and 
homogenising patient’s disease pathologies, there is an increased likelihood 
of an efficacious outcome and subsequent regulatory approval, all of which is 
achieved through reduction in inaccuracies in patient level responses to the 
given therapy. 

Measures within clinical trials are often under-utilised with specific 
hypotheses for each of those said measures being poorly designed. Thus, 
leading to a discordance in findings across each clinical phase of 
development. Machine Learning (ML) can play a key role in improving these 
decisions, trial design and boosting the power of trials meaning less 
individuals need to be recruited. This can be achieved by assisting trail 
enrichment with appropriate individuals through imaging, biomarkers and 
cognitive performance (when measured over time) to allow for subject 
stratifications that classify individuals prior to enrolment (Kohannim et al., 
2010; Ithapu et al., 2015; Mathotaarachchi et al., 2017; Ahmad et al., 2018; 
Calvin et al., 2020; Thall, 2021). Enriching cohorts with individuals who are at 
the correct stage of AD for each individual compound, can be done by 
fundamentally categorising based upon biomarkers that relate to 
homogenous staging and prospective endpoint declines. Many markers now 
exist for accurate classification of individuals within the ATN criteria for AD, 
nearly all of which are captured within clinical trials already. However, 
instead of incorporating long lead in times, as well as additional endpoints 
and analyses, modelling progression based upon disease specific biomarkers 
and subsetting the analysis a priori can alleviate these operational 
constraints. Further to this, as biofluid markers become more accessible and 
cost effective in larger trials, algorithms that can predict biomarker status 
become particularly useful in increasing screening success rates and could 
lead to quicker trials and speedier decisions on compound efficacy. The start 
of this must begin with the prediction of amyloid, the cornerstone of the 
biological definition of AD.

Many groups have produced work on ML paradigms within AD cohorts. The 
EPAD cohort for preclinical AD is a large longitudinal cohort assessing 
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individuals at risk of developing dementia and as such has a wide range of 
groups across the ATN staging criteria. This cohort contains individuals at a 
much earlier disease state than the one being studied within this thesis but 
these findings are nevertheless important to discuss. There have been 
encouraging results from studying this cohort and in particular in predicting 
ATN classification. This was done using Gaussian mixed models and 
multinomial regression to estimate the likelihood of these ATN groupings. 
This was achieved through looking at a number of lifestyle, risk factors, 
cognition and imaging endpoints. Their ANOVA (Chi-squared where 
applicable) based models showed AUCs of up to 0.89 in distinguishing ATN 
groupings (Calvin et al., 2020). They approach building models on the basis 
of basic significant group differences between A+, T+ and N+ groups on a 
plethora of clinical, demographic and cognitive measures. Once these likely 
risk factors had been established, they simplified the groupings to a binary 
distinction of AD pathologic change (A+ ATN groupings) and non-AD 
pathologic change (All A- groupings). Building their models in an additive 
way allowed for the strongest possible classifiers to be found and included in 
the final prediction model. This meant an improvement of AUCs for the initial 
model variables of 0.82 improving up to 0.89 based upon the key risk factors 
shown in prior analysis. This additive approach is clearly beneficial for 
selecting the relevant variables to include in any model. The alternative 
approach relies on unsupervised learning which is hypothesis generating, 
which is in direct contrast to the approaches taken within the literature, as 
well as this chapter, which are hypothesis driven.   

Further work from Ingala and colleagues (2020) also used Gaussian mixed 
models to determine CSF cut points for ATN. They split their cohort by ATN 
grouping and excluded individuals with non-AD pathology. To note P-tau and 
t-tau strongly correlated (R2=0.98) so hippocampal volume was used for N. 
In cognitively normal individuals p-tau181 drives cognitive dysfunction. 
However, given recent evidence showing this is intrinsically linked to amyloid 
and subsequent amyloid removal (Budd-Haeberlain et al., 2021), rather than 
tangle accumulation, this posits that the pathological process of cognitive 
decline is still poorly understood. This analysis from Ingala also showed that 
whilst being cognitively normal, individuals who had greater amyloid burden 
still had memory and language domains impacted as the first domains of 
decline within preclinical AD, further supporting the prior findings of these 
being the key domains of interest in early AD.

MRI imaging is another key piece of information that can be explored prior to 
more invasive procedures, such as CSF lumbar puncture or PET scans. This 
imaging modality allows for rich datasets to provide additional anatomical 
and structural information of the brain both cross sectionally and 
longitudinally. Given the vast number of endpoints within a single scan, ML 
methods have been commonly employed to analysis these deeply rich 
datasets. One common method is to use Support Vector Machines (SVM) to 
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provide a hyperplane which characterises a large number of variables 
through a dichotomy. This has been shown to be successfully applied to 
numerous analysis paradigms across multiple diseases, both for cross-
sectional analysis as well as transition predictions and treatment prognosis 
(Orru et al., 2012).  This method of categorisation provides optimal grouping 
characteristics across multiple, divergent endpoints. An example of this is in 
practice within AD comes from the EMIF-AD cohort. This is an analysis of 
individuals across the spectrum of AD as well as normal healthy elderly (ten 
Kate et al 2018). They looked to predict clinical diagnosis of MCI or AD using 
clinical, cognitive, demographic variables plus volumetric MRI volumes. AD 
was confirmed using PET or CSF amyloid positivity assessment within the 
cohort. Their feature selection was different to that of Calvin et al (2020) 
whereby apriori they defined the tree-based feature selection strategy using 
a random forest method (hypothesis generating). With the Gini index was 
used to measure the relevance of each feature (Cutler et al., 2012). The 
analysis also then used an additive approach to find the best predictive 
model, with demographic and cognitive measures model providing an AUC 
value of 0.64. The best model included demographic, cognitive, APOE status 
and MRI to give an AUC value of 0.85 for the model for distinguishing 
amyloid positive and negative individuals. 

The papers from ten Kate et al., (2018) and Calvin et al., (2020) will form the 
basis for the proposed analysis, however in a much larger sample size (prior 
work; n=863 & n=1010 respectively). The variables of interest will be based 
on the key cognitive domains of interest and include discrepancy scores. The 
aim will be to build model of prediction of amyloid status using a hypothesis 
driven approach. This will be founded on the basis of the cognitive, 
demographic and clinical variables, with the addition of discrepancy scores 
based upon work in prior chapters and built in an additive manner to discern 
the best feature selection possible within this cohort.

Methods

Study Details
This study aims to use a machine learning approach (SVM) to build a 
predictive model of biomarker grouping (amyloid positive or amyloid 
negative) based upon scores on clinical and cognitive measures as well as 
demographic factors. The model will also incorporate findings from prior 
chapters on discrepancy/change scores to help predict pathological status. 
The proposed analysis will build three SVM models of prediction, in an 
additive manner to find the best predictors of amyloid status. For each model 
the dataset under investigation will be split into two in a 70:30 split as 
common with all ML work within AD. The first 70% of the cohort will be used 
to build the model, with the final 30% used to test the classification 
properties of that model on brand new data. This split will be done from 
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scratch for each model being built. This allows for the models to be built with 
the largest number of individuals possible, whilst maintaining a set of unseen 
data by the model sufficient to test the performance and generalisability of 
the model on. This will be repeated twice with two sets of cognitive 
measures alone, with the best performing model then taken forward to a 
third model whereby it will be added to the full batch of clinical and 
demographic variables within the cohort. All three models will also use 10-
fold cross validation within the training data set to minimise the bias of the 
classifiers and maximise the generalisability of each model. The first model 
will comprise of total scores from ISLT (Immediate & Delayed recall), MMSE, 
CDR and all four tasks from the CBB. These are the commonly used normal 
cognitive indices which will be tested compared to the second model. The 
second model will look at using discrepancy score and a memory difference 
score, on top of total scores from the MMSE and CDR. The MMSE and CDR 
are included across both models as they are fundamental to the 
measurement of AD. The third and final model will use the top performing 
model (1 or 2) in combination with demographic factors (age, gender and 
years of education) with ApoEe4 carrier status. 

Participants
All individuals used for all analyses within this chapter are from the main 
cohort of screening and baseline assessments, from the clinical trial program 
of elenbecestat. The cohort comprises individuals who have presented to 
memory centres and consented for testing for the possibility of taking part in 
a clinical trial in early AD. Each subject has undergone a fully informed 
consent process consistent with each country/states IRB and EC guidelines. 
The screening criteria for inclusion into the study mandated the exclusion of 
medication affecting cognition, known comorbidities prior to brain imaging 
and depressive illness within the last five years. Full extensive details of this 
cohort can be found in Chapter 2. Pertinent to these analyses only 
individuals who underwent amyloid positivity assessments are included here. 
This is a subset of the full screening cohort as individuals had to meet 
inclusion and exclusion criteria in a tier (step)wise manner. Thus, those who 
underwent amyloid positivity assessment, are all cognitively impaired (>-1 
standard deviation below the norm), have no comorbidities known to effect 
cognitive performance, have normal blood tests, ECGs and neurological and 
physical examinations, as well as having no abnormalities on a screening 
MRI. Excluding those with any missing data, this resulted in an analytic 
cohort of 3675 individuals.

Assessments
The measures used in these analyses will be the same as previously 
discussed in prior chapters. The CBB, ISLT, ADAS-Cog, CDR and MMSE are all 
discussed in full in Chapter 2. These measures will be used in a component-
based manner, based upon their corresponding domain features. Further to 
this, the same discrepancy measure from Chapter 3 will be computed to be 
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used within the models, with an additional memory difference score 
computed too. This memory difference score will be computed by 
subtracting the delayed recall score from the immediate recall score from 
the ISLT. This is included on the basis of a within domain comparison of 
amnestic performance, something that was not possible within the analysis 
in Chapter 3. Overall, for all of these individual screening assessments, 
there were approximately 59 days (range 12-89) between the initial 
cognitive and clinical measures being conducted and the final amyloid 
assessment. Within that time period the other screening procedures were 
done, many of which were exclusionary (again full details are contained 
within Chapter 2). This timeframe is in line with a minimisation of any 
practice effects due to repeated testing.  

Discrepancy Scores 
As broadly discussed in Chapter 3 discrepancy score adds another 
dimension to the cognitive profile of individuals. As such these scores will be 
computed again using the same methodology described in the prior chapter. 
The fluid composite will be comprised of the 4 tests from the CBB and the 
crystallised composite from the five language domains/questions from the 
MMSE. The discrepancy score for each subject will be calculated using the 
following equation: fluid composite – crystallised composite = discrepancy 
score. A positive discrepancy score would indicate higher fluid ability and a 
negative discrepancy score would indicate an impairment in fluid ability 
compared to expectations based upon the individuals crystallised ability.

Amyloid Classification
Fundamental to this analysis is the classification of individuals for 
confirmatory amyloid pathology. The binary classification within this analysis 
is split by levels of amyloid beta present on a PET scan or low levels of the 
protein in CSF (Roberts et al., 2021).  Individuals were given a positive or 
negative determination on Amyloid PET by an expert radiologist, a team of 
whom performed a visual read of all images centrally. The radiologist always 
blinded to cognitive status of the individual. The thresholds for positivity 
were dependent upon which radiotracer was used for the PET scan. With the 
label of each tracer defining the criteria for the number of positive regions to 
claim an individual being amyloid positive on a visual read. All scans were 
analysed by readers trained on the guidelines established by the 
manufacturer for each constituent tracer. For Florbetapir (Amyvid™) the 
regions are; Frontal cortex (excluding midline), medial frontal cortex 
(including Anterior cingulate), parietal cortex (excluding midline), medial 
parietal cortex (precuneus and/or posterior cingulate), temporal cortex, and 
occipital cortex. For Florbetaben (Neuraceq™) the regions are; Lateral 
temporal, frontal lobes, posterior cingulate/precuneus, parietal lobes. And for 
Flutemetamol (Vizamyl™) the regions are; Frontal lobes (axial & sagittal 
views), posterior cingulate and precuneus (sagittal & coronal views), 
temporal lobes – lateral regions (axial views – coronal views as supportive), 
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parietal lobes – lateral regions (coronal views – axial views as supportive), 
striatum (axial views – sagittal views as supportive). For CSF samples taken 
for amyloid positivity assessment, these were all analysed at a central 
laboratory with a set cut off level for amyloid beta 42. Two assay platforms 
were used across the duration of the study for analysis of samples for 
logistical purposes. These were assays of Aβ(1-42) with a cut off for positivity 
of <250 pg/mL from Alzbio3 which was run at the ADNI core lab and the 
Lumipulse™
platform from Fujirebio, using a total tau:Aβ(1-42) ratio greater than 0.37 to 
indicate positive amyloid status. Both cut offs have been validated, analysed 
for concordance and broadly used within many cohorts to date (Kaplow et 
al., 2020).

Machine Learning Approach - Feature Selection & Performance 
Evaluation

In order to properly validate the model, the full dataset of 3675 individuals 
will be split into two equal groups. These groups will be selected from the 
larger sample at random for each model, with ten-fold cross validation being 
used (in line with the prior work from ten Kate et al., 2018 and Calvin et al., 
2020) to prevent overfitting of any of the models. Demographics and 
cognitive characteristics will be sought on the apriori defined key outcome 
variables in a hypothesis driven approach. Models will be built in an additive 
manner.  Model 1 will contain z-scores for Immediate & Delayed memory 
recall, attention, reaction time, working memory & executive function, as 
well as total scores from the MMSE and CDR. Model 2 will contain variables of 
discrepancy score, memory difference score as well as the total scores from 
the MMSE and CDR. And finally Model 3 will contain all demographic 
measures (Age, Gender, Years of Education) as well as APOEe4 carrier status 
along with the variables from the best performing model (1 or 2). 

The SVM models will each consist of 10-fold cross validation as using an 
optimum cost function for each individual model. This will be done within the 
first 70% (training set) of the dataset whereby after splitting in two, that part 
will be split into 10 separate subsets to train the hyperparameters of the 
SVM model (cost parameters and kernel function). In order to accurately 
compare and assess the performance of each model, the receiver operating 
characteristic (ROC), area under the curve (AUC), specificity, sensitivity, 
Youden index and accuracy will be computed each of the testing datasets. 
The SVM modelling anlaysis was run in R using the e1071 package, which 
allows for the tuning of the model parameters on the training data prior to 
the overall model being built. The kernel function was always radial, with the 
cost parameters tuned across six decimal places and the gamma function 
between minus eight and positive one. 
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Results

Demographic & Cognitive Comparisons

The features selected for use within the classification models for the whole 
sample are presented in Table 5.1. Across amyloid positive and negative 
groupings, APOE status, Age, Gender and Education were all significantly 
different across amyloid status groups. Effect sizes for each variable across 
groups were also calculated using Cohen’s d formula. All measures outside of 
delayed recall showed small or minimal (d<0.2) differences between groups. 
The effect size on the delayed recall measure across amyloid groups was the 
greatest in size. 

Table 5.1 Demographic Group Level Characteristics
Characteristic Whole 

Group
Amyloid 
Positive

Amyloid 
Negative

Group 
Differences

Cohen’s 
d

N 3675 2056 1619 - -
Age (years) 70.7 

(7.8)
72.1 
(7.1) 68.9 (8.2) * -

Gender (% 
Male) 48.5% 48.8% 48.1% * -
Education 
(Years)

13.4 
(4.4)

13.7 
(4.2) 13.1 (4.6) * 0.14

APOE e4 Status 
(% Carrier) 45.9% 64.0% 22.2% * -

MMSE 26.6 
(1.8)

26.4 
(1.8) 26.9 (1.7) * 0.29

CDR-SB 2.35 
(1.0)

2.63 
(1.2) 2.24 (1.0) * 0.35

Immediate 
Memory (ISLT)

-1.69 
(0.8)

-1.81 
(0.8)

-1.52 
(0.7) * 0.39

Delayed 
Memory (ISLT)

-1.78 
(0.8)

-1.97 
(0.8)

-1.55 
(0.7) * 0.59

Reaction Time 
(DET)

-1.45 
(1.6)

-1.26 
(1.5)

-1.69 
(1.6) * 0.28

Attention (IDE) -1.85 
(2.0)

-1.60 
(1.9)

-2.17 
(2.1) * 0.28

Working 
Memory (OBM)

-1.52 
(1.7)

-1.57 
(1.7)

-1.46 
(1.7) NS 0.07

Executive 
Function (OCL)

-1.21 
(1.0)

-1.36 
(1.0)

-1.02 
(1.1) * 0.32

Memory 
Difference Score

0.10 
(0.8)

0.15 
(0.9) 0.03 (0.8) * 0.14

Fluid Composite -
1.51(1.2)

-1.58 
(1.2)

-1.45 
(1.1) * 0.11
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Crystallised 
Composite 0.02(1.0) -0.03 

(1.0) 0.05 (0.9) NS 0.08
Discrepancy 
Score

-
1.52(1.4)

-1.56 
(1.5)

-1.50 
(1.4) NS 0.04

Means and (standard deviations) are displayed for each group. *denotes a 
significant group level differences using simple t-tests with the exception of 
Gender & APOE Status for which Pearson's χ2 test was used (p<0.05). 
Correction for multiple comparisons was also undertaken using the 
Bonferroni correction method. Values represent raw scores for the MMSE, 
CDR-SB & demographics. All other measures are z-scores.

Looking at the groupwise differences between amyloid positive and negative 
individuals, all cognitive measures apart from discrepancy scores show 
significant differences between the two groups. Noticeably, amyloid positive 
individuals had better scores on the simpler tasks (reaction time and 
attention), whereas for tasks with higher cognitive load (memory, executive 
function), amyloid positive individuals performed worse than amyloid 
negative individuals. For the composite scores there were small differences 
between groups on the fluid and crystallised composites, with a slight 
numerical difference favouring better scores in the amyloid negative group 
on the overall discrepancy score (although this difference was not 
statistically significant) and the memory difference score (which was 
statistically significant). 

Multi-variable Classifier Results

SVM Models were run in an additive, stepwise manner with the model being 
built on a test data set that comprised of 70% of the cohort, with the model 
then tested on the remaining 30% of the data. This split was done in a 
random manner and was repeated separately for each model built. Each 
model was built first using the training dataset, using 10-fold cross validation 
to tune the model parameters in order to optimise its performance. The final 
model was then run on the test data set (the remaining 30% of the cohort in 
each case) with classification performance measures calculated for each 
individual model in turn.

The first model used the total z scores from both components of the ISLT 
(immediate and delayed memory recall), all 4 z-scored components of the 
CBB (reaction time, attention, working memory and executive function) plus 
total scores from the MMSE and CDR. This performed fairly poorly in 
classifying amyloid status within the testing cohort (AUC=0.681). The second 
model was comprised of the discrepancy score calculated for each subject as 
well as a memory difference score. These were combined with total scores 
from the MMSE and CDR. The second model performed even more poorly 
than the first (AUC=0.627), leading to the selection of the variables from 
Model 1 to be taken forward to Model 3. This third model combined the 
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variables from Model 1 with key demographic details for each individual. The 
ISLT (immediate and delayed memory recall), all 4 z-scored components of 
the CBB (reaction time, attention, working memory and executive function) 
plus total scores from the MMSE and CDR, were combined with age, gender 
and years of education, plus APOEe4 carrier status to try to predict amyloid 
positivity classification. Model 3 performed moderately in classifying amyloid 
status in the testing dataset (AUC=0.734).

Table 5.2 gives the full classification properties for each of the three 
support vector machine models. To note the performance of model 1 showed 
moderate sensitivity at picking out the true positives as compared to the 
false negative from the cohort. The model showed poor specificity, giving the 
model overall poor classification performance for distinguishing amyloid 
positive individuals from amyloid negative individuals. Model 2 improved 
slight on these classification properties, this was driven by its ability to show 
good sensitivity but very poor specificity, showing very limited ability of the 
model at selecting the true negatives in the cohort, as compared to the false 
positives. Model 3 improved in all performance metrics from those of Model 
2. Out of the 3 models, Model 3 was able to correctly classify the most 
individuals as amyloid positive and amyloid negative (73.4%) within the 
testing cohort.  

Table 5.2 Optimised Performance Characteristics of Each SVM 
Model/Classifier

Mode
l

Sensitivit
y

Specificit
y

Youde
n 

Index 
(J)

PP
V

NP
V

AUC 
Valu

e
Accurac

y

Model 
1

75.4 49.3 0.247 65.
5

61.1 0.681 0.224

Model 
2

83.3 30.9 0.142 60.
6

59.3 0.627 0.728

Model 
3

89.0 33.0 0.220 64.
2

69.1 0.734 0.684

Model averaged across 10-fold cross-validation. Youden’s J statistic employed 
for the Youden Index. NPV=negative predictive value, PPV=positive 
predictive value, AUC=area under the curve.

Performance of SVM Classifiers for Amyloid Positivity 
Assessment
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Figure 5.1 
Receiver operating characteristic (ROC) curves of support vector machine 
classifiers to predict amyloid pathology. Model characteristics are displayed 
in Table 3.2. Model 1 (AUC=0.681): Z-scores for Immediate & Delayed 
memory recall attention, reaction time, working memory & executive 
function, as well as total scores from the MMSE and CDR. Model 2 
(AUC=0.627): Discrepancy score Memory difference score as well as the 
total scores from the MMSE and CDR. Model 3 (AUC=0.734): all demographic 
measures (Age, Gender, Years of Education), APOEe4 carrier status + Model 
1.

Discussion 

This study aimed to build upon the prior studies by assessing whether it is 
possible to predict AD pathology using a new discrepancy measure and/or 
commonly used measures of cognition. This analysis has shown that within 
this population total scores from cognitive measures show the strongest 
classification properties compared to that of discrepancy scores. Overall, all 
models showed fairly moderate to poor AUC values. This demonstrates the 
incongruency between cognition and amyloid dichotomy within AD. However, 
despite this poor performance all three models showed good sensitivity in 
classifying true positive cases (sensitivity), but in nearly all three cases, the 
models performed poorly at selecting the true negatives (specificity). To 
note, AUC values were used as the primary performance measures as the 
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accuracy measures can be argued to be unduly influenced by a 40:60 
proportion of amyloid negative to positive cases. 

The poor classification performance for these models could be in part due to 
the unknown levels of each of the ATN biomarkers. As previously seen the 
three ATN biomarkers each have a highly variable relationship with 
measures of cognition. Although this analysis dichotomised cohort labels for 
A, using set thresholds for amyloid positivity, individuals were able to be at 
any level (high or low) either side of the boundary. In such a large sample, it 
is highly likely there is a high variability in amyloid load across the cohort. 
Although the model build (in each case) was done in a randomised fashion, 
as the continuous data on amyloid load was not available, it is plausible that 
this may have given rise to broad cognitive variability within amyloid positive 
and negative groups. On top of this, recent research (as discussed above and 
in prior chapters), has shown a stronger association between levels of tau (T) 
and cognition. When the data were collected, no tau imaging or plasma 
biomarkers were validated or available for levels of phospho-tau. Therefore, 
this data was not available within this cohort, but it is highly plausible this 
will have a stronger association with cognition than amyloid. Tau plasma 
data is currently being sought for analysis within this cohort and is a key 
future area for research. The same issues also apply to markers of 
neurodegeneration (N), as these levels will likely vary broadly within this 
cohort too, and as such measures of this carry nearly as much importance as 
markers for tau as a future avenue for research.

Looking at the prior work of ten Kate et al., (2018) & Calvin et al., (2020), 
this work shows that without markers of MRI (ten Kate) or other biomarkers 
for AD (Calvin), the classification utility of cognitive and demographic 
variables is somewhat limited, even when used with these cognitive and 
clinical variables being indexed in a novel manner (discrepancy scores). 
Nevertheless, there is still merit in approaching biomarker classification 
using these machine learning approaches. As has been shown in the prior 
work these analyses were founded upon, the poor performance here was not 
due to the ML methodologies employed but in the utility of the cognitive 
measures in predicting the absence of presence of biology. It is clear there 
are limitations in the interpretability of cognitive performance on these 
measures, as from these models, it is clear there is a weak relationship 
between amyloid classification and cognitive performance. 

There is clearly still some way to go for a better confluence between the 
clinical and biomarker classification perspectives. This analysis goes to show 
that the clinical and cognitive measures do not aid diagnosis when looking 
for the cornerstone of biomarker classification for AD, the presence of 
amyloid. The clinical presentation of AD is still broadly varied in primary care, 
with doctors starting by looking for impairments in cognition, primarily 
memory and diagnosis should be approached in a different manner. Primary 
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care does not yet have biomarkers available, plus the clinical presentation of 
AD often occurs even without a subsequent finding of amyloid. This cohort is 
a primary example of this, with ~40% of the studied group being amyloid 
negative yet presenting with a clinical diagnosis of AD or mild cognitive 
impairment due to AD. Amalgamating biomarker classifications which are 
fundamental to clinical trials, to that of clinical presentations of AD which are 
highly varied, still needs much work and further study. This could primarily 
be done by assessing screening cohorts, such as the full complement of 
individuals within this one (n=9758), in greater detail regardless of their 
cognitive performance, by assessing them in full (including biomarker and 
imaging workup). However, this would be incredibly costly and operationally 
complex. Current initiatives in this vein have begun studying preclinical AD 
individuals and biobank cohort studies, which will hope to yield some further 
findings to help bridge these classifications. However, as with any cohort 
studies implementing new biomarkers into existing programs often lags 
behind that of clinical trials. As such, findings from cohort studies take longer 
to implement into both clinical practice and clinical trial design further 
hampering clinical diagnosis.

This research shows for trial designs, given the dearth of measures used, it is 
not possible to accurately capture a measure of crystallised 
ability/intelligence or accurate language ability from the MMSE, CDR or other 
basic cognitive measures within this population. For further research to 
progress understanding of discrepancy scores, a broader range of measures 
is required, with one/s that accurately index verbal acuity key to this 
endeavour. However, given the reluctance of the field and regulators to shift 
away from the CDR, MMSE and ADAS-Cog, this appears unlikely for now. 

As well as the SVM models, initial analysis looked at group differences on the 
cognitive measures between amyloid positive and amyloid negative 
individuals. This showed a number of interesting points worthy of discussion. 
The 0.4 raw score difference (d=0.35) between groups on the CDR-SB is 
notable (as this is the primary outcome measure used in clinical trials) and 
also indicates the likely greater AD progression of a number of the amyloid 
positive group, potentially indicating higher tau load (T) and/or 
neurodegeneration (N). This poorer performance by individuals who are 
amyloid positive is also mirrored on the key memory measures, with a slight 
bigger difference on the delayed memory recall, which is in line with current 
understanding of AD related impairment. This worse performance from the 
individuals who are amyloid positive is replicated over all cognitive measures 
apart from those of reaction time and attention, which amyloid positive 
individuals perform better than amyloid negative individuals on. The 
simplistic nature of these two tasks may allow for any deficits to be masked 
in task performance, however, a comparative improvement compared to 
amyloid negative individuals is intriguing and would be aided by the addition 
of vMRI measures in the hope of better explaining this finding. This could 
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shed light on the nature of the pathology behind the cognitive impairment 
being exhibited by those individuals who do not have significant amyloid 
burden.

Furthermore, the lack of difference between groups on the discrepancy score 
is indicative of the lack of variability in the measure. This is fundamentally 
due to it being derived for this population using the MMSE and having very 
little range or variability. This goes back to the flawed nature of the MMSE in 
indexing verbal acuity and language performance. This was also seen in 
greater detail within the analysis in Chapter 3. However, this prior analysis 
was in the screening population the much larger n (9758:3675) which 
allowed for a broader range of scores. Conversely with this analysis the 
cohort had much greater clinical and cognitive homogeneity and as such 
restricted this measure of crystallised intelligence and discrepancy score 
even further.   

The effect size calculations also point toward the largest difference being 
seen within delayed memory recall, this is in line with the understanding of 
the prior literature reviews (Mortamais et al., 2017; Baker et al., 2017). 
However, even with the moderate (d=0.59) group level difference between 
amyloid positive and amyloid negative individuals on delayed memory recall 
classification based on this alone is insufficient to be implemented in any 
meaningful way. This was a rationale for the alternative approach taken in 
this analysis, of using discrepancy scores to approach cognition in a different 
way. The results show this alternative approach is not beneficial within this 
setting.

Overall, there are clear statistically significant differences between amyloid 
positive and negative individuals when looking at indices of cognition. 
However, these group differences do not translate to a dichotomisation of 
groups based upon biomarker classifications, even when implementing 
sophisticated machine learning models such as SVM. This suggests indexing 
cognition alone, even across multiple domains, is not sufficient to predict 
amyloid pathology. Furthermore, a discrepancy score comprised of standard 
clinical trial cognitive measures, is not able to cross-sectionally indicate this 
AD related pathology above that of the standard measures themselves. 
Future research needs to broaden the scope of the characterisation of ATN 
within the cohort studied and widen the scope of measures used in clinical 
trials to better capture verbal acuity. Nevertheless, the SVM classification 
method used here should be utilised in future by looking at this these 
paradigms of cognitive impairment and biomarker groupings, longitudinally, 
across the ATN spectrum, with the hope to see improvements in 
classification performances. 
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Chapter VI – Conclusions
Chapter Outline

The overarching aim of this thesis was to explore the differences between 
cognitive measures used within AD clinical trials and for clinical diagnosis of 
early AD. As well as this, it also explored these measures in a novel way by 
utilising a novel cognitive discrepancy score. This was done with the aim of 
improving clinical trial design, which would result in saving costs, time and 
patient burden as well as improve the chances for a successful trial outcome. 
This was also undertaken to bridge the underlying pathology of AD with the 
clinical presentation through a better understanding of the cognitive 
measures used to define this clinical presentation. This aim of this chapter is 
to conclude and discuss the merits and drawbacks of the research 
conducted. This chapter will draw overall conclusions, how this research adds 
new information to the field, how these analyses were restricted and 
potential future directions for this avenue of cognitive research.

Research in context

Data is always gathered in a highly controlled way within clinical trials. The 
funding levels for clinical trials allow for studies to reach more individuals 
than in conventional research projects. This gives broader context and scope 
to any findings and is normally cross-continental. Half the sample is normally 
designated to receive a new molecular entity and the other half a form of 
placebo. Whilst the placebo group is a prime candidate for broader study, 
data is always held in house within the very pharmaceutical companies who 
have heavily invested in this data. Even so, initiatives such a CPAD (Critical 
Path for Alzheimer’s Disease), pool placebo groups from these multiple 
clinical trials and are accessible to researchers. However, projects require 
company sign off and current cohorts often take a minimum of 5-10 years 
before they become accessible to the wider research community. This results 
in a lag between any research exercises and current theoretical 
understanding, which often becomes obsolete in this timeframe. The main 
cohort studied within this thesis was taken from the two largest clinical trials 
undertaken to date within AD. This broad applicability is one key reason why 
this cohort study is important and gives important findings to the field. 

Whilst this analysis benefited from broad data collection, it is also important 
to highlight that this is also a large potential source of heterogeneity. By 
having 644 clinical trial sites this inherently induces variability in the data. 
There was however, a great effort to minimise this to every extent possible, 
with standardised cognitive, clinical and imaging protocols. Study staff 
(including the author) travelled and gave regional specifics talks on suitable 
individual profiles to screen for this study. The rigorous nature of the clinical 
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trials also necessitated robust monitoring of any deviations from the set 
administration and scoring criteria. 

Nevertheless, when dealing with multiple languages, dialects and cultures, 
variance is an unavoidable part of research. In this regard the cognitive tests 
across both cohorts warrant discussion. The translations for the WMS, ADAS-
Cog and MMSE stimuli are all direct translations. This meant words were 
translated verbatim and no cultural sensitivity was applied to the stimuli. 
This was not the case with the alternate story recall, which inherently 
induces variability in the relationship between the two measure (full 
discussion can be found in Chapter 4). This lack of veracity in the 
translations for the cognitive stimuli can be argued to be one cause of the 
suboptimal variance seen in the relationship between the cognitive 
measures. This is something that is also applicable in a broader clinical 
context when conducting studies in multiple countries. Future studies should 
also look at accounting for this and exploring the invariance in greater detail. 
As shown in Chapter 3 there is broad regional variation across the battery 
of cognitive measures used for screening. 

On top of this, whilst clinical trials themselves typically provide homogenous 
broad data, there has been a near complete failure of AD clinical trials over 
the past 2 decades. This has meant a complete absence of any disease 
modifying treatment, which leaves AD as the only disease in the top 10 of 
mortality rates worldwide, without a treatment to prevent or slow its onset. 
All of which means, AD remains one of the most costly and prevalent 
diseases afflicting the world today. Importantly, the failure of clinical trials 
has been predominantly down to the absence of efficacy rather than safety 
concerns. As such, the endpoints used need further scrutiny to ensure they 
are measuring the progression of the disease accurately, as they have not 
changed for nearly three decades. These failures also point towards high 
variability of the endpoints and cohort heterogeneity. Alleviating these 
measurement issues combined with a better theoretical understanding of the 
lack of confluence between biomarker and clinical phenotypes of AD, will go 
a long way to further our understanding of AD. And can only help give new 
compounds a better chance for success meaning treatments to the right 
individuals at the right time at a greater pace.

This thesis goes some way to explaining some of this variability. For 
instance, there are different nuances between cognitive measures used for 
inclusion into AD clinical trials and diagnosis of AD. Overall, the findings from 
two distinct cohorts, comparing two distinct memory paradigms (story recall 
and verbal list learning) showed moderate correlations and with moderate 
levels of agreement between these two individually studied pairs of 
measures. Furthermore, the strength of the relationships between these 
measures all are imperfect and far from concordant enough, to allow for 
direct comparisons of “amnestic impairment” within populations across the 
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spectrum of AD. The implication of this finding is that standardisation across 
companies and research groups is badly needed. By having a broad range of 
screening scales this adds to already variable scores of cognition, when 
measuring cross-sectionally, which is nearly exclusively the case when 
testing for early AD.

On top of this with amyloid being the cornerstone of a biological diagnosis of 
AD, no matter which stage, predicting this is key to the utility of aligning 
endpoints. Alas, even with sophisticated classification approaches such as 
support vector machines, no individual measure can accurately predict 
amyloid status or load. This has been seen in prior work across screening 
and clinical trial cohorts. The work of Calvin and colleagues (2020) as well as 
ten Kate et al (2018) had a broader range of variables but were still only able 
to achieve AUCs of 0.84. Using only one invasive biomarker endpoint this 
research managed to reach AUCs of 0.73. Even when looking at novel index 
(discrepancy) measures of cognition this was not able to be improved upon. 
This shows that even in a highly homogenised cohort cognitive performance 
is highly varied within AD and struggles to marry the clinical presentation 
with the biological one within AD. As such, this poses the question are these 
endpoints really fit for purpose, as the underlying presence of amyloid within 
this classification of the disease, conclusively does not fit with the clinical 
presentation.

The future directions from this piece of work would be to have agreement 
from overarching clinical and regulatory bodies on new endpoints that mirror 
disease progression more closely and make these stalwart measures for 
research into AD. The current ones are outdated, highly variable in some 
cases and do nothing to measure underlying cognitive domains of key 
interest, specifically within early AD. These new measures should replace the 
MMSE, CDR and ADAS-Cog giving more in depth, psychometrically valid 
information on cognitive performance in those with AD. These measures 
should also be freely available to trialists and researchers alike. Furthermore, 
to improve our understanding of the disease we need to have broader cohort 
studies that follow individuals who present at memory clinics that are not 
impaired enough for trials or studies, only then will we have a broader 
understanding of cognition in AD to allow us to find earlier signs of the 
disease.

Overall findings from this research

Not all measures are created equal

Undertaking this research, a clear message came through from the prior 
literature that many common neuropsychological tests are used 
interchangeably in AD research. However, whilst most share underlying 
construct validity, measurement of cognition is messy and subtle variations 
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in test paradigms, result in greater variation in individual performance. 
Whilst much effort and research is undertaken on the initial validation 
studies for most (if not all) measures, understanding how they perform 
within current understanding of a single disease (such as AD) is broadly 
overlooked. As a result of this, the variability in cognitive endpoints have the 
possibility to mask or increase differences within study results. Results from 
this thesis speak to this across two divergent cohorts. Firstly, within a 
screening paradigm alternate forms of the same measure, studied in the 
same individuals presenting to a memory clinic, showed only moderate 
correlations (r=0.64) and poor agreement on Bland and Altman (1984) 
comparison statistics. This finding was broadly repeated in a second much 
larger cohort of amyloid positive individuals diagnosed with AD. Two different 
measures of verbal list learning (the international shopping list and ADAS-
Cog word recall) were compared within this highly homogenised population. 
The same analysis methods were employed and similar results were found. 
Agreement between the two measures was moderate and correlations again 
moderate, if not slightly poorer (r=0.55). Whilst the verbal list learning 
measures have slightly different ecological validity, the overall findings 
remain concordant. Further to this, from a statistical perspective measuring 
the same domain twice can improve reliability of the measurement, however 
if the same tool is used to measure the same construct this could potentially 
introduce problems with multicollinearity in the analysis. However, on this 
occasion different measures were used to provide indices of the same 
underlying domain. Psychometrics such as these found in Study 2 & 3, are 
widely deemed to be poor for repeated measurement and it is clear from this 
they should not be used interchangeably, but currently are. A harmonisation 
approach is badly needed. This is especially pertinent in a disease such as 
AD, whereby early detection is key and the first notable sign of the disease is 
amnestic impairment. 

Harmonisation of measures would help drug development & patient 
selection

As discussed above one way to help reduce this variability in cognitive 
endpoints would be to have agreement on the gold standard measures used 
within AD research. Harmonisation currently exists to a degree, in that the 
MMSE, CDR and ADAS-Cog have to be used for clinical trials in AD. This was 
also the founding principle of the ADCS initiative in mild to severe AD (Rosen 
et al., 1984). So, this idea is not something that doesn’t have precedent. And 
as much as the ADCS initiative followed the best methodology to find the 
best outcome, the field has moved on since then. The argument here based 
upon the research undertaken in Chapter 4, is that agreement should be 
sought over the use of a measure to use for detection of amnestic 
impairment due to AD. 
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As shown in Chapter 4, even within fundamentally similar paradigms both 
verbal list learning and paragraph story recall, have broad variability of 
performance within the same subjects. This is the case even when 
controlling for as many environmental factors as possible within clinical trial 
settings (ie. time of day, rater change, testing surroundings). The counter 
point for this variation is that this in itself may actually reflect the disease 
course of AD. However, research into preclinical AD shows that in frequent 
testing paradigms (ie. multiple short assessments within a number of 
weeks), it is actually the absence of improvement (practice effects) that is 
indicative of AD pathology (Jutten et al., 2020; Duff et al., 2014; 2017; Ihara 
et al., 2018; Galvin et al., 2005; Hassenstab et al., 2015; Oltra-Cucarella et 
al., 2018). This broad variability within both the heterogenous screening 
cohort and the homogenous trial cohort shows that no matter what the 
setting these measures should not be used and interpreted in an 
interchangeable manner. There should be a far-reaching harmonisation effort 
undertaken, whereby new or existing measures are selected for use and are 
made broadly available to researchers and clinicians alike. Only this, from a 
credible research or regulatory body will allow for this cognitive variability to 
be minimised through measure alignment. 

This measure would be suggested to be short and avoid the need for long 
batches of cognitive testing, focus on amnestic memory recall (both delayed 
and immediate components), capture real world function, premorbid ability 
better (ie NART, W-TAR) and mirror disease progression of AD over time. It 
should also have broad psychometric validity across all the key validity 
domains detailed in Chapter 1. This measure should also have a broad 
range of scoring, as not to suffer from the same ceiling and floor effects 
within early AD. This consensus needs to be drawn from an evidence-based 
roundtable of leading experts putting together the latest biomarker and 
cognitive work from the field, in order to find and/or develop from scratch the 
best cognitive measure/s for AD.

Current measures do not reflect amyloid pathology very well 

Amalgamating biomarker classifications, which are fundamental to clinical 
trials, to that of clinical presentations of AD, which are highly varied, still 
needs much work and further study. One way this could be achieved is by 
assessing screening cohorts in greater detail regardless of their cognitive 
performance. The drawback to this is that it would be incredibly costly and 
operationally challenging. Current initiatives have begun by studying 
preclinical AD individuals and biobank cohort studies, regardless of cognitive 
performance, which will hope to yield some further understanding of this 
relationship, to help bringing these classifications together. However, as with 
any cohort studies implementing new biomarkers into existing programs 
often lags behind that of clinical trials. As such, findings from cohort studies 
take longer to implement into both clinical practice and clinical trial design.
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Another critical aspect of any harmonisation effort, would be to look at the 
specific relationship between cognitive endpoints and amyloid pathology. As 
wide-ranging reviews from Mortamais and colleagues (2017) and Baker et 
al., (2017) both showed, amyloid deposition has very little relation to 
cognitive performance or decline (Cohen’s d ranging from 0.24-0.3). 
However, Study 4 showed an effect size of d=0.59 for delayed recall in 
comparing the amyloid positive and amyloid negative groups. Whilst this is a 
strong finding, caution should be urged as this is not directly comparable to 
the prior work given the homogeneity of the cohort studied within Study 4. 
The prior lack of concordance between pathology and clinical manifestation 
is argued to be primarily due to amyloid deposition building up over the 15-
20 years prior to the onset of symptoms and cognitive impairment. 
Nevertheless, some studies within those prior reviews and since, have shown 
that in relation to amyloid load and cognition, cross sectionally cognitive 
impairment is more widespread than a single domain. This is likely to be due 
to heterogenous biomarker profiles. However, the irrefutable evidence 
longitudinally is for significant early decline in episodic memory in relation to 
amyloid load. Something Study 4 also strongly reiterates. What has also 
been shown is the standard cognitive measures such as the MMSE and 
ADAS-Cog have little relationship with amyloid load and tracking the disease 
course longitudinally (Baker et al., 2017). This goes on to further support the 
case for new measures more akin to measuring the subtilties of amyloid 
deposition. Something this thesis tried to achieve with the novel discrepancy 
score using existing measures but was unable to do.

Here it is also important to further discuss the lack of confluence between 
the biological phenotype of AD and the clinical presentation. This is further 
borne out in the results from Study 4 showing the lack of utility of the clinical 
and cognitive measures to predict amyloid positivity. This showed commonly 
used measures have little to no bearing on the amyloid status of individuals. 
Despite the attraction of simplicity, phenotypic stratification systems such as 
this are not reliable predictors of disease progression or subtype. What is 
needed is to design trials aimed at those expected to respond can only be 
beneficial for all engaged in this area. Something that phenotypic 
stratification can help with but further understanding needed. Specifically, 
across the AD continuum the progressive pathology and differential rates of 
decline in ATN biomarkers (Dubois et al., 2021) argues for the necessity of a 
more nuanced approach to clinical trial design across all stages of drug 
development. To further this confluence, wider adoption of the probabilistic 
model of AD is suggested (Frisoni et al., 2022). With sporadic AD split by 
APOE genotype, non APOE-E4 sporadic AD is driven by varied genetic and 
environmental factors. As such this subgroup is thought to be the source of a 
lot of variance in trial and research data sets. As shown within the analysis 
within Study 3 & 4, APOE infers clear and concrete influence on cognition 
and whilst all studies factor this into any analyses, broader and more 
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overarching diagnostic grouping, using more biomarkers from the ATN 
classification system, would aid the marriage of biology and clinical 
presentation.

Predicting pathology from cognition requires greater insight into 
ATN, something now possible with the advent of blood-based 
biomarkers

Clearly the very nature of AD pathology is highly complex and varied. This is 
highlighted by the fact the field is still unsure of the underlying aetiology of 
the disease and its initial inception point. There is therefore a clear need for 
broader biomarkers of pathology that influence the disease course and by 
proxy cognitive and functional deficits. Whilst this is something that was 
unavailable for either cohort under investigation within this thesis, current 
efforts are beginning to yield reliable blood-based biomarkers. These are still 
having broad validation efforts undertaken; however, it is clear these new 
assays will provide clear accessible biomarkers for future research efforts 
across all avenues of AD research. This is a cheap and easy was to measure 
AD pathologies, including those across the ATN spectrum and is at odds with 
the current invasive and costly CSF & PET procedures, which have been 
available to the field for the past decade. Research has already shown that 
different analytes of phosphorylated tau to be strong indicators of both 
future decline and amyloid pathology (Mila-Aloma et al., 2022), with more 
findings likely to be brought to the fore in the coming years due to this 
proliferation.
 
Discrepancy scores are (likely) not useful at indicating presence or 
absence of amyloid but do show something different at screening

At the start of this project one core aim was to better understand a novel 
measure of discrepancy between cognitive domains and how this fits into our 
current understanding of AD. Prior work from McDonough & Popp (2020) and 
Jacobson et al (2002), had previously shown comparing cognitive domains to 
compute a discrepancy score was an early indicator of cognitive impairment 
in early AD. However, what was missing from both research efforts was a link 
to the pathology of AD. This was something that was addressed within this 
thesis. Looking at the screening cohort of nearly 10,000 individuals, the 
results showed that a discrepancy measure clearly measures a different 
aspect of cognition to that of immediate and delayed memory (the common 
indicators of early AD). The larger analysis from Study 1 also showed the 
relationship was weak but changed over the course of the progression of the 
disease when measured cross-sectionally, as staged by CDR score. This 
change with disease progression mirrors that of amnestic impairment and is 
cause for further research in other cohorts with more biomarker 
measurements available for analysis.
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This work went on to look at the potential predictive value in a discrepancy 
score in relation to amyloid positivity. The results here were a near failure of 
the model to predict groupings in over 3,000 individuals. This conclusively 
shows a discrepancy score (and other stalwart cognitive measures) cannot 
accurately predict amyloid positivity, even when grouped with a combination 
of measures and known demographic risk factors, such as APOE. At the 
inception of this thesis the holy grail was being able to predict amyloid 
positivity from cognition, alas, both from this research and others, as a field, 
we are still no closer to this. The poor classification performance using a 
discrepancy score within this research can be argued to be down to how it 
was comprised. The hypothesis was to test if it was possible to find a 
discrepancy measure accurate enough within existing cognitive measures 
that are used within every clinical trial. As such, the MMSE was used, as this 
was the measure with components indexing language and verbal ability. 

The MMSE does not accurately index verbal acuity in early AD

As part of computing a discrepancy score within this cohort a measure of 
crystallised intelligence comprised a fundamental part of this new measure. 
This was built from the 5 verbal measures that are part of the MMSE (Folstein 
et al., 1975); naming, repetition, comprehension, instruction, reading and 
had a total score of 8. As there were no other measures of verbal 
performance within the studied cohort, no comparisons could be drawn or 
alternative computed. Given that this sub-score from the MMSE produced a 
max score of 8 this severely limited the breadth of scoring on this index and 
as such hampered the comparisons inherent within the discrepancy score 
itself. For comparison the NART (Blair & Spreen, 1989) measure has a total 
item score of 61. The basic nature of these 5 component scores also allows 
for learning of these tasks if repeated more than once, as the MMSE has no 
alternate form. Whilst the MMSE was not designed with this use in mind, it 
was designed to measure language performance, something that it does in a 
far too rudimentary way. This shows that subjects, even those who are badly 
impaired, perform at ceiling in the majority of cases. As shown in the results 
from Study 1, those who are at the earlier stage of the disease have no 
trouble with the basic commands and it is therefore highly unsuitable to 
measure verbal acuity in those who do not have mild to severe dementia.

These ceiling effects are also broadly seen within the MMSE, as well as within 
the language domains. The psychometric limitations of the MMSE such as 
learning effects and large ceiling and floor scoring have been shown to vastly 
limit their diagnostic accuracy in AD (Tombaugh et al., 1992; Sperling et al., 
2012; Mitchell, 2009; Spencer et al., 2013). Both prior and current work 
argues against continued use of the MMSE, albeit brief and inexpensive, for 
use in AD trials. As this is argued to be a contributing factor to the 
inaccuracy of efficacy measurement within these trials. Furthermore, on top 
of this other negative studies may have occurred not because of a lack of 
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efficacy of the compounds, but due inappropriate subject populations 
selected based upon MMSE scores. 

The Overall Psychometric Validity Findings

As discussed at the start of this work, it is important to look at the different 
psychometric validity aspects of the cognitive measures used within these 
studies from this thesis. Chapter 3 began by examining the cross-cultural 
validity of the ISLT, MMSE, ADAS-Cog and CDR. This showed different 
cognitive profiles in the screening populations across regions on nearly all 
measures. Those individuals in western countries (North America, 
Europe/South Africa) tended to exhibit less objective memory impairment on 
the ISLT. Whereas the CDR and MMSE showed significantly less impairment 
in eastern regions of the world (Asia Pacific and Japan) but the ISLT showed 
greater impairment. This is suggested to be due to cultural differences in the 
sharing of subject impairments to clinicians and raters for the CDR which is 
more objective than the ISLT. 

Looking at the validity of the novel discrepancy score, Study 1 looked at the 
criterion and convergent validity of this as a measure in AD. Its convergent 
validity (as compared to amnestic measures) was good when looking across 
the course of AD and it was clear this reflects good criterion validity as a 
measure within AD. Where this measure falls down is on its construct 
validity. Here it was designed to measure language/crystallised ability, 
however the way this novel measure was constructed it is restricted in this 
regard due to the MMSE. Future work should look at this paradigm with a 
different measure of verbal acuity as discussed above.

Chapter 4 sought to explore the concurrent validity of amnestic memory 
measures. Study 2 & 3 showed clearly these measures lack concurrent 
validity and whilst they have convergent validity, it is moderate to poor 
based upon the Bland and Altman analysis. The scores from these two pairs 
of measures do at least have strong construct validity, however greater 
nuance in early AD could be added to them, through broader error scores to 
capture deficits in learning.

Finally, Study 4 looked to find the interpretability of these measures through 
aligning them with individuals diagnosed with biological AD. The 
interpretability of these measures still has some way to go before they 
accurately mirror the everyday function performance of someone with 
biological AD. Nevertheless, the criterion validity of the ISLT was 
demonstrated by its confluence with the amyloid positive group (d=0.59) 
showing that this measure is the most relevant to biological AD. This in line 
with prior work on amnestic impairment being fundamental to AD related 
cognitive impairment (Mortamais et al., 2017; Baker et al., 2017). 
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Restrictions on these analyses

After discussing the interpretations of the findings from this thesis it is 
important to also discuss in detail some of the drawbacks of the analyses 
undertaken. These analyses were undertaken on one large clinical trial 
cohort, of which two smaller subgroups were also studied and a smaller 
memory clinic sample. The restrictions of these analyses are primarily 
founded in the data collection process and cohort compositions. 

Whilst a large part of these analyses focused on implementing findings for 
clinical trials, this resulted in an extremely homogenised cohort. This isn’t 
necessarily a bad thing for extrapolating findings to AD clinical trials. 
However, the cohort analysed for Study 4 contained subjects who had been 
through five stages of screening procedures and were unlike a normal 
research population. This is because many comorbidities had been excluded 
over and above a normal research setting (Chapter 2 contains full details of 
all screening procedures) and as such can limit the generalisation of any 
results outside of a clinical trial setting. The main crux of this issue was that 
all individuals were already impaired with less comparative cognitive 
variability post screening compared to a general population, or one that 
would present at a memory clinic. However, this was why a second cohort 
was sought and studied, from a memory clinic to broader the applicability of 
these results. Nevertheless, given the results from this large homogenous 
cohort were aimed at aiding clinical trial design, this does not provide 
rationale for the negative findings in Study 4. However, one factor that did 
prevent wider generalisation of these findings was the lack of biomarker data 
available within either cohort. The larger screening cohort only contained 
data points on amyloid. Ideally, volumetric MRI, blood or CSF markers of p-
tau, t-tau and NFL (and other across the ATN spectrum) would have aided 
broader analysis of the cognitive endpoints and their confluence between 
clinical biological phenotypes of AD.

Further to this, the other smaller screening cohort was not followed further 
than initial investigations of memory. Results of memory screening can only 
be more broadly interpreted if a diagnosis and further investigations are 
undertaken. This should be more broadly done to better understand any 
cognitive impairment an individual is exhibiting. Due to this fact, those that 
present but don’t show significant impairment will not be followed up. This 
therefore can negatively bias a sample, although this was not the case for 
this smaller cross-sectional cohort analysis. However, in order to properly 
understand cognitive performance, both those with and without cognitive 
impairment should be studied in greater detail.  

Future directions
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Looking towards new avenues to further our understanding of these 
concepts, future work should keenly focus on the relationship between these 
cognitive measures and a broader spectrum of AD biomarkers across the 
ATN framework. As discussed, predicting amyloid dichotomy from cognitive 
measures carries little predictive accuracy. However, this was on the basis of 
a single cut point for amyloid. As current research shows measures of tau 
and neurodegeneration more closely mirror the declines seen in cognition 
(Jack et al., 2018; Dubios et al., 2021; Frisoni et al., 2022). As such, further 
research should explore these predictive models (using SVM) within the 
context of the full range of ATN groupings, not just A+ and A-.

The analyses within this thesis were in the main, cross-sectional and as such 
lack any longitudinal measurement akin to tracking AD progression, 
something which occurs over years and decades. With this in mind, further 
research and data collection should focus on the longitudinal and repeated 
measurement of discrepancy scores. This measure should comprise a better 
language measure as discussed, but should focus on broad fluid cognitive 
domains akin to this research. How this novel measure behaves over time 
will help uncover its utility as a screening measure, for which as no current 
longitudinal study has been undertaken, it is still relatively unknown. 
Including a quick and robust measure such as the NART in any future study 
or trial would be highly beneficial in this endeavour.

As discussed within the restrictions of these analyses using the smaller 
screening cohort, tracking all individuals regardless of cognitive impairment, 
is something that would further aid our understanding of these common 
cognitive measures. With this in mind an avenue for further analysis would 
be to look at a similar discrepancy score at screening with a full cohort of 
individuals (those with and without cognitive impairment) who are followed 
for over time along with biomarker assessments. This will provide greater 
details of the longitudinal performance of a discrepancy score in a screening 
population and how this relates to AD pathophysiology.

What is clear from both prior work and the studies within this thesis, is that 
AD is highly heterogeneous. Commonly studies are only run for a couple of 
years at most. This is problematic as this disease lasting decades and from 
onset of symptoms to fatality can be over 10 years. As such, the factors that 
precede a precipitous decline in cognition are still poorly understood. One 
further question to answer following on from these analyses is that, can a 
discrepancy score be indicative of decline on CDR at 1 year, 18 months or 2 
years. It is difficult to find markers of cognition that can differentiate decline 
across these short time period, so using a novel measure such as this, with 
AD biomarker stratification, has the potential to help answer this question.

Looking to the future it is important to speak to the shifting of the broader 
landscape of AD research. Blood biomarkers were not available or validated 
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when thesis started, during data collection or upon its conclusion. However, 
they have been broadly validated in research and clinical trial settings over 
the last 2 years. There is now momentum for their uptake into primary care. 
This will be a seismic shift in how AD is diagnosed and detected. This calls 
into question the utility of cognition in screening and in particular how useful 
using cognition to predict pathology. These blood tests will be quick, cheap 
and widely available to all relatively soon. However, the clinical presentation 
of AD is intrinsically linked to cognition in a way the biology is yet to be. 
Therefore, there is still much benefit to cognitive measures being used at the 
point of care. And critically they allow a fundamental understanding of 
clinical benefit due to being inherently linked to the everyday function of an 
individual. 

Final Summary

At the start of this thesis the goal was to better understand the nuances 
between cognitive measures used for inclusion into AD clinical trials and 
diagnosis of MCI. The aim was to also to utilise these existing measures in a 
new way, by using a discrepancy score between cognitive domains. This was 
sought in order to save cost, time and patient burden, with the ultimate aim 
to better clinical trial design and predict biomarker status of the underlying 
pathology of AD.

At the top of this thesis, the studies conducted also aimed to provide 
important new insights into some fundamental questions – all of which have 
been answered from the results of the studies;
– Why do cognitive measures vary so much within clinical trials and cohort 

studies? 
o Study 2 & 3 suggest this is at least in part due to the construct 

validity of these measures. Study 1 also shows that variables such 
as APOE also inducing broader variation in these measures within 
AD. Leading to the argument that the classification AD needs 
further refinement in line with the probabilistic hypothesis of AD 
(Frisoni et al., 2022).

– Why have all trials to date failed to meet their cognitive endpoints? 
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o The lack of confluence between cognitive measures and the 
biological classifications of AD, as shown in Study 4, can be argued 
to significantly contribute to this failure.

– How can you accurately diagnose Alzheimer’s Disease with cognitive 
tests?

o It is clear that the clinical presentation of typical AD must be 
diagnosed with memory measures, but as discuss above is 
something that needs harmonisation.

– Can you use existing (and commonly used) cognitive measures in a new 
way to better understand cognitive performance over the course of the 
disease

o Yes, it is clear discrepancy scores for individuals capture something 
different to that of amnestic memory, which warrants further study. 
However, it is also clear they are not able to improve the marriage 
between pathology and the clinical presentation of AD whilst using 
the language components from the MMSE. 

At the end of this thesis the research undertaken has shown plausible 
reasons for the variability in cognitive measures, that those measures used 
within cognitive trials have significant drawbacks and even when using them 
in combination and providing discrepancy scores, cognition alone (and with 
demographic factors), is not a useful predictor of amyloid status. 
Discrepancy scores have potential merit for screening purposes within early 
AD settings and in order to move this research area further forward, 
longitudinal measurement and analysis with broader AD biomarkers is a 
necessity for future study. 
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Appendix I – Current Clinical Trial Summary

The current landscape of drug development is detailed within this appendix. 
This review looks at the key areas for compound development for AD as of 
year-end 2021. The current areas of focus for potential disease modifying 
compounds are predominantly split into two main areas; monoclonal 
antibodies for amyloid beta and tau specific antibodies (Cummings et al., 
2021). There are also a large number of compounds outside to this that 
pertain to other aspects of the disease. The predominance for non ATN 
targeting compounds is within phase I & II of development. However, the 
scope of targets has greatly increased over the past 5 years, with now the 
majority of compounds not directly targeting amyloid.

Given the complete halt of all trials of compounds modulating BACE 
inhibition, the following section may seem redundant, however, as the cohort 
under investigation was from two large phase III trials of a BACE inhibitor 
(elenbecestat), the discussion of these compounds warrants discussion.

BACE Inhibitors
With the amyloid hypothesis 
(discussed in Chapter 1) 
driving both research and 
clinical development alike, 
the first class of drugs 
stemming from this 
hypothesis was the beta-site 
amyloid precursor protein 
cleaving enzyme inhibitors 
(BACEi). As shown in Figure 
A1.1, the depiction of the 
formation of Aβ plaques by 
Aβ42 deposition. Inhibiting 
the beta secretase cleavage 
at point two in Figure A1.1 
is hypothesised to rapidly decrease the amount of toxic Aβ42 deposited in the 
cortices. 

The proteolytic processing of APP (amyloid precursor protein) begins in the 
extracellular space with β-secretase cleaving APP to form sAPP β and 
CTF99/CTF89 (Chow et al., 2010). sAPPβ is then cleaved again at the plasma 
membrane by γ-secretase which produces the Aβ fragment of variable length 
and another amino acid complex known as AICD50. Beta-site cleaving 
enzyme 1 (BACE1) is the major β-secretase in the cortex (Vassar et al., 1999) 
and has been a major therapeutic target for new disease modifying 

Figure A1.1. Process for the formation of 
Amyloid Beta 42
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compounds (Cummings et al., 2018). BACE inhibition has been shown to be 
beneficial at many aspects of impairment in AD mouse models [memory 
measures, cellular level impairments & LTP] (Keskin et al., 2017), however 
there are conflicting findings within human studies of these compounds, 
most notably widespread failures, from either side effects or a lack of 
efficacy, in larger human clinical trials (Mullard, 2018).

Thus, the hypothesis around the mechanism of action for BACEi’s is that the 
inhibition of this cleaving enzyme will allow the normal processing to occur 
with APP, thus nullifying the toxic cascade of Aβ42. However, there have been 
a number of recent setbacks that challenge the validity of this hypothesis, 
with all of the BACEi compounds in development having their major phase III 
trials halted. All were stopped due to a significant adverse side effect 
profile/futility (Panza et al., 2018). To the surprise of most in the field the 
results from Verubecestat showed a significant impairment on treatment 
when compared to placebo on ADAS-Cog in the dosing cohort (Egan et al., 
2019). This compound worsened cognition to such a degree that it showed 
up at the three-month time point and was maintained throughout the dosing 
duration. Eigen and colleagues hypothesised this could be down to a number 
of reasons, but the key differences between all of the BACE compounds are 
the selectivity of BACE1 over BACE2 and amount that the primary dose 
lowered amyloid by (see Table A1.1). 

Table A1.1 Breakdown of the BACEi Compounds 

Compound Compan
y

AD 
Populatio

n
Phas

e
CSF 
Aβ Status

Cognitiv
e 

Outcome

Verubecestat
1 Merck

Mild to 
Moderate & 
Prodromal

III

-
60
%

to -
80
%

Stoppe
d for 

safety

Trend for/ 
cognitive 
worsening

Lanabecestat
2 Lilly & AZ Prodromal - 

Mild III

-
55
%

to -
75
%

Stoppe
d for 

safety

Trend for/ 
cognitive 
worsening

Atabecestat3 J&J Preclinical III

-
50
%

to -
82
%

Stoppe
d for 

safety

Trend for/ 
cognitive 
worsening
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LY32026264 Lilly Mild II

-
70
%

to -
90
%

Stoppe
d for 

safety

Trend for 
cognitive 
worsening

Elenbecestat5 Eisai & 
Biogen

Prodromal-
Mild III

-
57
%

Stoppe
d for 

futility
No data 
available

Umibecestat6 Novartis 
& Amgen Preclinical II/III

-
20
% 
to
-

90
%

Stoppe
d for 

futility
No data 
available

1. Egan et al., 2019. 2. Wessels et al., 2020. 3. Henley et al., 2019. 4. Lo et al., 2021. 5. Roberts et al., 2021. 6. 
Tariot et al., 2020.
 
One question that remains elusive to answer is the level of interaction of 
BACE2 versus BACE1 within these compounds. All of the aforementioned 
BACEi compounds have a degree of interaction with BACE2 as well as its 
primary target of BACE1. BACE2’s function is comparatively under 
researched, in the rodent brain this receptor appears in oligodendrocytes but 
also in some other astrocytes and neurons (Voytyuk et al., 2018). It has been 
shown to be fairly rudimentary in the brain but then ramps up its activity due 
to inflammation implicating some potential role in AD. Nevertheless, BACE2 
is widely considered to be irrelevant to amyloid pathogenesis or cleavage, 
due to it being expressed at significantly lower levels than BACE1 in the 
cortex (Dominguez et al., 2005; Ahmed et al., 2010). However due to the 
varied side effect profile of many of the BACEi’s in development, the 
interaction of this secondary BACE enzyme is still yet to be fully elucidated.

With there being over 40 known substrates of BACE1 one potential culprit is 
Seizure Protein 6 (SEZ6) which in rodent models has been shown to maintain 
in LTP and helps dendritic spine density (Kuhn et al., 2012). This substrate is 
thought to be a leading candidate for these cognitive impairments shown in 
BACEi’s due to BACE1 knockout mice being impaired in both LTP and spine 
density. It is hypothesised that in humans these are manifested as cognitive 
deficits or other neuropsychological symptoms (Filser et al., 2015; Vassar, 
2019; Zhu et al., 2019). Another substrate that has been suggested to be 
interacting with this process is a close homolog of L1, CHL1. It has been 
shown to guide axons to their targets. Robert Vassar’s group (Ou-Yang et al., 
2018) recently showed that knocked out BACE1 in adult mice resulted in 
stunted growth of mossy fiber axons in the hippocampi manifesting in 
impaired LTP function. The last of three main hypothesised substrates is 
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neuregulin which helps maintain myelination and muscle spindles; its 
absence during development causes seizures and could play a role in the 
cognitive deficits seen in humans.

Overall, the BACEi field is still in a state of unknowns. As the recent failures 
showing a class effect at the current dosing levels, with these compounds 
having deleterious cognitive performance in humans. All compounds in this 
class have been discontinued from any further development (much like the 
gamma-secretase inhibitors). However, there is some suggestions lower 
levels may not induce these transient deleterious effects on cognition whilst 
maintaining reductions in amyloid. Nevertheless, given the outlay involved 
and direction of travel of the field, any restarting of development seems 
highly unlikely, for now.

Immunotherapeutics targeting Aβ
The most expounded anti-Ab approach is that of immunotherapy, 
encompassing both active vaccines that stimulate an individual’s innate 
immune system to produce its own antibodies and passive immunisation 
through the administration of exogenous antibodies (mAbs). This pillar of 
development is a class of compounds that is routinely utilised in other areas 
of drug development and is currently showing the most promising trial 
results for disease modification in AD. This class of compounds acts directly 
on the different isoforms of Aβ, whether that be oligomers, plaques or fibrils 
or a combination of these, inducing essential phagocytosis of these protein 
formations through microglia or complement activation (Lannfelt et al., 2021; 
Prins & Scheltens, 2013). This is hypothesised to arrest the amyloid cascade 
and thus prevent further neurodegenerative, cognitive and functional decline 
by removing these epitopes.

Table A1.2. Breakdown of the current Aβ antibodies in development at 
Phase III

Compound Compan
y

AD 
Populati

on
Epitope

Aβ 
Conformati

ons 
Recognise

d°

Status

Crenezumab Roche 
Genetech

Prodroma
l AA13-24 M, O, F Discontinued 

Ganteneruma
b Roche Prodroma

l to Mild
AA3-12, 
AA18-27

M (weak), O, 
F

Ongoing in 
early AD – 
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prior failed 
trials

Solanezumab Eli Lilly Prodroma
l to Mild AA16-26 M Discontinued

Aducanumab
*

Biogen/ 
Eisai

Prodroma
l AA3-6 O, F Approved, 

Trials halted 
Bapinenuzim

ab Pfizer Mild to 
Moderate AA1-5 M, O ,F Discontinued

Donanemab* Lilly Prodroma
l

Pyrogluta
mated O,F Ongoing

Lecanemab/ 
BAN2401*

Eisai/ 
Biogen

Prodroma
l 

Protofibril
s O,F Ongoing

Trial data gathered from clinicaltrials.gov. *Positive results from prior phase 
I/II study. Confirmations targeted gathered from trial data & Lannfelt et al., 
2022. °M=Monomer O=Oligomer and F=Fibril

The majority of these compounds have failed at phase III. With the inception 
of trials for mAbs the population recruited was one much later in the disease 
course and as such already had widespread disease pathology. Unlike some 
of the early BACEi trials, mAb phase III trials all included amyloid positivity 
assessments in order to ensure target engagement. As with the rest of the 
field of AD there was a consensus that trials needed to target subjects earlier 
in the disease course in order to effectively interact with the disease 
pathology. Gantenerumab is one compound has consistently failed at phase 
III and has some preliminary phase II data that showed no treatment effects 
on primary or secondary outcomes at either dose suggesting a lack of 
efficacy. However, Roche have pushed forward with this compound by 
upping the dosage for the treatment arm at phase III as they saw enough 
target engagement to warrant continued development (Cummings et al., 
2021).  

The two most promising compounds currently in development have both 
shown efficacy in early phase trials. Lecanemab and Donanemab are being 
developed by Eisai and Lilly respectively. Donanemab targets a specific 
confirmation of amyloid called pyroglutamated amyloid beta. In trials 
Donanemab has shown significant clearance of amyloid plaques, which has 
ultimately led to a cessation of dosing after subjects become amyloid 
negative on scans (Alawode et al., 2021). However, this antibody targets a 
specific type of amyloid only found in cerebral amyloid plaques (DeMattos et 
al., 2012) and not found in any biofluids (CSF or plasma). This suggests that 
whilst providing robust and quick plaque clearance, it does not target the 
smaller (still pathological) confirmations of amyloid that cause 
degeneration/cascade effects. Given the slow build-up of amyloid (~1-2% per 
year), once cleared plaques will still continue to form, just at a slow rate, akin 
to early in the disease process. Therefore, whilst disease modifying, it seems 
to remove “gravestones” of the pathological process rather than treating the 
underlying reasons for amyloid build up.
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Lecanemab is also in phase III trials with previous data also indicating a 
positive treatment effect on the disease course. Over the 18-month phase II 
trial fibrillar amyloid was reduced in all treatment groups compared to 
placebo by up to 93% in the highest dose group (Swanson et al., 2018; 
2021). In this group cognitive decline was also reduced by 47% on ADAS-Cog 
and by 30% on the ADCOMS composite measure. With over 850 subjects 
with MCI or mild AD undergoing the trial this is the largest one to feature 
both significant amyloid reduction and a downstream benefit on cognition 
and function. Nevertheless, the analysis was complicated due to an adaptive 
randomisation design within the study and due to the EMA halting 
stratification of ApoE carriers to the highest dosing group due to side effect 
concerns. Further analysis yielded more details on progression rates by 
genotype which still strongly supported the treatment effect even with the 
uneven stratification groupings. A phase III trial is now underway and the 
possibility of a disease modifying treatment is something that could be closer 
to approval. On top of this further unblinded data from the open label 
extension (OLE) study from the phase II trial, has shown continued and 
sustained disease modifying trajectories (Irizarry et al., 2022). There was an 
average of a two-year gap period, between the end of the phase II trial and 
the start of the OLE. Across both placebo and active arms decline occurred 
across these two years, however the treatment difference between the two 
groups was maintained. This is what would be expected from a disease 
modifying therapy. In line with the Donanemab data and dosing regimen, 
this is also being explored within this OLE as data has shown that whilst 
plaque levels are fairly stable across this two-year gap, fluid plasma markers 
of amyloid and tau still increase significantly, which is argued to warrant 
continued treatment with Lecanemab. This is primarily due to Lecanemab 
targeting protofibrils and smaller conformation of amyloid beta, on top of 
amyloid plaques.

This brings us to the discussion of the only approved monoclonal antibody to 
date, Aducanumab. This is currently only approved in the US after the both 
phase III trials of the compound were halted by Biogen in 2019. All other 
regulatory authorities have provided a negative decision on licencing the 
compound in their region. This is primarily due to an inability for Biogen to 
demonstrate a consistent meaningful efficacy profile of the compound. Their 
two phase III trials had divergent results upon final analysis of the trial data 
(Budd-Haeberlein., 2022; 2020; Knopman et al., 2021). With one trending 
positive and the other showing no signal of treatment effect at all. The post-
hoc analysis showed that given enough of the drug subjects taking 
aducanumab has a statistically significant slowing of decline on the CDR-SB 
compared to placebo. It is widely viewed by the field and specifically 
prescribing physicians in the US that these trials did not satisfactorily provide 
evidence the aducanumab ameliorates cognitive decline due to AD. This 
controversial approval has been discussed at length by all sides and full 
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discussions are not warranted here but can be found (Knopman et al., 2021; 
Liu & Howard, 2021; Dunn et al 2021; Alexander et al., 2021).

The prior trial data showed in an analysis of the phase I trial, dose dependant 
reductions in PET SUVR for brain amyloid load and further to this whilst not 
powered for efficacy on the cognitive endpoints the analysis showed a dose 
dependant slowing at 1 year in MMSE and CDR (Sevigny et al., 2016). These 
results support the amyloid hypothesis and the last 20 years of drug 
development and a lot of hope has been placed on achieving a positive read 
out at phase III for this compound. However, as part of ongoing monitoring 
Biogen have added another 20% to their placebo group due to “unexpected 
variation” in their study population which has somewhat quelled the 
excitement for the results. The trials of Aducanumab have utilised the RBANS 
as a key efficacy endpoint as well as the MMSE, CDR and ADAS-Cog, all of 
which are discussed in detail later. The positive direction of results from the 
early phase trials of Aducanumab also encourages further trials to continue 
of Gantenerumab, due to its similar epitope positional engagement (Lasser 
et al., 2015). 

However, there have been two major issues for this immunotherapeutic 
approach in AD, one being the size of the molecules, which have resulted in 
some compounds having a distinct lack of brain penetration and needing an 
increase in the amount of the compound needed (Lemere & Masliah, 2013). 
And secondly a far more surprising and major issue of ARIA (amyloid related 
imaging abnormalities) [ARIA-E & ARIA-H] (Sperling et al., 2011; Prins & 
Shceltens, 2013; van Dyck, 2018). The size of the molecules is something 
that does not become an issue in other areas of the body but with low levels 
of antibodies traversing the blood brain barrier (BBB), penetration is argued 
to not be a necessity to induce desired target engagement (van Dyck, 2018). 
Novel attempts to overcome this hurdle have been mixed with targets 
including receptor targeting on the BBB to induce active transportation of 
mAbs through to the CNS, delivering genes that encode the mAbs and use of 
ultrasound to widen the BBB (Montoliu-Gaya & Villegas, 2016; Jordao et al., 
2013; 2010). However, none of these techniques have been implemented in 
clinical trials as the target engagement of these compounds at higher doses 
has been efficacious.

Nevertheless, with higher dosing comes another difficulty, ARIA. ARIA is split 
into two categories of disturbances, ARIA-E standing for vasogenic edema 
and ARIA-H for microhaemorrhage. Most commonly with mAbs being found 
to have subjects who develop ARIA-E at the beginning of treatment (Sperling 
et al., 2011). These MRI signal alterations on the FLAIR (fluid attenuation 
inversion recovery) sequence have been seen across most trials of Aβ 
antibodies (van Dyck, 2018) and profess as large areas of inverted colour on 
these scans. They are occasionally accompanied by headaches/migraines 
and is predominantly ARIA-E or ARIA-H. ARIA-E has been found to be strongly 
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associated with compound dose as well as ApoE status, however in 
approximately 78% of cases, it is asymptomatic and self-limiting (Sperling et 
al., 2012; Salloway et al., 2014). In previous trials occurrence of ARIA have 
resulted in a cessation of treatment but as the field has developed the wider 
understanding of this phenomenon regulators are taking a more lenient 
approach and this may now not require temporary suspension of treatment 
as any serious complications are extremely rare and are balanced against 
the consequences of untreated AD. Previous trials have come up against this 
(Bapinenuzimab and Solanezumab), which limited maximum tolerated doses 
and has been argued to have impacted the study outcome, whilst more 
recent trials with the same frequencies of ARIA occurrences have been 
tolerated at higher doses with similar isotope engagement and 
pharmacology (Aducanumab) (van Dyck, 2018).

Overall, this class of compound has shown the most promising results with 
two compounds currently showing disease modifying efficacy as well as 
significant improvements and trends to these in cognition and functional 
measures (Swanson et al, 2021; Sevigny et al., 2016). The vast number of 
previous failures tend to not suggest the wrong target for disease 
modification but for a lack of efficacy due to low dose, lack of brain 
penetration and poor sensitivity of the endpoints employed. This coupled 
with a greater understanding of disease progression and earlier disease 
course engagement has led to better designed trials that have yielded some 
promising signs of clinical benefit even when not powered to do so. Only 
once the Lecanemab and Donanemab studies have been fully completed will 
the immunotherapeutic approach for targeting Aβ be fully understood. 

Tau Therapeutics: Modulation, Stabilisation & Immunotherapy
With the ever increasing number of failures in the quest for the amelioration 
of amyloid, some companies have shifted their pipelines to target the 
younger brother of AD pathogenesis, tau. Tauopathies are present in many 
disorders however, in AD the presence of tau tangles are one of the key 
hallmarks of the disease and its progression (Grundke-Iqbal et al., 1986; Jack 
et al., 2018). As shown in the Jack graphs (Jack et al., 2010; 2013), tau 
increases at an exponential rate in AD, but in this model, it does not reach its 
maximum impairment at the same time as a subject transitions into MCI, 
thus giving a clinical presentation of symptoms prior to reaching its 
impairment saturation point. Coupled with the disappointing results of 
amyloid targeting therapies, this is one of the reasons therapies targeting 
this abnormality have begun to reach clinical development. 

Currently three approaches to tau amelioration are being trialled in patients; 
phosphorylation modulation, microtubule stabilisation and tau 
immunotherapy (Medina, 2018). Firstly, the compounds targeting tau 
phosphorylation modulation are based upon the relationship between 
phosphorylated tau and disease pathology in AD and as such, a number of 
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protein kinase inhibitors have been considered as potentially efficacious 
therapeutic agents (Wang et al., 2007; Hanger et al., 2009; Medina & Avila, 
2015). However, as kinases are abundant both intra and inter-cellularly, 
specificity and toxicity concerns are prominent and highly challenging for 
developers. Tideglusib, a GSK-3β inhibitor (one target for this modulation 
hypothesis), is an approved compound that has shown efficacy in preclinical 
studies (Sereno et al., 2009) but has failed to find efficacy in human clinical 
trials (Del Ser et al., 2013). Another target of this hypothesis is a tyrosine 
kinase, Fyn, as this also interacts with the amyloid signalling pathway 
(Nygaard et al., 2015). 

As one of the key properties of tau is its stabilisation of microtubules, as the 
protein becomes misfolded and phosphorylated, one hypothesis is that the 
microtubules come apart causing axonal transport defects and synaptic 
dysfunction (Li & Gotz, 2017). It stands to reason then that compounds that 
increase the stabilisation of these microtubules may show promise in 
effecting tau mediated dysfunction. To this degree a number of small 
molecules have gone into clinical development, however, all of the known 
compounds have failed to meet any primary or secondary endpoints in MCI 
and AD populations and have also shown negative side effect profiles 
(Medina, 2018).  To note, methylene blue (TauRX) and its derivatives have 
also received attention for their trials in AD, with the trial sponsors 
suggesting potential efficacy in tau disease modification by arresting tau 
aggregation (Wilcock et al., 2018). However due to a lack of efficacy in all 
trials with this and similar compounds (Gauthier et al., 2016; Feldman et al., 
2016) as well as its publicised pleiotropic effects (Bakota & Brandt, 2016), it 
is not considered as a tau-based therapy within this review. 

The main emphasis of tau therapeutics however, much like Aβ, is 
immunotherapy. Hyperphosphorylation has widely been shown to be the pre-
eminent factor in inducing aggregation of tau tangles (Iqbal et al., 2005; 
Alonso et al., 1996), many of the compounds described below focus on 
domains rather than any specific phospho-epitopes with many showing 
positive results in transgenic animal models (Chai et al., 2011; Yanamandra 
et al., 2013; Sankaranarayanan et al 2015). This hyperphosphorylation has 
also been shown to induce prion like behaviour (Hu et al., 2017; Dai et al., 
2018) as normal tau molecules can be sequestered by hyperphosphorylated 
tau into aggregates (Alonso et al., 1996). Nevertheless, during the process 
from a soluble protein into insoluble aggregates and deposits, tau also 
undergoes numerous modifications outside phosphorylation, all of which 
makes it arguably a more challenging target than Aβ.

Table A1.3. Current Tau Antibodies In Clinical Development
Tau 
Epitope

Current 
Stage

Company Status
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ACI-35 P-
Ser396,404

Phase I AC 
Immune/J&J

On hold

Lu AF87908 Unknown Phase II Lundbeck Ongoing
Tilavonemab Tau25–30 Phase II AbbVie Ongoing
Zagotenemab 7–9, 312–

342
Phase II Eli Lilly Ongoing

JNJ-63733657 Middle 
region

Phase II J&J Ongoing

BIIB076 Unknown Phase I Biogen/Eisai Ongoing
E2814 Mid-domain Phase I Eisai Ongoing
Bepranemab 235–246 Phase II UCB Ongoing

Data adapted from Cummings et al (2021) & Medina (2018).

As shown in the table, all of these compounds are currently undergoing 
clinical trials in the very earliest stages and very little is known about their 
efficacy in human subjects. As such a number of key questions are still to be 
answered, with it primarily unknown which tau species will produce the most 
efficacious results when targeted and for the majority of these compounds 
the safety profiles are also still relatively unknown as they are still in the 
infancy of clinical development.
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Appendix II – Pathological Amyloid Biology, 
Composition & Downstream Processes

Amyloid Composition
Aβ42 is the most common protein composition found within the brains of 
those with AD. However, the length of the protein chain can be much longer, 
with the increase in length, leading to greater increases in its self-
aggregation (Kim et al., 2007). Typically, in AD due to the cleavage sites on 
APP, this peptide is formed of 42 amino acids and at this length is thought to 
be the most toxic due to its abundance in the pathology of sporadic AD 
(Haass & Selkoe, 2007; Benilova et al., 2012). Consequently, understanding 
the mechanisms that circumscribe Aβ length is highly pertinent for both the 
fundamental understanding of the disease process and critically for the 
advancement of efficacious disease modifying strategies for AD. Looking 
within non demented controls Haass and Selkoe showed that 50% of the Aβ 
fragment ends at amino acid 40 (Aβ40), 16% at amino acid 38 (Aβ38) and 10% 
is Aβ42.

The length of the Aβ fragment is dependent upon the position of the two 
sequential cleavages along the amyloidogenic proteolytic pathway, both of 
which have been shown to be imprecise (Kummer & Heneka, 2014). This is 
argued to be due to the APP isoform being present at several lengths ranging 
from 695 (the most abundant) to 770 amino acids and with the β-secretase 
(BACE1) step cleaving APP at a minimum of two positions, the γ-secretase 
then generates a variety of different Aβ fragments from 34 to 50 amino acids 
by its cleavage of sAPPβ. This process is not fully understood but the most 
common final cleaving positions are 38, 40 and 42, which is the last stage of 
the stepwise three stage endo-proteolysis that occurs within the trans-
membrane domain (Takami et al., 2009; Qi-Takahara et al., 2005). One 
suggestion for this toxic aggregation in AD at increased lengths is due to the 
destabilization and decrease in productivity of γ-secretase due to PSEN 
mutations (Chavez-Guiterrez et al., 2012; Fernandez et al., 2014). The 
reduction in processivity amounts to the number of cuts made by γ-secretase 
decreasing and thus shifting the Aβ toward longer and more amyloidogenic 
peptides due to these PSEN destabilisations (Szaruga et al., 2017). PSEN1/2 
are the catalytic subunits of distinct γ-secretase intra-membrane protease 
complexes (De Strooper et al., 1998; Wolfe et al 1999) and it is these 
proteases that have been shown to have a causative role within both, in vitro 
and murine models, on APP cleavage that mimics the pathogenic process of 
autosomal dominant AD (Szaruga et al., 2015). However, whilst there is 
strong evidence for this relationship within animal models there are still a 
number of unknown questions around this pathogenic process in humans, for 
example it is still not known what drives the sequential cleavage of APP, or 
how clinical mutations in PSEN lead to this release of longer Aβ peptides and 
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hence there is still some debate around the pathogenic role of PSEN in 
human AD (Veugelen et al., 2017).  

Plaques, the large clumps of Aβ clearly visible in post mortem brain tissue, 
are the final stop on the pathogenesis and aggregation pathway of Aβ42. As 
such these large aggregates were widely thought of as the key components 
that drive the cascade of neuropathology (Hardy & Higgins, 1992). However, 
improvements within in vivo and in vitro studies have allowed for a more 
precise insights to the behaviour of Aβ within models of AD, showing clear 
differences in Aβ40 fibrils and Aβ42 fibrils that mimic human AD pathogenesis 
(Petkova et al., 2002; Schmidt et al.,2009; Kirchnser et al., 1986; Sikorski et 
al., 2003; Saito et al., 2014). Notably a study by Yoshiike and colleagues 
(2003) found the most toxic forms of Aβ42 aggregates to be formed at the 
initial stage of fibrilliogenesis with consistent findings also specifically 
showing Aβ oligomers to have the most potent synaptotoxcity and 
neurotoxicity when compared to plaques in adult rodents (Shankar et al., 
2008). 

The strongest quantitative way to measure this cortical damage by AD 
pathogenesis has long been recognised as decreased numbers of synapses 
(Selkoe & Hardy, 2016). This has been seen in laboratory studies to be driven 
by Aβ oligomers which impairs both synaptic structure (dendritic spines) and 
synaptic function (LTP). These oligomers are considered to be highly toxic 
yet soluble and have been shown to dose dependently decrease synaptic 
function in healthy adult rats resulting in impaired memory of learned 
behaviours (Shankar et al., 2008). 

The toxicity of Aβ42 aggregates are also equated to the ratio of Aβ42: Aβ40 
peptides (Pauwels et al., 2012). In normal controls the ratio is approximately 
1:9 however increased Aβ42: Aβ40 ratio (1:10) is seen to correspond to more 
aggressive forms of sporadic AD and alter synaptic activity, neuronal viability 
and memory formation in murine models (Citron et al., 1997; Mann et al., 
1996; Wang et al., 2006; Duff et al., 1996; Scheuner et al., 1996). Subtle 
shifts such as these in this ratio have also been shown to dramatically 
influence the formation of neurotoxic oligomers (Kuperstein et al.,2010; 
Yoshiike at al., 2002). Both Aβ42 and Aβ40 have analogous chemical natures 
however their structural and biological properties seem to be significantly 
heterogeneous, with Aβ42 being shown to be highly fibrillogeneic and more 
prone to neurotoxic aggregations than the shorter Aβ40 (Kuperstein et al., 
2010; Jarrett et al., 1993; Bitan et al., 2003; Chen & Glabe, 2006). Whilst 
preliminary evidence has seemed to show the effect Aβ42 and Aβ40 have on 
each others aggregation rates, there has been some evidence to suggest 
that Aβ40 formation actually inhibits the aggregation of Aβ42 (Wang et al., 
2006; Yoshiike et al., 2002; Synder et al., 1994; Frost et al., 2003; Jan et al., 
2008; Kim et al., 2007; Yan & Wang, 2007). As suggested earlier with the 
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alterations in processivity of γ-secretase by PSEN’s this increased ratio is 
modelled to be a direct result of this alteration in homeostatic proteolysis 
(Selkoe & Hardy, 2016).

Overall, evidence seems to suggest that but while not conclusively, Aβ40 has 
a protective effect against the formation of Aβ42 neurotoxic aggregates in 
humans. With the oligomeric forms of Aβ42 also being shown to be the key 
components of this neurotoxicity rather than the larger more visible plaques. 
Understanding this biological basis and pathogenesis is critical within drug 
development as the compounds currently under development have a range 
of interactions which are not ubiquitous or pervasive in nature and are highly 
specific to different formations of Aβ. In order to understand why some 
therapeutics are ineffective, the molecular biology is key to understand 
before looking for more fundamental, cognitive or methodological defects. 
Nevertheless, it is only until these hypotheses are consummately engaged 
by mechanistic altering compounds in humans that the in vivo and in vitro 
theories can be thoroughly tested. As whilst these mechanistic alterations 
hypothesised can explain the cascade of pathology from a genetics and 
biological basis, many more factors interact with the disease course within 
heterogeneous real-world populations and it is only after a significant 
amyloidogenic build up that crucial cognitive and clinical deficits occur.      

Immune response & TREM2
A secondary effect of these senile plaques is that they are thought to induce 
an inflammatory response from the brain’s innate immune system (McGeer 
et al., 1989). This cascade of pathology continues with the inflammatory 
response to these plaques being shown to be the step between plaque 
accumulation and tangles pathology (Felsky ey al., 2019). At this stage of 
pathology, the brain’s instinctive response to plaques is primarily driven by 
the microglia. Many researchers currently argue that the development of AD 
is primarily due to this failed, and/or impaired, clearance mechanisms of 
toxic Aβ species.

Recent studies have shown the effects that key risk alterations to this 
system can have, both on plaque formation and clearance (Jones, 2010). 
Three genes have been prominently researched in this regard and found to 
be risk factors implicated in alterations in Aβ deposition. These have 
emerged from numerous GWAS studies and subsequent animal work as 
primary influences to microglia response to Aβ (Selkoe & Hardy, 2016). 
Complement Receptor 1 (CR1) has been shown to inhibit microglial 
activation when blocked and also shown to proliferate microglial 
phagocytosis (Lambert et al., 2009; Crehan et al., 2013). Secondly is CD33 
who’s inactivation in primary microglia potentiates microglial uptake of Aβ 
(Bertram et al., 2008; Griciuc et al., 2013). However, the most prominent of 
these three is TREM2, a triggering receptor found primarily in microglia and 
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macrophages. This has been shown to be responsible for the sustaining of Aβ 
phagocytosis by microglia (Wang et al., 2015). All three of these genetically 
implicated microglial proteins undergo increased expression during Aβ 
plaque formation (Griciuc et al., 2013; Wang et al., 2015; Matarin et al., 
2015) with CSF levels of TREM2 tracking with Aβ plaque load suggesting it 
may prove a useful biomarker of this plaque load (Suarez-Calvet et al., 
2016). 

TREM2 promotes microglia to induce phagocytosis of apoptotic neurons and 
other neuronal debris (Takahashi et al., 2005, 2007; Hamerman et al., 2006; 
Turnbull et al., 2006; Neumann & Takahashi, 2007; Hsieh et al., 2009; 
N’Diaye et al., 2009; Ito & Hamerman, 2012; Hickman & El Khoury, 2013; 
Jiang et al., 2014). Due to apoptotic neurons, such as those affected by Aβ, 
expressing a specific ligand for TREM2, reductions in levels of TREM2 could 
lead to reduced interaction with this specific ligand and thereby attenuating 
the signal for phagocytosis (Lue et al., 2015). This suggests TREM2’s intrinsic 
nature to this homeostatic process. However, when this has been studied 
within the context of AD the evidence is less clear. The upregulation in a 
subset of microglia within amyloid plaques in mice, suggests that this known 
immunoregulatory function is compromised during plaque development 
(Guerreiro et al., 2013). One hypothesis of why this increase in function leads 
to a lack of microglia activation is currently thought to be primarily due to 
the extremely rare R47H mutation of TREM2 (Selkoe & Hardy, 2016). This is 
the most studied TREM2 mutation which has been shown to impair TREM2’s 
function in relation to a response to Aβ formations in vivo (Song et al., 2018). 
It is possible that, although the microglial response to Aβ occurs very early in 
the progression of AD in these animal and in-vitro models, compared to that 
of the human form of AD, the Aβ accumulation itself may require much 
longer to be homologous with the human form of AD (Colonna & Wang, 
2016). Furthermore, the incongruities in the effects of TREM2 paucity on Aβ 
accumulation may be in part due to the varied time points of the analyses 
indicating methodological refinement is needed for consistent analysis. 

Cleavage of TREM2 by ADAM10 or ADAM17 has been shown to produce a 
soluble TREM2 (sTREM2) protein fragment (Ma et al., 2016; Begum et al., 
2004; Thornton et al., 2017; Schlepckow et al., 2017; Jin et al., 2014; 
Celarain et al., 2016). This has shown to be elevated in the CSF of subjects 
with AD (Suarez-Calvet et al., 2016a; Heslegrave et al., 2016; Piccio et al., 
2016), but the evidence is somewhat conflicting (Kleinberger et al., 2014; 
Henjum et al., 2016) as such the relationship between elevated sTREM2 and 
markers of cortical inflammation within AD is currently unclear. In a recent 
study by Bekris and colleagues (2018) a consistent association of peripheral 
or central markers of inflammation with CSF sTREM2 levels was not found. 
This suggests a limited impact of general inflammation on sTREM2 levels. 
However, it has been posited that sTREM2 actually promotes microglial 
survival and stimulates increases in production of innate immunity factors 
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(Zhong et al., 2017). Yet whilst CSF sTREM2 levels have been shown to be 
influenced by age (Suarez-Calvet et al., 2016), which may underpin 
longitudinal analysis of this fragment, the function of sTREM2 is still unclear 
and further research is needed to probe these mechanisms further. 

Nevertheless, in two different mouse models, data on showing TREM2 
promotes a broad array of microglial functions in response to Aβ deposition, 
not just phagocytosis; was analysed at 3, 4 and 8 months (Ulrich et al., 2014; 
Jay et al., 2015; Wang et al., 2015 [respectively]). A time-course analysis of 
Aβ accumulation in relation to these models is needed to clarify these 
discrepancies. Also in inflammatory conditions, it is common for microglia-
like cells circulating in the blood to generate monocytes that cross the blood–
brain barrier (BBB) and act like cortical microglia. It is therefore unclear 
whether the Aβ-reactive microgliosis that is observed, involves cells that are 
derived from cortical microglia or infiltrating monocytes. These studies 
indicated that the blood monocytes express TREM2 and cluster around Aβ 
deposits, but only after a greater length of time. However, these monocytes 
fail to modify Aβ deposits, despite adopting characteristics of cortical 
microglia (Varvel et al., 2015; Prokop et al., 2015) showing peripheral 
monocytes primarily are unable to become fully functional microglia or may 
require a longer process of maturation. All studies showed the pathological 
changes primarily occurred in the hippocampus suggesting a regional role of 
TREM2 that should be further investigated that is also concurrent with the 
earliest stages of pathology. Furthermore, in these quoted studies, Aβ 
accumulation was examined in which the mutations targeted different 
regions of the TREM2 gene, therefore it is possible that the discrepancies 
may be related to as-yet-undefined disruptions of the TREM locus 
engendered during targeting, which may affect the expression of other TREM 
family members that are also involved in AD. 

These findings indicate that TREM2 promotes a broad array of microglial 
functions in response to Aβ deposition, rather than only phagocytosis. 
Although the results from all of the mouse studies described above 
demonstrated the importance of TREM2 in microgliosis, their findings on the 
effect of TREM2 deficiency on Aβ accumulation were contradictory, which led 
to disparate interpretations of the mechanisms through which TREM2 
deficiency affects Aβ-reactive microgliosis. Thus, although there is a 
consensus that TREM2 is required for microgliosis, the origin of the microglia 
surrounding Aβ plaques and their effects on Aβ 
accumulation remains indistinct (Tanzi, 2015; Colonna & Wang, 2016). 
However, current research indicates that whilst showing TREM2 plays a role 
in AD pathology, whether this is detrimental or a beneficial one still remains 
wholly unclear, with the further aforementioned research directions needed 
to better understand this facet within AD and to uncover potential 
therapeutic targets (Deming et al., 2018; Rauchmann et al., 2019).
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Appendix III – R Code for all studies
Study 1

library(readxl)
E2609_G000_301_COG_AMYLOID_CSF_PET_WCT_20191223_1 <- 
read_excel("~/Documents/PhD/Eisai 
Data/E2609_G000_301_COG_AMYLOID_CSF_PET_WCT_20191223_1.xls")
View(E2609_G000_301_COG_AMYLOID_CSF_PET_WCT_20191223_1)

library(readxl)
DSData <- read_excel("DSData.xls")
View(DSData)

install.packages("tidyr")

options(digits=5)

getwd()
setwd("~/Documents/PhD/R/")
#Remove rescreens
library(readxl)
DSData <- read_excel("~/Documents/PhD/R/Discrepancy 
Scores/DSData.xls")
dsnors <- DSData[is.na( DSData$PREVSCRN | DSData$PRVSCRN1 | 
DSData$PRVSCRN2), ]

#Find any outliers
tblDET <- with(dsnors, table(CBDETZ))
barplot(tblDET)
tblIDE <- with(dsnors, table(CBIDEZ))
barplot(tblIDE)
tblOBM <- with(dsnors, table(CBOBMZ))
barplot(tblOBM)
tblOCL <- with(dsnors, table(CBOCLZ))
barplot(tblOCL)
tblMMSETOTS <- with(dsnors, table(MMSETOTS))
barplot(tblMMSETOTS)

boxplot(dsnors$CBDETZ, dsnors$CBIDEZ, dsnors$CBOBMZ, dsnors$CBOCLZ,
  names=c("Detection","Identification", "One Back","One Card Learning"),
  ylab="z-score")

stat.desc(dsnors$CBDETZ)
stat.desc(dsnors$CBIDEZ)
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stat.desc(dsnors$CBOBMZ)
stat.desc(dsnors$CBOCLZ)

#subset dataset by CBB values  `
dsnors <- DSData[is.na( DSData$PREVSCRN | DSData$PRVSCRN1 | 
DSData$PRVSCRN2), ]
dsn1<-subset(dsnors, MMSETOTS >(17))
ds1 <-subset(dsnors,CBDETZ >(-6.077))
ds2 <-subset(ds1,CBIDEZ >(-7.607))
ds3 <-subset(ds2,CBOBMZ >(-6.231))
ds4 <-subset(ds3,CBOCLZ >(-4.162))
dsnors1 <-subset(ds4,MMSETOTS >(17))

#compute cyrstallised composite
dsnors1 <- mutate(dsnors1, FComp = (CBDETZ + CBIDEZ + CBOBMZ + 
CBOCLZ)/4)

#compute fluid composite (MMSE Language Domain #6,7,8,9,10)
dsnors1 <- mutate(dsnors1, CComp = MMSE06S + MMSE07S + MMSE08S + 
MMSE09S + MMSE10S)

#Remove NAs from dataset for CComp & FComp
dsnors2 <- subset(dsnors1, !is.na(CComp))
dsnors3 <- subset(dsnors2, !is.na(FComp))

#CComp Z-Score
summary(dsnors3$CComp)
stat.desc(dsnors3$CComp)
dsnors30 <- mutate(dsnors3, CCompZ = (CComp-7.55)/6.257920e-01 
(digits=3))

#compute discrepancy score
dsnors3 <- mutate(dsnors3, DS = FComp - CCompZ)

#descriptive stats for DS
stat.desc(dsnors3$DS)
tblDS <- with(dsnors3, table(DS))
barplot(tblDS)

#Regional analysis of cognitive measures
dsnors3 <-
  dsnors3 %>%
  mutate(
    Region = case_when(
      COUNTRYC == "United States of America" ~ 1,
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      COUNTRYC == "Canada" ~ 1,
      COUNTRYC == "United Kingdom of Great Britain and Northern Ireland" ~ 
2,
      COUNTRYC == "Spain" ~ 2,
      COUNTRYC == "France" ~ 2,
      COUNTRYC == "Germany" ~ 2,
      COUNTRYC == "Croatia" ~ 2,
      COUNTRYC == "Denmark" ~ 2,
      COUNTRYC == "Poland" ~ 2,
      COUNTRYC == "Czechia" ~ 2,
      COUNTRYC == "Slovakia" ~ 2,
      COUNTRYC == "Austria" ~ 2,
      COUNTRYC == "Italy" ~ 2,
      COUNTRYC == "Portugal" ~ 2,
      COUNTRYC == "South Africa" ~ 2,
      COUNTRYC == "Bulgaria" ~ 2,
      COUNTRYC == "Japan" ~ 3,
      COUNTRYC == "China" ~ 3,
      COUNTRYC == "Korea, Republic of" ~ 3,
      COUNTRYC == "Taiwan, Province of China" ~ 3,
      COUNTRYC == "Australia" ~ 3,
      COUNTRYC == "Argentina" ~ 4,
      COUNTRYC == "Mexico" ~ 4,
      COUNTRYC == "Chile" ~ 4,
      TRUE ~ NA_real_))

#ANOVA
boxplot(MMSETOTS ~ region, data=DSData)
mmse.aov.ds <- aov(MMSETOTS ~ region, data = DSData)
summary(mmse.aov.ds)

#post hocs tests GT2
TukeyHSD(aov(MMSETOTS ~ as.factor(region), data=DSData))

#Regional comparisons of CBB, ISLT & CDR

boxplot(ISLTDRZ ~ region, data=DSData)
ISLTDR.aov.ds <- aov(ISLTDRZ ~ region, data = DSData)
summary(ISLTDR.aov.ds)
TukeyHSD(aov(ISLTDRZ ~ as.factor(region), data=DSData))

boxplot(ISLTTRZ ~ region, data=DSData)
ISLTTR.aov.ds <- aov(ISLTTRZ ~ region, data = DSData)
summary(ISLTTR.aov.ds)
TukeyHSD(aov(ISLTTRZ ~ as.factor(region), data=DSData))
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boxplot(CDR0107S ~ region, data=DSData)
cdr.aov.ds <- aov(CDR0107S ~ region, data = DSData)
summary(cdr.aov.ds)
TukeyHSD(aov(CDR0107S ~ as.factor(region), data=DSData))

boxplot(FComp ~ region, data=DSData)
cbb.aov.ds <- aov(FComp ~ region, data = DSData)
summary(cbb.aov.ds)
TukeyHSD(aov(FComp ~ as.factor(region), data=DSData))

#Language Domain regional comparisons
boxplot(CComp ~ region, data=DSData)
crystal.aov.ds <- aov(CComp ~ region, data = DSData)
summary(crystal.aov.ds)
TukeyHSD(aov(CComp ~ as.factor(region), data=DSData))

#Remove South America
dsnors4 <- subset(dsnors3, Region != 4)

#Language correlation with years of education
ggscatter(DSData, x = "CComp", y = "EDUYRNUM", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Crystallised Composite", ylab = "Years of Education")
res.cor <- cor.test(DSData$CComp, DSData$EDUYRNUM,
                    method = "pearson")

#Crystalised composite zscored analysis
boxplot(CCompZ ~ region, data=DSData)
crystalz.aov.ds <- aov(CCompZ ~ region, data = DSData)
summary(crystalz.aov.ds)
TukeyHSD(aov(CCompZ ~ as.factor(region), data=DSData))

ggscatter(DSData, x = "CCompZ", y = "EDUYRNUM", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Crystallised Composite Z-Score", ylab = "Years of Education")
res.cor <- cor.test(DSData$CCompZ, DSData$EDUYRNUM,
                    method = "pearson")

#new ccomp yoe graph, pirateplot
ds10 <-subset(dsnors,EDUYRNUM <(40))
ds10 <- mutate(ds10, CCompZ = (CComp-7.55)/6.257920e-01)
format(round(ds10$CCompZ,4),nsmall=4)
pirateplot(formula = EDUYRNUM ~ CCompZ,
           data = ds10,
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           pal="decision",
           point.o = .3,
           theme = 1,
           main = "Years of Education & Crystallised Composite Z-Score")

#descriptive stats for DS
stat.desc(dsn1$DS)
tblDS <- with(dsn1, table(DS))
barplot(tblDS)

#YOE & CCompZ
YOres <- cor.test(dsn1$EDUYRNUM, dsn1$CCompZ, 
                  method = "pearson")

#correlations 

#DR&DS
ggplot(dsnors3, aes(x=DS, y=ISLTDRZ)) + 
  geom_point(color='#2980B9', size = 1) + 
  geom_smooth(method=lm, color='#2C3E50')

DRres <- cor.test(dsnors3$DS, dsnors3$ISLTDRZ, 
                method = "pearson")

#IR&DS
ggplot(dsnors3, aes(x=DS, y=ISLTTRZ)) + 
  geom_point(color='#2980B9', size = 1) + 
  geom_smooth(method=lm, color='#2C3E50')
IRres <- cor.test(dsnors3$DS, dsnors3$ISLTTRZ, 
                  method = "pearson")

ggplot(dsnors3, aes(x=CCompZ, y=FComp)) + 
  geom_point(color='#2980B9', size = 1) + 
  geom_smooth(method=lm, color='#2C3E50')
FCres <- cor.test(dsnors3$CCompZ, dsnors3$FComp, 
                  method = "pearson")

#Final Analysis by Jutten CDR stages 

#CDR Stage Assignment
dsn3 <- 
  dsn2%>%
  mutate(
    CDRGroup = case_when(
      CDR0107S <=0.5 ~ 1,
      CDR0107S >=1 & CDR0107S<1.5 ~ 2,
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      CDR0107S >=1.5 & CDR0107S<4.5 ~ 3,
      CDR0107S >=4.5 ~ 4,))

describeBy(dsn3$DS, group=dsn3$CDRGroup)
describeBy(dsn3$ISLTTRZ, group=dsn3$CDRGroup)
describeBy(dsn3$ISLTDRZ, group=dsn3$CDRGroup)

#CDR Staging correlations
ggplot(dsn3, aes(x=DS, y=ISLTDRZ))+
  geom_point(color='#2980B9', size = 1) + 
  facet_wrap(~CDRGroup)+
  stat_cor(method = "pearson", label.x = -7.5, label.y = 2.1)+
  geom_smooth(method=lm, color='#2C3E50')

ggplot(dsn3, aes(x=DS, y=ISLTTRZ))+
  geom_point(color='#2980B9', size = 1) + 
  facet_wrap(~CDRGroup)+
  stat_cor(method = "pearson", label.x = -7.5, label.y = 2.7)+
  geom_smooth(method=lm, color='#2C3E50')

plots.dir.path <- list.files(tempdir(), pattern="rs-graphics", full.names = 
TRUE); 
plots.png.paths <- list.files(plots.dir.path, pattern=".png", full.names = 
TRUE)
file.copy(from=plots.png.paths, to="/Users/Tom/Documents/PhD/Chapter III - 
Discrepancy Scores/Graphs/V2")

#ANOVA for DS by group
boxplot(DS ~ CDRGroup, data=DSData)
DS.aov.ds <- aov(DS ~ CDRGroup, data = DSData)
summary(DS.aov.ds)

#post hocs tests GT2
TukeyHSD(aov(DS ~ as.factor(CDRGroup), data=DSData))
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Study 2

install.packages("githubinstall")
install.packages("devtools")
gh_install_packages("blandr")
library(blandr)

plot(Alternate_Paragraphs$APII, Alternate_Paragraphs$LMII,
     xlab="Alternate Story", ylab="Logical Memory",
     abline(lm(Alternate_Paragraphs$APII~Alternate_Paragraphs$LMII), 
col="blue"))
cor.test(Alternate_Paragraphs$APII, Alternate_Paragraphs$LMII, 
method="pearson")

ggscatter(Alternate_Paragraphs, x = "APII", y = "LMII", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Alternate Paragraphs", ylab = "Logical Memory")

#testing for differences in correlations
cocor.result1 <- cocor.indep.groups(0.3865049, 0.6002357, 49, 67, 
alternative = "two.sided",
                                    test = "all", alpha = 0.05, conf.level = 0.95, null.value 
= 0,
                                    data.name = NULL, var.labels = NULL, return.htest = 
FALSE)

#t-test
t.test(Alternate_Paragraphs$APII,Alternate_Paragraphs$LMII, paired=TRUE)

#B&A Stats
Alternate_Paragraphs <- transform(Alternate_Paragraphs,
                                  average=((APII+LMII)/2),
                                  difference=(APII-LMII)
                                  ) 

blandr.output.text (Alternate_Paragraphs$APII, Alternate_Paragraphs$LMII , 
sig.level=0.95 )

blandr.draw(Alternate_Paragraphs$APII, Alternate_Paragraphs$LMII , 
ciDisplay = FALSE , ciShading = FALSE )

blandr.draw(Alternate_Paragraphs$APII, Alternate_Paragraphs$LMII)
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#Split by group
split(Alternate_Paragraphs, as.factor(Alternate_Paragraphs$Group))

df1WI <- Alternate_Paragraphs[which(Alternate_Paragraphs$Group == 1),]
df2OI <- Alternate_Paragraphs[which(Alternate_Paragraphs$Group == 2),]

plot(df1WI$APII, df1WI$LMII,
    xlab="Alternate Story", ylab="Logical Memory",
    abline(lm(df1WI$APII~df1WI$LMII), col="blue"))
cor.test(df1WI$APII, df1WI$LMII, method="pearson")

plot(df2OI$APII, df2OI$LMII,
     xlab="Alternate Story", ylab="Logical Memory",
     abline(lm(df2OI$APII~df2OI$LMII), col="blue"))
cor.test(df2OI$APII, df2OI$LMII, method="pearson")

ggscatter(df1WI, x = "APII", y = "LMII", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Alternate Paragraphs", ylab = "Logical Memory")

ggscatter(df2OI, x = "APII", y = "LMII", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "Alternate Paragraphs", ylab = "Logical Memory")

#t-test
t.test(df1WI$APII,df1WI$LMII, paired=TRUE)

t.test(df2OI$APII,df2OI$LMII, paired=TRUE)

#B&A Stats

blandr.output.text (df1WI$APII, df1WI$LMII , sig.level=0.95 )

blandr.draw(df1WI$APII, df1WI$LMII , ciDisplay = FALSE , ciShading = FALSE 
)

blandr.draw(df1WI$APII, df1WI$LMII)

blandr.output.text (df2OI$APII, df2OI$LMII , sig.level=0.95 )

blandr.draw(df2OI$APII, df2OI$LMII , ciDisplay = FALSE , ciShading = FALSE )
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blandr.draw(df2OI$APII, df2OI$LMII)
Study 3

install.packages("githubinstall")
install.packages("devtools")
gh_install_packages("blandr")
library(blandr)

#immediate recall comparison
MissionRandOnly <- mutate(MissionRandOnly, ADCIR = ADCRL*3)
round(MissionRandOnly$ADCIR, digits=0)

#descriptive stats
stat.desc(MissionRandOnly$ISLTDR) 
stat.desc(MissionRandOnly$ISLTTR) 
stat.desc(MissionRandOnly$ADCIR)
stat.desc(MissionRandOnly$ADCDRL)

hist(MissionRandOnly$ISLTDR)
hist(MissionRandOnly$ISLTTR)
hist(MissionRandOnly$ADCIR)
hist(MissionRandOnly$ADCDRL)

table(MissionRandOnly$ISLTTR,MissionRandOnly$ACIR)

#correlations

IRPlot <- ggplot(MissionRandOnly, aes(ISLTTR,ACIR))+
  geom_count()+
  scale_size_area()+
  geom_smooth(method="lm", se=TRUE)+
  xlab("ISLT Immediate Recall")+ylab("ADAS-Cog Immediate Recall")

IRPlot + stat_cor(method = "pearson", label.x = 3, label.y = 30)  
  
DRPlot <- ggplot(MissionRandOnly, aes(ISLTDR,ACDR))+
  geom_count()+
  scale_size_area()+
  geom_smooth(method="lm", se=TRUE)+
  xlab("ISLT Delayed Recall")+ylab("ADAS-Cog Delayed Recall")+
  scale_x_continuous(breaks = c(0,2,4,6,8,10))+
  scale_y_continuous(breaks = c(0,2,4,6,8,10,12,14))
DRPlot + stat_cor(method = "pearson", label.x = 0.1, label.y = 12)  

ggscatter(MissionRandOnly, x = "ISLTTR", y = "ACIR", 
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          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "ISLT", ylab = "ADAS-Cog")

ggscatter(MissionRandOnly, x = "ISLTDR", y = "ACDR", 
          add = "reg.line", conf.int = TRUE, 
          cor.coef = TRUE, cor.method = "pearson",
          xlab = "ISLT", ylab = "ADAS-Cog")

#B&A
#Same scale the variables
MissionRandOnly <- mutate(MissionRandOnly, ACIR = (((ADCIR/5)*6)-36)*-1)

MissionRandOnly <- mutate(MissionRandOnly, ACDR = (((ADCDRL/5)*6)-
12)*-1)

round(MissionRandOnly$ACIR, digits=1)

#Immediate Recall
MissionRandOnly <- transform(MissionRandOnly,
                                  average=((ACIR+ISLTTR)/2),
                                  difference=(ACIR-ISLTTR)
)
blandr.output.text (MissionRandOnly$ACIR, MissionRandOnly$ISLTTR , 
sig.level=0.95 )

blandr.draw(MissionRandOnly$ACIR, MissionRandOnly$ISLTTR , ciDisplay = 
FALSE , ciShading = FALSE )

blandr.draw(MissionRandOnly$ACIR, MissionRandOnly$ISLTTR)

#Delayed Recall
MissionRandOnly <- transform(MissionRandOnly,
                                  average=((ACDR+ISLTDR)/2),
                                  difference=(ACDR-ISLTDR)
) 

blandr.output.text (MissionRandOnly$ACDR, MissionRandOnly$ISLTDR , 
sig.level=0.95 )

blandr.draw(MissionRandOnly$ACDR, MissionRandOnly$ISLTDR , ciDisplay = 
FALSE , ciShading = FALSE )

blandr.draw(MissionRandOnly$ACDR, MissionRandOnly$ISLTDR)

cocor.result1 <- cocor(~ACDR + ISLTDR | ACIR + ISLTTR,
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                      MissionRandOnly)
as.htest(cocor.result)

#RM ANOVAS
library(tidyverse)
library(rstatix)
library(broom)

anova(lm(ACDR ~ APOE4ST * ISLTDR, data = MissionRandOnly))

anova(lm(ISLTDR ~ APOE4ST * ACDR, data = MissionRandOnly))

anova(lm(ACIR ~ APOE4ST * ISLTTR, data = MissionRandOnly))

anova(lm(ISLTTR ~ APOE4ST * ACIR, data = MissionRandOnly))

summary(manova(cbind(ISLTDR, ACDR) ~ APOE4ST, data = 
MissionRandOnly))

summary(manova(cbind(ISLTTR, ACIR) ~ APOE4ST, data = 
MissionRandOnly))

glm()
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Study 4

#Import data #Limit to Tier 5 subjects

#Remove SA
  MALL <-
  MissionAllT5 %>%
  mutate(
    Region = case_when(
      COUNTRYC == "United States of America" ~ 1,
      COUNTRYC == "Canada" ~ 1,
      COUNTRYC == "United Kingdom of Great Britain and Northern Ireland" ~ 
2,
      COUNTRYC == "Spain" ~ 2,
      COUNTRYC == "France" ~ 2,
      COUNTRYC == "Germany" ~ 2,
      COUNTRYC == "Croatia" ~ 2,
      COUNTRYC == "Denmark" ~ 2,
      COUNTRYC == "Poland" ~ 2,
      COUNTRYC == "Czechia" ~ 2,
      COUNTRYC == "Slovakia" ~ 2,
      COUNTRYC == "Austria" ~ 2,
      COUNTRYC == "Italy" ~ 2,
      COUNTRYC == "Portugal" ~ 2,
      COUNTRYC == "South Africa" ~ 2,
      COUNTRYC == "Bulgaria" ~ 2,
      COUNTRYC == "Japan" ~ 3,
      COUNTRYC == "China" ~ 3,
      COUNTRYC == "Korea, Republic of" ~ 3,
      COUNTRYC == "Taiwan, Province of China" ~ 3,
      COUNTRYC == "Australia" ~ 3,
      COUNTRYC == "Argentina" ~ 4,
      COUNTRYC == "Mexico" ~ 4,
      COUNTRYC == "Chile" ~ 4,
      TRUE ~ NA_real_))
MALL <- subset(MALL, Region != 4)

#Assign value to APOE status
MALL <- mutate(MALL, APOEGroup = ifelse(APOE4ST=="Positive", 1, 0))

#Compute Discrepancy Scores
MALL <-subset(MALL, MMSETOTS >(17))
MALL <-subset(MALL,CBDETZ >(-6.077))
MALL <-subset(MALL,CBIDEZ >(-7.607))
MALL <-subset(MALL,CBOBMZ >(-6.231))
MALL <-subset(MALL,CBOCLZ >(-4.162))



218

MALL <- mutate(MALL, FComp = (CBDETZ + CBIDEZ + CBOBMZ + 
CBOCLZ)/4)

#compute fluid composite (MMSE Language Domain #6,7,8,9,10)
MALL <- mutate(MALL, CComp = MMSE06S + MMSE07S + MMSE08S + 
MMSE09S + MMSE10S)

#Memory Difference Score
MALL <- mutate(MALL, MD=ISLTTRZ-ISLTDRZ)

#Remove NAs from dataset for CComp & FComp
MALL <- subset(MALL, !is.na(CComp))
MALL <- subset(MALL, !is.na(CDR0107S))
MALL <- subset(MALL, !is.na(FComp))
MALL <- subset(MALL, !is.na(AmyTest))
MALL <- subset(MALL, !is.na(ISLTDRZ))
MALL <- subset(MALL, !is.na(ISLTTRZ))
MALL <- subset(MALL, !is.na(MMSETOTS))
MALL <- subset(MALL, !is.na(CBDETZ))
MALL <- subset(MALL, !is.na(CBOCLZ))
MALL <- subset(MALL, !is.na(CBOBMZ))
MALL <- subset(MALL, !is.na(CBIDEZ))

#CComp Z-Score

summary(MALL$CComp)
stat.desc(MALL$CComp)
MALL <- mutate(MALL, CCompZ = (CComp-7.55)/6.257920e-01)
MALL2 <-select(MALL, c('FComp', 'CCompZ', 'DS', 'AmyRes', 'MD'))

#Discrepancy Score
MALL <- mutate(MALL, DS = FComp - CCompZ)
MALL <- mutate(MALL, across(where(is.numeric), round, 3))

install.packages('e1071')
library(e1071)

#Run t-tests between key variables in both datasets

sapply(MALL,mean, na.rm=TRUE)
summary(MALL)
stat.desc(MALL)
describe(MALL$FComp)
describe(MALL$CCompZ)
describe(MALL$DS)
describe(MALL$MD)
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describe.by(MALL, group="AmyRes")
describe.by(MALL2, group="AmyRes")

t.test(AGE ~ AmyRes, data = MALL)
t.test(SEX ~ AmyRes, data = MALL)
t.test(EDUYRNUM ~ AmyRes, data = MALL)
t.test(APOE4ST ~ AmyRes, data = MALL)
t.test(ISLTDRZ ~ AmyRes, data = MALL)
t.test(ISLTTRZ ~ AmyRes, data = MALL)
t.test(CBDETZ ~ AmyRes, data = MALL)
t.test(CBIDEZ ~ AmyRes, data = MALL)
t.test(CBOBMZ ~ AmyRes, data = MALL)
t.test(CBOCLZ ~ AmyRes, data = MALL)
t.test(CDR0107S ~ AmyRes, data = MALL)
t.test(MMSETOTS ~ AmyRes, data = MALL)
t.test(FComp ~ AmyRes, data = MALL)
t.test(CCompZ ~ AmyRes, data = MALL)
t.test(DS ~ AmyRes, data = MALL)
t.test(MD ~ AmyRes, data = MALL)

#SVM Model 1 ISLT, CBB, MMSE, CDR totals

#restrict dataset to required variables
M1<-select(MALL, c('ISLTDRZ', 'ISLTTRZ', 'CDR0107S', 'MMSETOTS', 
'CBDETZ', 'CBOCLZ', 'CBOBMZ', 'CBIDEZ', 'AmyRes'))

#Split
dt = sort(sample(nrow(M1), nrow(M1)*.7))
M1train<-M1[dt,]
M1test<-M1[-dt,]

#SVM
#First go
svmfit <- svm(AmyRes~., data = M1train, kernel = "radial", cost = .1, scale 
= FALSE, type='C-classification')
summary(svmfit)
print(svmfit, M1train)
tuned <- tune(svm, AmyRes~., data = M1train, kernel = "radial", ranges = 
list(cost=c(0.001,0.01,.1,1,10,100)))
summary(tuned)
ypred=predict(svmfit ,M1test)
table(predict =ypred , truth= M1test$AmyRes )
ypred1=predict(svmfit ,M1train)
cm <- table(predict =ypred1 , truth= M1train$AmyRes )

#second go
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set.seed(2)
ind <- sample(2, nrow(M1), replace = TRUE, prob=c(0.7, 0.3))
x.svm <- svm(AmyRes~., data = M1[ind == 1,], kernel = "radial",gamma=4, 
cost = .1, scale = FALSE, type='C-classification', probability=TRUE)
summary(x.svm)
tuned <- tune(svm, AmyRes~., data = M1train, kernel = "radial", ranges = 
list(gamma=2^(-8:1), cost=c(0.001,0.01,.1,1,10,100)))
summary(tuned)
x.svm <- svm(AmyRes~., data = M1[ind == 1,], kernel = "radial", cost = 
0.1,scale = FALSE, type='C-classification', probability=TRUE)
x.svm.prob <- predict(x.svm, type="prob", newdata=M1[ind == 2,], 
probability = TRUE)
x.svm.prob.rocr <- prediction(attr(x.svm.prob, "probabilities")[,2], M1[ind == 
2,'AmyRes'])
x.svm.perf <- performance(x.svm.prob.rocr, "tpr","fpr")
x.svm.perf2 <- performance(x.svm.prob.rocr, measure="auc")
acc.perf = performance(x.svm.prob.rocr, measure = "acc")
ind = which.max( slot(acc.perf, "y.values")[[1]] )
acc = slot(acc.perf, "y.values")[[1]][ind]
cutoff = slot(acc.perf, "x.values")[[1]][ind]
print(c(accuracy= acc, cutoff = cutoff))
svm1.plot <-plot(x.svm.perf, col="red", xlab="1-Specificity", 
ylab="Sensitivity", abline(a = 0, b = 1), grid(col = "lightgray", lty = "dotted", 
lwd = par("lwd"), equilogs = TRUE))
par(pty="s")

#######################################
#Model 2

M2<-select(MALL, c('DS', 'MD','MMSETOTS', 'CDR0107S', 'AmyRes'))
M2<-na.omit(M2)
set.seed(2)
ind <- sample(2, nrow(M2), replace = TRUE, prob=c(0.7, 0.3))
x.svm2 <- svm(AmyRes~., data = M2[ind == 1,], kernel = "radial", cost = 
.1, scale = FALSE, type='C-classification', probability=TRUE)
summary(x.svm2)
tuned2 <- tune(svm, AmyRes~., data = M2[ind == 1,], kernel = "radial", 
ranges = list(gamma=2^(-8:1), cost=c(0.001,0.01,.1,1,10,100)))
summary(tuned2)

x.svm2 <- svm(AmyRes~., data = M2[ind == 1,], kernel = "radial", 
gamma=0.078125, cost = 1,scale = FALSE, type='C-classification', 
probability=TRUE)
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ypred22=predict(x.svm2 ,M2[ind == 1,])
table(predict= ypred22 , truth= M2[ind == 1,'AmyRes'] )

x.svm2 <- svm(AmyRes~., data = M2[ind == 2,], kernel = "radial", 
gamma=0.078125, cost = 1,scale = FALSE, type='C-classification', 
probability=TRUE)
ypred2=predict(x.svm2 ,M2[ind == 2,])
cm2<-table(predict=ypred2,truth= M2[ind == 2,'AmyRes'] )

x.svm2.prob <- predict(x.svm2, type="prob", newdata=M2[ind == 2,], 
probability = TRUE)
x.svm2.prob.rocr <- prediction(attr(x.svm2.prob, "probabilities")[,2], M2[ind 
== 2,'AmyRes'])
x.svm2.perf <- performance(x.svm2.prob.rocr, "tpr","fpr")
x.svm2.perf2 <- performance(x.svm2.prob.rocr, measure="auc")
acc.perf = performance(x.svm2.prob.rocr, measure = "acc")
ind = which.max(slot(acc.perf2, "y.values")[[1]])
acc = slot(acc.perf, "y.values")[[1]][ind]
cutoff = slot(acc.perf, "x.values")[[1]][ind]
print(c(accuracy= acc, cutoff = cutoff))

#######################################
#Model 3

M3<-select(MALL, c('AGE', 'SEX', 'EDUYRNUM', 'APOEGroup', 'ISLTDRZ', 
'ISLTTRZ', 'CDR0107S', 'MMSETOTS', 'CBDETZ', 'CBOCLZ', 'CBOBMZ', 
'CBIDEZ', 'AmyRes'))
M3<-na.omit(M3)
set.seed(2)
ind <- sample(2, nrow(M3), replace = TRUE, prob=c(0.7, 0.3))
x.svm3 <- svm(AmyRes~., data = M3[ind == 1,], kernel = "radial", cost = 
.1, scale = FALSE, type='C-classification', probability=TRUE)
summary(x.svm3)
tuned <- tune(svm, AmyRes~., data = M3[ind == 1,], kernel = "radial", 
ranges = list(gamma=2^(-8:1), cost=c(0.001,0.01,.1,1,10,100)))
summary(tuned)
x.svm3 <- svm(AmyRes~., data = M3[ind == 1,], kernel = "radial", cost = 
0.1,gamma=0.00390625, scale = FALSE, type='C-classification', 
probability=TRUE)

x.svm3.prob <- predict(x.svm3, type="prob", newdata=M3[ind == 2,], 
probability = TRUE)
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x.svm3.prob.rocr <- prediction(attr(x.svm3.prob, "probabilities")[,2], M3[ind 
== 2,'AmyRes'])
x.svm3.perf <- performance(x.svm3.prob.rocr, "tpr","fpr")
x.svm3.perf2 <- performance(x.svm3.prob.rocr, measure="auc")
acc.perf = performance(x.svm3.prob.rocr, measure = "acc")
ind = which.max(slot(acc.perf, "y.values")[[1]] )
acc = slot(acc.perf, "y.values")[[1]][ind]
cutoff = slot(acc.perf, "x.values")[[1]][ind]
print(c(accuracy= acc, cutoff = cutoff))

dt3 = sort(sample(nrow(M3), nrow(M3)*.7))

M3train<-M3[dt,]
M3test<-M3[-dt,]
ypred33=predict(x.svm3 ,M3train)
table(predict= ypred22 , truth= M3train$AmyRes)
x.svm3 <- svm(AmyRes~., data = M3test, kernel = "radial", cost = 
0.1,gamma=0.00390625, scale = FALSE, type='C-classification', 
probability=TRUE)
ypred3=predict(x.svm3 ,M3test)
table(predict=ypred3,trut= M3test$AmyRes)

#AUC PLOT

plot(x.svm.perf, col=1, main="ROC curves of different machine learning 
classifier", abline(a = 0, b = 1))
plot(x.svm2.perf, col=2, add=TRUE)
plot(x.svm3.perf, col=3, add=TRUE)

svm1.plot <-plot(x.svm.perf, col=1, abline(a = 0, b = 1), grid(col = 
"lightgray", lty = "dotted", lwd = par("lwd"), equilogs = TRUE))
svm1.plot <-plot(x.svm.perf2, col=6, add=TRUE)
svm1.plot <-plot(x.svm.perf, col=8, add=TRUE)

svm.all.plot <-plot(x.svm.perf, col=1, main="ROC curves of different 
machine learning classifier", abline(a = 0, b = 1))
svm.all.plot <-plot(x.svm2.perf, col=2, add=TRUE)
svm.all.plot <-plot(x.svm3.perf, col=3, add=TRUE)
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Study 4 Additional Console Output

Model 1 – ‘ISLTDRZ', 'ISLTTRZ', 'CDR0107S', 'MMSETOTS', 'CBDETZ', 
'CBOCLZ', 'CBOBMZ', 'CBIDEZ', 'AmyRes'

Call:
svm(formula = AmyRes ~ ., data = M1train, kernel = "radial", cost = 0.01, 
type = "C-classification", 
    scale = FALSE)

Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  0.01 
Number of Support Vectors:  2276
 ( 1131 1145 )

Number of Classes:  2 
Levels: 
 0 1
Parameter tuning of ‘svm’:
- sampling method: 10-fold cross validation 
- best parameters:
 cost
  0.1

- best performance: 0.2378208 

- Detailed performance results:
        gamma  cost     error dispersion
1  0.00390625 1e-03 0.4036277 0.02207063
2  0.00781250 1e-03 0.4034516 0.02208725
3  0.01562500 1e-03 0.4031274 0.02211346
4  0.03125000 1e-03 0.4023496 0.02217296
5  0.06250000 1e-03 0.4010796 0.02220646
6  0.12500000 1e-03 0.4000306 0.02221270
7  0.25000000 1e-03 0.4000939 0.02214300
8  0.50000000 1e-03 0.4010707 0.02210481
9  1.00000000 1e-03 0.4022756 0.02207500
10 2.00000000 1e-03 0.4030790 0.02205516
11 0.00390625 1e-02 0.4023687 0.02220801
12 0.00781250 1e-02 0.4006561 0.02234014
13 0.01562500 1e-02 0.3969513 0.02267287
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14 0.03125000 1e-02 0.3889418 0.02293331
15 0.06250000 1e-02 0.3767756 0.02333949
16 0.12500000 1e-02 0.3675339 0.02343957
17 0.25000000 1e-02 0.3685054 0.02271030
18 0.50000000 1e-02 0.3767315 0.02227221
19 1.00000000 1e-02 0.3874627 0.02201744
20 2.00000000 1e-02 0.3948561 0.02193160

Call:
svm(formula = AmyRes ~ ., data = M1train, kernel = "radial", cost = 0.1, 
type = "C-classification", 
    scale = FALSE)
Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  0.1 
Number of Support Vectors:  2154
 ( 1065 1089 )

Number of Classes:  2 
Levels: 
 0 1

TRAINING DATASET OUTCOME
> ypred1=predict(svmfit ,M1train)
> table(predict =ypred1 , truth= M1train$AmyRes )
       truth
predict    0    1
      0  564  293
      1  567 1148

TEST DATASET OUTCOME
> ypred=predict(svmfit ,M1test)
> table(predict =ypred , truth= M1test$AmyRes )
       truth
predict   0   1
      0 230 136
      1 258 479
> acc.perf = performance(x.svm.prob.rocr, measure = "acc")
> ind = which.max( slot(acc.perf, "y.values")[[1]] )
> acc = slot(acc.perf, "y.values")[[1]][ind]
> cutoff = slot(acc.perf, "x.values")[[1]][ind]
> print(c(accuracy= acc, cutoff = cutoff))
accuracy cutoff.224 
 0.6452489  0.4755230
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Model 2 – 'DS', 'MD','MMSETOTS', 'CDR0107S', 'AmyRes'

Call:
svm(formula = AmyRes ~ ., data = M2[ind == 1, ], kernel = "radial", cost = 
0.1, 
    type = "C-classification", probability = TRUE, scale = FALSE)

Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  0.1 

Number of Support Vectors:  2278

 ( 1130 1148 )

Number of Classes:  2 

Levels: 
 0 1

Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation 

- best parameters:
     gamma cost
 0.0078125    1

- best performance: 0.2869819 

- Detailed performance results:
        gamma  cost     error dispersion
1  0.00390625 1e-03 0.4036277 0.02207063
2  0.00781250 1e-03 0.4034516 0.02208725
3  0.01562500 1e-03 0.4031274 0.02211346
4  0.03125000 1e-03 0.4023496 0.02217296
5  0.06250000 1e-03 0.4010796 0.02220646
6  0.12500000 1e-03 0.4000306 0.02221270
7  0.25000000 1e-03 0.4000939 0.02214300
8  0.50000000 1e-03 0.4010707 0.02210481
9  1.00000000 1e-03 0.4022756 0.02207500
10 2.00000000 1e-03 0.4030790 0.02205516
11 0.00390625 1e-02 0.4023687 0.02220801
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12 0.00781250 1e-02 0.4006561 0.02234014
13 0.01562500 1e-02 0.3969513 0.02267287
14 0.03125000 1e-02 0.3889418 0.02293331
15 0.06250000 1e-02 0.3767756 0.02333949
16 0.12500000 1e-02 0.3675339 0.02343957
17 0.25000000 1e-02 0.3685054 0.02271030
18 0.50000000 1e-02 0.3767315 0.02227221
19 1.00000000 1e-02 0.3874627 0.02201744
20 2.00000000 1e-02 0.3948561 0.02193160

Call:
svm(formula = AmyRes ~ ., data = M2[ind == 1, ], kernel = "radial", gamma 
= 0.078125, 
    cost = 1, type = "C-classification", probability = TRUE, scale = FALSE)

Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  1 

Number of Support Vectors:  2193

 ( 1093 1100 )
Number of Classes:  2 
Levels: 
 0 1

table(predict= ypred22 , truth= M2[ind == 1,'AmyRes'] )
     truth
predict    0    1
      0  393  303
      1  741 1135

table(predict=ypred2,truth= M2[ind == 2,'AmyRes'] )
  truth
predict   0   1
      0 150 103
      1 335 515
ind = which.max(slot(acc.perf2, "y.values")[[1]])
> acc = slot(acc.perf, "y.values")[[1]][ind]
> cutoff = slot(acc.perf, "x.values")[[1]][ind]
> print(c(accuracy= acc, cutoff = cutoff))
  accuracy cutoff.728 
 0.5918552  0.3961233
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Model 3 – ‘AGE’, 'SEX', ‘EDUYRNUM’, ‘APOEGroup’'ISLTDRZ', 'ISLTTRZ', 
'CDR0107S', 'MMSETOTS', 'CBDETZ', 'CBOCLZ', 'CBOBMZ', 'CBIDEZ', 
'MMSETOTS', 'CDR0107S', 'AmyRes'

Call:
svm(formula = AmyRes ~ ., data = M3[ind == 1, ], kernel = "radial", cost = 
0.1, 
    type = "C-classification", probability = TRUE, scale = FALSE)

Parameters:
   SVM-Type:  C-classification 
 SVM-Kernel:  radial 
       cost:  0.1 

Number of Support Vectors:  2245

 ( 1096 1149 )

Number of Classes:  2 

Levels: 
 0 1
Parameter tuning of ‘svm’:

- sampling method: 10-fold cross validation 

- best parameters:
      gamma cost
 0.00390625  0.1

- best performance: 0.1768172 

- Detailed performance results:
        gamma  cost     error  dispersion
1  0.00390625 1e-03 0.3973412 0.020308004
2  0.00781250 1e-03 0.3923247 0.020228557
3  0.01562500 1e-03 0.3850083 0.020132793
4  0.03125000 1e-03 0.3773245 0.019986676
5  0.06250000 1e-03 0.3756828 0.020005291
6  0.12500000 1e-03 0.3847868 0.020297802
7  0.25000000 1e-03 0.3967004 0.020494503
8  0.50000000 1e-03 0.4020537 0.020458420
9  1.00000000 1e-03 0.4031687 0.020443919
10 2.00000000 1e-03 0.4032916 0.020441508
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11 0.00390625 1e-02 0.3460287 0.018953802
12 0.00781250 1e-02 0.3049806 0.017434177
13 0.01562500 1e-02 0.2545752 0.014662003
14 0.03125000 1e-02 0.2146571 0.010624657
15 0.06250000 1e-02 0.2083003 0.010334287
16 0.12500000 1e-02 0.2539961 0.015554849
17 0.25000000 1e-02 0.3409806 0.020317116
18 0.50000000 1e-02 0.3895341 0.020524415
19 1.00000000 1e-02 0.3993143 0.020316706
20 2.00000000 1e-02 0.4002759 0.020303776

accuracy cutoff.684 
 0.6623256  0.6196396

train
     truth
predict    0    1
      0  300  369

1 807 1015

Test
    truth
predict   0   1
      0 150  67
      1 304 544
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