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Abstract 12 

Estimation of chlorophyll (CHL) using ocean colour remote sensing (OCRS) signals in coastal waters 13 
is difficult due to the presence of two other constituents altering the light signal: coloured dissolved 14 
organic matter (CDOM) and mineral suspended sediments (MSS). Artificial neural networks (NNs) 15 
have the capacity to deal with signal complexity and are a potential solution to the problem. Here NNs 16 
are developed to operate on two datasets replicating MODIS Aqua bands simulated using Hydrolight 17 
5.2. Artificial noise is added to the simulated signal to improve realism. Both datasets use the same 18 
ranges of in water constituent concentrations, and differ by the type of logarithmic concentration 19 
distributions. The first uses a Gaussian distribution to simulate samples from natural water conditions. 20 
The second uses a flat distribution and is intended to allow exploration of the impact of undersampling 21 
extremes at both high and low concentrations in the Gaussian distribution. The impact of the 22 
concentration distribution structure is assessed and no benefits were found by switching to a flat 23 
distribution. The normal distribution performs better because it reduces the number of low 24 
concentration samples that are relatively difficult to resolve against varying concentrations of other 25 
constituents. In this simulated environment NNs have the capacity to estimate CHL with outstanding 26 
performance compared to real in situ algorithms, except for low values when other constituents 27 
dominate the light signal in coastal waters. CDOM and MSS can also be predicted with very high 28 
accuracies using NNs. It is found that simultaneous retrieval of all 3 constituents using multitask 29 
learning (MTL) does not provide any advantage over single parameter retrievals. Finally it is found 30 
that increasing the number of wavebands generally improves NN performance, though there appear to 31 
be diminishing returns beyond ~8 bands. It is also shown that a smaller number of carefully selected 32 
bands performs better than a uniformly distributed band set of the same size. These results provide 33 
useful insight into future performance for NNs using hyperspectral satellite sensors and highlight 34 
specific wavebands benefits. 35 

1 Introduction 36 

Retrieving concentrations of the three main water constituents, Chlorophyll (CHL), Colour 37 
Dissolved Organic Matter (CDOM) and Mineral Suspended Sediments (MSS) in coastal areas from 38 
remote sensing is a challenging task due to the complex interactions between these constituents and 39 
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the associated light signal. Accurate estimations of these constituents is critical to understand 40 
interactions between physics, biology and human impacts in coastal waters. It is known that retrieval 41 
of CHL has potential to be overestimated by up to several orders of magnitude (Darecki and Stramski, 42 
2003) using inappropriate algorithms in coastal waters. CDOM absorbs light in the visible with a 43 
decreasing exponential relationship from ultraviolet to infrared (Bricaud et al. 1981). It impacts the 44 
light signal used to retrieve CHL in coastal waters and leads to failure of CHL algorithms (Darecki and 45 
Stramski, 2003; D, Pittarch et al., 2016). MSS is relatively easy to estimate with good confidence from 46 
remote sensing algorithms (Nechad et al., 2010; Neil et al., 2011). However, high sediment 47 
concentrations impact the atmospheric correction process that converts the signal measured by a 48 
satellite spectroradiometer at the top of atmosphere into a water leaving remote sensing reflectance 49 
(Rrs0+) which most algorithms rely on. It is therefore crucial to be able to make accurate estimations 50 
of these three parameters based on remote sensing signals in coastal waters, and to be able to do so 51 
under conditions where each constituent varies freely from the other two. 52 

Multi layered perceptrons (McCulloch & Pitts, 1943; Hebb, 1949; Rosenblatt, 1958; Rumelhart 53 
et al., 1985; McClelland and Rumelhart, 1986), here referred as neural networks (NNs), have in the 54 
past shown capacity to deal with complexity of the light signal in coastal conditions and allowed good 55 
retrieval of different parameters (Doerffer and Schiller, 1994; Buckton et al. 1997; Gross et al., 1999) 56 
and are potential candidates to advance from semi-analytical or empirical algorithms currently in use 57 
in complex waters (e.g. OC5, Gohin et al., 2002). Their potential benefit stems from ability to 58 
assimilate complex input information and independently establish statistically optimal relationships 59 
returning similar or higher performances than existing algorithms. However, NNs typically require 60 
substantial datasets to support training and limited availability of clear sky matchups between in situ 61 
and remotely sensed data is a limiting factor on the development of NNs. To date most NN algorithms 62 
remain regional with limited application to global scale or under represented conditions. With access 63 
to radiative transfer models such as Hydrolight 5.2, we can simulate remote sensing light fields for a 64 
wide variety of optical constituent combinations and create artificial data to test different hypothesis, 65 
thereby overcoming data availability issues and generating an opportunity to establish the real limits 66 
of NN development for coastal water remote sensing. 67 

Hydrolight requires knowledge of inherent optical properties (IOPs, absorption, attenuation and 68 
backscattering) to be able to simulate light spectra leaving the ocean surface. In this case we need to 69 
be able to relate IOPs to constituent concentrations using a bio-optical model operating on material-70 
specific IOPs (SIOPs). Relatively few complete sets of SIOPs have been presented in the literature. 71 
The dataset presented by Bengil et al. (2016) for optically complex waters in the Ligurian Sea, 72 
comprising both Case 1 and Case 2 water types (Morel and Prieur, 1977), provides the SIOPs needed 73 
to support rigorous exploration of the optical variability associated by freely varying CHL, CDOM and 74 
MSS concentrations. By being able to simulate surface remote sensing reflectance signals for a wide 75 
range of constituent combinations, we can test several hypotheses related to neural network 76 
development. Efforts are made to incorporate realistic estimates of measurement noise in both light 77 
and optical constituent concentrations in order to better simulate real world conditions. Hydrolight 78 
simulations of hyperspectral Rrs were used to produce the 13 MODIS Aqua bands available up to 79 
869nm and used for most parts of this study, as well as being used to study the potential of hyperspectral 80 
data for future ocean colour missions e.g. the Plankton, Aerosol, Cloud, ocean Ecosystem (PACE, 81 
Gorman et al., 2019).  82 

The first hypothesis (H1) to be tested is that NNs will be able to provide accurate estimates of 83 
all three optical constituents across a wide range of constituent concentration combinations. This 84 
hypothesis sets the control group, and if a specific method improves performance, it has to outperform 85 
this hypothesis setup. This is an apparently simple test, but has to be considered within the context of 86 
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the limits of real world data sampling. The distribution of data sampled in natural waters typically 87 
follows log normal distributions, reflecting a tendency to under-sample extreme scenarios of very high 88 
and very low concentrations of any given constituent (SeaBASS matchup dataset, Seegers et al., 2018). 89 
NNs require more data than empirical methods to learn robustly, especially if the signal contains 90 
complex non-linear interactions and is dependent on other factors, which are numerous in ocean colour 91 
(sun angle, temporal window used, resolution etc.). The reduced amount of data at both low and high 92 
ends of the data distribution is expected to negatively impact NN development when applied to such 93 
ranges in coastal waters (Hadjal et al., 2022). The second hypothesis (H2) is that training with an evenly 94 
distributed ‘flat’ data distribution will produce higher quality performance over the range of variability 95 
than is possible from a log-normal data distribution. If found to be true, this would point to potential 96 
benefits of directing future in situ sampling effort to more carefully attempt to cover the full range of 97 
optical variability found in coastal waters. 98 

Schiller and Doerffer (1994) were the first to mention the use of NNs to solve the inverse 99 
problem in ocean color (1994). Gross et al. (1999) and Schiller and Doerffer (1999) both proposed 100 
NNs to make estimates of CHL using  Rrs as an input in respectively Case 1 and Case 2 waters 101 
condition. Buckton et al. (1999) proposed to test the impact of instrumental noise on the performances 102 
achieved by a NN on 300 simulated matchups. Hypothesis H1 consists of testing a combination of 103 
these three different studies with a simulated radiative transfer matchup dataset and actual knowledge 104 
of realistic uncertainties for the MODIS Aqua sensor. NN showed promising results when applied to 105 
real coastal data (D’Alimonte and Zibordi, 2003) and returned coherent structures for wide scale 106 
images (Jamet et al., 2005). A NN algorithm specific to the MERIS sensor wavebands was later 107 
developed (Doerffer and Schiller, 2007). Recently, similar work has been conducted for Sentinel–3 108 
sensors by Brockman et al. (2016). Hieronimy et al. (2017) trained NNs optimized for 13 distinct water 109 
classes. Similar applications to retrieve CHL over lakes has been conducted with the use of NNs 110 
(Pahlevan et al., 2020; Xue et al., 2021; Cao et al., 2022),  NNs have also successfully retrieved other 111 
variables, such as the spectral diffuse attenuation, Kd, in both open and coastal waters (Jamet et al., 112 
2012); inherent optical properties (Ioannou et al., 2013); photosynthetically available radiation 113 
(Schiller, 2006) or multiple variables at the same time (Schroeder et al., 2007; Fan et al., 2020).  114 

Despite great results achieved by NNs, the operational products in use by the ocean color 115 
community still rely on empirical or semi analytical algorithms to estimate chlorophyll (O’Reilly et 116 
al., 1998, Gohin et al., 2002, Lavigne et al., 2021). One of the limitations of NNs is the potential to 117 
overfit signals by remembering the training examples rather than establishing robust relationships 118 
between inputs and the target. This type of artefact is at least partly due to limited numbers of data 119 
available from ocean colour matchup datasets with only several thousand examples for the biggest 120 
datasets in the literature, while a single MODIS Aqua image can contain multiple millions of 1km² 121 
pixels. Multiple techniques exist to avoid overfitting issues, including multi-task learning (MTL). MTL 122 
occurs when NNs are trained to produce multiple related targets at the same time, with the main 123 
objective being to improve their performance, robustness and reduce overfitting problems (see Ruder, 124 
2017 for a recent overview of different techniques available). Optical signals sampled in coastal waters 125 
are a good candidate to evaluate MLT as all three constituents contribute to the light signal. Tanaka et 126 
al. (2004) and Pahlevan et al. (2022) proposed to simultaneously retrieve CHL, CDOM and MSS based 127 
on NNs trained with modelled data. The third hypothesis (H3) is that simultaneous retrieval of all three 128 
constituents using MTL will perform better than individual retrievals by helping to constrain NN 129 
construction. 130 

To date the majority of ocean colour NN development has been done in the context of data 131 
from multispectral sensors. A number of hyperspectral radiometers onboard satellites have been 132 
launched in the past including EO-1 and PROBA-1 (2001), with others added as an additional sensor 133 
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to the ISS (International Space Station), including HICO the hyperspectral imager for the coastal ocean 134 
in 2009 (Corson et al., 2008) and HISUI the Hyperspectral Imager Suite in 2020 (Iwasaki et al., 2013). 135 
This development has continued with the launches of PRISMA (PRecursore IperSpettrale della 136 
Missione Applicativa, Loizzo et al., 2018) in 2019 and EnMap (Environmental Mapping and Analysis 137 
Program, Guanter et al., 2015) in 2020. There is a clear trend towards future ocean colour missions 138 
being equipped with hyperspectral sensors. However, increased spectral resolution is a technical 139 
challenge that is usually achieved by compromise with other mission parameters. For example, all of 140 
the sensors mentioned above have high spatial resolution (30-100m) which comes with the side effect 141 
of a reduced temporal resolution (usually an image of the full Earth every 16 days) and signal to noise 142 
ratios are usually lower than for multispectral systems, reducing their effectiveness for deep ocean 143 
observations. These factors greatly reduce their impact for global scale algorithm development even 144 
though they provide access to much higher spectral information content and explains the absence to 145 
date of publicly available hyperspectral remote sensing matchup datasets. A further limiting factor 146 
stems from the challenge of accurate atmospheric correction for hyperspectral sensors (Ibrahim et al., 147 
2018). The first sensor fulfilling global scale and time overpass requirements, PACE is planned to be 148 
launched in the near future by NASA.  149 

Providing a neural network with additional relevant information should typically lead to 150 
improved performance, so it is reasonable to expect that NNs operating on hyperspectral data should 151 
perform better than those operating on multispectral data. Radiative transfer simulations can be 152 
performed with hyperspectral resolution that can be subsequently re-sampled at multispectral 153 
resolution, in this case corresponding to the wavebands used by MODIS. There is, of course, the 154 
potential for hyperspectral data to contain an element of information redundancy as there is likely to 155 
be some degree of correlation between adjacent or nearby spectral bands. By resampling the 156 
hyperspectral reflectance data produced by simulations we can test a fourth hypothesis (H4) that NNs 157 
operating on hyperspectral data will perform better than those operating on multi-spectral data. At the 158 
moment and until such time as there has been opportunity to collect sufficient volumes of matchup 159 
datasets for PACE, the only way to test the hypothesis that NNs will benefit from availability of 160 
hyperspectral data is with the use of modelled data. 161 

 162 

2. Materials and Methods 163 

2.1 Hydrolight radiative transfer simulations 164 

All remote sensing reflectance data used in this study were generated using Ecolight 5.2, part 165 
of the Hydrolight 5.2 software package(Sequoia Scientific Ltd). EcoLight 5.2 was used for the creation 166 
of the simulated above surface remote sensing reflectance (Rrs0+) spectra rather than Hydrolight 167 
mainly due to the processing time involved in creation of such extensive datasets: 10,000 constituent 168 
combinations for the dataset with a normal or flat distrubiton, which gives 20,000 independent 169 
combinations in total. Each of the 20,000 combinations of CHL, CDOM and MSS are unique and the 170 
constituents vary freely from each other (randomly selected). Comparison of light spectra with the 171 
more accurate model Hydrolight was not conducted here but is expected to be very similar (Lefering 172 
et al., 2016) and satisfies requirements for this study.  173 

Simulations were set up with a uniform water column, a solar zenith angle of 0˚, zero cloud 174 
cover, wind speed 9 m.s-1, a refractive index of 1.34, water temperature of 20°C and salinity of 35 PSU. 175 
Note that the surface reflectance product reported here does not include sun glint effects (Lw / Es). The 176 
light signal was saved every 5nm from 390nm to 895nm. 13 MODIS Aqua wavebands from the visible 177 
and infrared spectrum were simulated by averaging the hyperspectral signal using their full wavebands 178 
width provided by NASA (https://modis.gsfc.nasa.gov/about/specifications.php, last access 26th of 179 
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March 2022) at 412, 443, 469, 488, 531, 547, 555, 645, 667, 678, 748, 859, 869 nm. Two datasets of 180 
10 000 hyperspectral light spectra each were created. A bespoke Matlab script was used to generate 181 
IOPs using constituent data distributions and a bio-optical model described below, with data being 182 
presented to Hydrolight in the form of simulated AC and BB instrument files. 183 

 184 

2.1.1 Constituent data distributions 185 

Two constituent concentration data distributions were generated in order to test the hypothesis 186 
that evenly distributed training data would lead to NNs that outperform those trained with log-normal 187 
training datasets (H2). CHL, CDOM and MSS constituents were created following two different 188 
approaches. Both approaches use a random distribution of values for all three variables and return two 189 
datasets of 10 000 values each. The first dataset uses a log-normal (LN) distribution and crosses several 190 
orders of magnitude with limits summarized in Table 1 for each variable. These kinds of distributions 191 
are commonly found in reports of sampling campaigns from natural waters (e.g. Babin et al., 2003, 192 
Pahlevan et al., 2022) and can be observed in Figure 1 (a, b and c). The second dataset was created 193 
using a log-flat (LF) distribution, applying the same logarithmically spaced intervals as LN, shown in 194 
Figure 1 (d, e and f). While medians between the normal and flat distributions remain the same, there 195 
are significant difference in the mean values for each distribution type.  196 

 197 

Table 1: In situ constituent concentration ranges. 198 

Variable 
Range from in 
situ samples 

Range used for 
model creation 

Units 

Chlorophyll a 0.29 - 3.31 0.01 - 100 mg.m-3 

CDOM 0.021 - 0.11 0.01 - 1 m-1 

MSS 0.13 - 3.7 0.1 - 100 g.m-3 
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 214 

Figure 215 
1: Histogram of each constituent concentration used for application of the radiative transfer model. 216 
First row shows the log normal distribution of CHL, CDOM and MSS respectively, second row shows 217 
the log flat distribution.  218 

 219 

2.1.2   Bio-optical model used 220 

In order to simulate reflectance spectra for different combinations of optical constituents, the 221 
radiative transfer simulation requires selection of a bio-optical model to allow prediction of IOPs from 222 
constituent concentrations. Bengil et al. (2016) presented a bio-optical model for the Ligurian Sea that 223 
was adopted here. Full details are provided in Bengil et al. (2016) and are briefly summarized here. 224 
CHL, CDOM and MSS samples and IOP profiles were collected during a cruise campaign in the 225 
Ligurian Sea from 13 to 26 March 2009 off the northwest coast of Italy on board NR/V Alliance. 226 
Absorption and attenuation profiles were collected with a 25 cm pathlength AC-9 (WetLabs Inc.) 227 
operating at 9 wavebands (10 nm FWHM) centred on 412, 440, 488, 510, 532, 555, 650, 676 and 715 228 
nm. The AC-9 was calibrated using ultrapure water (Milli-Q, Millipore) before and during the cruise, 229 
with corrections applied for the temperature and salinity dependence of pure seawater. Absorption data 230 
were corrected for scattering errors using the proportional correction method (Zaneveld et al., 1994) 231 
Backscattering profiles were collected using a WETLabs BB9 operating at 9 wavebands centred on 232 
412, 440, 488, 510, 532, 595, 650, 676 and 715 nm. Backscattering data were interpolated to AC-9 233 
wavelengths and measurements were corrected according to the BB-9 manual (WETLabs Manual, 234 
2013). See Lefering et al. (2016) for more details. The absorption of all dissolved and suspended 235 
components minus water was measured using a Point Source Integrating Cavity Absorption Meter 236 
(PSICAM; Rottgers & Doerffer, 2007; Rottgers et al., 2005, 2007). A 1 m liquid waveguide capillary 237 
cell (LWCC) with an Ocean Optics USB2000 mini-spectrometer was used to measure absorption by 238 
CDOM. total particulate absorption was also measured using the quantitative filter pad method (Ferrari 239 
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& Tassan, 1999). Samples were placed directly in front of the optical windows of a Shimadzu UV-240 
2501 PC spectrophotometer. Absorption by phytoplankton was determined by bleaching samples, 241 
measuring the absorption of non-algal particles, and subtracting this from total particulate absorption. 242 
Path length amplification factors and scattering offset corrections were determined using a linear 243 
regression approach (Lefering et al., 2016; McKee et al., 2014) and corresponding PSICAM particulate 244 
absorption data. The resulting filter pad corrections were subsequently applied to both bleached and 245 
unbleached filter pad absorption spectra. 246 

Chlorophyll concentration was measured using standard HPLC measurements on samples 247 
filtered through GF/F filters, stored in liquid nitrogen and transported to laboratories for later analysis. 248 
CHL data presented here were collected by colleagues from Management Unit of the North Sea 249 
Mathematical Models (MUMM). Triplicate HPLC samples were analyzed by the Marine Chemistry 250 
Laboratory of the MUMM using a reversed phase, acetone-based method with a C18 column and a 251 
Jasco FP-1520 fluorescence detector. Total suspended solids concentrations (TSS) were obtained by 252 
colleagues from MUMM by filtering samples through pre-ashed, rinsed and pre-weighed 47 mm GF/F 253 
filters. Samples were rinsed with several aliquots of ultrapure water, taking care to rinse the edge of 254 
the filter to minimize salt retention. Filters were stored frozen and returned to the lab where they were 255 
dried and reweighed. All samples were measured in triplicate and final values expressed as averages. 256 
TSS in northeastern stations was numerically decomposed into organic (OSS) and mineral (MSS) 257 
components using the technique outlined in Bengil et al. (2016).  258 

34 stations were available after quality control (Figure 2). Stations were partitioned into onshore 259 
and offshore sub sets, with deep clear case 1 waters in the southwestern part and shallower clear to 260 
turbid case 2 waters in the northeastern part. Figure 2 shows that the northeastern, onshore area is partly 261 
influenced by the Arno River plume and generally shows higher sediment concentrations near the 262 
coast. The offshore data set was in deep, relatively clear water which fitted the Case 1 definition and 263 
therefore did not contain significant MSS. This was used to determine CHL-specific IOPs. These CHL-264 
specific IOPs were then used to help partition onshore IOPs which did contain MSS as well as CHL in 265 
the particulate fraction, enabling derivation of mineral specific SIOPs (again, for absorption, scattering 266 
and backscattering). Absorption by CDOM was directly measured in both sectors. Further details of 267 
this approach are found in Lo Prejato et al. (2020).  268 

SIOP spectra were generated from IOP measurements spanning the visible range (400 – 715 269 
nm). In order to fully represent the range of wavebands provided by MODIS, SIOP spectra were 270 
extended out to 895 nm by linear extrapolation. Figure 3 shows the final set of SIOP spectra used to 271 
form the bio-optical model used for Ecolight simulations. Figure 4 shows remote sensing reflectance 272 
spectra obtained from Ecolight simulations using both LN and LF constituent distributions. These 273 
reflectance spectra together with their associated input constituent concentrations form the basis for 274 
training and testing NNs in this paper. 275 

 276 
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 288 

Figure 2: Repartition of the 34 in situ stations (displayed as white stars) where light and constituent 289 
concentrations were collected during the Ligurian cruise campaign in March 2009 displayed onto the 290 
true colour Landsat 5 image of the 8th of March, 2009.   291 
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Figure 3: SIOP spectra used in radiative transfer simulations. PH stands for Phytoplankton, BD for 325 
Biogenic Detritus, MSS for Mineral Suspended Sediments. 326 

 327 

 328 

 329 

 330 

 331 

 332 

 333 

 334 

 335 

 336 

 337 

 338 

Figure 4: Rrs spectra for log normal (LN) and log flat (LF) constituent distributions. Only 200 random 339 
spectra of the 10,000 combinaitions are displayed for each distribution. 340 

 341 

2.1.3 Simulation of radiometric noise and constituent measurement uncertainty 342 

Simulated data from model outputs are essentially error-free and not impacted by noise 343 
compared to real Earth Observation data. In reality, measurement uncertainties will impact both remote 344 
sensing reflectance signals and measurements of constituent concentrations, both of which go into 345 
training and testing of NNs. In order to better simulate real world conditions, artificial noise was added 346 
to both the Rrs and constituent data prior to NN training. This is not related to the development of 347 
neural networks to help them make more realistic estimates if applied to real radiometric data, but an 348 
attempt at being as close as possible to real conditions using a simulated dataset. 349 

Mélin et al. (2016) evaluated noise impacting the MODIS Aqua sensor data and found a 350 
wavelength dependent relationship, with shorter wavelengths returning higher measurement 351 
uncertainties. Figure 5 shows the error estimates for 5 MODIS Aqua bands following their work. Note 352 
that these estimates are for random noise only, and are based on analysis of 1 km spatial resolution 353 
bands which typically will have lower noise than the 500 m and 250 m spatial resolution bands, some 354 
of which have been used in our NNs.  Here we have interpolated the Mélin et al. (2016) results using 355 
a power law  relationship to provide estimated measurement uncertainties for Rrs on a hyperspectral 356 
basis. These values provide the standard deviation of measurement uncertainty for each wavelength, 357 
with noise being assigned to each wavelength of simulated Rrs using a random normal distribution 358 
operating on these predicted standard deviations.  359 

 360 

 361 

 362 

 363 
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 379 

 380 

Figure 5: MODIS Aqua spectral random error (Estimated from Figure 3a in Melin et al., 2016) and 381 
its hyperspectral interpolation.  382 

Constituent concentration measurements collected during fieldwork campaigns are sensitive to 383 
errors for several reasons, including errors related to the water sample filtration, sensor calibration, 384 
method specific or human errors, etc. Estimates of systematic uncertainties related to CHL sampling 385 
range from +/-10% (Claustre et al., 2004) to +/-80% standard deviation (Sørensen et al., 2007; Tilstone 386 
et al., 2012), depending on the method used for sampling and the degree of quality control applied. We 387 
have used these systematic error ranges as a guide to define random errors due to limited information 388 
in the literature on random errors for CHL samples. There is even less information available in the 389 
literature for estimates of uncertainty in MSS measurements, so we have assumed that errors will be 390 
similar to those found for CHL as both techniques operate on filtered samples. For CDOM, Dall’Olmo 391 
et al. (2017) respectively found absorption measurements accuracy and precision of 0.0004 m−1 and 392 
0.0025 m−1 when compared with independent data at 440 nm. For consistency Gaussian random errors 393 
were applied to CHL and MSS following a standard deviation of 20% and were assumed to be 394 
proportional to the concentration. Uncertainties for CDOM were determined using random normal 395 
distributions with a standard deviation of 0.0025 m-1. We applied noise to the model constituent ouputs 396 
to better represent realistic datasets. 397 

 398 

2.2 Neural network development  399 

For this study, feed forward neural networks with backpropagation of the error until 400 
convergence was reached were developed using Matlab’s train function. An architecture of 3 hidden 401 
layers and N neurons in each layer was selected for each networks, with N being the number of inputs. 402 
For example, N was set to 13 when NNs were created using the 13 MODIS Aqua-like bands available 403 
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with both datasets. Selecting 3 hidden layers is sufficient to avoid underfitting issues and is 404 
computationally efficient. The Rectified Linear Unit activation function was selected and the error was 405 
evaluated using the MSE error function. Light and constituents concentrations were log transformed 406 
and then normalised between 0 and 1 prior to training, following Dransfeld et al. (2006). The train set 407 
represented 70% of available data, and validation and test sets 15% each, all randomly selected for 408 
each training. For the last results section when hyperspectral NN were developed, the number of 409 
neurons per layer was selected to be the number of bands available for each experiment. Figure 6 shows 410 
a schematic diagram of a NN. It contains 4 inputs, 2 hidden layers of 4 neurons each (following the 411 
number of inputs as mentioned above), and can make estimations of all three constituents at the same 412 
time, CHL, CDOM and MSS as used in multi-task learning. When a single constituent is estimated, 413 
the output layer contains only 1 node associated with the desired constituent.  414 

NN performance will be evaluated with the Mean Absolute Error  (MAE) using the Seegers et 415 
al. (2018) formula, which is a MAE applied to log transformed values to the model and observation 416 
parameters prior to application as shown in equation 1 below. For example, a MAE of 1.3 represents a 417 
relative measurement error of 30%.  418 

 419 

MAE =  10^
ቆ

∑ |ಾ೔షೀ೔|೙
೔సభ

ಿ
ቇ

      (1) 420 

 421 
 422 

R =
∑(ெ௜ିெഥ)(ை௜ିைത)

ඥ∑(ெ௜ିெഥ)మ ∑(ை௜ିைത)మ
     (2) 423 

 424 
 425 
 426 
 427 
 428 
 429 
 430 
 431 
 432 
 433 
 434 
 435 
 436 

Figure 6: Neural network diagram as used for multi-task learning. Hidden layers always contain a 437 
number of neurons equal to the number of inputs. The output layer returns a single constituent at a 438 
time when MLT is not used.b0, b1 etc, represent the bias unit. The Rrs and constituents are log 439 
transformed prior to training. 440 

 441 

The purpose of neural network development is to provide sufficient training data to allow the 442 
NN to establish robust statistical relationships that enable accurate prediction of the target parameter 443 
from potentially complex input data. The training part of the dataset is used to train the network, the 444 
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validation part is used to stop the network training when it stops improving (when the magnitude of 445 
the gradient descent reaches a value below 10-7), and the test part is used to evaluate the performance 446 
of the resulting NN. Figure 7 shows data for training, validation and test datasets for CHL prediction 447 
using the LN distributed dataset without inclusion of input noise. All three datasets show very similar 448 
performances, and the same observation was made during the analysis of results section. This suggests 449 
that the NNs are not overfitting. To avoid showing similarly repetitive diagrams in the results section, 450 
only the independent test set results will be shown going forward. 451 

 452 

Figure 7: Neural network results at estimating CHL based on the 13 MODIS Aqua bands, using the 453 
log normal distribution of data without addition of noise. 454 

 455 

3. RESULTS 456 

3.1. NN retrieval of constituents in optically complex waters (H1) 457 

The first set of experiments is designed to test the hypothesis that NNs should be able to 458 
accurately retrieve individual constituent concentrations (CHL, CDOM and MSS) across the broad 459 
range of optical water conditions found in coastal waters (H1) with this modelled dataset.  Therefore 460 
for this section, NN were trained to produce a single constituent at a time. Figure 8 (a, b and c) shows 461 
performance obtained for the test sets for each constituent concentration, for the LN dataset, without 462 
addition of noise. All three constituents can be predicted with very high performances under these 463 
idealized conditions, with MAE vales close to 1 and more than 99% of data falling within a factor of 2 464 
of the 1:1 line. Adding realistic estimates of random noise to both the reflectance and constituent 465 
datasets has a significant impact on NN performance. Figure 9 (a, b and c) shows that retrieval of CHL,  466 
CDOM and MSS is still largely successful, but there is a noticeable increase in the spread of data for 467 
each parameter, with MAEs reaching as high as 1.25 for CHL, though more than 96% of data still falls 468 
within a factor of 2 of the 1:1 line. 469 

 470 



Neural networks applied to radiative transfer models simulating coastal water conditions 

 
14 

 471 

 472 

Figure 8: Neural network results obtained for each constituent using a log normal (top row) or log 473 
flat (bottom row) distribution of data without addition of noise (raw model output).  474 

 475 

   476 

Figure 9: Neural network results obtained for each constituent using a log normal (LN, top row) or 477 
log flat (LF, bottom row) distribution of data with addition of noise.  478 
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 These results clearly demonstrate that NNs have the capacity to overcome the optical 479 
complexity of coastal waters with freely varying constituent concentration combinations. This is 480 
perhaps unsurprising in the case of noise-free data, but it is reassuring to see that inclusion of noise in 481 
the system does not irreparably impair performance. We can therefore conclude that hypothesis 1 (H1) 482 
is demonstrated to be correct as was previously observed in the literature with other datasets (Buckton 483 
et al., 1999; Schiller and Doerffer, 1994; Tanaka et al., 2004; Ioannou et al., 2013 for example). The 484 
NN developed for this hypothesis can reach close to perfect estimates due to the absence of noise and 485 
the  controlled environment of Hydrolight similarly to results achieved by Schiller and Doerffer, 1999, 486 
with the difference being that low concentrations are slightly harder to estimate. 487 

3.2 Impact of data distribution on NN performance (H2) 488 

The results presented in section 3.1 were produced using the log-normal (LN) datasets where 489 
the distribution of data has been organized to broadly replicate datasets found in the literature. In this 490 
section we test the hypothesis (H2) that NN performance will improve if the training dataset is more 491 
evenly distributed to better capture extreme events at both high and low concentrations. First, when 492 
trained on their respective perfect datasets, the normal and flat distribution both produce good estimates 493 
(Figure 8), where panels d, e and f show NN performance using the log-flat (LF) data distribution. NN 494 
performance for the LF dataset is generally slightly worse than for the LN dataset, with MAEs 495 
increasing very slightly for CDOM and MSS, but more markedly for CHL (MAE = 1.11). It is 496 
noticeable the greatest deterioration in performance appears to be for low CHL values. This is slightly 497 
surprising as part of the interest in testing the LF distribution was specifically to address the question 498 
of less commonly occurring scenarios at the extremes of the concentration ranges. It may be the case 499 
that although the LF training dataset has increased the proportion of low concentration training data, 500 
there is an intrinsic problem in trying to estimate very low concentrations of CHL in the presence of 501 
potentially high concentrations of other constituents. This could simply be attributable to the CHL 502 
making an insignificant contribution to the optical signals under these circumstances. 503 

Figure 9 (d, e and f) shows the impact of incorporating noise into the LF NNs. As found 504 
previously with the LN dataset, introduction of realistic measurement uncertainties negatively impacts 505 
NN performance for all three constituents, with CHL more strongly affected than CDOM and MSS. In 506 
the latter cases although MAEs increase to 1.13 and 1.2, approximately 99% of points still fall within 507 
a factor of 2 of the 1:1 line. In contrast, performance of the CHL NN deteriorates significantly with a 508 
MAE of 1.49 and the fraction of points falling within a factor of 2 of the 1:1 line dropping to 83%. 509 
CHL performance is again most notably affected for low concentrations where it would appear that 510 
introduction of measurement uncertainties has made it even harder to resolve the small contribution of 511 
CHL to the optical signals. This level of CHL retrieval is close to the levels found with real in situ 512 
observations (Hadjal et al., 2022; Pahlevan et al., 2022). Retrieval of CDOM and MSS is fairly robust 513 
under all of the circumstances tested here. This is unsurprising in the case of MSS which has previously 514 
been robustly determined using even single red wavebands (Nechad et al., 2010; Neil et al., 2011). 515 

The idea behind the creation of a LF NN is to evaluate if it can outperform a LN NN at 516 
estimating data where it is problematic, near the edges of distributions where the amount of training 517 
data is limited. To further evaluate this hypothesis, we apply a cross validation test, where the LN NN 518 
is applied to the flat dataset, and the LF NN is applied to the normal dataset. For this specific test, the 519 
input data were normalised using the entire dataset to avoid obvious normalisation bias during the 520 
training session which would lead to failure in both cases. The results are displayed in Figure 10 below. 521 
Panels a to c present the results from the application of the LN NN to the flat dataset, while panels d 522 
to f present the results from application of the LF NN to the normal dataset. Both NN return poorer 523 
performances on the opposite dataset compared to the original NN. The LN NN (Figure 10a, b and c) 524 
shows reduced MAE net performances for all constituents. Similarly, the LF NN (Figure 10d, e and f) 525 
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shows net reduced MAEs of for CHL but very close to what the LN NN produce for CDOM and MSS. 526 
The LF NN performs better on a flat distribution (Figure 9) and is much less impacted than a LN NN. 527 
This is mostly due to the training session that included more extreme values, easier to predict than a 528 
NN that did not have access to it previously.  529 

 530 

Figure 10: Top row: Neural network results obtained for each constituent estimates by applying the 531 
log normal neural network (LN NN) algorihm trained in Figure 9 to the log flat distributed dataset 532 
(top row). Opposite for the bottom row (log flat neural network applied to the normaly distributed 533 
dataset). 534 

The results presented in Figures 8, 9 and 10 refute the hypothesis (H2) that a more evenly 535 
distributed dataset will tend to improve NN performance. It seems that the NN trained with a LF 536 
distributed dataset is more resilient and produce better results at both edges of the dataset, yet 537 
performances are still lower than a NN trained with this specific type of distribution. Nonetheless, 538 
across the full range of variability of the three constituents there is no evidence to suggest that the LF 539 
dataset is producing superior performance. Thus it seems unlikely that either subsampling existing 540 
datasets to artificially produce log-flat distributions or targeting sampling effort to achieve it in future 541 
will lead to any improvement in performance. 542 

 543 

3.3 Multitask learning: simultaneous estimation of CHL, CDOM and MSS (H3) 544 

Multitask learning (MTL) is a type of machine learning method (Caruana, 1997) that tries to 545 
improve neural networks generalization capabilities performance by compelling networks to learn how 546 
to estimate multiple, potentially correlated variables simultaneously. There are multiple reports of 547 
successful applications from different fields in the literature (Collobert and Weston, 2008; Deng et al., 548 
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2013; Girshick, 2015; Ramsundar et al., 2015). In order to test the potential benefits of MTL one needs 549 
to have access to a set of data containing both the reflectance signals and all three optically significant 550 
constituent concentrations. Additionally the dataset needs to be sufficiently large and representative to 551 
be suitable for NN training. Unfortunately there are relatively few publicly available in situ datasets 552 
where all of these parameters are simultaneously recorded. Here, because we use modelled datasets 553 
based on user-defined ranges of constituent concentrations and a complete set of SIOPs, we have 554 
sufficient flexibility to produce a dataset that can be used to test the hypothesis that MTL will improve 555 
determination of constituent concentrations using NNs (H3).  556 

The NNs developed in this section estimate all 3 constituent concentrations (CHL, CDOM and 557 
MSS) simultaneously in the output layer as shown in Figure 6. Figure 11 displays the performance 558 
reached for each variable for both the LN and LF distributions, with noise included in both cases. MTL 559 
performance levels are broadly comparable with single parameter retrievals (Figure 9) in all cases. 560 
There is no evidence to suggest that MTL has improved retrieval of any of the constituents and in the 561 
case of CDOM there is even some degradation in performance compared to single parameter retrieval. 562 
Whilst we cannot rule out the possibility that MTL may have benefits if used with more complex NN 563 
architectures or with real world data, at this point we can only draw the conclusion that there is currently 564 
no evidence to support the hypothesis (H3) that MTL will improve NN retrieval of CHL, CDOM and 565 
MSS. 566 

 567 

Figure 11: Results obtained at estimating CHL, CDOM and MSS at the same time, for both data 568 
distributions, using a neural network (3 layers of 13 neurons each) and using the 13 MODIS Aqua 569 
bands as inputs.  570 

3.4 Comparison of hyperspectral vs multispectral NN performance (H4) 571 

The final experiment presented in this study concerns evaluation of the potential for 572 
hyperspectral reflectance data to significantly improve the performance of NNs over existing 573 
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multispectral capabilities (H4). The work presented in previous sections was conducted using 13 574 
wavebands that were selected to mimic MODIS signals. The Ecolight simulations produced a total of 575 
102 wavebands. Using all available wavebands would be computationally expensive and there is good 576 
reason to believe that such an approach would be superfluous due to information redundancy between 577 
adjacent bands. Instead we systematically explore the impact of increasing the number of bands 578 
available for the network. In order to be methodical, bands were selected using even spacing. For 579 
example, when 2 bands were used, bands 33 and 66 (550 and 715 nm respectively) were selected 580 
among the 102 available. When 3 bands were used, bands 25, 50 and 75 were selected. This approach 581 
does not attempt to optimize performance by selecting the best performing bands for each subset, but 582 
rather treats the data in a systematic manner operating on an assumption that each band has similar 583 
information value. Here between 1 and 20 wavebands were selected and resulting NNs were tested for 584 
both the LN and LF datasets, with noise included in all cases. Each NN is composed of 3 layers with 585 
the number of neurons per layer being equal to the number of wavebands used, and separate NNs being 586 
developed for each constituent (no MTL). 587 

Figure 12 shows the MAE obtained for 10 neural networks trained with 1 to 20 bands evenly 588 
spaced from the full hyperspectral signal. To improve consistency for each band combination, an 589 
ensemble approach was used (Hadjal et al., 2022). The ensemble consists of 10 neural networks that 590 
were created for each band combination. The output of each set of 10 networks is averaged (median 591 
value for each estimates based on the 10 values available). The 10 networks of each architecture are 592 
all independent and trained with a different initial randomizatiom and different training datasets. The 593 
results are shown for the entire dataset, not the test set only as it was conducted for previous figures. 594 
The light grey area that englobes the dashed or solid lines represent the median ± 1 standard deviation 595 
(std) of the 10 networks for each band combinaition. There is an obviously higher std when small 596 
numbers of bands are used due to the potential increased presence of failure to reach convergence 597 
during the NN training. It does not affect the median, which is why it was selected over the mean. The 598 
MODIS Aqua examples are shown as an horizontal line ± 1 std. 599 

 600 
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 645 

Figure 12: Plain and dashed line: median of mean absolute error obtained for 10 neural networks 646 
averaged designed using the specified number of band used to create an evenly-spaced algorithm. Grey 647 
area represent the median ± standard deviation. The green and red cross represent performance 648 
obtained for the 13 bands MODIS Aqua NN shown in Figure 8 with its standard deviation associated.  649 
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As expected, there is a clear improvement of NN performance with increasing waveband 650 
availability and increased dimensions of the networks. Improvements are most significant for small 651 
numbers of wavebands and then in most cases a region of much slower improvement is reached once 652 
approximately 7-10 bands are used.  In all cases the MODIS Aqua NNs outperform evenly-spaced 653 
algorithms with equivalent spectral regions suggesting that careful selection of specific wavebands 654 
may be slightly beneficial compared to evenly spaced wavebands. Further testing of 25 to 50 evenly 655 
spaced wavebands (not shown) provided little further improvement in NN performance (MAE is 5% 656 
lower). The same test using 61 hyperspectral bands (the real number of information carried by the 13 657 
MODIS Aqua-like bands)  returned similar performances as the MODIS Aqua NN (MAE of 1.5) but 658 
took more computational time to train (up to 10 times longer). To separate the H4 performance changes 659 
attributed to the number of input bands from increasing dimension of the networks, the aforementioned 660 
band combinations were also tested on a fixed network architecture. Reproducing the method with a 661 
fixed size NN (3 layers of 13 neurons) for each number of band combinaition rather than using the 662 
number of inputs as the number of neurons per layer also returned broadly the same performances, 663 
with the main difference being slightly better estimates when 1 to 5 bands are used due to higher 664 
number of neurons available, which can lead to overfitting issues. These results generally refute the 665 
hypothesis (H4) that ever greater spectral resolution will improve retrieval of CHL, CDOM and MSS 666 
in optically complex coastal waters. This may reflect the fact that the optical properties of the water 667 
constituents vary slowly with wavelength and associated reflectance spectra offer only limited spectral 668 
information content. There are still good motivations for access to further resolved spectral resolution 669 
in future, which may help deal with pigment specific algae. While we cannot demonstrate it due to the 670 
absence of real data, there is also scope for improving performances for light signals contaminated by 671 
other sources such as glint, haze, land adjancecy effects, etc. due to their impact over different parts of 672 
the light spectrum hyperspectral sensors will have access to.  673 

The table below summarises the different metrics obtained for each test. The percentage of data 674 
between the 1:2 and 2:1 line was not processed for the hyperspectral experiments. 675 

Table 2: Statistical performances of the different experiments. The size of the neural network 676 
architecture used is displayed (3x13 means 3 layers of 13 neurons each). 677 

 678 

  CHL CDOM MSS 

N MAE R %<2/1 & 
>1:2 

MAE R %<2/1 & 
>1:2 

MAE R %<2/1 & 
>1:2 

Hypothesis 1: 
Group control 

          

LN dataset 
(3x13) 

1500 1.02 1 99.93 1.01 1 100 1 1 100 

LF dataset 
(3x13) 

1500 1.11 1 99 1.04 1 100 1.01 1 100 

Hypothesis 2: 
Impact of data 
distribution 

          

LN dataset 
(3x13) 

1500 1.52 0.92 80.53 1.19 0.94 97.4 1.05 1 99.47 

LF dataset 
(3x13) 

1500 1.95 0.93 63.73 1.36 0.94 89.73 1.16 0.99 95.73 

LN NN applied 
to flat dataset 

(3x13) 

10,000 2.21 0.9 63.87 1.49 0.89 81.6 1.2 0.99 93.76 
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LF NN applied 
to flat dataset 

(3x13) 

10,000 1.83 0.9 66.37 1.25 0.93 95.2 1.07 1 99.44 

Hypothesis 3: 
Multitask 
learning 

          

LN dataset 
(3x13) 

1500 1.47 0.92 82.8 1.22 0.93 97.53 1.06 1 99.8 

LF dataset 
(3x13) 

1500 1.94 0.93 65.67 1.43 0.93 85.53 1.19 0.99 95.6 

Hypothesis 4: 
Hyperspectral 

          

LF dataset 1500          

5 bands (3x5)  2.90 0.81  1.84 0.75  1.25 0.98  

10 bands (3x10)  2.35 0.86  1.54 0.86  1.19 0.99  

15 bands (3x15)  2.10 0.89  1.43 0.90  1.16 0.99  

LN dataset 1500          

5 bands (3x5)  1.94 0.85  1.46 0.81  1.08 0.99  

10 bands (3x10)  1.78 0.89  1.34 0.89  1.07 0.99  

15 bands (3x15)  1.65 0.91  1.28 0.93  1.06 0.99  

 679 

4. Discussion 680 

The potential for NNs to provide improved quality ocean colour products for optically complex 681 
coastal waters has been demonstrated for many years (Doerffer and Schiller, 1994; Buckton et al. 682 
(1997); Gross et al., 1999). The advent of hyperspectral ocean colour sensors with genuine global 683 
spatio-temporal capabilities and the availability of affordable computational resources provides 684 
growing impetus to further explore this potential. However limited data availability for training and 685 
testing NNs is a serious impediment to development of this approach. Here we have developed realistic 686 
radiative transfer simulations in order to generate training datasets that span the range of constituent 687 
concentrations needed to test NN performance across the range of variability encountered in coastal 688 
waters. This modelling approach has allowed us to test a number of fundamental hypotheses relating 689 
to development of NN algorithms for coastal ocean colour applications. Of course it should be noted 690 
that our bio-optical model is restricted through selection of SIOPs generated from a single region and 691 
does not include variability associated with optially distinct algal functional types. 692 

When applied to the simulated data used in this study, neural networks have shown capacity to 693 
accurately retrieve CHL, CDOM and MSS when all three constituents are free to vary independently 694 
from one another over concentration ranges spanning several orders of magnitude (H1). NN 695 
performance is affected by inclusion of realistic measurement uncertainties, but the fundamental 696 
conclusion remains the same that relatively small NN architectures are capable of handling the levels 697 
of optical complexity encountered in coastal and shelf seas. These results are broadly consistent with 698 
recently presented research by Pahlevan et al. (2022) who have demonstrated ability to retrieve all 699 
three constituents using Mixture Density Networks. The simulated datasets presented here could 700 
usefully be used to test approaches of this nature and other machine learning algorithms. Whilst NN 701 
return almost perfect results with noise-free simulations, their performance appears to be strongly 702 
linked to the uncertainty in the in situ training data. With 20% (StdDev) noise added to both CHL and 703 
MSS but not to the light signal (not shown), MAEs close to 1.2 were reached when no noise was 704 
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applied to the Rrs signal. With application of noise to both (Figure 9) the MAE achieved reach 1.5 for 705 
CHL retrievals with the MODIS Aqua like NN, which shows over and under estimates at low 706 
concentrations.  Whilst the error on the light signal impacts the constituents retrieval in the same way, 707 
the noise addition to CDOM measurements consists of a net value, which may explain why the 708 
estimates are closer to the model value (MAE of 1.2 on average). The performance of NN estimates is 709 
directly linked with in situ constituents data quality and is probably the main limiting factor here. 710 
Except for the low values of CHL, CDOM and MSS, NN have shown the capacity to make excellent 711 
estimates of the constituents. 712 

Various strategies to improve NN performance have been developed over a wide number of 713 
research fields. One of the more commonly discussed approaches is multitask learning (MTL) which 714 
is immediately of interest in ocean colour remote sensing in coastal waters as the reflectance signals is 715 
inherently dependent on more than one optical constituent. The ability to determine constituent 716 
concentration ranges used in radiative transfer simulations provides an opportunity to systematically 717 
test the potential merit of MTL. In this case we have clear evidence that simultaneous retrieval of all 718 
three optical constituents does not improve upon single parameter retrievals and in fact may slightly 719 
reduce overall performance (H2, Figure 11). For a pure performance approach, MTL should not be 720 
considered, at least with simulated data. However, MTL is also being used to help generalisation of 721 
neural networks in other fields, but this hypothesis was not testable here because we rely on simulated 722 
coastal data.   723 

One of the most common perception of NNs (and other machine learning approaches) is 724 
supposed limitation to the training dataset provided. Whilst there is indeed an element of truth to this, 725 
it should also be recognized that if a training dataset is genuinely representative of prevailing 726 
circumstances then there is good scope for a NN to be able to provide general predictive power for that 727 
system. Many of the criticisms based on training set limitations are similarly true for empirical and 728 
semi-analytical algorithms. In all cases datasets for algorithm development are subject to the vagaries 729 
of in situ sampling effort and impact of cloud cover on matchup realization. The NN approach 730 
discussed in this paper was first developed using an in situ dataset to predict CHL (Hadjal et al., 2022). 731 
One of the concerns identified in that work was the log-normal nature of the data distribution in the 732 
assembled training dataset, with concern that both high and low concentration scenarios were under-733 
represented. The simulation approach developed here has allowed us to compare results from datasets 734 
with both log-normal and log-flat constituent distributions. Somewhat surprisingly, there does not 735 
appear to be any benefit to having a more evenly spaced training dataset and in fact the performance 736 
of CHL retrieval was of lower quality for the flat dataset at low concentrations. It seems likely that 737 
there is a fundamental limit on accurate retrieval of any constituent when its contribution to the 738 
reflectance signal becomes sufficiently insignificant. There is naturally interest in trying to retrieve 739 
CHL concentrations at very low concentrations such as are found in oligotrophic offshore waters 740 
(Signorini et al., 2015) . However, in the case of optically complex coastal water it may be much more 741 
difficult or even impossible to achieve the same level of CHL retrieval at low concentrations due to the 742 
confounding influence of CDOM and MSS which would typically either be absent or found at very 743 
low concentrations in case 1 waters. That said, these results are helpful in so much as they illustrate 744 
that the normal distributions, which are similar to those generally obtained from large field campaigns, 745 
are capable of producing high quality results across the full range of concentrations for each 746 
constituent, and there is no obvious merit in trying to further manipulate them to manage over- or 747 
under-representation across the dataset. 748 

Development of the hyperspectral PACE mission has brought renewed interest in establishing 749 
the potential for hyperspectral remote sensing to improve the quality of ocean colour products for 750 
optically complex coastal waters. This is particularly relevant for NNs and other data-hungry machine 751 
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learning approaches that have potential to exploit additional information content to improve product 752 
quality. Here we have tested the hypothesis that NNs trained on simulated hyperspectral reflectance 753 
data will produce better quality estimates of CHL, CDOM and MSS than is possible with multispectral 754 
data (H4). Results presented in Figure 11 suggest that there is in fact a practical limit to NN 755 
performance and that there is little further improvement in algorithm performance with higher numbers 756 
of wavebands. For this modelled dataset, the NNs do not produce better results as soon as the visible 757 
and NIR signal has been split into approximately 10 evenly spaced regions. It should be noted that 758 
these results were obtained using evenly spaced hyperspectral wavebands and that there is clearly scope 759 
for further optimization by careful selection of specific combinations of wavebands which is an option 760 
with hyperspectral data. Indeed, in all cases NNs operating on the MODIS Aqua waveband set 761 
outperformed evenly spaced hyperspectral data, illustrating the potential benefit of carefully selected 762 
waveband subsets. Nonetheless, these results strongly suggest that simply increasing spectral 763 
resolution will not of itself improve determination of CHL, CDOM and MSS in coastal waters. 764 
However, there may be many other benefits to use of hyperspectral data such as identification of 765 
specific spectral features associated with e.g. cyanobacterial blooms. The main improvement from a 766 
remote sensing point of view could in fact come from the capacity of these neural network algorithms 767 
to deal with natural sources of signal contamination (e.g. sun glint, thin clouds, etc.). The NN method 768 
recently developed by Hadjal et al. (2022) using TOA signals to retrieve CHL directly could benefit 769 
from inclusion of additional bands providing information on sources of signal disruption. For good 770 
quality Rrs data, expectations for significant improvement in product quality across the board would 771 
be misplaced. Additional factors such as signal to noise ratio, atmospheric correction performance and 772 
quality of spatio-temporal matching will significantly impact product performance as well. 773 
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