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ABSTRACT: Accurate methods to predict solubility from
molecular structure are highly sought after in the chemical
sciences. To assess the state of the art, the American Chemical
Society organized a “Second Solubility Challenge” in 2019, in
which competitors were invited to submit blinded predictions of
the solubilities of 132 drug-like molecules. In the first part of this
article, we describe the development of two models that were
submitted to the Blind Challenge in 2019 but which have not
previously been reported. These models were based on computa-
tionally inexpensive molecular descriptors and traditional machine
learning algorithms and were trained on a relatively small data set
of 300 molecules. In the second part of the article, to test the
hypothesis that predictions would improve with more advanced
algorithms and higher volumes of training data, we compare these original predictions with those made after the deadline using deep
learning models trained on larger solubility data sets consisting of 2999 and 5697 molecules. The results show that there are several
algorithms that are able to obtain near state-of-the-art performance on the solubility challenge data sets, with the best model, a graph
convolutional neural network, resulting in an RMSE of 0.86 log units. Critical analysis of the models reveals systematic differences
between the performance of models using certain feature sets and training data sets. The results suggest that careful selection of high
quality training data from relevant regions of chemical space is critical for prediction accuracy but that other methodological issues
remain problematic for machine learning solubility models, such as the difficulty in modeling complex chemical spaces from sparse
training data sets.

■ INTRODUCTION
Solubility is a fundamental physicochemical property that is
important in many aspects of chemistry, particularly in the
pharmaceutical industry as it is a key driver in the determination
of drug bioavailability.1,2 Experimental assays are used to analyze
a large number of discovery compounds to screen out
problematic low or high solubility compounds.3 Empirical
solubility determination is strenuous in terms of cost and time,
so there is an increasing need for cheaper and faster alternatives
for at least the early stages of drug discovery. To meet this need,
a large number of computational methods have been developed
to complement or, in some cases, replace experimental assays.
The most commonly used predictive methods are data-driven

approaches. These statistical models use experimental data to
learn a relationship between the physical property of interest
(i.e., solubility) and an appropriate computational representa-
tion of the molecule. Several hundred such models have
previously been published, differing in their choice of molecular

encoding, statistical learning algorithm, and training data.4 A
historical example is the Group Contribution approach, where a
(usually) linear relationship is sought between solubility and the
number of selected atoms and functional groups in themolecule.
Amore common approach is to use machine learning algorithms
trained on molecular descriptors or fingerprints. Most recent
research has been informed by the rapid advances in artificial
intelligence being made in other fields. Indeed, a wide-variety of
deep learning architectures have been applied to the problem of
predicting solubility, including graph-based neural networks,5−7

recurrent neural networks,8 transformers,9,10 message-passing
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neural networks,11 deep belief networks,12 and others. Unlike
other fields, it is not yet clear that deep learning algorithms offer
a significant improvement over traditional machine learning
approaches for solubility prediction.8 This may partly be due to a
lack of accurate experimental solubility measurements for
training, although strategies such as transfer learning8,9 or
multitask learning13 may help in some cases.
A well-known advantage of data-driven approaches is that

they require very little time to make predictions for single
molecules. This makes them suitable for the early stages of drug
discovery where there are an incredibly large number of
molecules to screen and when the application of predictive
models can prioritize within virtual chemical spaces to
determine which proposed structures are worth synthetic
investment. A significant drawback of data-driven approaches
is the requirement for pre-existing high quality experimental
data that has been measured under relevant conditions for
molecules that are structurally similar to those to be predicted.
The solubility data that is available in the published literature
varies in quality due to inconsistent methodologies, high
experimental errors, varying or undefined experimental
conditions, reporting errors, and other issues.14,15 Conse-
quently, the volume of reliable data is relatively low and often
provides a sparse representation of the relevant chemical space
for the compounds being predicted. Reliable models may only
be developed when sufficient high quality experimental data are
available for compounds from relevant regions of chemical
space, which can make it challenging to apply data-driven
models either to new compound families or to properties
obtained at different conditions (temperatures, solvents, etc.).
Since data-driven models make predictions from molecular
structure, they do not explicitly consider the influence of solid-
state polymorphism on solubility. Systematic studies of the
solubility differences of known crystalline polymorphs suggest
that the average error introduced by this assumption will be less
than a factor of 2 in molar solubility for small organic
molecules.16 Nevertheless, this is an additional confounding
factor when many other physiological properties of interest will
only be dependent on the intrinsic molecular structure and will
be invariant to physical form.
Recently, interest in physics-based solubility prediction has

led to several new methods that do not require parametrization
against experimental solubility data. The Frenkel group use
molecular dynamics simulations to find the conditions where the
solution and the solid have the same chemical potential.17,18

Kolafa simulates a solute dissolving in a solvent to find the
concentration at which equilibrium is reached.19 The Anwar
group computes the solution density of states fromMonte Carlo
simulations, yielding a probability distribution function
containing two peaks; one is the pure solute, and the mole
fraction of the other is the solubility.20,21 The Palmer, Mitchell,
and Price groups compute solubility from solution free energy,
which in turn is obtained from separate calculations of
sublimation and hydration free energies by a thermodynamic
cycle via the gas phase.22−24 Abramov and co-workers use a
similar approach with the addition of some empirical
parameters.25 In principle, these methods have many advantages
since they provide a wealth of chemical and thermodynamic data
for molecular design, and they are applicable to different
solvents, polymorphs, and temperatures without a need for
parametrization. However, in practice, their accuracy and
computational expense currently limit their practical application

to predictions on small systems at low throughput, though that
may change in the future.
Over the last 15 years, two blind challenges have been issued

by the American Chemical Society to assess the accuracy of
solubility predictionmethods26,27 for small organic solutes. Both
challenges have focused on the prediction of intrinsic aqueous
solubility at 298 K, which is defined as the concentration of the
neutral form of the solute in a saturated aqueous solution at
thermodynamic equilibrium at the specified temperature.22,28

Although this definition of solubility differs from that commonly
measured in some industrial applications, such as the use of so-
called “kinetic” solubilities for screening in the pharmaceutical
industry, it is an appropriate choice for a prediction challenge
where having clearly defined and reliable experimental data is
paramount. Moreover, intrinsic aqueous solubilities can be used
to predict pH-dependent solubilities and dissolution rates using
methods such as the Henderson−Hasselbalch or Noyes-
Whitney equations, respectively. In the first solubility challenge
issued in 2008,26 entrants were provided with a training set of
100 drug-like molecules and asked to submit blinded predictions
of the solubility of a further 32 drug-like molecules. Since little
information was published regarding the computational
methods, nor whether any additional data was employed in
training, it is not possible to draw clear conclusions about which
methods perform best. Nonetheless, the results confirmed that a
root-mean-square error (RMSE) of ∼0.7−1.1 log units was
expected from state-of-the-art methods at that time. In the
second solubility challenge issued in 2019,27 entrants were asked
to make predictions of the solubility of 132 drug-like molecules
that were divided into two data sets, one comprising 100
molecules considered to have high quality experimental
solubility data and one comprising 32 molecules with solubility
data with larger experimental errors. Unlike the first solubility
challenge in which all experimental data were measured using a
single experimental technique, the second challenge used
carefully validated experimental data taken from the published
literature. Entrants were also invited to submit basic information
about the models they employed, which allowed for a more
detailed analysis of competing methodologies.
The purpose of this article is two-fold. First, we report two

machine learning models that were used to submit blinded
predictions to the 2019 solubility challenge, one of which was
ranked within the top 10 of all submitted models.29 These
models were trained on a relatively small data set of 300
molecules. Second, to assess the importance of training data
selection, we retrain the models on two larger data sets of 2999
and 5697 molecules and provide a direct comparison to several
deep learning algorithms. Critical comparison of these addi-
tional sets of models highlights that volume and reliability of
experimental data, as well as issues with modeling complex
chemical spaces from sparse training data sets, remain
problematic, limiting the accuracy of solubility prediction
methods.

■ METHODS
Experimental Data. Two blinded testing data sets were

issued by the second solubility challenge: a “tight” data set
comprising 100 molecules with solubility measurements that
were consistent across several experimental methods (SD = 0.17
log units) and a “loose” data set comprising 32 molecules with
less reliable experimental data (SD = 0.62 log units). To train
models to predict the intrinsic aqueous solubility of the tight and
loose set molecules, three data sets were compiled from the
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published literature. “D300” consists of 300 organic and drug-
like molecules taken predominantly from the first solubility
challenge, supplemented with work published by Llinas,
Bergström, and co-workers, as well as from additional
sources.27,30−35 This data set was used to train the models
submitted to the second solubility challenge; the time
constraints imposed by the submission deadline combined
with the challenges in curating literature solubility data explain
the relatively small size of this data set. “D2999” contains the full
D300 data set plus additional intrinsic solubility data from
Raevsky,36 Wang (data set 2),37 Louis,38 Lovric,́39 and
Yalkowsky.40 “D5697” contains all of the data in D2999 plus
additional data taken from AquaSolDB41 for molecules which
were nonionizable between pH 3−13, based on the OpenEye
Quacpac Toolkit (version 2020.2.2)42 and OpenBabel (version
3.1.1).43,44 D2999 and D5697 comprise 2999 and 5697
molecules, respectively, and these data sets were used to train
deep learning models after the second solubility challenge
closed. The differing sizes of the three training data sets reflect a
trade-off between the reliability of experimental data and the
number of data points. We consider the experimental data in
D300 to be reliable, but it is a small data set, especially for
training machine learning models with multiple free parameters.
Conversely, in compiling D5697, we were able to include more
molecules but only at the cost of including more experimental

measurements of unknown provenance and consequently with
unknown variability in experimental methodology.

Data Set Compilation. The following compound selection
and preprocessing rules were used to compile the D300, D2999,
and D5697 data sets. SMILES strings were validated by
comparing generated structures using PubChem,45 CACTUS,46

and RDKit.47 The specific tautomer defined by the original
SMILES was preserved since it was assumed that the original
sources contained an appropriate tautomeric form for each
compound. Duplicate molecules were identified and removed
using InChI strings. RDKit was used to neutralize salts,
removing the lowest molecular weight salt component in the
process. Other compounds with SMILES strings containing
disconnections, indicating multiple components (e.g., solvates),
were neglected. The data sets were then filtered to exclude very
small (number of heavy atoms < 4), large (molecular weight >
1400), and flexible molecules (number of rotatable bonds > 20)
since these were unrepresentative of the solubility challenge
data.

■ DATA SET ANALYSIS
The five data sets (3 training and 2 testing sets) used in this work
are summarized and compared in Figure 1. The t-SNE plots
(Figure 1.a) illustrate the chemical space spanned by each data
set and show that the training and testing sets occupy a similar

Figure 1. a) t-SNE plots based on RDKit fingerprints for the three training data sets (gray dots) alongside the molecules in the tight (blue triangles)
and loose (red squares) testing data sets. b) Violin plots showing the distributions of experimental log(S), molecular weight, and number of rotatable
bonds for the compounds in the 3 training and 2 testing data sets.
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region. Most of the additional compounds in the larger training
sets also occupy a similar space to the testing sets; however,
D5697 also contains some more dissimilar compounds due to
the inclusion of nonionizable molecules which have fewer or
different functional groups than the predominantly neutral
ionizable molecules of D2999. The number of unique Murcko
scaffolds increases with data set size from 142 (D300), to 798
(D2999), to 1222 (D5697) representing an increase in the
coverage of chemical space, which is also evident in the t-SNE

plots in Figure 1.a. The violin plots (Figure 1.b) show good
overlap in solubility between all five data sets, although the
D2999 and D5697 training sets contain a few compounds which
extend the ranges to lower solubility values. The range of
molecular weights and number of rotatable bonds are also
similar across the training sets and reflect the small, drug-like
molecules of the testing sets.
The molecular similarity between our training sets and the

testing sets is further illustrated in Figure 2, which displays the

Figure 2. Tanimoto similarity analysis comparing all data sets to the tight set (left) and the loose set (right).

Figure 3.A graph representing the chemical space. Each node is onemolecule, and node sizes are proportional to the number of connections (We note
some points are hidden due to overlapping nodes in the tighter cluster.). D5697 are blue, D2999 are green, D300 are red, tight are pink, and loose are
cyan. The graph topology comes from connecting nodes with a Tanimoto similarity of 0.5 and higher and running annealing through the Networkx
implementation of the Fruchterman-Reingold force-directed algorithm.48
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Tanimoto analysis between data sets used in the present work.
Shown are the distributions of raw set-to-set similarities (i.e., the
distribution of pairwise Tanimoto scores between each of the
molecules in one data set and each of the molecules in the other
data sets) for both the tight and loose sets. The Tanimoto
similarity scores are based on Morgan fingerprints and were
generated using RDKit (version 2020.09.1b.69). The Morgan
fingerprints had a radius of 2 and are 2048 bits in length.
The low Tanimoto similarity scores evident in Figure 2

suggest that the data sets contain a large number of relatively
diverse chemical structures. However, there are some molecules
with higher scores suggesting some overlap between the training
and testing sets in terms of structural similarity.
Figure 3 gives an additional interpretation of the chemical

space of these data sets. It represents each molecule as a node in
a graph, and the most similar (Tanimoto similarity scores of
≥0.5) are connected. The graph topology is generated through
the Fruchterman-Reingold force-directed algorithm48 using
Python’s NetworkX package (v.2.6.3). This algorithm treats
the nodes as a set of spring connected particles and simulates the
graph topology to a quasi-equilibrium state. In this case, the
springs were weighted by the Tanimoto similarity score, making
those nodes which have a higher Tanimoto similarity score
relatively more attractive to one another. The nodes are colored
by the data set. The pink and cyan colors are those associated
with the tight and loose testing sets, respectively. We can see
these nodes are distributed and typically connected to some
nodes from the training sets. This again suggests that training
data covers a chemical space inclusive of the space occupied by
the testing data.

Feature Sets. Features were calculated using structures
generated from SMILES strings. Three different feature sets
were generated using RDKit, Mordred,49 and Molecular
Operating Environment (MOE) descriptors.50 Any descriptor
which directly represented any definition of solubility was
removed, in addition to any descriptor which had a Boolean or
string output. For each feature set, any descriptor which
returned an invalid output for any molecule was removed so that
every molecule was described by the same set of valid
descriptors. RDKit and Mordred features were generated
using the Python API, while MOE descriptors were generated
using MOE2018.01. It should be noted that Mordred is partially
a Python wrapper of many available libraries, one of which is
RDKit, and so the Mordred and RDKit feature sets have some
common features, including the same calculated octanol−water
partition coefficient (logP) descriptor.
RDKit. All descriptors available in the Crippen, Descriptors,

Lipinksi, MolSurf, and QED modules were calculated. The
resulting data set consisted of 205 exclusively 2D descriptors.
MOE. All available 2D and 3D descriptors were calculated.

This resulted in a data set consisting of 359 descriptors, of which
229 were 2D and 130 were 3D. LigPrep51 was used to generate
3D conformations, and the lowest energy conformer was used to
generate 3D descriptors.
Mordred. All available 2D descriptors were calculated. The

resulting data set consisted of 972 exclusively 2D descriptors.
GNN. For the graph-based models, the default feature set for

each model, based on DeepChem V2.4.0,52 was used. Atom
features include element type, number of bonded neighbors,
valence, charge, number of radical electrons and hybridization
state. For theWeave model, additional features include the bond
type, conjugation, and whether atoms are part of a ring. Chirality
was ignored.

Models.Three Random Forest (RF)models were developed
using the RandomForestRegressor in Scikit-Learn V0.21.3,53

three neural networks (NN) were developed using the
TensorFlow V1.13.1 implementation,54 and three different
graph-based approaches (GNN) implemented in the Deep-
Chem package52 V2.4.0 were tested. Each model was developed
using Python V3.8.1 with key similarities, such as identical data
set splits and validation method.
A nested cross-validation approach was used to train and

validate themachine learningmodels. The outer cross-validation
consisted of 50 resamples, each with a different randomly chosen
70%/30% train/test split. For each resample, parameters were
tuned to minimize RMSE for 5-fold cross-validation on the
training set, and then the selected parameters were used to
retrain the model on the training set and predict the testing set.
Hyperparameter optimization was performed using the in-built
GridSearchCV function in SciKit-Learn for the RFmodels, and a
custom-built grid search was developed and employed for the
neural networks. The resulting testing set predictions were then
averaged to obtain the validation results. The optimal hyper-
parameter combinations were then used to retrain themodels on
100% of the training data before predictions were made on the
tight and loose testing sets. The models are labeled such that the
model type is shown with the feature set in superscript, where
appropriate, with R referring to RDKit, MOE referring to MOE,
and M referring to Mordred.
The NNmodels were built with the same general architecture

of 3 densely connected hidden layers, each consisting of a
smaller number of nodes compared to the previous layer. Each
NNmodel used the ReLU activation in each layer and the Adam
optimizer. The SciKit-Learn StandardScaler was employed on
the feature sets to perform a mean-centered scaling of the
features for use in the NN models.
A number of graph-based approaches were also tested using

models available in the DeepChem package, namely the
GraphConv,55 DAG (Directed Acyclic Graph),56 and Weave57

models. For all models, molecules are represented as graphs with
each non-hydrogen atom represented by a feature vector. The
Weave model also includes additional feature vectors for bonds.
The custom-built grid search approach applied to the NN
models was used to optimize the specific hyperparameters for
the GraphConv and Weave models including batch size,
learning rate, and the numbers and sizes of different layers
within the networks. The default parameters were used for the
DAG model. Models were trained for 200 epochs in total, and
the model with the best performance on the validation set was
retained.

Statistical Analysis. To compare calculated and exper-
imental results for different computational models, the
coefficient of determination (R2) and the root mean squared
error (RMSE) were evaluated

= =
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y y

y M y
1

( )

( ( ))
i
N i i

i
N i i

2 1 exp
2

1 exp exp
2
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y yRMSE( , )
1

( )i
N i i

exp 1 exp
2
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where index i runs through the set ofN selectedmolecules, and yi

and yi
exp are the calculated and experimental values of log(S),

where S is given in molar units. The total deviation can be split
into two parts: bias (or mean displacement, M) and standard
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deviation of the error of prediction (SDEP), which are calculated
by the formulas

= = =M y y
N

y ybias ( )
1

( )i
N i i

exp 1 exp (3)

= = =y y
N

y y M y ySDEP ( ) 1 ( ( ))i
N i i

exp 1 exp exp
2

(4)

The bias gives the systematic error, which can be corrected for in
the final models by the addition of a simple constant term. The
SDEP gives the random error that is not explained by the model.
The connection with RMSE is given by

= +y y M y y y yRMSE( , ) ( ) ( )exp
2

exp
2

exp
2

(5)

Models reporting RMSE greater than the standard deviation of
the experimental data offer less accurate predictions than the
null model provided by the mean of the experimental data.
Additionally, the percentage of predictions that were within
±0.5 log(S) of the experimental value (% ± 0.5 log(S)) was
calculated to enable a comparison to results of the second
solubility challenge.29

■ RESULTS AND DISCUSSION
Validation. During the validation stage, machine learning

models were trained and tested against the D300, D2999, and
D5697 data sets. Table 1 shows the statistics for the models

submitted to the solubility challenge as well as the RFM model,
each of which used the D300 training set, while Table 2 shows
the statistics for the models trained on the D2999 and D5697
data sets. All of the statistics are reported as test set averages over
50 randomly selected training and test set splits. It is noted in
passing that the models RFR and RFMOE were both submitted to
the solubility challenge, with RFMOE ranking within the top 10
submissions for prediction of the tight set. All other models were
developed after the challenge had concluded.

Some caution must be exercised in comparing the validation
results for the D300, D2999, and D5697 data sets with each
other because for each data set the resampled test sets are of
different sizes and are drawn from different pools of molecules.
Nonetheless, it is interesting to note the general trend that the
predictive accuracy in terms of both R2 and RMSE increases
when using the D2999 data set over D300, accompanied by a
reduction in the statistical error. A further increase in the data set
size to D5697 has little effect on the validation statistics or the
statistical error. Eachmodel was trained on random 70% splits of
the training data; hence the larger data sets had not only more
data to train on compared toD300 but also larger and potentially
more diverse validation sets too. There are no results given for
D300 using any neural networkmodel as there was deemed to be
an insufficient volume of data to reliably train these models. The
extra data obtained in curating the larger data sets, D2999 and
D5697, were necessary to regularize the neural networks and
prevent them from overfitting. Note that there are no results
given for models using MOE descriptors for D2999 and D5697
as access to the MOE software was lost between generating
D300 and the larger data sets.
To understand how significantly each descriptor contributed

to the performance of the RF models, we calculated the average
Gini importance for themodels trained on different data sets and
descriptor sets (Figure S3 in the Supporting Information). In all
cases, the models rely heavily on descriptors based on logP. The
Mordred SLogP descriptor is a wrapper around the RDKit
MolLogP descriptor, so these are identical for all molecules and
are calculated from atomic contributions using the approach of
Wildman and Crippen.58 The MOE descriptor set has a number
of logP and logD based descriptors which contribute to the
overall importance of logP. Other highly ranked features include
molar refractivity and polar surface area and also descriptors
which measure molecular size and complexity such as BertzCT;
however, the importance scores for these descriptors are all
significantly lower than for logP.
To analyze which molecular features the graph convolutional

models had identified as having a key role in solubility, we
generated counterfactual molecules using the procedure from
Wellawatte et al.59 Counterfactuals were generated based on
molecules in the D2999 training set by applying up to three
mutations to the SELFIE representation of each molecule.
These were then clustered based on fingerprint similarity and
counterfactuals with a predicted solubility at least 1 log unit
above or below the original molecule were selected. The RDKit
fragment descriptors were used to identify the chemical features
present in the original data set molecules and associated
counterfactual molecules, and pairs of original and counter-

Table 1.R2 and RMSE for Prediction of the Test Set Using RF
Models and the D300 Data Seta

D300

model R2 RMSE

RFR 0.61 ± 0.01 0.86 ± 0.01
RFMOE 0.64 ± 0.06 1.01 ± 0.12
RFM 0.69 ± 0.04 0.93 ± 0.09

aThe statistics are reported as averages over 50 resamples (using
70%/30% train/test splits). Standard deviation of both R2 and RMSE
is also shown.

Table 2. R2 and RMSE for Prediction of the Test Set Using Various Models and the D2999 or D5697 Data Seta

D2999 D5697

model R2 RMSE R2 RMSE

RFR 0.86 ± 0.01 0.84 ± 0.03 0.86 ± 0.01 0.86 ± 0.03
RFM 0.86 ± 0.01 0.84 ± 0.03 0.87 ± 0.01 0.85 ± 0.03
NNR 0.86 ± 0.01 0.86 ± 0.04 0.85 ± 0.01 0.89 ± 0.03
NNM 0.86 ± 0.01 0.86 ± 0.04 0.84 ± 0.01 0.88 ± 0.03
GraphConv 0.85 ± 0.01 0.87 ± 0.03 0.85 ± 0.01 0.89 ± 0.02
DAG 0.85 ± 0.01 0.88 ± 0.03 0.85 ± 0.01 0.88 ± 0.02
Weave 0.87 ± 0.01 0.82 ± 0.04 0.86 ± 0.01 0.85 ± 0.03

aThe statistics are reported as averages over 50 resamples (using 70%/30% train/test splits). Standard deviation of both R2 and RMSE is also
shown.
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factual molecules which differed in the value of just one of these
descriptors were selected to analyze the effect of that change on
the predicted solubility. For a given descriptor, the fraction ( f) of
all pairs of original and counterfactual molecules with an
increase or decrease in solubility was calculated, and the
difference is plotted in Figure S4 in the Supporting Information
to show how strongly the chemical change represented by that
descriptor is associated with an increase or decrease in predicted
solubility. In most cases, the trends reflect chemical intuition, for
example, increasing the number of hydrogen bond donors or
acceptors, such as primary or secondary amines, leads to an
increase in solubility, whereas addition of saturated hydrocarbon
groups results in a lower predicted solubility.

Solubility Challenge Data. The models were used to make
predictions of both the tight and loose testing sets from the
second solubility challenge. As described previously, the RFR

and RFMOE models were submitted as blinded predictions

during the challenge, and the remainder were developed and
evaluated after the challenge finished. The prediction statistics
calculated using the unblinded data after the conclusion of the
solubility challenge are shown in Table 3. Since the tight set is
larger than the loose set (100 molecules compared to 32
molecules), and the experimental error in the data is reported to
be significantly lower (SD = 0.17 log units compared to SD =
0.62 log units), we will initially focus on the tight set results
before discussing those for the loose set.
Of the two models that were submitted to the solubility

challenge, the Random Forest trained on MOE descriptors
(RFMOE) was the most accurate on both the tight and loose data
sets. This model was similar to one we published in 2007,60 but it
had been retrained on the D300 data set using different software.
By contrast, the Random Forest model trained on RDKit
descriptors (RFR) performed less well on the tight and loose sets,
even though it had been more accurate than RFMOE during

Table 3.R2, RMSE, SDEP, Bias, and% ofMolecules Predicted within 0.5 LogUnits of the True Solubility Value for Predictions on
Both the Tight and Loose Testing Sets for Each of the Top Performing Modelsa

tight set loose set

model R2 RMSE SDEP bias % ± 0.5 log R2 RMSE SDEP bias % ± 0.5 log

D300
RFR 0.37 1.01 0.92 0.41 39 0.44 1.60 1.41 0.76 28
RFMOE 0.48 0.92 0.86 0.32 39 0.58 1.39 1.24 0.64 38
RFM 0.52 0.87 0.82 0.31 39 0.41 1.64 1.42 0.82 25

D2999
RFR 0.44 0.94 0.85 0.42 44 0.60 1.36 1.17 0.69 28
RFM 0.51 0.89 0.79 0.39 45 0.54 1.45 1.26 0.72 34
NNR 0.35 1.02 0.98 0.28 37 0.57 1.40 1.29 0.55 34
NNM 0.54 0.86 0.73 0.45 53 0.54 1.45 1.20 0.81 25
GraphConv 0.48 0.91 0.78 0.48 48 0.23 1.88 1.44 1.21 22
DAG 0.29 1.06 0.96 0.46 43 0.36 1.71 1.45 0.90 28
Weave 0.54 0.86 0.77 0.38 55 0.62 1.32 1.16 0.63 31

D5697
RFR 0.45 0.94 0.85 0.40 48 0.63 1.31 1.14 0.65 28
RFM 0.51 0.89 0.81 0.36 48 0.61 1.34 1.19 0.63 25
NNR 0.42 0.96 0.93 0.27 46 0.59 1.38 1.22 0.64 28
NNM 0.52 0.88 0.77 0.42 48 0.51 1.49 1.20 0.84 38
GraphConv 0.53 0.87 0.76 0.43 45 0.40 1.65 1.35 0.96 31
DAG 0.36 1.02 0.95 0.37 49 0.43 1.62 1.41 0.80 25
Weave 0.52 0.88 0.81 0.34 47 0.59 1.37 1.20 0.66 25

aNote that “bias” here is the mean-signed error, and R2 is the coefficient of determination.

Figure 4. RMSE values for predictions of the tight set from the second solubility challenge: a) machine learning models built using Mordred or RDKit
descriptors and b) three graph based deep learning models. The dotted horizontal line indicates the RMSE of the best model for reference (NNM,
RMSE = 0.85 log units).
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validation. Unlike the RFMOE model, the RMSE for the RFR

predictions was significantly outside one standard deviation of
the RMSE observed during validation. Taken alone at the time
of the solubility challenge, this decrease in performance for the
RDKit models was difficult to rationalize, but it does fit with
trends observed in analyzing the models developed after the
challenge finished, as described in more detail below.
Of the models developed after the solubility challenge

finished, the best predictions of the tight set were obtained
from theNNM andWeavemodels trained on theD2999 data set,
which were optimal in terms of R2 (0.54) and RMSE (0.86 log
units), and predicted almost the same percentage of compounds
within 0.5 log units of the true values (53% NNM, 55% Weave).
Both models performed better than the RFMOE model whose
blinded predictions were submitted and ranked within the top
10 predictions of the tight set in the second solubility challenge.
Among the traditional descriptor-based models, the choice of

feature set had a larger influence on predictive accuracy than the
choice of machine learning algorithm. Figure 4.a and Table 3
show that all of the models built with Mordred or MOE
descriptors give similarly accurate RMSE values on the tight set,
irrespective of the choice of machine learning algorithm, or
training data set. However, the models trained using RDKit are
consistently less accurate, which may indicate that the smaller
RDKit feature set is missing some relevant information
contained within the larger Mordred feature set. This trend
fits with the observation noted earlier that the RDKit model
(RFR) submitted to the solubility challenge performed less well
than the MOE model (RFMOE) on the tight set.
Using graph convolutional neural networks gave predictions

of similar accuracy to the best descriptor-based models but did
not lead to a significant improvement, even when larger training
data sets were employed. Figure 4.b shows that the Weave and
GraphConv models predicted the tight set more accurately than
the DAG model and that the performance of the Weave model
was similar to the best machine learning model (NNM). The
reason that the DAG model was less accurate is not clear.
Although we were unable to complete a full search of the DAG
hyperparameter space due to the computational cost of training
the model, this does not seem to be the cause of the poorer tight
set predictions, since the validation statistics show the model
performing well and similarly to other methods.
The experimental design used to train and validate the models

(nested cross-validation) was successful in estimating the RMSE

that would be obtained on the tight set by the best models but
did not identify a group of models that performed less well,
which is evident in comparing Figures 5.a and 5.b. For the
models using Mordred and MOE descriptors and the Weave
model, the testing set RMSE values are within one standard
deviation of the corresponding validation RMSE, irrespective of
the choice of the training data set or (where relevant) machine
learning algorithm (Figure 5.a); the GNN models performed
well too, but the testing set RMSE values are slightly outside one
standard deviation in some cases. This means that the
performance of these models on the tight set could have been
accurately predicted from the validation data during model
training. It gives confidence that these models are performing
well since they have given consistent predictions on two separate
data sets. By contrast, for the models using RDKit descriptors
and the DAGmodels, the testing set RMSE values are noticeably
worse than the corresponding validation RMSE, as demon-
strated in Figure 5.b. Some possible reasons for the poorer
performance of these models have already been discussed. Since
the difference between the two groups of models would not have
been predicted from the validation statistics alone, it suggests
that the experimental design could be improved in future work,
perhaps to include additional validation tests, such as leave-
cluster-out, or other additional metrics to assess generalizability.
These were not used here due to the time constraints imposed
by the solubility challenge deadline.
All of the models reported better predictions of the tight set

than the loose set in terms of RMSE, bias, and number of
molecules predicted within 0.5 log units of the true solubility
(Table 3). The observation that the R2 is higher for the loose set
can be explained by the larger range in experimental solubility
data in the loose set (−10.4 < log(S) < −1.24) as compared to
the tight set (−6.79 < log(S) <−1.18). Taken at face value, these
statistics suggest that the low-variance tight set (σ ≈ 0.17) is
easier to model than the higher-variance loose set (σ ≈ 0.62),
which was the conclusion reached by Avdeef and Llinas in their
summary of the findings of the second solubility challenge29 and
by some other authors. However, it is interesting to note that the
models presented here, and most of the other models submitted
to the second solubility challenge, overpredict low solubility
compounds and underpredict high solubility compounds (i.e.,
the gradient of the lines of best fit in Figures 6-8 are less than
one). Since the same trend is evident in both the tight and loose
sets, the range of experimental solubility data will affect all of the

Figure 5. RMSE values for validation compared to RMSE values for prediction of the tight set from the second solubility challenge: a) models built
using Mordred descriptors, Weave models, and GraphConv models and b) models built using RDKit descriptors and DAG models.
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statistics used to compare the two data sets (not just R2).
Considering the statistics in Table 4, which show the regression
statistics for predictions of the 26 molecules in the loose set that
have experimental solubilities within the range in the tight set
(−6.79 < log(S) < −1.18), the picture is less clear. The best

model (Weave/D2999) has a higher R2 and lower RMSE on this
data set than it does on the tight set (R2 = 0.74 compared to R2 =
0.54, and RMSE = 0.80 log units compared to RMSE = 0.86 log
units.), but a smaller percentage of the molecules are predicted
within 0.5 log units (38.5% compared to 55%). In general, most

Figure 6. Correlation plots of the predicted intrinsic solubility values vs experimentally determined solubility values for RFR (top), RFMOE (middle),
and RFM (bottom), each predicting the tight (left) and loose (right) testing sets, using the D300 training set. The y = x line is plotted as a red dashed
line, while the line of best fit is plotted as a solid blue line.
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of the models perform slightly better on the tight set than this
data set, but the difference is much less pronounced than when
the full range of experimental data in the loose set is considered.
Increasing the representation of low solubility compounds in the
training data might help to improve the predictions of the full

loose set. Figure 1.b shows that the majority of training

molecules have solubility values between 0 and −5 log units.

Other than the low solubility compounds, whose solubilities

were generally overpredicted as previously discussed, there were

Figure 7.Correlation plots of the predicted intrinsic solubility values vs experimentally determined solubility values for RFM (top), NNM (middle), and
Weave (bottom), each predicting the tight (left) and loose (right) testing sets, using the D2999 training set. The y = x line is plotted as a red dashed
line, while the line of best fit is plotted as a solid blue line.
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no molecules in the tight or loose sets that had consistently poor
predictions across all models.

Comparison to Other Methods. The results of the second
solubility challenge reported by Llinas et al.29 show a wide range
of prediction accuracy for the tight and loose sets. Of the 37

submissions to the challenge, the mean RMSE was 1.14 log units
on the tight set and 1.62 log units on the loose set. Ignoring those
submissions that had some overlap between the data used in
training and the tight and loose testing sets, the best tight set
predictions were provided by four models (three labeled as

Figure 8.Correlation plots of the predicted intrinsic solubility values vs experimentally determined solubility values for RFM (top), NNM (middle), and
Weave (bottom), each predicting the tight (left) and loose (right) testing sets, using the D5697 training set. The y = x line is plotted as a red dashed
line, while the line of best fit is plotted as a solid blue line.
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MLKC and one labeled as PMSA_A) which performed equally
well with R2 and RMSE values of 0.60 and 0.80 log units,
respectively. The MLKC submissions made use of lightGBM
models with a feature set comprised of fingerprints and
DRAGON features,39 while the PMSA_A submission used a
radial basis function method coupled with an in-house feature
set.29 The highest performing models reported in the present
work (NNM and Weave) achieved R2 = 0.54 and RMSE = 0.86
log units, placing them close to the highest performing
submissions and improving upon our own best submission
(JCSU_A, R2 = 0.48 and RMSE = 0.92 log units). The loose set
was best predicted by the submission labeledUMUT_C, withR2

= 0.75 and RMSE = 1.06 log units. Of the models in this work,
RFR trained on the D5697 data set best predicted the loose set
with R2 = 0.63 and RMSE = 1.31 log units, which was almost
identical to the performance of the Weave model trained on the
D2999 data set with R2 = 0.62 and RMSE = 1.32 log units. While
this difference in performance between the best submission and
our models is more significant than the tight set comparisons,
the models presented here still perform better than most
submissions to the challenge. Moreover, as discussed previously,
several molecules with very low solubilities have a large effect on
the predictive error of these models. Considering a solubility
range comparable to the tight set, which is more representative
of the range that is important for small organic molecules in
practical applications for example within pharmaceutical drug
discovery, the globally best model (Weave trained on the D2999
data set) gives R2 = 0.71 and RMSE = 0.80 log units, slightly
improving on the statistics reported by the same model
predicting the tight set.

The Effect of Data Quality. Prior to the first solubility
challenge, the error in published experimental data (which had
been estimated to be approximately 0.6 log units) was often
cited as the limiting factor preventing solubility models from
improving. The implicit hypothesis was that training and testing
solubility models on more accurate data would lead to more

accurate predictions, but this was not borne out by the results of
the first solubility challenge, where the best models reported
RMSE of 0.7−1.1 log units even though the experimental error
in the solubility data was reported to be close to 0.05 log units.
[Later studies estimated the experimental error to be
approximately 4-fold higher but still significantly lower than
the predictive error of the best solubility models.] In 2015, we
reported a direct comparison of QSPRmodels developed on the
same set of molecules but different sources of experimental data
from which we concluded that “it is the deficiency of QSPR
methods (algorithms and/or descriptor sets), and not, as is
commonly quoted, the uncertainty in the experimental
measurements, which is the limiting factor in accurately
predicting aqueous solubility for pharmaceutical molecules”.15

One of the stated aims of the second solubility challenge was to
revisit that conclusion by incorporating both a low-variance tight
set (n = 100, σ ≈ 0.17 log units) and a high-variance loose set (n
= 32, σ ≈ 0.62 log units). However, since corresponding low-
and high-variance training sets were not provided with the
second solubility challenge, interpretation of the previously
published results is not straightforward. Here, we constructed
three training data sets of differing sizes, which reflected a trade-
off between the reliability of experimental data and the number
of data points, and this consequently affected the coverage of
chemical space too. Increasing the size of the data set from 300
molecules to 2999 molecules slightly improved the predictions
on the tight and loose sets, but further expanding it to 5697
molecules had a negligible effect, even for the deep learning
models which would have been expected to benefit most from
the extra data. This observationmay be partially explained by the
volume and quality of data for training. While the experimental
data in the D300 set is reasonably accurate, it has too few data
points to reliably train the more complicated machine learning
or deep learning algorithms. Conversely, the D5697 data set
contains too much experimental solubility data of unknown
provenance. However, it is likely that the coverage of chemical

Table 4.R2, RMSE, SDEP, Bias, and% ofMolecules Predicted within 0.5 LogUnits of the True Solubility Value for Predictions on
Those Molecules in the Loose Testing Set That Have Experimental Solubilities within the Range of Experimental Solubilities in
the Tight Set (−6.79 < log S < −1.18)

reduced loose set (N = 26) loose set (N = 32)

model R2 RMSE SDEP bias % ± 0.5 log R2 RMSE SDEP bias % ± 0.5 log

D300
RFR 0.32 1.29 1.22 0.42 31 0.44 1.60 1.41 0.76 28
RFMOE 0.65 0.93 0.89 0.26 46 0.58 1.39 1.24 0.64 38
RFM 0.62 0.97 0.90 0.34 31 0.41 1.64 1.42 0.82 25

D2999
RFR 0.64 0.94 0.88 0.35 35 0.60 1.36 1.17 0.69 28
RFM 0.66 0.91 0.85 0.31 42 0.54 1.45 1.26 0.72 34
NNR 0.56 1.03 1.02 0.15 42 0.57 1.40 1.29 0.55 34
NNM 0.61 0.98 0.90 0.40 31 0.54 1.45 1.20 0.81 25
GraphConv 0.37 1.24 1.01 0.72 27 0.23 1.88 1.44 1.21 22
DAG 0.57 1.03 0.94 0.41 35 0.36 1.71 1.45 0.90 28
Weave 0.74 0.80 0.76 0.26 39 0.62 1.32 1.16 0.63 31

D5697
RFR 0.63 0.96 0.89 0.34 35 0.63 1.31 1.14 0.65 28
RFM 0.66 0.92 0.88 0.26 31 0.61 1.34 1.19 0.63 25
NNR 0.59 1.00 0.97 0.27 35 0.59 1.38 1.22 0.64 28
NNM 0.65 0.92 0.82 0.42 46 0.51 1.49 1.20 0.84 38
GraphConv 0.53 1.07 0.94 0.52 39 0.40 1.65 1.35 0.96 31
DAG 0.64 0.94 0.89 0.32 31 0.43 1.62 1.41 0.80 25
Weave 0.71 0.84 0.79 0.27 31 0.59 1.37 1.20 0.66 25

Journal of Chemical Information and Modeling pubs.acs.org/jcim Article

https://doi.org/10.1021/acs.jcim.2c01189
J. Chem. Inf. Model. XXXX, XXX, XXX−XXX

L

pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01189?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


space is also important. Many of the extra molecules included in
the D5697 data set come from a region of chemical space that is
dissimilar to the tight or loose sets. Indeed, although the D5697
data set contains significantly more unique Murcko scaffolds
(1222 compared to 798 for D2999 or 142 for D300), the
number of Murcko scaffolds in common with either the tight or
loose set remains approximately constant (38, as compared to 37
for D2999 or 21 for D300. See Table S2 in the Supporting
Information). While the extra data in the D5697 data set may
have helped to regularize the neural networks, it did not
significantly increase the relevant information content of the
training data and therefore did not lead to improved predictions.

■ CONCLUSIONS
The models presented in this work have been shown to perform
to a high standard, producing statistics comparable to the
highest performing submissions to the second solubility
challenge, and to other more recent developments, with the
highest performing neural network model yielding an R2 of 0.54
and RMSE of 0.86 log units for the tight set. While these results
are promising, further improvements may be made by additional
refinement of the neural networks or possibly by improved
training data selection. The volume of available training data has
a notable effect on the predictive accuracy of machine learning
models, with a higher volume increasing performance, as long as
the additional data is of good quality and from a relevant region
of chemical space. Comparison of the results using the three
differently sized training sets emphasizes this point: D2999
increased model performance compared to D300, while D5697
did not result in an increase in performance as the additional
data was of lower reliability and did not significantly increase the
representation of the relevant regions of chemical space. Part of
the difficulty in developing general solubility models is in
representing a diverse chemical space from the relatively small
number of consistent solubility measurements in the published
literature. In focused practical applications, such as lead
discovery or lead optimization, where data is collected in a
consistent manner and the structures and data range of the
training set are likely to be consistent with those of future
synthesized compounds, building bespoke models on the
scaffolds of interest is likely to be important. In developing
general solubility models from literature data, as was necessary
for the second solubility challenge, data set selection remains a
trade-off between data set size and data quality; including more
data may be beneficial during training but usually means
accepting more lower quality data. Moreover, in practice, when
data is limited, it may mean accepting more data from less
relevant regions of chemical space. Additionally, the majority of
available experimental solubility data lies within a more narrow
range than some of the compounds in the test sets, so training
and prediction on molecules with more extreme low or high
solubilities may be limited by a lack of appropriate data.
Measurement and curation of larger consistent experimental
data sets will benefit solubility prediction in the future, but other
factors such as the failure of models to differentiate between
crystalline polymorphs or to interpolate accurately between
sparse data points must also be addressed to improve prediction
accuracy.

■ DATA AND SOFTWARE AVAILABILITY
The solubility data sets are available in comma separated
variable format in the Supporting Information; these files

include experimental solubility measurements, molecular
structures as SMILES strings, and molecular descriptors. The
code to train the selected machine learning models is available at
DOI 10.5281/zenodo.7130065.
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