Dynamic interaction of plates in an inhomogeneous transversely isotropic
space weakened by a crack
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Abstract:!l he problem of axisymmetric vibration of a flat thin rigid circular plate located
exponentially graded, transversely isotropic material of infinite extent is
addressed s of a displacement potential method. The contact condition on one side of
the founddagio ssumed to be the perfect adhesion with the media but known to be faced by
a penny-sh rack at the other side as it occurs in anchors. The mixed boundary value
proble ulated with the aid of Hankel integral transforms and is written in the form of
a set of sin tegral equations. The analytical procedure for the special case of vertical
move igid plate results in a closed form solution. The solution is pursued
numerically for the general elastodynamic case. The physical quantities, such as contact
stress on ts plate and the stress and displacement fields in the non-homogeneous medium are

obtained fi ent materials.

isotropic spaéerwave propagation
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Several experimental studies show that the analytical models are able to predict the stiffness
and damping of the soil beneath a foundation with a reasonable degree of accuracy, e.g. [1-2].
Indeed, thi experﬂn' ental investigations are fundamental bases for proving the validation of a

new pro consider the Soil-Structure Interaction (SSI) under dynamic loading for the
design of 1 elements such as machine foundation, transmitting tower foundation, and
anchors. ulation for the stiffness of the soil beneath a foundation can provide a

practicﬂ tMnalyzing the soil-structure coupling by means of lumped parameters. In this
approach, ghe effect of the soil-foundation interface is accounted for through a system of
springs an ts assembled together with the superstructure stiffness [3-5]. Therefore, a

complex affdlysiSpassociated with continuum modeling of soil and soil-foundation interface
may be re a discrete analysis performed with a finite degree of freedoms.

Furthermdfe, ffo a mathematical perspective, taking an appropriate geometry as a domain

of the pro i®a crucial step to achieve the desired accuracy for an engineering problem. In
foundatio ring, there are several examples in practice where the interaction of
foundatiomll-space as a domain of the boundary value problem may lead to precise
evaluation ed parameters resulted from SSI analysis. As an example, we mention the
design of the foundation for an offshore wind turbine which is an application of SSI analysis
based on ure method [6-7]. In order to resist dynamic forces caused by the rotor,

wind wavg ean waves, several types of deep foundations are employed depending on
the water the strength of the dynamic loading (e.g. embedded raft, mono-pile,
mono-pile with guy wires, tripod, suction caisson, etc.). Among them, the foundation system
mono-pile supported by guy wires or tripod structures are common
alternatives ese are used for medium range water depths namely between 20m to 40m.
undation can mathematically be represented by a pile foundation
embedded in the seabed and braced with several side anchors, see Fig. 1. Clearly, due to high
depth of embedment, by analyzing the interaction of foundation with a full-space medium,
one can ¢ redict the behavior of side anchors.

Due to thtation of the geological material, the structure of soil or rock generally

possesses 3 degree of anisotropy and heterogeneous nature [9]; therefore, to estimate
the dynaE ss of the embedded foundation, the constitutive model taking into account
the non-uformity and anisotropy of the material is required[10]. The complexity of the
analysis riated tathe foundation-structure system will substantially increase if the contact

conditio interface of the foundation and the soil are altered as a result of severe wave
motion. T f perfect bonding between the soil and the foundation then significantly
changes t ic properties of the foundation-structure system, an aspect typically

disregarded in
the wi

design of foundations [11]. For instance, if the structural characteristics of
e, including the natural frequency and damping, are changed due to the

detachme e foundation, an unexpected and destructive vibration (resonance) may take
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place [12]. Hence, a rigorous investigation of the dynamic impedance of the embedded
foundation under various contact conditions could markedly eliminate the uncertainty

existent i; ;ts de%g' n.
In view of thesegineering applications mentioned above, and mathematical challenges, both
istodynamic boundary value problems of continua containing cracks and/or

elastostati
rigid plate of interest. Interestingly, the boundary value problems of an elastic
materidfic rigid circular thin plate and penny-shaped crack are mathematically the
same. So mgroblem of a crack embedded in an inhomogeneous material was
investigatedgbymsgveral authors for plane [13-15] or anti-plane [16-18] geometry. However,
the case ofjthree-@imensional analysis of continuum containing crack with a sharp gradient of
shear prope of material at the vicinity of crack has been considered to a lesser degree
[19]. The gregéntipaper is concerned with a more complicated problem due to existence of
both rigid pléte @nd penny-shaped cracks next to the plate in a continuously inhomogeneous

transverse pic full-space; where, Due to the presence of the crack, the load bearing
capacity o igid plate markedly decreases in comparison to the plate surrounded fully by
the medium The three-dimensional elasticity problem of this paper was first

investigat@d in [21] for axisymmetric movement of a penny-shaped inclusion (plate) located
at the inte wo identical isotropic homogeneous half-space. The contact region of
inclusion i ed to be attached only to one half-space material and to be free from
contact strigss e other face. Of course, the continuity of displacements and stresses is

secured after the inclusion area. The method of integral transform was employed in [21] to
reduce em to the evaluation of singular integral equations, whose solutions are
obtained wit id of Riemann-Hilbert problem. The assumption of the smooth contact
conditi the inclusion and the upper half-space has been investigated in [22] and
the corresponding results are similar to those of [21] for a wide range of Poisson's ratio. In
the case ofya plane problem, with the aid of complex potentials, a compact analytical solution
was deriVL]. This method was extended to account for the vertical movement of a

rigid anchowl@ged at the interface of a bi-material full-plane in [24], which presented

explicit re all physical quantities of the problem. Later, three-dimensional mixed
boundary valti€ problems for bi-material full-space including both perfect and partial
bounding @T inclusion with the surrounding material have been examined in [25], where it
was de that the oscillatory state of the contact stress at the edge of the inclusion
could v, two half-spaces were filled with incompressible materials even though
their shea 1 were different.

To the be ors’ knowledge, in the context of wave propagation induced by vibration
of a rigid plate analytical solutions have not been fully developed for different boundary

in elastodynamics. This issue is further complicated if the materials
experienc ain degree of anisotropy and spatial material gradient. Forced vertical and
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rocking vibration of rigid circular foundation on a semi-infinite Gibson Soil have been
formulated in [26-27]. Vertical vibration for a disc embedded at an arbitrary position in an
isotropic qilf-spﬁe was examined in [28], and later, by means of potential functions, the

proble generalized in [29] to a heterogeneous material with a quadratic variation
of shear in depth. The dynamic mechanical properties of a rigid circular disc and
also a dis ck inside a transversely isotropic half-space have been studied in [30-

32]. 1t wathhat the dynamic behavior of continuously inhomogeneous materials of
infinite exgent domains can be simulated by analyzing a number of limited layers and
satisfying%y conditions between them, with a finding that the number of layers should
increase tgfensur@the accuracy of results in high-frequency oscillation [33].

The main goal of this paper is to examine the dynamic indentation of a rigid circular plate
embeddem—homogeneous transversely isotropic full-space. The material’s properties

are increa nentially through depths of each material. The governing equations of
motion fo onentially graded transversely isotropic material are decoupled with the aid
of displac tential functions recently introduced in [34]. This translates the equations
of motion t h order partial differential equation, whose solution is determined by
Hankel in@sfoms. Imposing traction and displacement boundary conditions on both
sides of thi nd invoking the continuity of quantities outside the contact region
simplifies rning equations to a set of coupled singular integral equations. Due to the
complexit§o lems in dynamic cases, a numerical procedure is employed to solve

singular integral equations. However, a reduced case of integral equations is prone to be
analyti sessed. It is observed that the contact stress distributions around the edge of the
plate posses y oscillatory singularity, which is shown to be consistent with the results
former for isotropic materials.

2. Problem Definition
Full-spaceg of two exponentially graded transversely isotropic material is taken as the
domain of g€B&undary value problem involved in this paper. The plane of isotropy is
assumed tendicular to the vertical axis. A cylindrical coordinate system (r,6,z) is
setup in s y that the z-axis is normal to the plane of isotropy, and the material
properties{c, and the mass density p are written in the form [34]

plz) = Pl ¢ (2) =y i1, (M

2

where p, mitiate value for the material density at z =0 and ¢, (

Co11> Co12s G - and c,,, ) are initial values for the elasticity constants. And N

with 3, non-homogeneity parameters where / and /I denote the lower half-space (
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z>0) and upper half-space (z < 0) respectively. A rigid circular disc of the radius a and
zero thickness is placed at the coordinate system’s origin as a plate, while a penny-shaped
crack, of tie sam' radius as the plate, is faced to the side” z =0" of the rigid disc see Fig. 2.
The plate #ndergoes a prescribed time-harmonic vertical vibration @ . The contact area above
the plate i @ y bonded to the upper material but weakened by a penny-shaped crack
beneath theyplats

This gi\’e BVP with governing equations of motion for such medium in terms of
displacem, ollowing [34]

o' wui o' o’ - u ou' ,
Conp — - +Co44_2r+(c +0044)_Z’|'2/ C "+ Z):_poa)zu;
0z 0roz or

2 2 013 i
or r 0z

0'u! ‘ o'u. 1 ou Ful - uou ,
Cou| —> (c013 +co44) — |t 2 " +-1) i=1,11 @)
or ordz r 0z 0z or
u
~ : -
e " opou
0z
in which u’ ! are the components of displacement vector in the cylindrical coordinate
system fofl; respectively, while @ is the circular frequency of motion. With boundary
condition at
Vi
u, (r, =0, r<a 3)
u!’ (r, 0’) e r<a 4)

ol (r,O+ r<a Q)
e

ui”(r,OMJ*), i=r,z r>a (7

" We defi lim z .

z—0"
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fot (7‘,07)20'211. (r,O*), i=r,z r=a, (8)

and radiatjon conditions at infinity. Where A 1is the amplitudes of the displacement

excitation® and 7 (r,07) = lilgl f (r,z). It is worth mentioning that the numerical procedure
z >0+

implemen s paper is carried out in non-dimensional form with no restriction for the
magnitudeo drlable A
N

L

3. Me of Potential Functions
To solve the we use the displacement potential function F'(r,z,®),i =1,1I introduced
in[34],b icable to irrotational axisymmetric dynamic boundary value problems of a
transverse, pic material as well as an isotropic material. This function is utilized to
decouple ing equation. In this way, the non-zero displacements uj and u; are
expressed 4 of F'(r,z,w),i=1,1I as[34]
; 0 ~ F'
u, =- 2 or
©)
u' =(1 e+, — (2 0, jF’, i=1,11
iz
where
c Coa +C _
@ =, g =tmTtwm g S (10)
Cos6 Coss Coss

v, - O gl (11
' or’Q r or

In the aw defined as (c,,, —¢,;,)/ 2. Substituting the displacements from (9) into the

equations on (2) results in the following equation for the potential function
F'(r,z,w),i = LA [34]
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z F' i 1,1

2 2 )
—-p0 +& (1+ )+, %}Fijez’fz, i=1,11
Z

N N\

o ¢ © F e Foefilll
dz : ’ Cos ) )

ial coordinate is applied to the equation (12), and the following ordinary
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(13)

(14)

(15)

(16)

(17)

(18)

t the nature of the problem, a zero-order Hankel integral transform with
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{DD. oy z F' i =111 (19)

Y SR j=12, i=1,1I (20)
S50 4

and F" (4@ I,1I is the zero-order Hankel integral transform of F'(r,z,w), i=1,1I .
It results immwing general solutions for the equation (19)

F(& @) =et C (e + D (Ee + L& + D)™ |, =11 @1
where
i i 1 4 i g2 .
and m
1 .~ 11
a=—(S1 =/ (_+_j: C=(S12_S§)2
2 2 \a, a,
d'=-162—"2, 2{(i+ij(sf+s§)—2““l[ 1 +iﬂ, i=I,I  (23)
a, a, a, a, \l+a, a,

and- A, are single-valued and analytically continuous from one sheet to another.

This can be achidyed by specifying the branch cuts for 4’ and A, on the complex &-plane,
with the b
A=A 33]). Under these choices of the branches and taking into account the

oints emanating from zeros of these functions, or from the equation of

e

radiation ion, the e and e * terms become inadmissible and consequently
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C!(&) and D!(&) in Eq. (21) vanish. It is worthwhile mentioning that through a similar
analysis for the upper half space, C” (&) and D" (&) are vanished. In the sequel, for

conveniHne unknown coefficients of each medium as 4,(&) =C’ (&), B,(E) = D' (&)

and A, (.f:)Q,BZ (&) =D"(&).

 EE—
Now, wiﬂ‘M of appropriate inverse Hankel integral transforms and rearranging the
equations (9 angd (17-18), the solutions for the stress and displacement fields throughout the
full-spaceftegion @re obtained in explicit forms as

) I~
u, (r, 2) = (M EWoe™ " 7+ Bl yyme "o S dé (24)

T —(A 3 z L ¥4
“:(F,Z)Zafe W Buopne T edpredd (25)

0

—(AM+[, =z 1 L7z
VS Brg o\ Zamse e irg yds (26)

O-ZIr (r,z)= Cos6 (2)7711253

-4+ 2

1 I I L
o..(r, Coss (2IV)2€ TBro e Zvne g re yds (27)

zz

for the =space called Region I, and

u, (r,2) g (A, e 1+ Bygyme "y Jyre dé (28)

uf (7", Z) )191116(/1]”[” e 2\(_.,}1_72116 " Z}c_.,JO\I"c:,}dg (29)
0

V/

o (-7 z 11 z
ne T T Bong iCoeerZme "y Jinrg yde (30)

O'Zlf(r, = 208 )Coss (2)77

Vi _ o (A=, z )/ S
O-zz(r’z)_m)c%ﬁ(z)vne " Bos s Zvne " e dors s €2))
0
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for the upper half-space called Region II. In the relations (24) to (31), we have
Coss(2) = (o1, (2) —C41,(2)) /2, 4;(&) and B, (&) j=1,2 are unknown Hankel parameters

correspwe lower and upper half-space, and following relations:

> +2a2ﬂs(/1,-—ﬁs)—z9,-)

,B) -2a,p, (/1.+,B)—3.)

5 +a43 )(ﬂ, ﬂ)+2a2((x3 az)ﬂsfz
2)E +a,3)(A,+ B)+2a, (o —ay) B.E

v, =(a

ﬂ
E
(©

In the above, ave used ,f to simplify the relations.

(32)

4. Formulating of mixed boundary value problem

After obtaining displacements and stresses fields in terms of potential functions, imposing
radiation L one can obtain unknown coefficients 4,($) and B,($) j=1,2 by

imposing d boundary conditions at the interface of two half-space. In the domain
inside the at the interface of two joined half-space, the mixed boundary value

pction with the equations (3) to (6) and (26) to (29) reads as

(oS 4,(8) + 98BN, (rE)dE =0, (33)

u (r,07) —E L&)+ G EB (N (rE)dE = A, (34)

0
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o, (r,07) = fﬁ(Césmfzf A&+ CoenE B (ENS, (rE)dE =0, (35)

o..(r,0") ﬁé% (&) + oV B (EN I, (1E)dE =0. (36)

Where g jisgthegginplitude of vibration, which also appeared in the equation (4). In addition,
the contin!ty of the stress and displacement fields exterior to the plate area implies that

Au, (r,0) € | (9o 8F 4 () + PR B (&) — 91 &7 4,(8) — 03,8 By(E)), (rE)d & =0, (37)
Au_(r,0) wAl(g)+192I§Bl(§)_191H§A2(§)_19211532(5))']0(7‘5)615 =0, (38)
Ao, (r,0)= 6771ng (§)+c0667722§B (&) - 60667711§A2(§) 00667721§B (ENJ (r&)dE =0,

(39)

Ao (7, 0%6‘/12‘4 (§)+CO66V22B &) - 0066V11A &) - CO6GV21B (NS, (r&)dS =0. (40)

where Af (r,0")—f (r,07). To further reduce the system of coupled mixed

itions (33) to (40), one may benefit from introducing the following
substitutions 1n equation (37) to (40)

S(§)=(wa+%’2§231(§) P& A(E) — & B, (), (41)
R&=4 HEB () -F"EA4,(E)— %' EB, (S), (42)
O(&) = ¢y &)+ Cousl1n& BI(E) = a1 E A, (E) — Cogel1n & B, (£), (43)
P(S) )+ CoseV 2B (8) = CagsVi1 A (E) — CogsVin By (£). (44)

=

Now, foll@e elegant transformations introduced in [21], we write these functions in
the following fozms
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P(§)=[A()cos(s&)ds. Q&)= [ B(s)sin(sE)ds.

) ) (45)
R =1B()sin(sE)ds, S(&)= Ia(s )cos(s&)ds.

0 0
Substituti relations into Egs. (37) to (40) and using the certain identities
present®d F*APPendix A, one may find that the equations (38) to (40) are automatically
satisfied a ly restriction that is needed for satisfying equation (37) is as follow:
[as)ds O (46)
0
It is note\nwat the auxiliary functions a(s), f(s), A(s) and B (s) could be extended
to the neg ain in such a way that the functions 4 (s) and a(s) have even properties
and B(s) s ) possess odd properties. Writing 4,(&), 4,(&), B,($) and B,(&) from

into equat to (36) leads to

(41) to (4Es of P(¢&), O,(&) R(&E) and S(&), using (32), and substituting the results

u (r, 0_5)5 (&) +a, (R (E) +a;()Q(8) +a, (P (S, (r&)d & =0, (47)

ul (r, O)E)S (S) +a, (SR (8) +ay(S)Q(S) +ay (P (W, (r&)d & =A, (48)

o, (F,0+)s— 5@, (S)S (S) +ay, (SR (S) +a55 () (8) + a3, (P (Y, (r)d ¢ =0, (49)

o.. (r,0" @ 1(£)S (8) +a, (DR (8) +a3(S)0(S) +a, ()P (S (r)d & =0, (50)

where thes;nctions a; (&) are as follows

a33<§>=a44(§)=§, (51a)

(&) =a,(5)=0, (51b)
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a,(&) = EMpuPi, —MP) L a,(&)= (39, —39,) ’ (51c)
28 —n,%) 2¢456 (M4 =M1, %)

a21(§)—, a,, (&) = (4,0, —89,,) ’ (51d)
25(0,0,, =0,,0,,) 2C)6 (VP 1, —V1,0,,)

{

[

c —1,V -
a, (&)= (M NyVip) , 4y, (&) = S(MpuPi ~ M) , (51¢)

2 12~ V0) 2(0,01, —0,,05,)

Cos6 (11222 ~Mi2V2) vy, -Gy,
a,(8) = 0:“;: : 5 , a;5(8) = : (51f)

N M) ¥ 263 —Md)
It is conviient here to introduce the following four integral operators to express the result of
equations 50) in the form of ordinary functions. Thus, define [21]
sf(r)dr d trf(r)dr
ARG = AL A ey LA AL
sT=r ds 4 \Js*—r

(52)
(r)dr rf(r)dr

o f4(S;f(’”))=.([W-

Applying these four operators on both sides of four equations (47) to (50), respectively,
substituti\'; the relationships given in equation (45), and using the odd and even properties of
the integrals defined in (45), one may simplify the mixed boundary conditions (47) to (50) in
the form g @ owing coupled singular integral equations

[5G () =

a

ﬁja(t WB(s)+LsB () + [ [kpp(t.9)BE)+ Ky (.9)B (O)]dt =0, (53)

—a —a

O L)+ j [y (25)a(t) + K oy 1 15)A@)]de = 2 A, (54)
—a T

S

Lya(s)+ L2 t ¢ )+L34A(s)+j[k31(t,s)a(t)+k34(t,s)A(t)]dt __2c, (55)
b T

—S
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L)+ LB () =22 [ [le(t,5)B0) +onlt,)B )] =0

—a

where tMents L, are defined as

L, = éﬁ&

N
In additioflf the kernel functions of integral equations are determined as

bott) L2 | FEE - Dsine ysints a,

bio(t25) "I S ysin ysins ya,

P

o) =L (2 1) cos(e ) coss £ £,

21

AU

o0

hoult5) = ~Dcos(t ) cos(s EXE,

~ [2
2oy
-’

by ()= 210) 1y cos(t &) cos(s E) &,
T L

31

) =22 [ (B pycosteycosts 1,

" (&) . .
p(t,5) ~1)sin(t&)sin(s ),
L,
kat.5) £ i (—242(5)—1) sin(t£)sin(s ) £

B

(56)

(57)

(58a)

(58b)

(58¢)

(584d)

(58e)

(58f)

(58g)

(58h)

Constant ! in the equation (55) appears after the integral operator f,(s; f (7)) is applied on
both sides of the Bquation (49). It is worthwhile to be mentioned that, in the analytical part,

C can be obtained directly by satisfying equation (46). However, a computational procedure

namic case), which can be found in Appendix B.
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The singular integral equations (53) to (56) consist of two parts, arising from the physical
nature of the associated problem. The left-hand side of these equations contributes in forming
ofa homoieneo;i static solution of the problem while the remaining equations create a

dynami - ogeneous contribution of mixed boundary conditions (see [34]).
From the auxiliary functions, it is possible to derive an explicit relationship for
contact stress on the top of the inclusion. By rewriting equations (39) and (40) forO<r <a,
which & ontact traction between the inclusion and the medium, and implementing
infinite in ion, one may obtain
A (0BG (59)
2 _p?
u )” A
Ao (r,0) G (60)
s°—r

The total 1 ceded to support the prescribed vertical displacement is usually of interest.
This quan een determined by integrating the normal traction at the interface of the
plate and ium. Thus, the total load is expressed in terms of the solution for the
auxiliary funetieay A (s) as
2w a a
F=] rdrd0=-2x[A(s)ds. (61)
0 0
The si ntegral equations (53)-(56) contain some complex kernels, which prevent

determining an analytical solution. However, there are certain special cases for which closed-
form solutions are possible.

5. Analytical solution for homogeneous transversally isotropic full-space
The singu @ al equations obtained in the previous section will now be analytically
solved for 3%P@€1al case of static movement of the plate located in a homogeneous
transverse, pic full-space. The closed-form solution could be pursued from the
knowl act that the right-hand side of equations (53) to (56) vanishes if both the

frequencygof vibgation and the non-homogeneity of material, characterized by the parameter
B, . tend ! zero. In this case, it is required to introduce a modification factor inside the

procedure outlinddl in the previous section. This is accomplished by multiplying both sides of

equations and (36) by the parameters ﬁ (m >0) and dividing both sides of equations

(37) an y the same value and keep other procedures unchanged. This results in certain
useful r ps
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L,/L,=m, L,/L,=m, L,/L,=m, L, /L;=m,

(62)
Ly/Ly=m, Ly,/L,=m, Ly/L,=m, L,/L,=m.

We areMo present a compact representation of equations (53) to (56) by multiplying

the equati@d (56) to the complex parameters m xi (withi = \/—_1 ) and adding them

to equatio (55) to have
 EE—
» [ &) 2
L21¢2(S)+ o dt +L24¢1(S):_A> (63)
7Tl —-s /4
L3 2
Ly,(s) +_m_dt +Lyuf(s)= _;C ’ (64)
where
h(s)=A( i,

(65)

b,(5) = a(gi .
Evidently, the equations (63) and (64) still contain coupling characteristics. To uncouple

them, it isfis multiply the equation (63) by an unknown parameter A and add to the
equation (0%), ch reads

(Las ~ AL )G (L, ~ ALy ) (5) 4 [ LAO= AL D 2 35 . (66)
7Tl t—s T

—a

The equation (66) may be written in two separate classical singular integral equations if the
following @lationship is confirmed [25]

(le _ZL A 22
e O )

This is a

adratic equation, yielding two roots for the parameter A , which after some

31 , — i. (68)
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Effective representations are thus defined as

X ()= 3@) + Ei@ ().  J-L2 (69)
which help, plify the equation (70) to
X,(s) ;”9' 1.2, (70)

where L
O —2 (/1 A+C)

7= 2(L - (L, —A;Ly,) 7

Riemann-Hilbertfproblem in the complex plane (see [25]). Avoiding the details (see [21] and

The proce obtammg a closed-form solution for equation (70) is based on the
[25]), the

al solution emerges as

Xj<s)=®<“”)"“z 1.2, (72)
( i Ca+s

where

Jj=1,2. (73)

The mandMnstraint on the integral equation, equation (46), based on the new

representa@ormed in the following form

sz(f) ) o, (74)

With the Knowledge of the analytical solution, the unknown coefficient of integration C is
specified analytiGally as

C:(Klz_ ’ (75)
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where

+7, )OZSinh (ﬂ;l)e”g‘

K = d l H = (76)
(1 1 (ray)e™

Similarly,ad [see Eqn. (61)] is expressed in the new representation as

- E
F=-zx| g::: 1:_) AN (77)
bt 2 — A1)

This resul‘ in ’

I :% /1205161_ _ /11“262_ ). (78)
(A2 - y)sinh (ra)e™  (1+y,)sinh (we,)e”™™

In order to deteﬁ'ne analytical solutions for other physical variables, including displacement
and stress ns inside the homogeneous transversely isotropic material, it is required to

obtain a crmm expression for the unknown functions presented in equation (45). By
u

substituti tions of auxiliary functions, equation (72), and their other representation

in equationgB)-nside the right-hand side of equation (72) and taking the advantage of the
identity pi€se @ in Appendix A [36], a closed-form solution for the unknown functions of
115 0

the proble ind. Employing this identity eventually leads to the explicit solution of
unkno s in equation (45) as
P(£) = Re{ 2 [H(a,,)+ H(a,2,-%)]
BRI AT R AL
(I+7)(42 _1)e (79)
ﬂlez - -
- - *[H(aaasé:)_‘_H(asa 9_5)]}3
O(l +7,)(A2 = e i i
0@ =1 e [H(a,,,~&)~ H(a,,)]
g4i(1 )= Aem o (80)

Aie, — o
iﬂ"‘?”z)(/_lz—Zl)e’”772 [H(a,a,,—¢) — H(a,a,, )]},

-|—l4
-
<C
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€

R(‘f) = Im{4l(1 + 71)(12 _zl)emjl [H(aaalﬂ_é:) _H(aaala‘f)]
81)
62 —_— _ _ —_—
T T [H(a,0,,~&)— H(a,a,, )]},
S(&) = _— [H(a,a,,&) + H(a,a,,—E)]. (82)

m gl -+ 7/1)(12 — Zl)e”;l

It is now (@0 find the displacement and stress functions by substituting equations (79)-
(82) in equations, (41)-(44) and implementing the infinite integrals embedded in the Hankel
transform ©f gquations (24)-(31). Due to the complexity of confluent hypergeometric
function, th€®us€of numerical integration for estimation of field's variables is inevitable.

In the special cas@ of an isotropic material, the elasticity coefficients of transversely isotropic
material are written as

_v) Ev E G

C =C. = . C =_C = —-—e—_enm—sse mp . C =C = = .

e —2v)" P (wv)(1-2v)T M 2(1+y) (83)
SO = Sl = SE=
with ing the Young and shear moduli and v the Poisson ratio. This leads to the
compact solu or the unknown coefficient of integration and total vertical load on the
plate. Si ing the associated relationships yields

Ln(3—-4v)A

¢ LnB-4) (84)

7 E 4y

n(3—4v) I

F=4Gr z . (85)
3—-4v

This is 4 nt with the analytical solution presented in [21] for the vertical movement

ofa thirWsion partially surrounded by penny-shaped crack and inside isotropic full-
space. It is‘noteworthy to mention that, in Keer's solution, the imposed vertical displacement

is assumei to Eejﬂ'vided by twice of shear modulus G .

6. Com ional results
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This section is devoted to a numerical treatment of singular integral equation in the general
case. The numerical calculation of the integral equation seems to be inevitable since the right-
hand side gf the eguations (53)-(56) possesses dynamic non-homogeneous kernels of an
inﬁniteHenerally, there will be two branch points lying on the formal path of
integratio integrals (58) which needs to be located and considered during the
integratio&. Due to the existence of the Cauchy singularity in the kernel of an
integraLeaﬁmthe conventional quadrature method cannot yield a reliable solution [38]. In
this papergwe numerically estimate the solution of integral equations by means of expanding
Ls in terms of appropriate functions. The analytical static solution for the
at the result of auxiliary functions tends to have a singular point around the

unknown

problem rg¥eal
edge of th
homogenegus , we utilize Chebyshev polynomials as expanding functions so that the

tr =a . To take into account such singularity in dynamic non-

singularitylatithe 8dge of the plate is approximated accurately. By selecting a set of

56

appropriate collocation points, some linear equations will be provided, which eventually
result in the unkilgwn coefficients of expansions. The details of the collocation method
involved nted in the Appendix B. To be able to demonstrate the effectiveness of the

aforementj ocedure, a number of exponentially graded transversely isotropic materials
have beenSatroduced in Table 1 and corresponding numerical results will next be presented.

In Table lmmetersE ,E',G,G', v and V' are the engineering constants of

materi direct relations with the elasticity constants of transversely isotropic
medium as

1-Ev?/E’ '
Con ( ) ) Coiz = 2y o Couy =G’
—V-2EV” /E') (1—v—2Ev’2/E') )
E
Co33:( )a c(mzm:G, Co1z =Co1 — 2Coe6 -

The mLable 1 are selected in such a way that the ratio £'/ E varies over a wide
range. Si e concerning the vertical force and movements, this ratio may be the best
parameter y the main effect of degree of anisotropy.

Before pr ingla parametric study for the wave propagation characteristics of non-
homogeneous sversely isotropic materials, it is essential to demonstrate to some extent
that th%‘t;oundary value problem stated in equation (3) to (8) has been satisfied

numerica e interface of two joined half-spaces, the results of radial and vertical
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displacements of exponentially graded transversely isotropic materials have been depicted in
Figs. 3 and 4 for the fixed value of the frequency of vibration. As it can be seen, the
prescribei gisplagements, equations (3) to (4), have been successfully imposed at the location

of plate , ince no displacement boundary condition has been held for penny-shaped
crack, the of displacements on the other face of the crack is consistent with the
vertical m plate. The displacements at the upper and the lower half-spaces are met

each otherMhe edge of the plate, causing severe variation for displacements around the
boundarys the plate. Similarly, the stress components of materials are plotted in Figs. 5 and
6, which s singular nature of stress functions at the edge of both penny-shaped crack
and plate. mtinuity of displacements and stresses is also completely valid after the

plate/crac on.

The influgiic n-homogeneity of the material on the dynamic behavior of transversely
isotropic e has been illustrated in Figs. 7a and 7b on the axis of symmetric of the
materials. osition of the plate/crack discontinuity, a finite jump in displacements of
the materimdent. The magnitude of the function of vertical displacement, as
demonstrated in Fig. 7, has been mitigated by increasing the non-homogeneity of the material
and vanislied at a place far from plate/crack position. The dynamic load-displacement
relationship} pedance functions, of the rigid plate in vertical direction is an important
physical mhat can be defined as

Ky, ( = =3 (87)

440

where
0, =aw /EP . (88)

Figures 8 t depict the effect of inhomogeneity and anisotropy of the material on both the
trend a@imde of impedance functions. Figure 8 shows the impedance function for
i i rrounded by the crack embedded in a homogeneous full-space material
- geneity parameter is held zero). As expected, a wavy behavior has been
figures as the non-dimensional frequency of vibration is increased. It is

observed

evident that the Miagnitude of impedance function will increase if the value of E' of the

material 1 , but the shapes of impedance functions stay nearly intact. On the other
hand, as E material increases, both the shape and magnitude of the impedance
functio ith frequency.
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Before discussing the effect of non-homogeneity of the material on the impedance functions,
it is essential to check the possibility of the condition in which the rigid plate attached to both
sides of upper and lower half-spaces. This situation may occur as a result of large vertical
deform plate through dynamic action in conjunction with the change in the
loading di Iternatively, the continuity of the contact conditions at the penny-shaped
crack mig&éd under severe loading. In this case, if the radius of the crack is
substarﬁaWased in such a way that it asymptotically approaches infinity, the problem
identical tgrthe vibration of the inclusion on the half-space would result. The analytical
treatment htated physical problems needs separate studies which are available in the
literature mn cases. By assuming a relaxed condition that leads to an excellent

approximati he bonded one, similar problems have been investigated in [39-40] without
material defectsmn full-space or half-space. Those results are suitable for comparison since,
geometricm can be considered as the specific case of present study. Thus, the results
of [39-40] are presented in Fig. 9 together with results of our study, the latter being extracted
and calculate the Case Il introduced in Table 1. As can be seen, the trend of impedance
functions i¥5tudy in both real and imaginary parts are different from those of other

cases. Bes omparing with other cases, the results of the present study show a wavy

behavior, ¥hich can be attributed from the scattering phenomena generated by material

defects, however, the range of oscillation is low in comparison with the solutions presented
for upper w er bounds.

The influences of material inhomogeneity on the dynamic stiffness of the embedded inclusion

are illu 1n the Figs. 10 and 11. For increasing the material inhomogeneity, the value of
impedance n gradually grows since transversely isotropic materials tend to be further
stiffer i g the inhomogeneity parameter and, as a result, the frequency-dependent

behavior of the material, has been rapidly decayed. An interesting point of Fig. 10 is that the
imaginarygpart of the impedance function approaches zero below a so-called cut-off
frequency this frequency, the wave propagation does not occur and the impedance

o the static value. This effect similarly is also observed in the problem of

> made of an inhomogeneous isotropic material [29] and, with reference to

the numerical'tesult of this paper (see Fig. 10), the material anisotropy has no influence on
the onset S:Em pE)enomenon and they have just related to the parameter of non-

homog e material. This statement is further confirmed by numerical results
present i Ml 1, where the impedance function of the rigid plate is derived for different
inhomoge aterials. It is evident that the asymptotic behavior of the imaginary part of
the impedance fufaction tends to a fixed value regardless of any chosen parameter for the
material i eneity.

7. sion

This article is protected by copyright. All rights reserved.

22

85U8017 SUOWIWIOD BAIE8.D 8|qeot|dde au Aq peusenob a1e seolle YO ‘8sn JO 3| 10} Aeidi8Ul|UO /8|1 UO (SUONIPUOD-PUB-SWBI WD A8 | 1M ATeIq 1 BUIUO//:SANY) SUORIPUOD Pue Swie | 8y} 89S *[£202/20/20] Uo Akeiqi8uluo A8|iM ‘8010 [eausD yBinquips 'SIN PUe0dS 10} Uoieanps SHN Ad 282009T0Z WWez/Z00T 0T/10p/LLoo" A3 1M Ake.d jpul|uoy/sdiy wolj pepeojumod ‘TT ‘2T0Z ‘TO0YTZST



Mixed boundary value problem associated with the vertical vibration of a rigid circular plate
partially in contact with an inhomogeneous transversely isotropic full-space has been
formulatei with ie aid of a newly developed displacement potential method. By utilizing

Hankel ansforms and defining auxiliary functions, the problem is converted to the
solution o coupled integral equations, which are both analytically and numerically
examined echanical characteristic of the system. The closed-form solution for

VerticaUHW of the plate in a homogeneous transversely isotropic material is found in
explicit fomm, which was observed that the contact load distribution possess a kind of
oscillatorj%rity at the region near the edge of the plate. The analytical solutions
presented #t the Maper are completely in agreement with the existing formulation previously
reported i i€rature for the special case of homogeneous isotropic material.

To numeri€ally a$sess the forced vibration of the plate in full-space material, the method of
discrete col@Cation-based on the expansion of auxiliary functions is employed. It is shown

that impo oundary condition may cause severe variation of elastic fields near the
edge of b and penny-shaped crack. Furthermore, the inhomogeneity of the material
has been sh have a major contribution to fast decay of displacement function with
depth. Frf the parametric study of the material properties, Young’s modulus in the plane of
isotropy hi or role in the frequency-dependent response of materials in terms of
computed 4 ce functions. However, the dynamic behavior of a functionally graded
material s dependent on the frequency of vibration if the material inhomogeneity

increases. It is observed that, below certain fixed frequencies of the vibration, the imaginary

part of nce functions approaches zero. The mathematical formulation presented in this
paper can be y extended to the problem of vibration of the plate in an inhomogeneous
transv i pic material loaded in different directions.
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Appendix A i

A list ogical identities used in the paper is summarized in this section [36].
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sin (v arcsin (s / 7))

— , s<r
Nri—s
=<0 or 0, s=r

r" cos(vzr/2)
, §s>r
@ M

cos (v arcsin(s /r))

s<r
) \/rz_sz ’
IJv(rf)c =40 or 0, s=r
0 v
—r"sin(vrr / 2) sy

U)

\/ ot (s +«/s2—r2)v

Ji(rg) = (7’9‘))

Jo(rg) = %

a+S

In the

(rd))

e"ds =2af(1-i0,1+i 0’ |[F(1-i0;2;-2i a).

confluent hypergeometric function, see Appendix A in [37].

-
Appendno

orthog

normaliMmterval of integral equations by introducing

Thus, we ta following expansion for auxiliary functions
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(A1)

(A2)

(A3)

(A4)

(A5)

ty, f(a,b)= J' t“'(1—t)"'dt is the Beta function and F(a;b;c) is the

The numefiical process for determining the auxiliary functions is presented here. Since the
hev polynomials have been restricted to the finite interval (-1,1), it is

(BI)
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A(s)=w (E)z":a,.Ti(s_), B(s)=w(s) ZbT (s),

() ~vulfodaadl, (5), B(s)=w (s)Zd T, (),
- -
where w(gng function equal to 1/y1—-s" and T.(s)1s Chebyshev polynomial of

(B2)

the ﬁrsFo defined as

T.(s)= c cos(s)). (B3)
By substit 2) in equation (53) to (56) and taking the advantage of the identity [38]
jM L), (B4)
|

where U, Chebyshev polynomial of the second order, which is defined as

ol i}
U, (s)= Epa (B3)

LS d, 0 GO, 5)+ Kb () + Ly Y b, w G, (5)+K5GE)=0,  (B6)

L2lici ()+K§1(‘;))+L2ZidiUi—l(;)+L24iai w (‘;)Ti (E)+Kzl4(~;)) =%A, (B7)

L > el + K4 (5 + Lo U, (6)+ LD, 00 G, )+ KLy 6) = 2c, @)

L,34d, (‘QHKL(;)HL‘B?@ WG, )+ KLG)-LySaU, ,)=0,  (BY)

i=0 i=0

where
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K;;q(E):ajw Ok, (t,s)T, (0 )dt. (B10)

ConsidMﬁmel given in (B10), it is reasonable to employ a Chebyshev—Gauss

quadraturmaluation of integrals

K (E);Mm (t,s) T, (t)dt =ain k, t,.)T.(,), (B11)
1 j=

where O

Wj:%,w tj=cos%.

The consistency condition expressed in equation (46) should also be included, implying

(B12)

¢, =0 which giv@s an extra equation. Then, constant C plus unknown coefficients of B2 can

be obtained using this extra equation, ¢, = 0, alongside with the system of coupled equations
B6 to BY.
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Figure Captions

Fig. 2. An 1; circular inclusion inside an exponentially graded transversely isotropic full-
space.

Fig. 3. Radial displacement at the interface of two half-spaces in an exponentially graded

transverseMaigotropic material (e, =3.0, B, =0.25); Mat L.

Fig. 4.
inhomogeneous transversely isotropic material (@, =3.0, £, =0.25); Mat 1.

isplacement at the interface of two half-spaces in a continuously

Fig. 5. ShM in a non-homogeneous transversely isotropic material at the interface of
two half-s » =3.0, B, =0.25); Mat L.

Fig. 6. No ess in non-homogeneous transversely isotropic material at the interface of
two half-s » =3.0, B, =0.25); Mat L.

Fig. 7a. Vgrtical displacement along the z direction for different non-homogeneous
transversely 1sotropic materials. Real part (@, =3.0); Mat IIL

Fig. 7b. Vasplacement along the z direction for different non-homogeneous

transvegpic materials. Imaginary part (@, =3.0); Mat III.
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O
: Fig. 1. Wind turbine foundation subjected to dynamic loading.
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Fig. 8a. Impedance functions of a rigid circular inclusion for different homogeneous
transversely isotropic materials. Real part (5, =0)

Fig. SbMe functions of a rigid circular inclusion for different homogeneous
transverse ic materials. Imaginary part (8, =0)

Fig. 9a. Impedance function of a rigid disc weakened by a penny-shaped crack compared
with simi nctions for a disc vibrated on half-space or embedded in the full-space
material.

Fig. 9b. Ir@ function of a rigid disc weakened by a penny-shaped crack compared

with simila tions for a disc vibrated on half-space or embedded in the full-space
material. y part.
Fig. 10. T e functions of a rigid circular inclusion for different non-homogeneous

transversely isotr@pic materials ( 5, =0.25).

Fig. 11. Thesi nce of non-homogeneity of the materials on impedance functions of a rigid
circular in@Qlusion (Mat II).
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space.
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Fig 6. NEess in non-homogeneous transversely isotropic material at the interface of
two half spaces (@, =3.0, B =0.25); Mat L.
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Fig 11. Thnce of non-homogeneity of the materials on impedance functions of a rigid

m circular inclusion (Mat II).

Table 1. Synthetic material engineering constants

Case 1 Case 11 Case III Case IV
100000 150000 50000 50000
2 3 1/ 3 1/ 3
20000 20000 60000 60000
For all cases: G=20000 N/mmz, v=yv'=0.25
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