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Abstract: The problem of axisymmetric vibration of a flat thin rigid circular plate located 

inside a vertically exponentially graded, transversely isotropic material of infinite extent is 

addressed by means of a displacement potential method. The contact condition on one side of 

the foundation is assumed to be the perfect adhesion with the media but known to be faced by 

a penny-shaped crack at the other side as it occurs in anchors. The mixed boundary value 

problem is formulated with the aid of Hankel integral transforms and is written in the form of 

a set of singular integral equations. The analytical procedure for the special case of vertical 

movement of the rigid plate results in a closed form solution. The solution is pursued 

numerically for the general elastodynamic case. The physical quantities, such as contact 

stress on the plate and the stress and displacement fields in the non-homogeneous medium are 

obtained for different materials. 

Key words: Exponentially graded material, rigid plate, penny-shaped crack, transversely 

isotropic space, wave propagation 
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Several experimental studies show that the analytical models are able to predict the stiffness 

and damping of the soil beneath a foundation with a reasonable degree of accuracy, e.g. [1-2]. 

Indeed, the experimental investigations are fundamental bases for proving the validation of a 

new procedure to consider the Soil-Structure Interaction (SSI) under dynamic loading for the 

design of structural elements such as machine foundation, transmitting tower foundation, and 

anchors. An exact formulation for the stiffness of the soil beneath a foundation can provide a 

practical tool for analyzing the soil-structure coupling by means of lumped parameters. In this 

approach, the effect of the soil-foundation interface is accounted for through a system of 

springs and dashpots assembled together with the superstructure stiffness [3-5]. Therefore, a 

complex analysis associated with continuum modeling of soil and soil-foundation interface 

may be reduced to a discrete analysis performed with a finite degree of freedoms. 

Furthermore, from a mathematical perspective, taking an appropriate geometry as a domain 

of the problem is a crucial step to achieve the desired accuracy for an engineering problem. In 

foundation engineering, there are several examples in practice where the interaction of 

foundation with a full-space as a domain of the boundary value problem may lead to precise 

evaluation of lumped parameters resulted from SSI analysis. As an example, we mention the 

design of the foundation for an offshore wind turbine which is an application of SSI analysis 

based on substructure method [6-7]. In order to resist dynamic forces caused by the rotor, 

wind waves, or ocean waves, several types of deep foundations are employed depending on 

the water depth and the strength of the dynamic loading (e.g. embedded raft, mono-pile, 

mono-pile with guy wires, tripod, suction caisson, etc.). Among them, the foundation system 

consisting of a mono-pile supported by guy wires or tripod structures are common 

alternatives [8]; these are used for medium range water depths namely between 20m to 40m. 

This type of the foundation can mathematically be represented by a pile foundation 

embedded in the seabed and braced with several side anchors, see Fig. 1. Clearly, due to high 

depth of embedment, by analyzing the interaction of foundation with a full-space medium, 

one can correctly predict the behavior of side anchors. 

Due to the sedimentation of the geological material, the structure of soil or rock generally 

possesses a certain degree of anisotropy and heterogeneous nature [9]; therefore, to estimate 

the dynamic stiffness of the embedded foundation, the constitutive model taking into account 

the non-uniformity and anisotropy of the material is required[10]. The complexity of the 

analysis related to the foundation-structure system will substantially increase if the contact 

conditions at the interface of the foundation and the soil are altered as a result of severe wave 

motion. The loss of perfect bonding between the soil and the foundation then significantly 

changes the dynamic properties of the foundation-structure system, an aspect typically 

disregarded in the design of foundations [11]. For instance, if the structural characteristics of 

the wind turbine, including the natural frequency and damping, are changed due to the 

detachment of the foundation, an unexpected and destructive vibration (resonance) may take 
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place [12]. Hence, a rigorous investigation of the dynamic impedance of the embedded 

foundation under various contact conditions could markedly eliminate the uncertainty 

existent in its design. 

In view of the engineering applications mentioned above, and mathematical challenges, both 

elastostatic and elastodynamic boundary value problems of continua containing cracks and/or 

rigid plates have been of interest. Interestingly, the boundary value problems of an elastic 

material containing rigid circular thin plate and penny-shaped crack are mathematically the 

same. So far, the problem of a crack embedded in an inhomogeneous material was 

investigated by several authors for plane [13-15] or anti-plane [16-18] geometry. However, 

the case of three-dimensional analysis of continuum containing crack with a sharp gradient of 

shear properties of material at the vicinity of crack has been considered to a lesser degree 

[19]. The present paper is concerned with a more complicated problem due to existence of 

both rigid plate and penny-shaped cracks next to the plate in a continuously inhomogeneous 

transversely isotropic full-space; where, Due to the presence of the crack, the load bearing 

capacity of the rigid plate markedly decreases in comparison to the plate surrounded fully by 

the medium [20]. The three-dimensional elasticity problem of this paper was first 

investigated in [21] for axisymmetric movement of a penny-shaped inclusion (plate) located 

at the interface of two identical isotropic homogeneous half-space. The contact region of 

inclusion is supposed to be attached only to one half-space material and to be free from 

contact stress on the other face. Of course, the continuity of displacements and stresses is 

secured after the inclusion area. The method of integral transform was employed in [21] to 

reduce the problem to the evaluation of singular integral equations, whose solutions are 

obtained with the aid of Riemann-Hilbert problem.  The assumption of the smooth contact 

condition between the inclusion and the upper half-space has been investigated in [22] and 

the corresponding results are similar to those of [21] for a wide range of Poisson's ratio. In 

the case of a plane problem, with the aid of complex potentials, a compact analytical solution 

was derived in [20]. This method was extended to account for the vertical movement of a 

rigid anchor placed at the interface of a bi-material full-plane in [24], which presented 

explicit results for all physical quantities of the problem. Later, three-dimensional mixed 

boundary value problems for bi-material full-space including both perfect and partial 

bounding of inclusion with the surrounding material have been examined in [25], where it 

was demonstrated that the oscillatory state of the contact stress at the edge of the inclusion 

could vanish when two half-spaces were filled with incompressible materials even though 

their shear moduli were different. 

To the best the authors’ knowledge, in the context of wave propagation induced by vibration 

of a rigid plate, the analytical solutions have not been fully developed for different boundary 

value problems in elastodynamics. This issue is further complicated if the materials 

experience a certain degree of anisotropy and spatial material gradient. Forced vertical and 
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rocking vibration of rigid circular foundation on a semi-infinite Gibson Soil have been 

formulated in [26-27]. Vertical vibration for a disc embedded at an arbitrary position in an 

isotropic half-space was examined in [28], and later, by means of potential functions, the 

problem has been generalized in [29] to a heterogeneous material with a quadratic variation 

of shear modulus in depth. The dynamic mechanical properties of a rigid circular disc and 

also a disc-shaped crack inside a transversely isotropic half-space have been studied in [30-

32]. It was shown that the dynamic behavior of continuously inhomogeneous materials of 

infinite extent domains can be simulated by analyzing a number of limited layers and 

satisfying boundary conditions between them, with a finding that the number of layers should 

increase to ensure the accuracy of results in high-frequency oscillation [33]. 

The main goal of this paper is to examine the dynamic indentation of a rigid circular plate 

embedded in a non-homogeneous transversely isotropic full-space. The material’s properties 

are increased exponentially through depths of each material. The governing equations of 

motion for the exponentially graded transversely isotropic material are decoupled with the aid 

of displacement potential functions recently introduced in [34]. This translates the equations 

of motion to a fourth order partial differential equation, whose solution is determined by 

Hankel integral transforms. Imposing traction and displacement boundary conditions on both 

sides of the plate and invoking the continuity of quantities outside the contact region 

simplifies the governing equations to a set of coupled singular integral equations. Due to the 

complexity of problems in dynamic cases, a numerical procedure is employed to solve 

singular integral equations. However, a reduced case of integral equations is prone to be 

analytically assessed. It is observed that the contact stress distributions around the edge of the 

plate possess highly oscillatory singularity, which is shown to be consistent with the results 

formerly obtained for isotropic materials.  

2. Problem Definition 

Full-space consists of two exponentially graded transversely isotropic material is taken as the 

domain of the boundary value problem involved in this paper. The plane of isotropy is 

assumed to be perpendicular to the vertical axis. A cylindrical coordinate system ( , , )r z  is 

set up in such a way that the z-axis is normal to the plane of isotropy, and the material 

properties 
ijc  and the mass density   are written in the form [34]  

2 2

0 0( ) , ( ) , ,
z zi i

ij ijz e c z c e i I II
 

   
,
 (1) 

where 0  is the initiate value for the material density at 0z   and 
0ijc  (

011 012 013 033 044, , , , andc c c c c ) are initial values for the elasticity constants. And I II s      

with 0s    are non-homogeneity parameters where I  and II  denote the lower half-space (
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0z  ) and upper half-space ( 0z  ) respectively. A rigid circular disc of the radius a  and 

zero thickness is placed at the coordinate system’s origin as a plate, while a penny-shaped 

crack, of the same radius as the plate, is faced to the side
*
 0z   of the rigid disc see Fig. 2. 

The plate undergoes a prescribed time-harmonic vertical vibration  . The contact area above 

the plate is perfectly bonded to the upper material but weakened by a penny-shaped crack 

beneath the plate. 

This gives a BVP with governing equations of motion for such medium in terms of 

displacements as following [34] 

 

 

2 2 2

044 013 0442 2 2

2 2

044 013 0442

2

011 0044

0 013

2

233

1

1 1

(

(

2 )

2 ) ,

 



   
     

    

   
   

    

   
   

  

     
      

    

i i i i i i i
ir r r r z r z

i r

i i i i i i i

z z r r z r r
i

u u u u u
c c c

r r r r z r z

u u u u
c c c

r r r r z r z

u u
c c u

z r

u u u
c c i I II

z r r

033

2

0+2   




i
iz

i z

u
c u

z

 (2) 

in which i

ru  and i

zu  are the components of displacement vector in the cylindrical coordinate 

system for ,i I II  respectively, while   is the circular frequency of motion. With boundary 

condition at 0z    

 

 ,0 0,        II

ru r r a   (3) 

 ,0 ,           II i t

zu r e r a   (4) 

 ,0 0,        I

zr r r a  (5) 

 ,0 0,         I

zz r r a   (6) 

   ,0 ,0 , ,        II I

i iu r u r i r z r a  (7) 

                                                           

*
 We define 

0
0 lim

z
z






 . 
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   ,0 ,0 , ,     ,    II I

zi zir r i r z r a  (8) 

and radiation conditions at infinity. Where   is the amplitudes of the displacement 

excitations, and 
0

( ,0 ) lim ( , )
z

f r f r z

 
 . It is worth mentioning that the numerical procedure 

implemented in this paper is carried out in non-dimensional form with no restriction for the 

magnitude of the variable  .   

 

 

3. Method of Potential Functions 

 

To solve the BVP, we use the displacement potential function ( , , ), , i iF r Iz II  introduced 

in [34], being applicable to irrotational axisymmetric dynamic boundary value problems of a 

transversely isotropic material as well as an isotropic material. This function is utilized to 

decouple the governing equation. In this way, the non-zero displacements i

ru  and i

zu  are 

expressed in terms of ( , , ), , i iF r Iz II  as [34] 

2

3 2

2 2

1 2 0 ,

2

(1 ) (2 ) ,

  

    

 
  

  

  
      

  


i i
i

r

i i

z r

i

i

F F
u

r z r

u F
z z

i I II

  (9) 

where  

  011 066 044 013 044 0
1 2 3 0

066 066 066 066

, , , ,
c c c c c

c c c c


   

 
       (10) 

2
2

2

1
r

r rr


 
  


. (11) 

In the above 066c  is defined as 011 012( ) / 2c c . Substituting the displacements from (9) into the 

equations of motion (2) results in the following equation for the potential function 

( , , ), , i iF r Iz II  [34] 
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  2 2 2 2 2 22
2

1

23
1

24 / , ,0
1

 

 
 




 
       

 


i

i

ii i i r iF Iz II                                                        

(12) 

where 

2
2 2 20

2 2 2

2
1

, 1, ,2 ,j i r

j

i

j j

ij
s z s

I II



 




 
     





 (13) 

  ,i i

i

n n
z z

n n
Y e e Y

z z

 



  
 

  
 (14) 

4
0 2 2

1 2 2 1 1 2

044 011
0 1 2

066 066

1 1 1
1 ,

1

1, , .

s s

c c

c c


 

   

  

  
      

   

  

 (15) 

in which 
2

1
s and

2

2
s  are the roots of  

 2 2

3 2 1 4

4 2

4 2 2 1( (1 ) 0.1 )s s            (16) 

Similarly, the non-zero components of the stress tensor involved in imposing the 

axisymmetric boundary conditions are defined in terms of the potential function 

( , , ), , i iF r Iz II  as follows [34] 

 
2 2

22 2

044 2 0 1 32 2
1

       
  

        
  




,,i zi i

zr

d d
ic F e

dz d
I

z
II  (17) 

  22 2 2 2013
033 2 0 1 3 2 013

033

2 1 2
         

  
        




  

( ) ,,i

i

zi i i

z iz

cd d d
c F c F e

dz dz c
i

z
I

d
II  (18) 

Taking into account the nature of the problem, a zero-order Hankel integral transform with 

respect to the radial coordinate is applied to the equation (12), and the following ordinary 

differential equation is obtained for the transformed of the potential function 

( , , ), , i iF r Iz II  
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  2 2 2 2 2 2 2 2 03 2
1 2

1

4 / 0,
1

,


 
  


 

 
      




 i

i

i ii i z F i I II  (19) 

 

where 

22
2 2 20

2 2 2
,

1
, 1,2,j i

j j j

i i I
s

II
d

j
dz s



 
 



 
     





 (20) 

and 
0 ) ,( , , ,  iF z i I II  is the zero-order Hankel integral transform of ( , , ), ,iF r z i I II  . 

It results in the following general solutions for the equation (19)  

1 2 1 20( , , ) ( ) ( ) ( ) ( ) , ,
          

   
 


  


i i
i

i iz z z z zi i i i iF z e C e D e C e ie ID II  (21) 

where 

2 4 21
 ,  =1,2

2
       i i i

j a b c d e j   (22) 

and 

 

 

2
2 2 2 2 2 20
1 2 1 2

4 2

2 2 2 23 2 1
0 1 2

4 4 2 4 1 2

2

2 4

0

4 2

1 1 1
, , ( )

2 2

11 1 1 1
16 2 2 ,

1

1 1
.

,

i

i

i

ia s

i I I

s b c s s

d s s I

e

 

 

  
 

     





 
 

 
       

 

     
          

    

 
 








  (23) 

And ( ), ( ), ( )    

i i iC D C  and ( )

iD  are unknown coefficients determined from boundary 

conditions. As seen from (22), 
1
i  and 

2
i  are radical functions, and hence are multi-valued 

functions. To be consistent with (21), one must define a Riemann surface with two sheets 

such that 
1  and 

2  are single-valued and analytically continuous from one sheet to another. 

This can be achieved by specifying the branch cuts for 
1
i  and 

2
i  on the complex -plane, 

with the branch points emanating from zeros of these functions, or from the equation of 

1 2 i i (e.g., see [33]). Under these choices of the branches and taking into account the 

radiation condition, the 1( ) I
I ze  and 2( ) i

i z
e  terms become inadmissible and consequently 
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( )

IC  and ( )

ID  in Eq. (21) vanish. It is worthwhile mentioning that through a similar 

analysis for the upper half space, ( )

IIC  and ( )

IID   are vanished. In the sequel, for 

convenient, we name unknown coefficients of each medium as 
1 1( ) ( ), ( ) ( )     I IA C B D    

and
2 2( ) ( ), ( ) ( )     II IIA C B D . 

 

Now, with the aid of appropriate inverse Hankel integral transforms and rearranging the 

equations (9) and (17-18), the solutions for the stress and displacement fields throughout the 

full-space region are obtained in explicit forms as  

1 2( ) ( ) 2

1 12 1 22 1

0

( , ) ( ( ) ( ) ) ( )
        



   
  I

I I
Iz zI I I

ru r z A e B e J r d  (24) 

1 2( ) ( )

1 1 1 2 0

0

( , ) ( ( ) ( ) ) ( )
       



   
 

I I
I Iz zI I I

zu r z A e B e J r d  (25) 

1 2( ) ( )

1 066 12 1 066 22 1

0

( , ) ( ( ) ( ) ( ) ( ) ) ( )
          



   
 

I
I

I
Iz zI I I

zr r z A c z e B c z e J r d  (26) 

1 2( ) ( )

1 066 12 1 066 22 0

0

( , ) ( ( ) ( ) ( ) ( ) ) ( )
        



   
 

I
I

I
Iz zI I I

zz r z A c z e B c z e J r d  (27) 

for the lower half-space called Region I, and  

1 2( ) ( ) 2

2 11 2 21 1

0

( , ) ( ( ) ( ) ) ( )
       



 
 

II II
II IIz zII II II

ru r z A e B e J r d   (28) 

1 2( ) ( )

2 1 2 2 0

0

( , ) ( ( ) ( ) ) ( )
        



 
 

II
I II

II
I z zII II II

zu r z A e B e J r d    (29) 

1 2( ) ( ) 2

2 066 11 2 066 21 1

0

( , ) ( ( ) ( ) ( ) ( ) ) ( )
        



 
 

II II
II IIz zII II II

zr r z A c z e B c z e J r d   (30) 

1 2( ) ( )

2 066 11 2 066 21 0

0

( , ) ( ( ) ( ) ( ) ( ) ) ( )
         



 
  II II

II IIz zII II II

zz r z A c z e B c z e J r d   (31) 

 15214001, 2017, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/zam

m
.201600282 by N

H
S E

ducation for Scotland N
E

S, E
dinburgh C

entral O
ffice, W

iley O
nline L

ibrary on [02/02/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



 

 

 

This article is protected by copyright. All rights reserved. 

10 

 

for the upper half-space called Region II. In the relations (24) to (31), we have 

066 011 012( ) ( ( ) ( )) / 2 c z c z c z  , ( ) and ( )  =1,2j jA B j   are unknown Hankel parameters 

corresponding to the lower and upper half-space, and following relations: 

 

 

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1 2 1 2

2 2 2 2

2 0 1

1 2 3

2 2 3

2

1 2 3 2

;

;

;

;

(1 )

2 ( )

2 ( )

( ( ) 2

I II I II

j j j j j j

I II I II

j j j j j j

I II I II

j j j j j j

I II I II

j j j j j j

j j s

j s j s

j s j s

j j s

     

     

     

     

       

     

     

      

   

     

   

     

    

  

  

  

   

   

2

2 2 3 2

2 2

1 3 3 2 4 2 3 2

2 2

2 3 3 2 4 2 3 2

( ) )

( ( ) 2 ( ) )

( )( ) 2

( )( ) 2

1,2.

s j s j

j j s s j s j

j j j s s

j j j s s

j

  

         

             

             

 

    

     

      



 

 (32) 

In the above, we have used I II s      to simplify the relations. 

4. Formulating of mixed boundary value problem 

After obtaining displacements and stresses fields in terms of potential functions, imposing 

radiation condition, one can obtain unknown coefficients ( ) and ( )  =1,2j jA B j   by 

imposing the mixed boundary conditions at the interface of two half-space. In the domain 

inside the plate and at the interface of two joined half-space, the mixed boundary value 

problem in conjunction with the equations (3) to (6) and (26) to (29) reads as 

2 2

11 2 21 2 1

0

( ,0 ) ( ( ) ( )) ( ) 0,       


   
II II II

ru r A B J r d  (33) 

1 2 2 2 0

0

( ,0 ) ( ( ) ( )) ( ) ,       


    
II II II

zu r A B J r d           (34) 
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066 12 1 066 22 1 1

0

( ,0 ) ( ( ) ( )) ( ) 0,         


   
I I I I I

zr r c A c B J r d  (35) 

066 12 1 066 22 1 0

0

( ,0 ) ( ( ) ( )) ( ) 0.       


   
I I I I I

zz r c A c B J r d           (36) 

Where   is the amplitude of vibration, which also appeared in the equation (4). In addition, 

the continuity of the stress and displacement fields exterior to the plate area implies that 

2 2 2 2

12 1 22 1 11 2 21 2 1

0

( ,0) ( ( ) ( ) ( ) ( )) ( ) 0,             


     
I I II II

ru r A B A B J r d  (37) 

1 1 2 1 1 2 2 2 0

0

( ,0) ( ( ) ( ) ( ) ( )) ( ) 0,             


     
I I II II

zu r A B A B J r d    (38) 

066 12 1 066 22 1 066 11 2 066 21 2 1

0

( ,0) ( ( ) ( ) ( ) ( )) ( ) 0,               


     
I I I I II II II II

zr r c A c B c A c B J r d   

(39) 

066 12 1 066 22 1 066 11 2 066 21 2 0

0

( ,0) ( ( ) ( ) ( ) ( )) ( ) 0.           


     
I I I I II II II II

zz r c A c B c A c B J r d  (40) 

where ( ,0) ( ,0 ) ( ,0 )f r f r f r    . To further reduce the system of coupled mixed 

boundary conditions (33) to (40), one may benefit from introducing the following 

substitutions in equation (37) to (40) 

2 2 2 2

12 1 22 1 11 2 21 2( ) ( ) ( ) ( ) ( ),               I I II IIS A B A B  (41) 

1 1 2 1 1 2 2 2( ) ( ) ( ) ( ) ( ),               I I II IIR A B A B   (42) 

066 12 1 066 22 1 066 11 2 066 21 2( ) ( ) ( ) ( ) ( ),               I I I I II II II IIQ c A c B c A c B   (43) 

066 12 1 066 22 1 066 11 2 066 21 2( ) ( ) ( ) ( ) ( ).           I I I I II II II IIP c A c B c A c B   (44) 

 

Now, following the elegant transformations introduced in [21], we write these functions in 

the following forms  
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0 0

0 0

( ) ( )cos( ) ,    ( ) ( )sin( ) ,

( ) ( )sin( ) ,     ( ) ( )cos( ) .

a a

a a

P A s s ds Q B s s ds

R s s ds S s s ds

 

 

 

 

   

     

  (45) 

Substituting the above relations into Eqs. (37) to (40) and using the certain identities 

presented in Appendix A, one may find that the equations (38) to (40) are automatically 

satisfied and the only restriction that is needed for satisfying equation (37) is as follow: 

0

( ) 0.

a

s ds    (46) 

It is noteworthy that the auxiliary functions ( ), ( ), ( )s s A s   and ( )B s  could be extended 

to the negative domain in such a way that the functions ( )A s  and ( )s  have even properties 

and ( )B s  and ( )s  possess odd properties. Writing 1( )A , 2 ( )A , 1( )B  and 2 ( )B  from 

(41) to (44) in terms of ( ), , ( ) ( )  P Q R  and ( )S , using (32), and substituting the results 

into equations (33) to (36) leads to 

11 12 13 14 1

0

( ,0 ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )] ( ) 0,II

ru r a S a R a Q a P J r d         


       (47) 

21 22 23 24 0

0

( ,0 ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )] ( ) ,II

zu r a S a R a Q a P J r d         


        (48) 

31 32 33 34 1

0

( ,0 ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )] ( ) 0,I

zr r a S a R a Q a P J r d           


       (49) 

41 42 43 44 0

0

( ,0 ) [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )] ( ) 0,I

zz r a S a R a Q a P J r d           


        (50) 

where the functions ( )ija   are as follows 

11 22 33 44

1 1
( ) ( ) , ( ) ( ) ,

2 2
a a a a         (51a) 

14 23 32 41( ) ( ) ( ) ( ) 0,a a a a        (51b) 
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12 13
22 12 12 22 1 22 2 12

22 1 12 2 066 22 1 12 2

( ) (
(η φ η φ ) ( φ φ )

, ,
2(η η ) 2c (η

)
η )

a a 
   

   

 
 

 
 (51c) 

 

1 22 2 12 2 12 1 22

22 12 12 22 066 22 12 12 2

24

2

21( ) (
υ υ ( φ φ )

, ,
2 (υ φ υ φ ) 2c (υ φ

)
υ φ )

a a
 


  













 (51d) 

 

066 12 22 22 12 22 12 12 22

22 12 12 22 22 12 12 2

31

2

34

c (η υ η υ ) (η φ η φ )
, ,

2 (υ φ υ φ ) 2(υ φ
( ) ( )

υ φ )
a a




 









  (51e) 

 

066 22 12 12 22 1 22 2 12

22 1 12 2 22 1

42 3

2

4

1 2

c (η υ η υ ) υ υ
, .

2 (η η ) 2 (η
)

η )
( ( )a a

 

  
 

  

 


 


 (51f) 

It is convenient here to introduce the following four integral operators to express the result of 

equations (47) to (50) in the form of ordinary functions. Thus, define [21] 

1 2
2 2 2 2

0 0

3 4
2 2 2 2

0 0

( ) d ( ) d
( ; ( )) , ( ; ( )) ,

( ) d ( )  d
( ; ( )) , ( ; ( )) .

s s

s s

d s f r r d r f r r
f s f r f s f r

ds dss r s r

s f r r r f r r
f s f r f s f r

s r s r

 
 

 
 

 

 

 (52) 

Applying these four operators on both sides of four equations (47) to (50), respectively, 

substituting the relationships given in equation (45), and using the odd and even properties of 

the integrals defined in (45), one may simplify the mixed boundary conditions (47) to (50) in 

the form of the following coupled singular integral equations 

 11
12 13 12 13

( )
( ) ( ) ( , ) ( ) ( , ) ( ) 0,

a a

a a

L t
L s L B s k t s t k t s B t dt

t s


 


 


    

   (53) 

 22
21 24 21 24

( ) 2
( ) ( ) ( , ) ( ) ( , ) ( ) ,

a a

a a

L t
L s L A s k t s t k t s A t dt

t s


 

 
 

     
   (54) 

 33
31 34 31 34

( ) 2
( ) ( ) ( , ) ( ) ( , ) ( ) ,

a a

a a

L B t
L s L A s k t s t k t s A t dt C

t s
 

 
 

     
    (55) 
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 44
42 43 42 43

( )
( ) ( ) ( , ) ( ) ( , ) ( ) 0.

a a

a a

L A t
L s L B s k t s t k t s B t dt

t s
 


 

    
    (56) 

where the coefficients 
ijL  are defined as 

 ( )ij ijL lim a


   (57) 

In addition, the kernel functions of integral equations are determined as 

12 12
12

120

sin( )sin( )
( )

( , ) ( 1) ,
L a

k t s t s d
L





 



   (58a) 

13 13
13

130

sin( )sin( )
( )

( , ) ( 1) ,
L a

k t s t s d
L





 



   (58b) 

21 21
21

210

( )
( , ) ( 1)cos( )cos( ) ,

L a
k t s t s d

L


  





   (58c) 

24 24
24

240

( )
( , ) ( 1)cos( )cos( ) ,

L a
k t s t s d

L


  





   (58d) 

31 31
31

310

( )
( , ) ( 1)cos( )cos( ) ,

L a
k t s t s d

L


  





   (58e) 

34 34
34

240

( )
( , ) ( 1)cos( )cos( ) ,

L a
k t s t s d

L


  





   (58f) 

42 42
42

420

sin( )sin( )
( )

( , ) ( 1) ,
L a

k t s t s d
L





 



   (58g) 

43 43
43

430

sin( )sin( )
( )

( , ) ( 1) .
L a

k t s t s d
L





 



   (58h) 

Constant C in the equation (55) appears after the integral operator 3( ; ( ))f s f r is applied on 

both sides of the equation (49). It is worthwhile to be mentioned that, in the analytical part, 

C can be obtained directly by satisfying equation (46). However, a computational procedure 

is required for obtaining constant C  in general case(FGM under the static movement of the 

inclusion or dynamic case), which can be found in Appendix B.  
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The singular integral equations (53) to (56) consist of two parts, arising from the physical 

nature of the associated problem. The left-hand side of these equations contributes in forming 

of a homogeneous static solution of the problem while the remaining equations create a 

dynamic non-homogeneous contribution of mixed boundary conditions (see [34]). 

From the solution of auxiliary functions, it is possible to derive an explicit relationship for 

contact stress on the top of the inclusion. By rewriting equations (39) and (40) for 0 r a  , 

which define the contact traction between the inclusion and the medium, and implementing 

infinite integration, one may obtain 

2 2

( )
( ,0) ,

a

zr

r

d B s ds
r

dr s r
 


   (59) 

2 2

1 ( )
( ,0) .

a

zz

r

d sA s ds
r

r dr s r
 


   (60) 

The total load needed to support the prescribed vertical displacement is usually of interest. 

This quantity has been determined by integrating the normal traction at the interface of the 

plate and the medium. Thus, the total load is expressed in terms of the solution for the 

auxiliary function ( )A s  as 

2

0 0 0

( ,0) 2 ( ) .

a a

zzF r r dr d A s ds



          (61) 

The singular integral equations (53)-(56) contain some complex kernels, which prevent 

determining an analytical solution. However, there are certain special cases for which closed-

form solutions are possible.   

5.  Analytical solution for homogeneous transversally isotropic full-space 

The singular integral equations obtained in the previous section will now be analytically 

solved for a special case of static movement of the plate located in a homogeneous 

transversely isotropic full-space. The closed-form solution could be pursued from the 

knowledge of the fact that the right-hand side of equations (53) to (56) vanishes if both the 

frequency of vibration and the non-homogeneity of material, characterized by the parameter

s , tend to zero. In this case, it is required to introduce a modification factor inside the 

procedure outlined in the previous section. This is accomplished by multiplying both sides of 

equations (33) and (36) by the parameters m  ( 0)m   and dividing both sides of equations 

(37) and (40) by the same value and keep other procedures unchanged. This results in certain 

useful relationships 
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21 12 22 11 23 14 24 13

31 42 32 14 33 44 34 43

/ , / , / , / ,

/ , / , / , / .

L L m L L m L L m L L m

L L m L L m L L m L L m

   

   
 (62) 

We are now able to present a compact representation of equations (53) to (56) by multiplying 

the equations (53) and (56) to the complex parameters m i  (with 1i   ) and adding them 

to equations (54) and (55) to have 

22 2
21 2 24 1

( ) 2
( ) ( ) ,

a

a

L t
L s dt L s

i t s


 

 


   
   (63) 

33 1
31 2 34 1

( ) 2
( ) ( ) ,

a

a

L t
L s dt L s C

i t s


 

 


   
   (64) 

where  

1

2

( ) ( ) ( ) ,

( ) ( ) ( ) .

s A s B s i

s t t i



  

 

 
  (65) 

Evidently, the equations (63) and (64) still contain coupling characteristics. To uncouple 

them, it is useful to multiply the equation (63) by an unknown parameter   and add to the 

equation (64), which reads 

33 1 22 2
34 24 1 31 21 2

( ) ( )1 2
( ) ( ) ( ) ( ) ( ).

a

a

L t L t
L L s L L s dt C

i t s

  
    

 



      

   (66) 

The equation (66) may be written in two separate classical singular integral equations if the 

following relationship is confirmed [25] 

31 21 22

3334 24

( )
.

( )

L L L

LL L

 



 



  (67) 

This is a quadratic equation, yielding two roots for the parameter , which after some 

algebraic manipulations and benefitting from the relation 22 33 1/ 2L L     result in  

 

31 31
1 2

24 24

, .
L L

i i
L L

      (68) 
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Effective representations are thus defined as 

1 2( ) ( ) ( ),   =1,2,jjX s s s j      (69) 

which helps to simplify the equation (70) to 

( )
( ) ,  =1,2,

a

j j

j j

a

X t
X s dt e j

i t s






 
   (70) 

where 

34 24 34 24

1 2 ( )
, .

2( ) ( )

j

j j
j j

C
e

L L L L




 

 
 

 
 (71) 

The procedure for obtaining a closed-form solution for equation (70) is based on the 

Riemann-Hilbert problem in the complex plane (see [25]). Avoiding the details (see [21] and 

[25]), the analytical solution emerges as 

 

( ) ( ) ,  =1,2,
(1 )

j

j

ij

j

j

e a s
X s j

a se










  (72) 

where  

11
( ) ( ),
2 1

 =1,2.
j

j
j

Ln j



 





  (73) 

The mandatory constraint on the integral equation, equation (46), based on the new 

representation is formed in the following form 

 

2 1

2 1

( ) ( )
0.

a

a

X s X s
ds

 





   (74) 

With the knowledge of the analytical solution, the unknown coefficient of integration C  is 

specified analytically as 

2 1
( ) ,

1

K
C

K

 
 


  (75) 
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where 

1

2

1 2 1

2 1 2

(1 ) ( )
.

(1 ) ( )

sinh e
K

sinh e










  

  
  (76) 

Similarly, the total load [see Eqn. (61)] is expressed in the new representation as  

2 11 2

2 1

( ( ) ( ))
.

( )

a

a

X s X s
F ds

 


 


 


   (77) 

This results in  

1 2

2
2 11 1 2 2

2 1 1 1 2 2

2
( ).

( ) (1 ) ( ) (1 ) ( )

e ea
F

sinh e sinh e
 

   

     


 

  
  (78) 

In order to determine analytical solutions for other physical variables, including displacement 

and stress functions inside the homogeneous transversely isotropic material, it is required to 

obtain a closed-form expression for the unknown functions presented in equation (45). By 

substituting the solutions of auxiliary functions, equation (72), and their other representation 

in equation (65), inside the right-hand side of equation (72) and taking the advantage of the 

identity presented in Appendix A [36], a closed-form solution for the unknown functions of 

the problem is found. Employing this identity eventually leads to the explicit solution of 

unknown functions in equation (45) as 

 

1

2

2 1
1 1

2 11

1 2
2 2

2 12

( ) Re{ [ ( , , ) ( , , )]
4(1 )( )

[ ( , , ) ( , , )]},
4(1 )( )

e
P H a H a

e

e
H a H a

e






    

  


   

  

  
 

  
 

 (79) 

1

2

2 1
1 1

2 11

1 2
2 2

2 12

( ) Im{ [ ( , , ) ( , , )]
4 (1 )( )

[ ( , , ) ( , , )]},
4 (1 )( )

e
Q H a H a

i e

e
H a H a

i e






    

  


   

  

  
 

  
 

   (80) 
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1

2

1
1 1

2 11

2
1 1

2 12

( ) Im{ [ ( , , ) ( , , )]
4 (1 )( )

[ ( , , ) ( , , )]},
4 (1 )( )

e
R H a H a

i e

e
H a H a

i e





    
  

   
  


  

 

  
 

  (81) 

1

1
1 1

2 11

( ) Re{ [ ( , , ) ( , , )].
4(1 )( )

e
S H a H a

e
    

  


  

 
  (82) 

  

It is now possible to find the displacement and stress functions by substituting equations (79)-

(82) in equations (41)-(44) and implementing the infinite integrals embedded in the Hankel 

transform of equations (24)-(31). Due to the complexity of confluent hypergeometric 

function, the use of numerical integration for estimation of field's variables is inevitable.  

In the special case of an isotropic material, the elasticity coefficients of transversely isotropic 

material are written as 

 

         
11 13 12 33 44 66

0 1 2

1
,     ,     ,

1 1 2 1 1 2 2 1

1,

E E E
c c c c c c

s s s

G
 

    


     

    

  


   (83) 

with E  and G  being the Young and shear moduli and   the Poisson ratio. This leads to the 

compact solution for the unknown coefficient of integration and total vertical load on the 

plate. Simplifying the associated relationships yields 

(3 4 )
,

3 4

Ln
C



 

 



          (84) 

2(3 4 )
1 [ ]

4 .
3 4

Ln

F G a




 







          (85) 

This is in agreement with the analytical solution presented in [21] for the vertical movement 

of a thin rigid inclusion partially surrounded by penny-shaped crack and inside isotropic full-

space. It is noteworthy to mention that, in Keer's solution, the imposed vertical displacement 

is assumed to be divided by twice of shear modulus . 

6. Computational results 

G
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This section is devoted to a numerical treatment of singular integral equation in the general 

case. The numerical calculation of the integral equation seems to be inevitable since the right-

hand side of the equations (53)-(56) possesses dynamic non-homogeneous kernels of an 

infinite integral. Generally, there will be two branch points lying on the formal path of 

integration of the integrals (58) which needs to be located and considered during the 

integration procedure. Due to the existence of the Cauchy singularity in the kernel of an 

integral equation, the conventional quadrature method cannot yield a reliable solution [38]. In 

this paper, we numerically estimate the solution of integral equations by means of expanding 

unknown functions in terms of appropriate functions. The analytical static solution for the 

problem reveals that the result of auxiliary functions tends to have a singular point around the 

edge of the plate at r a . To take into account such singularity in dynamic non-

homogeneous case, we utilize Chebyshev polynomials as expanding functions so that the 

singularity at the edge of the plate is approximated accurately. By selecting a set of 

appropriate collocation points, some linear equations will be provided, which eventually 

result in the unknown coefficients of expansions. The details of the collocation method 

involved are presented in the Appendix B.  To be able to demonstrate the effectiveness of the 

aforementioned procedure, a number of exponentially graded transversely isotropic materials 

have been introduced in Table 1 and corresponding numerical results will next be presented. 

 

In Table 1 the parameters E , E  , G , G  ,   and   are the engineering constants of 

materials and have direct relations with the elasticity constants of transversely isotropic 

medium as 

 

 
    

 

   

2

011 013 0442 2

033 066 012 011 0662

1
, ,

1 1 2 1 2

1
, , 2

2 11 2

/

/ /

.
/

E E E E
c c c G

E E E E

E E
c c G c c c

E E

  
  

       

 
    

  

 

    



 

          (86) 

The materials in Table 1 are selected in such a way that the ratio E / E  varies over a wide 

range. Since, we are concerning the vertical force and movements, this ratio may be the best 

parameter to portray the main effect of degree of anisotropy.  

Before presenting a parametric study for the wave propagation characteristics of non-

homogeneous transversely isotropic materials, it is essential to demonstrate to some extent 

that the mixed boundary value problem stated in equation (3) to (8) has been satisfied 

numerically. At the interface of two joined half-spaces, the results of radial and vertical 
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displacements of exponentially graded transversely isotropic materials have been depicted in 

Figs. 3 and 4 for the fixed value of the frequency of vibration. As it can be seen, the 

prescribed displacements, equations (3) to (4), have been successfully imposed at the location 

of plate area, but since no displacement boundary condition   has been held for penny-shaped 

crack, the variation of displacements on the other face of the crack is consistent with the 

vertical movement of plate. The displacements at the upper and the lower half-spaces are met 

each other just at the edge of the plate, causing severe variation for displacements around the 

boundary of the plate. Similarly, the stress components of materials are plotted in Figs. 5 and 

6, which show the singular nature of stress functions at the edge of both penny-shaped crack 

and plate. The continuity of displacements and stresses is also completely valid after the 

plate/crack position. 

The influence of non-homogeneity of the material on the dynamic behavior of transversely 

isotropic full-space has been illustrated in Figs. 7a and 7b on the axis of symmetric of the 

materials. At the position of the plate/crack discontinuity, a finite jump in displacements of 

the materials is evident. The magnitude of the function of vertical displacement, as 

demonstrated in Fig. 7, has been mitigated by increasing the non-homogeneity of the material 

and vanished at a place far from plate/crack position. The dynamic load-displacement 

relationship, the impedance functions, of the rigid plate in vertical direction is an important 

physical quantity that can be defined as 

0
0

440

( )
( ) ,VV

F
K

C a


 


   (87) 

where 

0

440

.a
c


 

 

 (88) 

 

 Figures 8 to 11 depict the effect of inhomogeneity and anisotropy of the material on both the 

trend and the magnitude of impedance functions. Figure 8 shows the impedance function for 

a rigid inclusion surrounded by the crack embedded in a homogeneous full-space material 

(i.e. the non-homogeneity parameter is held zero).  As expected, a wavy behavior has been 

observed from the figures as the non-dimensional frequency of vibration is increased. It is 

evident that the magnitude of impedance function will increase if the value of E  of the 

material increases, but the shapes of impedance functions stay nearly intact. On the other 

hand, as E  of the material increases, both the shape and magnitude of the impedance 

function vary with frequency. 
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Before discussing the effect of non-homogeneity of the material on the impedance functions, 

it is essential to check the possibility of the condition in which the rigid plate attached to both 

sides of upper and lower half-spaces. This situation may occur as a result of large vertical 

deformation of the plate through dynamic action in conjunction with the change in the 

loading direction. Alternatively, the continuity of the contact conditions at the penny-shaped 

crack might be violated under severe loading. In this case, if the radius of the crack is 

substantially increased in such a way that it asymptotically approaches infinity, the problem 

identical to the vibration of the inclusion on the half-space would result. The analytical 

treatment for the stated physical problems needs separate studies which are available in the 

literature for certain cases. By assuming a relaxed condition that leads to an excellent 

approximation of the bonded one, similar problems have been investigated in [39-40] without 

material defects in full-space or half-space. Those results are suitable for comparison since, 

geometrically, they can be considered as the specific case of present study. Thus, the results 

of [39-40] are presented in Fig. 9 together with results of our study, the latter being extracted 

and calculated for the Case II introduced in Table 1. As can be seen, the trend of impedance 

functions for this study in both real and imaginary parts are different from those of other 

cases. Besides, in comparing with other cases, the results of the present study show a wavy 

behavior, which can be attributed from the scattering phenomena generated by material 

defects, however, the range of oscillation is low in comparison with the solutions presented 

for upper and lower bounds.  

The influences of material inhomogeneity on the dynamic stiffness of the embedded inclusion 

are illustrated in the Figs. 10 and 11. For increasing the material inhomogeneity, the value of 

impedance function gradually grows since transversely isotropic materials tend to be further 

stiffer by increasing the inhomogeneity parameter and, as a result, the frequency-dependent 

behavior of the material, has been rapidly decayed. An interesting point of Fig. 10 is that the 

imaginary part of the impedance function approaches zero below a so-called cut-off 

frequency. Below this frequency, the wave propagation does not occur and the impedance 

function is close to the static value. This effect similarly is also observed in the problem of 

vibration of a plate made of an inhomogeneous isotropic material [29] and, with reference to 

the numerical result of this paper (see Fig. 10), the material anisotropy has no influence on 

the onset of this phenomenon  and they have just related to the parameter of non-

homogeneity of the material. This statement is further confirmed by numerical results 

presented in Fig. 11, where the impedance function of the rigid plate is derived for different 

inhomogeneous materials. It is evident that the asymptotic behavior of the imaginary part of 

the impedance function tends to a fixed value regardless of any chosen parameter for the 

material inhomogeneity.  

7. Conclusion 
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Mixed boundary value problem associated with the vertical vibration of a rigid circular plate 

partially in contact with an inhomogeneous transversely isotropic full-space has been 

formulated with the aid of a newly developed displacement potential method. By utilizing 

Hankel integral transforms and defining auxiliary functions, the problem is converted to the 

solution of a set of coupled integral equations, which are both analytically and numerically 

examined to reveal a mechanical characteristic of the system. The closed-form solution for 

vertical movement of the plate in a homogeneous transversely isotropic material is found in 

explicit form, which was observed that the contact load distribution possess a kind of 

oscillatory singularity at the region near the edge of the plate. The analytical solutions 

presented in the paper are completely in agreement with the existing formulation previously 

reported in the literature for the special case of homogeneous isotropic material.  

To numerically assess the forced vibration of the plate in full-space material, the method of 

discrete collocation-based on the expansion of auxiliary functions is employed.  It is shown 

that imposing the boundary condition may cause severe variation of elastic fields near the 

edge of both plate and penny-shaped crack. Furthermore, the inhomogeneity of the material 

has been shown to have a major contribution to fast decay of displacement function with 

depth. From the parametric study of the material properties, Young’s modulus in the plane of 

isotropy has a major role in the frequency-dependent response of materials in terms of 

computed impedance functions. However, the dynamic behavior of a functionally graded 

material will be less dependent on the frequency of vibration if the material inhomogeneity 

increases. It is observed that, below certain fixed frequencies of the vibration, the imaginary 

part of impedance functions approaches zero. The mathematical formulation presented in this 

paper can be readily extended to the problem of vibration of the plate in an inhomogeneous 

transversely isotropic material loaded in different directions.  
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Appendix A 

A list of mathematical identities used in the paper is summarized in this section [36]. 
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a s
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In the above identity, 
1

1 1

0
( , ) (1 )a ba b t t dt    is the Beta function and 1( ; ; )F a b c  is the 

confluent hypergeometric function, see Appendix A in [37]. 

 

Appendix B 

The numerical process for determining the auxiliary functions is presented here. Since the 

orthogonal Chebyshev polynomials have been restricted to the finite interval (-1,1), it is 

normalized to the interval of integral equations by introducing  

;     ;s as t at            (B1) 

Thus, we take the following expansion for auxiliary functions 
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where ( )w s is weighting function equal to 
2

1/ 1 s  and ( )iT s is Chebyshev polynomial of 

the first order and defined as 

( ) (  cos( )).iT s Cos i Arc s   (B3) 

By substituting (B2) in equation (53) to (56) and taking the advantage of the identity [38] 
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
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where 1( )iU s  is Chebyshev polynomial of the second order, which is defined as 

1
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where 
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1

1

( ) ( ) ( , ) ( ) .i

pq pq iK s a w t k t s T t d t


    (B10) 

Considering the kernel given in (B10), it is reasonable to employ a Chebyshev–Gauss 

quadrature rule for evaluation of integrals 

1

11

( ) ( ) ( , ) ( ) ( , ) ( ) ,
m

i

pq pq i j pq j i j

j

K s a w t k t s T t dt a W k t s T t


     (B11) 

where 

(2 1)
, .

2
j j

j
W t cos

m m


 
 

  (B12) 

The consistency condition expressed in equation (46) should also be included, implying

0 0c   which gives an extra equation. Then, constant C plus unknown coefficients of B2 can 

be obtained using this extra equation, 0 0c  , alongside with the system of coupled equations 

B6 to B9.  
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Figure Captions 

Fig. 1. Wind turbine foundation subjected to dynamic loading. 

 

Fig. 2. A rigid circular inclusion inside an exponentially graded transversely isotropic full-

space. 

Fig. 3. Radial displacement at the interface of two half-spaces in an exponentially graded 

transversely isotropic material 0( 3.0, 0.25)s   ; Mat I. 

Fig. 4. Vertical displacement at the interface of two half-spaces in a continuously 

inhomogeneous transversely isotropic material 0( 3.0, 0.25)s   ; Mat I.  

Fig. 5. Shear stress in a non-homogeneous transversely isotropic material at the interface of 

two half-spaces 0( 3.0, 0.25)s   ; Mat I.  

Fig. 6. Normal stress in non-homogeneous transversely isotropic material at the interface of 

two half-spaces 0( 3.0, 0.25)s   ; Mat I. 

Fig. 7a. Vertical displacement along the z direction for different non-homogeneous 

transversely isotropic materials. Real part ( 0 3.0 ); Mat III. 

Fig. 7b. Vertical displacement along the z direction for different non-homogeneous 

transversely isotropic materials. Imaginary part ( 0 3.0 ); Mat III. 
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Fig. 8a. Impedance functions of a rigid circular inclusion for different homogeneous 

transversely isotropic materials. Real part ( 0s  ) 

Fig. 8b. Impedance functions of a rigid circular inclusion for different homogeneous 

transversely isotropic materials. Imaginary part ( 0s  ) 

Fig. 9a. Impedance function of a rigid disc weakened by a penny-shaped crack compared 

with similar functions for a disc vibrated on half-space or embedded in the full-space 

material. Real part.  

Fig. 9b. Impedance function of a rigid disc weakened by a penny-shaped crack compared 

with similar functions for a disc vibrated on half-space or embedded in the full-space 

material. Imaginary part.   

Fig. 10. Impedance functions of a rigid circular inclusion for different non-homogeneous 

transversely isotropic materials ( 0.25s  ). 

Fig. 11. The influence of non-homogeneity of the materials on impedance functions of a rigid 

circular inclusion (Mat II). 
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Fig 1. Wind turbine foundation subjected to dynamic loading. 
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Fig 2. A rigid circular inclusion inside an exponentially graded transversely isotropic full-

space. 
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Fig 3. Radial displacement at the interface of two half-spaces in exponentially graded 

transversely isotropic material ; Mat I. 
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Fig 4. Vertical displacement at the interface of two half-spaces in a continuously 

inhomogeneous transversely isotropic material ; Mat I. 
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Fig 5. Shear stress in a non-homogeneous transversely isotropic material at the interface of 

two half spaces ; Mat I.  
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Fig 6. Normal stress in non-homogeneous transversely isotropic material at the interface of 

two half spaces ; Mat I. 
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Fig 7a. Vertical displacement along the z direction for different non-homogeneous 

transversely isotropic materials. Real part ( ; Mat III). 
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Fig 7b. Vertical displacement along the z direction for different non-homogeneous 

transversely isotropic materials. Imaginary part ( ; Mat III). 
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Fig 8a. Impedance functions of a rigid circular inclusion for different homogeneous 

transversely isotropic materials b) Real part ( 0s  ) 
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Fig 8b. Impedance functions of a rigid circular inclusion for different homogeneous 

transversely isotropic materials. Imaginary part ( 0s  ). 
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Fig 9a. Impedance function of a rigid disc weakened by a penny-shaped crack compared with 

similar functions for a disc vibrated on half-space or embedded in the full-space material. 

Real part. 
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Fig 9b. Impedance function of a rigid disc weakened by a penny-shaped crack compared with 

similar functions for a disc vibrated on half-space or embedded in the full-space material. 

Imaginary part. 
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Fig 10. Impedance functions of a rigid circular inclusion for different non-homogeneous 

transversely isotropic materials ( 0 25s .  ). 
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Fig 11.  The influence of non-homogeneity of the materials on impedance functions of a rigid 

circular inclusion (Mat II). 

 

Table 1.  Synthetic material engineering constants 

 

Material 

Properties 
Case I Case II Case III Case IV 

E  100000 150000 50000 50000 

E E  2 3 1 3  1 3  

G  20000 20000 60000 60000 

For all cases: G
'
=20000 N/mm

2
,  =  =0.25 
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