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Abstract

Non-Intrusive Load Monitoring (NILM) describes the extraction of the individual consumption pattern of a

domestic appliance from the aggregated household consumption. Nowadays, the NILM research focus is shifted

towards practical NILM applications, such as edge deployment, to accelerate the transition towards a greener energy

future. NILM applications at the edge eliminate privacy concerns and data transmission-related problems. However,

edge resource restrictions pose additional challenges to NILM. NILM approaches are usually not designed to run on

edge devices with limited computational capacity and therefore model optimization is required for better resource

management. Recent works have started investigating NILM model optimization, but they utilize compression ap-

proaches arbitrarily, without considering the trade-off between model performance and computational cost. In this

work, we present a NILM model optimization framework for edge deployment. The proposed edge optimization

engine optimizes a NILM model for edge deployment depending on the edge device’s limitations and includes a

novel performance-aware algorithm to reduce the model’s computational complexity. We validate our methodology

on three edge application scenarios for four domestic appliances and four model architectures. Experimental results

demonstrate that the proposed optimization approach can lead up to 36.3% average reduction of model computational

complexity and 75% reduction of storage requirements.

Index Terms

Edge Inference, Non-Intrusive Load Monitoring, Quantization, Pruning, Optimization, Resource Management,

Green Computing

I. INTRODUCTION

Non-Intrusive Load Monitoring (NILM) refers to the process of analyzing the aggregated energy consumption of

a residential building to infer the individual consumption pattern of domestic appliances [1]. In recent years, NILM

approaches have transversed from statistical analysis methods to deep learning techniques due to their superior

performance capabilities. However, most deep learning NILM approaches are designed to be deployed in a central

server, instead of performing inference on the edge, due to the increased computational needs [2]–[4]. This design

methodology assumes data transfer from the data source, i.e. the domestic house, to an external entity, and impacts

the wider deployment scalability of NILM frameworks. Central data storage has increased costs for the service

provider, since the accumulation of large amounts of data requires an expanded storage infrastructure. In addition,
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performing inference centrally usually requires more computational resources, thus increasing the energy required

to run the service and increasing the carbon footprint of the solution. Finally, apart from the heavy reliance on a

stable internet connection for data transmission, privacy concerns arise, since sensitive customer information can

be inferred [5]. It can therefore be argued that a transition to deploying NILM algorithms on the edge (i.e. at each

domestic house equipped with a smart meter and a device with restricted processing power) is a more attractive

solution that alleviates the issues of central data processing.

A. Our Contribution

In this study, we propose a performance-aware NILM optimization framework for edge deployment that takes

into account the edge device characteristics. Our approach considers multiple hardware limitations and, depending

on the deployment scenario, employs a different model optimization technique to efficiently preserve the limited

edge device resources, resulting in an efficient resource management scheme. The basic contributions of our work

are summarized below:

• NILM green computing edge-inference framework: We propose an edge inference framework for NILM, that

utilizes multiple model optimization techniques, taking into account the edge device hardware characteristics

to enable an efficient edge green computing scheme.

• Model optimization metric: We introduce Pruning Gain, an objective model optimization metric for NILM

algorithms that describes the trade-off between model performance and computational complexity.

• Performance-aware NILM model edge optimization: We present performance-aware pruning, an iterative

algorithm to determine which model parameters can be removed from the network without severely impacting

model performance.

• Application specific NILM model edge optimization: We explore the impact of model optimization on

various NILM techniques (CNN, LSTM, Transformers) for different appliances and we experimentally prove

that, depending on the application scenario, a different level of model optimization for resource management

is tolerable from a model performance perspective.

The rest of the paper is organized as follows. In Section II, we present an overview of the existing work for

deploying NILM algorithms on edge devices. Section III mathematically formulates the problem of performance-

aware NILM model optimization, whereas Section IV describes in detail the proposed NILM edge optimization

framework. Finally, Section V presents the experimental setup and results, while Section VI summarizes the main

outcomes of the paper and potential future steps.

II. RELATED WORK

Since its official problem formutation [6], NILM has received increasing research interest, backed by the expanded

availability of smart meter data. Earlier NILM approaches were based on signal processing techniques, such as Graph

Signal Processing [7], [8] and Hidden Markov Models [9], [10]. Since 2015, the research focus has shifted towards

utilizing deep learning techniques on low-frequency data, with models such as Denoising Autoencoders [11], [12],

Recurrent Neural Networks [13], [14] and Convolutional Neural Networks [15]–[17] being successfully applied
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for energy disaggregation. Due to the rapid advancements in deep learning, state-of-the-art network architectures

such as U-net [18], Generative Adversarial Networks [19], [20] and Transformers [21], [22] have been employed

to advance NILM.

Recently, progress has been made towards the deployment of NILM and other energy-related applications on edge

devices, either as part of a Home Energy Management System (HEMS) [23] or as standalone applications [24].

NILM edge inference does not require the transmission of data to an external server, and, therefore, alleviates

the aforementioned issues of central data processing. Approaches to deploy NILM models on the edge have

been proposed, both on embedded computers, such as Raspberry Pi, and on more resource-constrained devices.

Deployment on a Raspberry Pi has been proposed [25], [26], but the deployed models either require additional

metadata, such as room occupancy, or utilize high-frequency features for energy disaggregation, which increases

data acquisition costs. In addition, NILM models on more resource-constrained devices, such as microcontrollers

[27], [28] and FPGA [29] have been also been proposed, but the respective models only consider appliance state

classification instead of regression and require high frequency data to operate.

Despite the great success of deep learning in diverse applications, neural networks often possess a vast number

of parameters, leading to significant challenges in deploying deep learning systems to a resource limited device

[30], [31]. The deployment of sensing devices with higher computational power has been investigated [32], [33],

but the devices have high cost and high power demands, thus making them impractical for commercialization [27].

Therefore, edge inference requires compression and optimization of NILM deep learning models, to account for the

limited computational resources. Quantization, parameter pruning, low-rank factorization and knowledge distillation

[34], as well as combinations of one or more techniques [35] are the main approaches employed in the literature.

Even though NILM-related deep learning applications have utilized state-of-the-art architectures [22], [36], [37],

research on the constraints and methodology for deploying NILM deep learning models on edge devices remains

limited. In [38], the quantization of a sequence-to-point (seq2point) convolutional neural network (CNN) [17] from

32-bit float model weights to 8-bit integer weights is applied. The application of multiple pruning approaches on the

same seq2point [17] model has also been investigated [39], and the methods have been tested on 2 appliances from

the REFIT [40] dataset. Finally, [41] explores model compression of a multi-class seq2point CNN using pruning

and tensor decomposition, while the evaluation is performed for 3 appliances from the REDD dataset [42].

Even though the aforementioned works can be considered as an initial entry-point towards low-frequency (≤ 1Hz)

NILM inference on edge devices, there are several limitations. First, these papers [38], [39], [41] do not take into

consideration the hardware characteristics of edge devices. This can be an issue in quantization approaches, where

some quantization protocols are applicable only to specific chip architectures. Second, all papers employ compression

approaches on a specific model architecture (seq2point CNN). Seq2point models are less computationally efficient

than sequence-to-sequence models (seq2seq), since they produce only one timepoint prediction instead of a whole

window in the testing phase. As a result, significantly more forward pass iterations are required to produce the same

number of outputs seq2seq models, which leads to a noteworthy increase in energy consumption. In addition, the

effects of model compression on different model architectures, such as recurrent neural networks or Transformers

have not been investigated. Furthermore, the works that investigate more than one model compression strategy
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do not explore the impact of their combination on model performance, which can results in the optimization of

different model aspects. Finally, pruning is applied on an arbitrary basis and no framework has been proposed

to interconnect performance loss after compression with model complexity. A summary of the aforementioned

limitations of existing literature can be found in Table I.

TABLE I

SUMMARY OF EXISTING LITERATURE FOR EDGE NILM

Work Deployment

Device

Model Compression

Approach

Limitations

Uttama et. al. [25] Raspberry Pi Combinatorial

optimization

state complexity

reduction

requires additional metadata (room occupancy

information)

Xu et. al. [26] Raspberry Pi Support Vector

Machine

Feature reduction requires high frequency data

Tabanelli et. al. [27] Microcontroller Random Forest Feature reduction

-Requires high frequency data
-event-based NILM (classification)

Tabanelli et. al. [28] Microcontroller Random Forest Feature reduction

Hernandez et. al. [29] FPGA Hardware-

oriented

-

Ahmed et.al. [38] seq2point CNN Quantization - Hardware characteristics are not taken into

account
-Seq2point requires more forward passes

than seq2seq; computationally intensive
- Only 1 model architecture is considered
- Different model compression approaches

are not jointly investigated
- Compression is conducted arbitrarily and

not connected to performance loss

-

Barber et.al.[39] seq2point CNN Pruning-

Kukunuri et.al.[41]
seq2point CNN

Pruning

- Tensor

decomposition

III. PROBLEM STATEMENT

Under a NILM framework [6], we can assume that the aggregate consumption signal x of a domestic house with

M operational appliances, at any time point t, equals to the sum of the individual appliance consumption loads

yi, i = 1...M , plus a noise term ϵ [43]:

x(t) =

M∑
i=1

yi(t) + ϵ(t) (1)

To extract the consumption signal of a selected appliance a ∈ {1, ...,M}, NILM approaches are designed to

filter out all non-relevant appliance consumption signals yi ∀i ̸= a. Depending on the chosen appliance a, the

power signal ya may showcase different statistical characteristics in terms of peaks, sparsity, as well as duration of

appliance activations, which is defined as the consecutive time interval that the appliance is turned on. As a result,

not only may different model architectures have different sensitivity to model optimization approaches, but also the

same model, trained to disaggregate different appliances, may showcase different behavior related to compression.

January 22, 2023 DRAFT

Performance-aware NILM model optimization for edge deployment



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 5

Fig. 1. Overview of the required infrastructure setup to perform inference centrally vs on the edge. Central inference requires upload and

download of consumption data to a central processing entity, as well as increased data storage capacity and computational power. On the

contrary, performing inference on the edge devices alleviates these limitations and only requires the compression of the models and their

deployment on the edge device, while data exchange takes place only between the edge device and the domestic house.

It can therefore be argued that the optimization strategy must be bound to model performance, with the goal of

finding an equilibrium between model complexity and performance loss.

Two different NILM infrastructure setups for central and edge device deployment are illustrated in Figure 1. Even

though performing inference centrally theoretically allows for the model to utilize larger amounts of computational

power, it can be easily seen that the complexity and drawbacks of such an approach are significant. On the other

hand, performing inference on edge devices alleviates the need to transmit and receive data to an external server,

with the only limitation being the fact that the models need to be compressed and optimized to run on resource

constrained devices.

To mathematically formulate the aforementioned approach, let a NILM model f(x;w) : X → Y, w ∈ RN

have a performance Pf . Our goal is to obtain a lower-dimensionality model h(x; θ) : X → Y , where θ is some

transformation of w, i.e. θ = T (w), θ ∈ RC , C < N , to perform the same task with performance Ph. In other

words, we are trying to minimize the following function:

L = min(|f(x;w)− h(x; θ)|) (2)

However, Equation 2 does not take into consideration the performance loss that occurs as a consequence of

model optimization. The model should be optimized to match the deployment criteria only to the level that the

performance loss is acceptable. Therefore, Equation 2 needs to be constrained with the condition that performance

loss must not fall below a tolerance threshold δ. Therefore, a performance-aware model compression framework

can be written as:
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Lpa = min(|f(x;w)− h(x; θ)|) s.t. Pf − Ph < δ (3)

IV. A GREEN EDGE RESOURCE MANAGEMENT FRAMEWORK FOR NILM

Our proposed green computing framework for NILM model edge optimization is illustrated in Figure 2. The

backbone of our approach is the edge optimization engine, which is responsible for the optimization of a NILM

model depending on the edge deployment requirements. Since resource limitations of the edge device may vary,

the optimization engine first receives the edge device characteristics, as well as any additional restrictions imposed

by the user. Then, the trained NILM model to be deployed is analyzed and an optimization strategy is set. The

optimization strategy can either be static to reduce the model’s storage requirements through model quantization,

or performance-aware to apply complexity reduction trough weight pruning. Performance-aware optimization is

defined as the removal of insignificant model weights not arbitrarily, but by taking into consideration the respective

impact on model performance. In this case, complexity reduction is performed incrementally, until the the edge

deployment requirements are met, under the condition that the trade-off between performance loss and complexity

reduction is satisfactory.

An overview of the optimization approaches employed for memory and complexity reduction is depicted in Figure

3. The following sections provide a detailed description of these techniques, as well as the proposed performance-

aware iterative complexity reduction scheme.

Fig. 2. High-level overview of the proposed NILM edge optimization framework

A. Model weights quantization

Model quantization refers to the process where the model’s weight type is changed to a lower numerical precision

to limit the storage and memory space required for the model. In essence, quantization can be formulated as a

irreversible mapping function Q : w ∈ RN → w′ ∈ RZ , Z ⊆ N that maps the model weights w, stored in a

floating point format, to an integer representation w′. The value range of w is divided into bins and each value wi

is mapped to the integer representing the corresponding bin.
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Fig. 3. Overview of the model optimization methods adopted in this study. We explore model quantization by performing MinMax quantization

of the model weights, as well as histogram quantization for the activation function outputs to minimize performance loss. We also integrate

magnitude pruning in our approach to remove weights with small L1-norm that contribute minimally to the model’s predictions.

Quantization is either executed post-training, meaning that an already trained model is compressed, or during

training, in the sense that the quantized version of the model is taken into account when the model is trained

(quantization-aware training). In this work, we focus on post-training model quantization, and apply a calibration

phase on an indicative dataset, during which the quantization parameters are fine-tuned, resulting in a more accurate

representation of the initial model weights w. This additional calibration step also allows for the quantization of

activation function outputs.

To quantize the models, we quantize both model weights and activation outputs to further avoid floating point

multiplication operations [44]. Since the activation outputs are fed to the next layer, a more sensitive quantization

approach is required to minimize model performance degradation. Therefore, we have opted for min-max uniform

quantization for model weights and histogram quantization for the activation outputs, where the activation values

are recorded and a different range per bin is assigned, depending on the corresponding probability distribution. An

illustration of the different quantization approaches can be seen in Figure 3.

B. Model complexity reduction

An alternative methodology for optimizing a deep learning model is the removal of synaptic connections between

model layers. This process, which is commonly referred to in the literature as model pruning, assumes that a deep

learning network is over-parameterized and incorporates a subnetwork that contains most of the information [45].

In other words, model pruning is an approach to transform a model’s weights w ∈ RN to a lower dimensionality

representation w
′ ∈ RM ,M < N by removing non-informative model connections.

Different techniques on how to optimally remove model connections with minimal information loss have been pro-

posed in the literature. Similar to quantization, pruning can either be applied post-training [46] or in a compression-

aware training scheme [47]. The removal of weights is performed either on the overall set of model weights, or

by eliminating predetermined architectural blocks, such as convolutional filters [48]. In addition, different pruning

January 22, 2023 DRAFT

Performance-aware NILM model optimization for edge deployment



IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING 8

approaches remove weights by evaluating different metrics, such weights magnitude, gradients magnitude, intra-layer

mutual information, or even by introducing a learnable pruning threshold [49]–[51].

In this work, we implement magnitude pruning, and remove the model connections with the smallest contribution

to the model output. Let w = {wi ∀i = 1, ..., N} ∈ RN be a vector containing all model parameters. Then the

magnitude-pruned vector w′ is expressed in Equation 4:

w′ ⊂ w,w′ :=

{
wi ∈ w :

F (∥wi∥)∑N
j=1 F (∥wj∥)

< pthres

}
(4)

F (∥wi∥) signifies the cumulative distribution function of weight magnitudes. In other words, after magnitude pruning

we only keep the weights with the highest 1 − pthres% magnitudes and discard the rest. Even though magnitude

pruning is usually executed only once in post-training pruning, in the next section we present an iterative variation

that calculates the optimal pthres bound to the resulting model performance.

C. Iterative performance-aware green resource management algorithm

Magnitude pruning removes a percentage of a model’s lowest L1-norm connections, according to a specified

threshold pthres. However, finding the optimal pruning threshold popt that represents the optimal tradeoff between

model complexity and performance is often a tedious procedure that requires multiple experimentations, whose

evaluation is, in most cases, subjective. Therefore, we propose Performance-Aware Optimized Pruning (PAOP), an

iterative algorithm to determine the optimal pruning threshold for NILM models. Optimality must be bound in

terms of performance, as stated Equation 3. Consequently, finding the optimal pruning threshold popt requires an

objective metric that incorporates both the performance degradation of the reduced model and the gain in terms

of parameter reduction. Therefore, the metrics utilized for model performance evaluation need to be first defined.

Since seq2seq disaggregation is primarily a regression task, and secondarily a classification task, we record three

widely used metrics for model evaluation, namely Mean Absolute Error (MAE) and Mean Relative Error (MRE)

for regression evaluation and F1-score for classification performance, as presented in Equation 5.

MAE =
1

N

N∑
i=1

|ŷi − yi|

MRE =
1

max(y)

N∑
i=1

|ŷi − yi|

F1 =
TP

TP + 1
2 (FP + FN)

(5)

where y and ŷ are the original and the predicted appliance consumption load respectively, and TP, FP and FN stand

for the True Positive, False Positive and False Negative classified time instances in the predicted signature.

For different pruning thresholds pthres, the model performance on the test set will change. At the same time,

each metric should not be evaluated independently. Instead, all metrics should be combined in a single term. Taking

into consideration all the aforementioned considerations, we propose the Pruning Gain metric (PG) to quantify the

tradeoff between model complexity and performance, which is formulated in Equation 6.
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PG =
MAEb

MAEp

MREb

MREp

F1p
F1b

Nparam,b

Nparam,p
(6)

Pruning Gain measures the pruning-related change in a given metric as the ratio of the baseline performance of

the model to the performance of the model after pruning. For metrics where a lower score is better, the terms of

the ratio need to be reverted (baseline/pruned). For each metric, we record the ratio of baseline model performance

(subscript b) and the model performance after pruning (subscript p), and multiply it by the ratio of change in

the number of parameters of the original model and the redacted version. The idea behind PG is to combine the

increase or decrease of the metrics recorded to evaluate model performance with the reduction in model size in

a multiplicative way. This approach was selected to emphasize the sensitivity of changes in model performance,

as an averaging operation of the individual terms would lead to the phenomenon where a positive change in one

metric may envelop negative changes in the other ones. Even tough the separate metrics are in different scales, the

ratio of each metric captures the relative change between the baseline and the pruned version, which regularizes

each ratio separately. No change results in a ratio of 1. A PG score greater than 1 means that the performance loss

from removing model weights is beneficial, whereas a score smaller than 1 signifies that the performance drop was

more significant than the model compression achieved. Therefore, the proposed metric captures the relative changes

between the metrics and can be used to decide whether the impact of pruning on the NILM model was negligible

or not.

Utilizing PG, we are now able to perform iterative magnitude pruning to optimally compress a NILM model. To

take the hardware characterstics of the edge device into account, the expert needs to define computational cost goals,

depending on the deployment scenario. Then, iterative model optimization can begin. First, we define a selected

range of pruning threshold percentages [0, pmax] that should be taken into consideration, as well as an iteration

step pstep. Then, for each pruning threshold p, we calculate the performance metrics, as well as the Pruning Gain

PG. If Pruning Gain is, for the given pruning percentage, higher than 1, then we assume that the reduction of the

weights dimensionality was beneficial and that the model can be further compressed, in which case we increment

the pruning threshold with pstep%. We continue the aforementioned loop until the Pruning Gain falls below 1, where

the iteration stops. If the computational cost goals were met, then the previous pruning percentage p is selected as

the optimal pruning for the given model. Otherwise, the model is not deployable on the edge device. The iterative

algorithm is summarized in Algorithm 1.

V. EXPERIMENTAL SETUP AND RESULTS

A. Experimental Setup

The methodology to optimize a model for edge inference should depend on the application scenario and the

hardware limitations inherent to the edge device. The deployment of NILM models on the edge can be achieved

by connecting a smart meter that records the aggregate consumption with a Raspberry Pi 3 Model b single-board

computer. Raspberry Pi is one of the most popular edge devices in IoT systems and are commonly used as a

gateway to enable the deployment of AI applications in real-world settings [52]. Therefore, we have designed
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Algorithm 1 Performance-aware green resource management algorithm
1: costgoal: Expert-defined computational cost goals (MFLOPs)

2: p : pruning percentage

3: Define pmax, pstep,popt

4: for p in range (0, pstep, pmax) do

5: Calculate performance metrics (MAE, MRE, F1)

6: Calculate pruning gain PG

7: if PG > 1 then

8: popt = p

9: else if PG < 1 then

10: Calculate costnew

11: if costnew ≤ costgoal then

12: break, optimal model found

13: else

14: break, model is not deployable

15: end if

16: end if

17: end for

TABLE II

TECHNICAL SPECIFICATIONS OF A RASPBERRY PI 3 MODEL B

Architecture ARM

Processing power Quad Core 1.2GHz Broadcom BCM2837 64bit CPU

Memory size 1GB RAM

Connectivity Ethernet, WLAN

Storage SD Card

our methodology and experiments to use a Raspberry Pi 3 as the edge device. Raspberry Pi’s run on an ARM

architecture and have limited storage space and computational power, but are easy to install and use. Their hardware

characteristics can be found in Table II.

The architecture to deploy the optimized models on the edge device is depicted in Figure 4. The edge solution

consists of 3 different services responsible for data collection, and the NILM inference service, which processes the

collected data and produces the disaggregation results. The components of the data collection process are described

below:

• Z-Wave JS UI is an open source dockerized service which communicates with the aggregate consumption

smart meter through Z-wave protocol and forwards the collected data to the ZWave-service through the mqtt

protocol.
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• Z-wave-service is a custom service which receives the collected data from the Z-Wave JS UI through mqtt

protocol and forwards them to the data broker service through an API.

• DataBroker-service is responsible for receiving the collected data from Z-wave service and communicates

with the PostgreSQL database. DataBroker service is also responsible to update (save and delete) the collected

data to the existing database.

Fig. 4. Overview of the proposed edge NILM deployment architecture. The edge setup consists of services for data collection and NILM

inference (left), which performs disaggregation once enough data are collected (right).

The NILM inference service is included in a Docker container that runs continuously on the edge device.

This service communicates directly with the database after a specified time interval and checks if enough data are

collected to produce the disaggregation results.

Depending on the processor’s architecture, there are two main quantization backend libraries that can be used,

namely FGBEMM [53] and QNNPACK [54]. The term backend refers to reduced precision tensor matrix math

libraries which are utilized during model compression. FBGEMM can be used to quantize a model to run on x86

architectures, while QNNPACK supports ARM processor architectures. Since the Raspberry Pi processing unit is

based on an ARM architecture, we have chosen QNNPACK as the quantization backend.

Model architecture for the four NILM models that were used to evaluate the impact of model compression on

model performance and complexity. The upper left subfigure describes a convolutional neural network [18], whereas

the next two subfigures correspond to reccurent architectures with different gating mechanisms (LSTM [57], GRU

[58]). Finally, the lower right subfigure presents the Transformer-based architecture [24]

To evaluate our approach, we conducted experiments on different appliances from UK-Dale [57] and REDD

[42] datasets. Both datasets consist of aggregate and appliance level energy consumption measurements from five

different houses in the United Kingdom and six different houses in the Unites States respectively. UK-Dale was

generated at a sample rate of 1 Hz for the aggregate and 1/6 Hz for individual appliances while REDD was

monitored at a sample rate of 1 Hz for the aggregate consumption and 1Hz for the plug-level data. The data were

resampled at a sample rate of 1/6 Hz and pose the appliance characteristics described in Table III. The models

were tested on unseen data from houses not included in the training set, as shown in Figure 6. The reason for
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Fig. 5. Model architecture for the four NILM models that were used to evaluate the impact of model compression on model performance and

complexity. The upper left subfigure describes a convolutional neural network [17], whereas the next two subfigures correspond to reccurent

architectures with different gating mechanisms (LSTM [55], GRU [56]). Finally, the lower right subfigure presents the Transformer-based

architecture [22].

testing the models on a house not used in the training set is due to the core concept of NILM; if a house has

smart meter data to record appliance consumption, there is no point in deploying a NILM algorithm to infer them,

since they are already available to the consumer. Therefore, the proposed approach is to perform NILM on smart

meter aggregate readings from a house using pre-trained models, for which ground truth in terms of submetering

was available for training on a centralized server, e.g. using publicly available datasets. In UK-Dale we focused on

4 appliances (washer, kettle, fridge, dishwasher), while in REDD on appliances (microwave, washer, dishwasher).

The set of appliances selected represent single state and multi-state appliances, with variable load fluctuations.

TABLE III

APPLIANCE CHARACTERISTICS FOR UK-DALE AND REDD DATASETS.

Dataset Appliance Max Limit [W] On Thresh. [W] Min. On Duration [s] Min. Off Duration [s]

UK-Dale

Kettle 3100 2000 12 0

Washer 2500 20 1800 160

Fridge 300 50 60 12

Dishwasher 2500 10 1800 1800

REDD

Microwave 1800 200 12 30

Dishwasher 1200 10 1800 1800

Washer-Dryer 500 20 1800 160

To diversify our experimental evaluation and test the generalization capabilities of our performance-aware edge
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Fig. 6. Train-test split for UK-Dale and REDD datasets. The models were tested on unseen houses non included in the training set. In UK-Dale,

houses 1,3,4 and 5 were used for training and house 2 for testing, while in REDD house 2,3,4,5 and 6 were included in the training set and

house 1 was kept for model evaluation.

inference optimization framework, the models are based on different architectural philosophies. In particular, one

convolutional neural network [17], 2 recurrent architectures (LSTM [55], GRU [56]) and a Transformer-based model

[22] were chosen for the evaluation of our approach, and their architectural representations are illustrated in Figure

5. Even though all models initially employ a 1-d convolutional filter for feature extractions, the intermediate part of

the model structure varies significantly. The models were purposely trained and evaluated on unbalanced data. The

reason for not balancing the dataset is that, to mitigate the negative aspects of central data storage, model training

should take place in a federated manner on edge devices, where the possibility of data balancing is limited by

hardware constraints. We envision our work as part of a wider NILM framework that enables the transition from

central data processing to all computations occurring on the edge to increase the privacy of customers.

In our analysis, we diversify between three edge deployment scenarios, based on different edge device limita-

tions. In the first, the edge device has limited storing capacity, and the edge optimization engine employs model

quantization to limit the required storage space of the model. In the second scenario, the limitation is based on

the edge device’s processing power, and we optimize the models with Performance-Aware Optimized Pruning

(PAOP) to reduce their computational complexity. Finally, we investigate the optimization scenario where the edge

devices has limited both storage space and computational power. We apply a combination of performance-aware

optimized pruning to reduce the number of floating point operations during a forward pass, followed by weight

quantization to reduce storage requirements. We call the combination of both techniques Performance-Aware Pruning

and Quantization (PAOPQ). In the utilization of the proposed performance-aware schemes, the model complexity
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reduction ranged between [0, 70] %, with an increment step of 5%. All optimization experiments were performed on

an Apple Macbook M1 Pro to take advantage of the ARM CPU architecture to accurately simulate the deployment

of the aforementioned models on a real-world setting with Raspberry Pi edge devices.

TABLE IV

SIZE ON DISK BEFORE AND AFTER MODEL QUANTIZATION

Model Size on disk (MB)

Original Quantized

CNN 4.0 0.98

LSTM 4.6 1.15

GRU 3.6 0.90

ELECTRIcity 7.8 2.89

B. Results

1) Scenario 1: Limited storage capacity: The first step in our analysis is to examine how the aforementioned

models were impacted by weight quantization. As can be seen in TableIV, quantization of model weights leads

to a significant 75% reduction in the size required to store the model on the disk. At the same time, the effect

of quantization on the disaggregation performance, which is presented in Table V and Table VI, varies across

model architectures and appliances. In UK-Dale results, recurrent neural networks (LSTM, GRU) showcase minimal

performance degradation when disaggregating the kettle and fridge, with a performance reduction less than 0.5%

for all metrics. However, they are sensitive to weights quantization for appliances with sparse and long appliance

activations, such as the washing machine and the dishwasher. The CNN model has a small performance loss con-

sistent across appliances, while the Transformer-based model (ELECTRIcity) is robust to quantization, showcasing

a minimal performance degradation averaging across all appliances (-0.01% MAE, -1.09% MRE and -0.29% F1).

The effects of quantization presented in UK-Dale are very similar when the quantized models are evaluated on

REDD dataset. Recurent as well as Transformer architectures present a minimal performance degradation across all

the tested appliances. In some cases, quantization could also lead to a slight improvement on disaggregation results

as it happens in LSTM, GRU and Electricity models on microwave appliance as well as on Electricity model on

washer with an average improvement of 10.80% MAE, 8.57% MRE and 2.2% F1.

2) Scenario 2: Limited processing power: Next we would like to evaluate how the models are affected by

PAOP. Applying the proposed iterative algorithm to find the optimal pruning threshold, the average number of

model parameters can be decreased by 40.93 % in UK-Dale and by 40 % in REDD dataset. The optimal pruning

threshold for each model and appliance, as well as the number of baseline parameters are illustrated in Table VII.

By comparing the obtained optimal pruning threshold with the performance metrics, as described in Table V, we

observe that, in cases where the baseline model does not perform well, indicated by the low F1 score and the

high MRE, our algorithm concludes to suggest the highest pruning percentage pmax, whereas in cases where the

model performs well, the suggested optimal pruning threshold coincides with a plausible value close to the average.
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TABLE V

PERFORMANCE METRICS OF OPTIMIZED MODELS -UK-DALE

Appliance Model Approach MAE MRE F1 Appliance Model Approach MAE MRE F1

Kettle

CNN

Baseline 7.03 0.0025 0.89

Washer

CNN

Baseline 10.45 0.02 0.58

Quantized 7.55 0.0026 0.88 Quantized 13.64 0.02 0.56

PAOP 8.71 0.0030 0.85 PAOP 9.77 0.02 0.59

PAOPQ 8.97 0.0031 0.85 PAOPQ 12.43 0.02 0.57

LSTM

Baseline 12.18 0.0043 0.80

LSTM

Baseline 21.88 0.05 0.24

Quantized 12.20 0.0043 0.79 Quantized 23.51 0.11 0.13

PAOP 13.74 0.0048 0.76 PAOP 14.59 0.10 0.12

PAOPQ 13.74 0.0048 0.76 PAOPQ 23.51 0.11 0.13

GRU

Baseline 12.93 0.0046 0.79

GRU

Baseline 19.29 0.05 0.24

Quantized 12.93 0.0046 0.79 Quantized 20.02 0.08 0.18

PAOP 14.08 0.0050 0.77 PAOP 9.38 0.05 0.10

PAOPQ 14.08 0.0050 0.77 PAOPQ 20.01 0.08 0.18

ELECTRIcity

Baseline 9.26 0.0032 0.94

ELECTRIcity

Baseline 3.65 0.01 0.85

Quantized 9.26 0.0032 0.94 Quantized 3.66 0.01 0.84

PAOP 10.17 0.0036 0.92 PAOP 5.21 0.01 0.73

PAOPQ 10.18 0.0036 0.92 PAOPQ 4.58 0.01 0.76

Fridge

CNN

Baseline 31.86 0.78 0.64

Dishwasher

CNN

Baseline 41.29 0.04 0.09

Quantized 34.45 0.75 0.62 Quantized 41.30 0.04 0.09

PAOP 37.41 0.63 0.65 PAOP 41.38 0.05 0.08

PAOPQ 39.45 0.63 0.64 PAOPQ 41.37 0.05 0.08

LSTM

Baseline 32.85 0.82 0.63

LSTM

Baseline 31.25 0.03 0.65

Quantized 33.07 0.82 0.62 Quantized 32.74 0.13 0.28

PAOP 35.72 0.86 0.54 PAOP 33.01 0.04 0.57

PAOPQ 35.95 0.87 0.54 PAOPQ 32.71 0.13 0.28

GRU

Baseline 31.32 0.80 0.67

GRU

Baseline 31.43 0.03 0.62

Quantized 31.44 0.80 0.66 Quantized 31.53 0.05 0.53

PAOP 34.21 0.84 0.59 PAOP 39.75 0.04 0.45

PAOPQ 34.38 0.84 0.58 PAOPQ 31.55 0.05 0.53

ELECTRIcity

Baseline 23.10 0.71 0.80

ELECTRIcity

Baseline 18.96 0.03 0.82

Quantized 23.08 0.71 0.80 Quantized 18.93 0.03 0.81

PAOP 27.61 0.76 0.73 PAOP 24.75 0.03 0.79

PAOPQ 27.52 0.76 0.73 PAOPQ 24.40 0.04 0.71

An indicative example on this finding is illustrated during pruning of the LSTM model for the disaggregation

of the washing machine in UK-Dale dataset. Since the baseline performance is suboptimal, the ratio of baseline

performance to performance after pruning is very sensitive to change and, even though the MRE rises by 4.3% in

absolute value, the relative change is −83.22%. At the same time, however, the MAE is 33.28% better than the

baseline, which can be explained by the fact that artefacts in the predicted appliance signature no longer being

produced, and, multiplied with the ratio of model parameter reduction, leads to a positive Pruning Gain value. In the

example of ELECTRIcity for the dishwasher appliance, we observe that 35 % of the model weights are removed

without notable affecting the model’s disaggregation performance. Overall, it can be concluded that the utilization
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TABLE VI

PERFORMANCE METRICS OF OPTIMIZED MODELS-REDD

Appliance Model Approach MAE MRE F1

Microwave

CNN

Baseline 17.49 0.0558 0.38

Quantized 17.29 0.0558 0.37

PAOP 18.16 0.0562 0.21

PAOPQ 17.27 0.0557 0.37

LSTM

Baseline 34.86 0.0923 0.31

Quantized 19.69 0.0622 0.33

PAOP 35.03 0.1065 0.28

PAOPQ 17.04 0.3156 0.03

GRU

Baseline 19.35 0.0618 0.37

Quantized 19.35 0.0618 0.38

PAOP 18.84 0.0588 0.24

PAOPQ 5.44 0.0348 0.18

ELECTRIcity

Baseline 17.45 0.0562 0.42

Quantized 17.46 0.0562 0.43

PAOP 20.23 0.0667 0.52

PAOPQ 11.16 0.0198 0.29

Washer-Dryer

CNN

Baseline 5.83 0.0283 0.24

Quantized 3.83 0.0125 0.00

PAOP 5.92 0.0346 0.22

PAOPQ 3.83 0.0125 0.12

LSTM

Baseline 6.17 0.0288 0.21

Quantized 6.19 0.0289 0.21

PAOP 6.16 0.0287 0.20

PAOPQ 6.20 0.0299 0.20

GRU

Baseline 5.38 0.0342 0.19

Quantized 5.39 0.0344 0.18

PAOP 5.61 0.0348 0.16

PAOPQ 5.39 0.0344 0.18

ELECTRIcity

Baseline 15.98 0.0204 0.31

Quantized 15.98 0.0208 0.32

PAOP 11.17 0.0197 0.29

PAOPQ 11.16 0.0198 0.29

Dishwasher

CNN

Baseline 30.23 0.0784 0.12

Quantized 28.65 0.0768 0.12

PAOP 30.88 0.0810 0.06

PAOPQ 29.54 0.0745 0.06

LSTM

Baseline 34.86 0.0923 0.31

Quantized 34.83 0.0938 0.30

PAOP 35.03 0.1065 0.28

PAOPQ 34.98 0.1066 0.27

GRU

Baseline 49.33 0.0942 0.30

Quantized 49.37 0.0948 0.30

PAOP 48.37 0.0966 0.30

PAOPQ 49.04 0.0991 0.29

ELECTRIcity

Baseline 17.35 0.0498 0.63

Quantized 17.36 0.0496 0.61

PAOP 11.17 0.0197 0.29

PAOPQ 21.67 0.048 0.57

of our performance-aware model compression strategy can reduce the computational complexity of a NILM model

without significantly affecting its performance. The complexity reduction is validated through the reduced number
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TABLE VII

BASELINE MODEL PARAMETERS AND OPTIMAL PRUNING THRESHOLD, AS OBTAINED BY APPLYING ALGORITHM 1

Dataset Appliance Model Baseline Pa-

rameters N

Optimal pruning

threshold popt (%)

MFLOPs

PAOP PAOPQ Baseline PAOP PAOPQ

UK-Dale

Kettle

CNN 996595 40 5 18.33 13.75 17.41

LSTM 1141777 30 30 16.71 12.50 12.50

GRU 887569 25 25 12.44 10.17 10.17

ELECTRIcity 1938433 25 25 586.70 452.08 452.08

Fridge

CNN 996595 70 70 18.33 10.00 10.00

LSTM 1141777 30 30 16.71 11.67 11.67

GRU 887569 25 25 12.44 8.67 8.67

ELECTRIcity 1938433 40 40 586.70 376.43 376.43

Washer

CNN 996595 10 5 183.3 15.79 17.41

LSTM 1141777 60 5 16.71 7.50 15.86

GRU 887569 70 5 12.44 3.72 11.94

ELECTRIcity 1938433 60 50 586.70 268.18 283.73

Dishwasher

CNN 996595 30 30 18.33 15.20 15.20

LSTM 1141777 35 5 16.71 10.80 15.86

GRU 887569 70 5 12.44 3.71 11.94

ELECTRIcity 1938433 35 55 586.70 398.13 309.48

Redd

Microwave

CNN 996595 70 5 18.33 10.45 17.82

LSTM 1141777 5 30 16.71 15.73 11.79

GRU 887569 45 45 12.44 7.60 7.60

ELECTRIcity 1938433 70 70 586.70 220.04 220.04

Washer-Dryer

CNN 996595 60 5 18.33 11.65 17.80

LSTM 1141777 5 5 16.71 15.72 15.72

GRU 887569 70 5 12.44 3.85 11.81

ELECTRIcity 1938433 35 35 586.70 402.62 402.62

Dishwasher

CNN 996595 60 60 18.33 11.94 11.94

LSTM 1141777 5 5 16.71 15.73 15.73

GRU 887569 20 15 12.44 10.40 10.91

ELECTRIcity 1938433 35 35 586.70 403.27 403.27

of floating point operations (FLOPs) required to perform a forward pass, as can be seen in Table VII. On average,

PAOP reduces the FLOPs of a NILM model by 36.3% in UK-Dale and by 31.8% in REDD.

3) Scenario 3: Limited storage capacity and processing power: The last experiment that was conducted was the

combination of both aforementioned model compression approaches (PAOPQ). To calculate the optimal pruning

threshold in this case, the model performance was evaluated after both schemes were applied. Therefore, the

optimal threshold obtained is different than in the case of pruning (see Table VII). It can be easily noticed that the

combination of both techniques tolerates significantly lower pruning percentages for most models. On average, the

optimal pruning threshold is 37.4% lower in UK-Dale and 26.25% in REDD, compared to when weights quantization

is not utilized. Therefore, it can be concluded that, without the proposed performance aware optimization scheme,
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Fig. 7. Pruning Gain plot over different pruning thresholds during the application of proposed iterative Algorithm 1 on the washing machine

when the compression method is pruning (upper) vs pruning & quantization (lower). We observe that the curves of the pruning gain are

significantly different depending on the chosen model compression approach and that, if the model does not have a strong baseline performance

(GRU), the Pruning Gain is gradually increasing with further parameter reduction.

the performance degradation of the models would be significantly higher. The integration of both techniques in

our scheme results in 75% less size on disk for both UK-Dale and REDD and, on average, 25.62% less model

parameters and 22% less FLOPs for UK-Dale and 21.51% less model parameters and 21.09% less FLOPs for

REDD, thus reducing both storage requirements and model computational complexity. Another interesting finding

is that the optimal thresholds for ELECTRIcity remain the same as in the case of applying only parameter pruning

and, in the case of dishwasher, the model tolerates a higher pruning percentage, meaning that Transformer-based

architectures are more robust to model compression than convolution-based and recurrent modeling approaches.

An illustration of the Pruning Gain metric values during the application of the algorithm to find the optimal pruning

threshold pthres is illustrated in Figure 7. The upper part of the figure showcases the Pruning Gain distribution

when only model pruning is applied, while the lower part demonstrates the distribution when both pruning and

quantization are selected. The difference in both plots validates the observation that model performance is more

sensitive to combining both compression approaches and that the proposed metric can accurately quantify the

tradeoff between model performance and computational complexity.

Finally, we recorded the CO2 emissions of each optimized model through the CodeCarbon Python library, and

the results are presented in Table VIII. All optimization approaches reduce CO2 emissions by ≈ 17%. The only

exception can be found for recurrent architectures (LSTM, GRU), where the CO2 emissions are higher when

quantization is involved. This can be explained by the increased complexity of recurrent layer computations, where

multiple activation functions are utilized inside each memory cell. Since the outputs of activation functions are
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TABLE VIII

CO2 EMISSIONS[G] FOR THE BASELINE MODEL AND EACH OPTIMIZATION METHOD

CO2 Emissions[g] of each model optimized for edge deployment

Dataset Appliance Model Baseline Quantization PAOP PAOPQ

UK-Dale

Kettle

CNN 0.072 0.061 0.071 0.061

LSTM 0.083 0.178 0.081 0.177

GRU 0.070 0.185 0.068 0.186

ELECTRIcity 1.240 1.059 1.209 1.068

Fridge

CNN 0.060 0.049 0.059 0.049

LSTM 0.068 0.145 0.065 0.145

GRU 0.057 0.151 0.053 0.150

ELECTRIcity 1.246 1.014 1.134 1.025

Washing Machine

CNN 0.060 0.050 0.057 0.050

LSTM 0.067 0.145 0.065 0.145

GRU 0.056 0.150 0.055 0.150

ELECTRIcity 1.257 1.016 1.157 1.014

Dishwasher

CNN 0.060 0.049 0.059 0.049

LSTM 0.067 0.144 0.065 0.145

GRU 0.056 0.150 0.055 0.150

ELECTRIcity 1.235 1.030 1.187 1.052

Redd

Microwave

CNN 0.003 0.001 0.003 0.002

LSTM 0.002 0.002 0.002 0.002

GRU 0.002 0.001 0.002 0.001

ELECTRIcity 0.051 0.032 0.051 0.032

Washer-Dryer

CNN 0.003 0.001 0.003 0.001

LSTM 0.002 0.002 0.002 0.002

GRU 0.002 0.001 0.002 0.001

ELECTRIcity 0.051 0.032 0.051 0.032

Dishwasher

CNN 0.003 0.001 0.003 0.002

LSTM 0.002 0.002 0.002 0.002

GRU 0.002 0.001 0.002 0.001

ELECTRIcity 0.051 0.032 0.051 0.032

dynamically quantized during inference, the increased energy needs to perform the quantization is justifiable.

C. Discussion

As already mentioned, our approach suffers from certain limitations. First, we have observed that models that

do not showcase good baseline performance tend to be overpruned by our proposed iterative algorithm during the

search for the optimal pruning threshold. Even though such models should not be deployed to perform inference,

as the insights that the consumer will get regarding energy consumption will not be accurate, our approach should

still take into consideration such cases. The second limitation concerns the fact that, in our approach, the models

are optimized for each different appliance. Therefore, to perform energy disaggregation for multiple appliances, the

deployment of multiple NILM models is required. However, we have experimented with model optimization for all
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Fig. 8. Comparison of optimal pruning threshold and performance between optimizing the models for each individual appliance (green) vs

jointly (yellow). Optimizing the models on the joint set of appliances (1 for all) leads to subpar optimization.

appliances simultaneously, as shown in Figure 8, and have found that optimizing the model for all appliances at

the same time leads to over/underpruning and impacts the achievable performance. Averaging across all appliances

and models, this approach would lead to a performance loss of 8.92% MAE, 7.32% MRE and 12.20% F1.

VI. CONCLUSIONS AND FUTURE WORK

In this work, we have proposed an efficient, performance-aware model optimization framework for edge deploy-

ment of NILM models that takes into account the edge device characteristics. We have explored three different

deployment limitations, for which optimization of different model aspects is required. Additionally, we proposed an

objective model optimization metric and a performance-aware model complexity reduction algorithm that constrains

model optimization on performance loss. Experimental results validate that our proposed method to bind model

performance with model compression, instead of performing it arbitrarily, allows for the combined utilization of
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more than one compression approaches on the same model without significantly affecting model performance, thus

enabling the efficient deployment of NILM models on edge devices.

In future work, we would like to implement further techniques, such as knowledge distillation or tensor de-

composition, in our performance-aware compression scheme. Further methods for weight quantization, as well

as different magnitude pruning approaches (gradient based magnitude pruning, information based pruning) and

structured pruning will also be evaluated. We would also like to test our approach on different model architectures,

assess the difference on models trained with balanced datasets versus unbalanced datasets, and adapt our proposed

iterative scheme to account for optimal model compression of models with subpar disaggregation performance. In

addition, we plan to utilize recent advancements in sparse matrix computation on edge devices to maximize the

optimization potential of our methods [58]. Finally, our methodology has been structured around the limitations

of a real-world scenario, and we would like to deploy the compress models on Raspberry Pi devices, connected

with house smart meters, to evaluate whether the simulation experiments that we have conducted are translated to

real-world conditions in the same way.
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