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Abstract 

Background:  Data privacy is one of the biggest challenges for any organisation which processes personal data, 
especially in the area of medical research where data include sensitive information about patients and study partici-
pants. Sharing of data is therefore problematic, which is at odds with the principle of open data that is so important to 
the advancement of society and science. Several statistical methods and computational tools have been developed 
to help data custodians and analysts overcome this challenge.

Methods:  In this paper, we propose a new deterministic approach for anonymising personal data. The method strati-
fies the underlying data by the categorical variables and re-distributes the continuous variables through a k nearest 
neighbours based algorithm.

Results:  We demonstrate the use of the deterministic anonymisation on real data, including data from a sample of 
Titanic passengers, and data from participants in the 1958 Birth Cohort.

Conclusions:  The proposed procedure makes data re-identification difficult while minimising the loss of utility (by 
preserving the spatial properties of the underlying data); the latter means that informative statistical analysis can still 
be conducted.
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Introduction
Protection of privacy in personal data is a key societal 
concern with implications for scientific, commercial and 
government communities. Recent legislation such as 
the EU General Data Protection Regulation highlights 
this need to handle sensitive personal data carefully. At 
the same time, however, modern science emphasises the 
importance of transparency and reproducibility of scien-
tific research [1]; indeed, open data and open science is 
arguably one of the biggest gains of the data revolution 
[2]. This has resulted in increasing demands from funders 
and publishers for the release of data, among other 
things, to accompany grant proposals and journal articles 

(see for example the proposition from the International 
Committee of Medical Journal Editors [3]).

This potential conflict between data sharing and pro-
tection of sensitive data means that data custodians 
must use disclosure controls and anonymisation meth-
odologies to maintain individual confidentiality when 
sharing data. This is especially so in disciplines where 
collected data include sensitive information protected 
by ethico-legal regulations. Achieving anonymity is 
complicated however, as granular data can be mapped 
back to the individual who provided them relatively 
easily. Such demands and requirements have therefore 
led to the development of a range of data sharing solu-
tions, commonly achieving privacy protection through 
pseudonymisation, encryption or confusion-based 
approaches [4–8]. However, no single solution can fully 
protect a dataset and often combinations of methods and 
multifaceted systems are essential.
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Existing methods for sharing sensitive data
A number of approaches to sharing sensitive data are in 
existence. Some of these are theoretically straightfor-
ward in their approach, for example simple adjustments 
of direct identifiers (such as names and other forms of 
direct identifiers), or trusted data sharing within secure 
policy and procedural frameworks such as the Data Safe 
Havens and the Trusted Research Environments [9, 10]. 
Even in the latter scenario, the stripping of direct identi-
fiers is often required and constitutes good practice.

However, other more technical or statistical solutions 
may be considered as alternatives. At one end of the 
spectrum, ‘black box’ computing tools like DataSHIELD 
[11–13] and ViPAR [14] can be used to control accessibil-
ity and allow secure federated data analysis. Such inno-
vative tools mitigate disclosure risk while preserving data 
utility and allowing statistical analysis to be performed 
on the original data. Here the term ‘original data’ refers 
to the real data for analysis but they may already have 
been pre-processed (e.g., cleaned, harmonised, trans-
formed, etc.) and/or pseudonymised (i.e., direct identi-
fiers removed or disguised) before data storage. Black 
box approaches often restrict the analysis to a limited 
range of statistical methods and on specific outputs that 
the analyst can receive and publish (often non-disclosive 
low-dimensional summary statistics are returned to the 
analyst).

At the other end of the spectrum, simulated synthetic 
data [15] can provide full protection of privacy and elimi-
nate any re-identification risk. However, synthetic data 
often do not capture the higher-order statistical proper-
ties of the underlying data, as the synthesis relies on sim-
ulation of entirely new values from a simplified statistical 
model. The quality of synthetic data depends strongly on 
the ability of the selected models to capture important 
relationships found in the original data. Thus the loss of 
information in simulations of synthetic datasets can be 
significant but these data can be very useful for design-
ing research studies, developing software tools and meth-
odologies, and for training purposes (see for example, 
the generation of synthetic data for the development of 
a proof-of-concept biomedical data exploration and visu-
alisation tool in Virtual Reality [16]).

However, analysis of anonymised data can often be 
preferable to working via a tightly-controlled disclosure-
mitigating black-box or to the analysis of synthetic data. 
In contrast to the former, the analyst can then use any 
statistical methods he/she chooses and unlike the latter 
the analytic data preserves all of the underlying statisti-
cal properties of the original data. This has given rise to 
a number of privacy protection techniques that do not 
require black boxes or the creation of synthetic data. As 
well as suppressing direct identifiers (pseudonymisation), 

examples of such extended techniques include (1) the 
control of direct identifiers, unique combinations of 
records, outlier values, or small cell counts, (2) the aggre-
gation of granular detailed data to wider groups or cat-
egories, (3) the rounding of numerical values to numbers 
with fewer significant figures, (4) the perturbation of data 
with addition or multiplication of random stochastic 
noise, etc. Many of these focus on minimising disclosure 
risk and utility loss.

Strategically, each method or tool for disclosure control 
aims to reduce the risk of re-identification and to mini-
mise the loss of data utility. However, no single solution is 
adequate to fully protect the data and even the most com-
plex and sophisticated of solutions never offer informa-
tive data with zero risk of disclosure. The choice of the 
optimal approach is often assessed in terms of retaining 
the desired statistical properties of the data and is there-
fore heavily context-dependent [17]. Consequently, the 
merits of each approach should be carefully considered 
for any given dataset.

For example, the k-anonymisation process [18], which 
falls into categories (1)–(3) above, preserves privacy by 
reducing the granularity of the data by combining the 
suppression of records and aggregation of variables. It 
cannot be used in cases where unique patterns or outli-
ers (e.g., a rare disease indicator) are essential for the 
statistical analysis because the change or suppression 
of this information can lead to an incorrect conclusion 
(e.g., an incorrect medical diagnosis or decision). Other 
weaknesses of k-anonymisation are the biases and skew-
ing effects that it introduces to the data [19], and the high 
amount of information loss when it is applied to high-
dimensional datasets [20].

Meanwhile probabilistic anonymisation, which falls 
into category (4) above, is based on randomisation and 
therefore each data custodian can choose the level of 
noise used to perturb their data. There are a number 
of modelling techniques that can ‘remove’ the effect of 
added noise from a regression outcome and recover the 
true model parameters [21–23]; this is, of course, a desir-
able property of the procedure. However, care needs to 
be taken with this technique: the release of many ‘noisy’ 
datasets generated from the same input dataset, but using 
a different random number generator seed, can give rise 
to inferences for the observed underlying data (i.e., the 
average of many noisy datasets converges to the expected 
value of the input).

Contribution of this paper
In this paper we present a new deterministic procedure 
for protecting privacy in personal data. The proposed 
method obscures the micro-level information from a 
set of personal data while retaining the spatial statistical 
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properties of the numerical variables. In contrast to 
k-anonymisation, this approach does not reduce the 
granularity of the data. Furthermore, it does not depend 
on randomisation and so the same output will always be 
produced given particular input parameters (in contrast 
to probabilistic anonymisation). This procedure has been 
recently used for the generation of privacy-preserving 
data visualisations [24].

The paper is structured as follows. In the “Methodol-
ogy” section we introduce the deterministic anonymisa-
tion procedure and we explicitly describe its five basic 
steps. We also outline the metrics that we use to meas-
ure the disclosure risk of the anonymised data and the 
information loss generated due to the data perturbation 
during anonymisation. In the “Applications” section we 
apply the method to two real datasets: (1) a publicly avail-
able sample of data about passengers on the Titanic; and 
(2) a set of data from participants in the National Child 
Development Study [25]. This second set of data had pre-
viously been created and harmonised for use—by a large 
research team including us—in the analysis of “healthy 
obesity” as part of the BioSHaRE-EU project [26]. As a 
second part of the same project, we also used these same 
data to support the methodological development of 
DataSHIELD as a black-box solution to disclosure con-
trol [11]. In the “Applications” section we also conduct a 
sensitivity analysis to examine the effect of the number of 
nearest neighbours used in the procedure (parameter k) 
and the effect of the sample size to the information loss 
and disclosure risk of deterministically anonymised data. 
Finally, we discuss the strengths and limitations of the 
proposed procedure.

Methodology
Anonymisation procedure
The anonymisation method we propose in this paper 
stratifies the underlying data by all combinations of the 
levels in the categorical variables and then re-distributes 
the continuous variables by replacing each record with 
the centroid of itself and its k − 1 nearest neighbours for 
some specified k. It is important to note here that our 
procedure means that the categorical variables remain 
untouched by the anonymisation process; we ensure that 
this is safe in step (2) below. It is only the continuous data 
that change during the proposed anonymisation process.

The procedure consists of five basic steps: 

(1)	 Standardisation;
(2)	 Stratification;
(3)	 Location of k nearest neighbours;
(4)	 Estimation of centroids;
(5)	 Scaling and re-centralisation of the data.

These steps are detailed below, but before their appli-
cation we check that the dataset of individual records 
includes both continuous and categorical variables. If 
the given dataset includes only continuous variables, 
then step (2)—stratification—does not take place and the 
entire dataset is considered as a unique subset. Note that 
we are assuming that there is at least one continuous var-
iable in the dataset.

Step (1): standardisation
We standardise each continuous variable using z-score 
transformation such that each variable is centralised to 
zero mean and scaled to one standard deviation.

Step (2): stratification
We stratify the data in relation to all possible combina-
tions of the levels of categorical variables: each subgroup 
is now homogeneous in terms of the categorical data. For 
example, if a dataset includes three categorical variables 
where two of them are binary and the third has four cat-
egories, then the dataset is classified into 2× 2× 4 = 16 
different subsets.

To make re-identification harder, we ensure that the 
data are k-anonymous in each subset (i.e., each possible 
combination of levels of the categorical variables exists in 
the data at least k times). If k-anonymity does not occur 
in one or more subsets (i.e., at least one subset has less 
than k observations), then we apply existing methods to 
achieve the k-anonymity. This may include generalisation 
(i.e., individual values are aggregated in broader catego-
ries) and/or suppression (i.e., unique or rare patterns of 
individual records are removed from the dataset).

Note that the k used here is the same as the value used 
for the location of each k nearest neighbours (see the next 
step of the algorithm). The choice of k is open here, but is 
most likely that when choosing k large enough, the risk of 
disclosure is sufficiently small. However, choosing a very 
large k will result in substantive loss of information: for 
example, choosing k equal to the size of the smallest stra-
tum will mean that each continuous variable for observa-
tions in this stratum will all be mapped to the same value 
in the next step.

Step (3): location of each observation’s k ‑1 nearest 
neighbours
This step of the method locates the k − 1 nearest neigh-
bours of each observation, for which we use the so-called 
k-NN (k nearest neighbours) algorithm. This procedure is 
based on a technique in machine learning and is widely 
used in several disciplines such as computational geom-
etry [27], diagnostic medicine [28], cryptography [29], 
data mining [30], and as here, in solutions for data pri-
vacy [31].
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The k-NN algorithm is implemented separately in 
each stratum as formed in the previous step. The nearest 
neighbours are defined as the data points with minimum 
distances from each point of interest. Here we use the 
Euclidean distance as the distance metric between each 
two standardised coordinate vectors.

Step (4): estimation of centroids
When the k − 1 nearest neighbours of each data point are 
identified, the algorithm computes the coordinates of the 
centroid of each k data points (i.e., the k − 1 neighbours 
and the point of interest). The coordinates of each cen-
troid are calculated as the average of the coordinates of 
the nearest neighbours in each dimension separately. For 
example, in a 2D space the x-coordinate of the centroid is 
the mean of the x-coordinates of the k nearest data points 
and the y-coordinate of the centroid is the mean of the 
y-coordinates accordingly.

The continuous values of each individual data point are 
then replaced by the coordinates of the corresponding 
centroid. These coordinates are then pooled together into 
a single data frame, which includes values for all strata 
(i.e., a reverse of the stratification process). The contents 
of this new data frame are the masked data.

Step (5): scaling and re‑centralisation
We apply scaling and shift to relocate the masked data 
back to the observed scale and location of the origi-
nal data using an inverse of the z-score transformations 
applied in step (1). We multiply each continuous varia-
ble from the masked dataset (i.e., the centroids) with the 
ratio between the standard deviation of the original vari-
able and the standard deviation of the masked variable. 
Adding the observed means of the original data to each 
continuous variable from the masked dataset completes 
the re-centralisation.

Scaling is desirable because the third and the fourth 
steps typically shrink the overall variability of the data. 
However, it should be noted that when the scaling factor 
is sufficiently large, outliers or influential points may be 
displaced out of the convex hull of the original data. In 
particular, the masked data are not restricted to the space 
occupied by the original data.

Risk‑utility evaluation
Two key features should be addressed before releasing 
any anonymised data. Firstly, what is the risk of disclo-
sure using the anonymised data? This will determine if 
the (anonymised) dataset is secure enough to be released. 
Secondly, how much information in the data was lost 
during the anonymisation process? That is, what is the 
utility loss? Of course, there is a trade-off between the 

risk of disclosure and utility loss: methods that lower the 
risk of disclosure tend to increase utility loss.

Utility loss and disclosure risk evaluation is highly 
context-specific and no metric can act as a catch-all for 
either concern. In this paper we use three metrics to eval-
uate information loss, while a measure based on robust 
Mahalanobis distance will serve as a metric for disclosure 
risk.

Metrics for utility loss
The three metrics that we employ, look at different 
aspects of what it means to lose information due to the 
perturbation of the original values during anonymisation.

The first metric is a global metric that compares the 
entire anonymised dataset with the original data. We 
use a summary statistic of the propensity scores as the 
global measure of data utility of the anonymised data as 
proposed by Woo et al. [32]. To calculate the propensity 
scores, we first merge the original and the anonymised 
datasets vertically and we add a binary indicator which 
is equal to one for all records from the anonymised 
dataset and zero for all records from the original data-
set. Then we estimate the propensity score which is the 
probability of a record being in the anonymised dataset. 
The estimated propensity score p̂i of each record i is the 
predicted probability from a logistic model of the gener-
ated binary indicator regressed on all the variables in the 
merged dataset.

We then compare the distributions of the propensity 
scores in the original and masked data. If the two distri-
butions are similar, we conclude that the data utility loss 
due to anonymisation is small. This global information 
loss [32] is given by

where N is the total number of rows in the merged data-
set, p̂i is the estimated propensity score for unit i, and c is 
the proportion of anonymised data in the merged dataset 
(in our procedure c = 0.5 as the original and anonymised 
datasets have the same number of observations). When 
the anonymised and original datasets are identical (no 
loss of utility, and we cannot distinguish between the two 
datasets), the distributions of their propensity scores are 
identical and U is equal to zero (i.e., no utility loss). If on 
the other hand the anonymised dataset can be entirely 
identified through the logistic regression above, then 
we have lost all utility and U is 1/4. Note, however, that 
this metric does not take into consideration the natural 
pairing of the original data values and their correspond-
ing centroids. This metric may therefore not capture the 
more nuanced utility loss.

U =
1

N

N
∑

i=1

(

p̂i − c
)2

,
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The second metric that we use to measure informa-
tion loss is variable-specific, and unlike the first met-
ric, takes into account the pairing between the real and 
anonymised observations. For each continuous variable 
we calculate the Euclidean distance between each origi-
nal value and its corresponding anonymised value. We 
then estimate the mean of the squares of the Euclidean 
distances and divide it by the variance of the original var-
iable. This standardised metric of the Euclidean distances 
of a variable x is given by

where xor = (xor
1
, . . . , xorn ) is the variable in the origi-

nal dataset, xan = (xan
1
, . . . , xann ) is the corresponding 

variable in the anonymised dataset (both presented 
here in vector formats), and n is the length of the vari-
ables. This fraction indicates how much of the variabil-
ity of the anonymised variable is introduced through the 
anonymisation. For example, if δx = 0.4, we conclude 
that 60% of the variability of xan is inherited from the 
observed variability of xor while 40% is introduced due to 
anonymisation.

The third metric is an analysis-specific measure of util-
ity loss. To make the analysis-specific comparison we 
must assume an intended analysis for the data; here we 
suppose that a regression model is required. The pro-
posed regression model is applied to both datasets sepa-
rately. A standardised difference between the estimate of 
the regression coefficients derived from the original data 
and the estimates derived from the anonymised data is 
then computed. The standardised difference is calculated 
as

where β̂or and β̂an are the coefficients of the same model 
estimated from the original and the anonymised data 
respectively and SE(β̂or) is the estimated standard error 
of the coefficients from the original data [33]. This met-
ric can be thought of as a standardised bias between the 
estimates from the original and anonymised data. Check-
ing for overlap between the confidence intervals of the 
regression coefficients from the original and anonymised 
data has also been suggested [33, 34].

Metrics for disclosure risk
A risk assessment is based on the specific data disclosure 
risk scenario that pertains and can be tackled from the 
point of view of the individual level data (either to assess 
for identity or attribute disclosure) or from the point of 

δx =

1
n

∑n
i=1

(

xori − xani
)2

Var(xor)
,

d
β̂
=

|β̂or − β̂an|

SE(β̂or)
,

view of the global level data (risk related to the entire 
dataset or risk related to the protection method).

For the evaluation of the disclosure risk of anonymised 
data we use a robust Mahalanobis distance-based metric 
[35], which is estimated by the dRiskRMD function from 
the sdcMicro package in R [36]. This approach counts the 
number of ‘risky’ observations associated with higher 
probability of re-identification. Risky observations are 
those that have not been sufficiently perturbed and are 
located in the same vicinity as their original values (i.e., 
in very close proximity, and below an accepted thresh-
old). In particular, it takes into account outliers and rare 
combinations of variables; these are usually at higher risk 
of identification in comparison to, for example, observa-
tions closer to centre of the mass of a dataset.

The algorithm that estimates the disclosure risk first 
calculates the robust Mahalanobis distance between 
each observation in the original dataset (a vector) and 
the mean vector of the original data. It then generates an 
interval around each (multivariate) original observation, 
where the length of the interval is defined by its squared 
robust Mahalanobis distance scaled by a constant, w1 . 
These intervals create (possibly multidimensional) boxes 
around each observation. This scalar is a weight for 
adjusting the influence of the robust Mahalanobis dis-
tance and is chosen by the data custodian. Using this 
algorithm, we estimate two risks of disclosure.

The first risk of disclosure, risk1, is defined as the pro-
portion of the anonymised values that fall into the inter-
vals of their corresponding original values. Observations 
that fall within the intervals are considered potentially 
unsafe. The second metric, risk2, looks further at each 
observation flagged by risk1: it checks whether there are 
m other observations from the anonymised dataset very 
close to it, and computes the proportion of observations 
that are both at risk (according to risk1) and do not have 
m other observations close by. Note that risk2 will always 
therefore be at least as small as risk1. We use Euclidean 
distances here, and ‘close’ means being within some sca-
lar w2 of the observation. The idea here is that if more 
than m points are ‘close’ to the observation then we con-
sider this observation as safe. The parameters m and w2 , 
are chosen by the data custodian.

Applications
The Titanic passengers’ data
Our first application illustrates the deterministic proce-
dure through the anonymisation of a sample of Titanic 
passengers data. The dataset was obtained from Kaggle 
(https://​www.​kaggle.​com/c/​titan​ic/​data) and includes 
12 variables for 891 Titanic passengers. Our aim is to 
model the survival of passengers onboard the Titanic. We 
exclude three variables that are not considered important 

https://www.kaggle.com/c/titanic/data


Page 6 of 17Avraam et al. BMC Medical Informatics and Decision Making           (2022) 22:24 

in predicting survival: ticket and the cabin numbers, 
and the trichotomous indicator of where the passengers 
embarked on the ship (Cherbourg, Southampton, or 
Queenstown).

The remaining nine variables are listed in Table 1 and 
include a unique ID for each passenger; a binary indica-
tor showing if the passenger survived (1) or died (0); the 
passenger’s class (1st, 2nd, 3rd); the passenger’s name; 
sex; age; the number of siblings and spouses aboard 
the Titanic (SibSp); the number of parents and children 
aboard the Titanic (ParCh); and the fare paid for the 
ticket. In total there are therefore five categorical vari-
ables and a further two continuous variables.

We apply the deterministic procedure described in the 
“Methodology” section to anonymise the data and then 
apply a logistic regression model to predict the survival 
of the Titanic passengers in the given sample.

Anonymisation
In a realistic risk assessment scenario, the data custodian 
should first pseudonymise the data by replacing the pas-
sengers names (which is the only direct identifier) with 
non-identifiable pseudo codes. For simplicity, we assume 
that the generated pseudo codes are the contents of the 
PassengerId variable already included in the data. The 
features that are left for the analysis are the variables Sex, 
Age, Pclass, SibSp, ParCh, Fare and the outcome variable 
Survived. From those variables, Age includes 177 missing 
values which are filled by the median age of the rest 714 
passengers. We then convert the two discrete numeri-
cal variables—SibSp and ParCh—to a binary indicator 
(Family) denoting whether each passenger has any fam-
ily members aboard the ship or not. Excluding any names 
and/or passenger identifiers, we now have four categori-
cal variables (Survived, Class, Sex and Family) and two 
numeric variables (Age and Fare).

After preparing the data we follow the steps of the 
anonymisation process. Given that there are only two 
continuous variables, and it is only the continuous vari-
ables that go through the anonymisation procedure, the 
five steps of the anonymisation procedure as applied in 
the Titanic passengers data are visualised in Fig. 1. In par-
ticular, step (2) of the procedure checks if k-anonymity 

holds for the categorical variables for some k. Table  2 
shows the 12 distinct strata that can be formed by all 
combinations of categories of the variables Pclass, Sex 
and Family. From the Frequency column we can see that 
the minimum stratum has 32 observations which means 
that 32-anonymity is applied. We will use k = 3 for the 
rest of this example, and given that 32-anonymity applies 
then trivially the data satisfy the requirement of being 
3-anonymous.

Table 2 also presents the survival ratio that is the num-
ber of survived passengers over the total number of pas-
sengers in each stratum. By assuming that the Survived 
indicator is a sensitive attribute of the Titanic passengers 
we observe that there is significant uncertainty on dis-
closing this information for any particular individual (i.e., 
in no strata did all passengers survive or all died). This 
makes any attempt at inferential disclosure harder. For 
example, even if we know that a female was travelling in 
the first class of the Titanic with no family members, then 
we can only infer that the female died with probability 
1/34.

With confirmation that the categorical variables in the 
dataset are 3-anonymous after stratification, we apply the 
anonymisation procedure to mask the real values of the 
continuous variables Age and Fare.

Disclosure risk and utility loss
Following the anonymisation procedure we calculate 
the utility loss and disclosure risk of the anonymised 
continuous data. The disclosure risks as measured by 
the robust Mahalanobis distance-based approach, with 
w1 = 0.01 and w2 = 0.05, are risk1 = 0.0426 and risk2 = 
0.009, which are indicators of the percentage of sensi-
tive observations. In particular, the risk1 measure indi-
cates that around 4% of the observations are ‘risky’—38 
observations in total—in that they fall into the defined 
intervals around their corresponding original value. 
The risk2 metric indicates that only 0.9% of the obser-
vations—8 observations in total—are actually ‘unsafe’ 
in that they fall into the defined interval around their 
original value and no other observations are in close 
proximity. Note that here we use the default values set 

Table 1  An example of four records from the Titanic passengers data

Passenger Id Survived Pclass Name Sex Age SibSp ParCh Fare

1 0 3 Braund, Mr. Owen Harris Male 22 1 0 7.2500

2 1 1 Cumings, Mrs. John Bradley Female 38 1 0 71.2833

3 1 3 Heikkinen, Miss. Laina Female 26 0 0 7.9250
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

891 0 3 Dooley, Mr. Patrick Male 32 0 0 7.750
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Fig. 1  Illustration of the steps of the anonymisation procedure applied to Titanic passengers data. A Original continuous variables, B the variables 
after standardisation, C stratification of the variables in the 12 distinct strata, D the centroids of each 3 nearest neighbours, E scaled centroids and 
re-centralised back to the observed means (that are the anonymised data), F a comparison between the original and the anonymised variables
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in dRiskRMD function for the parameters w1 and w2 
and we further investigate the impact of their variation 
in the next section.

We can view these observations to better understand 
the nature of the potential disclosure, as shown in 
Fig. 2. It is observed that the points that are considered 
risky are points within the mass of the data points while 
extreme points (e.g., Fare>300) are unexpectedly con-
sidered ‘safe’. This happens because points in the center 
of the mass of the dataset tend to be replaced by cen-
troids with high proximity to them due to the detemi-
nistic anonymisation, while extreme points such as 
outliers tend to be replaced by more distant centroids.

The global utility loss is U = 0.000117—close to zero—
indicating some, but not much, loss of information. 
Looking individually at the propensity scores for each 
observation, most are very close to 0.5 (see Fig. 3).

The variable-specific information loss is δAge = 0.0114 
and δFare = 0.0473 which indicate that around 1.1% and 
4.7% of the variability of the anonymised variables Age 
and Fare respectively is due to the anonymisation.

We then fit a logistic regression model with the vari-
able Survived as the outcome and Pclass, Sex, Age, Fare 
and Family as covariates. We do this twice: here we have 
the luxury of being able to apply it to the original data 
as well as the anonymised data to compare the similarity 
of the estimates. The estimated coefficients of the model 
are shown in Table  3. We observe that the estimated 
coefficients obtained by the regression model applied 
to anonymised data are very close to those estimated 
using the original data. The standardised differences 
between the coefficients of the model applied to origi-
nal and anonymised data are also given in Table  3. The 

confidence intervals of the regression coefficients from 
the original and anonymised data are also overlapping; 
see Fig. 4.

The 1958 National Child Development Study
Our second application is to a sample dataset of partici-
pants in the National Child Development Study (NCDS), 
also known as the 1958 Birth Cohort. The NCDS follows 
the lives of 17,415 people born in England, Scotland and 
Wales in a single week in 1958 [25]. The data consist of a 
set of risk factors and phenotypic variables from the 1958 
Birth Cohort harmonised for the BioSHaRE-EU Healthy 
Obese Project, designed to examine the consequences 
of healthy obesity across several European biobanks 
and large-scale cohort studies [26]. The sample dataset 
includes 99 variables for 1469 individuals, and a unique 
ID. This sample  dataset was collected when the birth 
cohort’s participants were 45 years old.

For the purpose of this paper, we select four continuous 
and two categorical variables to anonymise and analyse. 
The continuous variables are the fasting glucose level; 
the high-density lipoprotein (HDL) cholesterol; and the 
height and the weight of each participant. The categori-
cal variables are gender (0 = Male and 1 = Female) and a 
binary variable indicating current cigarette smoking sta-
tus (0 = Not a current cigarette smoker and 1 = Current 
cigarette smoker). The dataset has missing values and to 
avoid imputation this time we select only the complete 
cases which gives us data on 1211 individuals.

Anonymisation
We follow the five steps of anonymisation for the four 
continuous variables. For step (2)—stratification—we 
note that the two binary categorical variables form four 
possible strata: (a) 492 males are not smokers ( ∼40.6% of 
the data), (b) 111 males are smokers ( ∼9.2% of the data), 
(c) 468 females are not smokers ( ∼38.6% of the data) 
and (d) 140 females are smokers ( ∼11.6% of the data). 
The minimum stratum has 111 records, confirming that 
the data are 3-anonymous. We follow the steps of the 
anonymisation procedure to obfuscate the four continu-
ous variables, using k = 3.

Disclosure risk and utility loss
Once the (continuous) data have been anonymised, we 
calculate the information loss and disclosure risk met-
rics. The disclosure risks as estimated by the robust 
Mahalanobis distance metric with w1 = 0.01 and w2 = 
0.05, are risk1 = 0.0140 and risk2 = 0.0099. This implies 
that around 17 of the 1211 observations (1.4%) are risky 
and 12 observations (0.99%) are potentially unsafe. 
We have also conducted a sensitivity analysis for the 
parameters w1 and w2 . Figure  5A illustrates that when 

Table 2  Frequencies of all possible combinations in the levels of 
categorical variables Pclass, Sex and Family 

The table also shows the survival ratio that is the number of survived passengers 
over the total number of passengers in each stratum

Pclass Sex Family Frequency Survival ratio

1 Female 0 34 33/34

2 Female 0 32 29/32

3 Female 0 60 37/60

1 Male 0 75 25/75

2 Male 0 72 7/72

3 Male 0 264 32/264

1 Female 1 60 58/60

2 Female 1 44 41/44

3 Female 1 84 35/84

1 Male 1 47 20/47

2 Male 1 36 10/36

3 Male 1 83 15/83
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w1 increases the risk1 metric also increases as the inter-
vals around the original observations become bigger and 
there is higher frequency of anonymised data points fall-
ing into those intervals. The risk1 metric is independ-
ent of the w2 parameter. Figure  5B shows that when w2 
increases, risk2 decreases because more risky observa-
tions fall within bigger intervals thus obscuring the risky 
data points.

The global information loss of the anonymised data as 
measured by the summary of propensity scores is U = 
0.00005: a low score suggesting that there is little in the 
way of overall loss of utility in anonymising the data. 
The variable-specific utility losses are δGlucose = 0.0466, 
δHDL = 0.0229, δHeight = 0.0296 and δWeight = 0.0247 
indicating that less than 5% of the variability of any of 
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Fig. 2  Risky observations according to the robust Mahalanobis distance-based metric. A 38 observations are considered as risky according to risk1, 
B 8 observations of those are considered as unsafe according to risk2 
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Fig. 3  Box plots of the individual propensity scores for each 
observation of original and anonymised data
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Fig. 4  Standardised coefficients and their 95% confidence intervals 
of the logistic regression model that predicts survival of the Titanic 
passengers. Black colour denotes the estimates of the model applied 
to the original data and red colour denotes the estimates of the 
model applied to the anonymised data. For ease of presentation, the 
intercept coefficient of both models is not displayed in the plots
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the anonymised variables is due to the anonymisation 
process itself.

We then apply a linear regression model to predict 
the fasting glucose level, with Sex, Smoker, HDL, Height 
and Weight as covariates. The estimated parameters of 
the model fitted to the original and the anonymised 
data are shown in Table  4. The estimated coefficients 
using the anonymised data are very close to the esti-
mated coefficients using the original data. This yields 
small standardised differences between the coefficients 
of the model applied to original and anonymised data, 
which are also shown in Table 4. The similarity is per-
haps easier to see in Fig.  6 in the overlapping of the 
confidence intervals.

Sensitivity analysis
We perform a sensitivity analysis to examine the effect 
of the choice of k (which dictates the number of nearest 
neighbours we seek for each observation) and the effect 
of the sample size on the disclosure risk and informa-
tion loss of the non-stochastic anonymised data. We 
base the generation of synthetic data on 1958 Birth 
Cohort data in the previous section, using the observed 
distributions of the variables from the complete cases.

Choice of k
We set the size of the sample to 500 records. The four 
possible strata are created with the same proportions as 
seen in the real data, yielding 203 non smoking males 
(40.6% of 500), a stratum with 46 male smokers (9.2% 
of 500), a stratum with 193 non smoking females (38.6% 
of 500) and a stratum with 58 female smokers (11.6% of 

Table 3  Estimated coefficients of the logistic regression model predicting survival of Titanic passengers using the original (left) and 
the anonymised (right) data

Coefficient Original data Anonymised data Std. difference

Estimate Std. Err. z value Pr(> |z|) Estimate Std. Err. z value Pr(> |z|)

Intercept 3.519 0.437 8.054 8.00e–16 3.615 0.454 7.972 1.56e–15 0.220

Pclass (2nd) − 1.067 0.286 − 3.732 0.0002 − 1.112 0.300 − 3.707 0.0002 0.159

Pclass (3rd) − 2.283 0.281 − 8.135 4.12e–16 − 2.343 0.300 − 7.822 5.21e–15 0.216

Sex (male) − 2.628 0.194 − 13.527 < 2e–16 − 2.625 0.194 − 13.508 < 2e–16 0.012

Age − 0.033 0.008 − 4.437 9.13e–06 − 0.035 0.008 − 4.586 4.53e–06 0.205

Fare 0.001 0.002 0.466 0.641 0.001 0.002 0.217 0.829 0.223

Family (yes) − 0.091 0.194 − 0.471 0.638 − 0.089 0.197 − 0.452 0.651 0.010

Fig. 5  The disclosure risks (A risk1 and B risk2) estimated by the robust Mahalanobis distance-based metric for different values of the parameters w1 
and w2



Page 11 of 17Avraam et al. BMC Medical Informatics and Decision Making           (2022) 22:24 	

500). For each stratum we simulate the four continuous 
variables. To simulate these non-normal data we use the 
Vale and Maurelli method [37]. The simulation of the non 
normal multivariate distribution is based on the observed 
mean, skewness and kurtosis of each continuous variable 
in the original data, as well as all bivariate covariances.

For each simulated dataset we apply the deterministic 
anonymisation and calculate the disclosure risks and util-
ity loss metrics. We apply the analysis for a k of 3, 5, 7, 
10, 15, 20, 25, 30, 35, 40, and 46. The value of 46 is the 
maximum value that we can use as this is the number of 
records in the smallest stratum of the simulated data. In 
that case all data belonging to that stratum are replaced 
by the same centroid (and we would expect substantial 
loss of information).

For each value of k we generate 100 datasets, which 
will differ in their values of the continuous variables. The 
results of the mean of the metrics considered across all 
100 datasets for each k are shown in Fig.  7. Figure  7A 
shows the increase in the global utility loss as measured 
by the propensity scores based metric as k increases; 
Fig.  7B shows the increase of the standardised Euclid-
ean distances between original and anonymised data 
points as k increases; Fig.  7C presents the increase of 
the standardised difference between estimated regres-
sion coefficients with the original and anonymised 
data, as k increases; and Fig. 7D shows the reduction in 
the disclosure risk as k increases. All three measures of 
utility show information loss as we increase k, which is 
to be expected. Unsurprisingly they also show the typi-
cal trade-off between disclosure risk and utility loss: 
lower values of k are preferable in terms of utility but this 
increases the risk of disclosure.

Sample size
Our second sensitivity analysis looks at the effect of sam-
ple size on the disclosure risk and information loss when 
using anonymised data. This analysis also accounts for 
the impact of the size of the minimum stratum: a smaller 
sample size will yield smaller minimum stratum.

For this analysis we fix the value of k to 5 and simu-
late sample sizes of 50, 100, 200, 500, 1000, 1500, 2000, 
2500, and 3000. We follow the same data generating 
mechanism as described in the previous section, but 
this time with fixed k and varying sample sizes. With 
just 50 observations, the four strata have 20, 5, 19 and 6 
records respectively. Setting k = 5 is therefore permissi-
ble, though we should expect major loss of information in 
this case especially for the two smallest strata.

For each sample size we generate 100 datasets (these 
will differ in terms of their ‘original’ continuous vari-
ables). The results from anonymising these 100 datasets, 
for each sample size considered, are shown in Fig.  8. 
Unsurprisingly all three metrics for utility improve as 
we increase sample size while the disclosure risk also 

Weight

Height

HDL

Smoker (yes)

Sex (female)

−0.2 −0.1 0.0 0.1 0.2

original anonymised

Fig. 6  Standardised coefficients and their 95% confidence intervals 
of the linear regression model that predicts fasting glucose levels 
of participants in the 1958 Birth Cohort. Black colour denotes the 
estimates of the model applied to the original data and red colour 
denotes the estimates of the model applied to the anonymised data. 
For ease of presentation, the intercept coefficient of both models is 
not displayed in the plots

Table 4  Estimated coefficients of the linear regression model predicting fasting glucose level of participants in the National Child 
Development Study using the original (left) and the anonymised (right) data

Coefficient Original data Anonymised data Std. difference

Estimate Std. Err. t value Pr(> |t|) Estimate Std. Err. t value Pr(> |t|)

Intercept 6.430 0.527 12.211 <2e–16 6.982 0.564 12.379 <2e–16 1.048

Sex (female) − 0.098 0.057 − 1.729 0.084 − 0.153 0.061 − 2.524 0.012 0.959

Smoker (yes) 0.110 0.049 2.253 0.024 0.099 0.048 2.054 0.040 0.212

HDL − 0.229 0.058 − 3.924 9.19e–05 − 0.245 0.059 − 4.119 4.06e–05 0.278

Height − 0.013 0.003 − 4.225 2.57e–05 − 0.017 0.003 − 4.916 1.01e–06 1.10

Weight 0.010 0.002 6.265 5.18e–10 0.011 0.002 6.589 6.59e–11 0.606
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increases as we increase sample size. The reason for this 
lies with the algorithm for anonymisation: as the sample 
size increases, so do the number of observations lying 
close to some other observation. So, for fixed k, the k 
nearest neighbours will potentially be closer compared 
to the situation where the dataset is much smaller. This 
results in using centroids that are closer to the original 
observation, which subsequently increases the risk. How-
ever, this needs to be traded-off with the idea that if an 

observation has ‘neighbours’ that are relatively close, 
then the risk of actual disclosure is reduced.

Discussion
The evolution of data science exploits the availability of 
large, granular datasets with detailed information, and 
enhances the advancement of technologies, methods and 
applications that are used to translate such data into tools 
that can benefit society. However, with great potential in 

Fig. 7  The effect of the number of nearest neighbours (parameter k) on utility loss and disclosure risk of non-stochastic anonymised data. A 
The dataset-specific utility loss as measured by the summary statistic U of propensity scores. B The variables-specific utility loss as measured by 
the Euclidean distance-based metric. C The analysis-specific information loss as measured by the standardised difference of regression model 
coefficients. D The robust Mahalanobis distance-based disclosure risks. Each point and error bar in the four panels indicates the mean plus minus 
one standard deviation of the metrics across 100 generated synthetic samples of 500 individual-level records each
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using data comes major challenges. One of those chal-
lenges is the restricted access to personal data especially 
in disciplines where data include sensitive information 
(from healthcare to banking).

The demand for access to such personal data has 
fuelled the exploration and development of several tools 
and approaches that allow data to be shared and ana-
lysed within secure frameworks that preserve privacy 
and maintain data subjects’ confidentiality. Deciding 
on the framework for mitigating disclosure risk of per-
sonal data is the responsibility of data custodians, who 
must make decisions based on a careful assessment of 

real risks that are typically context dependent. Suggested 
solutions have different strengths and weaknesses, and 
the final choice of the optimal method should depend on 
a rigorous assessment of the real risk of disclosure and 
the gravity of it occurring, versus the magnitude of the 
drawbacks of applying privacy protection including for-
mal evaluation of potential information loss that must 
be tailored to the specific context that applies. In many 
cases simple data obfuscation through suppression and 
aggregation may be enough to mitigate the risk of disclo-
sure while in other contexts more complex techniques 
might be required.

Fig. 8  The effect of the sample size on utility loss and disclosure risk of non-stochastic anonymised data. A The dataset-specific utility loss as 
measured by the summary statistic U of propensity scores. B The variables-specific utility loss as measured by the Euclidean distance-based metric. 
C The analysis-specific information loss as measured by the standardised difference of regression model coefficients. D The robust Mahalanobis 
distance-based disclosure risks. Each point and error bar in the four panels indicates the mean plus minus one standard deviation of the metrics 
across 100 simulations with constant k = 5
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In this paper we propose a new deterministic approach 
for anonymising personal data that increases the uncer-
tainty of data re-identification while limiting the loss of 
utility. This strategy therefore allows informative statisti-
cal analysis, but relies on having at least one continuous 
or numeric variable in the dataset. The method stratifies 
an underlying dataset by all possible combinations of the 
levels of categorical variables. The values of continuous 
variables are then replaced by taking into consideration 
the observation’s (k − 1) nearest neighbours. This re-
distribution of the continuous variables in a dataset pre-
serves their spatial correlations.

Our demonstration of the algorithm in “Applications” 
section shows that the procedure preserves the structure 
of the data well in cases where the required analysis is a 
regression model. The sensitivity analysis revealed the 
risk of disclosure and the utility loss are both depend-
ent on sample size—which also tells us indirectly that it 
is dependent on the size of the strata—and also on our 
choice of k.

The final choice of the parameters in k-anonymity and 
k-nearest neighbours depends on a rigorous assessment 
of the real risks of disclosure and the magnitude of the 
information loss generated by applying the anonymisa-
tion process. In general, this association is highly context 
dependent, and therefore the selection of the parameters 
must be specified based on each specific data situation. 
In many cases data protection through small values of 
the parameters in k-anonymity and k-nearest neighbours 
may be enough to mitigate the risk of disclosure and pre-
serve data utility, while in other contexts bigger values 
may be preferable [24].

This procedure has several advantages over other 
methods of anonymisation. The most important is that 
we introduce three layers of protection. The first layer 
occurs due to stratification: in cases where the strata 
themselves do not give rise to well-defined clusters of 
observations (which is often the case for real data), the 
search for the nearest neighbours within a stratum obfus-
cates the actual proximity of the data. That is, the near-
est neighbours of a data point within a stratum might 
be different to its nearest neighbours if we consider the 
entire dataset. The nearest neighbours within a stratum 
will be at least as far as an observation’s nearest neigh-
bours globally, so this increases the disturbance of each 
data point. This effect is greater for ‘outliers’ than for data 
points within a mass of observations. For example, if the 
k − 1 nearest neighbours of an unusual observation (that 
is distant from the majority of the other observations 
in the dataset) are located within the cloud of the mass 
of the data, then the corresponding centroid is located 
closer to the data mass in contrast to the original outlier 
point. This does not mean that the anonymised data lie 

exclusively within the convex hull of the original data: the 
scaling that occurs in step (5) of the algorithm ensures 
that it is possible to obtain anonymised data that are out-
side this region.

The second layer of protection is the one to one 
replacement of each data point with the centroid of the 
point itself and its (k − 1) nearest neighbours. Note that 
any value of k > 2 makes the calculation of the exact 
original values almost impossible (with k = 2, a malicious 
‘attacker’ could potentially disclose the exact value of an 
observation but only if they knew the centroid replacing 
a data point, and the mean and the variance of the three 
original observations that created the centroid). The opti-
mal value for k is context-specific to minimise loss of util-
ity as much as possible while ensuring a tolerable level 
of risk disclosure. A discussion on the optimal value of k 
could be linked to a wider review on the threshold rules 
used in other privacy protection techniques; for example, 
a similar disclosure control applied to a 2-dimensional 
contingency table where if at least one cell has fewer 
counts than an agreed threshold, the information in the 
rest of the table is not released. Simple threshold rules 
like these for the proposed algorithm in this paper would 
help to ensure that the anonymised dataset contained no 
obviously disclosive information. Of course, such thresh-
olds could never universally guarantee safety.

The third layer of protection is a result of the scaling 
of the centroids introduced in step (5) that introduces 
extra uncertainty to the anonymised data. The scaling is 
applied to the entire dataset and not within each stratum 
separately and shifts the centroid back to the observed 
variance of each variable. The direction in which the scal-
ing factor shifts each coordinate of a centroid depends 
on its position in relation to the origin, 0 = (0, . . . , 0) . 
For example, in a 2D-space the x-coordinate of a cen-
troid is multiplied by the scaling factor of variable x and 
the y-coordinate of the centroid is multiplied by the scal-
ing factor of the variable y. Therefore, the direction of 
the shift of each centroid due to scaling depends on the 
quadrant within which the centroid exists around the ori-
gin, (0, 0).

Another advantage of the proposed method is that its 
non-stochastic behaviour ensures that it generates the 
same anonymised data for any given underlying data-
set and a fixed value of k. This gives data managers full 
control of data relocation at each step of the anonymi-
sation procedure (in contrast to stochastic perturba-
tions) and therefore based on their risk assessments to 
choose the optimal value of k for their specific situation. 
It also prevents disclosure attacks based on generating 
multiple datasets and then using the law of large num-
bers to obtain the underlying values of the data before 
perturbation.
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No anonymisation procedure provides a perfect solu-
tion, and some limitations with the proposed procedure 
are evident. The first is how we deal with missing data 
(note that in other methods, e.g. purely synthetic data, 
this is not a problem). The decision is related to the sam-
ple size of the data and the information loss if we reduce 
the dataset to its complete case format. If the decision is 
to keep the sample size unchanged then we will handle 
missing values in continuous variables differently to those 
missing values in categorical variables. For missing values 
in continuous variables we can either use sophisticated 
imputation methods or we can simply replace the empty 
cells with the median (or the mean) of the non-missing 
values within each column separately and independently 
from the others. For the categorical variables we can either 
impute missing values using a binomial distribution fitted 
to the non-missing values or we can consider missing val-
ues as another level of the categories of each variable.

Aside from issues with missing data, note that k-ano-
nymity should be applied across all strata and in some 
cases this is an advantage: it adds an extra level of protec-
tion to the categorical variables. However, in big datasets 
with many categorical variables, or in smaller datasets 
where categorical variables have many levels, achieving 
k-anonymity might be challenging. Ways around these 
issues include combining categories to reduce the num-
ber of strata, or in extreme cases removing one or more 
categorical variable may be necessary. Another limita-
tion is the potential instability of the k-NN classification 
in high-dimensional data [38–41]. This instability can be 
reflected in both the performance of the algorithm and 
on the level of the loss of utility on the anonymised data. 
In such cases, the data custodian might decide to use the 
algorithm in a subset of variables (like a pseudonymisa-
tion process), especially on those associated with higher 
disclosure risk (e.g. direct and indirect identifiers).

Conclusion
In this paper, we propose a deterministic algorithm for data 
anonymisation, as a possible solution to eliminate some of 
the barriers to data access, and in doing so ensure that the 
scientific principles of transparency and reproducibility are 
maintained beyond the immediate research domain. The 
deterministic approach can be used across different domains 
where data are viewed as sensitive either because of concerns 
relating to information governance and/or data ethics, or 
because of their value in terms of intellectual property. The 
proposed approach would be of interest to a wide range of 
data stakeholders: not just data custodians, but also data 
analysts, study participants and the general public who all 
have an interest in ensuring that data are used as widely as 
possible in ways that are of value to society and yet protect 
their confidentiality. Unlike many other privacy preserving 

methods, the procedure of deterministic anonymisation 
still allows researchers access to informative data that retain 
the characteristics of the original data so that there is no 
restriction on how the data can be analysed. Therefore, this 
approach has the potential to enhance the discoverability 
and utility of individual-level data across all disciplines where 
data are sensitive. The use of such approach is essential to 
support the collection and appropriate use of personal data, 
to maintain the trust of participants joining research studies, 
and to enhance the compliance with the increasingly robust 
frameworks. These underpin the governance and ethico-
legal stipulations and regulations oversight management, 
process and use of sensitive personal data.
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