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A B S T R A C T

The collection and use of data resulting from human-computer interaction are becoming more and more com-

mon. These have been allowing for the birth of intelligent systems that extract powerful knowledge, potentially

improving the user experience or even originating various digital services. With the rapid scientific advancements

that have been taking place in the field of Deep Learning, it is convenient to review the underlying techniques

currently used in these systems.

In this work, we propose an approach to the general task of analyzing such interactions in the form of time

series, using Deep Learning. We then rely on this approach to develop an anti-cheating system for video games

using only keyboard and mouse input data. This system can work with any video game, and with minor adjust-

ments, it can be easily adapted to new platforms (such as mobile and gaming consoles).

Experiments suggest that analyzing HCI time series data with deep learning yields better results while provid-

ing solutions that do not rely highly on domain knowledge as traditional systems.

Keywords: Deep Learning, Time Series, Human-Computer Interaction, Ambient Intelligence, Fraud Detection
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R E S U M O

A recolha e a utilização de dados resultantes da interação humano-computador estão a tornar-se cada vez

mais comuns. Estas têm permitido o surgimento de sistemas inteligentes capazes de extrair conhecimento ex-

tremamente útil, potencialmente melhorando a experiência do utilizador ou mesmo originando diversos serviços

digitais. Com os acelerados avanços científicos na área do Deep Learning, torna-se conveniente rever as técni-

cas subjacentes a estes sistemas.

Neste trabalho, propomos uma abordagem ao problema geral de analisar tais interações na forma de séries

temporais, utilizando Deep Learning. Apoiamo-nos então nesta abordagem para desenvolver um sistema de

anti-cheating para videojogos, utilizando apenas dados de input de rato e teclado. Este sistema funciona com

qualquer jogo e pode, com pequenos ajustes, ser adaptado para novas plataformas (como dispositivos móveis

ou consolas).

As experiências sugerem que analisar dados de séries temporais de interação humano-computador pro-

duz melhores resultados, disponibilizando soluções que não são altamente dependentes de conhecimento de

domínio como sistemas tradicionais.

Palavras-Chave: Deep Learning, Séries Temporais, Interação Humano-Computador, Inteligência Ambiente,

Deteção de Fraude
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I N T R O D U C T I O N

The analysis of the interactions taking place between us humans and our technological artifacts is a subject of

high relevance. Human-Computer Interaction (HCI) makes use of that analysis to improve those tools and design

a better user experience. Ambient Intelligence (AmI), on the other hand, focuses on creating a technological

environment that adapts to the user’s needs.

The increasingly popular field of Machine Learning has been improving our ability of extracting knowledge

related to these interactions, playing a major role in the success of tasks such as sentiment analysis, human ac-

tivity recognition, the development of automated medical diagnosis, or the development of health-related decision

support systems.

The rapid development observed in Machine Learning, and especially in the sub-field of Deep Learning, has

been giving birth to ever more diverse and sophisticated tools. Some deep learning models specialize in pro-

cessing data with a specific structure (images or sequences, for example). To take advantage of these models,

we need to formulate our problems accordingly.

We can use deep learning models such as convolutional neural networks to take advantage of the sequential

context in human-computer interaction data. In this work, we propose a framework that uses such models to

analyze human-computer interaction and apply it to the real-world scenario of fraud detection in video-games, a

highly interactive domain.

1
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Figure 1.0.1: This diagram illustrates the focus area of our work, at the intersection of human-
computer interaction, ambient intelligence, and time-series analysis with deep learning.

1.1 M O T I VAT I O N

Anybrain is a company focused on providing services to the video game industry. The revolutionary aspect of

the company’s approach is the non-invasive analysis of the interaction taking place between the player and the

gaming platform (usually the computer). One of the main ambitions of the company is to create an approach that

can be applied to any game, thus being much more scalable than traditional solutions. The data resulting from

player interactions with the platform is highly complex, requiring a careful analysis of appropriate techniques and

algorithms, which constitutes the main motivation for this work.

Some of the main difficulties this type of analysis are

• Inadequate modeling of the problem

• Scarcity of labeled data

We aim to mitigate the first issue by proposing a set of tools and strategies that are more appropriate for

analyzing sequential data of user input.

Many of the existing solutions to these types of tasks involve traditional machine learning models that do not

capture temporal patterns in the data. In this work, we will focus primarily on deep models that handle time-series

well and have shown positive results in related tasks such as human activity recognition.



1.2. Objectives 3

1.2 O B J E C T I V E S

The main goal of this project was to propose a Deep Learning approach for the analysis of human-computer

interactions in the form of time-series. We applied that approach to the solutions developed at Anybrain.

At the beginning of this project, we set the following objectives:

• Review scientific concepts and literature related to HCI, AmI, and Sequential Data Analysis with Deep

Learning.

• Define a domain that successfully describes the analysis of human-computer interactions in the form of

time series. Propose a systematic approach to problems that fit in the established domain.

• Develop an anti-cheating system for video games that is game-agnostic and relies on the proposed deep

learning approach to HCI.

• Disseminate our findings and contribute to the scientific knowledge on the fields related to this work.

1.3 W H Y D E E P L E A R N I N G A N D S E Q U E N T I A L D ATA

Human-computer interaction data can be very complex. For example, if we’re analyzing keyboard mouse input

data (one of the most common input formats in gaming), there are hundreds of possible events, such as pressing

a mouse button or any key of the keyboard.

The curse of dimensionality hinders the use of traditional machine learning methods with data this complex.

Many solutions require a preprocessing of the data that extracts a set of human-engineered features.

These approaches have their limitations. Some of them are:

1. The manual feature design by humans is a time-demanding task.

2. The features we come up with might not capture relationships between events.

3. The length of the periods for which we calculate the features might dissolve important context such as

order or concentration in time.

Deep Learning models are much more resistant to the curse of dimensionality. Furthermore, there are models

such as recurrent neural networks (RNNs) or convolutional neural networks (CNNs) that benefit from structured

data. This allows us to address the problems listed above, respectively:
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1. Using input data as close as possible to the raw interaction that takes place between the user and the

platform, and letting the feature extraction be done automatically by the models.

2. Work with snapshots of the user activity without reducing the dimensionality of the data (losing less infor-

mation).

3. Preserve the sequential structure of the data (ordinal or temporal context) by using time-series.

The research hypothesis driving this work was:

"If we apply Deep Learning to the analysis of human-computer interaction, we will be able to attain better

results in tasks such as behavior analysis-based fraud detection."

1.4 D O C U M E N T S T R U C T U R E

In section 1, we explained the background, motivation and main objectives of this work. In section 2, we explore

the research fields related to this work, introducing their key concepts as well as the state of the art in subjects

of interest to our work. In section 3 we describe a framework to analyze HCI time-series data. In section 4, we

explain how we implemented the generic anti-cheating system based on preciously explained concepts. Finally,

in section 5, we state our concluding remarks and suggest future work directions on this subject.



2

S TAT E O F A R T

2.1 H U M A N - C O M P U T E R I N T E R A C T I O N

Human-Computer Interaction (HCI) is a discipline concerned with the design, evaluation and implementation of

interactive computing systems for human use and with the study of major phenomena surrounding them (Hewett

et al. (1992)).

Being at the intersection of computer science, behavioral sciences, and design, HCI is a multi-disciplinary field

with many applications.

HCI and cognitive science are closely related. While the design of appropriate interfaces benefits from the

understanding of the human cognitive process, we can also expand that same understanding by studying the

way humans interact with computers (Boring (2002)).

In the past years, progress in human-computer interface design has been towards multi-modal, active,

and adaptive systems.

Multi-modal interfaces are those in which the user can interact with the system in various ways. Multiple

input/output sources represent an increase in complexity if one wishes to analyze the interaction taking place.

Active interfaces interact with the user spontaneously, by offering some recommendation or support an implicit

request. The successful implementation of such functionality often requires the analysis of the user’s behavior.

Adaptivity is required because users don’t all behave in the same way. A user’s behavior can even change in

the span of a few minutes depending on the task he’s performing.

5



2.1. Human-Computer Interaction 6

2.1.1 Behavior Analysis in HCI

Research in HCI behavior analysis has been increasing in the last years, likely due to the availability of machine

learning methods to analyze data.

One of the main applications for this knowledge is informing system design, as seen in applications that apply

HCI theory to shape its interaction with the user (Consolvo et al. (2009)).

Another good example is the development of systems that rely on affective computing to provide useful fea-

tures. These tools might provide helpful insight into the user’s health state (Thieme et al. (2020); Pimenta et al.

(2014); Carneiro et al. (2015)) or recommendations regarding productivity (Carneiro et al. (2017, 2016); Pimenta

et al. (2015)), for example.

As (Hekler et al. (2013)) pointed out, despite the growing interest in this area, much of the research still lacks

a base framework to establish standard methods to evaluate or classify behavior.

2.1.2 Video Games as HCI

Video games can are a particular case-study in HCI, however, there are some key aspects in which they differ

from other types of software (such as productivity tools). As described by (Pagulayan et al. (2003)), we can list

some of the main differences as:

• Aiming to provide entertainment (and not to make a certain task easier).

• The tendency to reach a greater variety in methods to complete a task or to interact with the system.

• A game defines it’s own goal (to complete/win the game) while most software exists to fulfill an external

objective.

• Video games usually generate a higher variability in user experience.

• Usage of more diverse input/output methods.

These aspects certainly must inform software design and even motivate a new framework within HCI to ad-

dress video games, such as suggested by Barr et al. (2007). Despite the great variety of interaction domains in

which we can apply behavior analysis (even among games), we argue that we can use the same tools (similar

data structures and models) to analyze HCI.



2.1. Human-Computer Interaction 7

There is a multitude of possible applications for behavior analysis in video games. Sykes and Brown (2003)

analyzed the use of a gamepad and to correlate player arousal with the difficulty of the game. Ravaja et al.

(2004) studied the self-awareness state and emotional response of users when playing different types of games.

Mandryk and Inkpen (2004) compared players’ physiological measures (such as heartbeat rate) when playing

against a computer versus when playing against another human.

In this work, we analyze player behavior in the form of multi-modal (keyboard and mouse) input data. If we

can model player behavior, we can implement functionalities such as cheat detection solely based on the user’s

behavior.
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2.2 A M B I E N T I N T E L L I G E N C E

Ambient Intelligence (AmI) is a term that describes an environment populated with an ensemble of electronic

devices that are sensitive and responsive to the presence of people. These devices should cooperate seamlessly

to help humans carry out their everyday tasks. Some applications for AmI are smart homes, health monitoring

and assistance, hospitals, transportation, emergency services, schools, and workplaces (Cook et al. (2009)).

According to Ducatel et al. (2001), there are certain key technological requirements in AmI:

• Unobtrusive hardware

• Seamless web-based communications infrastructure

• Massively distributed dynamic device networks

• Natural feeling human interface

• Dependability and security

Ambient Intelligence is tangential to our work. Our analysis is not focused on the physical environment but

rather on user interaction with digital devices. In this sense, the concepts in AmI that are most relevant to this

work are sensorization and reasoning.

2.2.1 Sensorization and Data Collection

We can use several sensors to collect data regarding the user and their context. These often generate large

volumes of data. If they are not completely reliable, that data might be noisy and can even contain missing

values. A common practice is to preprocess data and reduce its volume by calculating descriptive statistical

measures. Despite this being an efficient approach, one can argue that it does not provide much flexibility to

experiment with other techniques, with a different preprocessing of the raw sensor data or which might require

finer granularity. In this sense, while prototyping different reasoning mechanisms, it is often worth to store raw

data.

There are many types of sensors used in AmI. Audiovisual, passive infrared (PIR), radio frequency identifica-

tion (RFID), and multi-modal wearable sensors are some of the most popular, as pointed out by Pauwels et al.

(2007).
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As we intend to analyze HCI data, audiovisual, wearable, and virtual sensors make the most sense. Frame-

works such as proposed in Baltrušaitis et al. (2016, 2018) can be of use to study the user’s facial expressions

while interacting with the computer. In other approaches, such as Sykes and Brown (2003) and Kołakowska

(2013), behavior analysis is based on peripheral input data.

As previously mentioned, our framework for analyzing human-computer interaction relies on peripheral input

data (e.g., mouse and keyboard).

2.2.2 Reasoning

We can divide reasoning into tasks such as user behavior modeling, activity recognition, activity prediction, and

decision making.

In this work, we focus on modeling and activity recognition. Since we plan to approach both tasks using a

general and unified data collection and processing approach, we can use similar pattern recognition methods in

these tasks.

There are two major approaches to activity recognition: data-driven and knowledge-driven. Knowledge-driven

systems rely on real-world observations and our understanding of a specific domain. Data-driven methods are

more flexible since they rely on probabilistic methods and data availability, requiring much less domain-specific

knowledge.

As pointed out by Chen et al. (2012), traditional machine learning models have been used for sensor-based

activity recognition. For example, in the task of WiFi sensor-based human activity recognition, Wang et al. (2015)

use Hidden Markov Models (HMMs), while Yin et al. (2008) use a one-class support vector machine (SVM) for

anomaly detection.

In the last few years, with the popularization of deep learning, many solutions use deep models to auto-

mate feature extraction (instead of relying on manually extracted features based on domain-specific knowledge).

Convolutional neural networks (CNNs), recurrent neural networks (RNNs), deep belief networks (DBNs), deep

Boltzmann machines (DBMs), and autoencoders are among the most popular deep learning models in activity

recognition, according to Nweke et al. (2018).
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2.3 M A C H I N E L E A R N I N G

In this section and the following, we present an overview of Machine Learning and Deep Learning, with help from

Goodfellow et al. (2016), where a good introduction on these topics can be found.

A machine learning algorithm is an algorithm that learns from experience. According to Mitchell (1997), "A

computer program is said to learn from experience E with respect to some class of tasks T and performance

measure P, if its performance at tasks in T , as measured by P, improves with experience E ."

The task T performed with the help of machine learning is usually too complex for traditional fixed programs

designed by humans. Some examples of possible tasks are classification, regression, transcription, translation,

anomaly detection, and denoising.

The performance measure P (e.g. accuracy or error rate) is usually specific to the task to be performed by the

system and should reflect the desired behavior of the model.

The experience E can be seen as the exposure to data. Differences in data structures, differences in label

availability, and dimensionality are some of the dataset characteristics that might shape the learning paradigm

and the statistical models to adopt.

2.3.1 Learning Paradigms

We often hear that a machine learning algorithm is supervised, or unsupervised, among other possible denomi-

nations. Those terms refer to the learning paradigm that stems from the type of dataset used.

2.3.1.1 Supervised Learning

Supervised learning algorithms use datasets that contain a label y for each example xxx. Usually, these algorithms

try to correlate the features with a given label (for example, in classification) by estimating p(y|xxx).

Perhaps the simplest example of a supervised learning algorithm is linear regression. In linear regression,

we try to predict a value y from an n-dimensional feature vector xxx. For each feature xi in xxx, our model has a

parameter (or weight) wi. Our prediction ŷ can be defined as ŷ = wwwᵀxxx + b, where b is an additional parameter

called bias, which allows our model to represent affine functions (instead of only allowing for hyperplanes passing

in the origin).
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Another simple example, closely related to linear regression, is logistic regression. Despite its name, this

model is generally used for classification, since it outputs probabilities by applying a logistic function to the output

of a linear regression model.

We won’t delve into the formulation of additional and more complicated algorithms, since that is out of the

scope of this review of the field of machine learning. The examples of linear and logistic regression models go

about to show that machine learning models are nothing more than parameters and functions that transform the

input into an answer in a given format.

One of the most influential models in traditional machine learning is Support Vector Machines (SVM). This

kind of model behaves similarly to linear regression, incorporating non-linear kernels (instead of just multiplying

the input by weights). Until the rebirth of the interest in neural networks, SVMs were used in a wide range of

tasks to achieve state-of-the-art results.

Another very important family of machine learning models are tree-based models. A decision tree is a rule-

based model that successively divides space into smaller regions. A leaf is a region that contains examples of

the same class (in classification). Decision trees alone are not usually strong models, however, some of the most

used traditional machine learning models consist of training an ensemble of shallow trees (weak learners) and

combining their answers to achieve good generalization. Random forests, AdaBoost and Gradient Boosting are

some of the most popular of these methods.

2.3.1.2 Unsupervised Learning

Unsupervised algorithms don’t have access to a label. Their goal is usually to create a representation of the

probabilistic distribution that generated the dataset. In this sense, we can say that they attempt to estimate p(xxx)

(as opposed to p(y|xy|xy|x) in supervised learning).

A popular unsupervised learning task is clustering, which consists of grouping similar examples drawn from a

population. K-means clustering is one of the simplest and most popular clustering methods. It works by initializing

k centroids randomly and iteratively correcting their position to the mean of every training example assigned to

the respective cluster. An example is assigned to the cluster with the closest centroid.

Principal Component Analysis (PCA) is another example of an unsupervised learning algorithm (although it

is often mentioned as a dimensionality reduction method). This method learns a linear transformation T that

transforms input xxx into a lower-dimensional representation zzz such that T (xxx) = zzz. It achieves so by minimizing

the error ε = T−1(T (xxx))− xxx.
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These two examples illustrate two ways to extract information from a dataset that doesn’t contain labels. There

are many more methods to perform similar tasks. Some of these methods involve deep learning models called

autoencoders.

2.3.2 Generalization

Generalization is the ability of a model to perform well on data it has not previously seen (used in training). As

we usually have a measure that quantifies the training error, there is also a test error (performance on a testing

dataset), also referred to as generalization error.

The generalization error should be lesser or equal to the training error. Our goal is to minimize the gap

between these two measures. When the gap is great, it means that our model is overfitting. Underfitting occurs

when the model isn’t able to achieve a low enough train error.

Several factors influence the model’s likeliness to underfit or overfit. Perhaps the easiest way to control it is

to change the model’s capacity. A model that is too complex (high capacity), might overfit by learning properties

that are specific to the training set. A model that is not complex enough might underfit by not being able to learn

the properties of the probabilistic distribution that generates the data.

In parametric models such as the ones we’ve been mentioning, the most straight forward method for controlling

capacity is changing the number of parameters. Using a kernel of different complexity in SVMs, limiting the depth

of decision trees, or changing the number of layers in a neural network are some examples of ways to control

representational capacity for different models.

2.3.3 Estimators and Maximum Likelihood

Statistics provides us with several tools that help us to assess the performance of machine learning algorithms.

Some of the most important of these tools are estimators. Estimators allow us to generalize in the sense that

they predict the value of some property of the data generating distribution from a sample of m examples.

An example of a simple estimator is the sample mean, which is an estimator for the mean parameter of a

Gaussian distribution, defined as µ̂m = 1
m ∑m

i=1 x(i). Estimators can be described through some properties

such as bias or variance.
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In machine learning, we are often concerned with estimating an entire function, by estimating the set of pa-

rameters θ̂̂θ̂θ that better approximates the unknown true set of parameters θθθ (which describe the true probabilistic

distribution of data). These sets of parameters describe a function that maps a given input xxx to a result y.

The most common method to derive estimators in machine learning is called Maximum Likelihood Estimation,

which consists of maximizing a likelihood function to choose the model that is most likely to have generated

the training data. In other words, if we have a set of m independent examples XXX and a probability function

pmodel(XXX ; θ̂̂θ̂θ ) that estimates the true probability of XXX occurring in a space described by θθθ , the maximum likeli-

hood estimation of the set of parameters θθθ is given by

θ̂̂θ̂θ = argmax
θ̂̂θ̂θ

pmodel(XXX ; θ̂̂θ̂θ )

.

Providing additional details or developing this formula is beyond the scope of this review, however, it is worth

stating that many of the evaluating functions using in machine learning, such as the mean squared error (MSE)

in regression, or cross-entropy in classification, are derived from the principle of maximum likelihood.

2.3.4 Optimization

Machine Learning often involves solving optimization problems, such as seen with maximum likelihood estima-

tion, or with the example of linear regression.

We can solve linear regression by simply solving a system of linear equations. In more complex models, how-

ever, the optimization problem is usually much harder. In this sense, there are specific algorithms or heuristics to

update the model parameters, according to a given evaluation function.

One of the most influential optimization algorithms in machine learning is Stochastic Gradient Descent, which

consists of calculating the gradient of the error in the model’s predictions, and then updating its parameters

according to that gradient. We’ll make a more detailed description of this algorithm in the context of Deep

Learning.

It is noteworthy that some models, such as decision trees and their ensembles, require very specific algorithms

as their parameters interact in a way that doesn’t allow for standard gradient-based optimization.
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2.3.5 Motivations for Deep Learning

Although traditional Machine Learning models are extremely useful and used extensively in a wide range of tasks,

they have failed in providing solutions for more complex problems such as object detection or voice recognition.

Deep Learning has been widely adopted in the past decade because it provides answers to some of the

problems that impair traditional machine learning methods to solve complex tasks.

One of these problems is the curse of dimensionality. As the number of features or dimensions in input data

increases, the number of possible input configurations usually grows exponentially. In this sense, either the

volume of training data also grows exponentially, or we are left with a model of a space filled with empty regions

(not populated by any training example).

Another problem with traditional machine learning methods is that they tend to incorporate a limited set of

prior beliefs (such as local constancy). These fail to generalize for complex probabilistic distributions. When

there aren’t enough training examples to cover regions of space with abrupt changes, many models might fail to

generalize to those regions, returning answers close to the labels of the nearest training examples (an extreme

case being the k-nearest neighbors algorithm).
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2.4 D E E P L E A R N I N G

"Deep learning is a particular kind of machine learning that achieves great power and flexibility by representing

the world as a nested hierarchy of concepts, with each concept defined in relation to simpler concepts, and more

abstract representations computed in terms of less abstract ones." (Goodfellow et al. (2016)).

Deep models provide a greater statistical capacity and statistical efficiency that allow us to solve otherwise

intractable tasks. Additionally, Deep Learning includes the study of proper evaluation functions and metrics,

optimization algorithms, and regularization methods from a statistical and empirical perspective.

Although some of the theoretical foundations for Deep Learning had already been developed in the last century

(Fukushima (1980)), recent breakthroughs in fields such as Computer Vision (Krizhevsky et al. (2012)) captured

the scientific community’s attention and revived the interest in the subject.

Although the theoretical foundations for Deep Learning had already been born in the last century, recent

breakthroughs in fields such as Computer Vision captured the scientific community’s attention and revived the

interest in the subject.

In this section, we firstly review some of the main concepts to understand in deep learning. Secondly, we

explore models specialized in the processing of sequential data and time-series. Finally, we briefly review the

main tools and frameworks that support the development of deep learning-based solutions.

2.4.1 Neural Networks

Artificial Neural Networks are the most used model in Deep Learning. The basic building blocks of a neural

network are fairly simple. In this sense, it is possible to increase the complexity of models without any additional

effort.

The name Neural Networks stems from the biological inspiration of these models. Each unit resembles a

neuron in the sense that it receives input from (either from the input data or other neurons) and computes its

output.

The most basic (and common) type of neural network is the Multilayer Perceptron (MLP). This type of model is

organized in groups of units called layers. Each layer’s neurons connect to all of the neurons in the previous and

next layers. For each connection in the neural network, we have a parameter that stores it’s weight or strength.
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A way to understand how neural networks work is to think of them as a chain of functions, where each layer

behaves similarly to the linear models described in section 2.3.1.1. We should notice that neural networks can

learn non-linear distributions because each unit applies a non-linear function to its output.

y = f2(vvvhhh + bbb2) (2.4.1)

hhh = f1(wwwxxx + bbb1) (2.4.2)

www =


w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

w3,1 w3,2 w3,3

w4,1 w4,2 w4,3

 ,vvv =


v1,1

v2,1

v3,1

 (2.4.3)

bbb1 =
[
b11 b12 b13 b14

]
,bbb2 =

[
b21

]
(2.4.4)

Figure 2.4.1: A basic MLP with 4 input features, 3 hidden units, and an 1 output unit. The functions
f1 and f2 are the activation functions of the units in the hidden layer and the output unit,
respectively. www,vvv are the arrays of parameter that specify the strength of the connections
between units. bbb1,bbb2 are the arrays of parameters that define the bias for each unit in
the hidden and output layers, respectively.

MLPs are one of the most general deep learning models because they use general matrix multiplication to

propagate information between layers. According to the universal approximation theorem, an MLP with a single

layer, a large enough number of non-linear units can represent any function in f : Rn 7→ Rm|n, m ∈ N with

an arbitrarily low error rate (Hornik et al. (1989)). However, we have no guarantee that our optimization algorithm

will be able to converge to a good solution.

In this sense, there are specialized types of neural networks such as CNNs and RNNs, which impose stronger

restrictions on the weights and structure of the network, in order to perform well on specific tasks related to

computer vision and sequence modeling, respectively.

2.4.2 Regularization

As discussed in section 2.3.2, one of the main concerns when implementing a machine learning algorithm is its

ability to generalize to new data. The implementation of strategies that aim to improve model generalization is
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called regularization. There are many methods applied to deep learning models in order to lower their general-

ization error without harming their ability to learn complex functions. Here we review some of the most common

and successful regularization methods.

2.4.2.1 Parameter Norm Penalties

Parameter norm penalties consist of introducing a penalty in the objective function of the algorithm. If our model

is described by the set of parameters θθθ , and we have an objective function J(θθθ ;XXX), the regularized function J̃

can be defined as

J̃(θθθ ;XXX) = J(θθθ ;XXX) + αΩ(θθθ )

where Ω is the function we use to calculate parameter norm and α is a hyperparameter that defines how strong

we want the penalty to be.

The choice of the function represented by Ω gives birth to different methods. Explaining how these different

choices prove useful to lower the generalization error of machine learning algorithms is well beyond the scope of

this review. The most popular of these methods are

• L2 Regularization, where Ω(θθθ ) = 1
2‖www‖2

2

• L1 Regularization, where Ω(θθθ ) = ‖www‖1

2.4.2.2 Parameter Sharing

Such as in parameter norm penalties, we might benefit from imposing additional constraints to the model pa-

rameters. Parameter sharing consists of forcing parameters to share their value, which means that they should

encode a relation of the same type.

Parameter sharing helps the model to achieve better generalization because it doesn’t learn separate param-

eters to describe the same data transformation. It also makes the model considerably more computationally

efficient, since we don’t need to store multiple variables for parameters with the same value.

Convolutional neural networks are one of the best examples of parameter sharing since they use the same

parameters across several regions of an image. This allows CNNs to significantly decrease the number of

parameters needed to process images, making training considerably easier. As we’ll see, parameter sharing is

also present in recurrent neural networks.
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2.4.2.3 Semi-Supervised and Multitask Learning

The paradigm of semi-supervised learning consists of using labeled and unlabeled examples to perform a given

task. In deep learning, this usually involves learning a representation of the data distribution that can be shared

by an unsupervised and a supervised model.

To achieve this goal we can make the supervised and unsupervised models share part of their parameters,

instead of having two completely separate models. In this way, both labeled and unlabeled examples contribute

to learning the data distribution.

A more general concept is multitask learning (Caruana (1993)), in which we have a group of parameters

shared across several models that perform different tasks. If the representation expressed in the shared param-

eters is relevant to the multiple tasks, we can achieve better generalization.

Figure 2.4.2: Suppose we have to solve three tasks that operate on the same type of data (for exam-
ple, images). For each task, we have a model with a hidden state HHHn and a dataset DDDn.
In multi-task learning, we force the three models to share part of their hidden state HHH.
This allows backpropagation from all three outputs to benefit the representation learned
by the three models and the separate tasks to benefit from the entire dataset DDD.
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2.4.2.4 Early Stopping

One of the most common forms of regularization in deep learning is early stopping. This technique consists of

storing a copy of the model’s parameters every time its validation performance measures improve. We then use

the model with the lowest generalization error.

The main advantage of this method is the fact that it doesn’t require any modification to the model’s parameters

or the objective function.

2.4.2.5 Ensemble Methods and Dropout

Given the stochastic factors in the training of machine learning models (in parameter initialization or data sam-

pling, for example), it is often unlikely that an algorithm converges to the same model twice.

In this sense, we can train several models using the same process. If these models make independent errors,

we can combine their answers to make even better predictions.

This is the core idea in bagging (Breiman (1996)), which is a method that aggregates the answers of several

models under the assumption that they make independent errors. These models are trained with datasets

randomly selected with replacement from the original dataset. If the errors are correlated, bagging performs

on average at least as well as any of the models in the ensemble.

There are other types of ensemble methods, such as boosting, which doesn’t exhibit regularization properties,

since it works by building increasingly complex models.

Another regularization method that can be seen as bagging is called dropout (Srivastava et al. (2014)), which

works by randomly dropping connections in a neural network at train time. Dropout provides a way to train many

less dense models without the significant computational overhead associated with other bagging methods.

The ability to train these models simultaneously and implicitly is due to the parameter sharing between them.

This parameter sharing motivates the whole network to learn redundant units since if a certain feature is not

present, the network can still make a correct prediction based on other information.



2.4. Deep Learning 20

Figure 2.4.3: This picture illustrates the possible set of graphs obtainable by applying dropout to the
simple MLP above. For models with a high number of parameters (modern deep learn-
ing models can have millions of parameters), we cannot possibly keep track of the pos-
sible variations.

As dropout affects the structure of the network, some models might benefit from a slightly different approach.

Some research aims to create variants of dropout that attend to this problem, such as Ghiasi et al. (2018) in the

case of CNNs.

2.4.2.6 Dataset Augmentation and Noise Introduction

The volume of training data is one of the most important factors for an algorithm to generalize well. Data aug-

mentation consists of applying some transformation to training data to generate synthetic training examples. It is

one of the main methods for overcoming limited training data and increase model robustness.

Although his approach is not applicable to all machine learning tasks, it is effective in classification or any

other tasks where we can ensure the data transformation does not also alter labels.

The specific transformations vary with the type of data used by the models. For example, if we are dealing

with image classification, one way of performing data augmentation is applying geometric transformations such

as rotation or reflection. Coming up with new and more effective data augmentation methods through geometric

transformation is an active research subject (Devries and Taylor (2017); Zhang et al. (2017); Yun et al. (2019)).

Some transformations work for almost any data format, such as the introduction of noise in training data. This

method is particularly useful to address the vulnerability of neural networks to noise in the input.



2.4. Deep Learning 21

Noise can also be applied directly to the weights of the neural network, which is equivalent to applying a norm

penalty according to Bishop (1995).

2.4.2.7 Adversarial Training

Let us have a classifier f that maps a data example xxx into a class y. An adversarial example is an input x′x′x′ that

is indistinguishable to the human eye, and for which f (x’x’x’) 6= y.

As noise can highly affect neural network predictions, Szegedy et al. (2014) points out that we can use an

algorithm to maximize the classifier’s error by training a generative model that applies noise to existing training

examples to generate adversarial examples.

This is interesting in the context of regularization because one can use these adversarial examples to train a

model and increase its robustness to noise.

As suggested by Goodfellow et al. (2014), we can train a generative (the adversarial model) and a discrimina-

tive (the classifier) model simultaneously to iteratively improve the ability to generate adversarial models, which

can be used to improve the robustness of the discriminative model.

2.4.3 Optimization

As discussed in section 2.3.4, a machine learning algorithm usually involves optimizing the model parameters

according to an objective function.

What distinguishes machine learning from optimization is that we don’t want to minimize the training error.

What we want is to minimize the test error. We assume we can do this indirectly because the data generating

process is the same for the training and test data.

Gradient-based optimization is the universally adopted family of methods used to optimize neural networks

(and other machine learning models). Stochastic Gradient descent is the base for almost all of the optimization

algorithms in deep learning.

In this section, we firstly introduce stochastic gradient descent (SGD), then list some of the main challenges

in gradient-based optimization, and finally present some of the variations of this algorithm that are currently most

used and aim to solve some of the aforementioned challenges.
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2.4.3.1 Stochastic Gradient Descent

Stochastic Gradient Descent (SGD, described in algorithm 1) works by iteratively sampling minibatches of m

training examples and subtracting the gradient of the objective function f (xxx;θθθ ) to the parameters of the model.

Algorithm 1: Stochastic Gradient Descent

ε ← learning rate;

θ ← initial model parameters;

while stopping criterion not met do

Sample minibatch xxx of size m from training set XXX ;

Calculate loss function: L(xxx;θθθ );

Calculate gradient of loss function: ggg← ∇θθθ L(xxx;θθθ );

Update model parameters: θθθ ← θθθ − εggg;

end

The main innovation of gradient descent (relative to standard gradient descent, that exists since the 19th

century) is the random sampling of minibatches. Minibatch sampling allows us to obtain an unbiased estimate of

the gradient for the whole training set.

It is also important to notice that the learning rate usually decreased throughout the iterations, to minimize

noise introduced by the random sampling of the minibatches.

2.4.3.2 Challenges in Gradient-based Methods

The optimization of neural networks is a nonconvex problem, which means that a local minimum is not guaranteed

to be a global minimum. The high dimensional spaces objective functions in deep learning are extremely complex

and pose some challenges to the learning process:

• Local minima

• Other zero-gradient points

• Cliffs and exploding gradients

As suggested by Goodfellow et al. (2015), local minima are empirically shown not to be a major problem to

neural networks trained with stochastic gradient descent. A way to detect local minima would be to track the

norm of the model parameters, which would shrink to a very small size when trapped in a region with a null

gradient.
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In the case of exploding gradients, common in recurrent neural networks, we can apply techniques such

as gradient clipping, which consists of imposing a limit to the gradient norm, preventing potentially destructive

updates to the parameters.

There are other challenges to gradient-based optimization, but these suffice to understand the motivation

behind the most widely used gradient descent variations.

2.4.3.3 Gradient Descent Variants

M O M E N T U M As standard SGD can be slow, the method of momentum (Polyak (1964)) became common

to accelerate learning when facing consistent gradients. This is accomplished by accumulating past gradients in

a velocity variable that decays exponentially.

Algorithm 2: Stochastic Gradient Descent with momentum

ε ← learning rate;

vvv← initial velocity;

α ← momentum parameter;

θ ← initial model parameters;

while stopping criterion not met do

Sample minibatch xxx of size m from training set XXX ;

Calculate loss function: L(xxx;θθθ );

Calculate gradient of loss function: ggg← ∇θθθ L(xxx;θθθ );

Update velocity: vvv← αvvv− εggg;

Update model parameters: θθθ ← θθθ + vvv;

end

Introducing this concept analogous to velocity in gradient descent is useful to overcome obstacles such as

local minima that could otherwise disturb the optimization process.

A DA P T I V E L E A R N I N G R AT E S Some optimization implements more sophisticated ways of adapting

the learning rate and the velocity of the algorithm.

RMSProp is an improvement of the AdaGrad algorithm proposed by (Duchi et al. (2011)). Both these algo-

rithms reduce the learning rate according to the history of the squared gradient. The improvement introduced by

RMSProp is an exponential decay applied to that history so that the learning rate doesn’t shrink when little the

gradients are too small.
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RMSProp is usually combined with momentum, being one of the most popular optimization algorithms for

deep neural networks.

Another widely used algorithm is Adam (Kingma and Ba (2017)), which gets this name because it tries to

implement adaptive moments for both velocity and learning rate. Adam is usually very robust to different hyper-

parameter choices.

Algorithm 3: Adam algorithm

ε ← step size;

ρ1, ρ2 ← exponential decay rates;

θ ← initial model parameters;

sss, rrr ← 1st and 2nd moment variables initialized to 000;

t ← time step initialized to 0;

δ ← small stabilization factor;

while stopping criterion not met do

Sample minibatch xxx of size m from training set XXX ;

Calculate loss function: L(xxx;θθθ );

Calculate gradient of loss function: ggg← ∇θθθ L(xxx;θθθ );

Increment time step: t ← t + 1;

Update biased first moment: sss← ρ1sss + (1− ρ1)ggg;

Update biased second moment: rrr ← ρ2rrr + (1− ρ2ggg� ggg;

Correct bias in first moment: ŝ̂ŝs← sss
1−ρ1

t ;

Correct bias in second moment: r̂̂r̂r ← rrr
1−ρ2t ;

Compute update: ∆θθθ ← −ε
ŝ√

r̂+δ
;

Update model parameters: θθθ ← θθθ + ∆θθθ ;

end

2.4.4 Tools and Frameworks

Implementing all of the concepts we’ve been describing is time-consuming and arguably beyond the skill set of

most deep learning practitioners.

In this sense, many machine learning and deep learning libraries have been created. Most of the algorithms

(when available) in these libraries usually comply with the scientific work supporting them.
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The choice of tools for deep learning should be constrained by what functionalities or algorithms the practi-

tioner needs. Although some frameworks and libraries provide a wide variety of tools, we should also consider

how lively the community around a certain tool is, as well as other factors such as supported language and hard-

ware (GPU) support. Most deep learning libraries provide a Python API and are written in a lower-level language

such as C/C++.
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Tool Type Language Sup-

port

Advantages

Tensorflow

(Abadi et al.

(2015))

Numerical Com-

putation Frame-

work

Python, C++,

JavaScript, Java,

Go, Swift

Extremely popular and

actively maintained;

Provides a rich set of

functionalities for model

deployment

CNTK (Seide and

Agarwal (2016))

Deep Learning

Framework

Python, C++,

BrainScript

Supports ONNX (neu-

ral network file format

shared by several

frameworks); Faster

than the other frame-

works supported by

Keras when working

with RNN/LSTM

PyTorch (Paszke

et al. (2019))

Deep Learning

Framework

Python Dynamic Computa-

tional graphs; Support

for ONNX; Growing

popularity for research

MXNet Chen et al.

(2015)

Deep Learning

Framework

Python, C++, Ju-

lia, MatLab, Go,

R, Scala, Perl

Vast language support;

Supports ONNX; Good

computational scalabil-

ity

Keras (Chollet

et al. (2015))

High-Level Deep

Learning API

(providing bind-

ings for Tensor-

Flow, Theano,

MXNet or CNTK)

Python Extremely popular and

actively maintained;

Consistent, clean and

simple to use API al-

lows fast development

of DL models

Table 2.4.1: An overview of the most popular frameworks for deep learning. All of these tools provide
GPU support.
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Nguyen et al. (2019) compare different deep learning libraries, showing that Tensorflow is the most popular

deep learning framework (across several GitHub statistics such as number of contributors and commits), followed

by Pytorch.

The main differences between these two frameworks are their approach to the implementation of computa-

tional graphs. In most situations, this difference won’t cause any discrepancy in results.

In this work, we will use TensorFlow along with its Keras API because we’re most familiar with those tools,

which are the industry standard for deployment of deep learning models.
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2.5 S E Q U E N C E M O D E L I N G W I T H D E E P L E A R N I N G

In the last section, we explored a subfield of machine learning distinguished by the structure of representations.

In this section, we explore another factor: the structure of data.

The structure of the analyzed data often has implications on several parts of a machine learning algorithm,

such as the model topology, the objective function, or the regularization methods used. In this sense, we can

group machine learning tasks by their type of data. Tasks using data with similar structures often use the same

similar models and require similar methodologies.

For instance, computer vision problems are currently most frequently approached by using CNNs. The suc-

cess of CNNs can be attributed to these models’ strong prior beliefs regarding the extraction of features in images

represented by a two-dimensional array of features. Another example is the processing of time-series, with the

use of recurrent neural networks, among other models capable of capturing sequential dependencies.

This section reviews concepts regarding the analysis of sequential data with deep learning, the main focus of

this work.

2.5.1 Sequential Data

Sequential data is structured in a way that expresses ordinal dependence between observations.

For example, let’s assume we have a certain system that we need to classify as being in a normal or abnormal

state. Additionally, assume we have two consecutive measurements of the system state: x1x1x1 and x2x2x2.

In the non-sequential approach, we apply a model f for both states, and our answers are given by y1 = f (x1x1x1)

and y2 = f (x2x2x2).

The sequential approach consists of building a model g that takes the array XXX = {x1x1x1,x2x2x2} as input, so that

our answer is yyy = g(XXX). There are several options for the shape of yyy. g can give a single answer for the whole

sequence or a sequence of answers, for example.

Contrarily to f , g can retrieve information from the transition between states, which sometimes is a great ad-

vantage. Furthermore, maximum likelihood estimation makes the i.i.di.i.di.i.d. assumption (independent and identically

distributed examples), which might not hold when a system’s state influences future states and invalidates the

non-sequential approach.
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It is important to note that sequences are not always related to time. For instance, sequential data is widely

used in bioinformatics to encode molecular structures such as proteins. Natural Language Processing (NLP)

also makes heavy use of sequential data to represent sentences, which can be seen as sequences of words.

Sequential data that express temporal order are called time series. Models used for time series and other

types of sequential data don’t usually differ, since the information lies upon the concept of order and not time

itself.

As we’ve discussed in section 2.1, human behavior analysis can benefit a great deal from the introduction of

temporal context. In this sense, this work will focus on time series.

A time series is a sequence of τ timesteps. For example, for a length of τ = 3, we can have a sequence

XXX = {xxx1,xxx2,xxx3}. Each timestep xxxt is indexed by its order in the sequence.

xxxt is an array of real values. When we have non-numeric data, it is necessary to perform some sort of encoding

so that xxxt ∈ RM , where M is the number of features in every timestep.

2.5.2 Models For Sequential Data

Before the advent of deep learning, machine learning was already applied to sequential data in many domains

(Dietterich (2002)). Some of the most popular methods involved Hidden Markov Models (HMMs) or the use of a

sliding window alongside a non-sequential model. Recurrent neural networks were also already known, but their

computational cost was an impairment to the existence of the deep architectures we know today.

In this section, we explore some of the most popular deep learning methods for handling sequential data.

2.5.2.1 Recurrent Neural Networks

We’ve presented in section 2.4.1 what arguably is the most basic structure for a neural network. In an MLP, a

given unit only receives input from units in the previous layer and only outputs to units in the next layer.

In recurrent neural networks (RNNs), a unit can be connected to itself. The representation of the transition

from a timestep to the next relies on the self-connections in units.
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hhht = f (wwwxxxt + uuuhhht−1 + bbb) (2.5.1)

Figure 2.5.1: Comparison between a basic RNN and the MLP seen in section 2.4.1. Notice that the
RNN features an additional set of parameters uuu which creates a connection between hid-
den units that should represent the state in consecutive time steps. All the parameters
are shared through time. Equation (2.5.1) expresses the computation of a hidden unit
in the RNN (analogous to equation (2.4.2) for the MLP). We can see that this recurrent
neural network returns output for every timestep, but that is not always the case.

Self-connections are implemented through an operation called unfolding. Unfolding means extending the

computational graph by repeating the self-connection for the number of timesteps in the sequence. Depending

on the number of timesteps, the unfolding might produce extremely deep graphs, which means RNNs can be

quite computationally expensive.

After unfolding, the computational graph of a recurrent neural network is similar to that of any other non-

recurrent neural network. This means we need few to no adjustments in the algorithms that calculate gradients

or perform parameter updates.

Although we might initially think of self-connections as only a way to introduce the past context, we can also

introduce future context. Self-connections can be oriented from the future to the past, which has proven to be

more effective in text-to-speech tasks (Bakiri and Dietterich (1999)), as in many other non-time-related tasks.

Bidirectional recurrent neural networks are RNNs that include sets of parameters for recurrent connections in

both ways.
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As we recall from section 2.4.1, a connection between two units involves multiplying the input by a parameter,

meaning that in RNNs we often have the same parameter multiplied by itself several times. Some of the main

problems in traditional RNNs arise from this successive multiplication:

• Exploding gradients - when the multiplying parameter has a value much larger than 1, it’s repetitive multi-

plication can result in a numerical overflow

• Vanishing gradients - the same as an exploding gradient, but when a parameter much smaller than 1

causes an underflow

• High nonlinearity - some activation functions, when repeatedly applied in successive timesteps, are com-

pletely deformed and lose some of their properties. Such is the example of the hyperbolic tangent

These obstacles make it difficult to operate on large sequences and to learn long-term dependencies in

data (Bengio et al. (1994)). Some more sophisticated RNNs address these issues, such those based in gated

recurrent units, which are some of the most successful models today.

L O N G S H O RT- T E R M M E M O RY Hochreiter and Schmidhuber (1997) introduced the Long Short-

Term Memory (LSTM) with the idea of creating paths through which the gradient neither explodes nor vanishes.

From an outer perspective, an LSTM unit behaves as the basic recurrent unit described in section 2.5.2.1. Its

inner state, however, is controlled by three gates defined by separate parameters. These gates are:

• Input gate - Controls the weight of each input to the unit, similar to what we already find in regular RNNs.

• Output Gate - Controls how much of the unit’s inner state is allowed to pass on to the output.

• Forget Gate - Inserted in a self-loop inside the unit, controls how much of the unit’s inner state passes on

to the next inner state.
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Figure 2.5.2: Unlike in a regular RNN, the flow of information in an LSTM unit is controlled by these
gates. Every gate is updated depending on the last hidden state hhht−1 and the current
input xxxt . There are separate WWW and UUU parameters for each gate and also the inner state.
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OT H E R G AT E D R E C U R R E N T U N I T S Some argue that some of the components of the LSTM unit

are redundant and introduce unnecessary complexity in models. In this sense, less complex approaches, still

relying on the concept of gates, were created.

Cho et al. (2014) proposed a unit architecture that only has two gates, known as Gated Recurrent Unit (GRU).

The main difference between GRU and LSTM is that one of the gates simultaneously performs functions similar

to the input and forget gates of LSTM.

LSTM and GRU remain the most popular gated units for recurrent neural networks, although it is possible to

come up with many more unit architectures. Jozefowicz et al. (2015) conducted an extensive study on different

gated unit architectures, with the LSTM and GRU as starting points. They found that although the GRU outper-

forms the LSTM in most tasks, the performance gap can be closed with proper initialization of the forget gate

bias parameters in the LSTM. The best-performing architectures in the experiment were similar to the GRU.

In this sense, to choose the unit architecture in a recurrent neural network, one should experiment with several

possibilities for each different task.

2.5.2.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) are neural networks that employ the convolution operation instead of

general matrix multiplication (in at least one of its layers). The convolution is a linear operation on two functions

that operate on the same domain. It consists of multiplying the values of a function f in an infinitely wide vincinity

of a point t by a function g that takes the distance of any given point to t.

( f ∗ g)(t) =
∫ +∞

−∞
f (τ)g(t − τ)dt (2.5.7)

The convolution operation has properties that are desirable to machine learning. Unlike in dense layers in

MLPs, the convolutional layers in a CNN guarantee that certain features only interact with a limited number of

features in their neighborhood. Since the same function g can be applied to any point in the domain of f , we can

express the same interaction occurring in different parts of the domain while using the same parameters (recall

parameter sharing as a means to regularization in section 2.4.2.2).
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Figure 2.5.3: On the left, we have a simple MLP with two fully connected hidden layers. Notice that
a feature interacts with every feature in its layer. On the right, we have a simple CNN
with a convolutional layer (only one kernel is illustrated) and a max-pooling layer. The
parameters of a convolution kernel are shared across the whole input, so a given kernel
learns a way in which a feature interacts with its neighbor features.

Another operation frequently used in CNNs is pooling, which consists of summarizing a group of close features

with a given function. Perhaps one of the most popular types of pooling is max pooling, which returns the

maximum value in the group of features to be summarized.

The convolution and pooling operations are infinitely strong priors forcing input features to only interact with

features in their vicinity. These priors work particularly well in computer vision, hence it’s extensive use with

images.

Because those assumptions regarding proximity also hold true in a temporal perspective (events closer in time

are most likely more strongly correlated), CNNs can also be used with sequential data.

To better understand how CNNs work, one needs to be familiar with the concepts of:

• Filter (or convolution kernel) - the matrix of weights that describe the convolution performed through

the whole data (e.g. across an entire picture, or a time series). Analog to the convolution operation
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described by Equation 2.5.7. In a single convolutional layer, we can have many filters, which means

several convolutions performed on the same data.

• Filter size - the size of the rolling window of features that directly interact to yield the result of the convo-

lution. Analog to the τ in Equation 2.5.7.

2.5.3 Sequence Modeling Tasks

Sequence modeling is a broad term through which we can refer to the extraction of information from sequential

data. Numerous tasks can fit into this description, and with new machine learning methods, the variety of uses

one can find for sequential data is increasing. A complete review of the universe of problems related to sequential

data is well beyond the scope of this work. We will focus on two main areas: sequence labeling and sequential

outlier detection.

2.5.3.1 Sequence Labeling

Sequence labeling is the task of establishing a correspondence between a sequence of labels and a sequence

of input data (Graves (2012)). This is a broad definition because it doesn’t constrain the shape or alignment of

input or output sequences.

In this sense, there are progressively stricter concepts that impose increasingly strong prior assumptions

regarding output shape.
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Figure 2.5.4: The groups of sequence labeling tasks, according to John. Temporal classification is
the looser concept, where we do not have any constraints for the input and output se-
quence alignments (for example, translating a sentence). Segment classification is a
subcase of the previous, where the input/output alignment is known in advance. Se-
quence classification is the stricter case, where we classify a whole sequence with only
one label.

2.5.3.2 Sequential Anomaly Detection

Anomaly Detection consists of identifying observations that do not conform with the normal expectations in a

certain domain. From a statistical perspective, anomalies (often referred to as outliers) seem to arise from a

probabilistic distribution different from the one known or inferred from past observations.

Anomalies are generally classified as either contextual (or conditional), collective, or point anomalies. Point

anomalies simply do not fit in the context of previously observed cases, while contextual anomalies might appear

normal in the absence of context. Collective anomalies, on the other hand, seem irregular when occurring

in a group. Although the implementation of a point anomaly detection system might appear more simple, the

introduction of context (even if it is a more complex solution) might benefit the success at identifying outliers

(Hayes and Capretz (2014)).

This context might be some order (sequential data), space (images or 3D models, for example), or any variable

or structure that contributes to the ability to build a representation where the outliers stand out.

One of the main challenges in anomaly detection is the difficulty in collecting labeled data from outliers. The

main reason for this is that these events are rare.

In this sense, some of the most successful approaches to anomaly detection fall onto unsupervised anomaly

detection.
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Unsupervised anomaly detection usually involves modeling the domain data distribution and then evaluating

the behavior of the model. The model should perform consistently with normal data and erratically when exposed

to outliers. This representational model is usually trained for tasks in which we can leverage input data as its

label. Two examples are forecasting (the last element in a sequence is the label) and input reconstruction (as

seen in autoencoders).

Sequential anomaly detection can be seen as a binary sequence labeling problem because it generally con-

sists of producing output that labels data as normal or anomalous.

2.5.4 Work in Sequential Data Analysis

In this section, we present a (by no means systematic) review of work done in sequential data analysis to attain

a satisfactory understanding of the methods currently used in this field. Our review prioritized work related to

anomaly detection since it is related to the fraud-detection challenge we seek to solve and usually represents

a greater challenge. The model architectures used in anomaly detection are often easily applicable to other

sequence labeling tasks.
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Work Task Paradigm Methods Data Type Obs.

Pereira and Sil-

veira (2019)

Anomaly Detec-

tion in electrocar-

diogram (ECG)

data

Unsupervised LSTM Univariate

Time Se-

ries

Variational Recur-

rent Autoencoder,

Bidirectional

LSTM Layers, Se-

quence Classifi-

cation, Biometric

Sensors

Rajpurkar et al.

(2017)

Anomaly De-

tection in ECG

data

Supervised CNN Univariate

Time Se-

ries

Sequence Classi-

fication, Biomet-

ric Sensors

Chauhan and Vig

(2015)

Anomaly De-

tection in ECG

data

Unsupervised LSTM Univariate

Time Se-

ries

Sequence Classi-

fication, Biomet-

ric Sensors

Malhotra et al.

(2017)

General Se-

quence to Se-

quence encoding

Unsupervised GRU Univariate

Time Se-

ries

Autoencoder,

Fixed-length se-

quence encoding

Karim et al.

(2018)

General Time Se-

ries Classification

Unsupervised CNN +

LSTM

Univariate

Time Se-

ries

Sequence Classi-

fication

Siegel (2020) Anomaly Detec-

tion in Industrial

Sensor Networks

Unsupervised RNN, CNN Multivariate

Time Se-

ries

Sequence Classi-

fication, Sensor

Data

Cherdo et al.

(2020)

General Unsuper-

vised Anomaly

Detection in Time

Series

Unsupervised LSTM Univariate

Time Se-

ries

Spectral Analysis,

Fourier Transform

Preprocessing,

Sequence Classi-

fication

Lu et al. (2017) General Unsuper-

vised Anomaly

Detection in Time

Series

Unsupervised RNN Multivariate

Time Se-

ries

Autoencoder,

Sequence Classi-

fication

Lin et al. (2020) General Unsuper-

vised Anomaly

Detection in Time

Series

Unsupervised LSTM Multivariate

Time Se-

ries

Variational Au-

toencoder, Seg-

ment Classifica-

tion

Munir et al.

(2019)

General Unsuper-

vised Anomaly

Detection in Time

Series

Unsupervised CNN Multivariate

Time Se-

ries

Prediction-based

Anomaly Detec-

tion, Segment

Classification

Table 2.5.1: This table presents work done in sequence labeling, mostly related to anomaly detection.
We can notice the prevalence of unsupervised learning, due to the difficulty of gathering
labeled data for large volumes of data. Unsupervised methods are extensively used
because they allow us to harness the information in of data that is straight-forward to
collect and store but would be extremely hard to label.
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2.6 M A C H I N E L E A R N I N G I N V I D E O G A M E S

As seen in section 2.1.2, we can see video games as a particular case of HCI. In section 2.2.2, we discussed

how machine learning plays a major role in modern AmI solutions.

In this section, we review the use of machine learning in video games. Although our main interest is deep

learning as a reasoning layer for data collected through the sensorization of human-computer interaction, we

provide a broader perspective of the use-cases for ML in video games.

Work Type of

Model(s)

Used

Data Type Paradigm Use Case

Description

Observation

Islam et al.

(2020)

Novel Ker-

nel Machine

Variant

(Gaussian

Kernel)

Tabular

Data

Unsuper-

vised

Cheat detection us-

ing pattern recogni-

tion in network traffic

data

Tests ran on data col-

lected from a small

sample, might not be

representative of the

population

Galli et al.

(2011)

Decision

Trees; Ran-

dom Forest;

Neural

Networks;

SVM

Tabular

Data

Supervised Cheat detection us-

ing in-game contex-

tual data

Extremely small test

dataset. Rudimen-

tary reporting of re-

sults.

Alayed et al.

(2013)

SVM;

Logistic

regression

Tabular

Data

Supervised Cheat detection

using domain knowl-

edge and in-game

contextual data

Extremely small test

dataset. Only three

players participated

in data collection.

Pao et al.

(2010)

SVM

variant;

K-Nearest

Neighbors

Tabular

Data

Supervised Detection of auto-

mated gameplay

(bots) using in-game

data

Extremely small test

dataset. Structure of

used data is unclear.

Pluskal

and Sedivý

(2014)

Random

Forest

Tabular

Data

Supervised Recommendation

system for game item

microtransactions

using in-game data

-
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Yeung et al.

(2006)

Dynamic

Bayesian

Networks

Time Series Supervised Cheat detection us-

ing in-game data

Reduced dataset

(10 matches and

only 6 players).

Missing quantitative

evaluation.

Alkhalifa

(2016)

HMMs Time Series Supervised Cheat detection us-

ing in-game data

Reduced dataset.

Missing quantitative

evaluation.

Willman

(2020)

LSTM Time Series Supervised Cheat detection us-

ing in-game data

Reduced and unbal-

anced dataset. As

pointed out by author,

low accuracy of the

models.

Jain et al.

(2016)

Autoen-

coders

2-D Bitmap Unsuper-

vised

Content generation

using generative

models (recogniz-

ing, generating,

or repairing game

levels)

-

Chen et al.

(2018)

CNN Sequential

Data

Supervised Predicting player

lifetime spendings

in game micro-

transactions

-

Partlan et al.

(2019)

LSTM Sequential

Data

Supervised Imitating player be-

havior using in-game

data to automate QA

testing

-

Table 2.6.1: This table is representative of the current landscape of machine learning in video games.
Cheat detection is one of the most sought-after use cases, and in-game data remains
the most popular source of data.

From our review of machine learning in video games, summarized in Table 2.6.1, we can observe that:

• There is an extreme difficulty in gathering labeled data for research. This makes a good case for the

usage of unsupervised methods (and still, most work does not tackle unsupervised learning).
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• Most work doesn’t reach meaningful conclusions or runs experiments on an extremely small test data set.

This problem can be solved if the research results from a collaborative process between researchers and

the video game industry, as is our case.

• Most of the experiements to evaluate proposed machine learning systems consist of collecting data from a

very limited sample of players during a few matches of a single game. We plan to validate our approaches

across several games and hundreds or even thousands of players.

• There is almost no scientific work applying deep learning to video games. Nearly all approaches focus on

simple models and simple data structures.

• Previous approaches only consider in-game data. In this sense, our work is a novel approach to applying

deep learning to video games (because it relies only on human-computer interaction data).



3

P R O P O S E D A P P R O A C H

In this section, we present our general approach for a data-driven system dealing with HCI. Firstly, we introduce

our data collection method. Secondly, we proceed to describe a data pipeline supporting multiple approaches

with varying use of domain knowledge. Then, we provide details on our deep learning modeling approach, and

finally, we describe a possible deployment method for the resulting models.

The main features of our approach can be summarized as follows:

• Our data collection process is agnostic to the platform or the peripherals being used, provided that we can

collect the stream of events corresponding to the user’s actions;

• Since we use deep neural networks, our input and output data can take many shapes, which contributes

to the two following properties:

– We can apply various sets of features, sources of behavioral events, and time granularity degrees

the input data for our solutions;

– We can also formulate in various ways the answers to the problems we’re trying to solve, this being

able to use this approach for several problem types (e.g. classification, forecasting, segmentation,

or even generative applications);

• Our approach inclines towards modeling with close-to-raw data, this not requiring great efforts in manual

feature engineering. This also means we rely less on domain knowledge (commonly critical to inform

feature engineering);

• The main architectural features of the models resulting from our approach are faced as hyperparameters

and subject to an automatic optimization process. This way, the architecture of the models is automatically

optimized for each case study where we apply this framework (instead of arbitrarily picked and tested

based on the practitioner’s experience).

42
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3.1 D ATA C O L L E C T I O N

The success of a data project is often more impacted by the quality of data rather than by how sophisticated the

modeling process actually is. In this sense, it is important to devise a data collection method that is accurate and

effective.

Humans can interact with a computer in many ways (especially now that technologies such as voice recog-

nition are starting to work well), but the most common is through peripherals such as keyboards, mouses, and

trackpads.

We start by defining our most basic form of interaction, which is an event E . An event occurs at a given time

t, possesses a code c drawn from an alphabet AAA and a real value v which describes the state or intensity for

that event. The set of possible values vvvc for the event is a function of c, since different types of events can be

described with a different set of values.

Mean of Interaction Alphabet Value Range

Keyboard

AAAkeyboard = {Q,W , E, R, T ,Y , ...} VVV keyboard = {vvvQ,vvvW ,vvvE ,vvvR,

vvvT ,vvvY , ...}

= {{0, 1}}

(up or down)

Mouse

AAAmouse = {R, L, M_WHEEL,

CURSOR_X ,CURSOR_Y}

VVV mouse = {vvvR,vvvL,vvvM_WHEEL,

vvvCURSOR_X ,vvvCURSOR_Y , ...}

= {{0, 1}, R}

(up or down for buttons, rotation an-

gle of scroll wheel, cursor position)

Table 3.1.1: Example of the event alphabet and value ranges for the specific case of mouse and
keyboard. When we have a small set of values for a given event type, we can also divide
it into dedicated codes for each value (for example K_down and K_up when vvvK = {0, 1}).
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Timestamp (milliseconds) Code Value
Event

Description

1574365839854 cursorX 960

The cursor’s

horizontal

location

1574365839854 D 1
The D keyboard

key was pressed

1574365839854 cursorY 540
The cursor’s

vertical location

1574365839854 MOUSE_LEFT 1

The left mouse

button was

pressed

1574365840188 A 1
The A keyboard

key was pressed

1574365840196 D 0
The D keyboard

key was released

1574365840392 cursorX 960

The cursor’s

horizontal

location

1574365840392 cursorY 540
The cursor’s

vertical location

1574365840392 MOUSE_LEFT 0

The left mouse

button was

released

. . . . . . . . . . . .

Table 3.1.2: A possible sequence of keyboard and mouse events. This table contains roughly 500
milliseconds of a real interaction from our data.
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Table 3.2.1: Multivariate time series of the events in Table 3.1.2.

Ti
m

es
ta

m
p

A D M
O

US
E_

LE
FT

cu
rs

or
X_

va
r

cu
rs

or
Y_

va
r

1574365839854 0 1 1 0 0

1574365839954 0 1 1 0 0

1574365840054 0 1 1 0 0

1574365840154 0.66 0.42 1 0 0

1574365840254 1 0 1 0 0

1574365840354 1 0 0.38 0 0

. . . . . . . . . . . . . . . . . .

The first stage of our data pipeline consists of capturing and storing these events. Especially in the case of

events that require a fine-grained description (mouse movement, for example), an immense volume of data is

generated. In this sense, we need to use techniques to reduce this volume and store data efficiently, discussed

in the following section.

3.2 D ATA P R O C E S S I N G P I P E L I N E

Although we use raw event data with minor preprocessing, we still need to produce regular structures that serve

as input to the deep neural networks. Table 3.1.2 illustrates the information we collect for each event. Each event

is characterized by three attributes: a timestamp, a code, and a value.

Once we have the collection of events described above, we process them to obtain a data structure as seen

in the sample in Table 3.2.1. Each column represents an event code and each row represents a timestep (each

timestep corresponds to 100 milliseconds).

We aggregate events in timesteps according to the value range of each event code.

For binary events (such as pressing or releasing keys), the value of each timestep is the amount of time

between values 1 and 0 and the total duration of the timestep given by the formula
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xt =
∑
n
[min(t + T , e0n)−max(t, e1n)]

T
,

∀ n : t < e0n < t + T ∨ t < e1n < t + T

(3.2.1)

where e0n and e1n are the timestamps of the nth events with the keycode of the column being calculated and

values 0 and 1 respectively. T is the duration of a timestep and t is the beginning of the timestep.

For real-valued columns, we follow a different approach. For each possible event code, we generate two

features expressing the variance and the amplitude of the values in each timestep. Following the same language

as before, the two columns can be defined with the formulae


xtvar = σ

(
∑N

n=1(envalue − evalues)
2

N−1

)
xtamp = σ

(
max

n
envalue −min

n
envalue

) ,

∀ n : t < en < t + T

(3.2.2)

where envalue is the value of the nth event with the keycode of the column being calculated. The function

σ serves the purpose of keeping the values of these columns in the same range as the binary coluns, and is

defined by the formula

σ : ]−∞, +∞[ → ]− 1, 1[

σ(x) =
2

1 + exp(−x)
− 1

(3.2.3)

We can visualize the transformation applied by σ in Figures 3.2.1 (before) and 3.2.2 (after). The mouse

movement features we used in this work assume values in [0, +∞[. When we apply the σ function, these

features are squashed into the interval [0, 1[, which is nearly same domain seen in the features resulting from

binary events.



3.3. Modeling 47

Figure 3.2.1: Example of 10 seconds
of interaction between the
player and the computer.
The red rectangle high-
lights the data sample
seen in Tables 3.1.2 and
3.2.1.

Figure 3.2.2: The same data seen in Fig-
ure 3.2.1, after applying
the function σ to the fea-
tures outlined by the red
rectangle.

3.3 M O D E L I N G

Modeling is the central part of our work. We seek to find models with meaningful representations of the human-

computer interaction.

We can place our modeling approach along two axes:

• The degree of feature engineering (using raw data or domain knowledge).

• The existence of temporal connectivity (if we consider only an isolated time window or a sequence).
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Temporal Connectivity

Single Time Window Time Series

Feature
Engineering

Raw
Data (1) Using an array of

raw features for an iso-

lated time window. This

approach is not viable

because without temporal

connectivity, raw features

or event occurrences

have no meaning.

(2) Using time series of

raw features. In this ap-

proach, we rely on sophis-

ticated models to extract

sequential dependencies

in the multivariate stream

of events.

Domain
Knowledge (3) Using domain knowl-

edge to condense the

stream of events in a

single array of hand-

engineered features.

This approach is most

commonly used with tra-

ditional machine learning

models and generally

consists of calculating

statistical aggregations of

the event stream.

(4) Using domain knowl-

edge to produce hand-

engineered features while

still taking advantage of

temporal connectivity be-

tween the intervals for

which the biomI etric ag-

gregations are calculated.

Table 3.3.1: This table summarizes the approaches we can take regarding the data described in the
previous section. Our work focuses on approach (2). We should note that it is also
possible to combine these approaches. For example, we might want to concatenate an
array of raw data and hand-engineered features, thus combining (3) and (4).

As seen in table 3.3.1, we can take several approaches to analyze HCI data. Using time-series demands

more complex models, capable of capturing temporal dependencies, as seen in section 2.5.2. The downside of

using time-series is that it requires storing and processing much larger volumes of data.
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Figure 3.3.1: As explained in table 3.3.1, we can take several modeling approaches. This diagram
illustrates the data pipeline from the moment we record the events. The less prepro-
cessing we apply to data, the more complex models we need to automatically learn
features. The diagonal arrow represents the possibility of joining approaches (2) and (4)
from table 3.3.1.

We only explore the approach of using raw data instead of domain knowledge. That decision was to allow the

deep learning models to automatically extract the features (instead of manually engineering them). In this sense,

we can apply the same algorithms to different domains where different features are created.

3.3.1 General Model Architecture

As discussed in section 2.5, Deep Learning allows us to take advantage of the sequential structure of time series.

Although it is theoretically possible to process this data with a simple architecture such as an MLP, training those

models or even creating them with high enough capacity to achieve good results would be intractable.

In this sense, one must resort to more complex neural network architectures such as RNNs or CNNs, which

rely on assumptions that allow them to process complex data structures while not exploding in model complexity

(and computational cost).

As reviewed in table 2.5.4, the two main contenders to be the cornerstone of our models’ architectures are

RNNs (especially gated unit architectures) and CNNs.
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Table 3.3.2: RNNs vs. CNNs in our use-case
RNNs CNNs

• Difficult to parallelize

• Complexity (number of parameters)
explodes with time series length
and number of features

• Work better with univariate time se-
ries

• Struggle with irregular patterns (that
do not repeat)

• Easily parallelizable

• Complexity (number of parameters)
does not depend on time series
length nor number of features (but
rather on the structure of the layers,
i.e. number of kernels and kernel di-
mensions)

• Perform well with high-dimensional
data

• Deals with irrelgular patterns

Gated unit architectures such as LSTM and GRU thrive in problems with univariate time series and regular

patterns, as seen in Chauhan and Vig (2015). In more irregular and high-dimensional data, CNNs tend to be a

better choice, as seen in Siegel (2020).

Additionally, CNNs are more parallelizable than RNNs because (according to the unfolding operation explained

in section 2.5.2.1) many calculations need to be sequential.

Taking into account the comparison in Table 3.3.2, we opted to use convolutional neural networks.

Most deep learning frameworks provide similar terms and APIs to easily define different architectures. In this

sense, part of our modeling pipeline is dedicated to choosing the architecture that yields the best results for

a given dataset. Table 3.3.3 introduces the architectural features that vary in our hyperparameter optimization

process.



3.3. Modeling 51

Table 3.3.3: CNN architecture features varying in hyperparameter selection.
Characteristic Type Effect

Number of Layers Architecural Characteristic The number of convolutional
layers in our deep neural net-
work.

Number of Filters Architecural Characteristic The number of filters (or ker-
nels) in each layer. This pa-
rameter could unique to each
layer, so that different layers
could have a different number
of filters.

Filter Size Architecural Characteristic The size of each filter (i.e. the
number of time steps that in-
teract to originate a feature
in the following layer). As in
the filter number, this param-
eter could be unique to each
layer, if we have the means
to perform an hyperparame-
ter search with that number of
parameters.

Use of Pooling Layers Architecural Characteristic In our approach, the use of
pooling layers is itself auto-
matically determined by the
pipeline. When pooling lay-
ers are used, every convolu-
tional layer is followed by a
max pooling layer.

L2 Regularization λ Optimization Parameter The λ parameter of the L2
regularization as described in
Section 2.4.2. The higher the
value, the more constrained
the network weights will be.

Batch Size Optimization Parameter The size of every minibatch
in the gradient descent al-
gorithm variant used, as de-
scribed in 2.4.3.3.
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Figure 3.3.2: This is the generic architecture of the convolutional neural networks in our approach.
We define the number of layers as the number of convolutional layers (that may be
followed by pooling operations). The properties of each convolutional layer are also
subject to optimization, and would ideally be independent between layers. The main
focus of the architectural optimization pipeline is the network’s backbone since the head
of the network is highly dependant on the problem.

3.3.2 Hyperparameter Tuning

Hyperparameter optimization allows us to automatically find a good architecture for any given domain, especially

considering that we treat some of the fundamental characteristics of our models (such as the number of layers)

as hyperparameters.
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In this sense, we ought to follow an efficient search heuristic or algorithm, so that we’re able to experiment

with enough configurations to reasonably cover our hyperparameter search space.

As it is well beyond the scope of our work to create a hyperparameter optimization method from scratch,

we relied on the framework introduced in John. Optuna is a minimalistic framework that implements efficient

hyperparameter search and pruning strategies, supporting dynamically defined search spaces and distributed

computing.

In terms of the search strategy Optuna uses, there are two main components:

• Sampling - the strategy for choosing the next hyperparameter configuration to be tested.

• Pruning - the decision process to discard trials unlikely to yield good results, thus avoiding unnecessary

computational cost.

Sampling methods usually fall into one of these two categories: relational and independent. While the first

studies the correlation between different hyperparameters, the second bases the choice of the parameter inde-

pendently from the others. Optuna features both types of methods, including sophisticated techniques such as

covariance matrix adaptation Hansen and Ostermeier (2001) and bayesian optimization Shahriari et al. (2016).

Optuna’s pruning algorithm is an extension (due to parallelization concerns) of the successive halving algo-

rithm Jamieson and Talwalkar (2016), which iteratively discards the worst half of hyperparameter configurations

in each training step.

3.3.3 User-centered Cross-validation

Cross-validation techniques provide a way of ensuring that our models are not overfitting to the training dataset.

Usually, methods such as K-fold cross-validation are simple to implement and effective at securing key as-

sumptions such as:

• Train and validation examples are independent.

• Train and validation datasets follow similar probabilistic distributions.

In some domains, however, we ought to account for other factors that may determine how different data points

relate to each other. In HCI, we should consider the possibility of a wide variety of behaviors and usage patterns.

In this sense, a method to evaluate if our models remain accurate for different user groups (with varying habits

and behaviors) is needed.
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With this concern in mind, we developed a user-centric adaptation of the K-fold cross-validation method.

User-centered cross-validation not only tests our approach’s ability to perform well in unseen data but most

importantly of detecting cheating interactions in unknown players.

Algorithm 4: User-centered Cross-validation.
XXX ← dataset of multivariate time series
yyy← labels for each example in the dataset
playersplayersplayers← list of users with records in XXX
for p in usersusersusers do

XXXu ← records of user u
yyyu ← labels for user u
XXXo ← records of other users
yyyo ← labels of other users
model ← new instance of proposed model
Train(model, XXXo, yyyo)
Evaluate(model, XXXu, yyyu)

end

Figure 3.3.3: In this picture we can visually compare our proposed method for user-centered cross-
validation with K-fold cross-validation. While in K-fold the data splits don’t take into
account the origin of the data examples, in user-centered cross-validation there is no
leakage of data from a given user between train and validation data.
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3.4 D E P L OY M E N T

Although deployment isn’t usually a major focus in scientific research in machine learning, we can not overlook it

if we want to take advantage of the models resulting from the previously described approach.

As discussed in Section 2.4.4, we use TensorFlow to implement our deep learning models. This framework

provides a straightforward method of deployment, which consists of saving models on any file system.

Since TensorFlow provides APIs in several languages, the deployment can be completely independent of the

platform used to train and test the models.

The specific architecture used to serve the models can vary depending on the available infrastructure in each

project. Figure 3.4.1 provides an overview of a possible training and deployment system.

Figure 3.4.1: An example of how models resulting from the training pipeline can be served trough
HTTP requests.
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F R A U D D E T E C T I O N I N V I D E O G A M E S

Online video games drive a multi-billion dollar industry dedicated to maintaining a competitive and enjoyable

experience for players. Traditional cheat detection systems struggle when facing new exploits or sophisticated

fraudsters. More advanced solutions based on machine learning are more adaptive but rely heavily on in-game

data, which means that each game has to develop its own cheat detection system.

In this section, we present a novel approach to cheat detection that is based in the concepts discussed in

Section 3 and that doesn’t require in-game data. Our models achieve an average accuracy of respectively 99.2%

and 98.9% in triggerbot and aimbot (two widespread cheats), in an experiment to validate the system’s ability to

detect cheating in players never seen before.

4.1 E X I S T I N G S O L U T I O N S A N D R E Q U I R E M E N T S

Anti-cheating systems help to provide a better experience to the players. By keeping the players engaged in

a competitive environment, the game communities can keep growing, providing entertainment, and generating

profit.

The problem with traditional anti-cheating systems is that they have a history of always being one step behind

the most sophisticated fraudsters and cheaters. Most of them consist of searching for malware or evidence that

the game software has been tampered altered.

In this sense, machine learning has helped by providing a statistical approach and tools to predict if a player

is cheating based on his data (Yeung et al., 2006; Galli et al., 2011; Alkhalifa, 2016; Islam et al., 2020; Alayed

et al., 2013).

Nearly all machine learning approaches to anti-cheating in video games consist of analyzing in-game data,

which is information regarding the game environment (such as the player’s avatar positioning or activity during

56
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gameplay). Analyzing this data demands domain knowledge and a process of feature engineering for each

game.

A system capable of analyzing gameplay without relying on in-game data would hold great value since it could

be applied to several games without modification and be adaptive to new types of cheats.

4.2 D ATA S E T D E S C R I P T I O N

The dataset we used in our experiments was collected in a real-world context of players in the game Counter-

Strike: Global Offensive, a first-person shooter. Players installed an application that collected keyboard and

mouse events as previously described. Since we intended our dataset to be as realistic as possible, most data

resulted from normal players (not cheaters) engaging in matches on the game’s official servers. Players were

given full freedom to play as they intended (as long as they were not cheating) to maximize behavior variety in

the dataset.

We tested two types of cheating:

• Aimbot - a cheat that automatically aims towards the cheater’s target, thus greatly reducing the need to

perform mouse movements;

• Triggerbot - a script that automatically fires the weapon as soon as the crosshair reaches an opponent,

thus reducing the need for a fast reaction.

These cheats greatly alter player behavior and allow much better performance in the game. The hypothesis

motivating our approach is that these different behavioral patterns reflect in the multivariate time series, and are

detected by the deep learning models.

As shown in Figure 4.2.1, our dataset contains interaction data from 118 players, 8 of whom have engaged in

cheating. Labels of cheating interactions are rare, which is coherent with a real-world scenario where cheaters

represent a small minority of players.

The labels were generated in scheduled matches by altering the cheating software to produce a timestamp

for every cheat activation. Each record in our dataset corresponds to 5 minutes of gameplay. We label a record

as a cheating record if there is at least one activation of the cheat during that interaction. In Figure 4.2.3 we can

visualize two samples from our training dataset. Each record is a multivariate time series with 3000 time steps

and 10 values in each timestep. We selected those 10 variables based on the frequence with which they occur,

as seen in Figure 4.2.2, and on their respective performed function in the game.
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Figure 4.2.1: Distribution of players and data records by cheat.

Figure 4.2.2: Event codes that appear the most often in our dataset.

Figure 4.2.3: Two examples of records in our dataset.
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Table 4.3.1: Hyperparameter search space and chosen values.

Hyperparameter Type Search Interval or Set Chosen Value

L2 regularization
λ

Real-valued
[
5× 10−5, 5× 10−3] 3× 10−3

Number of
Convolutional

Layers
Integer [2, 8] 3

Number of Filters Integer [4, 16] 6

Filter Size Integer [10, 50] 25

Max Pooling Boolean {True, False} False

Batch Size Integer [32, 512] 64

4.3 E X P E R I M E N T S

In this section, we explain our experiments. First, we introduce the hyperparameter search that, along with the

strategy described in Section 3.3.2, resulted in the final architecture of our models. Then, we explain how we

used the cross-validation method described in Section 3.3.3 and why it is superior to the methodology seen in

previous work.

4.3.1 Hyperparameter Search

To arrive at our proposed architecture, we conducted several trials to search for a combination of hyperparame-

ters that maximized the area under the receiver operating characteristic curve (AUC) metric.

We used TensorFlow (Abadi et al., 2015) and Keras (Chollet et al., 2015) for model implementation and Optuna

(Akiba et al., 2019) for hyperparameter optimization. We used the Adam algorithm (Kingma and Ba, 2017) to

optimize our models by minimizing L2 regularized cross-entropy, defined by

L(θθθ ;XXX ;yyy) = λ‖wwwθθθ‖2
2 −

N
∑

i=1
[yyyi × log(p(XXX i)) + (1− yyyi)× log(1− p(XXX i))]

N
(4.3.1)

where yyyi and p(xxxi) are the true and predicted labels of the sample XXX i, respectively, N is the number of

samples in XXX , λ is the L2 regularization hyperparameter and wwwθθθ is the trainable subset of the model’s parameters

θθθ .
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Figure 4.3.1: Distribution of the experimental results by number of layers, number of filters in each
layer, and filter size.

Table 4.3.1 describes our hyperparameter search space. The number of layers and filters in each layer was

intended to regulate complexity in our model. The filter size has an impact on model complexity, but it also

determines the temporal range of the interactions between features. The batch size and the L2 λ value were the

variable sources of regularization (we also used a fixed 0.5 dropout rate in every layer). We also tested the use

of max-pooling to explore the potential benefits of dimensionality reduction in hidden features. In those models,

we applied the max-pooling operation following each convolutional layer.

In Figures 4.3.1 and 4.3.2, we can observe the results of the hyperparameter optimization. It appears that

two separate clusters are being formed according to the usage of max-pooling. In figure 4.3.3, we examine the

distribution of the AUC metric and the loss function values in models with or without max-pooling layers. Models

without max-pooling seem to achieve better results in both metrics while being more consistent in terms of loss

function values.

Taking into account the results of the hyperparameter optimization, we went on to validate our approach with

the values shown in the last column of Table 4.3.1.

Our proposed CNN architecture is illustrated in Figure 4.3.4. We follow each layer except for the last with a

dropout mask to achieve better generalization. The use of a small number of filters can also be seen as a form

of obtaining better generalization.
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Figure 4.3.2: Distribution of the experimental results by batch size, L2 Regularization parameter, and
number of layers.

Figure 4.3.3: Distribution of the validation AUC and loss for the 100 best trials, by use of pooling
layers.
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Figure 4.3.4: Proposed architecture for the CNN classifier.
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Filter size has a strong meaning in this context because the range of timesteps interacting to originate a hidden

feature determines the time period that influences that feature.

We can multiply that range by applying some sort of pooling operation, such as max-pooling, and although

this can also mean fewer parameters and a model that is easier to train, models using max-pooling layers did not

perform as well as the ones that don’t use pooling.

Perhaps in tasks with a necessity for detecting patterns with a wide temporal range, deeper models that make

use of pooling might be the better choice.

4.3.2 Player-Based Cross-validation

Previous works conducted experiments using rudimentary validation techniques and very small datasets.

Alayed et al. (2013) performed 10-fold cross-validation in 7.6 hours of data from only 2 players. Galli et al.

(2011) used a simple train-test split with a dataset of also 2 players, but only 1 hour of data. In Islam et al. (2020),

interactions from 20 players were collected but there is no reference to the volume of their dataset. Yeung et al.

(2006) collected a mere 1.7 hours of data from 3 players and divided it into training, validation, and test datasets.

As seen in Figure 4.2.1, our dataset consists of roughly 490 hours of gameplay and contains data from 128

players in total.

To quickly take action against fraudulent behavior, cheat detection systems must make accurate classifications

for new players. No previous work took this necessity into account, so we employed the cross-validation method

described in Section 3.3.3 to address it.

User-centered cross-validation not only tests our approach’s ability to perform well in unseen data but most

importantly of detecting cheating interactions in unknown players.

We repeated this experiment for both cheats in our dataset: triggerbot and aimbot. The results are presented in

Tables 4.3.2 and 4.3.3 respectively. Triggerbot results were better, which might be due to the patterns associated

with this type of cheat being easier to detect or the fact that there is more data on this type of cheat.

We chose the best by maximizing the validation true positive rate (TPR), as long as the false positive rate

(FPR) didn’t exceed 5%, which did not occur for any instance of our experiment.

The left column in Figure 4.3.5 shows the validation receiver operating characteristics curve for aimbot detec-

tion on four players. The right column shows the models’ output distribution according to the ground truth. We

can see that our models produce a very clear distinction between fraudulent and legitimate interactions.
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Table 4.3.2: Results of Player-Based Cross-Validation in Triggerbot detection.

Player Number of
Records AUC

Best
Threshold

t

FPR
for t

TPR
for t

Accuracy
for t

1 40 0.997 0.080 0.047 1 0.975

2 375 1 0.381 0 1 1

3 121 0.996 0.027 0.010 0.95 0.992

4 129 1 0.54 0 1 1

5 126 1 0.348 0 1 1

7 26 1 0.591 0 1 1

8 320 0.992 0.005 0.027 1 0.978

AVG 162.429 0.998 0.282 0.012 0.993 0.992

Table 4.3.3: Results of Player-Based Cross-Validation in Aimbot detection.

Player Number of
Records AUC

Best
Threshold

t

FPR
for t

TPR
for t

Accuracy
for t

1 29 1 0.049 0 1 1

2 381 0.954 0.160 0.011 0.895 0.984

3 109 0.996 0.073 0.030 1 0.972

4 133 0.991 0.124 0.032 1 0.970

5 110 1 0.214 0 1 1

6 25 1 0.225 0 1 1

7 29 1 0.054 0 1 1

8 314 0.995 0.225 0.016 1 0.984

AVG 137.625 0.992 0.141 0.011 0.987 0.989
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The magnitude of the predictions varied mostly due to the stochastic nature of the model’s parameter initial-

ization.

4.4 R E S U LT S D I S C U S S I O N A N D P O S S I B L E I M P R O V E M E N T S

Results show that our models were able to establish a clear distinction between legitimate and fraudulent game-

play.

As previously mentioned, max-pooling can enable learning longer patterns, and according to our hyperparam-

eter search, it allows for deeper networks. Different games or applications may require this additional capacity.

For each new domain where this approach is applied, a new hyperparameter search should be performed to find

a well-performing architecture.

The presented cross-validation method allowed us to show that our models learn patterns that are not player-

specific. Our models can detect fraudulent players even if they weren’t exposed to their behavior. We suspect

that the principal source of variation in our results is the fact that some of the tested players (such as player #2)

represent a significant portion of our dataset.

We used a reduced set of event types (movement keys, mouse buttons, and mouse movements). The num-

ber of necessary event types to include in the multivariate time series might vary for different domains, which

influences the architecture resulting from the hyperparameter search.

Our models perform better than those in previous related work (Galli et al., 2011; Alayed et al., 2013; Islam

et al., 2020; Alkhalifa, 2016) while also being tested in a much larger dataset. As showed in previous sections,

our models achieved an accuracy of 98.9% and 99.2% in triggerbot and aimbot, respectively.

These results validate our ground-breaking approach to cheat detection in video games. The ability to analyze

player behavior based solely on input data is remarkable, allowing for the application of this system in many

different video games, perhaps with different input methods, thus greatly reducing the need for manual feature

engineering.

This dataset has a large volume of data, collected from a wide variety of players in a real-world context. In this

sense, we are confident that these results will translate to (or even improve with) communities with thousands or

even millions of players.
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Figure 4.3.5: Validation AUC and prediction distribution for 4 of the tested players.
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C O N C L U S I O N

With deep learning and multivariate time series, we were able to create useful representations of human behavior.

These models can capture complex patterns by analyzing a stream of signals originated from the interactions

taking place. The decision to structure these streams into multivariate time series and the composable nature of

deep learning models were essential to this approach’s success.

We can summarize our achievements by revisiting the initial objectives for this project.

• Review scientific concepts and literature related to HCI, AmI, and Sequential Data Analysis with Deep

Learning.

We provided an in-depth literature review of these topics, which informed our ideation process for the

proposed framework and allowed us to draw some conclusions regarding their current landscape. Our

main observation is that HCI is currently not experiencing the same momentum as Machine Learning

and Deep Learning, partly because its literature predominantly addresses user experience and design

concerns. We believe that works such as ours, where we explore HCI towards its use in data analytics

and behavioral models, should gain popularity in the following years.

• Define a domain that successfully describes the analysis of human-computer interactions in the form of

time series. Propose a systematic approach to problems that fit in the established domain.

We laid the foundations for a unified framework for performing multivariate time series analysis in HCI

data. Our work relied on the generic concepts of event and sources of interaction allowing for a wide

variety of types of interaction (with different peripherals and platforms) to be addressed with our proposed

approach.

• Develop an anti-cheating system for video games that is game-agnostic and relies on the proposed deep

learning approach to HCI.

67
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We used deep learning to capture behavioral patterns in HCI data and proved the effectiveness of our

proposed framework in the case study of fraud detection in video games.

Our models showed extremely positive results compared to any previous work, with accuracy levels of

roughly 99% detecting aimbot and triggerbot. Our cheat detection system can be applied to any game and

any input method. This system should be useful to the video-game industry, which is in great expansion

and requiring such technologies.

Additionally, we conclude that multivariate time series are data structures rich enough to bear information

regarding HCI, even in highly interactive settings such as video games.

This conclusion suggests further experimentation with other domains beyond entertainment, such as user

segmentation or wellbeing monitorization (useful in remote work or e-learning, for example). In this sense,

we can point towards several directions of future work.

• Disseminate our findings and contribute to the scientific knowledge on the fields related to this work.

We wrote a scientific paper documenting our work in fraud detection in video games, titled "Deep Learning

and Multivariate Time Series for Fraud Detection in Video Games". This work was accepted at the Ma-

chine Learning Journal, one of the top journals in the field of Machine Learning and Artificial Intelligence.

We’ll also be presenting this paper at the IEEE Data Science and Advanced Analytics ’21 conference,

which is also an internationally renowned forum for sharing knowledge in the aforementioned fields.

Considering that we successfully fulfilled all of the initial objectives and that we achieved remarkable results,

we find that this project was extremely successful and that it is appropriate to discuss future work directions.

F U T U R E W O R K

It will be interesting to observe the behavior of the developed anti-cheating system in communities with thousands

or even millions of players.

Another important path to investigate is the use of unsupervised methods to leverage great volumes of unla-

beled data, not just in cheat detection but also in other use-cases such as grouping players in clusters based on

their experience.

Related to the first point, we should also improve the capability of our data pipeline to handle big data.

One limitation of the framework we presented is the arbitrary choice of the time series’ length and granularity.

Ideally, these two characteristics would be hyperparameters in our pipeline, which is a non-trivial goal because
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these influence the data processing. A possible solution would be to implement several levels of hyperparameter

optimization.

Implementing some additional (while still rudimentary) features calculated based on the mouse movements,

along with the introduction of a feature selection mechanism, is another promising path for improvement.

One of the main research areas in deep learning, which we did not address in our work, is model explainability.

Some insight regarding which behaviors or patterns most influence the models’ predictions could be extremely

helpful and even allow us to learn more about our interactions with computers.

Finally, we envision the core ideas in this approach extrapolating beyond video games and finding uses in HCI

applied to wellbeing. In this sense, implementing the same data collection described in various platforms (such

as web and mobile) would allow us to extend the range of this approach to case studies such as social networks

and other massively popular occurrences of HCI.
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