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Resumo 

Nos últimos anos, os métodos de alto rendimento disponibilizaram dados ómicos referentes a várias 

camadas da organização biológica, permitindo a integração do conhecimento de componentes individuais 

em modelos complexos, como modelos metabólicos à escala genómica (GSMMs). Estes podem ser 

analisados por métodos de modelação baseada em restrições (CBM), que facilitam abordagens preditivas 

in silico. 

 Os modelos metabólicos humanos têm sido usados para estudar tecidos saudáveis e as suas 

doenças metabólicas associadas, como obesidade, diabetes e cancro. Modelos humanos genéricos 

podem ser integrados com dados contextuais por meio de algoritmos de reconstrução, com vista a 

produzir modelos metabólicos contextualizados (CSMs), que são normalmente melhores a capturar a 

variação entre diferentes tecidos e tipos de células. Como o corpo humano contém uma grande variedade 

de tecidos e tipos de células, os CSMs são frequentemente adotados como um meio de obter modelos 

metabólicos mais precisos de tecido humano saudável. 

 No entanto, ao contrário de modelos de microrganismos e cancro, que acomodam vários 

métodos de validação, como a comparação de fluxos in silico ou de previsões de genes essenciais com 

dados experimentais, os métodos de validação facilmente aplicáveis a CSMs de tecido humano saudável 

podem ser mais limitados. Consequentemente, apesar de esforços continuados para atualizar os 

modelos humanos genéricos e algoritmos de reconstrução para extrair CSMs de alta qualidade, a sua 

validação continua a ser uma preocupação. 

 Este trabalho apresenta uma pipeline para a extração e validação básica de CSMs de tecidos 

humanos normais derivados da integração de dados transcriptómicos com um modelo humano genérico. 

Todos os CSMs foram extraídos do modelo genérico Human-GEM publicado recentemente por Robinson 

et al. (2020), usando o package Troppo em Python e nos algoritmos de reconstrução fastCORE e tINIT 

nele implementados. Os CSMs extraídos correspondem a 11 tecidos saudáveis disponíveis no conjunto 

de dados GTEx v8.  

 Antes da extração, métodos de aprendizagem máquina foram aplicados à seleção de um limiar 

para conversão em gene scores. Os modelos de maior qualidade foram obtidos com um limite mínimo 

global aplicado diretamente aos dados ómicos. A estratégia de validação focou-se no número de tarefas 

metabólicas passadas como um indicador de desempenho. Por último, este trabalho é acompanhado 

por Jupyter Notebooks, que incluem um guia de extração de modelos para novos utilizadores.  

Palavras-chave: Modelação baseada em restrições; Modelos metabólicos contextualizados; Package 

Troppo; Tarefas metabólicas; Tecido humano saudável. 
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Abstract 

In the past few years, high-throughput experimental methods have made omics data available for several 

layers of biological organization, enabling the integration of knowledge from individual components into 

complex models such as genome-scale metabolic models (GSMMs). These can be analysed by constraint-

based modelling (CBM) methods, which facilitate in silico predictive approaches.  

 Human metabolic models have been used to study healthy human tissues and their associated 

metabolic diseases, such as obesity, diabetes, and cancer. Generic human models can be integrated with 

contextual data through reconstruction algorithms to produce context-specific models (CSMs), which are 

typically better at capturing the variation between different tissues and cell types. As the human body 

contains a multitude of tissues and cell types, CSMs are frequently adopted as a means to obtain accurate 

metabolic models of healthy human tissues. 

 However, unlike microorganisms’ or cancer models, which allow several methods of validation 

such as the comparison of in silico fluxes or gene essentiality predictions to experimental data, the 

validation methods easily applicable to CSMs of healthy human tissue are more limited. Consequently, 

despite continued efforts to update generic human models and reconstruction algorithms to extract high 

quality CSMs, their validation remains a concern. 

 This work presents a pipeline for the extraction and basic validation of CSMs of normal human 

tissues derived from the integration of transcriptomics data with a generic human model. All CSMs were 

extracted from the Human-GEM generic model recently published by Robinson et al. (2020), relied on 

the open-source Troppo Python package and in the fastCORE and tINIT reconstruction algorithms 

implemented therein. CSMs were extracted for 11 healthy tissues available in the GTEx v8 dataset.  

 Prior to extraction, machine learning methods were applied to threshold selection for gene scores 

conversion. The highest quality models were obtained with a global threshold applied to the omics data 

directly. The CSM validation strategy focused on the total number of metabolic tasks passed as a 

performance indicator. Lastly, this work is accompanied by Jupyter Notebooks, which include a beginner 

friendly model extraction guide. 

 

 

Keywords: Constraint-based modelling; Context-specific models; Healthy human tissue; Metabolic tasks; 

Troppo package.  
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1. Introduction 

1.1. Context and Motivation 

Systems biology seeks to understand physiology and disease at the system-level, integrating knowledge 

from individual components into complex models. High-throughput methods have made available copious 

amounts of omics data from different layers of biological organization. These large-scale measurements 

can drive in silico predictive approaches, such as genome-scale metabolic models (GSMMs) [1, 2]. 

 GSMMs are mathematically consistent representations of metabolic networks, composed of 

reactions and metabolites inferred through functional genomics. Constraint-based modelling (CBM) 

methods can be used to analyse GSMMs, ignoring unknown kinetic parameters by assuming that 

intracellular metabolite abundances are constant over time [1]. Furthermore, CBM methods usually 

require an objective function that is typically fulfilled by an artificial biomass reaction representing the 

demand for certain metabolites required for cell growth [1, 3]. 

 Human metabolic models aim to be comprehensive, up-to-date collections of the components of 

human metabolism [3]. The first human generic model, Recon1, was followed by the Edinburgh human 

metabolic network (EHMN), the Human Model Reaction (HMR) database and updated model versions 

such as HMR2 and Recon3D [1,3]. One of the most recent models, Human1, was released in 2020 

aiming to unify the two major human GSMM lineages, HMR and Recon [4]. Generic models can serve as 

a scaffold for integration with contextual data, or omics data, to better capture the variation between 

different tissues, cell types and environmental variability [1].  

 Context-specific models (CSMs) are typically extracted from generic models by removing inactive 

reactions based on omics data, and are, therefore, subsets of a template general model. Tailoring the 

model’s reactions to capture the enzymatic profile of a certain tissue, cell type or condition, often results 

in greater predictive ability relative to this context [1]. 

 Reconstruction algorithms can be used to integrate omics data in a generic model and extract a 

CSM. These approaches can be classified into 3 families: Gene Inactivation Moderated by Metabolism 

and Expression (GIMME)-like, integrative Metabolic Analysis Tool (iMAT)-like and Model-Building Algorithm 

(MBA)-like algorithms [2]. As there are multiple algorithm alternatives to choose from, no standard 

algorithm for model building exists. 

 CSMs based on these generic models have been built to explore the metabolism of various 

healthy human cell types and tissues, including adipocytes, as well as liver and kidney cells [1,3]. Healthy 
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CSMs have been used to compare wild-type and mutant cells and predict gene knockout phenotypes. 

CSMs also proved useful for studying diseases like non-alcoholic fat liver disease, type two diabetes, and 

cancer [1, 5]. CSMs for the latter have helped to identify biomarkers and therapeutic targets [6] and 

successfully simulate the Warburg effect [7].  

 Despite efforts to update generic human models over the years, coupled with algorithms 

developed to extract high quality CSMs, biological validation remains a concern. This work will address 

the validation of the predictive power of healthy human tissue models, which often face more challenges 

than their disease counterparts [1]. For instance, the rapid growth of microorganisms and cancer cells 

can be translated into biomass maximization as an objective function for CBM. In contrast, metabolic 

objective functions for human healthy cells and tissues are harder to define [1,3]. Given the difficulty in 

translating omics data into metabolic models, there is a need for a more unified pipeline for healthy CSM 

extraction and validation. 

1.2. Research objectives 

The aim of this work is to generate context-specific genome-scale models of healthy human tissues (for 

example, of liver, breast and renal tissue), establishing a pipeline for their reconstruction and validation. 

This optimization process aims to cover transcriptomics data pre-processing for integration with a generic 

model, extraction using reconstruction algorithms with separate approaches and common CSM validation 

methods. This will be achieved addressing the following scientific/technological objectives: 

• Exploratory analysis and pre-processing of the transcriptomics obtained from the GTEx project 

[39] and other relevant data for their integration with metabolic models; 

• Reconstruction and curation of tissue-specific models of healthy human tissues selected as case 

studies using the fastCORE and tINIT reconstruction algorithms implemented in the Troppo 

Python package [8], and the generic model Human1 as the template model [4];  

• Analysis of the generated models based on metabolic tasks and other methods applicable to 

healthy human tissues, and their comparison to models of the relevant tissue;  

• Development of a pipeline for reconstruction and validation of healthy tissue-specific models. 

1.3. Report Outline 

The main content of this thesis is divided into 4 sections, with Section 2 covering the state-of-the-art 

review. Sections 2.1.1 and 2.1.2 introduce the field of systems biology, define genome-scale metabolic 

models, distinguish between model types, and summarize the recent history of human models. Sections 
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2.1.3 and 2.1.4 explore the key principles of constraint-based models and how phenotype predictions 

may be applied to context-specific models of healthy human tissue.  Section 2.2 addresses omics data 

types, sources, and pre-processing methods for integration with metabolic models, with a focus on 

transcriptomics. Section 2.3 includes a detailed review of context-specific metabolic model extraction and 

validation methods, including reconstruction algorithms, and lists some examples of applications of these 

models.  

 Section 3 (Methods) covers technical methods involved in the three stages of the pipeline, namely 

data pre-processing, model extraction and model validation, in detail. Section 4 (Results) presents the 

developed pipeline, all models extracted, the methods of validation used and compares the effects of 

several different extraction conditions in model quality. Firstly, Section 4.1 explores the pre-extraction 

phase of the pipeline, such as the gene scores threshold selection process. Section 4.2 focuses on 

reaction content and how the models separate by tissue. Section 4.3 and 4.4 focus on essential and full 

(more specific) metabolic tasks as model quality markers. Section 4.5 mainly contrasts the pre-processing 

methods employed by Robinson et al. and those explored in the previous sections. Finally, Section 5 

(Discussion) describes the general conclusions obtained in this work, whereas Section 6 summarizes the 

main conclusions as well as examples of possible related future work. 
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2. State-of-the-art review 

2.1. Systems biology 

The study of the genotype–phenotype relationship is essential to the life sciences [1, 9]. Although single-

omic layers have been the focus of the 20th century, complex biological systems cannot be understood 

with just the knowledge of its components [9]. Since then, technological advancement of high-throughput 

methods has gained renewed interest in the systems-level approach promoted by systems biology [10].   

2.1.1. Genome-scale metabolic models  

In systems biology, experimental data can be integrated into mathematical models to perform predictive 

simulations. Metabolic models are multi-omic approaches, capable of addressing biological and 

environmental systemic interactions that underlie phenotypes [9]. The kinetic and constraint-based 

approaches are the most popular methods to model a metabolic system [11], with key differences in their 

representation of enzyme kinetics [1]. 

 Kinetic models employ ordinary differential equations (ODEs) and kinetic parameter values to 

model highly dynamic mechanisms of enzyme dependencies [1, 12]. However, they are often limited by 

experimental data availability for model calibration and high computational costs of solving many 

concurrent ODEs [12, 13]. On the other hand, constraint-based models focus on the global redistribution 

of metabolic fluxes to reach an objective function and are computationally cheap [12, 13]. However, 

neither method traditionally includes transcriptional or translational feedback, which also operate on a 

much larger timescale than reaction kinetics [13].  

 A genome-scale network reconstruction (GENRE) is an organism-specific collection of biochemical 

transformations, based on curated literature such as genome annotation. GENREs are converted into 

mathematical form as in silico GSMMs by assessing phenotypic properties [14]. Most GSMMs also employ 

gene-protein-reaction rules (GPRs), which represent the link between genes and proteins with Boolean 

logic (for example, AND for enzyme complexes and OR for isoenzymes) [1]. GPRs can serve as a scaffold 

for overlaying quantitative omics data and enable in silico gene perturbation experiments and exploration 

of their effect on metabolism [1, 4].  
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2.1.2. Human metabolic models 

The past 15 years brought forth a community effort to develop and improve GSMMs for human 

metabolism, focused on updating and expanding metabolic reaction coverage [15, 4]. The first human 

generic model, Recon1 [16], was released in 2007, followed by the Edinburgh human metabolic network 

(EHMN) [17]. These first models formed the basis of the two major human GSMM lineages, Human 

Model Reaction (HMR) database and Recon. The Recon model series was succeeded by several updated 

versions [18, 19, 20], and the Human Model Reaction (HMR) database model [21] was also followed by 

HMR 2.0 [22], with revised gene-protein-reaction rules based on new human genome insight. The generic 

human model iHsa (2017) [23], built in parallel with the mouse model iRno, expanded upon the HMR2 

model. Another entry in the Recon series, Recon3D [15], was presented in 2018, and Thiele et al. (2018) 

built upon it to generate gender-specific whole-body metabolism reconstructions, Harvey and Harvetta 

[24]. 

 Robinson et al. (2020) integrated and reconciled information from HMR2, iHsa, and Recon3D to 

develop a consensus generic human model, Human1. This process included the removal of duplicated 

or inconsistent reactions and metabolites, revision of metabolite formulas, rebalancing of reaction 

equations and correction of reversibility for reactions and creating a new generic human biomass reaction. 

In addition, the authors compared genes predicted to be essential by HMR2, Recon3D and Human1 with 

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) screen results of their respective 

cell lines. The gene essentiality predictions of Human1 derived CSMs exhibited the highest Matthews 

correlation coefficient (MCC) values, outperforming the other template models [4]. 

2.1.3. Principles of constraint-based modelling 

CBM is primarily based on a numeric matrix, containing the stoichiometric coefficients of all reactions in 

a metabolic network, and the mass balance constraints they impose on how reactions operate, and how 

metabolites are produced and consumed [25]. The simplicity of constraint-based models, coupled with 

the smaller computational burden and their suitability for the integration of omics data layers, enables 

model reconstruction and analysis at the genome-scale [1].   

 Fluxes represent the generation and/or depletion of metabolites by transport and enzymatic 

reactions, and the rates at which they occur. The difference between the rate of production and 

consumption of a metabolite equates to its change of concentration over time. As growth has a much 

larger time scale than reaction kinetics, studying metabolism in steady state is a reasonable assumption 

[26]. At steady state, the net concentration of metabolites (vector x of size m) is constant (Equation 1) 
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and the law of conservation of mass is interpreted as equal generation and depletion fluxes for a given 

metabolite. 

 𝑑𝑥

𝑑𝑡
= 0 (2.1) 

  The stoichiometric (S) matrix (m rows of metabolites x n columns of reactions) represents all 

coefficients in metabolic reactions, connecting metabolites to their corresponding reactions, with positive 

and negative coefficients depicting production and consumption, respectively (Figure 1). Assuming a 

flux value vector v with n reactions, the system of mass balance equations at steady state can be defined 

by Equation 2:  

 𝑆 ·  𝑣 =  0 (2.2) 

 Any flux vector v satisfying this equation makes up the constrained solution space. Fluxes in v are 

also constrained by upper and lower bounds which can be based on experimental data or network 

topology alone. The reaction constraints and the biomass reaction objective defined in Equation 2 

describe a system of linear equations that can be solved by linear programming (LP), since these systems 

are typically underdetermined (n > m) [25]. A biological objective (Equation 3) is required for such 

approaches, formally represented as an objective function Z to maximize or minimize, with c representing 

a vector of weights of the reaction’s contributions to the objective function: 

maximize: 𝑍(𝑣) =  𝑐𝑇𝑣  

subject to:   𝑆 ·  𝑣 =  0 (2.3) 

 𝑙𝑖 ≤ 𝑣𝑖 ≤ 𝑢𝑖,∀𝑖 ϵ {1, … , 𝑛}  

 𝑐, 𝑣, 𝑙, 𝑢 ϵ ℜ𝑛, 𝑆 ϵ ℜ𝑚,𝑛  

  

 The system of equations and objective function definitions set the principles for Flux Balance 

Analysis (FBA), a method attempting to find the flux distribution(s) within the solution space that optimizes 

the defined objective [25]. 
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Figure 1 - Toy metabolic network adapted from Klamt & Gilles [27], with the corresponding S matrix. Boxes and arrows 

represent metabolites and reactions, respectively. 

2.1.4. Phenotype Prediction 

GSMM simulation has commonly relied on FBA to estimate cellular fluxes by assuming a cellular objective 

function to maximize or minimize [13]. Biomass maximization as an objective function for CBM is widely 

accepted in microbial and cancer models. However, defining growth as a main objective for human cells 

in typical physiological conditions may not lead to accurate intracellular flux predictions [1]. Growth rate 

varies between specialized cells, some of which generally do not divide after differentiation (skeletal 

muscle cells, neurons) or divide more frequently (fibroblasts, smooth muscle cells, liver cells) [28]. Cells 

may also have multiple objectives, competing or simultaneous, or settle on an evolutionary optimal 

compromise between objectives [1]. Several extensions of FBA have been developed to address and 

mitigate these issues. 

 Parsimonious Flux Balance Analysis (pFBA) adds a second optimization problem based on the 

primal objective value obtained with FBA, which minimizes the absolute sum of fluxes, yielding 

distributions that are optimal with the least amount of flux across all reactions [29]. This subset generally 

includes more efficient reactions or pathways, as pFBA favours activated genes that translate into fewer 

enzymatic steps [1, 30]. As there are many possible flux distributions resulting in the same objective 

value, especially with more complex models, pFBA is used to reduce the space of solutions [29]. 

 Minimization of internal fluxes has also been used to predict flux distributions of healthy human 

cells instead of relying on a single biomass function, to validate if over 400 metabolic objectives could 

achieve non-zero stationary flux distributions in the liver specific HepatoNet1 model [3, 31].  

 Flux variability analysis (FVA) is used to establish the minimum and maximum fluxes for reactions 

after setting a minimum objective value, usually a fraction of the maximum theoretical biomass flux. FVA 

can be used to explore alternate optima, study flux distributions under suboptimal growth, investigate a 

model’s flexibility and robustness and to identify essential reactions [32]. For instance, Robinson et al. 
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(2020) used FVA to compare the solution space between enzyme-constrained and regular CSMs derived 

from Human1 [4]. 

2.2. Omics data 

A cell’s phenotype is influenced by environmental conditions and the complex connections between 

several biomolecules [1]. The identification and quantification of these molecules can be achieved using 

the various omics techniques covering important biological layers, such as genomics, transcriptomics, 

proteomics, metabolomics and fluxomics.  

2.2.1. Transcriptomics data sources  

Genomics characterize the genetic code of a cell in the form of genomes. Transcriptomics, or the 

messenger RNA (mRNA) levels coded by the genome, provide a snapshot of dynamic gene expression 

activity considering development stage, environmental condition, and tissue type [33]. Proteomics 

represent the set of proteins produced by expressed genes [1], which undergo post-translational 

modifications that cannot be predicted solely with mRNA levels. Metabolomics represent the set of 

metabolites present in a cell, providing more information regarding enzyme activity and metabolic 

regulation. Finally, fluxomics involve quantifying fluxes, or the rates of metabolic reactions. These are 

traditionally measured using isotopic markers and may change without affecting the levels of metabolite 

intermediates [33]. 

 DNA Microarrays and RNA Sequencing, or RNA-Seq, are two of the most popular methods for 

transcriptome profiling. Microarray technology can generally be divided into two phases, namely probe, 

and target complementary DNA (cDNA) production. After converting the mRNA to the more stable cDNA, 

the sequences are labelled with fluorochrome dyes and bound to a surface. As specific probes hybridize 

with the labelled targets, the signal identifies which mRNA sequences are present in the sample [35]. 

RNA-Seq technology quantifies expression by sequencing a cDNA library of all the RNA molecules 

transcribed by a certain tissue or cell type. These transcripts are then mapped to a reference genome 

[36]. 

 One of the most common applications of RNA-Seq is the identification of differentially expressed 

genes between at least two conditions. The total read count, or sequencing depth, is fixed before 

sequencing. As such, the expression level of mRNA transcripts is measured by the proportion of total 

number of reads, or its abundance level. In addition to highly expressed transcripts having a 

correspondingly higher number of mapped reads, longer transcripts also have more mapped reads than 



9 
 

shorter transcripts of comparable expression levels. Consequently, several normalization methods for 

RNA-Seq data exist to correct for library size, transcript length and GC-content bias [37].   

 Examples of read count normalization methods include per-sample Total Counts (TC), per-sample 

Upper Quartile (UQ), per-sample Median (Med), DESeq normalization (median-of-ratios), Trimmed Mean 

of M values (TMM), Reads Per Kilobase per Million mapped reads (RPKM) and Fragments Per Kilobase 

per Million (FPKM). Li et al. (2017) evaluated the performance of these methods and proposed two more, 

per-gene normalization after per-sample median (Med-pgQ2) and upper-quartile global scaling (UQ-pgQ2) 

[37]. 

 As high-throughput methods such as next-generation sequencing (NGS) grew more affordable, 

more databases containing publicly available genomes and transcriptome datasets arose, such as 

GenBank [38], the Genotype-Tissue Expression (GTEx) project [39] and The Cancer Genome Atlas (TCGA) 

[40] databases, respectively. In addition, RNA-Seq is often favoured over microarray techniques, as RNA-

Seq can identify low abundancy RNA and splice variants without requiring prior knowledge of the 

organism’s genome [33, 36]. 

 The TCGA project was launched in 2006 by the National Cancer Institute (NCI) and the National 

Human Genome Research Institute (NHGRI), and now provides data across 33 tumour types retrieved 

from over 11000 patients. This extensive dataset facilitates the study of specific genomic and molecular 

changes in cancer, the definition of a relevant taxonomy of cancer types and subtypes and the 

identification of potential targets for treatment [40]. 

 Since its launch in 2010, the GTEx project has offered a catalogue of gene expression and its 

effects across many human tissues, with the goal of enlightening regulatory genetic variation and genetic 

associations with complex diseases. After quality control, the GTEx v8 dataset has a total of 838 donors 

and 17382 samples derived from 52 tissues and 2 cell lines [39]. Robinson et al. (2020) used GTEx RNA-

Seq data alongside cancer RNA-Seq data from the TCGA project to extract CSMs and study human 

physiology and disease [4]. 

 Particularly, the GTEx project uses Transcript per Million (TPM) [39], a type of within-sample 

normalization method meant to improve upon RPKM, which may not remove all length bias in gene 

expression or be overly influenced by relatively few transcripts. In contrast, TPM normalization adjusts for 

library size and gene length, in that order, and scales all samples to a common total sum of TPM values, 

making gene expression across samples more comparable than with RPKM normalization [41]. 
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2.2.2. Omics data pre-processing 

As with reconstruction algorithms, no universal pre-processing method for integrating transcriptomic data 

with metabolic networks exists. Richelle et al. (2019b) defines three categories of pre-processing 

methods. Firstly, how to approach genes and reactions without a one-to-one relationship (such as 

isozymes), or gene mapping. Secondly, how to define a gene as expressed, or a gene expression 

threshold. Lastly, the order of gene mapping and thresholding integration, in other words, if the activity 

cut-off is defined at the reaction or gene level [42].  

 Omics data pre-processing is necessary because algorithms operate at the reaction level. For this 

reason, gene mapping methods employ a combination of GPRs and gene expression data, to establish a 

reaction’s enzyme activity. In the case of RNA-Seq data, absolute mRNA abundance is often used to 

define a gene expression threshold above which a gene is assumed to be active. This concept can be 

applied using single or multiple thresholds. For example, global thresholding applies a single unique 

threshold to all genes, while the contrasting local thresholding approach applies a different threshold per 

gene. A common local threshold is the mean expression value of a gene across samples [42]. 

 Richelle et al. (2019b) compared the ability to capture metabolic pathways’ observed ubiquity 

(ubiquitous, tissue-specific, or organ-specific) of various percentile-based thresholding methods, using 

principal component analysis (PCA). In addition to the contrasting global and local threshold definitions, 

the authors analysed the influence of the number of reactions states (ON/OFF, OFF/MAYBE ON or 

ON/MAYBE ON/OFF). The 3 reaction states are defined by a combination of global and local thresholds, 

where the gene expression is defined by the mean across all samples (local) but must be in between 

certain lower and higher percentiles (global). In summary, traditional (ON/OFF) global thresholding 

resulted in fewer differences between tissues and a higher false-negative rate, while the local25-75 

thresholding method, which used the 25th and 75th percentiles of gene expression as lower and upper 

bounds, appeared to perform best [42]. 

2.3. Context-specific metabolic model reconstruction 

Lower resolution models, like generic human models, aim to characterize a broader system but are less 

adequate for more specific variation. In contrast, with higher resolutions comes greater confidence in the 

model’s biological accuracy [13]. A common application of CSMs of human tissues is the comparison of 

healthy and diseased models, such as cancer, to better understand both phenotypes. 

 Unlike GENREs, for which biological validation (or accuracy) is part of a long process of manual 

curation [14, 13], reconstruction algorithms and large omics data sets have allowed the batch generation 



11 
 

of many draft CSMs at a time [3]. Methods used for biological validation of CSMs include metabolic tasks 

[4, 2, 31], gene essentiality screens [4, 2, 33] and fluxomics data [11]. 

2.3.1. Reconstruction algorithms  

Reconstruction algorithms use omics data to extract context-specific models from template GSMMs in an 

automated way, through reaction removal. In general, the major decisions to consider when extracting 

context-specific models are how to constrain uptake and secretion fluxes and which template GSMM, 

gene expression threshold and reconstruction algorithm to use [33].  

 According to Robaina et al. (2014), reconstruction algorithms can be classified into 3 major 

groups (Figure 2): Gene Inactivation Moderated by Metabolism and Expression (GIMME)-like, integrative 

Metabolic Analysis Tool (iMAT)-like and Model-Building Algorithm (MBA)-like algorithms [43].  

 The GIMME-like family (GIMME, GIMMEp and GIM3E) minimizes fluxes associated with low gene 

expression, while guaranteeing the Required Metabolic Functionality (RMF) objective, like growth or ATP 

production [33, 43]. As RMF evaluation typically uses FBA, selecting a RMF objective for multicellular 

eukaryotes is complicated and biomass maximization may not be adequate. GIMME is an LP approach 

that minimizes an inconsistency score function that penalizes reactions with expression levels (obtained 

through GPR values) beneath a certain user-defined threshold [44]. The original GIMME algorithm focuses 

on transcript profiles, but variants allow for the integration of proteomic (GIMMEp) [45] and metabolomic 

(GIM3E) [46] data, respectively.  

 The iMAT-like family (iMAT, INIT and tINIT) reconstructs models based on experimental data 

without depending on RMF, instead matching reaction states to related data expression using Mixed 

Integer Linear Programming (MILP) [33, 43]. The Integrative Network Inference for Tissues (INIT) [47] 

algorithm integrates data directly in the objective function, including metabolomics data, while iMAT [48] 

does so in the constraints.  

 The tINIT extension to INIT [49] adds metabolic tasks representing production or consumption of 

metabolites, or the activation of certain pathways depending on model context. These tasks ensure the 

inclusion of their required reactions but not necessarily the smallest reaction set. Some tasks may also 

be redundant, to allow for a finer step-by-step analysis and reduce computational costs [49]. Despite their 

independence of RMF (with the exception of tINIT, where it is an optional parameter), the iMAT-like family 

uses MILP problems that are more computationally taxing than LP, specially iMAT as it solves two MILP 

problems per reaction [43, 49].   

 The MBA-like family (MBA, mCADRE and fastCORE) takes sets of reactions categorized as core 

(higher likelihood of being active) and non-core, after which the methods attempt to keep the model’s 
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consistency while removing or including non-core reactions [33, 50, 51, 52]. The Metabolic Context 

Specificity Assessed by Deterministic Reaction Evaluation (mCADRE) [50] algorithm scores reactions 

according to expression, connectivity, and confidence-level, defining them as core or non-core.  

 The MBA [51] algorithm subdivides the core set of reactions into 2 sets, based on the likelihood 

of being active. As MBA is affected by the order in which non-core reaction are removed, the algorithm is 

repeated, and the reactions ranked to form a consensus model. Unlike the stochastic MBA algorithm, 

mCADRE does not demand all core reactions to be included in the model. Instead of iteratively removing 

non-core reactions coupled with a consistency assessment, the Fast Consistent Reconstruction 

(fastCORE) [52] algorithm solves two LPs. After it maximizes the number of core reactions, comparing 

their values to a constant, the second LP minimizes the number of non-core reactions until core coherency 

is achieved. The fastCORMICS extension adds microarray data processing to the original algorithm [53].   

 The main advantages of the MBA-like family are the ability to integrate various types of data 

without needing to explicitly define a set of gene scores (instead relying on core reactions) compounded 

by the RMF independence of the iMAT-like family. In particular, fastCORE outperforms other MBA-like 

methods in terms of computation time [43]. The Cost Optimization Reaction Dependency Assessment 

(CORDA) algorithm is similar to the MBA-like family in its use of highly expressed core reactions but uses 

an artificial metabolite cost function [54].  

 Opdam et al. (2017) reported the choice of algorithm has the largest impact on model accuracy 

in gene essentiality predictions. The authors report greater accuracy in gene essentiality predictions using 

the INIT, MBA, and mCADRE algorithms for model extraction, particularly when considering stringent 

gene expression thresholds (top 10% and mean) [33]. Nonetheless, no single algorithm outperforms the 

others in all cases and no standard algorithm exists [33, 43, 11, 30], reinforcing the importance of 

appropriate gene expression thresholds [30].   

 On the other hand, progress has been made towards bridging the gap between different extraction 

methods. For example, Richelle et al. (2019a) proposed a framework of metabolic tasks inferred from 

omics data, prior to model reconstruction. The authors reported that the protection of reactions required 

by tasks reduces variability in the resulting models extracted using different algorithms. For example, if 

the model extraction relied on the fastCORE algorithm, the reactions required for task success would be 

included in the core set [2]. 
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Figure 2 − The 3 major families of reconstruction algorithms, adapted from Robaina et al. (2014) [43]. The GIMME-like and 

iMAT-like families return a flux distribution as well as an extracted model. The GIMME-like family depends upon RMF, whereas 

the iMAT-like family does not. For the tINIT extension, it is optional. 

2.3.2. Model Validation  

GPRs enable in silico gene perturbation experiments, such as simulating phenotypes for essential gene 

deletions, that may be used to evaluate GSMM prediction accuracy when compared with experimental 

gene essentiality data. Essential genes predictions are commonly achieved by testing if a given gene, 

when deleted in silico sufficiently reduces the chosen biomass objective function in a simulation using 

the GSMM [4].  

 As was previously mentioned, objective functions defined as cell growth may be less appropriate 

for healthy human cells, which vary in growth rate [4, 28]. A less restrictive approach defines essential 

genes as those required for basic metabolic tasks necessary for cell viability. This broader definition is 

also estimated to increase prediction sensitivity, as it takes more metabolic functions into account [4]. 

 According to Thiele et al. (2013), such metabolic tasks can be defined as the nonzero flux through 

a reaction or pathway, leading to the production of a target metabolite [18]. Metabolic tasks have since 

been used as tools for model benchmarking and comparison between different extraction methods, with 

several lists of tasks published [18, 49, 2]. 

 For example, the set of liver-specific metabolic objectives used by Gille et al. (2010) was divided 

into network and physiological tasks. Each task consisted of two sets of metabolites, input and output, 

and the target metabolite to be produced [31]. Robinson et al. (2020) presented their own set of tasks 

adapted from Agren et al. (2014) [49], including a set of 57 essential tasks common to all human cell 

types that models based on Human1 are expected to pass (available in the Github repository1). These 

 

 

1 https://github.com/SysBioChalmers/Human-GEM  

https://github.com/SysBioChalmers/Human-GEM
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essential tasks were divided into general categories, namely re-phosphorylation of nucleoside 

triphosphates, de novo synthesis of nucleotides, key intermediates phospholipids, vitamins and co-factors 

and other compounds, uptake of essential amino acids, protein turnover, electron transport chain and 

tricarboxylic acid cycle, beta oxidation of fatty acids and growth (or feasible biomass production) [4]. 

 Typically, metabolic fluxes that cannot be measured directly may be estimated in silico based on 

omics data. Popular computational algorithms used for this purpose include FBA, metabolic flux analysis 

(MFA) and 13C MFA. In MFA, measured extracellular fluxes over time are used as input to calculate 

intracellular fluxes reactions, applying the stoichiometric model representation and steady state 

assumption likewise used by FBA. Experimental flux measurement commonly uses higher atomic mass 

isotopes, such as 13C instead of 12C, to label carbon and infer flux patterns. However, ensuring their 

accuracy is often difficult and usually limited to constraining smaller-scale metabolic models [55]. 

Fluxomic data are also rarer for human cells, for which data are often only available for cancer [1], such 

as the NCI-60 cell lines [56].   

2.3.3. Applications  

This work will focus on metabolism and models of healthy human tissues. This section will cover 3 

candidate tissues, taken as putative case studies, specifically the liver, kidney, and breast. Human tissues 

and their associated metabolic diseases make good modelling targets. After the first generic human 

models were published, several hepatocyte, adipocyte, and kidney CSMs followed.  

 Gille et al. (2010) [31] focused on nutrient and oxygen availability and their effect on ammonia 

detoxification in the liver, constructing the liver model HepatoNet1. HepatoNet1 was based on Recon1, 

manually curated, and comprised of 777 metabolites and 2539 reactions. This tissue-specific model 

marked a milestone in liver modelling efforts and was subsequently incorporated into later generic models 

[18]. Another example of a liver CSM is iHepatocyte2322 [57], extracted from HMR2 as a template model 

using INIT and with a total of 5686 metabolites and 7930 reactions. iHepatocyte2322 integrated lipid 

metabolism, merged previous hepatocyte models and provided insight into non-alcoholic fatty liver 

disease (NAFLD) and steatohepatitis (NASH) [57]. 

 Mardinoglu et al. (2013) [58] published a manually curated CSM for adipocytes followed by an 

updated version in 2014 [59], named iAdipocytes1809 and iAdipocytes1850, respectively. The adipocyte 

CSMs were used to study differential metabolic activity in lean and obese subjects and to identify potential 

therapeutic targets for obesity. iAdipocytes1809 was built upon adipocyte-specific proteome and 

subcutaneous adipose tissue microarray data, with a total of 6160 reactions and 4550 metabolites. 



15 
 

iAdipocytes1850 updated model content using RNA-Seq data, to a total of 6230 reactions and 4577 

metabolites. 

 Zhang et al. (2013) [60] published a kidney CSM extracted from Recon1 as a template model 

using MBA, with a total of 2904 reactions and 1898 metabolites. The CSM was used to study kidney-

related disease metabolism and prediction of biomarkers for early diagnosis, focusing on diabetic kidney 

disease. Sohrabi-Jahromi et al. (2016) [61] also applied a kidney CSM to study disease and predicted 

possible drug targets, specifically for Focal Segmental Glomerulosclerosis (FSGS). The authors merged 

two previous kidney models, to a total of 3034 reactions and 1996 metabolites. 

 Finally, publications presenting reconstruction algorithms are also a source of CSMs. For 

example, Agren et al. (2014) published the tINIT algorithm alongside 83 healthy cell type-specific GEMs, 

extracted from HMR2 as the template model [49]. These models and Human1 are available in the 

Metabolic Atlas repository, which includes CSMs of liver hepatocyte and bile duct cells, breast adipocyte 

and glandular cells, kidney glomeruli and tubule, and soft tissue adipocyte models [4].  
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3. Methods 

The Methods section covers methodological and technical details pertaining to the three stages of the 

pipeline developed in this work, specifically data pre-processing, model extraction and validation, with the 

latter focusing on metabolic task evaluation.  

 As most pre-processing is specific to the case study data used during pipeline development, it is 

detailed in Section 4 (Results) instead. In particular, the pre-extraction phase of the general pipeline 

includes blocked reaction removal from the generic model, genes scores threshold selection (for multi-

tissue datasets), 3 types of RNA-Seq data aggregation methods, gene expression data conversion to gene 

scores of the chosen threshold and determination of reactions required by essential tasks.  

 As of November 2020, the Troppo Python package has the fastCORE, CORDA, GIMME, (t)INIT 

and iMAT algorithms implemented [8]. The extraction step utilizes the fastCORE and tINIT reconstruction 

algorithms. Additionally, the validation step employs metabolic tasks and basic analyses of model 

attributes, such as reaction content. A diagram of the general pipeline is shown in Figure 3.  

 Lastly, the developed software includes 3 Jupyter Notebooks available on Github2, which cover 

part of the initial data pre-processing (“omics_to_genescores.ipynb”), all other statistical analyses and 

figures presented in this work (“results_graphs_clean.ipynb”) and a quick tutorial on how to extract CSMs 

with the Troppo package (“extraction_example_guide.ipynb”).  

 

 

 

 

 

 

 

2 https://github.com/MariaPessoa/thesis_annexes  

https://github.com/MariaPessoa/thesis_annexes


17 
 

 

Figure 3 − Overview of the pipeline presented in this work. The pipeline can be divided into 3 phases, pre-processing, extraction, 

and validation. In the pre-processing phase (A), blocked reactions were removed from the generic model to obtain a consistent 

(template) model. The omics data was converted into gene scores after threshold selection or passed directly to the algorithm 

without conversion (dashed arrow). The extraction phase (B) considers whether the reconstruction algorithms chosen are 

supplied protected reactions required by essential tasks or not. Finally, the validation phase (C) is based on metabolic tasks 

and reaction content analysis. 

3.1.  Model extraction 

Model extraction refers to the process of the extraction of a CSM from a generic template model by a 

reconstruction algorithm. The Troppo package’s model extraction pipeline requires a template model, 

gene scores or gene expression data and an optional protected reaction set as direct input data. 

Furthermore, Troppo requires the selection of the appropriate activity threshold, of the algorithm(s) with 

which to extract the CSMs and the gene mapping method.  

 In particular, the Troppo package’s implementation of (t)INIT does not accept a task file to 

determine which reactions to protect, but instead accepts a protected reaction set, similarly to fastCORE’s 

core reactions. After extraction, the pipeline outputs the reaction content of all CSMs. 

 Specifically, gene mapping methods address genes and reactions without a one-to-one 

relationship, such as enzyme complexes (AND rule) and isoenzymes (OR rule). Two popular gene mapping 

methods incorporate a minimum expression value of all genes associated to an enzyme complex and 

either a maximum expression value (MINMAX) or sum of the expression values (MINSUM) of all genes 

related to an isoenzyme [42]. The MINMAX gene mapping method was used for all CSMs extracted in 

this work.  

 Drug-enzyme interactions mapped in GSMMs allow for the simulation of drug-related processes 

[18]. Extraction algorithms may keep such reactions in CSMs because they produce necessary 

intermediary metabolites, and, as such, may need to be removed from the template model prior to 

extraction. Consequently, a set of exchange reactions from the Drug metabolism subsystem and the 

template model’s blocked reactions were removed. In addition, the blocked reactions were identified with 
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the COnstraint-Based Reconstruction and Analysis for Python (COBRApy) package’s [62] 

find_blocked_reactions function. The consistent version of the model without the Drug metabolism 

exchange reactions (n=11386 reactions, SBML format) was used as template for all extracted CSMs 

unless stated otherwise.  

 The checkTasks function of the MATLAB RAVEN 2.0 toolbox [63] was used to determine the 

reactions required by the essential tasks. Firstly, the (original) SBML version of Human-GEM was loaded 

using the MATLAB COBRA toolbox [64] function importModel, followed by conversion to RAVEN format 

using the ravenCobraWrapper function. Secondly, boundary metabolites were added using the 

addBoundaryMets function (available in the Human-GEM repository) and the essential metabolic tasks 

file was loaded with RAVEN’s parseTaskList function. The original model and the essential tasks file were 

passed as arguments to the checkTasks function, which returns a sparse matrix (reactions x tasks) with 

non-zero values representing the required reactions.  

 Additionally, a reaction content matrix (detailing whether the template model’s reactions are 

active or inactive in the CSM) was generated for the models of comparable tissue extracted by Robinson 

et al., which were in MATLAB format (available on Zenodo3). The compareModelField function, contained 

within RAVEN’s compareMultipleModels function, was extracted into a separate file, and used for this 

purpose4.  

3.2. Model validation with task evaluation 

Task evaluation relies on the Troppo package’s task parsing module and separate functions for metabolite 

nomenclature pre-processing (get_essential_tasks and get_full_tasks). The task evaluation of the SBML 

Human-GEM model used to determine the protected reaction set, for both sets of tasks, essential and the 

larger set of tasks (n= 256) available on Human-GEM’s Github, was also performed using checkTasks. 

The process was repeated using the Troppo package to compare the two methods.  

 As part of the developed pipeline, machine learning (ML) methods were employed for gene scores 

threshold selection and are detailed in Section 4.1. The ML pipeline was additionally employed to validate 

CSM performance, using the reaction content as input. The objective, to identify the source tissue, was 

unchanged. The reaction content of the CSMs was further utilized to calculate a Hamming distance matrix, 

which was plotted using a t-Distributed Stochastic Neighbour Embedding (tSNE) projection (based on the 

 

 

3 https://doi.org/10.5281/zenodo.3577466   
4 https://github.com/SysBioChalmers/RAVEN/blob/master/core/compareMultipleModels.m  

https://doi.org/10.5281/zenodo.3577466
https://github.com/SysBioChalmers/RAVEN/blob/master/core/compareMultipleModels.m
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scipy package5). The learning rate was set to 5000 and the perplexity parameter to roughly 5% of the 

number of samples plotted.  

 Lastly, all statistical tests were performed using the scipy package unless stated otherwise and 

are available in the accompanying Jupyter Notebook2 (“results_graphs_clean.ipynb”).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 https://www.scipy.org/index.html  
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4. Results 

In addition to the 3 candidate tissues explored in Section 2.3.3, the liver, kidney, and breast, 7 other 

tissues were subsequently included to further test the pipeline. Specifically, the corresponding tissues in 

the GTEx v8 dataset were the adipose (subcutaneous), breast (mammary tissue), kidney (cortex), and 

liver samples. Likewise, the additional 7 tissues selected were the brain (cortex), colon (transverse), lung, 

skeletal muscle, pancreas, stomach, and whole blood. 

 The gene TPM and median gene-level TPM by tissue data, alongside sample attribute and 

phenotype subject metadata were downloaded from the GTEx Data Portal. Firstly, the samples 

corresponding to the four selected tissues (adipose, breast, kidney, and liver) were filtered by RNA Integrity 

Number (RIN, from sample attributes). Of the 1228 samples with RIN qualified for RNA sequence analysis6 

(RIN ≥ 6), the adipose tissue samples were the most numerous (592 samples), followed by the breast 

(390), liver (193) and kidney, which only had 53 samples.  

 The same RIN filter was applied to a second set of 7 tissues later added, of the (brain (cortex), 

colon (transverse), lung, muscle (skeletal), pancreas, stomach, and whole blood), with 3243 samples 

qualified for analysis in total. Of those, the skeletal muscle and brain were the most and least numerous, 

with 796 and 217 samples, respectively (all values provided in Table 1).  

Table 1 – RIN filtered TPM (RIN ≥ 6) sample counts of all 11 tissues analysed, namely adipose (subcutaneous), 

brain (cortex), breast (mammary tissue), colon (transverse), kidney (cortex), liver, lung, muscle (skeletal), pancreas, 

stomach, and whole blood. 

Tissue Filtered sample count 

Adipose (Subcutaneous) 592 

Brain (Cortex) 217 

Breast (Mammary Tissue) 390 

Colon (Transverse) 350 

Kidney (Cortex) 53 

Liver 193 

Lung 528 

Muscle (Skeletal) 796 

Pancreas 299 

Stomach 307 

Whole blood 746 

Total 4471 

   

 

 

6 https://gtexportal.org/home/documentationPage  

https://gtexportal.org/home/documentationPage
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 Additionally, the median values of the individual TPM sample dataset, without the RIN filter, were 

grouped by tissue, gender, and age group (20-year intervals), generating a set of 6 sample combinations 

per tissue, to test the influence of the input RNA-Seq data aggregation method used. The RIN filter was 

not applied because it removed all samples of certain age groups. This generated dataset is henceforth 

referred to as grouped samples. The median gene-level TPM by tissue data is assumed to have used all 

TPM samples7 without any similar filter applied. 

 In total, 1615 CSMs were extracted with Human-GEM as the template model (Table 2). The 

models varied in GTEx RNA-Seq data aggregation method (TPM, grouped or median), input data pre-

processing (gene expression data or gene scores, without null variance genes or with all genes), protected 

reactions required by the essential tasks (minimal or non-minimal) and reconstruction algorithm 

(fastCORE or tINIT) used, compounded by tissue-specific differences across the 11 tissues. 

Table 2 – CSMs extracted per tissue and in total, by algorithm and extraction condition, namely data aggregation method 

(TPM, grouped or median), data pre-processing (gene expression data or gene scores, with null variance filter or with all genes) 

and protected reaction set (minimal or non-minimal) used. The absolute model count is in between parentheses.  

 Data aggregation method   

 TPM 

Grouped 

Median 

Algorithm Minimal 
Non-

minimal 

Non-minimal 

(all genes) 

Gene expression 

data (all genes) 

Non-

minimal 

Gene expression 

data (all genes) 

fastCORE 10 (40) 53 (583) 53 (212) 53 (212) 6 (66) 1 (11) 1 (11) 

tINIT 10 (40) 
53** 

(352) 
– – 6 (66) 1 (11) 1 (11) 

Total 
20* 

(80) 

106** 

(935) 
53* (212) 53* (212) 12 (132) 2 (22) 2 (22) 

*Models were extracted for 4 of the 11 tissues, namely the adipose, breast, kidney, and liver tissues. 
**As with fastCORE, 53 models per tissue (212) were extracted for the adipose, breast, kidney, and liver tissues, but only 20 
models per tissue (140) were extracted for the remaining 7 tissues using tINIT. 

 The minimal TPM models were extracted with 3 protected reactions related to biomass (the 

biomass objective function, biomass_human, and 2 exchange reactions, HMR_10023 and 

HMR_10024). All gene expression data models rely on the protected reaction set obtained from RAVEN 

and are therefore non-minimal. 

 Likewise, the variance filter that discards genes with approximately null variance was not applied 

to all models prior to extraction. Gene scores TPM models were also extracted without the filter (with all 

genes), as were all gene expression data models. The task evaluation (for both sets of tasks) of the models 

 

 

7 https://gtexportal.org/home/documentationPage#staticTextDataProduction  

https://gtexportal.org/home/documentationPage#staticTextDataProduction
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of corresponding healthy tissue extracted by Robinson et al., henceforth referred to as H1-CSMs, was 

also performed. 

 Lastly, the names of the tissues of median TPM GTEx dataset used by Robinson et al. (also 

available on Zenodo3) do not match exactly those present in the most recent GTEx TPM dataset available 

(v8). For example, the GTEx v8 dataset has two colon samples, transverse and sigmoid. In the authors’ 

dataset, the relevant tissue is simply named colon. Consequently, the H1-CSMs are assumed to be of 

analogous (but not necessarily identical) tissue to the models presented in this work. 

4.1. Pre-extraction pipeline 

Prior to gene scores thresholding strategy selection, gene expression data conversion to gene scores, or 

CSM extraction, the RIN filtered (RIN ≥ 6) TPM gene expression data was visualized with PCA. Figure 4 

shows that the samples mainly differ by tissue of origin, as expected, with overlap between the adipose 

and breast and heavy overlap between the colon, pancreas, and stomach samples.  

 

Figure 4 - Principal component analysis of the RIN filtered (RIN ≥ 6) GTEx v8 TPM gene expression dataset. (A) 1228 samples 

corresponding to 4 tissues: breast (mammary), liver, adipose (subcutaneous) and kidney (cortex). (B) 3243 samples 

corresponding to 7 tissues: brain (cortex), colon (transverse), lung, skeletal muscle, pancreas, stomach, and whole blood. 

 Traditionally, a gene activity score, or gene score, is assigned to all genes in a gene expression 

dataset to define which genes are active in each sample. After gene score conversion, a given gene is 

considered active if its higher or equal to a fixed activity threshold [2]. In this work, the gene score 

thresholding strategies used are the traditional global threshold (or global T1), which applies a single 
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threshold to all genes in a dataset, and the local T2 threshold, which employs a combination of a local 

threshold and 2 global thresholds, which act as lower and upper bounds [42]. 

 A ML pipeline was employed to determine the best gene score thresholding strategy (Figure 5). 

In total, 5 global and 50 local quantile-based thresholds were tested, based on combinations of the 10th, 

25th, 50th, 75th and 90th quantiles, specifically. Random forest classification models (implemented based 

on the scikit-learn Python package8) were trained with 5-fold cross-validation and the objective of 

identifying the source tissue, and the process was repeated 20 times.   

 Prior to gene score conversion, genes with null variance across all samples were excluded 

(VarianceThreshold function of the scikit-learn package). After gene score conversion, the dataset 

underwent univariate K-Best feature selection (n=500 genes), which employs an ANOVA F-test to remove 

all but the k highest scoring features. 

 

Figure 5 – Machine learning pipeline for thresholding strategy selection. Null variance genes were removed from the RIN 

filtered (RIN ≥ 6) TPM omics dataset, followed by conversion to gene scores and univariate K-Best feature selection (n=500 

genes) to generate the input data. For every threshold, Random Forest classification models were trained and evaluated with 

5-fold cross-validation and the MCC metric, with the objective of identifying the source tissue. This process was repeated 20 

times for each of the 5 global and 50 local quantile-based thresholds tested. 

 For each threshold, the input dataset consisted of the gene scores calculated from the individual 

(TPM) gene expression data samples with the global_thresholding and local2_thresholding functions 

(available on Github9, based on [42]). Both thresholding functions yield gene scores with an activity 

threshold of 0. The MCC was used as the performance metric. For reference, the same pipeline was 

applied to the gene expression data itself, without the thresholding step.  

 

 

8 https://scikit-learn.org/stable/  
9 https://github.com/BioSystemsUM/human_ts_models/blob/mcf7_devel/shared/src/thresholding.py  

https://scikit-learn.org/stable/
https://github.com/BioSystemsUM/human_ts_models/blob/mcf7_devel/shared/src/thresholding.py
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 Figure 6 presents the mean cross-validation MCC values of the ML models trained with gene 

scores of the 4-tissue dataset (adipose, breast, kidney, and liver). All global and local thresholding 

methods outperformed the reference ML models trained with gene expression data, with very high (>0.90) 

MCC values overall. The global thresholds achieved MCC values between 0.93 and 0.95, whereas the 

local thresholds achieved values between 0.94 and 0.99.  As the local strategy employing global50-90 

and local50 thresholds had the highest mean MCC values (>0.98), all gene scores were calculated using 

this method unless stated otherwise. 

 

Figure 6 – Mean cross-validation MCC values from the ML pipeline for thresholding strategy selection (tissue identification) of 

the adipose, breast, kidney, and liver samples. (A) ML models trained with gene expression data. Model genes refers to the 

genes present in the SBML Human-GEM model. (B) ML models trained with global gene scores. (C) ML models trained with 

local gene scores. Only the top 5 local strategies are shown, based on maximum MCC value. The local thresholds correspond 

to “(local, (lower global, upper global))”. 

 The same pipeline was later repeated for the remaining 7 tissues (figure available in the Jupyter 

Notebook2 “omics_to_genescores.ipynb”), yielding extremely high (>0.99) MCC values regardless of 

input data or threshold type. Additionally, the ML models trained with gene scores of the 7 tissues did not 

outperform the corresponding gene expression data trained models. Consequently, the same local 

threshold chosen for the 4 tissues was used. 

 Lastly, the task evaluation of the Troppo and RAVEN packages were compared. Both approaches 

determined that the (original) SBML Human-GEM could achieve all essential tasks, but the task evaluation 

of the full set of tasks differed. According to the RAVEN package’s checkTasks function, the model can 

fulfil all tasks in the larger set, but in Troppo’s evaluation only 241 of the 256 tasks were passed. The 15 
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failed tasks all involved complete oxidation except for Tryptophan uptake and Aspartate degradation (also 

detailed in an accompanying Jupyter Notebook, “results_graphs_clean.ipynb”). 

 The task evaluation of the H1-CSMs, for both sets of tasks, was also performed using RAVEN and 

Troppo. The checkTasks essential task evaluation of the models established that all 11 models passed 

all tasks. The Troppo essential task evaluation determined that all models failed the GTP de novo synthesis 

task, and that the blood model also failed the Glucose 6-phosphate de novo synthesis task. Likewise, the 

checkTasks task evaluation of the full set of tasks consistently yielded slightly more passed tasks than 

Troppo’s, except for the breast model. A nonparametric one-tailed (“greater”) Mann-Whitney test for 

independent samples supported the tendency (U=95.5, p≈0.01). In total, 95 of the 256 tasks (37%) 

varied with the approach used in at least one model. 

4.2. Reaction content 

The reaction content of a CSM can be represented by a binary matrix representing whether a given 

reaction from the template model is active or inactive. Additionally, reactions are categorized by their 

respective metabolic subsystem and may be used to detect biological differences between model types. 

 Firstly, a Hamming distance matrix was calculated with the reaction content of the TPM and 

grouped models and plotted using a tSNE projection, by algorithm. Although it separated the two tissue 

sets, the overlapping tissues of the fastCORE TPM models (Figure 7A) differ only slightly from those 

observed when using the original gene expression data to conduct PCA (Figure 4), which showed overlap 

between the adipose and breast samples, as well as the stomach, colon, and the pancreas instead of the 

lung samples. Correspondingly, the tINIT TPM models (Figure 7B) reproduce the overlap between the 

adipose, breast, lung and a few of the colon and stomach samples.  



26 
 
 

 

Figure 7 — Hamming distance of the non-minimal (gene scores) TPM models’ reaction content visualized using tSNE projection. 

(A) Non-minimal fastCORE TPM models. (B) Non-minimal tINIT TPM models. 

 In contrast, the tSNE projection of the grouped models (Figure 8) only reproduces the similarity 

between the adipose, breast and lung models, regardless of algorithm, with otherwise good separation 

between tissues.  

 

Figure 8 — Hamming distance of the grouped models’ reaction content visualized using tSNE projection. (A) fastCORE grouped 

models. (B) tINIT grouped models. 

 In addition to a tSNE projection based on reaction content, ML models were trained using non-

minimal TPM metabolic models’ reaction content as input, with the objective of identifying the source 

tissue (Figure 9). ML models were trained for each tissue group individually and with models of all 
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tissues, by algorithm, with all 11 tissues and the two tissue datasets separately. The 4-tissue group is 

composed of the adipose, breast, liver, and kidney tissues. 

 The best performing ML models were trained with the 7-tissue metabolic models’ reaction content 

(Figure 9C), with both algorithms’ ML models achieving a maximum cross-validation mean of 0.97. On 

the other hand, the 4-tissue tINIT models (Figure 9B) outperform their fastCORE counterparts, with the 

latter having the worst performance of all ML models trained based on reaction content, with a maximum 

cross-validation mean of 0.82. Finally, the ML models trained with the non-minimal TPM metabolic 

models of all tissues (Figure 9A) exhibit MCC values in between the previous two, with fastCORE 

outperforming tINIT instead. 

 

Figure 9 — Mean cross-validation results from the ML pipeline using reaction content of the non-minimal TPM models, by 

algorithm. (A) ML models trained with the non-minimal TPM models of all tissues. (B) ML models trained with the non-minimal 

TPM models of the adipose, breast, liver, and kidney tissues. (C) ML models trained with the non-minimal TPM models of the 

remaining 7 tissues (brain, colon, lung, skeletal muscle, pancreas, stomach, and whole blood). 

 Lastly, the absolute reaction count of the CSMs was investigated. Figure 10 plots the mean 

reaction count of the (non-minimal) TPM models, by tissue and algorithm. Out of all non-minimal TPM 

tissue and algorithm combinations, the fastCORE whole blood and pancreas models had the lowest mean 

reaction counts (4891 and 4919) and the tINIT lung and colon models had the highest (8688 and 8227, 

respectively). Similarly, the grouped and median models had reaction counts ranging from 4101 

(fastCORE grouped whole blood) to 8655 (tINIT grouped lung). Regardless of data aggregation method or 

tissue, all models extracted with tINIT had higher mean reaction counts than their fastCORE counterparts. 
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Figure 10 − Mean reaction count of the non-minimal (gene scores) TPM models of all tissues, by tissue and extraction 

algorithm. 

 A Shapiro-Wilk normality test ascertained that only the median models’ reaction counts 

(fastCORE: W≈0.89, p≈0.14; tINIT: W≈0.93, p≈0.43) were of approximately normal distribution. A 

nonparametric Kruskal-Wallis H-test confirmed that the reaction counts of the 6 combinations of data 

aggregation method and algorithm model types were also significantly different (H≈590.90, p≈1.88e-

125). A Dunn’s test with multiple test p-value adjustment established that the non-minimal gene scores 

models’ total number of reactions followed a distinct pattern, where all models differed significantly by 

algorithm, regardless of RNA-Seq data aggregation method (Table 3). Therefore, the test supports that 

tINIT consistently produces CSMs with higher reaction counts than fastCORE.  

Table 3 – Dunn’s test (scikit_posthocs package) with Benjamini/Hochberg (non-negative) multiple test p-value adjustment for 

the differences in reaction count of the 6 data aggregation method (TPM, grouped/GRP and median/MED) and algorithm 

(fastCORE/FT and tINIT) combinations of non-minimal models. P-values in cells coloured green are significant (p < 0.05) and 

rounded to 2 decimal places. 

 tINIT TPM FT MED tINIT MED FT GRP tINIT GRP 

FT TPM 1,71E-108 2,86E-01 1,34E-04 1,37E-01 1,16E-24 

tINIT TPM − 2,29E-09 3,90E-01 8,08E-37 3,28E-01 

FT MED − − 3,20E-04 6,60E-01 2,56E-07 

tINIT MED − − − 2,49E-05 6,60E-01 

FT GRP − − − − 6,76E-19 
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4.3. Essential tasks 

Robinson et al. provided a set of 57 essential tasks that models of healthy tissue based on Human1 are 

expected to pass, and their evaluation returns a pass/fail binary dataset. Consequently, the essential task 

evaluation of the CSMs enables a basic comparison of the algorithms’ performance and to assess the 

effect of the protected reactions and of the RNA-Seq data used. 

 The minimal CSMs (Figure 11A) extracted using the tINIT algorithm had a higher mean number 

of essential tasks passed (23) in comparison to fastCORE (12), which vary in reaction count but not in 

tasks passed. The corresponding fastCORE models extracted with protected reactions (Figure 11B, full 

opacity) show an improvement in model quality, with a higher mean of essential tasks passed (29). By 

comparison, the non-minimal tINIT models’ quality improvement is much less pronounced (25). 

 However, when considering all non-minimal TPM models (Figure 11B), the mean number of 

passed tasks is only 26 and 22 out of 57 for fastCORE and tINIT models, respectively. After excluding the 

fastCORE and tINIT models with less than 6000 and 7000 reactions, the means improve slightly, to 30 

and 23 tasks passed. The median (Figure 11C) and grouped (Figure 11D) models follow the same 

trend, with fastCORE outperforming tINIT. On average, the fastCORE and tINIT median models passed 

27 and 22 tasks, while the grouped models passed 28 and 23 tasks.  

 Out of all non-minimal TPM tissue and algorithm combinations (Figure 12) the whole blood and 

pancreas models tINIT models had the lowest mean number of essential tasks passed (12 and 11) and 

the fastCORE adipose and breast models had the highest (34 and 32, respectively). The whole blood 

grouped models passed the least essential tasks (10), including models of all algorithms, genders, and 

age groups, whereas the adipose, kidney and liver grouped models of female samples aged between 20 

and 39 had the highest, at 42 passed tasks. 

  Firstly, the Troppo package’s implementation of the fastCORE and tINIT algorithms were 

compared, as fastCORE appears to produce models more capable of fulfilling essential tasks when 

supplied with protected reactions, with fewer reactions, regardless of data aggregation method.  

 



30 
 
 

 

Figure 11 – Percentage of essential metabolic tasks passed (out of 57) by the minimal TPM, non-minimal TPM, grouped, and 

median (gene scores) CSMs extracted using the tINIT and fastCORE algorithms, compared to their respective reaction counts. 

(A) Minimal TPM models (n=80) of the adipose, breast, kidney, and liver tissues, extracted without the RAVEN protected 

reactions. (B) Non-minimal TPM models of all tissues (n=935). The points marked with full opacity correspond to the same 

samples used for the minimal models. (C) Median models of all tissues (n=22). (D) Grouped models of all tissues (n=132).  

 A Shapiro-Wilk normality test ascertained that only the median models’ essential tasks (fastCORE: 

W≈0.93, p≈0.37; tINIT: W≈0.86, p≈0.06) were of approximately normal distribution. Consequently, a 

nonparametric Kruskal-Wallis H-test confirmed that the essential tasks of the 6 combinations of (non-

minimal) model data aggregation method and algorithm were significantly different (H≈34.48, p≈1.91e-

6). A post hoc Dunn’s test (scikit_posthocs package10) with Benjamini/Hochberg (non-negative) multiple 

 

 

10 https://scikit-posthocs.readthedocs.io/en/latest/installation/  

https://scikit-posthocs.readthedocs.io/en/latest/installation/
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test p-value adjustment determined that the TPM and grouped non-minimal models differed by algorithm, 

whereas the median models did not. Additionally, the models did not differ solely by data aggregation 

method (Table 4). 

 

Figure 12 – Mean number of essential metabolic tasks passed by the non-minimal (gene scores) TPM models of all tissues, 

by tissue and extraction algorithm.  

 Thirdly, the effect of the protected reactions was investigated by comparing minimal and non-

minimal models extracted from the same samples. A nonparametric one-tailed (“greater”) Mann-Whitney 

U rank test established that the non-minimal fastCORE (U=1595, p≈8.57e-15) models passed 

significantly more essential tasks than their minimal model counterparts, but the non-minimal tINIT 

models did not (U=949.5, p≈0.08). 

Table 4 – Dunn’s test (scikit_posthocs package) with Benjamini/Hochberg (non-negative) multiple test p-value adjustment for 

the differences in essential metabolic tasks passed by the 6 data aggregation method (TPM, grouped/GRP and 

median/MED) and algorithm (fastCORE/FT and tINIT) combinations of non-minimal models. P-values in cells coloured green 

are significant (p < 0.05) and rounded to 2 decimal places. 

 tINIT TPM FT MED tINIT MED FT GRP tINIT GRP 

FT TPM 2,24E-05 8,37E-01 2,62E-01 3,09E-01 1,73E-02 

tINIT TPM − 3,09E-01 7,93E-01 1,95E-03 8,07E-01 

FT MED − − 3,09E-01 8,07E-01 3,09E-01 

tINIT MED − − − 1,29E-01 8,07E-01 

FT GRP − − − − 1,10E-02 

 In contrast to the gene scores CSMs, the H1-CSMs passed all essential tasks according to the 

MATLAB RAVEN evaluation, and up to 56 tasks according to Troppo. Furthermore, the H1-CSMs had 

comparable reaction counts, between 6584 (muscle) and 8164 (kidney). A (two-sided) nonparametric 
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Mann-Whitney U rank test determined that the H1-CSMs only had significantly more reactions than the 

non-minimal fastCORE TPM models (fastCORE: U=5861, p≈2.52e-6; tINIT: U=1421, p≈0.13). 

 Lastly, the number of essential tasks passed by the grouped and non-minimal TPM models, by 

age and gender, was plotted (Figure 13). A possible trend, where tasks passed decrease as the age 

group increases, is more apparent in the TPM models.  

 

Figure 13 – Essential metabolic tasks passed by the (gene scores) TPM and grouped RNA-Seq data aggregation model types, 

by age, gender, and algorithm. Boxplots pertaining to female (F) and male (M) models are coloured orange and blue, 

respectively. Age groups denote years. (A) Grouped fastCORE models. (B) Grouped tINIT models. (C) Non-minimal fastCORE 

TPM models. (D) Non-minimal tINIT TPM models.  

 As the samples within each combined category of gender and age are independent, with a 

minimum of 10 samples, a nonparametric Kruskal-Wallis H-test was employed for each of the 4 model 

groups. Of the 4, only the tINIT TPM models’ essential tasks were found to be significantly different 

(H≈12.7, p≈0.03). Afterwards, a Dunn’s test with multiple test p-value adjustment determined that the 

only significantly different pair (p≈0.04) was the male tINIT models aged between 20 and 39 and the 

male tINIT models aged between 60 and 79.  

4.4. Full set of tasks 

Unlike the essential tasks, which should be attainable by all healthy human tissues, the full set of 

metabolic tasks can better characterize differences between model types. According to Uhlén et al. (2015) 

[65], from which this set of tasks was adapted for Human-GEM, 192 of the 256 tasks were classified as 

housekeeping (HK), as models of all tissues extracted by the authors could achieve them. As the Troppo 

and RAVEN task evaluations can differ greatly, the Troppo task evaluation of the H1-CSMs was used for 

comparison.  



33 
 
 

 Firstly, the mean number of tasks from this set passed by the three RNA-Seq data model types, 

(non-minimal) TPM, grouped and median, was plotted by tissue and algorithm. The tINIT TPM pancreas 

and whole blood models (Figure 14A) had the lowest mean number of tasks passed (51 and 54, 

respectively), whereas the fastCORE TPM adipose models had the highest (154). The grouped (Figure 

14B) and median (Figure 14C) models both had the same tissues on the lower end of the spectrum, 

but the median fastCORE lung model (183) outperformed the corresponding adipose tissue model (178) 

as best performing tissue instead. In contrast, the H1-CSMs surpass the average performance of the 

Troppo CSMs, ranging from 207 tasks passed by the H1-blood model to 219 tasks passed by the H1-

liver model (according to the Troppo task evaluation).  

 As with the essential tasks, models extracted with fastCORE appear to pass more tasks overall, 

for all tissues apart from the skeletal muscle. A Shapiro-Wilk normality test ascertained that only the 

median models’ tasks from the full set were of approximately normal distribution (fastCORE: W≈0.90, 

p≈0.17; tINIT: W≈0.89, p≈0.15).  Firstly, a nonparametric Kruskal-Wallis H-test determined that the 

number of tasks passed by the 6 combinations of model data aggregation method and algorithm were 

also significantly different (H≈11.9429, p≈0.04). However, the post hoc Dunn’s test with 

Benjamini/Hochberg (non-negative) multiple test p-value adjustment established that there were no actual 

significant differences between the groups.  

 Secondly, the effect of the protected reactions was also investigated in terms of number of tasks 

passed, specifically by comparing minimal and non-minimal TPM models extracted from the same 

samples. On average, the minimal fastCORE and tINIT TPM models passed 54 and 102 tasks, 

respectively. Surprisingly, a nonparametric one-tailed (“greater”) Mann-Whitney U rank test established 

that neither the non-minimal fastCORE (U=1571.5, p≈0.53) nor tINIT models (U=949.5, p≈0.07) passed 

significantly more tasks than their minimal model counterparts. However, when the tasks passed by the 

minimal TPM models were compared to all non-minimal TPM models, the difference became significant 

for the fastCORE (U=21742.5, p≈0.03) but not for the tINIT (U=7891.5, p≈0.11) models. 
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Figure 14 — Mean number of metabolic tasks passed from the full set of tasks, by all three non-minimal (gene scores) RNA-

Seq data aggregation model types, TPM, grouped and median, by tissue and algorithm. (A) TPM models. (B) Grouped models. 

(C) Median models. 

 Thirdly, the absolute tasks passed by the grouped and non-minimal TPM models, by age and 

gender, was also plotted (Figure 15). Nonparametric Kruskal-Wallis tests were employed to discern if 

any significant differences in number of tasks passed exist within each of the 4 model groups. Once again, 

of the 4 groups tested, only the differences between the tINIT TPM models were considered significant 

(H≈12.97, p≈0.02). A Dunn’s test with multiple test p-value adjustment determined that only the tasks 

passed by models of male samples differed by age group (20-39 & 40-59: p≈0.03; 20-39 & 60-79: 

p≈0.03; 40-59 & 60-79: p≈0.97), with an additional significant pair (p≈0.03) between the male models 

aged between 20 and 39 and the female models aged between 60 and 79. 
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Figure 15 – Total number of metabolic tasks passed from the full set of tasks, by the (gene scores) TPM and grouped RNA-

Seq data aggregation model types, by age, gender, and algorithm. Boxplots pertaining to female (F) and male (M) models are 

coloured orange and blue, respectively. Age groups denote years. (A) Grouped fastCORE models. (B) Grouped tINIT models. 

(C) Non-minimal fastCORE TPM models. (D) Non-minimal tINIT TPM models. 

 Subsequently, the type and frequency of tasks passed were explored. The tasks were categorized 

as universally passed, universally failed, or neither. HK tasks were distinguished from non-HK (other) 

tasks. According to Table 5, the median and TPM models were generally the most and least 

homogeneous, respectively, and non-HK tasks appear to be (universally) passed more often than HK 

tasks. Of all tasks considered, 28 HK and 12 non-HK tasks were universally passed, whereas 7 HK and 

3 non-HK were universally failed, regardless of model type or algorithm.   

Table 5 – Metabolic task evaluation of the 3 RNA-Seq data aggregation methods of (gene scores) CSMs, (non-minimal) TPM, 

grouped and median, by algorithm and task type (Housekeeping, HK), of the full set of tasks. The percentage of tasks passed, 

per task type, is in between parentheses. 

  Task type 

  Universally passed Universally failed Neither 

Model type Algorithm HK Other HK Other HK Other 

TPM 
fastCORE 28 (14.58%) 12 (18.75%) 8 (4.17%) 3 (4.69%) 156 (81.25%) 49 (76.56%) 

tINIT 30 (15.63%) 13 (20.31%) 25 (13.02%) 7 (10.94%) 137 (71.35%) 44 (68.75%) 

Grouped 
fastCORE 33 (17.19%) 12 (18.75%) 34 (17.71%) 9 (14.06%) 125 (65.10%) 43 (67.19%) 

tINIT 35 (18.23%) 13 (20.31%) 41 (21.35%) 9 (14.06%) 116 (60.42%) 42 (65.63%) 

Median 
fastCORE 35 (18.23%) 12 (18.75%) 56 (29.17%) 9 (14.06%) 101 (52.60%) 43 (67.19%) 

tINIT 36 (18.75%) 14 (21.88%) 63 (31.81%) 13 (20.31%) 93 (48.44%) 37 (57.81%) 

  

 Lastly, as the models of healthy tissue extracted by Robinson et al. relied upon GTEx median TPM 

data, it was expected that the most similar Troppo CSMs would be the tINIT median models. For that 

reason, the percentage of models that pass the 123 tasks neither passed nor failed by all H1-CSMs, tINIT 

median and tINIT TPM models (93 HK and 30 non-HK tasks) was plotted, by tissue. According to Figure 
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16, the median tINIT models are more similar to the TPM tINIT models than to the H1-CSMs (full size 

figure available in the accompanying Jupyter Notebook2, “results_graphs_clean.ipynb”). Furthermore, the 

heatmap somewhat reflects the tendency presented in Table 5, where HK tasks appear to fail more 

often than non-HK tasks, which are concentrated on the right side of the heatmap. 

 Unsurprisingly, the H1-CSMs were noticeably more homogeneous. According to the Troppo task 

evaluation, the H1-CSMs universally passed 77.6% and 85.9% of HK and non-HK tasks, respectively, with 

tasks neither failed nor passed by the 11 models between 3.13% (non-HK) and 9.38% (HK). However, 

according to the MATLAB RAVEN task evaluation, the H1-CSMs universally pass nearly all HK tasks (189, 

98.44%) and only have non-HK universally failed tasks (29, 45.31%). 

 Consequently, the percentage of tasks passed, by task type, of the non-minimal TPM models 

based on samples extracted with both algorithms was used to ascertain whether non-HK tasks truly 

passed in greater proportion than HK tasks. Nonparametric paired one-tailed (“greater”) Wilcoxon Signed-

rank tests supported the trend in the TPM (fastCORE: W=147419.5, p≈3.04e-60; tINIT: W=61030, 

p≈7.52e-57), grouped (fastCORE: W=2043.5, p≈1.02e-9; tINIT: W=2211, p≈8.08e-13) and median 

(Both: W=66, p≈5e-4) model sets. In addition, the trend was also significant in the Troppo task evaluation 

(W=66, p≈5e-4) of the H1-CSMs. 

 

Figure 16 – Heatmap of the 123 metabolic tasks from the full set, which were not all passed or failed by the models extracted 

by Robinson et al. (H1-CSMs), the median and TPM models extracted with the tINIT algorithm, by tissue. The last 30 tasks 

(from the left) are classified as non-housekeeping (other). (A) Task evaluation of the corresponding H1-CSMs, performed using 

Troppo. (B) Task evaluation of the tINIT median CSMs. (C) Percentage of tINIT TPM models that pass a given task.   
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4.5. Troppo versus RAVEN 

The null variance filter used during the threshold selection and gene score conversion process could have 

removed active housekeeping genes as well as unexpressed genes and affect the quality of the models. 

To control for this oversight, a second batch of non-minimal TPM models of the adipose, breast, kidney, 

and liver tissues were extracted with fastCORE (n=212), differing only in the absence of the variance filter. 

In other words, no genes were excluded from the gene scores dataset prior to extraction, which was 

otherwise obtained with the same local threshold. Unsurprisingly, the default non-minimal fastCORE TPM 

models had a slightly lower mean number of reactions (6246) than the corresponding revised models 

(6416). However, both model sets passed almost the same mean number of essential tasks (default: 

29.87, revised: 29.91).  

 On the other hand, the CSMs extracted by Robinson et al. followed a distinct pre-processing 

method, where instead of converting the gene expression data into gene scores prior to extraction, the 

gene expression data was passed to the reconstruction algorithm directly, with a threshold of 1 TPM11. In 

an effort to obtain models more analogous to those produced by the authors, additional (non-minimal) 

TPM CSMs were extracted with the gene expression data (1 TPM threshold, without the null variance 

filter) and the fastCORE algorithm. Likewise, additional median models were extracted with the gene 

expression data directly, with both algorithms. 

 Figure 17 presents the percentage of essential tasks passed (out of 57) of all three sets of 

additional non-minimal models (gene scores without the variance filter, TPM gene expression data and 

median gene expression data models), alongside the H1-CSMs Troppo task evaluation for reference, with 

their corresponding reaction counts, with and without blocked reactions. As expected, the gene scores 

models (Figure 17A) overlap heavily regardless of the variance filter. In contrast, the TPM gene 

expression data models with all reactions (Figure 17B) had a higher mean number of reactions (8867) 

and essential tasks passed (41), while appearing more condensed.  

 

 

11 https://sysbiochalmers.github.io/Human-GEM-guide/gem_extraction/  

https://sysbiochalmers.github.io/Human-GEM-guide/gem_extraction/
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Figure 17 — Essential metabolic task evaluation of the additional non-minimal gene scores and gene expression data models 

and their respective reaction counts. The Troppo task evaluation of the models extracted by Robinson et al. (H1-CSMs) is 

shown for reference. (A) Gene scores fastCORE TPM models with and without the variance filter (all genes) of the same 

samples (n=212) belonging to the adipose, breast, liver, and kidney tissues. (B) Gene expression data fastCORE TPM models 

(all genes) corresponding to the 4 previously mentioned tissues, with and without blocked reactions. (C) Gene expression data 

median models (all genes) of all 11 tissues, with and without blocked reactions, extracted with the fastCORE and tINIT 

algorithms.  

 Particularly, according to the COBRApy package’s find_blocked_reactions function, the gene 

expression data CSMs had a sizable proportion of blocked reactions, which were identified and removed. 

After the blocked reactions were removed, the TPM gene expression data models’ reaction counts lower 

remarkedly (4746), with a similar spread to the gene scores models. The median gene expression data 

models (Figure 17C) appear to repeat the pattern, with the consistent reaction versions of the models 

having a larger spread.  

 However, unlike most previous comparisons between algorithms, the median fastCORE models 

also appear to be outperformed by tINIT.  The median fastCORE and tINIT models had a mean of 42 and 

54 essential tasks passed and 8640 and 10146 reactions, respectively. After blocked reaction(s) removal, 

the means become 6023 and 6503, with the median gene expression data tINIT models overlapping the 

H1-CSMs. For the gene expression TPM models, the percentage of reactions identified as blocked ranged 

between 0% and 57%, with a mean of 46% blocked reactions. For the median gene expression models, 

the percentage ranged between 0 and 46% for fastCORE and between 20 and 50% for tINIT, with a mean 

of 31% and 36% blocked reactions, respectively. A one-tailed Mann-Whitney test (U=52, p≈0.30) 
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determined that the difference in blocked reaction proportion by algorithm was not truly significant in the 

median gene expression models. 

 A Kruskal-Wallis test confirmed that the three sets of Troppo models (gene scores, TPM gene 

expression data and median gene expression data models) had significantly different reaction counts 

(H≈661.41, p≈1.44e-139). Another test determined that the three sets of models and the H1-CSMs also 

differed in absolute essential tasks passed (H≈ 350.88, p≈1.13e-73). A subsequent Dunn’s test with 

multiple test p-value adjustment established that the null variance filter did not actually affect the gene 

scores TPM models in terms of reaction count (Table 6). Furthermore, the gene scores models’ reaction 

count differed from all other gene expression data models’, except for the consistent version of the median 

gene expression data models. Additionally, the difference in number of reactions between all TPM and 

median gene expression data models, and their corresponding consistent model versions, was significant.  

Table 6 − Dunn’s test (scikit_posthocs package) with Benjamini/Hochberg (non-negative) multiple test p-value adjustment for 

the differences in total number of reactions of the 8 additional data aggregation method (TPM or median/MED), pre-

processing (gene scores with variance threshold/GS, gene scores with all genes/GS-NV or gene expression data with all 

genes/OM), algorithm (fastCORE/FT and tINIT) and post-processing (with and without blocked reactions/NB) combinations of 

non-minimal models. P-values in cells coloured green are significant (p < 0.05) and rounded to 2 decimal places. 

 FT GS-
NV 

FT OM 
FT OM-

NB 
FT MED-

OM 
tINIT MED-

OM 
FT MED-OM-

NB 
tINIT MED-OM-

NB 

FT GS 
1,09E-

01 
9,25E-

51 
3,10E-20 5,64E-05 1,75E-09 6,93E-01 6,93E-01 

FT GS-NV − 
5,93E-

40 
4,43E-28 5,12E-04 4,56E-08 3,97E-01 9,13E-01 

FT OM − − 
1,01E-
131 

6,37E-01 1,84E-01 5,87E-07 3,70E-05 

FT OM-NB − − − 3,62E-12 2,18E-19 1,72E-02 1,19E-03 

FT MED-OM − − − − 1,84E-01 1,32E-03 1,02E-02 

tINIT MED-
OM 

− − − − − 3,63E-06 5,64E-05 

FT MED-OM-
NB 

− − − − − − 6,14E-01 

 Another Dunn’s test with multiple test p-value adjustment between the three sets of Troppo 

models and the H1-CSMs determined that the variance filter also did not affect the gene scores models 

in terms of essential tasks passed (Table 7). In addition, all gene expression data models passed 

significantly more tasks than the gene scores models. The only Troppo gene expression data models that 

did not have absolute essential tasks passed comparable to the H1-CSMs were the fastCORE gene 

expression data models. 
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Table 7 − Dunn’s test (scikit_posthocs package) with Benjamini/Hochberg (non-negative) multiple test p-value adjustment for 

the differences in essential metabolic tasks passed by the H1-CSMs and 5 additional data aggregation method (TPM or 

median/MED), pre-processing (gene scores with variance threshold/GS, gene scores with all genes/GS-NV or gene expression 

data with all genes/OM) and algorithm (fastCORE/FT and tINIT) combinations of non-minimal models. P-values in cells 

coloured green are significant (p < 0.05) and rounded to 2 decimal places. 

 FT TPM-GS-NV FT TPM-OM FT MED-OM tINIT MED-OM H1-CSMs 

FT TPM-GS 9,10E-01 2,62E-46 5,17E-06 3,56E-12 1,88E-12 

FT TPM-GS-NV − 1,09E-45 5,67E-06 4,13E-12 1,98E-12 

FT TPM-OM − − 9,10E-01 1,57E-02 1,10E-02 

FT MED-OM − − − 1,04E-01 8,81E-02 

tINIT MED-OM − − − − 9,10E-01 

 The differences in task behaviour of the full set of tasks between the three sets of models were 

also analysed. As with the essential tasks, the gene expression data models passed more tasks on average 

than the gene scores models. The default and revised gene scores models had a mean of 136.2 and 

136.6, and the TPM and median fastCORE gene expression data models had a mean of 206.8 and 206.6 

tasks passed, respectively. In contrast, the median tINIT gene expression data models had a mean of 

245.7 tasks passed, seemingly outperforming all other model types, including the H1-CSMs (212.5).  

 A Kruskal-Wallis test confirmed that the three sets of models also differed in number of tasks 

passed from the full set (H≈466.03, p≈1.71e-98). Another Dunn’s test with multiple test p-value 

adjustment specified which groups differed (Table 8). Once again, the gene scores models did not differ 

from each other, whereas all gene expression data models were significantly different from the gene 

scores models in terms of number of tasks passed, but not from each other or from the H1-CSMs.  

 In addition to passing more metabolic tasks, the gene expression data models were also more 

homogeneous than their gene scores counterparts. For example, 75% of housekeeping tasks were neither 

passed nor failed by all revised gene scores models, whereas the TPM and median gene expression data 

models extracted with fastCORE only reached 25% and 32%, respectively. However, not all the gene 

expression data models appear to maintain the trend of non-HK tasks being passed more often than HK 

tasks seen in the gene scores models. A nonparametric paired one-tailed (“greater”) Wilcoxon Signed-

rank test indicated the trend to be statistically significant in the fastCORE TPM and median gene 

expression data models (TPM: W=22578, p≈5.49e-37; Median: W=66, p≈5e-14), but not in the median 

tINIT gene expression data models (W=10, p≈0.98). 
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Table 8 − Dunn’s test (scikit_posthocs package) with Benjamini/Hochberg (non-negative) multiple test p-value adjustment for 

the differences in metabolic tasks passed from the full set of tasks by the H1-CSMs and 5 additional data aggregation 

method (TPM or median/MED), pre-processing (gene scores with variance threshold/GS, gene scores with all genes/GS-NV 

or gene expression data with all genes/OM) and algorithm (fastCORE/FT and tINIT) combinations of non-minimal models. P-

values in cells coloured green are significant (p < 0.05) and rounded up to 2 decimal places. 

 FT TPM-GS-NV FT TPM-OM FT MED-OM tINIT MED-OM H1-CSMs 

FT TPM-GS 7,78E-01 2,11E-66 6,70E-07 2,31E-13 5,98E-12 

FT TPM-GS-NV − 1,37E-64 9,34E-07 3,39E-13 9,35E-12 

FT TPM-OM − − 7,78E-01 6,15E-02 1,56E-01 

FT MED-OM − − − 1,18E-01 2,05E-01 

tINIT MED-OM − − − − 7,78E-01 

 Lastly, the number of tasks passed from the essential and full sets by the fastCORE TPM gene 

expression models was plotted by age and gender (Figure 18). Unlike the identical analyses of the gene 

scores variance filter models (of all 11 tissues), the TPM gene expression models are more condensed 

but have several outliers. Likewise, the gene expression TPM models are also affected by unbalanced 

sample sizes, as all metadata categories had at least 25 samples apart from the models of female patients 

aged between 20 and 39, with only 5 models (the minimum value according to the scipy documentation12). 

Subsequently, a Kruskal-Wallis test established that the TPM gene expression models vary by age and 

gender in terms of number of tasks passed from the full task set (W≈14.0, p≈0.02), but not from the 

essential set (W≈8.33, p≈0.14). Nevertheless, the follow-up Dunn’s test with multiple value adjustment 

determined that there were no actual differences in number of tasks passed, by age and gender. 

 

Figure 18 − Total number of metabolic tasks passed from the essential and full sets of tasks, by the TPM gene expression 

data models extracted with fastCORE, by age and gender. Boxplots pertaining to female (F) and male (M) models are coloured 

orange and blue, respectively. Age groups denote years. (A) Essential tasks passed by the gene expression TPM models. (B) 

Tasks passed from the full set by the gene expression TPM models. 

 

 

 

12 https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html  

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.kruskal.html
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5. Discussion 

CSMs were extracted for 11 tissues available in the GTEx v8 dataset, specifically the adipose 

(subcutaneous), brain (cortex), breast (mammary tissue), colon (transverse), kidney (cortex), liver, lung, 

muscle (skeletal), pancreas, stomach, and whole blood. It was hypothesized that the three types of RNA-

Seq data aggregation methods used, TPM, grouped and median, may vary in how well their respective 

models differ by tissue. For example, the median samples may have resulted in models which were very 

similar to each other, regardless of tissue. Likewise, the (TPM) CSMs extracted with non-minimal 

protected reactions were expected to perform much better than their minimal counterparts, in other 

words, that the protected reaction set would lead to a significant increase in number of essential tasks 

passed, regardless of reconstruction algorithm used. Finally, of the two reconstruction algorithms 

considered, fastCORE was expected to vastly outperform the tINIT algorithm in terms of computation 

time, but also to achieve similar performance in terms of metabolic tasks passed when compared to 

CSMs extracted with tINIT.  

5.1. Applied machine learning 

Of all the pre-processing steps evaluated by Richelle et al. (2019b) [42] for data integration with a 

metabolic model, only thresholding, or how to define a gene (or reaction) as expressed, was considered. 

Specifically, only the global and local (T2 state definition) approaches were assessed. Subsequently, 

machine learning (classification) methods were employed to automate the threshold selection process, 

enabling the analysis of a greater number of quantile-based global and local thresholds, 55 in total. 

Although the chosen classification objective, identification of the sample’s tissue, renders the process 

dependent on a multiple tissue dataset, it can also be easily adjusted towards more complex objectives. 

 In spite of the application of the null variance filter, the selection pipeline (Figure 6) yielded high 

MCC values overall for ML models trained with gene scores of the adipose, breast, kidney, and liver 

tissues, with a local threshold visibly outperforming all others, including the ML models trained with gene 

expression data directly. However, the pipeline did not prove as effective for the other 7 tissues, where 

no threshold clearly outperformed the others, whether global or local, with extremely high MCC values 

(>0.99) overall. As a greater amount of data was passed as input for the 7-tissue threshold selection, it 

is unlikely that the high overall MCC values are merely a case of overfitting. Instead, it is more likely that 

the objective itself, tissue identification, may not be the most adequate. For example, a slightly more 
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complex objective could be a combination of the sample metadata categories, such as the identification 

of the tissue, gender, and age group of the sample. 

 Post extraction, a reaction content binary matrix of CSMs enables a quantitative comparison of 

how the models differ structurally [4]. Accordingly, the Hamming similarity of the reaction content of the 

non-minimal gene scores models was plotted with a tSNE projection. The tSNE projection indicated that 

the overlap between tissues, seen in the gene expression data PCA prior to any data pre-processing other 

than filtering, persisted in the derived TPM models (Figure 7). Additionally, as the tSNE projection of the 

TPM models did not separate the two tissue groups, it also revealed previously unrecognized overlaps. 

Nevertheless, this type of general analysis lacks the biological context provided by other validation 

methods. For example, the subsystem coverage, or the number of reactions from a given reaction 

subsystem present in each CSM, could offer a more meaningful exploration of the CSMs structure [4]. 

 Despite the shortcomings of the currently implemented ML pipeline, its flexibility was also utilized 

to train ML models with the reaction content of the non-minimal gene scores models, by algorithm. Unlike 

the ML pipeline employed for threshold selection, ML models were also trained without separation by 

tissue group (Figure 9). Once again, ML methods were less successful when applied to data derived 

from the 7-tissue dataset, which attained extremely high MCC values (up to 0.97) but showed no apparent 

differences between algorithms. The reaction content ML models were also inconsistent in their evaluation 

of algorithm performance, as the ML models trained with the reaction content of all tissues attained MCC 

values in between those of the separate tissue sets. Therefore, the importance of an appropriate 

classification objective is further emphasized.  

5.2. Gene scores CSM validation 

Unlike other methods of validation, such as the comparison of in silico metabolic model fluxes or gene 

essentiality predictions to experimental data, metabolic tasks are not biomass centric or as constrained 

by data availability. Furthermore, they should be applicable to most models of a given organism, whether 

the phenotypes in question involve healthy tissue or a disease state and have been used to compare 

between the two [4]. Therefore, the task evaluation of the CSMs was central to the appraisal of the various 

extraction conditions tested. 
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5.2.1. Essential task evaluation of the gene scores CSMs 

Ideally, the generic essential tasks should be universally passed by all models, regardless of tissue. 

Instead, as none of the gene scores models passed all 57 essential tasks, and the models extracted under 

different conditions appeared to differ in that regard (Figure 11), the total number of metabolic tasks 

passed by each model was used as a basic performance indicator. 

 Firstly, the TPM models extracted with fastCORE appeared to pass more essential tasks than 

their tINIT counterparts while simultaneously having fewer reactions. In addition to confirming this trend, 

the Kruskal-Wallis and post hoc Dunn’s tests also determined that the number of tasks passed was 

seemingly unaffected by the RNA-Seq data aggregation method in isolation. 

 Secondly, Mann-Whitney tests indicated that the non-minimal protected reaction set only led to a 

significant increase in absolute essential tasks passed for the fastCORE models. As a member of the 

MBA-like family of algorithms, fastCORE relies primarily on core reactions rather than a set of supplied 

gene scores [43]. Since the protected reactions were explicitly defined as core, this may explain why it 

affected the fastCORE algorithm more strongly.  

 However, there was a stark difference in quality between the H1-CSMs extracted by Robinson et 

al., which passed up to 56 of the 57 essential tasks according to Troppo, and the Troppo gene scores 

models.  As similar data (median) and template model were used for CSM extraction, and the differences 

in absolute essential tasks passed could not be explained solely by a difference in total number of 

reactions or between the Troppo package’s and MATLAB RAVEN’s task evaluation, the different pre-

processing method was identified as the most likely cause. 

5.2.2. Full task evaluation of the gene scores CSMs 

In contrast to the generic essential tasks, the full set of metabolic tasks includes some that may be tissue-

dependent and, therefore, enable a functional analysis of a CSM. Furthermore, Uhlén et al. (2015) [65] 

subdivided the tasks into 2 categories, housekeeping (HK) and non-housekeeping.  

 Firstly, Kruskal-Wallis and post hoc Dunn’s tests indicated that there were few significant 

differences in the number of tasks passed by the gene scores models, by RNA-Seq data aggregation 

method or algorithm. Secondly, Mann-Whitney tests established that the non-minimal TPM models based 

on the same samples did not outperform their minimal counterparts. As the non-minimal protected 

reaction set is derived from the essential set instead of the full set of tasks, it is not entirely unexpected 

that their absence has a greater effect in the number of essential tasks passed. Regardless, this analysis 

only further emphasizes the need to explore alternate methods for CSM extraction. 
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 Thirdly, the type and frequency of tasks was explored by calculating the percentage of tasks 

universally passed, universally failed or neither, by data aggregation method and algorithm. According to 

Table 5, HK tasks appear to be passed in greater proportion than non-HK tasks. Subsequently, paired 

Wilcoxon Signed-rank tests confirmed the trend in all non-minimal gene scores model types.  

 In contrast to the Troppo gene scores models, the H1-CSMs passed more tasks in total and were 

also more homogeneous. However, whereas the same trend in task type proportion is present in the 

Troppo task evaluation of the H1-CSMs, it was absent in the MATLAB RAVEN evaluation of the same 

models. In other words, the trend of HK tasks passing in greater proportion than the corresponding non-

HK tasks appears to be an occurrence specific to the Troppo task evaluation.  

5.3. Gene expression data CSM validation 

As differences in data pre-processing were identified as the most likely cause behind the disparity in task 

behaviour between the Troppo models and H1-CSMs, more models were extracted to test alternative 

methods. Furthermore, the oversight in applying the null variance filter, which may have removed 

housekeeping genes from the gene scores dataset and, consequently, from their derived models, was 

addressed. Due to the algorithm’s vastly better performance in terms of computation time, the models 

based on gene scores without the variance filter applied (all genes) were only extracted with fastCORE. 

Likewise, the extraction of CSMs following the distinct pre-processing method used by Robinson et al. was 

attempted. Instead of converting the RNA-Seq data into gene scores, the authors passed the gene 

expression data directly to their implementation of tINIT, with a global threshold of 1 TPM11.  

 According to Figure 17, the gene expression models appeared to have many more reactions 

than the revised gene scores models based on the same samples. Unlike the default and revised gene 

scores models, which differed in the number of genes (and respective expressions) available, the revised 

gene scores and gene expression datasets differ solely by data pre-processing. Consequently, the 

apparent difference in number of reactions between the revised gene scores and gene expression models 

may signify that the 1 TPM global threshold is more permissive than the local gene scores threshold, as 

the number of genes determined to be active decreases with the global threshold value [42].  

 Particularly, a more in-depth analysis showed that the gene expression data models had a sizable 

proportion of blocked reactions. As was discussed previously, translating gene expression data into 

accurate CSMs is a difficult process. Despite their continued development, reconstruction algorithms are 
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not infallible, and each implementation has its own disadvantages. The presence of blocked reactions in 

extracted CSMs represents another symptom of this issue, and is, therefore, not unexpected.  

 However, a Mann-Whitney test determined there were no significant differences in the blocked 

reaction proportion of the median gene expression models, by algorithm. In addition, the type of reactions 

removed was not explored. For example, the procedure may be removing reactions that are active under 

certain conditions, instead of merely inactive when the objective is biomass production. Furthermore, by 

including seemingly blocked reactions the algorithms may be excluding relevant reactions and, 

consequently, lose information during the reconstruction process. Nevertheless, as the proportion of 

blocked reactions was only identified for the gene expression models, of which only the median gene 

expression models were extracted with both algorithms, the analysis is somewhat limited.  

 Once again, Kruskal-Wallis and Dunn’s tests were employed to investigate differences in total 

number of reactions and tasks passed from the essential and full tasks sets. Firstly, the tests established 

that the null variance filter oversight did not significantly affect the quality of the CSMs in the 

measurements considered, namely the total number of reactions and metabolic tasks passed. In other 

words, the exclusion of the filter after threshold selection did not lead to an increase in model quality. 

This may suggest that the null variance filter instead affected the threshold selection process itself, and 

that the chosen local threshold for gene scores conversion might not have been optimal. Additionally, the 

tests supported the hypothesis that a global threshold is more permissive, as all gene expression models 

except the median models’ consistent versions had more reactions in total than the gene scores (local 

threshold) CSMs. 

 Secondly, the tests confirmed that all gene expression data models passed significantly more 

essential tasks than either type of gene scores CSM. Moreover, the median gene expression CSMs passed 

a comparable number of essential tasks to the H1-CSMs, regardless of algorithm, outperforming the gene 

expression TPM CSMs. However, none of the Troppo gene expression CSMs significantly differed from 

the H1-CSMs, or from each other, with a comparable number of tasks passed from the full set.   

 In addition to passing more tasks than the gene scores models, the gene expression CSMs were 

also more homogeneous, with much lower percentages of tasks neither passed nor failed by all models. 

Likewise, a Wilcoxon Signed-rank test confirmed the trend where non-HK tasks were passed more often 

HK tasks in the TPM and median gene expression models extracted with fastCORE, but not in the tINIT 

median gene expression CSMs. As the tINIT median gene expression CSMs passed the most tasks, this 

does not support the hypothesis that there is a task type bias in the Troppo task evaluation. Instead, the 
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presence of the tendency may simply be another side-effect of the differences in task evaluation between 

the Troppo package and RAVEN.  

 Lastly, the possible influence of age and gender on the number of tasks passed from the essential 

and full tasks sets, of the TPM gene expression CSMs extracted with fastCORE, was investigated. Once 

again, no significant differences between any of the groups were established. As previous identical 

analyses did not produce any noteworthy patterns, it indicates that the age and gender of the samples do 

not influence the number of metabolic tasks passed by the respective models.  
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6. Conclusions and Future work  

The main goal of this work was to develop a pipeline for the extraction and validation of CSMs of normal 

human tissue. Prior to the extraction step, this pipeline covers transcriptomics data pre-processing for 

integration through gene scores threshold selection and conversion, generic human model pre-processing 

and determination of protected reactions required by essential tasks. The extraction step itself relied upon 

two reconstruction algorithms with different approaches, namely fastCORE and tINIT. Post extraction, the 

task evaluation framework of the Troppo and MATLAB RAVEN packages was also contrasted. Finally, 

metabolic task evaluation and machine learning methods were employed to validate the CSMs extracted 

and compare them to the state-of-the-art models available.  

 The development of the pipeline enabled the analysis of the extraction and validation processes 

themselves. In particular, the type of input data aggregation method, respective pre-processing and 

protected reaction set used to extract metabolic models were compared. Furthermore, all statistical 

analyses presented are transparently available in the accompanying Jupyter Notebook 

(“results_graphs_clean.ipynb”). Jupyter Notebooks concerning part of the initial data pre-processing and 

pre-extraction pipeline (“omics_to_genescores.ipynb”) and a simple tutorial of CSM extraction with the 

Troppo package (“extraction_example_guide.ipynb”) are also available2. 

 Alongside the development of the pipeline itself, another main conclusion of this work was that 

extracted CSMs passed more metabolic tasks when the reconstruction algorithms were supplied with 

gene expression data directly, with a global threshold of 1 TPM, rather than with the chosen local threshold 

(global50-90 and local50). However, as the chosen local threshold may not have been optimal, it does 

not necessarily signify that a global threshold may outperform a local one. Regardless, the gene 

expression data CSMs extracted in this work achieved comparable performance to models available in 

the state-of-the-art extracted by Robinson et al. [4] in terms of total number of metabolic tasks passed.  

 Likewise, the CSMs extracted directly with gene expression data were also more homogeneous. 

As stated previously, according to the Troppo evaluation, the H1-CSMs of the 11 different tissues 

considered differed in only 12 tasks between the models that passed the least and most tasks from the 

full set, respectively. According to the RAVEN evaluation, the difference is of 13 tasks, between 209 and 

222 tasks passed in total. Subsequently, the increased homogeneity cannot be explained by differences 

in the task evaluations of the two packages. Instead, it is more likely to be a side-effect of the use of a 

global threshold, as global thresholding has been observed to mark a higher number of genes as active, 

in all tissues, than local approaches [42].   
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 The results presented in this work were made possible by focusing on general model attributes, 

such as the number of metabolic tasks passed, rather than more in-depth analyses. Naturally, this 

approach had its own drawbacks. For example, the total number of tasks passed did not differ by the 

CSMs’ sample metadata, specifically by age and gender. Although the analyses were in part hindered by 

small or unbalanced sample sizes, a more specific approach would most likely be better at detecting 

those differences in model behaviour. 

 In summary, the pipeline presented in this work achieved its main objective, enabling extraction 

and basic CSM validation applicable to models of healthy human tissue. Nonetheless, the current pipeline 

could also be expanded upon, and several unexplored questions remain.  

 Firstly, the threshold selection pipeline’s effectiveness could be more appropriately tested without 

the null variance filter oversight, enabling the confirmation of whether the gene expression data 1 TPM 

global threshold can truly outperform local threshold approaches based on gene scores. Secondly, an 

alternative objective for machine learning analyses, possibly applicable to single-tissue datasets, could be 

developed. The flexibility of machine learning methods could also be further applied post extraction. For 

example, the reaction content of extracted CSMs could be supplied as input data with a more complex 

metadata-based classification objective, such as age and gender. Thirdly, the pipeline could be further 

improved by the implementation of an equivalent function to RAVEN’s checkTasks [63] in Troppo, to 

determine reactions required by essential tasks, as at present the pipeline still partly depends on MATLAB, 

a commercial platform.  

 Although fastCORE vastly outperformed the Troppo implementation of tINIT in the variance filter 

gene scores models, the best models obtained were extracted with tINIT, specifically with median gene 

expression data and a global threshold (of 1 TPM). As such, the two algorithms could be compared 

further. Likewise, no minimal models were extracted with gene expression data as input and the effect of 

the protected reactions alongside the alternative pre-processing method was not explored. Moreover, the 

specific source behind the differences in task evaluation between the Troppo package and RAVEN was 

not investigated outside of the context of the comparisons between CSMs. 

 Lastly, by narrowing the scope to a single tissue, CSMs could more easily be validated on an 

individual task level. In other words, effort could be devoted towards the automation of a typically tedious, 

manual CSM curation process. A good candidate tissue would be the liver, which has been extensively 

modelled in the past. Particularly, a manually curated liver model, HepatoNet1, is available for 

comparison [31].   
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