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Abstract— The deployment of an Indoor Position System
(IPS) in the real-world raised many challenges, such as
installation of infrastructure, the calibration process or
modelling of the building’s floor plan. For Wi-Fi-based IPSs,
deployments often require a laborious and time-consuming
site survey to build a Radio Map (RM), which tends to
become outdated over time due to several factors. In this
paper, we evaluate different deployment methods of a Wi-
Fi-based IPS in an industrial environment. The proposed
solution works in scenarios with different space restric-
tions and automatically builds a RM using industrial ve-
hicles in operation. Localization and tracking of industrial
vehicles, equipped with low-cost sensors, is achieved with
a particle filter, which combines Wi-Fi measurements with
heading and displacement data. This allows to automatically annotate and add new samples to a RM, named vehicle Radio
Map (vRM), without human intervention. In industrial environments, vRMs can be used with Wi-Fi fingerprinting to locate
human operators, industrial vehicles, or other assets, allowing to improve logistics, monitoring of operations, and safety
of operators. Experiments in an industrial building show that the proposed solution is capable of automatically building
a high-quality vRM in different scenarios, i.e., considering a complete floor plan, a partial floor plan or without a floor
plan. Obtained results revealed that vRMs can be used in Wi-Fi fingerprinting with better accuracy than a traditional RM.
Sub-meter accuracies were obtained for an industrial vehicle prototype after deployment in a real building.

Index Terms— collaborative positioning, indoor positioning, industrial vehicles, particle filter, positioning system deploy-
ment, radio map, sensor data fusion, simultaneous localization and mapping (SLAM), Wi-Fi fingerprinting.

I. INTRODUCTION

REsearch papers about Indoor Position System (IPS)
usually present a general description of the solution

and technologies but lack an analysis of the requirements
and the deployment effort to set up the system, e.g., the
time and cost to set up, whether it requires the installation
of infrastructure, or if a calibration process is necessary.
Moreover, most systems are only evaluated in the laboratory or
in very small spaces. In industrial environments there are other
challenges regarding the deployment of an IPS, for instance,
there are spaces that often change the indoor layout due
to reconfiguration of production lines, and industrial spaces
whose floor plan is not available or is not detailed enough.

Localization in indoor environments, where GPS is not use-
ful due to high attenuation of GPS signals caused by the build-
ing, can be supported by several technologies, i.e., Wi-Fi [1,
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2], Ultra-wide band (UWB) [3], Bluetooth [4, 5], RFID [6],
among others. Over the years, the research community [7, 8, 9]
and industry1 have shown interest in Wi-Fi technology because
it explores Access Points (APs) that are already installed in
the buildings, thus the deployment of Wi-Fi-based IPSs is
cost-effective, in comparison to other technologies that require
installation of additional infrastructure.

Wi-Fi fingerprinting [1] is a well-known positioning tech-
nique that provides absolute position estimates, with mean
errors between 2 and 6 m [2]. It comprises an offline and an
online phase. In the offline phase (calibration), a site survey is
performed with the collection of Wi-Fi Samples (WSs) (signal
strength measurements) at known positions (Reference Points
(RPs)), resulting in a Radio Map (RM) of the surveyed area.
In the online phase, a WS collected at an unknown position
is compared against WSs of the RM, and a position estimate
is obtained. Different metrics (e.g. Manhattan, Euclidean or
cosine distance) have been used for matching between the
test WS and the WSs in the RM, and positioning algorithms
such as the the k-Nearest Neighbour (kNN) have been used
to estimate a position.

Building a RM for Wi-Fi fingerprinting is a laborious and

1IPS at Ford (Almussafes, Spain): https://www.europapress.es/motor/sector-
00644/noticia-ford-almussafes-desarrolla-sistema-geolocalizacion-
incrementar-eficiencia-20210128151431.html
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time-consuming task because it requires the mapping of RPs
and the collection of WSs at each RP. The complexity of
this task increases proportionally to the size of the building
and the grid size that defines the distance between neighbor
RPs. For instance, if the grid size is denser, more RPs are
surveyed which means that there will be a higher cost and
the accuracy is expected to increase, hence there is usually a
trade-off between cost and accuracy when deciding the grid
size of the RM. Once finished, the RM represents a snapshot of
the building’s radio environment at that particular time. With
time, the RM becomes outdated due to many reasons, such
as propagation effects, changes in the indoor layout of the
building, moving furniture, or the addition or removal of APs.
Therefore, the RM needs to be periodically updated, leading
to additional costs in terms of time and human resources.

Several methods have been explored to build RMs: manual -
site survey which takes a long time and requires human
resources; interpolation - using sniffers that collect WSs in a
few locations, then using an interpolation technique to estimate
APs’ signal levels in all RPs [10, 11, 12, 13]; Simultaneous
Localization and Mapping (SLAM) - a system that locates
itself whilst collecting Signals of OPportunity (SOP) to map
the radio environment [14, 15, 16].

Usually, the requirements and deployment configurations of
Indoor Position Systems (IPSs) are static and strict, namely:
deployment of infrastructure, e.g., UWB which is expensive
and in some scenarios impossible to deploy; calibration (or
site survey), necessary in fingerprinting-based methods (e.g.
Wi-Fi or Bluetooth) that depend on a RM that needs to be
created and periodically updated; floor plan information, which
is frequently used in IPSs especially the ones based on Particle
Filters (PFs), however no floor plan or only a partial floor plan
(low detail) may be available in some scenarios. Moreover,
in many environments, floor plans frequently change due to
alterations in the indoor layout making previous floor plan
models outdated. Since most IPSs have strict deployment
configurations they do not adapt well and do not work properly
if the requirements cannot be ensured.

To address this, we present a new method for industrial
positioning that is adaptable to different environments and
deployment configurations. The system is able to operate with
a complete Floor Plan (cFP), a partial Floor Plan (pFP) or
with no Floor Plan (nFP) at all. Moreover, it can operate with
an initial Radio Map (iRM), when it is possible to perform
a site survey, or without an iRM. This solution explores
industrial vehicles in operation to reduce deployment effort in
industrial environments. Industrial vehicles have an important
role in the day-to-day tasks of industrial environments, mostly
in the transportation of raw materials and finished goods.
In all deployment configurations, the system operates in a
SLAM approach. By localizing vehicles as they operate, it
is possible to collect WSs that can be added to the RM
allowing to map the radio environment automatically. We refer
to iRM as a manually constructed RM based on a site survey
and refer to vehicle Radio Map (vRM) as the set of WSs
that are autonomously annotated by vehicles in operation.
This approach can also be used to build BLE radio maps.
A Particle Filter (PF) is used to fuse data from vehicles

equipped with low-cost sensors: Wi-Fi and motion sensors
(wheel encoder and Inertial Measurement Unit (IMU)). The
PF tracks the vehicles in operation and decides whether each
estimated position is reliable or not so that the latest WS can
be annotated (assign a position to the sample) and added to
the vRM. With this approach, one can construct and maintain
RMs without additional effort or costs. In addition, the PF
allows easy integration of floor plans, supporting scenarios
with cFP, pFP or nFP. This is possible because the PF updates
particles’ weights using Wi-Fi similarity to preserve particles
that are closer to the true position. The main contributions of
this paper are:
• A low effort deployment and maintenance IPS that is

versatile for scenarios with different requirements and
deployment configurations;

• A SLAM approach for the automatic construction and
maintenance of Wi-Fi RMs in industrial environments
using industrial vehicles equipped with low-cost sensors;

• A novel method to update particles’ weights based on the
similarity of WSs, using the weighted kNN algorithm,
which allows to improve vehicle tracking.

II. RELATED WORK

In past years, some research works proposed different
approaches to optimize IPS deployment. He et al. [8] proposed
a solution to optimize the number of APs and their positions to
achieve better positioning accuracy. In [17], a solution is pre-
sented for automatic construction of RMs based on Received
Signal Strength (RSS) (Wi-Fi, Bluetooth Low Energy (BLE),
and RFID) to reduce deployment effort. The solution in [18]
combines the automatic RM construction with AP selection to
optimize the deployment of the IPS.

Some works explore mobile robots to perform SLAM of
its surroundings [14, 15, 16]. SLAM systems are usually
equipped with sensors to map the building, i.e., sonar, LiDAR
or camera to detect indoor features such as walls, obstacles,
or other elements. With the ability to locate themselves while
collecting SOP, they may be used for creating the RM of
the building, however, they are expensive due to the sensors
they use, and usually require complex configuration. In [15]
a mobile robot equipped with sonars, a wheel encoder, and
a depth camera is capable of creating a RM by locating
itself with a two-stage process. Initially, it performs obstacle-
avoidance-based navigation and odometry-based correction for
bearing angles. Then, it uses depth-camera images (RGB-D)
for SLAM. Experiments with Wi-Fi fingerprinting showed a
mean error of 5.2 m, in a corridor 54 m long. In [16], a
robot equipped with several sensors (LiDAR, magnetometer,
light sensor, smartphone (Wi-Fi)) generates an indoor grid
map while simultaneously collecting signals from Wi-Fi in-
terfaces and other sensors, allowing to construct and keep the
RM up-to-date. The LiDAR allows to map the space using
an Improved Maximum Likelihood Estimated (IMLE) scan-
matching algorithm, while collecting data from other sensors,
including Wi-Fi interfaces. Since WSs are obtained while the
robot is moving, signal strength values of WSs collected within
a 1 m radius of a reference point are averaged.
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The SLAM approach described in [19] explores smart-
phones to collaboratively localise and construct the RM of
the building. The system merges tracks from different users,
performs loop closure detection (when users pass by a pre-
viously visited location), and optimizes a graph to generate
accurate RM. Two Pedestrian Dead Reckoning (PDR) methods
have been employed, one based on a step counter (using
the smartphone’s IMU) and another based on Project Tango
(smartphone with additional sensors for high tracking accu-
racy). The advantages of this approach are that it does not
require any knowledge of the map and locations of the APs.
Experimental results in an area of 130x70 m have shown a
positioning accuracy of 0.6 m and 4.76 m for Tango-based
PDR and step counter-based PDR, respectively.

The idea of collaborative RMs where users independently
contribute with WSs to build a joint RM has been explored
in [20, 21, 22, 23]. There are different approaches to col-
laborative RMs: (i) users explicitly and manually report their
position to the system while collecting WSs; (ii) users collect
data passively (e.g. Wi-Fi and motion data), which can be
used to estimate PDR trajectories and, subsequently, annotate
the collected WSs; (iii) the system uses an opportunistic
sensing approach and, from time to time, prompts the user
to report whether they are in the estimated position. Since
these solutions depend on user participation, they raise some
challenges, for instance, users may choose not to share their
information or indicate a wrong position and, they may not
visit all areas of the building (leaving those areas unmapped).

Kim et al. [20] proposed an autonomous solution for the
construction of RMs as well as the localization of users.
Inertial data is automatically collected by users on their daily
routine, without needing to survey the entire building. The
system progressively builds the RM as more users contribute
with data. The position of users is obtained by merging
PDR with Wi-Fi fingerprinting. The average positioning error
obtained in experiments is 6.9 m for a building with 60x66 m.

Both works in [21, 22] use Wi-Fi fingerprinting systems
that take user feedback to improve RMs. These systems start
with a baseline Wi-Fi fingerprinting solution which already has
an existing RM, but users contribute with new WSs collected
automatically by a smartphone. These systems also use users’
feedback to build the RM. Taking the users input has its
shortcomings, for instance, the system can be hindered by
malicious actors that feed the system with bad data. The
systems in [21, 22] were designed for pedestrians, hence they
depend on the motion model of a pedestrian, which cannot be
applied to industrial vehicles. In the proposed approach in this
paper, a proper motion model is considered for the vehicles,
which are tracked with motion sensors (an encoder and an
IMU) for improved accuracy.

A different approach to build RMs is explored in [24], where
a motion dynamics model is combined with Gaussian Process
Latent Variable Models (GP-LVM) to reconstruct the RM from
a set of received signal strength values. Gaussian processes
are used to determine the model of each AP present in the
building, allowing to interpolate the RM of the building. A
user collects data to be used as training data for the GP-
LVM algorithm, which then builds the RM of the environment.

Performed experiments using the estimated RM achieved a
mean error of 3.97 m.

Other alternatives eliminate the need to build and maintain
the RM through interpolation (estimation of signal strength
values) based on Radial Basis Functions (RBF) [10], uni-
versal Kriging [25], Voronoi tesselation [11], Inverse Dis-
tance Weighted (IDW) [12], or Log-Distance Path Loss
(LDPL) [13]. The main drawback of these solutions is that
they provide approximations of signal strength levels (that
do not account for signal effects like reflection, refraction
and multipath). Conversely, the WSs of collaborative RMs
are collected on-site, therefore, they are more reliable as they
accurately represent the radio environment at the time they
were collected. A combination of SLAM and propagation
models is used in [26] to automatically build the RM of an
industrial space. Initially, a 3D force-directed graph is built
from WSs collected by fixed Wi-Fi anchors. Then, the graph
estimates APs’ positions which allows to model the radio
environment using a mobile unit equipped with Wi-Fi and
motion sensors. As a result, the RM is automatically built
without calibration or knowledge about the space. Since this
method estimates APs’ positions, it is prone to errors that
can affect the positioning accuracy of the RM. In addition,
it requires the installation of Wi-Fi anchors, which can be
challenging due to the number of beacons and the locations
where they have to be installed.

In comparison with related works, the distinctive features of
this approach include a novel solution versatile for different
deployment configurations in an industrial environment. This
solution explores industrial vehicles in operation to automati-
cally build and maintain the RM.

Since WSs are annotated by vehicles on-site, vRMs are bet-
ter than interpolated RMs and better than solutions that depend
on user feedback, because the PF automatically annotates WSs
without human intervention. This approach is cheaper than
relying on mobile robots for the creation and maintenance
of RMs since it uses existing vehicles that do not disturb or
affect operations and do not require expensive sensors such
as LiDAR. Moreover, this solution is less complex and lower-
cost to deploy than solutions that depend on the installation
of dedicated infrastructure (Wi-Fi anchors or UWB), because
it explores the already available Wi-Fi infrastructure.

III. APPROACH

The efficient deployment of an IPS is possible when it is
simple to set up and configure and, if possible, without human
intervention. In this paper, we explore industrial vehicles in
operation to optimize the deployment of an IPS. Industrial
vehicles have an important role in the day-to-day tasks of
factory plants, mostly in the transportation of materials, and
material handling. Enabling the localization and tracking of
these vehicles allows to build the RM and to improve logistics
processes and better manage the operations.

In order to achieve accurate tracking of industrial vehicles, it
is necessary to adopt a sensor fusion technique that combines
data from sensors. In this paper, we consider that vehicles
are equipped with a limited set of low-cost sensors, i.e., Wi-
Fi interfaces (to measure RSS values), an IMU to measure
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Fig. 1: Architecture of the proposed solution.

the heading (orientation), and a wheel encoder to measure the
displacement (travelled distance). This section describes the
approach used for sensor fusion as well as the process in which
vehicles are explored to build and maintain RMs automatically.

A. Architecture

Fig. 1 shows the architecture of the proposed IPS. It
comprises one or multiple industrial vehicles with Wi-Fi and
motion sensors. Each vehicle includes a PF, used to perform
sensor fusion of data from all sensors, producing position
estimates and corresponding confidence values. PF localization
is adequate for sensor fusion in cases where there are non-
linear system dynamics and arbitrary noise distributions. The
advantages of PFs are that they are simple to implement, allow
easy integration of the building’s floor plan, and are good at
dealing with sensors’ noise.

The RM is used by the PF in the particles’ weighting
phase. The Wi-Fi RM is composed of the vRM and the iRM
(optional). The vRM contains all WSs annotated by vehicles
and the iRM contains WSs previously collected that serve as
a starting point for the system.

The confidence is a metric based on the dispersion of parti-
cles, that determines whether the latest PF position estimate is
reliable or not. When the confidence is high, it allows to build
and maintain the vRM by assigning a position estimate to the
WSs collected by vehicles. The following sections describe
the PF processes and how the confidence metric is calculated.

B. Scenarios and Radio Map Configurations

The characteristics of industrial environments can vary
significantly, depending on the type of business, e.g., it can
be a simple storage warehouse or a complex space with
several production lines. The navigable areas, where industrial
vehicles operate are important as they can be represented in a
floor plan to assist in indoor tracking and localization. Some
industrial spaces have detailed floor plans available, but there
are other spaces where a large part is an open area and only a
partial floor plan is available, and there are also cases where
the floor plan is not available.

Therefore, three possible scenarios were considered (Fig. 2):
cFP - complete floor plan of the space is available; pFP -
partial floor plan of the space is available (some areas are
mapped in the floor plan, but there is a large open space);
nFP - no floor plan is available, large open area.

The proposed PF depends on a RM because particles’
weights are updated based on Wi-Fi information and the RM

(a)

(b)

(c)

Fig. 2: Considered floor plan scenarios: (a) complete FP (cFP);
(b) partial FP (pFP); and, (c) no FP (nFP).

is used as a reference. Without RM, it is not possible to update
particles’ weights, therefore the PF works as a pure Dead
Reckoning (DR) solution using only the motion sensors. In
this scenario, the Vehicle Dead Reckoning (VDR) trajectory
containing drift is corrected by detecting collisions of particles
in walls or obstacles, defined in the floor plan.

When the RM is available it can be just the vRM, or a
full Radio Map (fRM), composed of an iRM and a vRM.
The iRM is based on a manual site survey, and the vRM is
composed of WSs that are annotated while the vehicle oper-
ates. The proposed solution may operate using the following
RM configurations: VDR - without iRM and vRM, pure dead
reckoning; vRM - without iRM, but with vRM; fRM - full
radio map composed of the iRM and the vRM. Since building
the iRM is time-consuming and difficult to accomplish in large
scenarios, the iRM used in experiments is a sparse RM (with
a few samples) whose RPs are represented in blue in Fig. 2.

C. Particle Filter - Indoor Positioning System
The PF solution capable of locating and tracking industrial

vehicles is based on our previous work [27]. This PF, however,
has several differences from the previous version, namely: (i)
it works in different scenarios, with and without the floor plan
of the building; (ii) it uses a new method to update particles’
weights using weighted kNN to estimate WSs similarity
at the position of each particle, and dynamically adjusting
parameters; (iii) it works with or without an iRM; (iv) new
experiments were conducted to validate this solution. In this
work, we focus particularly on the ability to continuously track
the vehicle while collecting WSs to build and maintain a vRM.

The PF works as follows. First, particles are created around
the vehicle’s initial position. Second, as new sensor readings
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are received, particles’ states are updated considering noise
in the sensors. Third, particle’s weights are updated based on
WSs similarities, by comparing a new received WS to the WSs
in the RM (note that the RM is dynamic and evolves over time
because it comprises samples of the vRM). Fourth, over time,
some particles disperse due to the noise added to the sensors’
readings, and when their weights become low, they are re-
moved in the resampling process. In scenarios that consider a
floor plan, particles that hit walls or obstacles are assigned a
zero weight. In the resampling step, the particles with lower
weights are removed and the particles with higher weights
are duplicated to keep the number of particles constant. The
continuous updating of particles’ weights and the resampling
process allow the estimated position to remain near the true
position, minimizing the cumulative drift in the heading. A
reliability metric, named confidence, allows to determine when
to add annotated WSs to the vRM.

The PF consists of a set of M particles defined as p =
(w, x, y, h, ho), where w represents the weight of the particle,
x and y represent the position coordinates of the particle, h
represents the heading, and ho represents the heading offset
used to improve heading estimates.

1) Initialization: In industrial environments, vehicles are
usually parked in known positions (e.g. charging stations or
dedicated parking spots) and start their operation from a
known pose (position ρini and heading hini). This information
is used to initialize particles around the vehicle’s position.
Particles are uniformly distributed within a radius r of a given
initial position ρini, have an initial heading defined as hini,
and an initial heading offset (ho) given by U(0, nho). As a
result, each particle has a unique position and heading offset.

2) Particles’ movement model: The movement model of the
particles follows a DR approach, as follows:

h = θ + nθ + ho

x = x−1 + (l + nl) ∗ cos(h)
y = y−1 + (l + nl) ∗ sin(h)

(1)

where h, x, y represent respectively, the heading and position
coordinates of the particle. (x−1, y−1) refer to the previous
position of the particle, l represents the latest displacement
sample, θ represents the latest heading sample, and ho repre-
sents the particle’s heading offset. Both nl and nθ represent
zero-mean Gaussian distributed random variables necessary to
model the noise of the encoder and IMU, respectively.

3) Updating Particles Weights: In this process, higher
weights are assigned to particles that are closer to the true
position and lower weights are assigned to particles that are
probably further from the true position. Particles’ weights
are updated by comparing the similarity between the latest
WS collected by the vehicle and the RM samples. Then, the
weighted kNN is applied to estimate the normalized similarity
at the position of each particle. Finally, the normalized simi-
larity is converted into a weight value assigned to the particle.

A WS (reading from a Wi-Fi interface) is defined as the set
of n RSSI values of APs:

ws = {RSSI1, ..., RSSIn} (2)

The obtained WS is compared against the RM samples
using a distance function (Manhattan distance). The radio map,
RM = {(ρ0, ws0), ..., (ρm, wsm)} represents a set of m WSs,
where each ws is associated to the position ρ where it was
collected. The Manhattan distance between a WS and a RM
sample is given by:

dM (ws, rm) =

n∑
i=1

∣∣RSSIiws −RSSIirm∣∣ (3)

where n represents the number of detected APs, ws represents
the WS and rm defines the WS of the RM.

The distance is then converted into a normalized similarity:

sn = 1−
(

dM −min(D)

max(D)−min(D)

)
(4)

where D represents the set of all distances between the WS
and RM samples. Higher similarities are expected in locations
around the vehicle’s true position.

Then, the normalized similarity at the position of each
particle is obtained using the weighted kNN algorithm, as
described in Algorithm 1. First, the distances (Euclidean)
between the particle and all RM samples are calculated.
Second, these distances are organized in ascending order.
Third, the weight of the particle is computed using the inverse
distance weighted method, which assigns higher weights to
shorter distances and lower weights to larger distances. Fourth,
the estimated similarity is obtained using the weighted average
of the kuw WSs closer to the particle position.

Algorithm 1 Estimate particle normalized similarity.
Input

kuw - parameter of the weighted kNN algorithm
p - particle
WSp - set of Wi-Fi samples positions
WSs - set of Wi-Fi samples normalized similarities

Output
ŝn - estimated similarity at particle’s position

1: procedure ESTIMATE PARTICLE NORM. SIMILARITY

2: D = dMan.(p,WSp) //set of Manhattan distances be-

tween the particle and each Wi-Fi sample

3: D ← sort(D)

4: $ ← {} //initialize set of weights

5: for d ∈ D do
6: $ ← $∪

{
1
d2

}
//convert distance into weight and add

it to the set of weights

7: ŝn =
∑kuw

i=1 $i×WSi
s∑kuw

i=1 $i
//norm. similarity using w-kNN

8: return ŝn

Fig. 3 shows an example of the estimated similarities at the
positions of particles using this approach. The 5 particles refer
to the state of the PF at a given moment. The 3 RM samples
represent the normalized similarity after the collection of a
new WS. The estimated similarity of each particle using the
algorithm above is shown at the position of each particle, as
expected, each WS of the RM contributes to the estimated
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Fig. 3: Estimated similarity of each particle.
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Fig. 4: Dynamic α based on the distance between the particle
and the nearest WS.

similarity, being that the nearest WSs have more influence over
the estimated value. The kuw parameter defines the number of
nearest WSs considered in the algorithm.

Once the particle’s estimated normalized similarity is ob-
tained, its weight is updated:

w = α× (1− ŝn) + (1− α)× w−1, α ∈ [0, 1] (5)

where w−1 represents the previous weight of the particle
and α is a parameter that defines how rapidly the particle’s
weight varies based on the latest WS (see Section III-C.4
for further details about α). The last step in the process
to update particles’ weights comprises the normalization of
weights between 0 and 1.

4) Dynamic Alpha: The α parameter allows to define how
much the particle’s weight is influenced by the latest WS. The
α value is based on the distance between the particle and the
nearest RM sample, being that when the distance is small, α
is larger and vice versa. The rationale is that particles far from
any RM sample are in positions not yet mapped and, therefore,
their weights should not be updated significantly.

Fig. 4 shows how α is obtained based on the distance (d)
between the particle and the nearest RM sample. When the
particle is close to the nearest RM sample (d ≤ 1 m), α
is assigned αmax. For 1 m < d < dmax, a linear function is
considered where α decreases as d increases. When d ≥ dmax
of the nearest WS of the RM, α is assigned the αmin value.

5) Resample: Resampling is a process in which particles
with lower weights are removed, and particles with higher
weights are randomly selected to be copied. Lower weight
particles tend to be in areas where it is unlikely to be the true
position. A threshold value, wth, is used to determine which
particles are removed. The remaining subset of particles, with
weights higher than wth, are randomly selected and copied
to keep the number of particles constant. We adopted the
multinomial resampling approach [28], where the particles are
selected using their weight as the probability of being selected.
Each resampled particle has a new heading offset, defined as:

ho′ = ho+ nho (6)

where ho represents the particle’s original heading offset
and nho represents a zero-mean Gaussian distributed random
variable. Particles with higher weights are the ones that better
represent the pose of the vehicle, hence, their heading offset
is used in resampled particles, to which is added the nho
component to represent the noise distribution of the vehicle’s
heading. This process allows to improve heading estimates.

D. Estimate vehicle’s position and heading
The estimated pose of the vehicle is given by the weighted

average of the positions and headings of all particles:

ρvehicle(x, y) =

∑M
i=1 pi(x, y)× pi.w∑M

i=1 pi.w
(7)

and,

hvehicle = tan−1

(∑M
i=1 sin(pi.h)× pi.w∑M
i=1 cos(pi.h)× pi.w

)
(8)

E. Confidence in position estimates
Most IPSs, even the most reliable ones, do not provide a

measure that defines whether the estimated position is accurate
or not. A confidence measure is especially important for
localization and mapping because if the IPS is able to self-
assess whether its provided estimate is reliable, it can decide
whether to use the estimated position for mapping.

In a PF, a higher dispersion of particles occurs when there
is higher uncertainty, hence the cluster of particles is more
dispersed. The higher the dispersion, the lower the confidence,
hence the confidence can be used as a parameter to determine
whether new WSs should be annotated and added to the vRM.

As described above, particles are initialized around the
initial position, where confidence is high, hence WSs can
be annotated during this initial period. As time goes by and
the vehicle starts moving, particles start to disperse due to
the noise in the sensor’s readings. In situations when the
confidence is low, WSs should not be annotated, as it is
probable that a larger error is associated with those WSs.

Higher confidence is observed after resampling, due to the
removal of particles with lower weights. This metric also
benefits from scenarios that use the floor plan, which allow
removing particles that hit walls or obstacles.

The dispersion of particles is defined as:

ϑ =
1

N

N∑
i=1

dE(ρvehicle, pi)× wi (9)

where ρvehicle is the PF estimated position, pi and wi represent
the ith particle position and weight, respectively, and dE
represents the Euclidean distance between ρvehicle and pi. The
confidence is defined as a function of dispersion:

C(ϑ) =

{
−0.25ϑ+ 1, 0 ≤ ϑ < 4

0, ϑ ≥ 4
(10)

where ϑ represents the dispersion of particles in meters.
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When the dispersion of particles is larger than 4 m, there
is high uncertainty in the PF estimated position, hence the
confidence is zero. In preliminary experiments, we found that
the dispersion of particles depends on the noise added to
heading and displacement and the floor plan configuration. The
larger the noise added to heading or displacement samples the
larger is the dispersion. In addition, in scenarios where the
floor plan is not available, particles tend to disperse more in
comparison with scenarios where a partial or complete floor
plan is available. The 4 m dispersion was chosen because when
the uncertainty in the estimated position is high, there is a
higher probability for having a large error associated, and in
this application, it is crucial to annotate WSs with the lowest
possible positioning error. When the dispersion is lower than
4 m, the confidence has a linear relation with dispersion, the
lower the dispersion, the higher the confidence in the position
estimate. When confidence is higher than a given threshold
Cth, new WSs can be annotated and added to the vRM.

F. Vehicle Radio Map

Vehicles contribute to build and maintain the vRM by
adding annotated WSs to the vRM whenever the confidence of
the position estimates is high enough. The vRM is different
from a standard RM because WSs were collected automati-
cally and have an associated error, as opposed to a manually
created RM where WSs have zero error.

Upon receiving a new WS, the vehicle checks if the
confidence is high enough before deciding to add it to the
vRM. When the confidence is equal or greater than Cth, the
latest position estimate and confidence are assigned to the WS,
creating a vehicle WS, defined as:

vws = (ρvehicle, ws, C) (11)

where ws represents the signal strength values of detected
APs, ρvehicle represents the current position of the vehicle
and C represents the current confidence.

The quality of annotated WSs depends on the positioning
performance of the PF. Higher precision and accuracy lead
to a better vRM. Annotated WSs are only added to the vRM
after 120 s since they were collected to prevent recent WSs
from being used to update particle’s weights because it would
cause a dragging effect where particles closer to the more
recent WSs would have a higher similarity.

G. Wi-Fi Fingerprinting

VRMs obtained with industrial vehicles may be used for
plain Wi-Fi fingerprinting-based positioning in other appli-
cations. In industrial environments Wi-Fi fingerprinting can
be used for several purposes: improving logistics operations;
safety reasons (locate vehicles or people); tracking materials
along the supply chain (either raw materials as they move from
the warehouse to production lines or finished products from
production lines to the warehouse). The k-Nearest-Neighbor
estimator is one of the most used techniques to estimate a
position in Wi-Fi fingerprinting. It computes the centroid of
the k locations of the most similar WSs of the RM, as follows:

ρwifi =

∑k
i=1 ρi(x, y)

k
(12)

where ρi represents the position of a WS.

IV. REAL-WORLD EXPERIMENTS

Conducted experiments included three phases. First, the
development of a mobile unit equipped with several sensors.
Second, the setup at the testing space with the mapping of
RPs and the collection of WSs for the iRM used in some
experiments. Third, conducting the experiments.

A. Setup and Mobile Unit Prototype

Real-world experiments were conducted at the PIEP build-
ing located at the Azurém Campus of the University of Minho.
PIEP (shown in Fig. 5a) measures approximately 50x20 m and
is an industrial building for research on plastic polymers. It is
similar to a factory plant in many aspects since it has large
open spaces, narrow corridors, and heavy machinery (injection
molding machines). The iRM, used in some experiments (fRM
config), is a sparse radio map with ≈5 m between RPs (blue
points in Fig. 2). A site survey was conducted to build the
iRM with the collection of 40 WSs per RP.

Test data was collected using a mobile unit, a manually
pushed trolley to emulate an industrial vehicle. The mobile
unit, represented in Fig. 5b, is equipped with the position-
ing module, composed of: a Raspberry Pi (RPi) Model 3B;
4x external Wi-Fi interfaces (Edimax EW7811-Un); 2x IMUs
(Adafruit BNO055) to measure the heading; and, an absolute
encoder (US Digital A2) to measure the displacement. The
RPi is used as a computer to collect data from sensors. Using
multiple Wi-Fi interfaces leads to improvements in positioning
performance [29], because there is a low correlation between
signals from distinct Wi-Fi interfaces, therefore signals can
be merged into one sample. We have adopted this method to
improve the accuracy of the proposed solution.

Total retail cost of our prototype is 386e : RPi (35e ),
encoder (255e ), IMUs (2x 30e ), Wi-Fi interfaces (4x 9e ).

B. Low-cost IMU

In previous work [27], we used industrial-grade IMUs
(Xsens Mti-300 AHRS) for obtaining the heading of the
vehicles. Although these sensors are reliable and less prone
to drift and magnetic perturbations, they are very expensive,
making the IMU the most expensive part of the positioning
module. Using lower-cost IMUs allows to drastically reduce
the cost of the positioning module, but as a consequence,
these sensors are noisier and less accurate than industrial-
grade IMUs. In this work, we have used the Adafruit BNO055
IMU as a substitute for the industrial-grade IMUs used in
our previous works. This sensor was chosen for several
reasons. First, it is supported by the RPi, therefore it can
be easily integrated into this solution. Second, it is cheap
and easily found in online stores. Third, it performs in-
chip data fusion capable of producing absolute orientation
in quaternion or Euler angle formats at 100 Hz. Fourth, it



8 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

(a)

IMU BNO055

RPi 3B+

Wheel 
encoder

Wi-Fi interface

(b)

Fig. 5: Experiments: (a) PIEP building; (b) Mobile unit
prototype with installed sensors.

TABLE I: Particle filter parameters.

Param M r nl nθ nho
Value 3000 1 m N(0, 0.012 m) N(0, 1◦) N(0, 8◦)

Param kuw αmin αmax dmax wth Cth
Value 3000 0.05 0.3 2 m 0.2 0.75

allows to collect raw measurements from an accelerometer,
gyroscope and magnetometer which can be used in a sensor
fusion algorithm to estimate the sensor’s orientation. Fifth,
the research community has revealed an increasing interest
in this sensor for positioning and navigation, especially in
recent years as shown by a search in the Scopus database
with the query "(ALL(bno055) AND TITLE-ABS-KEY(
positio* OR navigat* ))". Overall the Adafruit
BNO055 IMU is a great sensor for research due to it being
low-cost and simple to work with.

We tested a Madgwick filter [30] implementation to perform
sensor fusion from raw measurements, however, our results
were no better than the ones provided by the integrated filter,
which had less noise and drift than the results achieved with
the Madgwick filter, therefore we opted to use the integrated
filter of the IMU sensor in our solution. Two IMUs were
installed in the mobile unit because in the future we intend
to explore sensor fusion methods to combine data from both
sensors to improve heading estimates.

C. Particle Filter parameters

Table I lists the parameters used in performed experiments.
The same parameters were used in all experiments in order to
assess the versatility of the PF with the same parameters in
different floor plan scenarios and RM configurations.

D. Results

The mobile unit was manually pushed in five trajectories
at a speed of ≈1 m/s, to construct the vRM. Test data was
collected from the mobile unit’s sensors and served as input
for the proposed PF. All annotated WSs were accumulated
in the vRM and used from one trajectory to the next one.
Therefore, the vRM used in the last trajectory includes all
WSs that were annotated in previous trajectories.

The positioning error reported in this section was obtained
by comparing estimated positions with ground truth data
collected by a video camera mounted in the mobile unit. The
video camera recorded tags affixed to the floor (in known
positions) when the mobile unit passes by them. The error
metric is the Euclidean distance between the position estimates
and the ground truth.

The PF was run for 9 experiments considering the com-
binations of 3 scenarios (cFP, pFP, and nFP) with 3 RM
configurations (VDR, vRM, and fRM). The PF was run three
times for each trajectory, and the results include position
estimates of all runs. The positioning results of performed
experiments are reported in Table II. As expected, the scenario
with better positioning results is the one that uses the complete
Floor Plan (cFP). In this scenario, the floor plan allows to
remove particles that hit walls or obstacles allowing to improve
estimates. In addition, this scenario is the one that better
performs with VDR, showing that an iRM is not necessary
to achieve good results. The scenario with the partial Floor
Plan (pFP) shows gradual improvements in the positioning
accuracy as a richer RM is used. As expected, the worst
results are observed with VDR, then the configuration with
vRM has improvements below the P99th, showing that this
scenario benefits from WSs that are added to the RM. This
is particularly important in open areas that are not mapped in
the floor plan, where drift in the heading can significantly
affect the estimated trajectory. The scenario with no Floor
Plan (nFP) is the most challenging, showing large errors
with VDR. This scenario has significant improvements in the
vRM configuration because of the annotated WSs. To annotate
WSs with higher accuracy, it is necessary an iRM, because it
allows to keep particles within the neighborhood of RPs which
minimizes the maximum error.

TABLE II: Positioning results for different scenarios and RM
configurations (in meters).

cFP pFP nFP
VDR vRM fRM VDR vRM fRM VDR vRM fRM

Mean 0.88 0.88 0.67 1.45 0.90 0.62 3.92 1.91 0.63
P75th 1.17 1.20 0.88 1.96 1.11 0.88 6.03 2.70 0.87
P99th 2.61 2.38 1.71 3.81 2.76 1.54 10.92 6.06 1.64
Max 2.89 4.27 2.34 3.84 3.90 2.12 24.70 7.56 3.53

cFP – complete FP; pFP – partial FP; nFP – no FP; VDR – vehicle DR;
vRM – vehicle RM; fRM – full RM.

All three scenarios (cFP, pFP and nFP) achieve the best
results with the fRM configuration because it allows to update
particles’ weights right from the beginning (particles initial-
ization), which consequently allows to minimize large errors
and improve the overall accuracy of the system. Since the
overall performance of the PF is improved, annotated WSs
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have a lower error associated. The scenario that benefits the
most from using the fRM configuration is the nFP scenario
because, without the floor plan, the only reference data used
to correct the drift is the iRM and the vRM.

Figs. 6a and 6b depict the estimated paths of the first
trajectory considering the nFP scenario. A clear improvement
is observed in the fRM estimated trajectory. The PF cor-
rects most of the drift in comparison to the vRM trajectory.
Figs. 6c and 6d show annotated WSs of the same trajectory,
demonstrating that the positioning error of the vast majority
of annotated samples is below 1 m. Annotated WSs do not
cover the whole trajectory since there were periods during
which confidence was lower than Cth. Less WSs are annotated
when considering only the vRM (Fig. 6c) because the PF does
not have any reference data that helps in removing particles.
When the fRM is provided (Fig. 6d) it allows to annotate
more samples, because the iRM has a significant impact on
the update weights process allowing the PF to have high
confidence during longer periods. Figs. 7a and 7b show the
confidence vs error of the same trajectory. In both cases, it is
observed that a higher density of position estimates is observed
when C > 0.6 typically with errors lower than 2 m (red
areas). When the confidence is lower than that, larger errors are
observed, especially in the vRM configuration because the PF
does not have reference data, and is not efficient in removing
particles. When the iRM is provided (fRM config), confidence
is high most of the time, with the exception of a few cases.

The CDF curves in Fig. 8 show that the best performance is
achieved in fRM configurations, followed by the combinations
pFP+vRM, cFP+vRM and cFP+VDR which have similar
results. For these configurations, over 90% of all position
estimates are below 2 m, therefore they are suitable for
building and maintaining vRMs. The remaining configurations
have larger errors, and should not be used for this application.
Gradually worse results are observed for the combinations
pFP+VDR, nFP+vRM and nFP+VDR, respectively. These
results show that the best tracking of industrial vehicles is
achieved when in fRM configurations, independently of the
scenario. In case the iRM is not available, indoor tracking is
possible in the cFP and pFP scenarios.

1) Computational Complexity - Optimization of Annotated Wi-
Fi samples: In previous experiments we used a large value
for kuw to consider all RM samples when updating weights.
This includes all annotated WSs and the iRM samples, in
cases where the iRM was used. As the number of annotated
WSs increases, the number of samples used in the update
weights process also increases, leading to a computational
complexity of O(n × log n). Since the number of particles
in the PF remains constant, the computational complexity
depends on kuw, therefore it should be a constant value. When
we used low values for kuw (e.g. kuw = 3, 5, 10), results
were worse, therefore it is important to use an adequate kuw
value and to determine which WSs should be selected. In
our experiments considering all WSs (i.e. large kuw), results
were better, showing that it is necessary to use WSs uniformly
dispersed through space.

In order to keep the computational complexity constant, we
implemented simple random sampling to limit the number of

(b)

(c)

(d)

(a)

Fig. 6: Trajectory 1 for the no Floor Plan (nFP) scenario.
Estimated trajectory: (a) vRM; (b) fRM. Annotated WSs: (c)
vRM; (d) fRM.

(a) (b)

Fig. 7: Confidence vs positioning error of trajectory 1 for the
no Floor Plan (nFP): (a) vRM; (b) fRM.
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Fig. 8: CDF curves of all scenarios and RM combinations.



10 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

WSs when updating particles’ weights. With this approach,
every time the particle’s weights are updated, a limited number
of WSs are sampled from the RM. WSs are selected based
on a uniform distribution, therefore each WSs has the same
probability of being selected resulting in a set of WSs that
are uniformly dispersed through space. The kuw used in these
experiments was the same as the number of WSs selected. Ta-
ble III shows the results of the nFP+fRM scenario considering
different numbers of WSs. A clear improvement is observed
as the number of WSs increases.

By limiting the number of WSs to 200 or higher it is
possible to achieve similar results to the ones that consider
all WSs, as reported in Table II. When the number of selected
WSs is larger than 200, results seem to stabilize, the main
difference is observed in the maximum error which tends
to decrease as the number of WSs increases. From 200 to
300 WSs, a major improvement is observed in the maximum
error. From 300 to 400, no significant improvements are
observed. Although the maximum error keeps improving when
the number of WSs is larger than 200, the P99th is stabilized
meaning that the maximum error can be attributed to a rare
occurrence, therefore, it seems that the cost-benefit between
the computational effort and the positioning performance
is best when 200 WSs are selected for updating particles’
weights. This shows that the computational complexity will
not be a hindrance to the positioning system.

A density of 200 WS/1000 m2 = 0.2 WS/m2 is enough
to ensure good positioning results because optimal positioning
results were achieved with 200 WSs for a building with an
area of about 1000 m2 (50x20 m). A similar performance is
expected in larger buildings as long as the same density of
WSs is ensured in the process to update particles’ weights.

TABLE III: Positioning results of nFP+fRM scenario using
simple random sampling to limit number of WSs.

No. of Wi-Fi Samples
25 50 100 150 200 300 400

Mean 2.68 2.03 0.89 0.71 0.63 0.63 0.63
P75th 4.15 3.05 1.02 0.99 0.89 0.87 0.86
P99th 10.43 5.87 4.49 2.53 1.71 1.66 1.69
Max 15.98 8.07 6.23 5.89 4.37 3.74 3.62

2) Vehicle Radio Map vs Traditional Radio Map: As pre-
viously mentioned, Wi-Fi RMs can be explored for many
applications including the localization of people or assets
in industrial environments. Therefore, vRMs can be of the
utmost importance to easily support plain Wi-Fi fingerprinting
applications. The only requirement is that a Wi-Fi-enabled
device is used to allow indoor localization.

To evaluate how the vRM performs in a Wi-Fi fingerprinting
scenario, we compared the positioning performance between
the iRM and the vRM obtained with plain Wi-Fi fingerprinting
using kNN with k = 5. In this experiment, the set of
WSs of trajectory 5 was considered as test data. As vRM,
we considered the WSs that were annotated in the other
4 trajectories, for the configurations cFP+vRM, pFP+vRM and
nFP+vRM which are the ones where annotated WSs are added
to the vRM and an iRM is not provided. Considered vRMs are

composed of a total of 1401, 1216, and 247 WSs in cFP+vRM,
pFP+vRM and nFP+vRM configurations, respectively. The
iRM is composed of 840 WSs, with 40 WSs collected at each
of the 21 RPs, depicted in Fig. 2.

Table IV presents the plain Wi-Fi fingerprinting results us-
ing the vRM of each scenario. As expected, the results of cFP
and pFP are better than the results of the nFP, because they
have more WSs and have lower positioning error associated.
Results of cFP and pFP are also better than the ones achieved
with the iRM. The results achieved with the iRM are slightly
worse than the ones achieved with the vRMs in cFP and pFP
scenarios, which is expected because the vRMs have more
samples with a lower distance between neighboring samples.
Worse results are observed in the nFP scenario because there
is an area of the building without any annotated WSs. In this
configuration (nFP+vRM), there is no floor plan to assist in
removing particles and there is no iRM, therefore it is not able
to annotate WSs in some areas because there is not enough
confidence in position estimates. As previously stated, in order
to properly construct a vRM in a scenario without a floor
plan, it is necessary to use the iRM. For that configuration
(nFP+fRM), Wi-Fi fingerprinting results are on par with the
ones achieved with the other configurations with a mean error
of 1.42 m, P99th of 5.54 m and a maximum error of 6.28 m.

TABLE IV: Plain Wi-Fi fingerprinting results (in meters) of
each scenario in comparison to an iRM.

cFP+vRM pFP+vRM nFP+vRM iRM
(grid 5x5m)

Mean 1.32 1.24 6.66 1.50
P75th 1.69 1.59 8.34 2.24
P99th 3.57 4.18 33.93 5.40
Max 4.98 6.04 34.31 7.51

cFP – complete FP; pFP – partial FP; nFP – no FP; vRM – vehicle RM; iRM – initial RM.

3) Comparison with Similar Systems: In Table V a compar-
ison is made between our approach and other solutions for
the construction and maintenance of RMs. It compares the
techniques for localization, the sensors used, if the system
depends on user’s feedback, whether a RM is obtained from
a site survey or from interpolation, and the performance of
Wi-Fi fingerprinting achieved.

The proposed system achieved the best Wi-Fi fingerprinting
results with the automatically built vRMs. The advantage of
using dedicated sensors (i.e. IMU and wheel encoder) to
track the vehicle’s movement is that it leads to lower error
in annotated WSs, which consequently leads to better Wi-Fi
fingerprinting results. Using Wi-Fi fingerprinting, the proposed
solution achieved 1.32 m, 1.24 m and 1.42 m mean error in
cFP+vRM, pFP+vRM and nFP+fRM scenarios, respectively.
In [16] an unmanned ground vehicle is used to map the space
and collect SOP from Wi-Fi, magnetometer and light sensors.
It achieved a mean error of 1.89 m with Wi-Fi fingerprinting
using the automatically build RM. This solution is more
expensive than the proposed one, as it requires several sensors,
including a LiDAR. The advantages of this solution are that
it does not depend on the initial pose of the device and the
floor plan, since it uses the LiDAR sensor to generate the
map of the space. In [15], the mobile robot equipped with
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TABLE V: Comparison of similar systems for the construction
of RMs.

Solution Technology Sensor(s) /
Device(s)

UF* Type Initial
RM

Mean
Error (m)

Proposed
solution

Particle Filter IMU, wheel encoder, Wi-
Fi

No Site
survey

No
No
Yes

1.32 (cFP+vRM)
1.24 (pFP+vRM)
1.43 (nFP+fRM)

[16] IMLE LiDAR, magnetometer,
light sensor, Wi-Fi

No Site
survey

No 1.89

[15] Visual Odometry
+ Particle Filter

Kinect camera, sonars,
wheel encoder

No Site
survey

No 5.2

[24] GP-LVM Laptop (Wi-Fi) No Interpo-
lation

No 3.97

[22] Wi-Fi
fingerprinting

Smartphone (Wi-Fi) Yes Site
survey

Yes Between 2 and
4 m

[20] PDR Smartphone (Wi-Fi+IMU) No Site
survey

No 6.9

*UF – User feedback; cFP: complete FP; pFP – partial FP; nFP – no FP; vRM – vehicle RM; fRM – full RM.

sensors is capable of locating itself using DR and QR codes
which are observed by the camera, thus it does not need an
iRM. As a disadvantage, it explores several sensors such as
sonars, a wheel encoder, and a camera that are more expensive
than the ones used in our system. In [24] Gaussian process
latent variable models are applied to estimate the locations of
WSs collected by a person walking through a building. This
process allows to estimate signal strength levels in the building
similar to the ones obtained in an iRM. Systems that depend
on users’ feedback [21, 22], are susceptible to malicious users
that can feed the system with wrong information hindering
performance and they also require the iRM. Our solution does
not depend on users’ feedback since it self-assesses whether
the estimated position is reliable enough in order to annotate
a WS, besides, it does depend on a RM to function, but it
is basic with low density. Without any training (calibration)
cost and only relying on PDR, the system in [20] depends on
users’ daily routine to build RMs, achieving an average error
of 6.9 m with Wi-Fi fingerprinting.

V. RM CONSTRUCTION AND MAINTENANCE - EFFORT

As previously mentioned, the construction and maintenance
of RMs is probably the main disadvantage of Wi-Fi-based
indoor positioning solutions since it requires time and effort
to collect WSs. There are some techniques for optimizing
or automating the RM construction process (presented in
Section II), however many systems still use manually collected
RMs. In this section we compare the time and effort it takes
to manually construct a building’s RM to the time it takes to
construct the RM using the solution presented in this paper,
considering the building used in experiments as an example.

The first step in the construction of a RM consists of
mapping RPs by measuring and determining the coordinates
of each RP. 21 RPs were mapped at the PIEP building for
a grid of ≈5 m between neighbor RPs. Then, the surveying
process comprises the collection of WSs at the position of each
RP. It is important to highlight that many indoor positioning
systems based on RMs use denser grids with many more RPs,
therefore they take a longer time to complete.

We have spent a total of 5 man/hours to map RPs at
PIEP, and 0.6 man/hours to survey the building. The site
survey process considered 21 RPs ∗ 80 s = 28 min, with

the collection of 40 WSs per RP (time interval between
consecutive WS is around 2 s), additional time is necessary
to move from the one RP to the next. The total time spent on
the manual construction of the iRM at the PIEP building is
5.6 man/hours, although it is important to note that the duration
of these tasks is proportional to the building size because larger
buildings require more RPs.

In the performed experiments, it took only 53 minutes
(accumulated time of trajectories) to obtain the vRM of the
building with zero effort since it explores the vehicles that are
operating in the factory to map the space. Contrarily to RMs
that have to be manually updated, this solution automatically
keeps the RM up to date without additional effort.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we addressed the problem of deploying an
IPS in a real industrial environment. The main challenges are
related to the construction of the RM and the diversity of
industrial spaces that can have different floor plan scenarios.
The proposed solution is suitable for different scenarios, i.e.,
considering a complete Floor Plan (cFP), a partial Floor Plan
(pFP) or no Floor Plan (nFP); and allows to automatically
build the RM using industrial vehicles equipped with low-cost
sensors. The IPS deployment effort is significantly reduced
because this solution does not depend on any calibration,
installation of infrastructure, or human effort to build the
RM. Localization/tracking of vehicles is enabled by a PF that
merges Wi-Fi with motion sensors data, allowing vehicles to
annotate and add WSs to the vRM based on a reliability metric.

Experiments in an industrial building showed that, with
accurate tracking provided by the PF, industrial vehicles can
successfully build vRMs in different floor plan scenarios. Wi-
Fi fingerprinting results revealed that vRMs perform better
than a traditional RM (grid of ≈5 m). VRMs can be used
to locate people and improve safety, essential in an industrial
context where vehicles and people interact frequently, as well
as to locate assets, enhance operations and logistics processes
by tracking vehicles. For instance, tracking vehicles allows to
gather data that can be used to optimize routes and assets’
locations to improve efficiency.

As future work, we intend to conduct experiments with
real industrial vehicles and explore ways to optimize vRMs.
In a matter of hours, a large number of WSs are annotated
and added to the RM, therefore, it is necessary to optimize
the RM. Also as future work, we plan to use two low-
cost IMUs simultaneously. Sensor fusion techniques may be
applied in raw measurements from IMUs to minimize drift and
magnetic perturbations that affect the estimated heading. These
sensors may also be used to estimate displacement through the
integration of accelerometer data. If displacement estimates
obtained from low-cost IMUs are reliable, it would allow to
improve the displacement estimates or track the vehicle with
just the IMU, eliminating the need for the encoder.
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