
 
 

 
 

U
M

in
h

o
 |

 2
0

2
0

 
 

Fá
ti

m
a 

So
la

n
ge

 S
ilv

a 
C

h
ar

ac
te

ri
zi

n
g 

an
d

 
re

ve
al

in
g 

b
io

m
ar

ke
rs

 
o

n
 

p
at

ie
n

ts
 

w
it

h
 

C
e

re
b

ra
l 

A
m

yl
o

id
 

A
n

gi
o

p
at

h
y 

u
si

n
g 

A
rt

if
ic

ia
l I

n
te

lli
ge

n
ce

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

September 2020 

Fátima Solange Lima Rezende da  Silva 

Characterizing and revealing 

biomarkers on patients with Cerebral 

Amyloid Angiopathy using Artificial 

Intelligence  

 



 
 

 
 

 

 



 

   i 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Characterizing and revealing biomarkers on 
patients with Cerebral Amyloid Angiopathy 
using Artificial Intelligence 

Fátima Solange Silva 

Master Dissertation 

Master’s degree in bioinformatics 
 
 
Dissertation supervised by 
Victor Alves 
Tiago Gil Oliveira 
 
 
 
September 2020 



 

   i 

DECLARATION 

Name: Fátima Solange Silva 

Dissertation Title: Characterizing and revealing biomarkers on patients with Cerebral Amyloid 

Angiopathy using Artificial Intelligence. 

Supervisors: Victor Manuel Rodrigues Alves, Tiago Gil Oliveira 

Conclusion Year: 2020 

Master Designation: Mestrado em Bioinformática 

Master Branch: Tecnologias de Informação 

 

I declare that I grant to the University of Minho and its agents a non-exclusive license to file 

and make available through its repository, in the conditions indicated below, my dissertation, 

as a whole or partially, in digital support.  

I declare that I authorize the University of Minho to file more than one copy of the dissertation 

and, without altering its contents, to convert the dissertation to any format or support, for the 

purpose of preservation and access. 

Furthermore, I retain all copyrights related to the dissertation and the right to use it in future 

works. 

I authorize the partial reproduction of this dissertation for the purpose of investigation by 

means of a written declaration of the interested person or entity.  

This is an academic work that can be used by third parties if internationally accepted rules and 

good practice with regard to copyright and related rights are respected. 

Thus, the present work can be used under the terms of the license indicated below. 

In case the user needs permission to be able to make use of the work in conditions not 

foreseen in the indicated licensing, he should contact the author through the RepositoriUM 

of the University of Minho. 

 

 

Atribuição-NãoComercial-SemDerivações  
CC BY-NC-ND  

https://creativecommons.org/licenses/by-nc-nd/4.0/ 

Universidade do Minho, 11 /September /2020 

https://creativecommons.org/licenses/by-nc-nd/4.0/


 

   ii 

 

Signature: ___________________________________ 

 

Acknowledgements 

I would like to thank Rui Lebre, who was always there to support and push me to go further 

and share his wisdom. To António Neves and Alina Trifan, for lighting the way and never give 

up on me. The cheers from the three of you made the path easier and enjoyable.  

I would also like to thank my parents and siblings for the support and patience.  

To all my friends, thank you for your presence and friendship, which were essential during this 

period.  

Last, but not least, I would like to thank my supervisors at University of Minho, Victor Alves 

and Tiago Gil Oliveira, I am grateful for the support and availability throughout the 

development of the project.  

To my beloved ones, I dedicate this dissertation. 

 

  



 

   iii 

STATEMENT OF INTEGRITY 

I hereby declare having conducted this academic work with integrity. I confirm that I have not 

used plagiarism or any form of undue use of information or falsification of results along the 

process leading to its elaboration.  

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University 

of Minho. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Universidade do Minho, 11/ September/2020 

 

Signature: ________________________________________ 



 

   iv 

[This page intentionally left blank]  



 

   v 

ABSTRACT 

Cerebral Amyloid Angiopathy is a cerebrovascular disorder resulting from the deposition of an 

amyloidogenic protein in small and medium sized cortical and leptomeningeal vessels. A 

primary cause of spontaneous intracerebral haemorrhages, it manifests predominantly in the 

elder population. Although CAA is a common neuropathological finding on itself, it is also 

known to frequently occur in conjunction with Alzheimer’s disease, being sometimes 

misdiagnosed.  

Currently, CAA diagnosis is generally conducted by post-mortem examination or, in live 

patients by the examination of an evacuated hematoma or brain biopsy samples, which are 

typically unavailable. Therefore, a reliable and non-invasive method for diagnosing CAA would 

facilitate the clinical decision making and accelerate the clinical intervention. 

The main goal of this dissertation is to study the application of Machine Learning (ML) to reveal 

possible biomarkers to aid the diagnosis and early medical intervention, and better 

understand the disease. Therefore, three scenarios were tested: Classification of four 

neurodegenerative diseases with annotation data obtained from visual rating scores, age and 

gender; Classification of the diseases with radiomic data derived from the patient’s MRI; and 

a combination of the previous experiments. The results show that the application of Artificial 

intelligence in the medical field brings advantages to support the physicians in the decision-

making process and, at some point, make a correct prediction of the disease label.  

 Although the results are satisfactory, there are still improvements to be done. For instance, 

image segmentation of cerebral lesions or brain regions and additional clinical information of 

the patients would be of value. 

 

Keywords: Machine learning, CAA, Medical imaging, MRI, biomarkers, Artificial 

intelligence 
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RESUMO 

Angiopatia Amiloide Cerebral (AAC) é uma doença vascular cerebral resultante da deposição 

de matéria amiloide. Principal causa de hemorragias cerebral espontâneas, a AAC manifesta-

se predominantemente na população idosa. Embora a AAC seja uma doença que por si só tem 

um grande impacto no grupo etário referido, ocorre em simultâneo com inúmeras outras 

doenças neurodegenerativas, como a doença de Alzheimer. Atualmente, o diagnóstico de AAC 

realiza-se quer em post-mortem, quer em pacientes vivos. No entanto, o diagnóstico em vida 

é conseguido por meio de biópsias de tecidos cerebrais, sendo um método invasivo, o que 

dificulta a intervenção clínica. Deste modo, torna-se imperativa a procura de alternativas 

fiáveis e não invasivas em vida para auxiliar o diagnóstico da doença e permitir a melhoria da 

qualidade de vida do paciente. Perante os progressos na área da tecnologia e medicina, esta 

dissertação propõe o estudo da aplicação de algoritmos de Machine Learning (ML) para 

revelar possíveis biomarcadores para auxiliar o diagnóstico e permitir uma intervenção 

precoce. Deste modo, foram testados três cenários distintos:  a classificação de quatro 

doenças neurodegenerativas com dados anotados obtidos a partir de métricas visuais de 

avaliação da atrofia, idade e sexo; a classificação das doenças com dados gerados a partir de 

métodos radiómicos; e uma combinação das duas abordagens anteriores.  

Neste documento apresenta-se e discute-se os resultados obtidos com a aplicação de quatro 

diferentes algoritmos de ML que visam a deteção automática da doença associada à imagem 

testada. Adicionalmente, é feita uma análise crítica de quais as características mais relevantes 

que levaram à tomada de decisão por parte do algoritmo. Os resultados demonstram que 

através de aplicação de metodologias automáticas é possível o auxílio ao diagnostico médico 

por especialistas e, no limite, a realização de diagnostico automático com elevada precisão. 

Finalmente, são apresentadas possíveis alternativas de trabalho futuro para que os resultados 

possam ser aperfeiçoados, como por exemplo, a segmentação das regiões de interesse, i.e., 

identificação das lesões, aquando da anotação por especialistas. Mediante a inclusão dessa 

segmentação, uma vez que será mais especifica, os resultados serão, por sua vez, 

aprimorados. 

 

Palavras-Chave: Machine learning, AAC, Imagiologia médica, Imagem por Ressonância 

Magnética, biomarcadores, Inteligência Artificial 
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GLOSSARY 

  

Artificial 
Intelligence (AI) 

Computer science programs developed to simulate the human and 
animal intelligence, particularly the ability to learn and make 
decisions, to perform tasks and solve problems. 

  

Artificial Neural 
Networks (ANN) 

A model inspired by the activity of the brain and nervous system, 
composed by layers, consisting of processing units are interconnected 
by nodes. 
 

Class In machine learning, class refers to the category of the data, or the 
labels in a dataset. 

  

Dataset A collection of data. The data contains features and, in the case of 
supervised training, labels. 

  

Deep Learning 
(DL) 

A subfield of the Machine Learning methods, capable of unsupervised 
learning to classify the data provided. 

  
DICOM Digital Imaging and Communications in Medicine (DICOM) is the 

international standard to transmit, store, retrieve, print, process, and display 
information in medical imaging.  

  

Feature In Machine Learning, a feature expresses the information of an 
attribute.  

  

Machine Learning 
(ML) 

An approach to achieving Artificial Intelligence, where a computer is 
trained using specific algorithms and a large amount of data to gain 
the ability to adapt to new situations and predict patterns. 

  

Magnetic 
Resonance 

Imaging (MRI) 

A non-invasive imaging technique based on the absorption and 
emission of energy at a specific frequency. MRI is widely used to assist 
the clinical and research fields. 

  
NIFTI Neuroimaging Informatics Technology Initiative (NIFTI) is a format 

commonly adopted in neuroimaging to store brain imaging data. 
  

Pixel Picture element that defines a unit of information in two-dimensional 
space.  

  
Region of Interest 

(ROI)  
Contours or surfaces outlining the boundaries of an object on an image or 
volume. 

  

Skull Stripping Method of removing non-brain tissues (e.g. bone, scalp, veins) from 
MRI. 

  



 

   xv 

Soft Tissue Tissues that support other structures and organs of the body, such as 
tendons, fibrous tissues, fat, muscles, nerves and blood vessels. 

  

Test set The subset of the dataset used to test the model after the training 
phase. 

  

Train set The subset of the dataset used to train a model. 
  

Voxel Volume element that represents a value in the three-dimensional 
space. 

  

 

  



 

   xvi 

[This page intentionally left blank] 
 
 



 
 

 
 

  

1 INTRODUCTION 



 

   2 

1.1 CONTEXT AND MOTIVATION 

Cerebral amyloid angiopathy (CAA) is a disease with inflammatory characteristics resulting 

from amyloid-beta (Aß) deposition in the small and medium calibre vasculature of the cerebral 

cortex and leptomeninges. It is the primary cause of spontaneous intracranial haemorrhagic 

events. Accumulation of these amyloid deposits occurs mostly in the posterior cortical arterial 

microvasculature and larger vessels such as cerebral veins and venules [1], [2]. CAA is a 

common cause of lobar haemorrhage, and in most cases is sporadic. Its clinical course is slow 

and often silent, manifesting predominantly in the elderly population with haemorrhagic 

events [3]. CAA predominates in an elderly population, and co-exists in about 80% of 

Alzheimer's patients, and may play a key role in the pathogenicity of this dementia, in addition 

to intracerebral and infarct haemorrhages [2]. The symptoms of CAA include changes in the 

nervous system, which may suddenly manifest, leading to delirium, confusion, weakness, 

paralysis, or joint problems [4], [5]. 

With the advances on the medical and technological fields, a higher impact of imaging and 

biochemical approaches in medical decision making would be expected, providing a spectrum 

of accessible and valuable information on the amyloid deposits and consequences in the 

cerebral vasculature. However, currently tests for cerebral amyloid angiopathy are still at an 

early stage, and the diagnosis is therefore based only post-mortem tissue analysis. Given the 

inaccessibility of brain tissue in life, diagnostic approaches will have to undergo indirect 

methods such as magnetic resonance imaging (MRI) analysis [4], [5]. 

In order to standardize the diagnosis of CAA, the Boston criteria were proposed in 1995, based 

on imaging and clinical data. These comprise a combination of clinical, imaging, and 

pathological parameters that allow a probable diagnosis to be made in living patients in the 

absence of brain tissue. The criterion for identifying CAA was therefore divided into three 

categories: possible CAA, probable CAA, and definitive CAA. Definitive autopsy based CCA 

requires an extraordinary level of neuropathological severity, including features of advanced 

vasculopathy, revealing lobar, cortical or subcortical haemorrhagic evidence. Probable CAA 

supported by MRI is the most certain level of diagnosis without the use of neuronal tissues. It 

allows the evaluation and counting of microhaemorrhages in the cortical and lobar grooves 

and intracerebral haemorrhages. Finally, probable CAA may also be supported by pathological 

evidence from biopsies [5]. 
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 Pittsburgh Compound Positron Emission Tomography (PET-PIB) and magnetic resonance 

assisted with mapping such as GRE (Gradient - Recall Echo) and SWI (Susceptibility - Weighted 

Imaging) stand out in the line of complementary diagnostic directed examinations although 

they do not yet offer objective and effective results in its diagnosis. The cerebrospinal fluid 

analysis, namely Aß-40 and tau protein levels also stand out as auxiliaries for the diagnosis of 

this disease, but its specificity is low [6]. 

Although the medical and technological fields have been witnessing extraordinary advances, 

currently the approaches used for the detection of Cerebral Amyloid Angiopathy are still at an 

early stage, as the diagnosis is still focussed on the analysis of post-mortem tissues. An 

evolution on the complementary diagnostic tools, either in imageology or biochemistry, would 

be expected. Furthermore, the existing studies focus either on the MRI scans or on the clinical 

information and sum scores of visual metrics.  

 

1.2 THE PROBLEM 

Over the last years, Artificial Intelligence algorithms have been extensively used in the medical 

field. AI approaches are used for image segmentation, diagnostic prediction, and to provide 

tools to aid in the medical decision making. 

Making accurate and life-time diagnoses becomes increasingly mandatory. Early diagnosis is 

crucial for the patient to be followed in life. To this end, the present study is proposed to 

identify clinical markers based on brain atrophy assessment metrics (proposed by Harper et 

al.) [7], quantification of hypertensive lesions in the white matter [8], evaluation enlargement 

of perivascular spaces in the basal ganglia, quantification of microhaemorrhages, evaluation 

of relative density of perivascular spaces, and finally, identification of new imaging biomarkers 

using artificial intelligence (AI) tools. These metrics will be compared using as control groups 

other diagnosed neurodegenerative diseases (Alzheimer's disease, Mild Cognitive 

Impairment, or Parkinson's disease). 

This study brings the novelty of the association with clinical data obtained from the evaluation 

of MRI scans by trained research physicians, and Radiomics data obtained after image 

segmentation. 
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1.3 OBJECTIVES 

The main goal of this  thesis is to study the application of AI tools to aid in CAA diagnostic, 

providing data to aid in the early prediction and diagnostic of the disease, thus enabling the 

patient to have access to appropriate and early medical intervention. 

For instance, the work will go through the development of several machine learning models 

to predict four diagnosed diseases: Cerebral Amyloid Angiopathy, Alzheimer’s disease, 

Parkinson’s disease dementia, and Mild cognitive impairment. The outcome and accuracy of 

the models will be assessed, to determine the biomarkers that better describe the data.  

The work will address the following topics: 

• Evaluate and classify clinically and analytically MRI of patients diagnosed with Cerebral 

Amyloid Angiopathy (CAA), Alzheimer’s disease (AD), Parkinson’s Disease Dementia (PDD), 

and Mild cognitive impairment (MCI), followed mostly at the Braga Hospital (Internal Medicine 

Service, Neuroradiology); 

• Identify pathological factors predicting the occurrence of cerebral haemorrhagic 

events, in addition to vascular changes and cerebral atrophy; 

• Identify associations between disease manifestation profile and possible markers such 

as gender, age and brain injury; 

• Compare findings with other neurodegenerative diseases’ studies. 

 

1.4 STRUCTURE OF THE DISSERTATION 

The manuscript is structured in 5 chapters, starting with the current one introducing the 

reader to the disease, the motivation and objectives of the study. Next, follows a theoretical 

chapter regarding the disease’s general features, morphological aspects, pathology, and 

diagnosis. 

The third chapter starts by making a brief overview of the contents and technologies used in 

the work, including the data acquisition, the visual ratings for evaluation of neurodegenerative 

diseases, and magnetic resonance imaging. Also, some insights about machine learning 

approaches can be read. 

On the fourth chapter, the materials and methods are presented in three experiments, 

describing the data used for the studies, and the techniques carried on for data acquisition 

and creation of Datasets, and all of the steps from data preparation to the creation of ML 
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models for classification purposes, ending with the results for each experiment. Finally, the 

fifth chapter ends with the conclusions and future work.



 
 

 
 

 

 

 

  

2 CEREBRAL AMYLOID 

ANGIOPATHY 
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Cerebral amyloid angiopathy (CAA), is the term used to define a cerebral small vessel disease 

(SVD) characterised by the presence of amyloid-beta (Aβ) [9] protein within blood vessel walls 

of small and medium-sized cortical and leptomeningeal arteries, arterioles, capillaries, and 

veins [10]. Described pathologically in the early 20th century, CAA is a condition of increasing 

clinical importance.  

CAA is a pathological hallmark of Alzheimer’s disease, being present in almost 90% of AD cases 

[9]. This type 2 small vessel disease also occurs in rare hereditary diseases and in other 

disorders such as Down’s syndrome [10]. This angiopathy is frequently found in the general 

elder population, with its incidence increasing with age [10], [11]. Large lobar haemorrhages, 

microbleeds, and ischemic changes such as white matter lesion and microinfarcts, are typically 

associated with the development of the disease [4], [12]. 

It occurs as sporadic or familiar forms with several amyloid proteins involved, being firmly 

associated with intracerebral haemorrhage (ICH). As mentioned before, amyloid proteins are 

cleaved by a precursor before they are deposited [12], [13]. In hereditary disease forms, 

mutations lead to amino acid substitutions or elongation of the precursor proteins, resulting 

in the mutation of amyloid proteins with different aggregation properties or the increase in 

proteolytic cleavage of the amyloid protein from its precursor, increasing Aβ production [14].  

The most common type of CAA is caused by Aβ deposition, thus termed as Aβ-CAA. This form, 

is associated with sporadic and familial AD, occurring also as a hereditary cerebral 

haemorrhage disorder, as amyloidosis-Dutch type (HCHWA-D) and similar familial disorders, 

or in normal aging in the elderly [11], [12]. 

 

2.1 MORPHOLOGICAL ASPECTS 

CAA results from a chronic degenerative process by which the media of parenchymal 

arterioles undergoes progressive loss of its muscle cells with simultaneous accumulation of an 

eosinophilic hyaline material [15], [16], mostly composed of the more soluble, amyloid-β40 

Aβ species, contrasting with the amyloid plaques found in AD, predominantly composed of 

amyloid-β42 species [17].  

The vessels affected by amyloid-β accumulation undergo secondary vasculopathy changes, 

from fibrinoid necrosis, loss of smooth muscle cells, wall thickening, and microaneurysm 

formation, to the deposition of blood breakdown products in perivascular vessels [10], [16].  
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In the most severe form of cerebral amyloid angiopathy, the vessels become dilated and 

disrupted [17], with focal wall fragmentation and blood extravasation, with or without micro-

aneurysmal dilatation, and sometimes show luminal occlusion [18]. 

Light microscopically, a green appearance under polarized light when stained with Congo red 

dye and the fluorescent appearance under ultraviolet light when stained with thioflavin S are 

specific histological features of cerebral amyloid angiopathy. Another typical feature on light 

microscopy is the “double barrel” appearance given by the splitting of the internal elastic 

lamina caused by the deposition of hyaline material in the vessel wall [19], [20]. 

The cortex, particularly the occipital lobe, is frequently the most affected cerebral region by 

Aβ-CAA [21]. Hippocampus, cerebellum and basal ganglia are less affected while deep central 

grey matter, subcortical white matter and brain stem usually show no vascular amyloid 

alterations [22]. Veins and capillaries tend to be less frequently affected by vascular Aβ 

deposits, while leptomeningeal and cortical small and medium sized arteries and arterioles 

are the most affected [21], [23]. Figure 2.1 represents cerebral blood vessels with amyloid 

deposition (A- C) and amyloid progressive accumulation, resulting in smooth muscle cell loss 

(D–F) in a sporadic CAA case with multiple cerebral haemorrhages. The arrow at F points at a 

preserved smooth muscle cell [24]. 

 

 

Figure 2.1- Deposition of amyloid in Cerebral blood vessels followed by progressive loss of smooth muscle cells 
(Adapted from Revesz et al.) 
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2.2 PATHOLOGICAL SUBTYPES OF CAA 

Cerebral amyloid angiopathy can be divided into sporadic (spontaneous) and familial or 

hereditary forms. Mutations in the gene encoding the APP account for some rare (usually 

autosomal dominant) forms of CAA, including CAA-Dutch type [25]. Familial non-amyloid-β 

forms of CAA include familial British dementia, familial Danish dementia and Icelandic cystatin 

C mutation. In general, hereditary forms of CAA have an earlier onset and more severe clinical 

manifestations than sporadic CAA [25], [26].  

Although exceptionally rare, familial CAAs have provided significant insights on how mutations 

in the coding region of the APP contribute to CAA pathogenesis: for example, the Iowa, Dutch, 

Italian, and Arctic mutations render amyloid-β highly toxic to vessel wall components, and 

more resistant to proteolytic degradation or clearance from the brain [10], [27], [28]. 

At least two distinct pathological subtypes of sporadic CAA have been described: CAA-type 1, 

characterized by amyloid-β in cortical capillaries (with or without involvement of other 

vessels) [29], [30]; and CAA-type 2, where amyloid-β deposits are restricted to leptomeningeal 

and cortical arteries, arterioles and, rarely, veins [30]. Amyloid-β deposition in the wall of 

capillaries may cause luminal obstruction in the most severe stages [18]. The APOE ε4 allele is 

most strongly associated with CAA-type 1, while APOE ε2 is more associated with CAA-type 2. 

CAA-type 1 appears to be more closely associated with parenchymal amyloid deposition in 

Alzheimer’s disease [30]. 

 

2.2.1 HEREDITARY AB- CAA 

Hereditary CAA can be classified in Aβ and non- Aβ forms, based on the peptide accumulated. 

The first β-amyloid precursor protein (APP) mutation was discovered in 1990, in two Dutch 

families. A familial occurrence of CAA had already been described in 1964, considering severe 

CAA the pathological cause of the disease [31]. Familial cerebral amyloid angiopathy describes 

a group of rare disorders usually autosomal dominant disorders. Many of these disorders are 

specific to a few families, striking at an earlier age of onset, differing from the spontaneous 

CAA, typically affecting at middle to late middle age [2], [32].  

Another type of hereditary CAA, Amyloidosis-Dutch type (HCHWA-D) occurs due to the 

heterozygous mutation at the codon 693 of the APP gene, corresponding to the amino acid 22 

of Aβ [33]. The first nucleotide of the triplet is mutated, resulting in the substitution of the 
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original codon GAA to CAA, thus resulting in the substitution of glutamine amino acid for 

glutamic acid [34].  

Furthermore, experimental studies on the Dutch variant revealed an increase in mutated Aβ 

toxicity towards vascular cells, reflecting on large lobar intracerebral haemorrhages, cognitive 

deterioration associated with white matter abnormalities, and small ischemic infarctions and 

haemorrhages [34]. Besides the Dutch mutation, four other Aβ related mutations located 

between the 21st and 23rd amino acids have been described [33].   

The Flemish (A692G Flemish mutation), Italian (APP E693K, caused by the substitution of 

glutamic acid by lysine at residue 22), Arctic, Iowa, and Spanish types were found to have an 

association with severe CAA, and also dementia compatible with AD, clinically and 

neuropathologically [35]–[38]. In the Italian type, amyloid deposits are found in cerebral 

parenchyma and meningocortical vessels. Patients suffer from stroke, cognitive decline, and 

in some cases seizures [39].  

The Artic type, from Northern Sweden, is affected by the glutamic acid substitution for glycine, 

reflecting on subjects with clinical features of early AD and no signs of strokes or vascular 

lesions on brain imaging [35]. Iowa mutation type occurs at position 23 of Aβ and causes 

severe amyloid angiopathy, dementia, occipital calcifications, and small ischemic infarctions 

[37], [39]. A similar mutation has been recently found on a Spanish family, showing similar 

pathological features, besides the development of symptomatic intracerebral haemorrhagic 

stroke [38]. CAA has also been described as a key feature in a German familial AD mutation in 

the PS2 gene, reporting cases of cerebral haemorrhages [40]. 

 Although severe cases of CAA may not result of APP mutations, they can be associated with 

AD in result of mutations in the presenilin-1 (PS1) and presenilin-2 (PS2) genes [41]. Extensive 

and widespread CAA are caused by The PS1 mutations and PS1 deletions, with the abundance 

of amyloid plaques having an important role as well [42], [43].  

CAA pathology has been shown to be more severe when the mutation occurs beyond codon 

200 of the PS1 gene [44]. 

 

2.2.2 HEREDITARY FORMS OF CAAS CAUSED BY NON-AΒ PROTEINS 

Besides Aβ, the deposition of other amyloid proteins has originated several forms of familial 

CAAs. Hereditary forms of CAA are generally more severe, and present earlier age of onset 
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and neurodegeneration/death. These rare hereditary forms tend to present in the form of 

autosomal dominant disorders.  

The most common disease forms caused by these amyloid proteins are the HCHWA-Icelandic 

type, Familial British and Danish dementia, CAA related to Prion Protein Amyloidosis, and 

Finnish familial amyloidosis [45], [46]. 

The non-Aβ Icelandic type has an early onset and results in fatal cerebral haemorrhages on 

half of the mutated patients. The ones who survive the haemorrhage may be left with 

cognitive decline and dementia. Brain imaging shows severe amyloid deposits within small 

arteries and arterioles of leptomeninges, cerebral cortex, basal ganglia, brainstem, and 

cerebellum. Furthermore, amyloid deposits can be found in salivary glands, and peripheral 

and lymphoid tissues [45]. 

The truncated N-terminal amyloid protein bears a substitution mutation (Alanine for Tyrosine) 

at codon 68 of the Cystatin C, resulting in the substitution of glutamine for leucine amino acid 

[45], [46]. A cysteine protease inhibitor present in cortical neurons and the cerebrospinal fluid 

(CSF), Cystatin C level in the CSF of Icelandic disease type patients is about half of those 

measured in control patients [47].  

Since Cystatin C is also present in parenchymal and vascular Aβ deposits, it may present a role 

in the pathogenesis of other amyloidosis, AD and cerebral amyloid lesions familial dementias 

[18]. 

Familial British dementia (FBD) and familial Danish dementia (FDD) are autosomal dominant 

neurodegenerative diseases characterized by the elongation of the protein BriPP to genetic 

abnormalities [48], [49]. Hippocampal degeneration and Parenchymal and vascular amyloid 

deposits lesions lead to progressive cognitive decline, spasticity and cerebellar ataxia [10]. 

FBD is caused by a Tyrosine to alanine point mutation in the stop codon of BRI2, resulting in 

an extended 277 amino acid long protein, the ABriPP. Characterized by progressive dementia, 

ataxia, spastic tetraparesis, and in some rare cases, cerebral haemorrhage, FBD patients suffer 

from progressive memory loss, with disease onset around the sixth decade [50].  

Vascular amyloid accumulates in small arteries and arterioles in the leptomeninges, grey and 

white matter throughout the Central nervous system, and the striatum. In the retina, blood 

vessels are heavily affected by CAA, along with several other organs. 
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It has been associated to AD, with severe and widespread amyloid plaques, neurofibrillary 

degeneration, and phosphorylated tau proteins. These findings suggest that FBD might be a 

phenocopy of AD, with Abri being the equivalent to the Aβ protein [51]. 

BRI2 is a type II transmembrane protein with a 100 residue long conserved domain. This 

domain is found in 309 proteins. Although its exact physiological role is still unknown,  

it has been suggested to have several functions related to neuronal differentiation, stress 

response, and receptor on the cell surface [52]. 

FDD presents in an early stage of life with cataract and ocular haemorrhages, followed, some 

years later, with severe hearing loss. After the mid-age, the patient starts suffering from 

cerebellar ataxia followed by psychiatric disturbance and progressive dementia [53]. 

FDD is associated with a 10-nucleotide duplication between codons 265 and 266 of the BRI2 

gene. The resulting frameshift lacks the normal stop codon, leading, as well, to the production 

of a 277 amino acid long precursor protein (ADanPP) [50], [54]. 

 Wild type BRI2 and FBD-BRI2 are cleaved close to their C terminal by furin, protein 

convertases, releasing 23- and 34-aminoacid long mutated peptides, termed Bri and ABri, 

respectively [55]. Although the Bri peptide is not known to be amyloidogenic, the ABri peptide 

is found in perivascular and parenchymal deposits in the brain of affected individuals. 

Deposition of Aβ, either isolated or combined with ADan, in vessels and brain parenchyma are 

a feature of FDD [53], [56]. 

CAA related to Prion protein (PrP) amyloidosis is known as the GerstmannSträussler-Scheinker 

syndrome (GSS) variant, caused by a Tyrosin to Guanine mutation in the PRNP gene, resulting 

in a newly formed stop codon and truncated N- and C- terminal of PrP. 

In this case, PrP-immunoreactive CAA, prominent perivascular PrP deposits and neurofibrillary 

tangle pathology are the main findings of GSS neuropathology [24]. 

At last, familial amyloidosis-Finnish type (FAF) is a rare condition carrying mutated G654A or 

G654T gelsolin gene. Amyloid deposition in spinal, cerebral and meninges are traits of the 

disease, along with extravascular deposits in the spinal nerve roots and sensory ganglia [57], 

[58]. 

Amyloidosis caused by mutations on the transthyretin gene (TTR) result in the deposition of 

the transthyretin protein in extracellular spaces of several organs, progressing into late- onset 

autosomal dominant systemic diseases [59]. The Hungarian and Ohio pedigrees are examples 
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of the involvement of the meninges and brain parenchyma [60], [61]. Table 2.1 sums up both 

the Aβ and non- Aβ Hereditary forms of CAA. 

 

Table 2.1 - Hereditary CAA forms caused by Aβ and non- Aβ proteins. 

HEREDITARY CAAS 

DISEASE HCHWA -I HCHWA-D FBD FDD FAF PrP-CAA 

GENE CYST C APP BRI2 BRI2 GEL PRNP 

PRECURSOR 

PROTEIN 
Cystatin C 

Amyloid 

Precursor 

Protein (APP) 

Abri Precursor 

Protein 

(AbriPP) 

Abri Precursor 

Protein (AbriPP) 
Gelsolin (GEL) 

Prion Protein 

(PRP) 

AMYLOID 

PROTEIN 
ACys Aβ Abri ADan AGel APrP 

NOTES 

Recurrent lobar 

Haemorrhages; 

Age at onset: 

20-30 years. 

Lobar 

haemorrhages, 

dementia; 

Age at onset: 

50 years; 

Progressive 

dementia, 

cerebral 

ataxia, spastic 

tetraparesis; 

Age of onset: 

45 -50 years 

Cataracts, 

deafness, 

progressive 

ataxia, dementia; 

Age of onset: 30 

years. 

Progressive 

Lattice corneal 

dystrophy, 

chronic and 

peripheral 

neuropathy, 

cutaneous 

amyloidosis. 

Progressive 

cognitive 

decline. 

 

2.2.3 SPORADIC FORMS OF CAA 

There are two main forms of sporadic small vessel diseases. One is the sporadic cerebral 

Amyloid angiopathy (SCAA or Sporadic CAA), a chronic neurodegenerative disease that occurs 

with progressive deposition of amyloid-β in the media and adventitia of small arteries, 

arterioles and capillaries in the cerebral cortex [62]. The term used to name the remaining 

sporadic small vessel disease is “hypertensive arteriopathy”, an age-related disease affected 

by non-amyloid processes, related to hypertension, diabetes mellitus and several other risk 

vascular factors [63].  

Sporadic CAA is a term used to describe a group of age-related neuropathological processes 

affecting the small vessels in the brain. Small vessels encompass all small vascular structures 

(from 5 μm up to 2 mm), including arteries, arterioles, capillaries, venules and small veins 

located in the brain parenchyma [63], [64]. These vessels supply the brain cortex superficially, 
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reaching the grey matter and subcortical white matter, and the stem at the base of the brain, 

supplying the basal ganglia, thalami, and brainstem structures. Pathologies can affect 

differentially these two systems, or a range of vessels within each system [63]. 

Most CAA cases are sporadic and a common neuropathological finding in elderly individuals. 

The disease incidence and severity may vary, depending on the study and age of the patient 

[15]. Several reports have shown moderate to severe CAA to be present in up to 80% of AD 

cases [16], [17]. 

Age is the strongest known clinical risk factor for sporadic CAA [13]. Evidence has shown, from 

autopsies, that cortical vascular Aβ deposition progresses from the 7th to the 9th decades 

[14], and ICH affected patients older than 60 years. Other than age, although hypertension is 

not a risk factor, it can contribute to CAA related cerebral bleeding [65], [66].  

ApoE is a protein encoded by the APOE gene with crucial roles in lipoprotein complexes, 

responsible for the lipid metabolism regulation by binding to cell-surface receptors and 

proteins associated with lipid transfer and lipolysis [67], [68]. 

Apolipoprotein E (ApoE) is the only known genetic risk factor for both sporadic and familial 

CAA [67]. The ApoE is a gene located on chromosome 19 that exists as three alleles. There are 

three major polymorphisms in the APOE gene, ε4, ε2 and ε3, resulting in an amino acid change 

which alters the functional properties of APOE isoforms [68], [69].  

Data from the analysis of both post-mortem and clinical series has shown that APOE ε4, a 

known risk factor for AD, increases the risk of sporadic CAA-related lobar ICH by promoting 

amyloid-β deposition. Moreover, the number of ε4 alleles have a significant relation to clinical 

severity [67], [69]. 

ApoE ε2 promotes CAA- related haemorrhage due to the rupture of amyloid-laden vessels, 

thus increasing the risk of CAA-related lobar ICH, independent of AD [68]. Both alleles are also 

associated with a younger age of ICH onset, greater likelihood of hematoma expansion, poor 

clinical outcome, and a higher risk of recurrence. Furthermore, the two allelic variants may 

interact, resulting in patients with both APOE ε2 and ε4 alleles having the earliest disease 

onset and highest risk of early ICH recurrence [67], [70]. Other yet to identify genetic 

polymorphisms related to amyloid metabolic pathways may also play a role in sporadic CAA, 

(for example presenilin-1, neprilysin and transforming growth factor beta-1) [67], [71]. 

Depending on the type of vessel involved, at least two distinct pathological subtypes of CAA 

have been described: CAA-type 1 and CAA-type 2. CAA-type 1 is distinguished by the presence 
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of amyloid -β in meningeal and cortical arterioles, capillaries, veins and venules, while in CAA-

type 2, also known as large-vessel CAA, amyloid-β deposits are restricted to leptomeningeal 

and cortical arteries, arterioles, and in some cases, veins, sparing capillaries [29], [72]. 

Amyloid-β deposition in the wall of capillaries (capillary CAA) may cause luminal obstruction 

in the most severe stages. The APOE ε4 allele is most strongly associated with CAA-type 1, 

while APOE ε2 is more associated with CAA-type 2 [72]–[74]. Table 2.2 sums up the sporadic 

forms of CAA. 

 

Table 2.2 - Sporadic forms of CAA. 

SPORADIC CAAS 

DISEASE SCAA SAD 

GENE APP APP 

PRECURSOR PROTEIN Amyloid Precursor Protein (APP) Amyloid Precursor Protein (APP) 

AMYLOID PROTEIN Aβ Aβ 

NOTES 
Related to the increased risk for 

lobar ICH. 

CAA associated with AD; Associated 

to presenilin-1 and presenilin-2 

mutations. 

 

 

 

2.3 CLINICAL CONSEQUENCES OF CAA 

CAA is the most common cause of spontaneous, lobar ICH, particularly in patients over the 

age of 75. Approximately up to 10% of the lobar haemorrhages in non‐hypertensive elderly 

individuals are related to CAA [13]. CAA affects preferentially the cortical or cortico-subcortical 

regions (especially the occipital and temporal lobes), the cerebellum and, less commonly, 

deep or brainstem structures [15], [16].  

The clinical manifestation of CAA, regarding ICH incidents, depends on the haemorrhage size 

and location. Brains with intracerebral bleeding caused by CAA show extensive amyloid 

deposition in blood vessel walls and evidence of disruption of vascular architecture by amyloid 

accumulation, such as cracking, microaneurysms and fibrinoid necrosis [17]. Vessel 

dysfunction, reduction in the cerebral blood flow and ischemia are evidence of CAA. Ischemic 

lesions are characteristic of Sporadic CAA and several hereditary CAA disease types, including 
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HCHWA-D and the disorder caused by the APP D694N Iowa mutation [18]. Although less 

common, CAA has been linked to perivascular inflammation, though to cause vascular 

dysfunction, and giant cell arteritis. CAA also has serious effects on the blood vessels supply 

of the brain and interstitial fluid, leading to abnormalities in the white matter.  

Patients experience headache, nausea, vomiting, seizures and consciousness [19]. A history of 

head trauma might be a predisposition to ICH in individuals with CAA. The first episode of ICH 

might have a mild clinical effect, but it is counterbalanced by the risk of recurrent 

haemorrhagic episodes, which are usually more severe [20]. Survivors of lobar ICH present a 

higher risk of recurrence compared to deep ICH, often in the same lobe as the first CAA related 

bleed episode, and in some cases, multiple simultaneous lobar bleeding can occur [21]. 

Advanced age and larger haematoma size are factors that contribute negatively to the disease 

prognostic [22]. CAA is also associated with ICH related to oral anticoagulant use. The poor 

and fragile condition of the cerebral vasculature due to the presence of CAA, is an aggravating 

factor for the haemorrhagic episode [23].  

Evidence suggest that cognitive impairment is a chronic effect of CAA due to CAA-induced 

haemorrhages, such as ischaemia or perivascular inflammation and the co-existence with 

Alzheimer’s disease or other age-related pathologies (e.g. hypertensive arteriopathy) [24]. 

However, studies showed that CAA presence in demented patients was much higher than non-

demented [25], even when controlling for age and neuropathologies related to dementia [26]. 

Moreover, CAA together with Alzheimer’s disease may worsen the severity of cognitive 

performance, compared to Alzheimer’s disease on its own, even when, again, controlling for 

age of death, education, neurofibrillary tangles and neuritic plaques number, infarcts, 

haemorrhage and APOE genotype [27]. Moderate to severe CAA is associated with lower 

performance in the perceptual speed and episodic memory cognitive domain, but not with 

semantic and working memory, visuospatial skills or global cognition [28].  

Finally, progressive dementia has also been observed in association with perivascular tau 

pathology but in absence of neuritic‐cored plaques in patients with the APOE‐ɛ4 allele. CAA is 

thus emerging as an important link between neurodegenerative diseases and cerebrovascular 

pathologies [29]. Figure 2.2 represents Cerebral haemorrhagic lesions and White matter 

degeneration in patients with CAA and AD related cases [24]. 
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Figure 2.2 - Cerebral haemorrhages in a patient with severe sporadic CAA (A, B), and White matter atrophy and 
degeneration (C) in a patient suffering with familial AD. (Adapted from Revesz et al., 2003). 

 

2.4 PATHOGENESIS OF CAA 

The pathophysiological mechanisms by which the amyloid proteins deposit in the cerebral 

vasculature is still poorly understood. At least three hypotheses for mechanisms leading to 

CAA have been suggested: The systemic, the vascular and the drainage hypothesis [30]. These 

mechanisms are not necessarily exclusive and might even occur at the same time. The 

systemic hypothesis proposes that Aβ is transferred from the blood to the cerebral vascular 

structures [31]. This hypothesis is based on the fact that almost all cell types of the body are 

able to express the β-amyloid precursor protein and potentially secrete Aβ into the circulation. 

Moreover, in vivo studies demonstrated the bidirectional mediated transportation of Aβ 

across the blood brain barrier (BBB) using several receptors (e.g. RAGE, LRP-1, SR) [32],[33]. 

The presence of Aβ in the central nervous system and cerebrospinal fluid is determining of its 

concentration in the brain, which may happen when the BBB is weakened, which happens to 

be the case of AD [34], [35]. Several arguments refute the systemic hypothesis based on 

A 

B 
C 
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evidence of Aβ deposits in the abluminal basement membrane of vessels, suggesting that Aβ 

has its origin within the central nervous system instead. The presence of Aβ in both AD and 

non-demented patients supports claims that the source of human Aβ is neuronal [36], [37].  

The vascular hypothesis suggests local production of Aβ from cerebrovascular cells. The 

presence of APP in several cell types found in vessels of AD and HCHWA-D patients’ brains and 

in different layers of the cerebral vessel support this hypothesis [38]. Among such cells, there 

are the smooth muscle cells (SMCs), human brain pericytes (HBPs) and endothelial cells. In 

vitro data also suggest that SMCs and HBPs overexpress APP and SMCs to overproduce Aβ 

[39]. In addition to the aforementioned cell types, adventitial, myocytes, pericytes and 

perivascular cells have also shown APP overexpression. Arguments against the vascular 

hypothesis are the fact that large arteries with several layers of SMCs are less severely affected 

by CAA than small ones, and that Aβ deposits are also present in capillaries that lack SMC. 

These arguments indicate that neural factors may be important to trigger vascular Aβ 

deposition [40]–[43].  

Finally, the drainage hypothesis suggests that interstitial fluid and solutes, among which is the 

neuronally produced, Aβ drains out of the brain along perivascular spaces in the capillary walls 

and between smooth muscle cells in the tunica media of small arteries [44], [45]. When this 

and other clearance pathways fail in the brain of elderly patients or under other neuronal 

pathological conditions, such as sporadic CAA, Aβ deposits in the wall of small vascular 

structures [46], [47].  

With the artery walls narrowing caused by the build-up of plaque, the passage of Aβ along the 

vessel walls is slowed, causing the once soluble Aβ to precipitate forming amyloid plaques, 

which results in CAA. The amyloid plaques then block the elimination of Aβ, increasing the 

concentration of Aβ in the brain and, thus, its precipitation [48]. 

To support this hypothesis, mouse models of hereditary CAA or AD have been crucial to 

understanding the mechanisms under the cerebral amyloidosis. This has highlighted the 

presence of CAA in mice which express human APP in the brain under the control of neuron-

specific promoters [48], [49]. Based on the drainage hypothesis and the follow up work, 

several mechanisms for the formation of CAA have been proposed [50], [51].  

Evidence show that cerebrovascular disease may contribute to CAA pathogenesis. 

Furthermore, the impairment of the perivascular drainage may lead to the dilatation of the 

perivascular spaces within the lobar region and white matter. These enlarged perivascular 
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spaces can be visible on appropriate brain imaging, enabling its use as a potential 

neuroimaging marker of CAA [45]. 

 

2.5 VISUAL MRI FINDINGS 

Since the small vessels and the alterations in consequence of degenerative diseases cannot be 

seen in vivo by the usual clinical practice, neuroimaging techniques have been adopted to 

visualize small vessel disease damages [4]. Advances in neuroimaging allow to investigate the 

hallmarks of small vessel disease in vivo, using relevant disease manifestations applying 

magnetic resonance imaging (MRI) to visualize cerebral microbleeds (CMBs), microinfarcts 

and changes in the white matter [4], [52]. Figure 2.3 illustrates the presence of cerebral 

microbleeds, a visual feature of small vessel disease, in particular CAA [4]. 

 

 

Figure 2.3 - Multiple microbleeds in the cortex of a patient with possible CAA. 

 

2.5.1 CEREBRAL MICROBLEEDS 

An important concept to bear in mind is that, when using the neuroimaging approach, the 

pathogenic interpretation is not uniform for all the disease markers. For instance, microbleed 



 

   20 

have a preferential location, either in deep brain regions (associated to hypertensive 

vasculopathy) or in the lobar region (in the case of patients affected by CAA) [53], [54].  

Regarding CAA, studies have proven the association between lobar CMBs and ApoE ε4. 

Moreover, patients of hypertensive arteriopathy with deep ICH, are more likely to suffer 

CMBs, whereas patients affected by CAA are more likely to have strictly lobar CMBs [55]. CMBs 

are also correlated with the risk of lobar ICH recurrence, an important key in prognosis ad 

diagnosis [56], [57]. The validation of strictly lobar CMBs as a diagnostic marker of CAA makes 

it a potential predictor of future intracerebral haemorrhage risk, a possible contribution to the 

study of cognitive impairment and dementia, a potential key link between vascular and 

degenerative pathologies, and an imaging tool to understand vascular pathologies [58]. Such 

findings allow the early assistance of asymptomatic individuals with new therapeutic agents 

to target the disease progression. 

Histopathological studies show cerebral microbleeds to be tiny and rounded perivascular 

haemorrhage lesions, composed of hemosiderin (a magnetic susceptible sub-product of 

blood-breakdown), between 5 and 10 mm, with high concentration of amyloid, seen on MRI 

sequences that are sensitive to magnetic susceptibility [59]–[61]. When identifying 

microbleeds, some artefacts may be mislabelled. To minimize this problem, contiguous slices, 

different imaging modalities (T2*-GRE, CT, T2*MRI, FLAIR or DWI), lesion shape and location 

must be assessed [58].  An example of a brain affected with CMB lesions (pointed out with the 

arrows) is seen in Figure 2.4, adapted from [54]. 
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Figure 2.4 – Cerebral microbleeds lesions in a patient with possible small vessel disease. 

CMBs count, rating scale, anatomical distribution in the brain (lobar or deep), and the 

Microbleed Anatomic Rating Scale (MARS) are examples of data used to investigate 

neurodegenerative diseases and dementias [61], [62].  

As MRI techniques have become more sophisticated, CMBs analysis is being increasingly 

studied either in vascular impaired or healthy older people. Although the most commonly 

used imaging sequences in the neurological area are the T2 and T1 -weighted, in the last 

decade  the T2*-weighted and T2*-GRE MRI have been shown to produce remarkable data 

and  allow the correct visualization of the hypointense CMBs lesions, for the  magnetic 

susceptibility effects are not corrected with the application of spin-echo techniques [58], [63]. 

 

2.5.2 CEREBRAL MICROINFARCTS  

Brains of patients with advanced CAA have evidence of cerebral microinfarcts. Recent 

investigation found a high prevalence of positive diffusion-weighted imaging (DWI) lesions, 

indicative of small infarcts, in patients with advanced CAA [19], [64]. These lesions were 

associated with microbleed burden, suggesting that haemorrhagic processes and ischemia 

share the same pathophysiological pathways [65]. Another study has stablished that acute, 

subclinical ischemic brain lesions are recurrent, but previously underestimated, after recent 

acute intracerebral bleeding, and are three times more frequent in CAA-related ICH than other 

spontaneous ICH [66]. The microinfarcts lesions were associated with leukoaraiosis and lobar 
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microbleeds, suggesting that they result from a CAA-related occlusive arteriopathy [66]. 

However, recent data does not support this fact, suggesting that both CAA and hypertensive 

arteriopathy trigger high rates of infarction, and proposing the interaction between the 

haemorrhagic and ischaemic components in CAA and small vessel disease [65],[67]. Figure 2.5, 

adapted from [75], represents microinfarcts lesions on an elder patient with CAA.   

 

 

Figure 2.5 - Example of MRI imaging showing small acute infarction.  

 

2.5.3 WHITE MATTER HYPERINTENSITIES 

White matter hyperintensities, also termed leukoaraiosis, describes areas of bright signal 

imaging changes in deep cerebral white matter observed in CT scans as low attenuation, or 

hyperintense on T2-weighted or FLAIR sequences [13], [68].  White matter lesions are a 

potential predictor of ICH, a possible contributor to cognitive impairment and dementia and 

its imaging may provide an understanding of the links between vascular and degenerative 

pathologies [68]. The presumed pathogenicity of white matter lesions on CAA involves 

disruption of the BBB due to amyloid accumulation on the small vessels, as described before 

[4], [54], [69]. Leukoaraiosis is present in CAA patients, affecting the arteries, arterioles and 

capillaries of the cerebral cortex and junction of the grey-white matter, and patients affected 

by hypertensive vasculopathy, that affects small arterial penetrators to the white matter and 

the deep grey nuclei [70], [71]. Recent studies suggest that patients with CAA related lobar 

ICH have a higher incidence of white matter hyperintensity compared to normal elder 
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controls, that tends to build up over time [72]. Also, leukoaraiosis volume seems to be greater 

in patients with CAA and hypertension, suggesting that lowering the hypertension might 

reduce disabilities related to leukoaraiosis in CAA [71]. Figure 2.6, adapted from [71], 

represents a MRI of a patient affected with white matter lesions. 

 

Figure 2.6 - Example of a MRI image showing White matter damage. 

 

2.6 DIAGNOSIS OF CAA 

CAA has generally been diagnosed by post-mortem examination [73]. Although the disease 

may be evaluated by biopsy or evacuated hematoma, in vivo samples are typically unavailable 

[13], [74]. The Boston criteria was created with the goal of presenting the community with 

reliable and non-invasive methods for diagnosing CAA, to facilitate the decision making and 

fasten the clinical interventions. The criteria are based on the probability of multiple 

haemorrhagic occurrences and the incidence region: lobar or deep [74]. Following these 

criteria, the diagnosis of probable CAA is made on elderly patients after the middle age, with 

at multiple acute or chronic lobar haemorrhagic lesions and with no other definite cause of 

ICH [13]. Also, Probable CA may be diagnosed with supporting clinical data and pathologic 

tissue (from biopsy or evacuated hematoma) when there is some CAA in the specimen [75].  

The possible CAA diagnostic, similarly to Probable CAA, is attributed to elderly patients (older 

than 55 years old), with no other cause of haemorrhage. However, these patients show 

evidence of single lobar, cortical, or cortico-subcortical haemorrhage [75]. 
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Finally, the Definite CAA is made post-mortem with evidence of lobar, cortical, or cortico-

subcortical haemorrhage, absence of other diagnostic lesions, and severe CAA vasculopathy.  

The Boston criteria is supported by studies comparing the prevalence of the є2 and є4 ApoE 

alleles in groups of patients with clinically and pathologically diagnosed CAA [73], [74]. It has 

previously been validated against the well stablished and standard neuropathological 

diagnosis [76]. However, its sensitivity is strongly affected by the quality of the patients’ scan 

[77]. The recent introduction of susceptibility weighted imaging (SWI), a three-dimensional 

T2*-GRE technique, Pittsburgh Compound Positron Emission Tomography (PET-PIB), Gradient 

- Recall Echo (GRE), used in the assistance of diagnostic, increases the sensibility of microbleed 

visualization, resulting in the improvement of lesion count accuracy [78]–[80]. The Boston 

Criteria can be consulted at Table 2.3 [76]. 

 

Table 2.3 - Classic and modified Boston criteria, stablished by the Boston Cerebral Amyloid Angiopathy Group, 
for diagnosis of CAA. 

1. Definite CAA 

Full post-mortem examination demonstrating: 

• Lobar, cortical, or cortical-subcortical haemorrhage 

• Severe CAA with vasculopathy 

• Absence of another diagnostic lesion 

2. Probable CAA with supporting pathology 

Clinical data and pathologic tissue demonstrating: 

• Lobar, cortical, or cortico-subcortical haemorrhage 

• Some degree of CAA in specimen 

• Absence of other diagnostic lesion 

3. Probable CAA 

Clinical data and MRI or CT demonstrating: 

• Multiple haemorrhages restricted to lobar, cortical, or cortico-subcortical regions  

• Age ≥ 55 years 

• Absence of other cause of haemorrhage 
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4. Possible CAA 

Clinical data and MRI or CT demonstrating: 

• Single lobar, cortical, or cortico-subcortical haemorrhage 

• Age ≥ 55 years 

• Absence of other cause of haemorrhage 

Other causes of intracerebral haemorrhage: Excessive warfarin with International 

normalisation ratio (INR) above 3, antecedent head trauma or ischemic stroke, haemorrhagic 

tumour, vascular malformation, or vasculitis and blood dyscrasia. 



 
 

 
 

 

 

3 TECHNOLOGIES 



 
 

 
 

The study of the application of Artificial Intelligence tools to aid in CAA diagnostic presupposes 

the usage of an appropriate dataset. However, there is a lack of open and annotated datasets 

regarding CAA. Part of this work focused on the acquisition of Magnetic Resonance images of 

patients previously diagnosed with this disease, and annotation by a neuroradiologist 

specialist. This chapter explores how the data is acquired and which technologies and 

procedures were involved in the process. 

 

3.1 MEDICAL IMAGING  

3.1.1 DIGITAL IMAGING AND COMMUNICATIONS IN MEDICINE 

Digital imaging and communications in medicine (DICOM) is a globally accepted standard that 

had an early beginning in 1990 by the hands of the American College of Radiology (ACR) and 

the National Manufacturers Association (NEMA) [77]. Created to represent, store and 

exchange efficiently medical image data as well as associated metadata, DICOM is also a 

network communication protocol. The added value of DICOM data usability, access, and the 

continuous adoption of DICOM compliant equipment enables the reliable communication and 

exchange of data with other DICOM medical equipment, thus triggering the implementation 

of the Picture Archiving and Communication Systems (PACS) [78]. The DICOM standard 

specifies a set of protocols for network communications, for media communications, a file 

format and medical directory structure to facilitate access to the image data and metadata, 

and information for its implementation [79]. 

 

3.1.1.1 DICOM INFORMATION MODEL  

DICOM was designed to mimic real-world scenarios in the healthcare world. The DICOM 

Information Model (DIM) describes the structure and organization of information related to 

the communication of medical imaging data. Every data and network operations are 

represented as a DICOM object [80]. This approach is made by setting the Information Object 

Definitions (IODs), that contains the necessary attributes that any real-life objects should have 

for its description, and the Information Entities (IEs), that specifies a collection of attributes 

typically present in an entity. For instance, IODs are specified for each modality (e.g., CT or 

MR) [79], [81]. The IOD is organized by data elements as attributes. Each attribute is identified 
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by a tag in the format (group.element), a value representation, value length and a data field, 

as represented in the Figure 3.1. 

 

Figure 3.1 - Representation of a DICOM object. 

 

Figure 3.2 represents the Patient-Study-Series-Image DICOM hierarchy. A patient can have 

multiple studies. Each study can have multiple series from different modalities and each 

modality can produce a different number of images [81]. 

 

Figure 3.2 - DICOM information hierarchy: Patient-Study-Series-Image. 
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3.1.1.2 DICOM SERVICES 

DICOM defines also the way the communication between nodes in the network is achieved. 

The most common services are the storage service and the query/retrieve service which can 

be used between the association of a Service Class Provider (SCP) and a SCU (Service Class 

User), similar to a server-client architecture. The implementation of DICOM services in a 

DICOM-compliant infrastructure is particularly important to store acquired images or query 

an archive for a specific patient, study, series or instance. Additionally, services are also crucial 

so that one may retrieve DICOM objects (for instance, request a DICOM object from the 

archive to be shown in a workstation viewer). 

 

3.1.1.3 PICTURE ARCHIVING AND COMMUNICATION SYSTEM 

The volume of medical imaging data generated in the healthcare institutions has increased 

substantially over the last years. The data and metadata from the different modalities 

acquired within the healthcare institution like, for instance, angiography (XA), ultrasound (US), 

multi-slice computed tomography (CT) or magnetic resonance (MR), need to be stored and 

distributed for diagnostic or treatment purposes. It is fundamental to create a deploy an 

efficient and robust system to deal with the storage and distribution of the high number of 

medical data. 

 The adoption of DICOM standard across the different equipment manufacturers and end-

users lead to the implementation of the Picture Archiving and Communication Systems (PACS) 

[78]. PACS is the name given to describe a system that orchestrate the hardware and software 

that compose the imaging laboratory network. It is responsible for processing, storing and 

distributing medical images inside or outside the healthcare institution [79], [82]. The 

infrastructure is normally supported by a Local Area Network (LAN) or a Wide Area Network 

(WAN). The coming of PACS allowed the fast find and retrieve of patient data, improving the 

patient medical treatment as it removed the need to use film jackets and the high probability 

of losing studies. The workflow that the PACS handle may be divided in three major steps: 

acquisition, the procedures that lead to the capturing of the image; distribution, according to 

[83] the process of move or copy the images and their metadata to another one of the network 

(for instance, from a modality to a storage server); and visualization, the process where a 

workstation shows the image acquired. 
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3.1.2 MAGNETIC RESONANCE IMAGING 

MRI stands for Magnetic Resonance Imaging. It is the de facto technique for brain tumour 

diagnosis [84], [85]. The literature points several advantages in the use of the MRI techniques 

in the clinical environment, among them, the non-invasive characteristics and the adequate 

sampling quality, providing good tissue contrast without the use of unhealthy radiation [86]–

[89]. Due to its benefits, MRI is being used for disease tracking down and treatment 

monitoring. 

MRI scans are especially suited for soft tissues. Particularly in the brain, MRI scans output 

shows notable contrast between White Matter and Grey Matter, allowing to identify tumours, 

for instance [90]. 

Figure 3.3 depicts the main high-level components of a general MRI scanner. It is composed 

by a magnet that generates a strong electromagnetic field which goal is to polarize the sample; 

by shim coils, that are responsible for correcting shifts of magnetic field homogeneity; the 

gradient system, responsible for detecting the MR signal; and the Radio Frequency (RF) 

system, which goal is to excite the sample [91]. 

 

Figure 3.3- MRI scanner component. 

MRI relies on the hydrogen atoms magnetic properties to produce diagnostic readable images. 

A hydrogen atom is essentially a proton that produces an electromagnetic field [92]. When an 

MRI scanner emanates energy to the human body, the proton spinning is excited, thus 

generating a magnetic field, and consequently shifting the protons from a random state to an 

aligned one. A radio frequency (RF) pulse is then applied. The application of the RF produces 

an alignment discomposure and the absorption of energy by the protons, allowing the shift to 

higher energy states. The reduction to a lower level stage is followed by the release of energy. 
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 These disturbances are scanned, and the time read until the equilibrium state (relaxation), 

resulting in the image contrast [93]. The variation of the relaxation time is used to generate 

different types of MRI sequences. A longer TE, will reveal a large difference in signal from the 

tissues, resulting in T2 sequences, whereas short TE and TR time reveals T1 sequences [94]. 

Table 3.1 summarizes the most common MRI sequences.  

 

Table 3.1 - Description of the T1, T2 and FLAIR MRI sequences. 

SEQUENCE MRI PROPERTY APPLICATION 

T1 

 

CSF Dark 

• Study of vascular 

structures 

• Study the breakdown in 

the BBB 

• Anatomical detail 

WM Light 

Cortex Gray 

Fat Bright 

Inflammation Dark 

T2 

 

CSF Bright 

• Visualization of lesions 

(appear bright) 

• Anatomical detail 

WM Dark Gray 

Cortex Light Gray 

Fat Light 

Inflammation Bright 

FLAIR 

 

CSF Dark 

• Similar to T2, except the 

CSF appear Dark 

• sensitive to pathologies 

WM Dark Gray 

Cortex Light Gray 

Fat Light 

Inflammation Bright 
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3.1.3 NEUROIMAGING INFORMATICS TECHNOLOGY INITIATIVE 

The Neuroimaging Informatics Technology Initiative (NIFTI) [95] is a file format that surfaced 

in the early 2000s by the hands of a committee from the National Institutes of Health in the 

USA  [95]. The primary purpose for its creation was to support a  coordinated and targeted 

service, training, and research to speed the development and maximize the utility of 

informatics on neuroimaging, maintaining the advantages of the ANALYZE file format (another 

format for medical imaging), with several improvements [96].  

Moreover, the primary focus of NIFTI are the tools used in imaging informatics, usually for 

neuroscience and neuroradiology research [95]. Although DICOM files are standard in clinical 

care environments, NIFTI format was adopted as the default format for many software 

packages, as SPM, and supported by several image viewers and data analysis software, like 3D 

slicer, ImageJ, and OsiriX [96].  

 Technically there are NIFTI-1 and NIfTI-2 file formats. The NIFTI-1 format is a direct upgrade 

of the ANALYZE 7.5, with the innovation of Image orientation, spatial location, spatio-

temporal slice ordering for FMRI, frequency, phase and slice encoding axis, standardized way 

to add vector values to the header, and many more [96], [97].  

The NIFTI-2 format is an update of the NIfTI-1 to allow the management of larger data sets. 

This new version maintains almost all characteristics of the previous one, enabling the storage 

of large images and matrices, encoded with 64-bit integer, eliminating the size limit restriction 

[95].  

Finally, although the format allows the storage of the header (.hdr) and pixel data (.img) in 

separate files, like in the ANALYZE format, data can also be stored in a single file (.nii), 

containing both the header and image data and, if needed, additional metadata [98]. The 

mentioned MRI formats are illustrated and summarized in Figure 3.4. 
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Figure 3.4 - Summary of MRI file formats characteristics. 

 

3.1.4 MRI VISUAL RATING SCALES IN THE DIAGNOSIS OF DEMENTIA 

The distinction and diagnosis of neurodegenerative diseases is crucial for the early access to 

support and targeted treatment for the affected individuals. As explained before, except for 

rare autosomal dominant forms of dementia, accurate and definitive conclusions during life 

can be challenging. Besides the difficulties in evaluating tissues for complementary diagnosis, 

the overlapping clinical symptoms for distinct pathologies is an obstacle to accurate disease 

identification. By contrast, structural neuroimaging is widely available and integrated in 

clinical and research environments.  By focusing on brain regions of patients susceptible to 

dementia, visual ratings improve sensitivity and reliability of diagnosis-based image 

interpretation, and findings of value for differential diagnosis of dementia. Furthermore, since 

visual rating scales are quick to apply, they can be easily performed by trained physicians and 

introduced into clinical practice to extract valuable information.  

Reports have shown positive impacts of brain imaging markers visible on MRI, that reflect 

small vessel injuries associated with CAA. However, its implementation in routine clinical 

assessments is still taking small steps, due to the requirement of special hardware, long 

processing time and specific acquisition techniques. Furthermore, the use of patients with 

several pathologies and risk factors, different MRI protocols, data from different centres, 

MRI data formats

DICOM

A DICOM file contain the 
image and the header 

information. The header 
stores the subject's 

information, and MRI data 
which can be compressed.

ANALYZE

ANALYZE is a format that stores 
the image in one file and the 

header information in another. 
MRI data stored in ANALYZE 

format can not be compressed.

NIFTI

NIFTI format allows the 
storage of data in 

separate files. The header 
is stored in one file, or a 

single file containing both 
the header and image 
data. The NIFTI format 

also includes the spatial 
orientation.
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different technological resources and Physicians expertise may introduce variations in the 

study [99].  

 Among these markers, medial temporal lobe atrophy, lobar CMB, cortical superficial siderosis 

(cSS), centrum semiovale PVS (CSO-PVS) and WMH of vascular are highlighted.  

 

3.1.4.1 WHITE MATTER LESIONS 

The occurrence of white matter abnormalities on MRI has been noted to increase with age. 

However, extensive damage is distinctive on patients suffering from presumed vascular 

dementia. Gouw et al. created a simple grading criterion for the development of WMH, with 

the same significance as a complex one that evaluates the WMH localization and WMH volume 

quantification [100]. The use of simple grading measurements reduces subjectivity and 

obviates the need of expert instruction and standard reference image [100], [101]. On the 

other side, the proposed scale is limiting as it does not incorporate periventricular WMH 

assessment. King et al. applied this visual metric to determine a global disease score based on 

the largest lesion identified, either deep or periventricular, for use as a baseline evaluation in 

clinical practice [101].  

 Later, DeCarli et al. evaluated a visual method for WMH grading using axial images and found 

classification of lesions as periventricular or deep to be inaccurate, as they are highly 

correlated with each other [102]. This claim supports the rating of deep and periventricular 

WMNH together [101], [102]. Brant-Zawadzki et al. used a rating scale to grade the severity 

of changes in the WM in patients with non-Alzheimer dementia and non-demented elderly 

patient groups. Results suggested a higher incidence of lesions in the demented group and 

cognitively normal elderly patients. However, given the small number of participants, these 

results may not entirely reflect the reality [103].  Zimmerman et al. created a 5-level rating 

scale for assessment of PVH, starting from no PVH (labelled 0) to diffuse WM abnormality- 

hyperintensity involving almost all WM (labelled 4). This study also evaluated the presence 

and number of focal areas of WMH independent of PVH [104]. 

To simplify the evaluation of WMH, Fazekas et al. suggested a modified rating scale, based on 

the ones proposed by Zimmerman et al. and Brant-Zawadzki et al., to describe the severity of 

hyperintense signal abnormalities in the periventricular and deep white matter regions. Each 

region is given a grade depending on the size and confluence of lesions. Periventricular 
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hyperintensity (PVH) was graded as 0 = indicating absent, 1 = “caps” or pencil-thin lining, 2 = 

indicating smooth halo, 3 = irregular PVH extending into the DWM. Deep white matter 

hyperintense signals (DWMH) were rated as 0 = absent, 1 = punctate, 2 = early confluence of 

foci, 3 = indicating large confluent areas [105]. The visual rating scales for the evaluation of 

Periventricular and White matter lesions proposed by Fazekas et al. is summarized at Figure 

3.5. 

 

PERIVENTRICULAR 

LESIONS 

    

WHITE MATTER 

LESIONS 

    

Figure 3.5 - Visual representation of the Fazekas et al. rating scale for Periventricular and White matter lesions. 

 

Although the work first proposed the evaluation of the two brain regions, only the DWM score 

is useful in the assessment of the condition of patients with possible dementia. This rating 

scale is still one of the most widely used and well validated visual rating scales, regarding WM 

lesions, although some studies have reported limitations regarding definite conclusions about 

the association of WMH and cognition [99], [106].  

 

3.1.4.2 CEREBRAL ATROPHY 

The occurrence of cerebral atrophy has been noted to increase with age in both non-

demented and demented individuals.  

Pasquier et al [107], proposed a scale to assess the global cortical atrophy (GCA) in patients 

with stroke, to test the hypothesis of a relationship between stroke and atrophy. To do so, 13 

brain regions were evaluated separately in each hemisphere by several neurologists, including 

0 1 2 3 

0 1 2 3 
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the frontal, parieto-occipital, medial temporal lobe, and the dilatation of the ventricles. The 

final score corresponded to the sum of all 13 regions. Although the hypothesis was not 

validated, the scale was used as a valuable tool as a diagnostic marker toll for dementia and 

strongly associated with vascular damage [107], [108]. Figure 3.6 represents the visual rating 

scale proposed by Pasquier et al. 

 

Figure 3.6 - Example of the scale proposed by Pasquier et al for the global cortical trophy. 

 

 O’Donovan et al [109] developed a rating scale to evaluate ventricular enlargement, in order 

to distinguish between AD and dementia with Lewy bodies. Once again, to determine lateral 

changes, each hemisphere was rated separately, and the scores summed up to get a global 

atrophy score. Using the ventricles to assess atrophy proved to be reliable, however, the scale 

may not be useful for differential diagnosis. 

To understand the brain atrophy progress in patients with Frontotemporal Dementia (FTD), 

Davies et al [110] proposed a scale devised to be applied to the anterior temporal lobe and 

the lateral geniculate nucleus. Although sex, age, symptom duration and other clinical records 

were used in the study, atrophy proved to be significant in the prognosis prediction.  Kipps et 

al [76] adapted the rating scale to include the rating of the posterior temporal lobe, and a 

larger group of patients diagnosed with FTD and control participants. Later, Davies et al 

included 15 frontotemporal brain regions. The scale is intended for the diagnosis and 

localisation of function in neurodegenerative diseases and other brain abnormalities. Insula, 

Anterior hippocampus, Orbitofrontal gyri and Temporal pole were reported to be relevant in 

discriminating AD from controls, and the rating of the orbitofrontal cortex later confirmed by 

Hornberger et al [111] as good discriminators between AD and bvFTD. While the results were 
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informative and provide resources for subsequent investigation, these ratings scales were not 

easily introduced in the clinical routine practice.  

Medial temporal lobe visual rating scales were developed first by  De Leon et al to rate 

hippocampal fissure dilatation, and later changed by Scheltens et al [112], which lead a 

positive impact on the field and inspired several other researchers, like Galton et al [113] and 

Urs [114]/Duara et al [115], who later developed scales to study the sulci surrounding the 

hippocampus, and who operationalized the rating scale to be suited for clinical practice. Figure 

3.7 displays the visual rating scale proposed by Scheltens et al for the medial temporal 

atrophy. 

 

 

Figure 3.7 - Representation of the visual rating scale developed by Scheltens et al. 

 

Regarding the Posterior lobe, Koedam et al [116] propose a scale to rate the atrophy on the 

posterior cingulate sulcus, precuneus, parieto-occipital, and the parietal lobe. Contrary to the 

above-mentioned scales, on this one a separate score for the hemispheres is given for each 

region and imaging plane.  

At last, Harper et al [7] proposed a scale, based on the previous ones, and developed on post-

mortem confirmed cases, for the visual assessment of atrophy in six different areas: medial 

temporal, posterior, anterior temporal, orbito-frontal, anterior cingulate and fronto-insula 

lobes. The visual rating scales applied to structural MRIs proved to be reliable and highly 

elucidative of the cerebral atrophy in regions vulnerable to dementia. The present scale has 
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also demonstrated great results and promising application in the automated classification of 

dementias to aid the clinical decision making. Figure 3.8 represents the visual rating scale 

proposed by Harper at al.  

 

  

Figure 3.8 - Representation of the scale proposed by Harper et al. 

 

3.1.4.3 CEREBRAL MICROBLEED 

Cerebral microbleeds have been proven to be a useful biomarker for small vessel diseases, 

with potential relevance for diagnosis, prognosis, and the study of the disease mechanism. For 

this purpose, two major validated scales were proposed to describe their presence, number 

and distribution in the brain. The first one, Brain Observer Microbleed Scale (BOMBS) [117], 

considered the size of the lesions (<5 mm, 5–10 mm), the side of brain (left, right), and the 

location: lobar (cortex, subcortical white matter); deep (basal ganglia grey matter, internal 

and external capsules, thalamus); and the posterior fossa (brain stem, cerebellum). The BMBs 
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were measured manually by physicians blinded to the other one's ratings. Figure 3.9 

represents the BOMBS rating form. 

 

 

Figure 3.9- The BOMBS rating form. 

The second rating scale, the Microbleed Anatomical Rating Scale (MARS) [118] has the 

potential to help distinguish CAA from hypertensive small vessel disease. The lesions 

counting, by size, is done by the deep region (including the basal ganglia, thalamus, 

internal capsule, external capsule, corpus callosum, and deep and periventricular 

white matter), lobar region (including cortical and superficial subcortical white matter 

regions) and infratentorial regions (which includes the brainstem and cerebellum). The 

main difference between the two scales is that MARS allows the categorization of CMB 

distribution by different brain lobes. Furthermore, the fact that MARS considers the 

lobar anatomical description, is an important key to investigate the impact of 

microbleeds on cognitive functions and degenerative diseases and for the diagnosis of 

CAA. Figure 3.10 displays the MARS rating form, for the lobar, deep and infratentorial 

regions and the cerebral hemispheres.  
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Figure 3.10 - The MARS rating form. 

 

3.1.4.4 PERIVASCULAR SPACES DENSITY 

Enlarged perivascular spaces (PVS) in the brain may reflect underlying cerebral small vessel 

disease, being, thus considered markers of the disease and the health of the brain. Several 

scales for the assessment of the enlargement of perivascular spaces were proposed 

(MacLullich et al. [119], Potter et al. [120], Zhu et al. [121]). However, these scales share the 

same limitations in the varying number of PVS on different slices, the poor scan quality and 

acquisition, asymmetry in PVS, presence of dilated PVS that could be mistaken for lacunes, 

and differences between the scale for severe cases. Doubal et al. [122], proposed a rating scale 

with the purpose of determining whether the enlargement of PVS were associated with 

lacunar strokes and WMH, associated with small vessel disease. To do so, enlarged 

perivascular spaces in the basal ganglia and centrum semiovale were rated according to Table 
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3.2. The scores were rated for each hemisphere to obtain a total EPVS score (0 to 8). Due to 

the easy understanding and application, this scale is still widely used and adapted. 

 

Table 3.2 - Rating scale for the evaluation of the EPVS, by Doubal et al. 

ENLARGED PERIVASCULAR SPACES 

NO EPVS 0 

< 10 1 

11 - 20 2 

21 - 40 3 

> 40 4 

  

Table 3.3 - Description of the study variables. 

VARIABLES DESCRIPTION 

CEREBRAL ATROPHY Evaluation of cerebral atrophy according to the scale proposed by Harper et al, for 

five brain regions: Anterior Cingulate cortex, Orbitofrontal Cortex, Anterior 

temporal lobe, Medial temporal lobe, and Posterior temporal lobe [108]. 

WHITE MATTER LESIONS Fazekas et al., in 1987, proposed a scale to describe the widening of perivascular 

spaces, resulting from injuries to the white matter and periventricular regions, 

evidence of cerebral vascular disease. The used scale is divided into 4 levels, 

according to the MRI or CT hyperintense signal abnormality level in white matter 

[123]: 

• Fazekas 0: Absent; 

• Fazekas 1: Punctate lesions; 

•  Fazekas 2: Early confluence of foci; 

• Fazekas 3: Large confluent areas. 

MICROHAEMORRHAGES Quantification of microhaemorrhages is made from the evaluation of 

haemorrhagic patterns detected in t2W MRI or FLAIR. Microhaemorrhage 

distribution may be divided by brain region occurrence as lobar (frontal, parietal, 

occipital cortex and insulate), mixed (lobar and deep), or deep (cerebellum, corpus 

callosum, basal ganglia, white matter perivascular, etc). 

PERIVASCULAR SPACES 

DENSITY 

Metrics for the measurement of perivascular space’s density allows the estimation 

of the enlargement of perivascular spaces in patients with confirmed vascular 

pathologies. The density (PVS) may vary between four levels: 0, ≤ 10, 11-20, and> 

40. 
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3.2 RADIOMICS 

The development of medical imaging in medical sciences and its introduction on the clinical 

practice paved the way to its generalized use in decision making, thus aiding the diagnosis, 

prognosis, and the research for therapeutic interventions.  

Radiomics introduces a way to mine and transform qualitative and quantitative information 

encrypted in digital images. It relies on mathematical algorithms to uncover image 

characteristic, details, and lesions on medical images that may be neglected by humans.  

The process of feature extraction starts with image segmentation to reduce the image to the 

desired portion for the study. After this step, a great amount of features are extracted, such 

as size and shape related features, image descriptors obtained from intensity histograms and 

the relationship between voxels, to texture related features, obtained by analysing the grey 

level variation within the defined region [124].  

Given the wide variety of features extracted, studies based on Radiomic features present a 

promising approach to aid the recognition of visual patterns or lesions on medical data.  

Using a radiomic approach, Johansen et al, Baek et al. and Peng et al. showed that histogram-

based features are useful to predict treatment responses and outcomes [125]–[127]. Also, 

Tixier et al. and Yang et al. demonstrated the potential of radiomic textural features on the 

distinction of tumour phenotypes, and even outperform the traditional approaches on the 

prediction of the treatment outcome [128], [129]. Furthermore, radiomic texture features 

have drawn attention due to its value when predicting the pathologic response, thus 

improving the patients’ survival rate, identifying cases with higher risk of developing 

metastases, and distinguish different disease stages [124].  

Although the first radiomic studies were mainly focused on oncological researches and 

prediction of treatment response, recently it has been extended to other medical fields, such 

as the study of neurological disorders. Shinde et al. applied radiomics to data obtained from 

patients suffering from PD, achieving a good performance for the prognosis prediction [130]. 

Moreover, Salvatore et al. reported outstanding results when combining non-imaging and 

radiomics variables to predict the outcome of neurodegenerative diseases, suggesting that 

radiomics analysis can be used as an alternative approach to the visual AI classification or 

prediction methodologies [131]. 
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Despite its potential application, the extracted features may be sensible to variations on the 

MRI intensities, as this is not standardized and highly dependent on the sequence type, 

acquisition parameters, and even on the manufacturer. Consequently, a high variation on 

image intensities from patient to patient is expected, thus requiring a standardization step 

before further analysis [132]. Additionally, to achieve accurate results, a dataset of ten to 

fifteen patients per disease is recommended [124].  

 

3.3 CLASSIFICATION USING ML APPROACHES 

In 1959 Arthur Samuel created the first self-learning program, built to play checkers by 

calculating the scoring at any position, measuring the chance of winning, and eventually 

become better at it. This was a pioneer AI program, introducing a new way to handle 

technology and simulate the human capacity of analysing the information, predicting possible 

outcomes, learn from experience, and change the learning process throughout practice [133].  

Besides being a subset of AI, ML can be defined as a supervised or unsupervised science. The 

Supervised learning relies on human labelled data. Given a training set (which usually 

corresponds to 70-80% of the original data), the machine successively utilizes each entry to 

train the model. The results obtained from this process are used by the machine to make 

accurate predictions and improve its performance, and, if needed, repeat the process to 

return the best output. In the unsupervised learning occurs when the machine is fed a dataset 

with no predefined classes. The data fed into the model is grouped together by a similarity 

metric, forming clusters. From this approach, it is possible to get some insight on the data and 

reduce dimensionality. 

In Classification models, a training and test set is defined. The algorithms applied take the 

classes and the features that describe each of them to learn and distinguish the attributes and 

behaviour of the data. In the testing phase, the knowledge obtained from the data on the 

previous step is used to classify the new feature vectors [134].  

The goal of ML methods is to automate learning and therefore classify, and eventually be used 

to simulate the behaviour of the data. It has been used for the detection of facial features, 

speech recognition, personalize advertisements, and even to facilitate the medical decision 

making. When it comes to the medical field, ML is helpful on the prognosis, diagnosis, search 

for treatments, and the evaluation of the evolution of a certain disease or recovery process, 
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presenting high accuracy and reliability. Although the use of ML in the health environment is 

still in its infancy, results suggest that ML models may eventually surpass the human decision-

making abilities, and facilitate precise and early detection of diseases, enabling the 

improvement of the patients’ life quality [135]. 

Although Neurodegenerative diseases have been intensely studied in the late years, 

numerous questions are yet to be answered.  In this context, ML provides tools to efficiently 

study and understand the disease mechanisms, and eventually change the way the prognosis 

and diagnosis is conducted, by identifying abnormalities on images or clustering diseases and 

biomarkers. In search for effective therapeutic interventions, large collections of data have 

been gathered and stored in curated databases to supply studies and help expand the 

intervention of computer-aided approaches [134].   
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4 MODELLING OF 

NEURODEGENERATIVE 

DISEASES 
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4.1 MATERIALS 

As the goal of the project is to study the biomarkers for the complementary diagnosis of CAA, 

MRI images and non-image clinical information were used to assess the optimal conditions 

and data to maximize the score of the classification models and, thus, determine the most 

important features to provide information for an accurate diagnosis. The image and non-

image data acquisition steps and materials to pursue the objectives are described below. 

Figure 4.1 represents the steps followed on the development of the project. 

 

4.1.1 DATA ACQUISITION 

The data acquisition relied on the collaboration with the neuroradiology service of Hospital de 

Braga, EPE, after the study approval by the Health Ethics Committee, and all methods were 

adjusted in accordance with the guidelines of the ethics board. Hospital de Braga adopted a 

Vendor Neutral Archive and DICOM compliant PACS, Sectra IDS7. The acquisition workflow 

was based on the usage of the software to query and retrieve the stored DICOM objects. 

Patients admitted between 2014 and 2017 with non-traumatic lesions, who underwent brain 

MRI, were sorted and diagnosed with CAA. The goal was to retrieve the last study MRI images 

of each diagnosed patient. The outcome of the filtering resulted in the selection of 138 

patients. 

Additional data, with patients from the same hospital, was used in the study to enrich the 

dataset. These data contained patients with 3 diagnosed neurodegenerative diseases 

different from CAA: Alzheimer’s disease, with 90 patients, Mild cognitive impairment, with 56 

patients, and Parkinson’s disease dementia, with 19 patients. The acquired information was 

stored by disease in four Comma Separated Values (CSV) files. 

Using the software capabilities, the studies were anonymised so the patients could not be 

identified by analysing the metadata contained in the DICOM objects. Finally, a Patient Name 

alias, Patient Age, and Patient gender were kept in the DICOM metadata so the retrieved 

DICOM objects could be identified in the annotation process.  
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Figure 4.1- Overview of the project’s architecture. 
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4.1.2 NEURODEGENERATIVE IMAGE DATA 

Some examples of images contained in the dataset are presented in Table 4.1. The images had 

different resolutions and were also not spatially aligned. Several magnetic pulse sequences 

for enhancing brain lesions were applied, to create contrast between normal and pathologic 

structures. In particular, T1, T2-, T2*-weighted and FLAIR, along with different planes (axial, 

coronal, sagittal) are available. However, not all patients have the same acquisition sequences 

and number of MRI data.  

 

Table 4.1 - Example of the data-set images and Sequences/ Orientations. 

SEQUENCE/ 
ORIENTATION 

MR SAMPLE SEQUENCE/ 
ORIENTATION 

MR SAMPLE 

AXIAL FLAIR 

 

Axial T2 

 

CORONAL T1 MPRAGE 

 

Coronal T2 

 

SAGITTAL T1 

 

Sagittal T2 
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Contrast images are obtained by exploiting the differences between tissues, due to the 

different behaviour within the magnetic field. Parameters can be manipulated to generate the 

signal to maximize the tissue contrast. T1 weighted sequences enhance fat matter 

(hyperintense), and fluids have a low signal intensity, appearing dark. Also, in the brain, grey 

matter appears with an intermediate signal intensity (grey), and white matter is hyperintense 

(white). With T2 weighted sequences, fluids (e.g. water, CSF) and fat matter have high signal 

intensity, appearing bright, and muscle is seen grey (intermediate signal intensity). In the 

brain, grey matter appears grey (intermediate signal intensity), and white matter appears 

darker (hypointense signal intensity). 

 

4.2 METHODS 

The following subsections describe the steps to prepare a new dataset with annotations based 

on the clinical data, and the classification of neurodegenerative diseases. Also, a similar 

classification approach was conducted with the acquired MRI images. Jupyter Notebooks with 

Pandas library were used to carry this project. 

A description of dataset cleaning, format conversion, image segmentation, and feature 

generation are also outlined.  

 

4.2.1 IMAGE-BASED BIOMARKER EXPLORATION 

The purpose of this experiment is the evaluation of the application of several imaging-based 

scores to complement the diagnosis of CAA. It focuses on the retrieval of clinical data from 

the available patient’s information. This step depends on the analysis of data by trained 

physicians, followed by data processing, and data modelling by AI tools.  

 

4.2.1.1 DATA ANNOTATION 

The resulted datasets described in Section 4.1.1 were annotated. Under the collaboration 

described in Section 1, the MRI data was independently analysed by two neuroradiologist 

physicians, blinded to the patient’s identity. The specialists reviewed a set of high-level 

characteristics to be annotated, and rated or counted, depending on the location, the possible 
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biomarkers. Whenever disagreements about values were significant, the ratings were 

reviewed, and a consensus was reached. Furthermore, additional clinical variables were 

collected (e.g. occurrence of death and existence of cerebral tumours) to better understand 

the data. Among the original retrieved dataset, series with low image quality were discarded 

due to the impossibility of getting a rigorous evaluation. Not all datasets were annotated with 

the same metrics. In other words, some datasets, namely AD, PDD, and MCI are missing 

annotations compared to CAA.  

Due to some constraints, the annotation of data for the AD, MCI and PDD diseases according 

to the rating scales used to study the White matter lesions, Cerebral microbleed, and 

Perivascular spaces density was not possible. Consequently, the dataset for the CAA disease 

was the only one annotated with the four ratings scales. Therefore, only the Cerebral atrophy 

annotations were kept on the study.  

 

4.2.1.2 DATA PREPROCESSING 

After the data acquisition and annotation, the datasets were loaded into a Jupyter notebook 

environment to ease the visualization, data processing, and future feature engineering. Using 

the pandas library, the datasets were concatenated keeping all the axis and columns. For this 

experiment a Dataset of non-image was created, containing only the clinical information and 

metric annotations. The resulting DataFrame contained a set of unfiltered and untreated 

patient information. Among the original list of patients diagnosed with one of the dementias, 

subjects with corrupted files or unavailable data were removed from the experiment. 

Moreover, patients with extreme cerebral lesions, malformations and tumours were also 

excluded from the dataset, as the MRI images were in most cases impossible to classify. 

Finally, a disease label, (CAA, AD, MCI, and PDD) was attached to each patient entry. The final 

dataset contains the ratings for 252 total diagnosed patients (98 with CAA, 84 with AD, 53 with 

MCI, and 17 with PDD), age, sex, label, and an anonymized ID.  

To proceed to the analysis of the data, a filtering by MRI sequence and imaging plane was 

conducted. Since the visual biomarkers, as microhaemorrhages are seen in T2 sequences, 

these were the sequences selected for each patient. Furthermore, as the visual rating was 

performed on the coronal MRI planes, only patients with available studies containing the 

desired planes were kept on the study. 
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The last step of the filtering was the removal of the remaining patients’ ID, keeping unique 

entries. Moreover, only the annotations available for all the patients were kept. The 

characteristics of patients by Neurodegenerative disease is summarized in Table 4.2. 

After the filtering, the dataset must be prepared to build the classification models. To do so, 

encoding of the categorical information into numeric values, such as gender. This way, Male 

gender corresponds to the value “0” and Female gender corresponds to “1”. 

 

Table 4.2 - Patients’ attributes according to Neurodegenerative disease. 

 CAA AD MCI PDD 

AGE 66.09 (± 13.9) 

[31 – 89] 

72.48 (± 10.13) 

[33 – 89] 

73.08 (± 9.30) 

[51– 88] 

68.29 (± 8.50) 

[58 – 82] 

SEX Male: 63 (61.17%) 

Female: 40 (38.83%) 

Male: 37 (44.05%) 

Female: 47 

(55.95%) 

Male: 31 (58.49%) 

Female: 22 

(41.51%) 

Male: 7 (41.18%) 

Female: 10 

(58.82%) 

 

4.2.1.3 HOLDOUT 

The prepared Dataset is then split into train, a subset which will be used to train a model, and 

test, a subset used to test the model accuracy. The data was randomly split by a function 

available in the Scikit-learn python package at the 80/20 (%) ratio. Figure 4.2 represents the 

cases per disease in the train and test subsets. 

 

Figure 4.2 - Representation of the distribution of the data by the train and test subsets. 
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4.2.1.4 CREATING AND TRAINING MODELS 

Classification models using Machine learning algorithms were created using the annotation 

DataFrame generated above. Choosing the most suitable machine learning approach is a 

defining step for the success of the work, hence the need to weight the advantages and 

disadvantages of each method. Multiple approaches were tested, the results analysed, and 

adjustments made to optimize the algorithms’ parameters and data features. The following 

ML methods were considered suitable for the current task: 

 

• Decision Trees: The main advantage of Decision Trees is the easy to interpret outcomes, fast 

response, and robustness when it comes to outliers and missing values. In contrast to that, 

Decision trees are prone to overfitting, especially on deep trees. The chosen algorithms were 

the Random Forest and Decision Trees, due to its ability to limit overfitting without 

substantially increasing error. 

• Support Vector Machines: The advantage of this classification-oriented ML is the capacity to 

map data to a higher dimensional space, thus enabling an easier label separation. However, 

it requires an understanding of the kernels, and the learning and testing process, which can 

substantially affect the classification. Also, Support Vector Machines does not perform well 

on large datasets due to the longer training time. 

• Artificial Neural Networks (ANN): The ability to perceive nonlinear relationships between 

attributes and interactions between variables is a great advantage of ANN, resulting in higher 

prediction accuracies. On the other hand, the computation times and tendency to overfitting 

are the main disadvantages. The implemented ANN algorithm was the Multilayer perceptron, 

a supervised learning algorithm capable of learning non-linear models, although sensitive to 

feature scaling hyperparameter tuning.  

• Logistic Regression: Logistic Regression usually is quick and easy to implement and does well 

with unscaled data. Also, it works better on data after feature engineering. The disadvantage 

is its weakness when compared to other classification algorithms and the vulnerability to 

overfitting.  

 
Following the algorithm selection, hyper-parameter tuning is an essential step to attain an 

accurate classification of the diseases. To optimize the hyper-parameters, Grid-search was 

employed, an optimization process that exhaustively searches over the optimal parameter 
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values from a set of specified hyperparameter for the chosen model algorithm, fitted on the 

train subset. 

This provides the best set of hyper-parameters for a given model and dataset, ensuring the 

optimization of the project, with a high computational cost, depending on the data and 

number of parameters. 

 

4.2.2 CLASSIFICATION OF DISEASES BASED ON RADIOMIC FEATURES 

The second experiment consists of the classification of Neurodegenerative diseases, based on 

MRI images. With this approach, the aim is to test the accuracy of an AI classification in 

comparison to the non-image clinical data approach. To meet this goal, two major steps were 

taken: data preparation and patient outcome prediction.  

 Since the number of images is not sufficient to make reliable conclusions using Deep Learning 

(DL) approaches, an alternative had to be found. Thus, low level radiomic features were 

generated. As both morphological and functional clinical images contain valuable mineable 

data, advances in medicine and technology suggest the association of such features with 

underlying pathology of a tissue.  

The extracted quantitative features may be characterized by one of the following subgroups 

[136]: 

• Shape features: describes the 3D geometric characteristics of a defined region of 

interest, like volume or maximum diameter along different orthogonal directions, for 

instance. 

• First-order features: describes the distribution of voxel intensities, within the region of 

interest, through statistic metrics based on histograms. Examples of these metrics are 

the mean, minimum value of the voxel intensity on the image, uniformity, and entropy. 

• Second-order features: include descriptors of the shape and texture, obtained by 

statistical analysis of neighbour voxels. It provides a measure of the spatial 

arrangement of the voxel intensities, giving insight about the tissue heterogeneity. 

• Higher-order features: describe repetitive or non-repetitive patterns and highlight 

details on the region of interest, by applying mathematic transforms of the images.  
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The quality of the extracted features depends on the image quality, processing, and 

segmentation, which will also reflect on the accuracy of the modelling outcome and its 

depiction of the original data. 

 

4.2.2.1 PRE-PROCESSING 

The obtained MRI data was unfiltered. It had several MRI sequences acquisitions, and the 

available data per patient was not consistent. Also, some images were distorted, had different 

contrast, intensity, and image noise. To minimize the effect of these artifacts, the following 

measures were taken: first, a manual selection of images and sequences was performed. 

Patients who did not undergo the sequences mentioned in Section 4.1.2, whose images were 

not available, whose images had low quality for analysis, or were previously rejected by the 

physicians, were excluded; Second, similarly to the procedure applied in the previous study, 

for subjects that had several sequences, only the T2 sequences were keep. Patients, whose 

images of the mentioned sequences were not available or were removed from the study. 

Examples of the removed data or patients are shown on Figure 4.3: (A) and (E) represent 

images with extreme noise and impossible to visualize any microbleeds or other visual MRI 

Biomarkers. These images would also difficult the skull stripping process. Images (B) and (C) 

belong to patients with deep haemorrhages on the left side, making it impossible to evaluate 

the lateral brain atrophy. Finally, (D) and (F) represent images with destructive lesions in the 

Frontoparietal and Temporal lobes, impossible to evaluate and classify according to the visual 

rating scales.  
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Figure 4.3 - Example of brain MRI images excluded from the study. 

 

4.2.2.2 IMAGE PROCESSING 

The first step for the neuroimaging analysis was the conversion of data on the DICOM format 

to NIFTI. The NIFTI format provides a simple way to handle the data and simplifies the next 

processing steps, since a great portion of the tools used for image processing require inputs 

in the NIFTI format. The chosen tool to transform the data was the dicom2nifti 1 converter. It 

sorts out the slices within each series into 3D structures.  

Thereafter, an image segmentation process was conducted, to extract the non-brain and soft 

tissues (e.g. skull, fat). To remove the skull, S3 [137], a free software toll was used, based on 

Atlas registration, an image processing technique used to align multiple images into one, and 

detect morphological differences between images.  

The basic procedure comprises the application of a series of geometric transformations for 

feature alignment and detection, quantification of similarity between the images, for 

estimation of a registration function, and the optimization algorithm. Often used to overcome 

issues such as image rotation, scale, and skew that are common when overlaying images. S3 

[137] takes the patient head scan as input (Figure 4.4- A), and returns a skull stripped scan, a 

binary mask (Figure 4.4 -B), and a probabilistic segmentation of GM, WM and CSF (Figure 4.4 

 
1 https://pypi.org/project/dicom2nifti/ 
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-C). Next, the processed images were checked, to assess the skull stripping quality. Examples 

of processed images, and the outputs are presented in Figure 4.4. 

 

 

Figure 4.4 - Example of skull stripping on MRI image 

 

4.2.2.3 LOW-LEVEL FEATURE EXTRACTION 

To quantify the radiomic characteristics on regions of interest on medical images, an 

opensource tool was used, the PyRadiomics 2.  The tool carries on the four following steps to 

extract features from images: 

1. Loading of medical images and correspondent mask of the region of interest. The 

handling and processing (filtering operations, image segmentation and registration) 

of images is done using SimpleITK3; 

2. Image filtering applying selected filters. The available ones include wavelet and 

Laplacian of Gaussian filters, implemented using PyWavelets 4and SimpleITK, as well 

as several simple ones, including square, square root, logarithm, and exponential 

 
2 https://pyradiomics.readthedocs.io/ 
3 https://simpleitk.org/ 
4 https://pywavelets.readthedocs.io/ 

A 

B 

C 
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filters, implemented with NumPy5. The desired filters and parameters were specified 

on a file. Besides the filters, the normalization option was chosen; 

3. Feature generation using five different feature classes: first-order statistics, shape 

descriptors, texture classes with grey level co-occurrence matrix, with grey level run 

length matrix, and grey level size zone matrix. Feature extraction is supported for both 

2D and 3D segmentations; 

 

The resulting features are stored in a csv file, organized by the anonymized patient ID 

associated with the original image. Besides the calculated features, the file also contains 

additional information, including the version, applied filters, settings, and image spacing.  

These entries were later removed before the data classification process, as long as other 

features with zero variance. The process of Radiomic Data acquisition is portrayed in Figure 

4.5, starting with the acquisition of MRI images, followed by the definition of the ROI, and 

ending with the feature extraction.  

 

 

Figure 4.5- Overview of the pipeline of Radiomic feature . 

 

4.2.2.4 HOLDOUT 

To start the AI study, the generated csv file is converted into a DataFrame and split into train 

and test as explained before in 4.2.1.3.   

 

 
5 https://numpy.org/ 
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4.2.2.5 CREATING AND TRAINING MODELS 

The chosen models, hyper-parameter adjustment and training procedures follow the 

guidelines described above at 4.2.1.4. The difference is in the input dataset. Figure 4.6 is an 

example of the application of Grid search for the generation of the best set of hyper-

parameters, model fitting, and application of the Logistic Regression algorithm.  

 

Figure 4.6 - Result of fitting parameters and Model training 

 

4.2.3 CLASSIFICATION OF DISEASES BASED ON RADIOMIC FEATURES AND ANNOTATIONS 

The third and final experiment approaches the combination of medical images data (in the 

form of radiomics) and non-image data. The purpose of this experiment is to determine 

whether the combination of both datasets brings any advantage to aid the diagnosis of CAA, 

and what biomarkers would be used to differentiate the disease in hands from the rest.  

 

4.2.3.1 DATASET PREPARATION 

In this step, a combination dataset containing the clinical and annotation data and the 

radiomics data is created. For instance, the “clinical_annotations” and “radiomics_features” 

datasets are loaded to the Jupyther Notebook. To proceed the merging of the datasets, first 

the correspondence between the ID’s from each dataset must be done. The pandas package 

allows the creation of a new Dataframe with both data, keeping all the different columns from 

the original datasets. A summary of assembling of the combined data is represented at Figure 

4.7.  
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Figure 4.7- Summary of the development of the combined Dataset 

 

4.2.3.2 HOLDOUT 

Once again, the train and test splitting of the data for further analysis is done as described in 

4.2.1.3. The train subset was used to fit the grid-search and fed to a training model. The test 

sub-set was used to assess the model classification’s accuracy.  

 

4.2.3.3 CREATING AND TRAINING MODELS 

As the purpose of this experiment is to compare the outcome of the classification model of 

the combined Dataset and the original ones, the chosen algorithms, hyper-parameters 

passed through and training procedures follow the ones described at 4.2.1.4. Figure 4.8 

demonstrates an example of the returned dictionary for the best hyper-parameters for the 

Logistic Regression model and the model training. 
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Figure 4.8 - Example of Logistic Regression model training 

 

4.2.4 FEATURE ENGINEERING 

Feature engineering is the process of extraction relevant features from the raw Dataset, an 

important step for preparing the input dataset and improve the performance of ML models. 

Without relevant features, accurate predictions or classifications are hard to achieve. Initial 

efforts should be focused on the identification of appropriate pathways to pick features with 

the most potential for the purpose in hands. The most important step to take is the 

dimensionality reduction and feature selection into a much smaller set that can be modelled, 

with less redundant entries and noise information. For tabular data, Principal Component 

Analysis and unsupervised clustering methods are usually used. For image data, this might 

include pattern detection or segmentation. 

A high correlation between variables means that they may have a similar behaviour and affect 

the data in the same way, which worsens the model performance. Therefore, for this study, 

redundant Radiomic features were removed to improve the model performance. Correlation 

matrices were created to visualize the relationship between the features, and a threshold was 

determined. When the correlation coefficients were higher than the threshold, only one of 

the features was kept, resulting in a much smaller set of variables. For instance, 0.99 and 0.90. 

were the values chosen to start the experiment. No further values where tested as a threshold 

from 0.90 to 0.6 doesn’t seem to have a big influence on the accuracy. After this step, 

histograms were also plotted to compare the data distribution by variable for the four 
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diseases. The variables which presented a similar distribution for the four classes did not 

contribute to the patient’s disease labelling, being thus removed from the study. Figure 4.9 

presents the value distribution of a feature (diagnostics_Image-original_Minimum) for the 

four diseases. As this feature is not discriminatory of the classes, it was removed from the 

Dataset. 

 

Figure 4.9 - Histogram of the "diagnostics_Image-original_Minimum" data distribution. 

  

4.2.5 EVALUATION METRICS 

To evaluate the performance of the different supervised ML algorithms from the three 

experiments, several measures were used to evaluate the performance of the classifiers and 

learning algorithms. The diagnostic capability of classifiers is usually determined by the 

confusion matrix and the receiver operating characteristic (ROC) curve. The confusion Matrix 

measures the quality of the classification, returning a matrix with the correctly and 

incorrectly identified diseases, giving insight about the errors affecting the classifier. The 

matrix can be useful on multi-class studies, assigning the rows to true event and the columns 

to the predictions, thus having a N x N matrix dimension. From this framework results a set 

of parameters summarized at Table 4.3: 

• True positive (TP):  The correctly classified events, that is, the disease was correctly 

classified; 

• False Positive (FP): The cases where the classifier incorrectly identified the event as 

positive. This is also called type I error ; 

• True Negative (TN): The correctly predicted negative cases;  
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• False Negative (FN): Incorrectly classified positive events. It is also called type II error. 

Table 4.3- The framework of the confusion matrix 

 PREDICTED CLASS 

A
C

TU
A

L 
C

LA
SS

  P N 

P
 True Positive (TP) False Negative (FN) 

N
 False Positive (FP) True Negative (TN) 

 

From this matrix, several metrics to evaluate the performance can be calculated. The 

classifier accuracy can be measured as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP + TN

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
    (1) 

From the accuracy, two other measures of the model’s performance may be estimated: the 

precision and recall.  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

𝑇𝑃 + 𝐹𝑃
  (2) ;  𝑅𝑒𝑐𝑎𝑙𝑙 =

TP

𝑇𝑃 + 𝐹𝑁
   (3) 

 

Precision (Equation 2) is obtained by the division of the correctly labeled entries by the total 

positive cases. It may be seen as a measure of exactness or quality of the model and capability 

to predict of classify correctly the positive cases. 

Recall (Equation 3), also called sensitivity, is obtained by dividing the true positive cases by the 

Sum of true positives and false negatives. As it estimates the proportion of positive cases 

identified correctly, the two ways to get a large recall is by increasing the number of TP or 

lowering the number of FN. 

The combination of both measures results in the F1 score, allowing an accurate evaluation of 

the classifiers test accuracy. As represented in Equation 4, it consists on the harmonic mean 

of precision and recall.  

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∙  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
  (4) 
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When considering such metrics in multiclass problems, two distinct measures may be applied 

depending on the scenario: the “macro-average” and “micro-average”. The first one calculates 

for each metric the mean of the binary metrics, giving equal weight to the classes. On the 

other hand, the “micro-average” considers the weight of each class on the overall metric. 

Using this scenario in imbalanced classifications tends to overlook the impact of the 

predominant class. 

 

4.3 RESULTS AND DISCUSSION 

When evaluating the disease classification models, accuracy metrics were used. Table 6 9 

contains the parameters used in this experiment.  

4.3.1 EXPERIMENT 1: IMAGE-BASED BIOMARKER EXPLORATION 

The results of the classification models using the disease labels with the annotation clinical 

data is revealed below at Table 4.4: 

 

Table 4.4 - Shows the results obtained from the classifiers for the first experiment. 

ALGORITHM ACCURACY RECALL PRECISION F1 SCORE 

Macro-

recall 

Micro-

recall 

Macro-

precision 

Micro-

precision 

Macro-

F1 

Micro-

F1 

Logistic Regression 0.4118 0.29 0.41 0.23 0.33 0.24 0.35 

Support vector 

machine 

0.4902 0.34 0.49 0.31 0.44 0.16 0.29 

Random Forest 0.5490 0.39 0.55 0.37 0.49 0.37 0.51 

Multi-layer Perceptron 0.3922 0.25 0.39 0.10 0.15 0.14 0.22 

Decision Tree 0.5450 0.28 0.55 0.33 0.53 0.29 0.51 

 

After testing the models, it is obvious that the one that better classifies the four 

neurodegenerative diseases is the Random Forest, although the DT and SVM were not far 

behind. RF also presents the best values of precision and recall of all the trained models, 

meaning that the proportion of True positives is this case is slightly higher than the false 

negatives. 

 To determine the features from which these values resulted, feature importance from sklearn 

is used. The List of the most important features for the correct classification of 55% of the 
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diseases with the Random Forest classifier is seen at Table 4.5 and the visual representation 

at Figure 4.10. 

Table 4.5 - Feature importance for the Random forest classifier using the annotation data. 

FEATURE WEIGHT 

AGE 0.4198 ± 0.0696 

SUMPOST 0.2412 ± 0.0516 

GENDER 0.2382 ± 0.0296 

SUMMTA 0.2015 ± 0.0700 

SUMANTTEMP 0.1389 ± 0.0203 

SUMFRONTINSUL 0.1206 ± 0.0614 

SUMANTCING 0.1053 ± 0.0541 

SUMORBFRONT 0.0977 ± 0.0114 

 

 

Figure 4.10 - Feature importance for the annotation data. 

 

From the Table 4.5, it is clear thar Age is a major feature for the differentiation of the classes. 

An histogram of the age distribution by disease, Figure 4.11, was plotted to observe the 

differences in the Age range and incidence by each disease. CAA and AD seem to have a wider 

age distribution ([31-89] and [33-89] respectively). In the AD case, this patient seems to be an 

outlier, which could be removed from the study. As for CAA, the early onset may be due to a 
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hereditary CAA form. MCI and PDD have a different data distribution around Age, when 

compared to the other two diseases.  

 

Figure 4.11 - Histogram of Age distribution for the annotated data 

 

Regarding the Posterior lobe, the behaviour of the data for the patients with AD and CAA 

seems quite similar. Observing the barplot of the CAA disease, it is obvious that the rating of 

two is predominant (accounts for about 60% of the cases), while 30% is distributed between 

the ratings of one, three, and four. When it comes to AD, the rating of two takes around 50% 

of the cases, while 20% are rated with zero, and 10% with three ad four each. For MCI, almost 

60% of the cases are rated with the score two, followed by the four rating (30%). Regarding 

PDD, 55% of patients were rated two and almost 30% with zero.  

 

 

Figure 4.12 - Histogram of the Posterior lobe distribution for the annotated data. 
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4.3.2 EXPERIMENT 2: CLASSIFICATION OF DISEASES BASED ON RADIOMIC DATA 

For the second experiment, feature engineering was applied, starting with a total of 1722 

features. For this step, the accuracy values for the classification models are presented at Table 

4.6. 

 

Table 4.6- Results obtained from the classification of Radiomic Data. 

ALGORITHM ACCURACY RECALL PRECISION F1 SCORE 

Macro-

recall 

Micro-

recall 

Macro-

precision 

Micro-

precision 

Macro-

F1 

Micro-

F1 

Logistic Regression 0.4848 0.21 0.48 0.14 0.32 0.17 0.38 

Support vector 

machine 

0.4583 0.25 0.46 0.11 0.21 0.16 0.29 

Random Forest 0.6670 0.43 0.67 0.56 0.66 0.46 0.63 

Multi-layer Perceptron 0.5757 0.25 0.58 0.14 0.33 0.18 0.42 

Decision Tree 0.5440 0.45 0.55 0.45 0.55 0.45 0.55 

 

Once again, RF is the classifier with the best Precision and recall, although the values of True 

positives and False negatives may not be much different. From these results, the feature 

importance was determined, resulting in a list with the most important features for the RF 

classifier. The ordered weights for each feature is presented in the Table 4.7 and a data 

histogram in Figure 4.13 . 

 

Table 4.7 - Feature importance for the Random forest classifier using the Radiomic data. 

FEATURE WEIGHT 

LBP-3D-

M2_GLRLM_SHORTRUNLOWGRAYLEVELEMPHASIS 

0.1634 ± 0.0449 

WAVELET-HHL_GLDM_HIGHGRAYLEVELEMPHASIS 0.1450 ± 0.0273 

LBP-3D-M1_FIRSTORDER_MEAN 0.1160 ± 0.0379 

ORIGINAL_FIRSTORDER_10PERCENTILE 0.0824 ± 0.0366 

WAVELET-HHH_GLCM_CLUSTERTENDENCY 0.0565 ± 0.0248 

LOG-SIGMA-5-0-MM-

3D_GLSZM_SMALLAREAHIGHGRAYLEVELEMPHASIS 

0.0565 ± 0.0207 

WAVELET-HLH_FIRSTORDER_SKEWNESS 0.0504 ± 0.0299 
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LBP-3D-

M1_FIRSTORDER_MEANABSOLUTEDEVIATION 

0.0504 ± 0.0183 

WAVELET-HLL_GLCM_CORRELATION 0.0504 ± 0.0075 

SQUAREROOT_GLCM_MCC 0.0443 ± 0.0224 

WAVELET-HLH_GLSZM_ZONEPERCENTAGE 0.0412 ± 0.0122 

LOGARITHM_FIRSTORDER_ENERGY 0.0412 ± 0.0122 

LOG-SIGMA-1-0-MM-

3D_GLRLM_LONGRUNEMPHASIS 

0.0366 ± 0.0150 

LBP-3D-K_GLRLM_GRAYLEVELNONUNIFORMITY 0.0321 ± 0.0178 

LBP-3D-M2_FIRSTORDER_90PERCENTILE 0.0260 ± 0.0248 

WAVELET-HHL_GLCM_DIFFERENCEENTROPY 0.0229 ± 0.0097 

LOGARITHM_FIRSTORDER_TOTALENERGY 0.0214 ± 0.0114 

WAVELET-

LLL_GLRLM_SHORTRUNLOWGRAYLEVELEMPHASIS 

0.0214 ± 0.0203 

WAVELET-HHH_FIRSTORDER_ROOTMEANSQUARED 0.0198 ± 0.0075 

LOG-SIGMA-4-0-MM-

3D_GLCM_MAXIMUMPROBABILITY 

0.0153 ± 0.0097 

 

 

Figure 4.13 - Feature importance for the Radiomic data. 
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In order to determine whether the results improve by selecting the most important features, 

a threshold of 0.05 was chosen. The features with a score above the threshold were kept on 

the study. Table 4.8 presents the results of a new classification with the selected features. 

 

Table 4.8 - Results obtained from the classification of the Radiomic data after feature selection. 

ALGORITHM ACCURACY RECALL PRECISION F1 SCORE 

Macro-

recall 

Micro-

recall 

Macro-

precision 

Micro-

precision 

Macro-

F1 

Micro-

F1 

Logistic Regression 0.4375 0.21 0.48 0.14 0.32 0.17 0.38 

Support vector machine 0.5758 0.25 0.58 0.14 0.33 0.18 0.42 

Random Forest 0.6970 0.47 0.70 0.54 0.66 0.48 0.66 

Multi-layer Perceptron 0.6360 0.35 0.64 0.40 0.50 0.33 0.52 

Decision Tree 0.6060 0.56 0.61 0.70 0.66 0.59 0.61 

 

Taking a look at Table 4.9, the features who have a higher impact on the classification score 

are the Root-Mean-Squared, from the first order features with a wavelet filter, the 90-

Percentile feature with a lbp filter, Long-Run-Emphasis feature from the glrlm group, with the 

log filter, and the Short-Run-Low-Gray-Level-Emphasis from the glrlm group, with a lbp filter. 

The Root-Mean-Squared (Equation 4), or quadratic mean is a measure of the magnitude of 

the image values. Corresponds to the square of all the numbers in a set, followed by Its 

arithmetic mean, and then the square root of the result. 

𝑅𝑀𝑆 = √
1

𝑁𝑝
∑ (𝑋(𝑖) + 𝐶)2𝑁𝑝

𝑖=1
 (4) 

 

The 90Percentile corresponds to the 90th percentile of the values on the Local Binary Pattern 

filter. 

The Long Run Emphasis (Equation 5) feature is a measure of the longer pixels in an Image that 

have the same grey level value, with a greater value indicating a coarser image texture. N In 

the equation corresponds to the number of homogeneous pixel values in the Volume of 

Interest. 

𝐿𝑅𝐸 =
∑ ∑ 𝑃(𝑖, 𝑗|𝜃)𝑗2𝑁𝑟

𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
           (5) 
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Finally, Short Run Low Gray Level Emphasis (equation 6) corresponds to the shorter distance 

between pixels with the same lower grey-level values. 

𝑆𝑅𝐿𝐺𝐿𝐸 =

∑ ∑
𝑃(𝑖, 𝑗|𝜃)

𝑖2𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
             (6) 

Table 4.9 - Feature importance for the Random forest classifier using the Radiomic data, after feature selection. 

FEATURE WEIGHT 

WAVELET-HHH_FIRSTORDER_ROOTMEANSQUARED 0.3099 ± 0.0156 

LBP-3D-M2_FIRSTORDER_90PERCENTILE 0.2611 ± 0.0636 

LOG-SIGMA-1-0-MM-

3D_GLRLM_LONGRUNEMPHASIS 

0.2565 ± 0.0479 

LBP-3D-

M2_GLRLM_SHORTRUNLOWGRAYLEVELEMPHASIS 

0.2122 ± 0.0244 

WAVELET-HHL_GLCM_DIFFERENCEENTROPY 0.1679 ± 0.0348 

LBP-3D-

M1_FIRSTORDER_MEANABSOLUTEDEVIATION 

0.1435 ± 0.0311 

WAVELET-HLL_GLCM_CORRELATION 0.1160 ± 0.0203 

LOGARITHM_FIRSTORDER_ENERGY 0.0916 ± 0.0237 

WAVELET-HHL_GLDM_HIGHGRAYLEVELEMPHASIS 0.0809 ± 0.0156 

ORIGINAL_FIRSTORDER_10PERCENTILE 0.0748 ± 0.0296 

LOG-SIGMA-5-0-MM-

3D_GLSZM_SMALLAREAHIGHGRAYLEVELEMPHASIS 

0.0336 ± 0.0122 

SQUAREROOT_GLCM_MCC 0.0260 ± 0.0156 

WAVELET-HLH_GLSZM_ZONEPERCENTAGE 0.0229 ± 0.0137 

LOGARITHM_FIRSTORDER_TOTALENERGY 0.0183 ± 0.0122 

WAVELET-HLH_FIRSTORDER_SKEWNESS 0.0168 ± 0.0061 

LBP-3D-M1_FIRSTORDER_MEAN 0.0137 ± 0.0114 

LBP-3D-K_GLRLM_GRAYLEVELNONUNIFORMITY 0.0122 ± 0.0183 

WAVELET-HHH_GLCM_CLUSTERTENDENCY 0 ± 0.0000 

WAVELET-

LLL_GLRLM_SHORTRUNLOWGRAYLEVELEMPHASIS 

0 ± 0.0000 

LOG-SIGMA-4-0-MM-

3D_GLCM_MAXIMUMPROBABILITY 

0 ± 0.0000 

 



 

   70 

4.3.3 EXPERIMENT 3: CLASSIFICATION OF DISEASES BASED ON RADIOMIC AND ANNOTATION 

DATA 

On the last experiment, the remaining radiomic features were combined with the annotated 

data. After this step, the aforementioned models were applied, generating the results 

presented at Table 4.10: 

 

Table 4.10 - Results obtained from the classification of the combined datasets 

ALGORITHM ACCURACY RECALL PRECISION F1 SCORE 

Macro-

recall 

Micro-

recall 

Macro-

precision 

Micro-

precision 

Macro-

F1 

Micro-

F1 

Logistic Regression 0.4318 0.28 0.43 0.25 0.34 0.24 0.36 

Support vector machine 0.4320 0.25 0.43 0.11 0.19 0.15 0.26 

Random Forest 0.6970 0.44 0.70 0.58 0.70 0.47 0.65 

Multi-layer Perceptron 0.4318 0.25 0.43 0.11 0.19 0.15 0.26 

Decision Tree 0.5450 0.36 0.55 0.38 0.51 0.36 0.52 

 

Once again, the RF presents the best classification results, correctly classifying the diseases 

70% of the cases. The higher Micro-F1 score stands out from the other models and is quite 

different from the Macro average of F-score, suggesting that the classes representation on 

the data is unbalanced.  Also, it Is clear that the score of the RF for the combined Dataset is 

higher than the one obtained for the radiomic and annotations data individually. Moreover, 

the feature importance was determined and listed as follows on Table 4.11, and Figure 4.14. 

 

Table 4.11 - Feature importance for the Random forest classifier using the combined data. 

FEATURE WEIGHT 

LOG-SIGMA-1-0-MM-3D_FIRSTORDER_UNIFORMITY 0.2427 ± 0.0769 

LBP-3D-M2_GLRLM_SHORTRUNHIGHGRAYLEVELEMPHASIS 0.1695 ± 0.0203 

LOG-SIGMA-3-0-MM-3D_GLCM_IMC1 0.1206 ± 0.0353 

WAVELET-HHH_GLCM_JOINTAVERAGE 0.1069 ± 0.0255 

LBP-3D-

M2_GLDM_LARGEDEPENDENCELOWGRAYLEVELEMPHASIS 
0.0718 ± 0.0356 

SUMANTCING 0.0672 ± 0.0263 
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WAVELET-

HLH_GLRLM_SHORTRUNLOWGRAYLEVELEMPHASIS 
0.0595 ± 0.0178 

LOG-SIGMA-4-0-MM-

3D_GLDM_LARGEDEPENDENCELOWGRAYLEVELEMPHASIS 
0.0565 ± 0.0183 

SQUARE_FIRSTORDER_MEAN 0.0550 ± 0.0403 

LOG-SIGMA-3-0-MM-3D_FIRSTORDER_MAXIMUM 0.0489 ± 0.0248 

LOG-SIGMA-3-0-MM-3D_FIRSTORDER_KURTOSIS 0.0351 ± 0.0122 

WAVELET-LLL_GLSZM_GRAYLEVELVARIANCE 0.0336 ± 0.0122 

LOG-SIGMA-5-0-MM-3D_GLCM_SUMSQUARES 0.0305 ± 0.0097 

SQUARE_FIRSTORDER_MEDIAN 0.0305 ± 0.0137 

WAVELET-

HHH_GLSZM_GRAYLEVELNONUNIFORMITYNORMALIZED 
0.0260 ± 0.0156 

ORIGINAL_SHAPE_MAXIMUM2DDIAMETERROW 0.0214 ± 0.0224 

WAVELET-HHL_FIRSTORDER_TOTALENERGY 0.0198 ± 0.0156 

WAVELET-

HHH_GLRLM_SHORTRUNHIGHGRAYLEVELEMPHASIS 
0.0198 ± 0.0075 

WAVELET-HHH_GLSZM_GRAYLEVELVARIANCE 0.0183 ± 0.0156 

 

 

Figure 4.14 - Feature importance for the Radiomic data. 

Following the steps applied before, a threshold of 0.05 was determined, and the features with 

a score above the threshold were kept on the study. Table 4.12 presents the results of a new 

classification with the selected features. 
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Table 4.12 - Results obtained from the classification of the combined datasets, after feature selection. 

ALGORITHM ACCURACY RECALL PRECISION F1 SCORE 

Macro-

recall 

Micro-

recall 

Macro-

precision 

Micro-

precision 

Macro-

F1 

Micro-

F1 

Logistic Regression 0.5760 0.25 0.58 0.14 0.33 0.18 0.42 

Support vector machine 0.5758 0.25 0.58 0.14 0.33 0.18 0.42 

Random Forest 0.6970 0.47 0.70 0.54 0.66 0.48 0.66 

Multi-layer Perceptron 0.4849 0.21 0.48 0.14 0.32 0.17 0.38 

Decision tree 0.6060 0.52 0.61 0.51 0.61 0.51 0.60 

 

From Table 4.12, it is clear that, although the results of the classification model with the 

Random forest algorithm did not change, the overall results improved. Furthermore, 

observing the data present on Table 4.13, Short Run High Gray Level Emphasis and Joint 

Average may have an Important weight on the classification model used with the Random 

forest algorithm. 

The Short Run High Gray Level Emphasis (Equation 7) corresponds to the shorter distance 

between pixels with the same hight grey-level values. 

𝑆𝑅𝐿𝐺𝐿𝐸 =

∑ ∑
𝑃(𝑖, 𝑗|𝜃)𝑖2

𝑗2
𝑁𝑟
𝑗=1

𝑁𝑔

𝑖=1

𝑁𝑟(𝜃)
             (7) 

Joint Average (equation 8) is the mean grey level intensity of a distribution. 

𝑗𝑜𝑖𝑛𝑡 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∑ ∑ 𝑝(𝑖, 𝑗)𝑖
𝑁𝑔

𝑗=1
        (8)

𝑁𝑔

𝑖=1
 

 

Table 4.13  - Feature importance after feature selection. 

FEATURE WEIGHT 

LBP-3D-M2_GLRLM_SHORTRUNHIGHGRAYLEVELEMPHASIS 0.1786 ± 0.0568 

WAVELET-HHH_GLCM_JOINTAVERAGE 0.0824 ± 0.0203 

LOG-SIGMA-1-0-MM-3D_FIRSTORDER_UNIFORMITY 0.0733 ± 0.0283 

LOG-SIGMA-3-0-MM-3D_GLCM_IMC1 0.0718 ± 0.0248 

LOG-SIGMA-4-0-MM-

3D_GLDM_LARGEDEPENDENCELOWGRAYLEVELEMPHASIS 

0.0718 ± 0.0183 

SQUARE_FIRSTORDER_MEAN 0.0580 ± 0.0207 

SUMANTCING 0.0519 ± 0.0150 
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LBP-3D-

M2_GLDM_LARGEDEPENDENCELOWGRAYLEVELEMPHASIS 

0.0473 ± 0.0178 

WAVELET-

HLH_GLRLM_SHORTRUNLOWGRAYLEVELEMPHASIS 

0.0351 ± 0.0156 

GENDER 0.0305 ± 0.0193 

 



 
 

 
 

 

5 CONCLUSIONS
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The purpose of this work was to determine biomarkers to complement the diagnosis of CAA. 

To achieve this goal, AI algorithms were applied after the creation of a dataset and MRI image 

retrieval, data pre-processing, image handling, and feature engineering.  

AI has the potential to revolutionize the medical field, by assisting the diagnosis of patients by 

performing tasks that currently rely on human observation, detection, or quantification. The 

technological advancement allied to research on the health domain comes to assist the 

decision making and to identify patterns or findings that better describe or distinguish 

diseases. 

Several machine learning models were developed for three experiments: Classification of CAA 

and three other Neurodegenerative diseases using Data annotated with visual metrics, 

Classification of the aforementioned diseases using Radiomic Data, and finally the same 

classification using a combined Dataset, created by aggregation of the two previous ones. 

The first step was the creation of the Annotation Dataset and MRI image acquisition, using 

adult patients admitted to a University Hospital with non-traumatic ICH, later diagnosed with 

CAA. The annotation was obtained in collaboration with trained physicians who rated the 

brain atrophy by region, according to proposed metrics.  To enrich the Dataset, control data 

should be added. As healthy elder patients’ data were not available, the control data was 

replaced with AD, MCI and PDD data.  

Another step necessary to complete the work was the generation of Radiomics Features. It 

required image segmentation of the skull and brain and the construction of 3D images from 

the 2D slices. This step also required an understating of the DICOM and NIFTI format structure 

to handle the data. Also, all the procedures for the project were carried on in a Jupyter 

Notebook container, optimizing the processes, organization, and time management of the 

processes. This also assisted the development of the ML models. 

The ML approach was carried on by applying four algorithms: Logistic Regression, Support 

Vector Machine, Random Forest, Multi-layer Perceptron, and Decision Trees. The five 

algorithms were first run with the annotation data after pre-processing, achieving a score of 

0.5490 with RF. As for the classification based on radiomic data, RF performed better than the 

four other models, with a score of 0.697, a better result than the one achieved with the clinical 

data. Finally, by combining the Dataset (radiomics) and clinical data (annotation), the aim is 

to determine whether the classification is favoured by the medical annotations, the image 

derived data, or both. In this scenario, RF achieved a score of 0.697, which is better than the 
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first experiment and equal to the second one. From these results It is safe to affirm that the 

hypothesis of the use of the combined Dataset and the Radiomic approach for complementary 

diagnosis of CAA should not be discharged and studied even further. 

After classifying the patient’s data, feature importance was determined to give some insight 

into the variables used to distinguish the neurodegenerative diseases, thus being a possible 

biomarker for the diagnosis of CAA.  Age was pointed out as being a crucial feature when 

classifying the annotation Dataset. The generated results suggested that the age distribution 

for AD and CAA were different from MCI and PDD. Although the Age histogram distribution is 

somewhat similar to the AD’s, the early onset on the CAA case may be due to an hereditary 

CAA form, as it occurs in more than one subject, while the single patient under 40 on the AD 

dataset may be an outlier with a malformation or hereditary disease. Additionally, the atrophy 

pattern on the Posterior region is demonstrated to be also important for the classification of 

the diseases in the Dataset with the visual rating scores. The Posterior region was referred to 

be affected by Cerebral microinfarct and white matter lesions in CAA, an evidence that 

supports this work findings. 

When it comes to the radiomic data experiment, features related to the voxel intensities 

within the image ROI, voxel intensity symmetry, and features related to image texture seem 

to weight on the classification accuracy. Histograms were also plotted and once again, AD and 

CAA seemed to have a similar value distribution, contrasting with MCI and PDD. These findings 

may be explained by the fact that patients with CAA or AD may suffer from similar cerebral 

lesions, for example, cerebral bleedings which in the late years has been seen as a strong 

biomarker for the diagnosis of CAA.  

Finally, the combined data is affected by features that measure the length of consecutive 

pixels that have the same grey level value, thus related to the texture, and the homogeneity 

of the pixel intensity.  

Although the results were satisfactory, there is still some place for improvement. The use of 

healthy patients on future works would be a major contribution to better understand the 

features that weight the most on the diagnosis of CAA, considering the normal human aging 

process. Unravelling the independent behaviour of CAA could lead to new therapeutic 

strategies and develop the medical intervention on neurodegenerative diseases. 
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As for the data acquisition and handling, it would be interesting to implement the annotation 

of the ROI in the image, as it could be used as a reference for the computer to know were to 

look at, and what points are used by physicians to examine a patient’s MRI scan. 

Finally, a bigger clinical dataset would introduce more variables in the study, and a follow up 

of the living patients and acquisition of MRI scans on the following years would provide insight 

about the evolution and impact of the disease on the subject.  
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