
ABSTRACT: Detecting scour in railway bridges is possible by locating accelerometers and GPS on carriages of passing trains 
and processing the resulting signals. This research aims to detect scour based on these drive-by measurements, obtained from an 
instrumented passing vehicle. Signals from multiple train passages will be collected before and after scour repair to determine the 
change in bridge behavior. Measurements from a train in the UK passing over the Carlisle Bridge will be provided through 
In2Track3, an ongoing Horizon 2020 project.  
   In the first stage of the numerical approach, off-bridge conditions are considered. The carriage vibrational responses to track 
with different ground conditions – represented by altering the stiffnesses in a Winkler spring model – are calculated. In second 
stage, the bridge ‘apparent profile’(AP), which is made up of the true profile on the bridge plus components of bridge/track 
deflection, will be computed. The Moving Reference Influence Line, i.e., deflection per unit load at a moving reference point, is 
found from the measured deflections. Bridge support stiffnesses will be modified to represent the loss of stiffness due to scour. 
Then, signals from the instrumented in-service train carriage i.e., measured AP, will be processed. Finally, an optimization 
algorithm will find foundation stiffnesses by minimizing the sum of squared differences between the calculated AP and the 
corresponding measured AP. The presence of scour will be determined by the difference between the stiffness values in the scoured 
and repaired cases. The results will help to optimize retrofits or develop mitigation measures to scour.  
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1 INTRODUCTION 

The Federal Highway Administration defines scour as a 
washout or discharge of material stored in the river bed by 
water flow, over a long period [3]. There are different types of 
scour seen around a bridge pier: natural, contraction and local 
scour [4], having different formations and triggered by different 
mechanisms. Local scour is the most influential and therefore 
one of the most frequently researched scour types on bridges. 
When the water flow is obstructed by structures, centred 
turbulence is induced-which is the main mechanism behind 
local scour [4]. 

Scour is a slowly developing destructive process for bridges 
and one of the major factors in many bridge collapses. For 
example, researchers have determined that 3 out of 5 bridge 
failures in the United States between 1960 and 1990 were 
caused by scour [1]. Moreover, in the United Kingdom, the 
annual cost of railway bridge scour damage has been evaluated 
to be more than about £1 million [2]. The situation is 
exacerbated by the changing climatic conditions (such as 
rainfall regimes) which, in the bridge’s lifetime, are likely to be 
different from those assumed in the bridge’s original design.  

This study is aimed at finding the flexural rigidity of an 
existing railway bridge, which minimizes the sum of squared 
differences between measured and calculated displacements 
using optimization methods. This research seeks to identify 
foundation scour by combining drive-by SHM methods with 
ML algorithms. An experimental campaign in the UK, a partner 
of an international project, is providing indirect monitoring data 
for the study. Measurements will be used from multiple batches 
of passing train runs. A methodology is being developed to 

identify scour based on the bridge’s response. In the first step, 
a numerical method that consists of 2 stages will be conducted 
to find deflections, i.e., the APs. The AP is the profile 
experienced by the train and consists of the pre-existing profile 
of the track plus elements of bridge deflection. In the first stage, 
the off-bridge will be used to consider soil conditions and to 
calibrate the vehicle. In the second stage, the model will 
compute the displacements under the instrumented carriage and 
will use them to find the Influence Line of the bridge, i.e., the 
deflection due to a unit load. Reductions in support stiffnesses 
will be used to represent the effects of foundation scour. To 
inspect the impact of scour, before and after repairing a scoured 
bridge, signals from various batches of train passes will be 
acquired. Later, to find the bridge stiffness, ML-based 
algorithms will be applied to minimize the difference between 
measured and simulated influence lines. The long-term impact 
of the study will be developing possible repair or mitigation 
countermeasures. The flowchart in Figure 1 summarises the 
study. This paper was mainly focused on the background, 
methods, case study characterization, and numerical model of 
the study.  

2 BACKGROUND AND METHODS 

Structural Health Monitoring (SHM) is one of the methods to 
detect scour. SHM is a term used to cover a range of electronic 
techniques for health monitoring, including the scour damage 
state. It has the major advantage of ensuring improvement in 
public safety, early risk detection, and minimizing downtime. 
SHM can be divided into two main categories: direct and 
indirect monitoring. Direct monitoring involves instrumenting 
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Figure 1. Flowchart of the study.

the bridge with sensors. It has some disadvantages of the total 
process being costly and requiring periodic maintenance or 
replacement of sensors [5]. On the other hand, indirect 
monitoring, i.e., instrumenting a passing vehicle, has the 
potential to be more economical at the network level, as one 
vehicle can be used to monitor many bridges. Furthermore, it 
causes no service disruption and has the potential to provide 
updated information frequently. It is possible to process 
collected vehicle data to obtain the bridge’s frequencies by 
numerical techniques and, possibly also mode shapes. Eigen 
frequency analysis [6] and closed-form mode shape derivation 
[7] are methods proposed to identify scour in a bridge but 
further research is required before these methods can be used 
routinely in the industry. It was possible to identify the presence 
of scour by applying Continuous Wavelet Transformation to 
simulated acceleration measurements. The difference in the 
average CWT coefficients between healthy and scoured bridges 
from sets of train crossings was the scour indicator [8]. Other 
researchers have applied Wavelet Transforms to acceleration 
signals directly [9, 10]. O’Brien & Keenahan propose the AP 
[11], derived from measured accelerations in passing trains, to 
detect the presence of scour. The AP is the profile experienced 

by the train so it consists of any pre-existing profile plus 
elements of track and bridge deflection. 
Machine Learning (ML) algorithms and optimization 
techniques have also been used in scour detection by taking 
advantage of its capability to deal with a large number of inputs. 
For example, Zhang and Zhao [12] by training Convolutional 
Neural Networks and Dong et al. by utilizing the Multiple 
Linear Regression method [13] predicted local scour depth 
around piers better than empirical formulas. Hybrid K-star 
models [14] were outperformed the scour equations in the 
literature in the prediction of relative scour depth around 
abutments.  Reduced Error Pruning Tree-Base Classifier [15] 
predicted local scour depth at complex piers, whereas Extreme 
Learning Machines [16, 17, 18] predicted pier local scour depth 
better than frequently used ML algorithms such as Support 
Vector Machines and Artificial Neural Networks and empirical 
formulas. A combination of Gradient Tree Boosting with the 
Group Method of Data Handling technique [19] predicted scour 
depth around piers with different shapes. Evolutionary Radial 
Basis Function Neural Network [20] outperformed several 
algorithms and equations in predicting equilibrium scour depth. 
Non-dominated Sorting Genetic Algorithm [21] was used for 
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predicting critical scour depth and studies adopting Gaussian 
Process-based models [22, 23, 24] performed more accurate 
predictions of local scour around piers and piles than empirical 
formulas.  The empirical scour depth formulas mentioned 
above were Hydraulic Engineering Circular No. 18, Melville 
[25]-Sheppard [26], 65-1, and 65-2 (Chinese).    
More recently, heuristic optimization methods have been 
applied in civil engineering to predict scour depth around a pier 
[27]. In fact, heuristic optimization algorithms are competent in 
solving complex, non-linear civil engineering problems. Some 
of most widely used are genetic algorithm, ant colony 
algorithm, simulated annealing and particle swarm 
optimization [28]. The latter one has been adopted in several 
studies addressing scour depth prediction, being defined as 
particle swarm optimization method. In this method, when the 
swarm readjusts itself to the ambient by reappearing in the 
previously explored areas, the current location of every particle 
is updated by a vector of velocity, according to the social 
attitudes of individuals [29]. Particle swarm optimization 
method was used for updating the FE model of an existing 
bridge to obtain a more robust one [30], and in another study, 
for the analysis of a suspension bridge installation [31].  
Considering its performance in past studies, it is thought to be 
an adequate candidate to solve the sum of the squared roots-
minimization problem of this study in the latter period. 

3 CASE STUDY CHARACTERIZATION 

The bridge monitored is the Eden Viaduct, located in Carlisle, 
United Kingdom, in Figure 2Error! Reference source not 
found. [32]. It is a 7-span simple span bridge, each span 12.7 
m in length. It has 5 masonry piers, in-situ a concrete deck, and 
each span has 8 prestressed concrete beams with a prestressed 
parapet unit and a reinforced concrete parapet upstand unit on 
each side.  Continuously welded rails rest on concrete sleepers 
on one end of the structure (to the High Mileage end), while 
there are timber sleepers at the other end of it (to the Low 
Mileage end) [33]. There are 2 up and down fast lines with a 
speed of about 160 km/h [34]. The bedrock was scoured 
throughout the pier faces, the piers were lifted off the bedrock 
that surrounds them, and the overhanging foundation courses 
were identified by underwater examinations [32]. For this 
reason, between July-October 2015, scour protection was 
applied to foundations and the masonry piles by implementing 
permanent sheet piles and concrete backfill [33]. The bridge 
also experienced a flood in 2015. 

 

Figure 2. Eden Viaduct bridge. [32]. 

The data collection system is called RILA. It is built for 
measuring the track’s longitudinal level and is located at the 
back of the train carriage [35, 36]. The traditional way to 
measure the geometry of a track is through track geometry cars, 
also called loaded measurement, which has high associated 

costs, including service disruption. RILA is an alternative, 
cheaper solution which increases the frequency of 
measurements. Track geometry monitoring sensors are located 
further away from the axle. This type of measuring is called 
unloaded (static) measurement [35]. Although it was proven by 
the field tests that unloaded measurement resulted in small 
disparities from loaded measurements, it satisfies all the 
requirements of the measurement standards [35]. 

4 NUMERICAL MODEL 

To find the pseudo-static bridge response due to the moving 
train, Moving Reference Influence Lines (MR-IL)s were 
calculated. A simulation model was generated in the MATLAB 
environment for this purpose. First, a single span was 
considered. Then, it was upgraded to the 7-span simple 
supported case, which is the real condition of the bridge 
monitored. The bridge was modelled as an Euler-Bernoulli 
beam [37] and divided into several smaller elements. The 
Foundation stiffness value was calculated with the FEMA 2000 
[38, 39] formula, which includes foundation dimensions as an 
input: 

                 𝑘 =  [𝐺 /(1 − 𝑣)][1.55
.

+ 0.8]         (1) 

where G is the soil shear modulus, L is foundation length and 
B is its width. The train carriage is Vehicle 66 and has 6 axles. 
The location of the measurement point is at a distance x from 
the start of the bridge and axle loads are behind point x, as 
illustrated in Figure 3Error! Reference source not 
found.Error! Reference source not found.. 

 

Figure 3. Axle loads and the measurement point. 

There are 2 components of δx, the first is the bending of the 
beam, which will be called δx1 and for which the Unit Load 
Theorem was applied. δx1 is computed with equation 2, where 
MR and MV represent the moment diagrams of the virtual and 
real systems respectively. 

                        𝛿  =  ∫ 𝑀 𝑀 /𝐸𝐼                           (2) 

The second component of δx is the support deflection, i.e., δx2. 
Both components could be seen in Figure 4Error! Reference 
source not found., for the single load case. kf1 and kf2 are spring 
stiffnesses, computed with equation 6. Total displacement is 
equal to: 

 𝐽(𝑥, 𝑑 ) = 𝛿 =  𝛿  +  𝛿                   (3)      

The moving reference response of the beam is computed as 
the sum of the contributions due to each axle: 

                       𝛿  = ∑ 𝑃  𝐽(𝑥, 𝑑 )                        (4) 
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Figure 4. δx and components. 

4.1 Single span 1-axle case 

The model was developed gradually. First, a single-span one-
axle case was studied. Figure 5Error! Reference source not 
found. demonstrates the MR-IL of the 1-axle case. The black 
curve represents the support deflection component (δx2), while 
the magenta line belongs to the beam deflection component 
(δx1). The moving reference response to the train is illustrated 
in Figure 6Error! Reference source not found.. Both MR-IL 
and response are zero until load enters the bridge, i.e., x equals 
to d1. 

 

 

Figure 5. MR-IL for 1-axle single-span case.  

 

Figure 6. Response for 1-axle single-span case. 

5 FINAL REMARKS AND CONCLUSIONS 

Results obtained so far through simulation belong to the MR-
ILs and responses, representing the calculated APs due to a 
moving train carriage. The values are verified through hand 
calculations or the computations performed with the structural 
analysis program. The shapes of the bending moment and 
deflection graphs, local maxima points, etc. are compatible 
with the expectations. 

ACKNOWLEDGMENTS 

This work was partly financed by FCT / MCTES through 
national funds (PIDDAC) under the R&D Unit Institute for 
Sustainability and Innovation in Structural Engineering 
(ISISE), under reference UIDB / 04029/2020. This work has 
also been partly financed within the European Horizon 2020 
Joint Technology Initiative Shift2Rail through contract no. 
101012456 (IN2TRACK3). 

REFERENCES 
[1] Shirole, A. M., & Holt, R. C. (1991). Planning for a comprehensive bridge 

safety assurance program. Transportation Research Record, 1290(3950), 
290-005. 

[2] Safety, R. (2005). Safe Management of Railway Structures Flooding and 
Scour Risk, Rail Safety and Standards Board (RSSB). 
https://www.rssb.co.uk/research-catalogue/CatalogueItem/T554  

[3] Richardson, E. V., & Davis, S. R. (2001). Evaluating scour at bridges 
(No. FHWA-NHI-01-001). The United States. Federal Highway 
Administration Office of Bridge Technology. 

[4] Pizarro, A., Manfreda, S., & Tubaldi, E. (2020). The science behind scour 
at bridge foundations: A review. Water, 12(2), 374.  

[5] Chandrasekaran, S. (2019). Structural health monitoring with application 
to offshore structures. (pp. 1–50). World Scientific Publishing Co. 
https://doi.org/10.1142/9789811201097_0001 

[6] Prendergast, L. J., Hester, D., & Gavin, K. (2016). Determining the 
presence of scour around bridge foundations using vehicle-induced 
vibrations. Journal of Bridge Engineering, 21(10), 04016065. 

[7] Tan, C., Zhao, H., OBrien, E. J., Uddin, N., Fitzgerald, P. C., McGetrick, 
P. J., & Kim, C. W. (2021). Extracting mode shapes from drive-by 
measurements to detect global and local damage in bridges. Structure and 
Infrastructure Engineering, 17(11), 1582-1596.  

[8] Fitzgerald P. C., Malekjafarian A., Cantero D., OBrien E., Prendergast L. 
(2019). Drive-by scour monitoring of railway bridges using a wavelet-
based approach. Engineering Structures, 191, 1-11. DOI: 
10.1016/j.engstruct.2019.04.046. 

[9] OBrien, E. J., Malekjafarian, A., & Fitzgerald, P. C. (2018, August 29-
30). Bridge Scour Detection using Vehicle Acceleration Measurements. 
In Civil Engineering Research in Ireland 2018 Conference (CERI 2018), 
Dublin, Ireland. 

[10] OBrien, E. J., McCrum, D. P., Khan, M. A., & Prendergast, L. J. (2021). 
Wavelet-based operating deflection shapes for locating scour-related 
stiffness losses in multi-span bridges. Structure and Infrastructure 
Engineering, 1-16. 

[11] OBrien, E., & Keenahan, J. (2015). Drive‐by damage detection in bridges 
using the apparent profile. Structural Control & Health Monitoring, 22, 
813-825. DOI: 10.1002/stc.1721. 

[12] Zhang, J., & Zhao, H. (2020, August). A Prediction Model for Local 
Scour Depth around Piers Based on CNN. In 2020 International 
Conference on Information Science, Parallel and Distributed Systems 
(ISPDS) (pp. 318-320). IEEE. 

[13] Dong, H., Chen, F., Zhou, H., Guo, C., & Sun, Z. (2020, June). A 
Prediction Model for Local Scour Depth around Piers Based on Machine 
Learning. In IOP Conference Series: Earth and Environmental Science 
(Vol. 525, No. 1, p. 012080). IOP Publishing. 

[14] Khosravi, K., Khozani, Z. S., & Mao, L. (2021). A comparison between 
advanced hybrid machine learning algorithms and empirical equations 
applied to abutment scour depth prediction. Journal of Hydrology, 596, 
126100. 

[15] Tien Bui, D., Shirzadi, A., Amini, A., Shahabi, H., Al-Ansari, N., Hamidi, 
S., ... & Ghazvinei, P. T. (2020). A hybrid intelligence approach to 
enhance the prediction accuracy of local scour depth at complex bridge 
piers. Sustainability, 12(3), 1063. 

[16] Ebtehaj, I., Bonakdari, H., Moradi, F., Gharabaghi, B., & Khozani, Z. S. 
(2018). An integrated framework of Extreme Learning Machines for 
predicting scour at pile groups in clearwater conditions. Coastal 
Engineering, 135, 1-15. 

[17] Ebtehaj, I., Bonakdari, H., Zaji, A. H., & Sharafi, H. (2019). Sensitivity 
analysis of parameters affecting scour depth around bridge piers based on 
the non-tuned, rapid extreme learning machine method. Neural 
Computing and Applications, 31(12), 9145-9156. 

Civil Engineering Research in Ireland 2022

112



[18] Ebtehaj, I., Sattar, A. M., Bonakdari, H., & Zaji, A. H. (2017). Prediction 
of scour depth around bridge piers using self-adaptive extreme learning 
machine. Journal of Hydroinformatics, 19(2), 207-224. 

[19] Sreedhara, B. M., Patil, A. P., Pushparaj, J., Kuntoji, G., & Naganna, S. 
R. (2021). Application of gradient tree boosting regressor for the 
prediction of scour depth around bridge piers. Journal of 
Hydroinformatics, 23(4), 849-863. 

[20] Cheng, M. Y., Cao, M. T., & Wu, Y. W. (2015). Predicting equilibrium 
scour depth at bridge piers using evolutionary radial basis function neural 
network. Journal of Computing in Civil Engineering, 29(5), 04014070. 

[21] Kim, I., Fard, M. Y., & Chattopadhyay, A. (2015). Investigation of a 
bridge pier scour prediction model for safe design and inspection. Journal 
of bridge engineering, 20(6), 04014088. 

[22] Pal, M., Singh, N. K., & Tiwari, N. K. (2014). Kernel methods for pier 
scour modelling using field data. Journal of Hydroinformatics, 16(4), 
784-796. 

[23] Zheng, W., Qian, F., Shen, J., & Xiao, F. (2020). Mitigating effects of 
temperature variations through probabilistic-based machine learning for 
vibration-based bridge scour detection. Journal of Civil Structural Health 
Monitoring, 10(5), 957-972. 

[24] Maroni, A., Tubaldi, E., Val, D. V., McDonald, H., & Zonta, D. (2020). 
Using Bayesian networks for the assessment of underwater scour for road 
and railway bridges. Structural Health Monitoring, 1475921720956579. 

[25] Melville, B. W., & Coleman, S. E. (2000). Bridge scour. Water Resources 
Publication. 

[26] Sheppard, D. M., & Renna, R. (2005). Bridge scour manual. Florida 
Department of Transportation. 605 Suwannee Street. Tallahassee. 
Florida. 

[27] Shamshirband, S., Mosavi, A., & Rabczuk, T. (2020). Particle swarm 
optimization model to predict scour depth around a bridge pier. Frontiers 
of Structural and Civil Engineering, 14(4), 855-866. 

[28] Cong, S., Jia, Y., & Deng, K. (2010). Particle Swarm and Ant Colony 
Algorithms and Their Applications in Chinese Traveling Salesman 
Problem. In New Achievements in Evolutionary Computation. 
IntechOpen. 

[29] Venter, G., & Sobieszczanski-Sobieski, J. (2003). Particle swarm 
optimization. AIAA journal, 41(8), 1583-1589. 

[30] Xia, Z., Li, A., Li, J., Shi, H., Duan, M., & Zhou, G. (2020). Model 
updating of an existing bridge with high-dimensional variables using 
modified particle swarm optimization and ambient excitation data. 
Measurement, 159, 107754. 

[31] Chen, Z., Cao, H., Ye, K., Zhu, H., & Li, S. (2015). Improved particle 
swarm optimization-based form-finding method for suspension bridge 
installation analysis. Journal of Computing in Civil Engineering, 29(3), 
04014047. 

[32] NetworkRail, (n.d.) Infrastructure Projects Central: 129038 WCM1/5 1m 
0440yds Eden Viaduct. 

[33] Network Rail, (May 2020) Eden Viaduct Main Lines Bridge Detailed 
Examination Report (Underwater Exam) Contract Mileage: 001m 
0455yds 20.68chs. 

[34] Network Rail. (January 2012). River Eden Viaduct (WCM1/5) Stage 2 
Assessment Report. 

[35] Wang, H., Berkers, J., van den Hurk, N., & Layegh, N. F. (2021). Study 
of loaded versus unloaded measurements in railway track inspection. 
Measurement, 169, 108556. 

[36] Network Rail. (November 2021). Carlisle Bridge | Utrecht, the 
Netherlands, Report No. 9221-197241-01 1.0. 

[37] Kwon, Y. W., & Bang, H. (2018). The finite element method using 
MATLAB. CRC press. 

[38] McCrum, D., O’Brien, E., & Khan, M. (2013). Bridge Health Monitoring 
Using an Acceleration-Based Bridge Weigh-in-Motion System. Key Eng. 
Mater, 569, 183-190. 

[39] FEMA, P. (2000) ‘commentary for the seismic rehabilitation of buildings 
(FEMA356)’, Washington, DC: Federal Emergency Management 
Agency, 7. 

 
  

 

Civil Engineering Research in Ireland 2022

113


