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Summary

The paper studies discrete structural properties of polynomials that play an impor-
tant role in the theory of spherical harmonics in any dimensions. These polynomials
have their origin in the research on problems of Harmonic Analysis by means of
generalized holomorphic (monogenic) functions of Hypercomplex Analysis. The
Sturm-Liouville equation that occurs in this context supplements the knowledge
about generalized Vietoris number sequences n, first encountered as a special
sequence (corresponding to n = 2) by L. Vietoris in 1958 in connection with positiv-
ity of trigonometric sums. Using methods of the calculus of holonomic differential
equations we obtain a general recurrence relation for n and we derive an expo-
nential generating function of n expressed by Kummer’s confluent hypergeometric
function.
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1 STARTING THE JOURNEY - SOME HISTORICAL REMARKS

The experience of past centuries shows that the development of mathematics was due not to technical progress (consuming

most of the efforts of mathematicians at any given moment), but rather to discoveries of unexpected interrelations between

different domains (which were made possible by these efforts).
Vladimir I. Arnold

(in: Polymathematics: Is Mathematics a Single Science or a Set of Arts)

Vladimir I. Arnold, one of the most influential mathematicians of the recent past, is well known for having contributed with
unconventional reasoning to an astounding number of different mathematical disciplines. This is marvelously visible in his
contribution1 to the volume of the International Mathematical Union celebrating the year 2000 as the Year of Mathematics. In
the beginning of his paper he mentioned that

“According to J. J. Sylvester (1876) a mathematical idea should not be petrified in a formal axiomatic setting, but should

be considered instead as flowing as a river.”

†Dedicated to Klaus Guerlebeck on the occasion of his 65th birthday.
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His further explanations go far beyond our own subject but as confirmation of Sylvester’s observation he called attention to
general concepts such as complexification, quanternionization, symplectization like examples of informal generalization of all

mathematics not having ready axioms for this purpose. Since the present paper has a lot to do with two different perspectives
on complexification (or, more concrete, hypercomplexification) it seemed to us very appealing to follow Arnold’s philosophy.
Most important in this context is the fact that the two aforementioned different hypercomplexifications have nothing to do with

the usual quaternionization by Cayley-Dickson’s doubling process as counterpart of two complex variables. In fact, in Section 2
we go along the usual road and refer to the ordinary way of hypercomplexification by paravectors as generalization of complex
numbers. Section 3 leads us to a second road and a hypercomplexification by several hypercomplex variables, which for the first
time was systematically used in 19902. As we will show, both methods are closely related, but imply different insights into the
structure of the hypercomplex polynomials that we are studying. In order to get an explanation for some historically investigated
but also partially overlooked connections of real, complex and hypercomplex analysis, it seems opportune to mention some
historical reasons for different approaches to quaternions or hypercomplex numbers during the second half of the last century. 1
About 50 years ago, the influential paper of E. M. Stein and G. Weiss6 directed the attention of physicists and mathematicians

to

“... the correspondence of irreducible representations of several rotation groups to first order constant coefficient partial

differential equations generalizing the Cauchy-Riemann equations.”

They showed how certain aspects of complex one-dimensional function theory extend to solutions of those systems of PDE.
The list of systems includes the generalized Riesz system, the Moisil-Theodoresco system, spinor systems as n-dimensional
generalization of Dirac equations, Hodge - de Rham equations, etc. But their motivation for proving that correspondence between
representation groups and PDE were merely of qualitative nature and deeply connected with properties of harmonic functions
in several real variables. Around the same time the interest in quaternions and their extension to Clifford Algebras together
with strong relations to symmetry groups were renewed. It provoked a fast-growing number of papers by physicists working in
Quantum Mechanics and Quantum-Field Theory.7
Decades later, mathematicians successfully developed analytical tools for the treatment of all kinds of those generalized

Cauchy-Riemann or Dirac equations. To a great part they renewed or actualized research from the 30ties, mainly done by R.
Fueter.8–112 The paper of A. Sudbery14 and, particularly, the book of F. Brackx, R. Delanghe and F. Sommen15 became very
influential. Higher-dimensional analysis in Clifford algebras soon was calledClifford Analysis. Naturally, this type of generalized
function theory heavily relied on representation theoretic and algebraic tools, functional analytic and topological principals, etc.
Much less it relied on instruments or results from classical complex function theory. Their authors were also not motivated by
applications to current problems of complex function theory such as, for instance, approximation or value distribution.

1In his Gibbs lecture, 3 F. Dyson explained the discrepancies between physicists and mathematicians after W. K. Hamilton’s invention of quaternions as the result of
his search for the best way to describe spatial rotations as simply as rotations in the plane through complex numbers ( see also M. J. Crowe 4). It is noteworthy that around
1970 there is no reference in these two works 3,4 to R. Fueter or other mathematicians who used quaternions to generalize complex function theory. This seems even stranger
since F. Dyson used the words of the French function theorist J. Hadamard 5 as an epigraph: “It is important for him who wants to discover not to confine himself to one
chapter of science, but to keep in touch with various others.”

2R. Fueter started his work on the foundation of quaternionic analysis being almost 50 years old. He was motivated by the number theoretic problem of complex
multiplication 12. Generalizations of Fueter’s mapping approach to quaternion valued holomorphic functions of a quaternion variable generated by holomorphic functions
of a complex variable have been proposed by M. Sce in 1957. Later, in 1997, they have been extended by T. Qian applying operator methods. During the next 20 years a
huge number of papers on this subject was published. The recent book 13 is a detailed account of almost all variants in different frameworks.



Cação ET AL 3

The frequently cited results of Sudbery14 strongly supported those developments by suggesting that Riemann’s approach via
conjugate harmonic functions (starting point in the work of Stein and G. Weiss6) would be the only one meaningful approach
to quaternionic analysis and generalized holomorphic functions. For many years, the search for a larger number of intrinsic
similarities with classical function theory was noticeably restricted. Those negative results on the impossibility to develop
quaternionic analysis following other suitably generalized concepts, for example in the sense of Weierstrass or Cauchy, did not
stop further investigations, but naturally they continued to be concentrated on more qualitative function theoretic aspects. The
book of K. Gürlebeck and W. Sprössig16 at the end of the 80ties was an exception and therefore highly appreciated. Dedicated
to boundary value problems for Dirac and generalized Cauchy-Riemann systems, the book also contains the basics of a discrete
hypercomplex function theoretic approach to harmonic functions. The years after the 80ties saw a flourishing interest in Clifford
Analysis, including the creation of a specialized journal and the foundation of a series of international conferences.
What concerns more recent developments in hypercomplex analysis, it seems important to notice that during the last one

and a half decades a certain revival of interest in basic analytical tools grew up, for example, in polynomials and a Cauchy like
formula. As a result of this tendency a new theory of hypercomplex functions without being harmonic functions was created by
G. Gentili and D. Struppa.17 We quote:18

“The fundamental question (...) is what function theory should be used to develop such a functional calculus if we are to

obtain a calculus which shares the basic properties of the Riesz-Dunford functional calculus. In order to do so, one needs

a function theory simple enough to include polynomials and yet developed enough to allow a Cauchy like formula. The

theory of slice regular functions that we develop (...) satisfies both requirements.”

In fact, the development of the new theory of slice regular functions for having at hand hypercomplex power functions did not
come unexpected. Besides the restriction to Riemann’s approach a second crucial drawback challenged for decades the research
in hypercomplex analysis. This drawback substantially restricted the class of functions useful for a treatment in more analytically
oriented research. It was a seemingly simple but basic fact: power functions of the considered hypercomplex variable (and
corresponding polynomials or power series) do not belong to the set of generalized holomorphic (monogenic) functions in the
sense of Fueter.
But two other attempts of the same inspiration17,19 are older and have also been explicitly referred17: the concept of “Modified

Clifford Analysis”, introduced by H. Leutwiler20 in 1992 and some years later the introduction of holomorphic Cliffordian

functions by G. Laville and I. Ramadanoff in 199821. Both attempts have pursued the same goal, namely the determination of
function classes which include the power function xk; k ∈ ℕ, in terms of the considered hypercomplex variable x and, as
important consequence, the identity function f (x) = x . Indeed, in this work21 we find as motivation the remark:

“(...) we think that the most important thing in the theory of one complex variable is the fact that the identity (i.e. z) and

its powers (...) are holomorphic.”

Seeming a rather simple reason for constructing new function classes or even theories, it was for all three theories a fundamental
need for dealing with polynomials. Whereas H. Leutwiler changed from working with the Euclidean metric to the hyperbolic
metric, G. Laville and I. Ramadanoff modified the order of the underlying generalized Cauchy-Riemann PDE’s and correspond-
ingly considered only an odd number of variables. Thereby they also succeeded the inclusion of power functions in the kernel
of their differential operator of order 2m + 1, m ∈ ℕ0.
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A different from all previously mentioned theories but overcoming the same problemwas developed in a series of articles22–24
by authors of the present paper. That time our approach was guided by the idea to stay inside of the class of Fueter’s monogenic
functions, without metric changes or increasing the order of Cauchy-Riemann PDE’s. Therefore we constructed polynomials
with the behavior of power-like functions under hypercomplex differentiation25. Our ideas, based on Appell’s concept of power-
like polynomials26, found applications in quasi-conformal mappings27, in the construction of generalized Hermite, Laguerre28,29
as well as Bernoulli, Euler and others polynomials30. Appell polynomials also successfully have been applied to problems in 3-
dimensional elasticity31 as one of several other fields. We stop here our very short (and therefore incomplete) historical journey
about some common background of different tendencies in the development of hypercomplex analysis. The analytic background
for our own less conventional treatment of hypercomplex polynomials and powers series was the same, but the road we were
driving and searching for new applications led us to combinatorics.
The present paper shows the application of analytical tools for detecting new properties of particular number sequences and

vice versa. After some necessary technical preliminaries in Section 2, we explain in Section 3 how three different interpretations
of the structure of the complex power zk can almost trivially lead to different representations of those aforementioned Appell
polynomials (confirming in some sense the second quote21 of last section). Two of those interpretations are direct consequences
of different perspectives on hypercomplexification, the third interpretation is based on a qualitative difference between power
series expansion in complex and hypercomplex function theory.
After having shown those different viewpoints of hypercomplexification, we continue with some of their applications. They

are results of a casual observation several years ago. Curiosity about the particular role of some coefficient sequences in the
Appell polynomials called our attention to possibly hidden combinatorial relations between them. Finally, this curiosity led us
to the observation that for the simplest non-complex case, the coefficients in those hypercomplex Appell polynomials coincide
with a sequence of real numbers first encountered by L. Vietoris32 in 1958 in connection with positivity of trigonometric sums33.
The fact that all three interpretations called attention to special sequences of real numbers (in particular the generalized Vietoris
sequence34 n) or sequences of vectors of real numbers in the third case, found its reflection in our papers35,36. Moreover, we
could obtain a result on the divisibility of central binomial coefficients35 whose proof is essentially based on an application of
both types of coefficients. An independent from hypercomplex methods study of n via Jacobi polynomials (but different from
those of Askey33, where also applications in complex analysis are mentioned) can be found in a recent paper34. 3
Some elementary tools for passing from continuous to discrete and back to continuous structures in the sense of D. Knuth’s

concrete analysis37,38 were sufficient to detect a Sturm-Liouville type ODE on crossroads between continuous and discrete
hypercomplex analysis. In connection with the holonomic calculus this fact allowed us to obtain an exponential generating
function of n expressed by Kummer’s confluent hypergeometric function depending on the dimension n of the real Euclidean
vector space.
Section 4 closes our journey on different roads by analyzing the connection of the exponential generating function obtained in

Section 3 with an exponential function introduced several years ago22. Fifteen years ago we did not have any knowledge about
the relation of our research with Vietoris’ numbers. The definition of that exponential function was a natural consequence of
applying basic properties of the hypercomplex Appell polynomials39 introduced one year before.

3Reading later the contribution of L Bourgain about connections between harmonic analysis and combinatorics as well as those of W. T. Gowers and R. P. Stanley on
combinatorics and positivity in the same book where the epigraph of V. I . Arnold 1 is taken from, convinced us that at the end our casual observation was not so casual as
we thought. It seems to be rooted in the deep relations of harmonic (hypercomplex) analysis to the other fields, but this time not expressed through representation theoretic
facts, but simply through number sequences and monogenic Appell polynomials.
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2 ON THE USUAL ROAD TO GENERALIZED HOLOMORPHIC FUNCTIONS

For an independent and easy reading we remember some basics of hypercomplex analysis. Readers interested in more historical
background of Clifford Analysis in general or in the consideration of hypercomplex analysis as function theory in co-dimension 1
may consult the references15,40. A short overview can also be found in a very recent survey41.
The simplest example of complexification for working with the algebra of complex numbers in the sense mentioned by V. I.

Arnold is the identification of ℝ2 with ℂ, formally expressed by the two conjugate variables z = x + iy and z̄ = x − iy. For a
system of two real differentiable functions u = u(x, y) and v = v(x, y) and demanding that f = f (z, z̄) is complex differentiable
with respect to z, this leads to the usual system of Cauchy-Riemann equations . If we recall the complex partial derivatives
(Wirtinger derivatives)

)f
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= 1
2

()f
)x

+ i
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)y

)

and )f
)z

= 1
2
(
)f
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− i
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)

then the complex form of the Cauchy-Riemann equations is given as
)̄f ∶=

)f
)z̄

= 0. (1)
If and only if (1) is fulfilled, then the complex derivative of f is the result of the action of the conjugate Cauchy-Riemann

operator

) ∶= 1
2

( )
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− i )
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)

on f and therefore given by f ′ = 1
2
( )f
)x
− i )f

)y
). Due to (1) the complex differentiable or, equivalently, complex holomorphic

function f does not depend on the conjugate variable z̄ and we have that in fact
f ′ =

df
dz

=
)f
)x

= −i
)f
)y
. (2)

The step from complexification to an analogue hypercomplexification now seems to be obvious. Instead of pairs of real vari-
ables (x, y) one has to consider (n+ 1) - dimensional vectors x = (x0, x1,… , xn) ∈ ℝn+1 treated in the manner of elements of a
Hypercomplex System42,43 which includes as simplest cases the complex numbers and also quaternions. For that an orthonormal
basis of the Euclidean vector spaceℝn in form of n vectors {e1, e2,⋯ , en} should be chosen, being subject to a non-commutative
binary product according to the multiplication rules

ekel + elek = −2�kl, k, l = 1,⋯ , n., where �kl is the Kronecker symbol. (3)
Then hypercomplexification is realized by adding the real (scalar) part x0 = Sc(x) and the purely imaginary (vector) part
x = Vec(x) = e1x1 +⋯ + enxn for dealing in this form with only one hypercomplex variable x. 4
This idea goes back to a number of papers published around 1880 by J. J. Sylvester about the correspondence between quater-

nions and their generalizations on the one hand and matrices on the other hand44. He also noticed that each hypercomplex
number has an associated matrix based on the table of the multiplication rules (3). His discovery connected hypercomplex num-
bers to the nascent theory of transformation groups and thereby formed one of the fundamentals in the history of Representation
Theory in the beginning of the last century.
Nowadays the (formal) sum

x = x0 + x (4)
is called paravector and n ≅ ℝn+1 describes the embedding of ℝn+1 in a 2n-dimensional Clifford algebra l0,n over ℝ with
n ⊂ l0,n, generated by ek, k = 1,… , n. A basis of l0,n over ℝ with unity e0 = 1 is the set

4Speaking here of a purely imaginary part should not be confused with the imaginary part y of the complex number z = x + yi, being itself a real variable.
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eA = eℎ1eℎ2 … eℎr , 1 ≤ ℎ1 <⋯ < ℎr ≤ n, e∅ = e0 = 1.

where {eA ∶ A ⊆ {1,… , n}}.

The reason for this usual type of hypercomplexification seems well justified by having in mind real analytic functions and their
continuation into the complex plane through their series representation. Indeed, the easiest way to extend a real analytic function
f (x) automatically to a complex analytic (holomorphic) function is by substituting the real variable x in its series expansion by
the complex variable z. The holomorphy of the obtained complex analytic function with real coefficients inside a corresponding
circle of convergence is guaranteed by the well known fact that a holomorphic function has a series expansion that only depends
on the (holomorphic) variable z, but not on its conjugate z̄. The usual introduction of all elementary complex functions makes
use of this fact. But does the same method of hypercomplexification (working analogously with a paravector x = x0 + x instead
of z ∈ ℂ) also automatically leads to meaningful generalized holomorphic functions as continuation from the one-dimensional
real space ℝ to the space ℝn+1? The answer to this question for n ≥ 2 is negative.
The reason for this dilemma will become clear after having recalled all the other ingredients for a treatment of Clifford

algebra valued functions of a paravector variable in analogy to complex holomorphic functions, i. e. functions of the form
f (z) =

∑

A fA(z)eA, where fA(z) are real valued functions defined in some open subset Ω ⊂ ℝn+1. In concrete applications
like, for example, pseudo-conformal mappings, 3D - elasticity problems and our particular aim of polynomials, the range of f
coincides with ℝn+1 and f will be a mapping fromn ton.
Remark 1. In almost all problems we will deal with, it is our aim to guarantee that the considered general case formally includes
also the real case and the complex case as particular cases of ℝn+1. If this is guaranteed, then the restrictions to one or to the
other particular case have to be considered in different manner. For the complex case it is enough to choose n = 1, but the real
case is the result of setting x = 0.
Now it still remains to recall the usual generalized Cauchy-Riemann differential operator for the definition of generalized

holomorphic (monogenic) functions in its kernel. The clarification about the possibility to use its hypercomplex conjugated
operator as a meaningful derivation operator can be found in the work of Gürlebeck and Malonek25. Using a differential form
calculus2 and a corresponding Cauchy integral, this paper contains the proof that the existence of the hypercomplex derivative
is necessary and sufficient5 for defining monogenic functions, i.e. solutions of the generalized Cauchy-Riemann system41. The
necessary topological basics are almost obvious.
For this purpose we recall that in analogy with Wirtinger’s complex partial differential operator ) ∶= )

)z̄
the generalized

Cauchy-Riemann differential operator ) is a formal paravector of partial derivatives given by
) ∶= 1

2

(

)
)x0

+ e1
)
)x1

+⋯ + en
)
)xn

)

= 1
2

(

)0 + )x
)

, (5)
where

)0 ∶=
)
)x0

and )x ∶= e1
)
)x1

+⋯ + en
)
)xn

.

5Notice that this result corrected again the opinion suggested in Sudbery’s paper from 1979 14 that only Riemann’s approach via conjugated harmonic functions
leads to a meaningful generalization of the system of Cauchy-Riemann equations. The two works 2,25 have shown that also a suitable generalization of Cauchy’s approach
via complex derivability leads to the same generalized system of Cauchy-Riemann equations and thereby to monogenic functions. Both papers clarified the fact that
differentiability as property of local linear approximation and derivability (the existence of a hypercomplex derivative) are, contrary to the complex case n = 1, dual and
have to be considered for n > 1 in hypercomplex dimension one resp. in co-dimension one of ℝn+1.
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Since the conjugate of x is given by x̄ = x0 − x analogously
) ∶= 1

2
()0 − )x) (6)

is just the conjugate generalized Cauchy-Riemann operator. Then the hypercomplex derivative f ′ of a monogenic function 6 is
obtained as

f ′ = )f = 1
2
()0 − )x)f. (7)

Furthermore, the norm |x| of x is defined by |x|2 = xx̄ = x̄x = x20 + x21 +⋯+ x2n. At the end of this preliminaries it remains
to notice that in the case of n ≥ 1 the vector part x = e1x1 +⋯ + enxn is considered as a whole and has a non-positive square
x2 = −|(x1,⋯ , xn)|2 = −

∑n
1 x

2
k. This fact suggests the idea, already used by Fueter8, to introduce for a truly complexification

of the paravector x = x0 + x a variable imaginary unit. If we define

! = !(x) =
⎧

⎪

⎨

⎪

⎩

x
|x|
, x ≠ 0

0, x = 0
(8)

thenwe notice that for x ≠ 0,! belongs to the unit sphereSn−1 inℝn. Moreover,! behaves like an imaginary unit, since!2 = −1
without being for n = 1 a simple substitution of the constant imaginary unit i. In this case, ! = sign(x1)e1 or ! = sign(y)i in
the usual notation of the complex variable7 z = x + iy ∈ ℂ. The usefulness of ! lies in the fact that each paravector x has a
second type of representation, which we simply call complex-like form

x = x0 + |x|!, (9)
because of its analogy to the complex variable representation. This very suggestive relationship shows en passant that xk is a
paravector, too. It plays a decisive role in some of the following considerations, also because of the interesting behavior under
differentiation by )x that in the past only rarely has been exploited45,46. Notice that for dealing with the representation (9) one
would have to use

)x! =
1 − n
|x|

and )x|x| = !. (10)
We are now prepared to drive along different roads for an encounter with three different visions on monogenic hypercomplex
Appell polynomials. They all have their natural origins in different interpretations of the power zk of z ∈ ℂ.

3 ON DIFFERENT ROADS: FROM COMPLEX POWERS TO HYPERCOMPLEX APPELL
POLYNOMIALS

Everybody knows that sometimes you just can’t see the forest for the trees. This happened also in some sense with a pretty
obvious possibility to overcome the question of a suitable replacement of the holomorphic power zk of z ∈ ℂ by a monogenic
function f = f (x), x ∈ n, maintaining as most as possible its properties. Before arriving to the core of our philosophy of

6To bemore exact,C1-functions f satisfying the equation )f = 0 (resp. f) = 0) are called left monogenic (resp. right monogenic). We suppose that f is hypercomplex
differentiable in Ω 25, i.e. it has a uniquely defined areolar derivative f ′ in the sense of Pompeiu in each point of Ω 40. In fact, like in the complex case, hypercomplex
differentiability implies also real differentiability.

7As R. Fueter 8 already noticed, for inverting this representation, i.e. for producing from iy the vector part of a paravector in a given complex holomorphic function,
one should take the sign of

√

−(x)2 according to the sign of y. Later on Fueter’s remark has often been neglected and proposed that only complex holomorphic functions
defined in the upper half plan should be used for that purpose. But Fueter himself discussed this question and included remarks about Schwarz’ reflection principle in his
paper.
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hypercomplexification ofℝn+1 at the end of this section, we need a more intrinsic analysis of the structure of xk under the action
of the differential operators (5) and (6).
For the paravector x itself the action of the generalized Cauchy-Riemann operator (5) results in

)x = x) = 1
2
()0x0 + )xx) =

1
2
(1 − n). (11)

This shows that for n ≥ 2 the paravector x is not monogenic. Moreover, the application of the conjugate operator (6) leads to
)x = x) = 1

2
()0x0 − )xx) =

1
2
(1 + n). (12)

Both formulae, (11) and (12) together, indicate that only the particular complex case n = 1 as specification of the general
hypercomplex case gives the desired result, i.e. x itself is a monogenic function with derivative equal to 1. But where really
lies the reason that already a simple change from zk to xk does not give the desired result for all n > 1 and k ≥ 1? Of course,
for a comfortable dealing with polynomials in the usual sense in terms of powers of a hypercomplex variable one could simply
try to modify Fueter’s theory. We saw in Section 1 that this was exactly the driving force for H. Leutwiler,20 G. Laville and I.
Ramadanoff21 and also G. Gentili and D. Struppa.17
But we remember that a paravector power restricted to the real case xk|x=0 = xk0 resp. complex case xk|n=1 = zk, where z =

x0 + x1e1 are both characterized by two common properties:
(xk0)

′ = kxk−10 resp. (zk)′ = kzk−1, k = 1,… , and x00 = z
0 = 1. (13)

Moreover, the real and complex derivatives can be considered as particular cases of the hypercomplex derivative (7). Why not
ask for an easy to handle monogenic hypercomplex power function instead of xk with exactly the same properties as indicated
by the simplest cases in (13)?
Driving now along three different roads, we focus on three different interpretations of the structure of the prototype zk, z ∈

ℝ2 ≅ 1 and some of their specific consequences and applications.

3.1 The binomial expansion of xk and a monogenic hypercomplex power-like polynomial

At the first glance, the use of complex numbers z ∈ ℂ ≅ ℝ2 ≅ 1 ≅ l0,1 as special representatives of ℝn+1 ≅ n for ideas
about extensions to higher dimensions could not be very helpful, because of being an exceptional case: the only one commutative
sub-algebra. But we consider the paravector xk for n ≥ 2 now as a binomial with two commuting elements and analyze more
detailed its binomial expansion

xk = (x0 + x)k =
k
∑

s=0

(

k
s

)

xk−s0 xs =
k
∑

s=0

(

k
s

)

xk−s0 |x|s!s (14)
having in mind the almost identical expansion of the complex power

zk = (x0 + e1x1)k =
k
∑

s=0

(

k
s

)

xk−s0 xs1e
s
1.

Of course, the essential difference between the variable imaginary unit ! ∈ ℝn and the constant imaginary unit e1 ≅ i ∈ ℂ

consists in its behavior under derivation (10). Since it is depending from the dimension n we have to count with non-desired
influences on the binomial expansion after the action of the generalized Cauchy-Riemann (Wirtinger) operators. This can be
shown by a simple calculation which opens also the way to a general remediation in form of a different binomial expansion.
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If we consider a reduced binomial expansion of xk = (x0 + x)k for k = 2,…

xk = (x0 + x)k =
k
∑

s=0

(

k
s

)

xk−s0 xs = xk0 + kx
k−1
0 x +M(x0, x),

where M(x0, x) is the remaining sum of terms with lower powers of x0, we see that after the formal application of the
hypercomplex derivation operator the leading term of order k − 1 (in x0) is equal to

)xk = 1
2
()0 − )x)(xk0 + kx

k−1
0 x +M(x0, x)) =

1
2
(k − k)xx)xk−10 +N(x0, x), (15)

where N(x0, x) is a sum of terms with lower powers of x0. Taking into account that )xx = −n we notice that a constant
correction factor d1 = 1

n
, i. e. the use of d1 x could guarantee that at least the constant factor of the first element in the expansion

of )xk would be the desired value k. An analogue correction of the remaining higher order powers of xs = |x|s!s, s = 2,… in
M(x0, x) also seems reasonable. But unfortunately, the derivatives )x xs are depending from the parity of s, because

)x x
s =

⎧

⎪

⎨

⎪

⎩

−sxs−1, if s is even
−(n + s − 1)xs−1, if s is odd

which can be verified by straightforward computations. It implies that different correction factors ds for every s = 1,… , of
xs have to be used. Suppose such process is viable and produces in M(x0, x) the same common factor k of all of its terms
in an appropriate way, we would be close to our objective, i.e. to obtain a homogeneous polynomial with the analogous with
(13) properties, but now with respect to the hypercomplex derivative. Only one additional property should still be taken into
account, namely that the unknown so far correction coefficients ds must ensure that a monogenic homogeneous polynomial is
obtained. Only in this case the until now formally applied operator (6) as hypercomplex derivative (7) leads really to a monogenic
hypercomplex function as generalization of xk. The disadvantage is, of course, that the binomial expansion (14) of xk will not
anymore be possible and we have to pass to a homogeneous polynomial Pk(x0, x; n, ) given in the form

Pk(x0, x; n) =
k
∑

s=0

(

k
s

)

ds(n) xk−s0 xs =
k
∑

s=0

(

k
s

)

ds(n)xk−s0 |x|s!s. (16)
That at the end the correction coefficients are also depending from the dimension of the vector part x of x is obvious and has
been used in this representation (16). The particular choice of d0(n) = 1 for all n ∈ ℕ is justified by the second property in (13)
and guaranties that Pk(1, 0; n) = 1.
Remark 2. We stress the (trivial) fact that ds(1) = 1, identically for all values of s, characterizes the particular case n = 1 and
consequently

Pk(x0, x1e1; 1) =
k
∑

s=0

(

k
s

)

xk−s0 xs = (x0 + e1x1)k

are the usual powers of the holomorphic variable z = x0 + e1x1. The expected inclusion of powers of the real variable x0 in our
consideration by choosing x = 0 in (16) also doesn’t need any further explanation.
Remark 3. It is easy to see that for a fixed n a binomial expansion of Pk(x0, x; n) itself is obtained in the form

Pk(x0, x) =
k
∑

s=0

(

k
s

)

Pk−s(x0, 0)Ps(0, x). (17)

Nevertheless, since the nature of the polynomial Pk(x0, 0) = xk0 is different from that of the dependent of n polynomial
Pk(0, x) = dk(n)xk, the formula (17) is hiding the fact that the elements of the corresponding Pascal triangles with respect to
x0 and x in (16) are not identical with the ordinary Pascal triangle as the Table 1 shows.



10 Cação ET AL

dk
d0 = 1 1

d1 =
1
2

1 1
2

d2 =
1
2

1 2 ⋅ 1
2

1
2

d3 =
3
8

1 3 ⋅ 1
2

3 ⋅ 1
2

3
8

d4 =
3
8

1 4 ⋅ 1
2

6 ⋅ 1
2

4 ⋅ 3
8

3
8

d5 =
5
16
⋯ ⋯ ⋯ ⋯ ⋯ ⋯

TABLE 1 Real coefficients in Pk(x0, x; 2); k = 0,… , 5

3.2 Paravectors versus several hypercomplex variables

Now our aim is to see in the complex variable z a second and completely different source for interpretation as particular case
n = 1 of some generalized toℝn+1 ≅ n hypercomplex object. This interpretation leaves the usual road to monogenic functions
of a paravector valued variable. It is, in some sense, an example of driving on a road without having ready axioms for this

purpose in the spirit of the words of V. I. Arnold8.
For this purpose we have to look with new eyes to z = x + iy. We saw in the previous subsection that (under some general

restrictions on the considered function) a simple way of coming from an interval on the real axis to a bi-dimensional domain

in the complex plane can be succeeded as linear extension of the real variable x by the pure imaginary variable iy. In a more
advanced context, we find this idea behind the roots of Schwarz’ reflection principle. Of course, this is a very simplified argu-
mentation, but sufficient for the interpretation of the usual approach which uses the same method by extension from an interval

on the real axis to a n-dimensional domain in ℝn. In this case the real variable x = x0 figured as an exceptional variable com-
pared with all the others considered as a whole. What happened if we consider y = x1 as the result of specifying x ∈ ℝn, but
without being connected to i = e1, simply as the first component of the real vector (x1,… , xn)? Vice versa, this perspective
opens the eyes for another extension from the real to the hypercomplex, i.e. another type of hypercomplexification of the vari-

able which now should be understand as extending y = x1 ∈ ℝ to (x1,… , xn) ∈ ℝn and leaving x0 unchanged as exceptional
variable. As consequence immediately the question arises about the role of the generators ek, k = 1,… , n, of l0,n. The answer
seems now obvious, because complex numbers as model for such an algebraisation include the imaginary unit i. Wouldn’t it be
the easiest way, by analogy, to include all generators together into a vector of n imaginary units? Yes, the way to do this is open
after rotation of the complex plane whereby x and y change there places:

y − xi = −iz = z(−i) and correspondingly y + xi = iz̄ = z̄i. (18)
Remark 4. On pages 46 and 68 of the book of Brackx et al.15 the authors postulate “Notice however that for a complete analogy
(with the usual complex notation z = x + yi) one has to think of x1 as the real part and of x0 as the imaginary part of the

variable and to identify e1 with −i”. All this happens here naturally by rotations and without artificial changes.
Introducing now the vectors

x = (x1,… , xn)T and analogously i = (−e1,… ,−en)T (19)

8We call attention to the fact, that this subsection is nothing more than an unusual interpretation of a simple formula as basis for an easy understanding of the approach
to monogenic functions realized in Malonek 2.
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and writing as always x0 = x, the hypercomplex extension of (18) to a vector of n hypercomplex variables follows in a self-
explaining way. With z = (z1,… , zn)T we get

z ∶= x + x0i. (20)
In this way our road led us to a second hypercomplex structure of ℝn+1, simply by a different interpretation of z ∈ ℂ, namely

ℝn+1 ≅ n ∶= {z ∶ zk = xk − x0ek; x0, xk ∈ ℝ, k = 1,… , n}.

The main advantage of this approach lies in the fact that all components of z are monogenic variables since )̄zk = 0.
Then-approach to monogenic functions leads in a very natural and direct way to power series in several hypercomplex vari-

ables (generalizing Weierstrass’ approach to complex holomorphic functions). In general, the non-commutative multiplication
in Clifford algebras causes many difficulties. But the systematical use of n hypercomplex variables simplifies essentially nota-
tions and calculations, and allows to work with monogenic polynomials in almost the same way as with multivariate polynomials
in several real or complex variables. Indeed, (20) opens even the eyes for some kind of duality with the treatment of holomor-
phic functions in several complex variables. The classical extension from one complex variable to several variables joints two
n-dimensional real vectors x and y by complexification in the form of

z ∶= x + i y. (21)
Now formula (20) shows that one real vector x together with a vector i of n imaginary units multiplied by the exceptional variable
x0 constitutes also a meaningful set of variables. Literally speaking, our road crosses the bifurcation of complex function theory
of one variable into two different holomorphic function theories, one of several complex variables and the other one of several
hypercomplex variables. Needless to say, that compared with the hypercomplex one variable x ∈ n we see that z ∈ n is the
basis for a hypercomplex function theory in co-dimension 1 ofℝn+1. This explains once again the particular role of ℂ for n = 1,
where both concepts coincide41.
We finish this subsection with two of the most important basic consequences for the work with the components of z ∈ n in

the context of hypercomplex monogenic polynomials. Proofs and further details, including series or corresponding alternating
differential forms, can be found in Malonek et al..40,41,47

(i) If � = (�1,… , �n) is a multi-index, all homogeneous monogenic polynomials of degree |�| = k can be obtained as linear
combinations (from the left or from the right)

P (z) =
∑

|�|=k
z �c� resp.

∑

|�|=k
c�z � , c� ∈ l0,n

of generalized powers z � defined in the form of an n-nary symmetric product

z � ∶= z�11 ×⋯ × z�nn = z1 ×⋯ × z1
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

�1

×⋯ × zn ×⋯ × zn
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

�n

= 1
k!

∑

�(i1,…,ik)
zi1 ⋯ zik , (22)

where the sum is taken over all permutations9 of {i1,… , ik} ⊆ {1,… , n} and zj = xj −x0ej , j = 1,… , n. Moreover, all
functions of the form f (z) = z � ∈ n, are left and right monogenic and l0,n - linear independent. Therefore they can
be used as basis for generalized monogenic power series. Of course, the definition of the n-nary symmetric product is not
restricted to the components of the hypercomplex vector, but can be understood as applicable to any n− tuple of elements
of commutative or non-commutative rings. It is here not our aim to develop a vector calculus in n, for instance with

9In page 68 of Brackx et al. book 15 one can read "where the sum runs over all distinguishable permutations". This caused problems with heavy notations and the
loss of important algebraic relations .
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admission of n as scalar field and the symmetric product as multiplication. As a curious example we only mention that
the product z = x × i with x ∈ n realizes the projection of x ∈ n into z ∈ n since zk = xk − x0ek = − 1

2
(ekx+ xek).

Several relations, showing other deep connections of x ∈ n and n can be found in Malonek.49

(ii) We recall that (20) was the result of interchanging the real and the imaginary part of the complex variable. Extending
from the real to the complex and, vice versa, restricting the complex to the real, means now extending ℝn to ℝn+1 resp.
restricting ℝn+1 to ℝn.

Remark 5. In section III.2.3 of Delanghe et al.48 on Generalized power functions one can read: “As z� may be defined as the

holomorphic extension of x� , x ∈ ]0,∞[ , it seems natural to replace x� on ]0,∞[ , by some kind of power function x� , x ∈

ℝm ⧵ {0}”. This leads to the concept of Cauchy-Kovalevskaya continuation48, but for n ≥ 2 and � > 1 this does not allow
to include the extension from the real to the complex and, vice versa, the restriction of the complex to the real as a reversible
process in the usual way.
Since z�|x0=0 = x�, the partial derivatives with respect to xk of the generalized powers z� are straightforward and the key

stone for an easy handling in analogy with real powers. This is, for instance, confirmed by
)z�
)xk

= �kz�−�k , together with Euler’s formula ∑

|�|=k
zk
)z�
)xk

= k z�, (23)

where �k is the multi-index with 1 at place k and zero otherwise. Euler’s formula is also true for any polynomial of homogeneous
degree k. From (23) we get like in the real and complex calculus

)|�|

)x�
z� = )|�|

)x�
x� =

⎧

⎪

⎨

⎪

⎩

�!, if � = �
0, if � ≠ �

and this implies for arbitrary n ∈ ℕ:

P (z) =
k
∑

|�|=0

1
�!

z� )
|�|P (0)
)x�

or P (z) =
k
∑

|�|=0

1
�!
)|�|P (0)
)x�

z�. (24)

Remark 6. The expansion of P (z) in its Taylor series identical with the expansion of P (x) is expression of the uniqueness
theorem for generalized hypercomplex Taylor series (an inheritance from the same relation between Taylor series in one or
several complex variables). Of course, Taylor series expansions or convergence questions are irrelevant for polynomials, but
extending the theory to power series it becomes one of the main concerns. R. Krausshar’s book50 uses the n- approach for
dealing with hypercomplex generalized Eisenstein series.
A useful interpretation of (24) is that an arbitrary l0,n- valued multivariate polynomial in ℝn can be extended to a left resp.

right monogenic polynomial in ℝn+1 through its Taylor expansion simply by substituting x� in (24) by z� and changing at the
same time the ordinary product to the symmetric product (22). 10
We are now prepared for the final goal of this subsection, i.e. to find in terms of hypercomplex variables a homogeneous

monogenic polynomial Pk(z) of order k as substitution for xk = (x0 + x)k with the same properties as (16) for simulating zk
with respect to (13).
For this purpose we consider the paravector xk which, as we have seen before, is not monogenic in ℝn+1. Consider now its

restriction to the hyperplane x0 = 0 which results in the pure vector part xk ∈ ℝn. Then we have, with the monogenic extension

10This is just the essence of the so-called Cauchy-Kovalevskaya extension of a real-analytic l0,n-valued function in ℝn to a monogenic function in ℝn+1.
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described by (24), a method on hand to see that its Taylor expansion
xk =

∑

|�|=k

(

k
�

)

x�11 ⋯ x�nn · e
�1
1 ×⋯ × e�nn , where like usual

(

k
�

)

∶= k!
�!
= k!
�1!⋯ �n!

, (25)

indicates directly a (left, or analogously also a right) monogenic homogeneous polynomial Pk(z; n) of the form
Pk(z; n) =

∑

|�|=k

(

k
�

)

z�11 ×⋯ × z�nn · e
�1
1 ×⋯ × e�nn . (26)

Even though we constructed already directly an appropriate monogenic function by using Pk(z; n)|x0=0 = xk, equations (13)
demand also to guarantee that its hypercomplex derivative is P ′k = kPk−1 and the initial value Pk(1) ∶= Pk(z; n)|x0=1,x=0, k =
0, 1,… , should be 1. Since the hypercomplex derivative is obtained by applying ) to a monogenic function f , these conditions
together demand that the coefficient of xk0 , the highest order of x0 in the k- homogeneous polynomial (26), is equal to 1. Direct
inspections confirm that for n ≥ 2 this is not the case, since x = 0 in (26) implies zk = −x0ek and

Pk(z; n)|x=0 = (−1)k
∑

|�|=k

(

k
�

)

xk0 · e
�1
1 ×⋯ × e�nn · e

�1
1 ×⋯ × e�nn = (−1)kxk0

∑

|�|=k

(

k
�

)

[e�11 ×⋯ × e�nn ]2. (27)

From (27) it follows immediately how to define a correction factor ck(n) to Pk(z; n) for this purpose. The seemingly complicated
expression11 of a real number ck(n) in form of

ck(n) ∶= (−1)k
(

∑

|�|=k

(

k
�

)

[e�11 ×⋯ × e�nn ]2
)−1 (28)

turns out to be as factor of Pk(z; n) the last step for satisfying the necessary condition for obtaining the desired correction of xk in
terms of z. Distinguishing the resulting polynomial by a different notation from that of Subsection 3.1 we get its representation

k(z; n) ∶= ck(n)Pk(z; n) = ck(n)
∑

|�|=k

(

k
�

)

z�11 ×⋯ × z�nn · e
�1
1 ×⋯ × e�nn = xk0 +M(x0, x) (29)

as leading monic polynomial of order k in x0 separated from the remaining sum of terms with lower powers of x0 contained
in M(x0, x). Doing the same for fixed n and all k = 1,… , the sequence of (k(z; n)

)∞
k=1 contains homogeneous monogenic

polynomials with leading monic polynomial in x0 according to the order k. Its elements n
k satisfy the analogue with (13)

properties
(n

k )
′ = kn

k−1 and n
k (1) = 1 (30)

with respect to the hypercomplex derivative.
A similar situation was studied in Subsection 3.1 and resulted in (15). The difference between (29) and (15) is an essential one.

In the ladder our aim was to find a monogenic polynomial on the basis of the formally applied hypercomplex derivation operator
(6). In the former we knew already that the same was not a formal application, but used for obtaining the given monogenic
polynomial with a monic leading polynomial xk0 . This means that only one correction factor ck(n) for each homogeneous order
was needed, not k factors as in (16). The use of ) = −)x instead of the equivalent ) = )0 would lead to exactly the same result,
but needs a slightly more complicated reasoning by applying, for example, Euler’s formula (23). We stop here without further
studying the structure of the remaining terms inM(x0, x). Table 2 serves as example for the case n = 2.
Remark 7. Table 2 shows interesting relations to the ordinary binomial Pascal triangle. More than the triangle in Table 1 it
permits to infer properties characterizing its hypercomplex origins. For instance:

(i) It is in some sense symmetric with respect to the middle vertical but with alternating generators in the odd rows. Reading
from the left side started with a multiple of e1 and ended with the same multiple of e2. This is characteristic for the odd

11Cação et al. 51 study examples of combinatorial identities in terms of generators of l0,n and symmetric products of them inspired by expressions like in (28).
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ck
c0 = 1 1

c1 =
1
2

1
2
e1

1
2
e2

c2 =
1
2

− 1
2

0 − 1
2

c3 =
3
8

− 3
8
e1 − 3

8
e2 − 3

8
e1 − 3

8
e2

c4 =
3
8

3
8

0 2 3
8

0 3
8

c5 =
5
16
⋯ ⋯ ⋯ ⋯ ⋯ ⋯

TABLE 2 Hypercomplex coefficients in 2
k (z); k = 0,… , 5

rows with an even number of elements for allowing this pairwise symmetry. Neglecting the odd rows would reduce to
symmetry by reflection as usual.

(ii) Every even row contains only real coefficients with interchanging from row to row signs. This changes of signs can be
explained by the influence of x ∈ n in its complex-like form (9) and reflects the periodicity of !k modulo 4. By the
same reasons the minus signs in the rows reflect just the hidden even powers of e1 resp. e2.

(iii) The appearance of zeros in the even line is a consequence of non-commutativity of the generators and their annihilating
effects in the corresponding symmetric products. Looking only to the even rows without taking care of the zero-gaps one
recognizes the ordinary Pascal triangle multiplied by the rational correction coefficients.

(iv) Important seems also the effect of using several hypercomplex variables and passing to hypercomplex coefficients instead
of real coefficients like in the non-symmetric Pascal triangle of Subsection 3.1. The symmetry relations between these
coefficients are guarantee for not leaving the result of forming a paravector valued polynomial instead of a polynomial in
other sub-modules of l0,n.

We notice that the use of several hypercomplex variables allows to work almost in the same way as in the calculus of multivariate
real or complex polynomials. This is the reason for that in the case of n ≥ 3, i.e. dealing with more than two hypercomplex
variables, one can not anymore expect to obtain a generalized bi-dimensional Pascal triangle like in Table 2 . The higher
dimensional case with n ≥ 3 needs to be handled with polyhedral geometry. As a first step, the case n = 3 and the corresponding
hypercomplex Pascal polyhedron has been studied.52 A remark on the expression of complicated formulae in representation
theory and hypergeometric functions theory by polyhedral geometry can be found in V. I. Arnolds paper.1

Due to the fact that the inner structure of all n
k is in a certain sense independent from n (only the dimension of ℝn, i.e. the

number of hypercomplex variables matters, whereas the form of their appearance is fixed) we recognize the particular role of
the sequence of coefficients depending from n. In other words, the properties of the sequence of ck(n) for fixed n and variable k
are determining the properties of all of the hypercomplex monogenic power-like function sequences (n

k (z)
)∞
k=1 of the form

n
k (z) = ck(n)

∑

|�|=k

(

k
�

)

z� · i� . (31)

The following table of sequences of ck(n) contains for n = 1 the constant coefficients of the complex geometric series and
for n = 2 Vietoris’ numbers.32,33 They are followed by its generalization introduced by the authors35 together with a related
sequence of integers (A283208).53
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0 1 2 3 4 5 6 7 8 9 10

ck(1) 1 1 1 1 1 1 1 1 1 1 1

ck(2) 1
1
2

1
2

3
8

3
8

5
16

5
16

35
128

35
128

63
256

63
256

ck(3) 1
1
3

1
3

1
5

1
5

1
7

1
7

1
9

1
9

1
11

1
11

ck(4) 1
1
4

1
4

1
8

1
8

5
64

5
64

7
128

7
128

21
512

21
512

ck(5) 1
1
5

1
5

3
35

3
35

1
21

1
21

1
33

1
33

3
143

3
143

ck(6) 1
1
6

1
6

1
16

1
16

1
32

1
32

7
384

7
384

3
256

3
256

ck(7) 1
1
7

1
7

1
21

1
21

5
231

5
231

5
429

5
429

1
143

1
143

TABLE 3 Generalized Vietoris numbers ck(n) for n = 1, 2,…7; k = 0, 1,…10.

3.3 Monogenic homogeneous polynomials in terms of x and x

Here we refer to a third interpretation of z = x+iy as starting point for the simulation of zk, but now in a way that does not consist
in an interpretation of the form as it was the case in the previous subsections. This third interpretation is based on a qualitative
difference between power series expansion in complex and hypercomplex function theories. Formally it seems to be nothing
more than a formal rewriting of (16) by substituting the real and vector part of x = x0 + x in the polynomial representation (16)
in Subsection 3.1 through

x0 =
x + x̄
2

and x = x − x̄
2

. (32)
However, in fact it is the confirmation of a principal difference between holomorphic functions in the complex plane whose
series expansion depends only on z ∈ ℂ and not on its conjugate z̄. The series expansion of hypercomplex holomorphic function
for n ≥ 2 in x ∈ n as well as in x̄ ∈ n relies on the different behavior of x and x̄ under the action of the generalized Cauchy-
Riemann operators. From (12) it follows that )x̄ = x) = 1

2
(1 + n), i.e. x̄ is a non-monogenic variable. Formula (11) together

with (12) and the corresponding values of the Wirtinger operators applied to x allow that an easy linear combination of x and x̄
is holomorphic with hypercomplex derivative equal to 1. Indeed, for f (x, x̄) = �x+ �x̄ we get easily as solutions of the system

)f = �
2
(1 − n) +

�
2
(1 + n) = 0, and )f = �

2
(1 + n) +

�
2
(1 − n) = 1, (33)

the values � = 1
2
(1 + 1

n
); � = 1

2
(1 − 1

n
). Written in x0 and x this gives f = x0 + 1

n
x and, as has to been expected, coincides with

P1(x0, x; n) in (16).
As result of the substitutions (32) in (16) an identical homogeneous monogenic polynomial is obtained, but now in terms of

x and its conjugate x̄ ∶
Pk(x, x̄; n) = Pk(x0, x; n) =

k
∑

s=0
T ks (n)x

k−sx̄s, (34)
where

T ks (n) ∶=
(

k
s

) ( n+1
2
)k−s(

n−1
2
)s

(n)k
, (35)

and (.)k stands for the Pochhammer symbol defined by (a)s = a(a + 1)(a + 2)… (a + s − 1), (a)0 = 1, s ≥ 0.

The coincidence of both polynomials generalizing zk ∈ ℂ as well as xk ∈ ℝ with different representations for n ≥ 2 is
trivially guaranteed, but how both representations are related to the result of our approach by several hypercomplex variables in
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Subsection 3.2? All three have by construction the same initial value 1 for x0 = 1 on their restrictions to the hyperplane x = 0,
but what happens if we chose in all x0 = 0?
By considering x0 = 0 in (26) from Subsection 3.2, we first notice that in this case (26) reduces to (25). Thereby we end up

with
n
k (z)|x0=0 = ck(n)P

n
k (x; n) = ck(n)x

k. (36)
Doing the same in (16) we get

Pk(0, x; n) = dk(n)xk. (37)
The uniqueness theorem of the Taylor expansion of hypercomplex holomorphic functions and its coincidence with the expansion
of xk the direct comparison of (37) with (36) reveals that dk(n) = ck(n).
But what about the expression of ck(n) in terms of the coefficients T ks (n) in the third representation (34)?
Using the fact that x̄ = −x, one obtains from (34) on both sides

ck(n)xk = n
k (0, x) =

k
∑

s=0
(−1)sT ks (n)x

k =

( k
∑

s=0
(−1)sT ks (n)

)

xk,

which means that the coefficients ck(n) are given as the following alternating sum

ck(n) =
k
∑

s=0
(−1)sT ks (n), k = 0, 1,… . (38)

The aforementioned polynomials were introduced initially22,23 as functions of a paravector variable x and its conjugate x̄.
More details on the connection between both types of coefficients ck(n) and T ks (n) has been studied in Cação et al..36

Remark 8. In connection with this different representations of n
k we observe the following facts.

(i) The case of a real variable can be formally included in the above definitions as the case x = 0 or equivalently by requiring
that T 00 (0) = 1 and T ks (0) = 0, for 0 < s ≤ k.

(ii) For the first time and by using only elementary combinatorial relations the explicit values of the ck(n) have been determined
in Falcão and Malonek54

cs(n) =

(

1
2

)

⌊

s
2
⌋

(

n
2

)

⌊

s
2
⌋

=

⎧

⎪

⎨

⎪

⎩

s!!(n−2)!!
(n+s−1)!!

, if s is odd

cs−1(n), if s is even,
(39)

constituting the elements of the n-parameter generalized Vietoris sequence.35

(iii) This representation highlights the fact that these polynomials are specialmonogenic polynomials in the sense of Abul-Ez
and Constales55. In that work, a monogenic polynomial P is said to be special if there exist constants aij ∈ n for which

P (x) =
∑

i,j

′x̄ixjai,j ,

where the primed sigma stands for a finite sum. This paper is concerned with the extension of the Whittaker - Cannon
theory without having that time at its disposal any concept of hypercomplex differentiability which allows - as we have
just shown - an explicit determination of those coefficients ai,j .

We close Subsection 3.3 with Table 4 where the first rows in the non-symmetric real Pascal triangle for n = 2 are presented
and their relations to the elements mr of the aforementioned sequence (A283208) is underlined.
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1
2mr

1
2m0

= 1 1
1
2m1

= 1
4

3
4

1
4

1
2m2

= 1
8

5
8

2
8

1
8

1
2m3

= 1
64

35
64

15
64

9
64

5
64

1
2m4

= 1
128

63
128

28
128

18
128

12
128

7
128

1
2m5

= 1
512

231
512

105
512

70
512

50
512

35
512

21
512

TABLE 4 Hypercomplex coefficients in n
k (x, x̄); k = 0, 1,… , 5

3.4 Examples of applications of hypercomplex sequences of homogeneous Appell polynomials

In the first part of this section we saw that different interpretations of the form of zk were sufficient for a hypercomplex general-
ization of Appell’s historical concept of power-like polynomial sequences, since xk, x ∈ ℝ, and its complex pendant zk, z ∈ ℂ,

are their prototypes. Starting point for Appell’s intentions were nothing more than the use of the relations (13) as result of dif-
ferentiation, identical for real and complex variables. In 1880 Appell26 considered for that purpose a sequence of polynomials
P0(x), P1(x),… , Pn−1(x), Pn(x),… such that Pk(x) is of exact degree k, for each k = 0, 1,… , and moreover, two consecutive
terms are linked by the relation

P ′k(x) = kPk−1(x), k = 1, 2,… . (40)
Finally Appell proved that all sequences of polynomials satisfying (40) have the general form

Pk(x) =
k
∑

s=0
�s

(

k
s

)

xk−s, k = 0, 1,… , (41)
with �s, s = 0,… , k real arbitrary coefficients (�0 ≠ 0).
The classical Bernoulli polynomials, Euler polynomials, Hermite polynomials, and many others are well known examples of

Appell sequences. Nowadays such sequences are simply known as Appell sequences.

Since the 80ties , the search for an appropriate definition of generalized power functions in the framework of Clifford analysis
was imminent in several works like Brackx et al.15, or later Abul-Ez and Constales55, and in a more detailed way in Delanghe et
al.48, but without having available in that time the concept of a well defined hypercomplex derivative. Of course, well defined
generalized power functions would also have been the key to an appropriate definition of generalized power series, particularly,
the definition of exponential functions. The book of Gürlebeck et al.63 contains in Chapter 11 on Elementary Functions more
details about these problems.
Having the hypercomplex derivative (7) at disposal, Appell sequences or Appell sets in the hypercomplex context were first

considered in Falcão et al.39,22,23 in order to construct the homogeneous monogenic polynomials n
k introduced in the previous

sections. 12

12In these papers the approach was not done by interpretations of the structure of the complex power function as it has been done in the previous subsections. The
initial idea was suggested by the analysis of a quasi-conformal mapping from a sphere in ℝ3 into a cube in ℝ3 in terms of special paravector valued monogenic functions.
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Naturally, and having in mind (40) and (30), a sequence of homogeneousn-valued monogenic polynomials (k
)

k≥0 is called
hypercomplex Appell sequence if k is of exact degree k and

 ′
k ∶= )k = kk−1, k = 1, 2,… , where 0 = 1. (42)

Using the results of the previous subsections, we recognize now that the explicitly constructed homogeneous polynomials
n
k are exactly this type of Appell polynomials. Moreover, in the general hypercomplex case with n ≥ 1 they can serve as

replacement of the powers in Appell’s classical approach.

For the transition to general Appell sequences in terms of n
k of different homogeneous degrees we consider now

ℙnk ∶= spanℝ{
n
0 ,

n
1 ,… ,n

k}

and obtain the same as in the classical case (41)
Theorem 1. A sequence of polynomials k in ℙnk is an Appell sequence if and only if

k(x) =
k
∑

s=0
�s

(

k
s

)

n
k−s, k = 0, 1,… , (43)

where �k = k(0) and �0 ≠ 0.
A proof can be found in Cação et al.64. Important to notice that this paper contains two more possible representations based

on the complex-like structure of n
k , also mentioned in (16), namely a matrix as well as a determinant representation.

As applications of the hypercomplex Appell sequences to other hypercomplex polynomials we can refer the monogenic Her-
mite and Laguerre polynomials constructed in28,56. Monogenic Hermite polynomials containing the classical ones as particular
cases are given by

Hn
k (x) =

⌊

k
2
⌋

∑

r=0

1
r!

k!
(k − 2r)!

(−1)r

4r

r(n)n

k−2r(x), k = 0, 1,…

where 
r(n) = ∑r
s=0

(r
s

)

cs(n) denotes the binomial transform of the sequence (cs(n))s≥0 given by (39). The sequence (Hn
k )k≥0 is

clearly an Appell sequence and therefore its elements are of the form

Hn
k (x) =

k
∑

s=0
�s

(

k
s

)

n
k−s, k = 0, 1,… ,

where, in this case,
�2s =

(−1)s(2s)!
4ss!


s and �2s+1 = 0, s = 0,… , ⌊ k
2
⌋.

The monogenic Laguerre polynomials Lnk(x) presented in Cação et al.28 are not an Appell sequence. However, using the
associated Laguerre polynomials also constructed in Cação et al.28 given by

Ln,(�)k (x) =
k
∑

r=0
(−1)k−r

(

k
r

)

1
2r k!


r(n)
Γ(k+�+1)
Γ(k+�−r+1)

n
k−r(x),

it is clear that the sequence of polynomials (j)k = (−1)kk!Ln,(j−k)k , with j ∈ ℕ, is an Appell sequence whose elements can be
written as

(j)k (x) =
k
∑

s=0
�s

(

k
s

)

n
k−s(x), k = 0, 1,… ,

with
�s =

(−1)sj!
2s(j − s)!


s, s = 0, 1,… , k.
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The aim of the following section is a journey on combinatorial roads which directly brings us to the crossroads with a Sturm-
Liouville equation and hypergeomentric functions.

4 THEROADTOAGENERALRECURRENCE FORGENERALIZEDVIETORIS NUMBERS

4.1 Recurrences for n = 2 and n = 4 in analogy with Catalan numbers

In Cação et al.34 the authors proved that Vietoris’ numbers cn(n) can be generated via the Gauss’ hypergeometric function.
Theorem 2. Let G(.; n) be the following real-valued function depending on a parameter n ∈ ℕ:

G(t; n) =

⎧

⎪

⎨

⎪

⎩

1
t

[

(1 + t) 2F1
( 1
2
, 1; n

2
; t2

)

− 1
]

, if t ∈ (−1, 0) ∪ (0, 1)

1, if t = 0.
(44)

Then, for any fixed n ∈ ℕ, G(.; n) is a one-parameter generating function of the sequence n.
Examples of closed formulae for G(.; n) can be easily obtained:34

• n = 1,
G(t; 1) = 1

t

[

(1 + t) 2F1
( 1
2
, 1; 1

2
; t2

)

− 1
]

= 1
1 − t

.

• n = 2,

G(t; 2) = 1
t

[

(1 + t) 2F1
( 1
2
, 1; 1; t2

)

− 1
]

=

√

1 + t −
√

1 − t

t
√

1 − t
. (45)

• n = 3,

G(t; 3) =1
t

[

(1 + t) 2F1
( 1
2
, 1; 3

2
; t2

)

− 1
]

= 1
t

(

t + 1
t

ln
√

1 + t
1 − t

− 1

)

. (46)

• n = 4,

G(t; 4) = 1
t

[

(1 + t) 2F1
( 1
2
, 1; 2; t2

)

− 1
]

= 2t + 1 −
√

1 − t2

t(1 +
√

1 − t2)
. (47)

We underline the formal similarity of Vietoris’ numbers
c2k(2) = c2k−1(2) =

1
22k

(

2k
k

)

and the Catalan numbers
k =

1
k + 1

(

2k
k

)

,

both represented by weighted central binomial coefficients of the 2k−th line in the Pascal triangle. In the case of Vietoris’
numbers the weight is equal to the sum of binomial coefficients in the 2k−th line, whereas in the case of Catalan numbers the
weight is equal to the number of binomial coefficients in the k − tℎ line of the Pascal triangle.
Also the case n = 4 is linked to the Catalan numbers, because

c2k+1(4) = c2k+2(4) =
1
4k+1

k+1.

It is well known that the Catalan numbers, whose generating function is

f (t) =
1 −

√

1 − 4t
2t

, (48)
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satisfy in form of a convolution the recurrence

k+1 =
k
∑

s=0
k−ss, k = 0, 1,… , with 0 = 1. (49)

It is then reliable to expect some similarity on recurrence relations between Catalan numbers and Vietoris numbers for both
cases n = 2 and n = 4.
Indeed, for the Vietoris numbers ck(2) the use of the generating function (45) leads to the following result.34

Theorem 3. Vietoris’ numbers ck(2) satisfy the recurrence relation

ck+1(2) = ck(2) −
1
2

(

k
∑

s=0
cs(2)ck−s(2) −

k−1
∑

s=0
cs−1(2)ck−s(2)

)

, k = 0, 1,… , (50)

c0(2) = 1

where, by convention, c−1(2) = 0.
Similarly, starting from the generating function (47), the following recurrence relation is obtained for the case n = 4.

Theorem 4. Vietoris’ numbers ck(4) satisfy the recurrence relation

ck+3(4) = −ck+2(4) +
1
2
ck+1(4) +

1
4

k
∑

s=0
cs(4)ck−s(4), k = 0, 1,…

c0(4) = 1, c1(4) = c2(4) =
1
4

where, by convention, c−1(4) = 0.

Proof. For simplicity we consider cm ∶= cm(4), m = −1, 0, 1, 2,…. Our aim is to find a recurrence for the coefficients of the
ordinary generating functionH ∶= G(t; 4). Applying now (47) we easily obtain

(Ht + 1)
√

1 − t2 = 2t + 1 −Ht.

Squaring both sides and multiplying by t, we get
(Ht2)2 = (4 + 4t − 2t2)Ht − 5t2 − 4t. (51)

Explicitly writing the relevant terms in (51) as

Ht =
+∞
∑

k=0
ckt

k+1, Ht2 =
+∞
∑

k=0
ckt

k+2, and (Ht2)2 =
+∞
∑

k=0

(

k
∑

s=0
csck−s

)

tk+4.

and replacing in (51) (Ht2)2 and Ht by the corresponding series, the left hand side and the right hand side can be written,
respectively, as

+∞
∑

k=0

( k
∑

s=0
csck−s

)

tk+4,

and
(4c0 − 4)t + (4c1 + 4c0 − 5)t2 + (4c2 + 4c1 − 2c0)t3 + 4

+∞
∑

k=0
(ck+3 + ck+2 −

1
2
ck+1)tk+4.

The comparison of the two sides leads to

c0 = 1, c1 = c2 =
1
4
,

k
∑

s=0
csck−s = 4(ck+3 + ck+2 −

1
2
ck+1),

and the theorem is proved.
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4.2 The case n = 3 via a holonomic differential equation and a conjecture

In the case n = 3 our search for a recurrence relation of the generalized Vietoris’ numbers ck ∶= ck(3) follows a different strategy
compared with the cases n = 2 resp. n = 4. 13
The expression of G(t; 3) in the form (46) compared with the explicit expressions (45) and (47) of G(t; 2) and G(t; 4), respec-

tively, does not suggest to obtain easily an algebraic equation forG(t; 3) by suitable manipulations from (46). The obvious reason
is the presence of the transcendental logarithmic function in (46) instead of square roots as in (45) and (47).
Our attempts were guided by the fact that also ordinary differential equations can be used for the detection of recurrence

relations from their solutions. This led us to the application of methods from the theory of holonomic functions.14
The first step is to separate in the expression (46) of G ∶= G(t; 3) the logarithm in different ways, i.e.,

1 + Gt = t + 1
2t

ln
(1 + t
1 − t

)

, (52)
2 + 2Gt
1 + t

= 1
t
ln
(1 + t
1 − t

)

. (53)
Differentiating (52) leads to

tG′ + G = − 1
2t2

ln
(1 + t
1 − t

)

+ 1
t(1 − t)

= 1
1 − t

[

−1 + t
2t2

ln
(1 + t
1 − t

)

+ 1
t
+ 1
t
ln
(1 + t
1 − t

)]

,

tG′ + G = 1
1 − t

[

−G + 1
t
ln
(1 + t
1 − t

)]

. (54)
Now the logarithmic part in (54) can be substituted by the rational function on the left side of (53) and we obtain

tG′ + G = 1
1 − t

(

−G + 2 + 2Gt
1 + t

)

But this is just the desired first order differential equation for G, namely
(t − t3)G′ − (t2 + t − 2)G = 2. (55)

Since G is an entire hypergeometric function with coefficients ck in its Taylor series expansion we can compare the coefficients
in (55) of the power tk of t. The separate case of k = 0 follows immediately by inspection of (55) after choosing t = 0 :

2G(0) = 2c0 = 2, or c0 = 1, (56)
as expected.
Consider now k ≥ 1. For completing our task, the calculus of transforming holonomic differential equations in holonomic

recurrences and vice versa is used. 15
Therefore the correspondences of terms in G or G′ of (55) are symbolically

[

tk
]

(tG′) = kck,
[

tk
]

(t3G′) = (k − 2)ck−2,
[

tk
]

(t2G) = ck−2, and
[

tk
]

(tG) = ck−1. (57)

13Recall that the method used for n = 2 and n = 4 was mainly suggested by analogy to the generating function of Catalan numbers (48) and their recurrence formula
(49).

14If a function depends on a discrete variable (typically named n, m, or k), then it is called holonomic if it satisfies a recurrence, and if it depends on a continuous
variable (typically named x, t, or z), then it is called holonomic if it satisfies a differential equation with polynomial coefficients. For more details, particularly about more
advanced computational methods than we have used we refer to Kauers and Paule 57 and also Zeilberger. 58

15In Zeilberger 58 it can also be found an example for using this calculus as method for obtaining differential recurrence relations for the Legendre polynomials. In this
context we recall three-term recurrence relations for building blocks of an orthogonal basis of monogenic functions in form of shifted Appell polynomials with coefficients
from n. 59
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Applying them to (55) we obtain the recurrence relation
kck − (k − 2)ck−2 − ck−2 − ck−1 + 2ck = (k + 2)ck − (k − 1)ck−2 − ck−1 = 0. (58)

This recurrence relation needs still an interpretation in the case k = 1. It is evident that the generating function G does not
include any negative power of t, so that c−1 in (58) for k = 1must be considered as equal to 0. This coefficient appeared formally
as coefficient in the twice differentiated function G. It means that finally

c1 − c0 + 2c1 = 0, or c1 = 1
3
c0 =

1
3
.

Shifting now in (58) the index k by 1 we end up with
(k + 3)ck+1 = kck−1 + ck, k ≥ 1

c0 = 1; c1 =
1
3
.

Resuming, we formulate the result as
Theorem 5. Let ck(3), k = 0, 1,… , be the coefficients of the generalized Vietoris sequence 3 with the generating function
(46). Then 3 fulfills the recurrence relation

(k + 3)ck+1(3) = kck−1(3) + ck(3), k ≥ 1 (59)
c0(3) = 1; c1(3) =

1
3
.

Remark 9. After having found more complicated than (59) recurrences for 2 and 4, the case 3 came as surprise and showed
some potential for further attempts to obtain similar recurrence formulas also for n ≥ 5 or even for arbitrary dimension n.
Some trials show quickly that the number 3 in (59) could probably be changed to an arbitrary n. Indeed, as we know (see

Appendix) all ck(1), k = 0, 1,… are identically equal to 1. From (59), replacing 3 by 1,we see that
(k + 1)ck+1(1) = kck−1(1) + ck(1); c0(1) = c1(1) = 1,

i.e., (k + 1) ⋅ 1 = k ⋅ 1 + 1 is true.
For n = 2, we have c0(2) = 1, c1(2) = 1

2
, c2(2) =

1
2
,… . Indeed

(1 + 2)c2(2) = 1.c0(2) + c1(2) =
3
2

leads to c2(2) = 1
2
, and so on.

The same happened for other values of n ≥ 4 and therefore we conjecture that the recurrence formula
(n + k)ck+1(n) = kck−1(n) + ck(n), k ≥ 1 (60)

c0(n) = 1; c1(n) =
1
n

(61)
is a general recurrence for the generalized Vietoris numbers n. But how to prove that n is the solution of this recurrence
without involving more advanced tools than the holonomic calculus?

4.3 The generalized Vietoris numbers as solution of a general recurrence

To answer the last question of the previous subsection we use induction to prove
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Theorem 6. The solution of the recurrence (60)-(61), with non-constants coefficients, is given by the generalized Vietoris
numbers ck(n) written in the form

ck(n) =

⎧

⎪

⎨

⎪

⎩

k!!
n(n + 2)… (n + k − 1)

, if k is odd

ck−1(n), if k is even
. (62)

For simplicity we postpone the proof of the theorem after having proved a lemma. It shows that the characteristic property of
n being a sequence with pairwise repeated elements is inherent in (60).
Lemma 1. The recurrence (60) implies that

c2m(n) = c2m−1(n), m = 1, 2,… . (63)

Proof. The proof is straigtforward, using induction. Consider, for simplicity, ck ∶= ck(n). For k = 1, (60) together with (61) give
(n + 1)c2 = c1 + c0 = (n + 1)c1

and (63) is true form = 1, since c2 = c1. The essential induction step is now to prove that c2m = c2m−1 implies also c2m+2 = c2m+1.
For k = 2m, (60) and the induction hypothesis imply

(2m + n)c2m+1 = c2m + 2mc2m−1 = c2m + 2mc2m = (2m + 1)c2m

which in turn together with (60), for k = 2m + 1, gives
(2m + 1 + n)c2m+2 = c2m+1 + (2m + 1)c2m = c2m+1 + (n + 2m)c2m+1 = (n + 2m + 1)c2m+1

resulting in c2m+2 = c2m+1. This proves the assertion, i.e. the second relation in (62).

Now the proof of the theorem itself is straightforward.

Proof. (of Theorem 6)
For k odd, (k + 1) is even and we can use Lemma 1 rewriting the left side of (60) in the form

(n + k)ck(n) = kck−1(n) + ck(n).

Reordering leads immediately to the relation between a coefficient of odd index k and its predecessor of even order, i.e.
(n − 1 + k)ck(n) = kck−1(n). (64)

Now we substitute successively ck ∶= ck(n) by their predecessors according to Lemma 1 and (64). This leads, for k odd, to
ck =

k
n − 1 + k

ck−1 =
k(k − 2)

(n − 1 + k)(n − 3 + k)
ck−3 =⋯ = k!!

(n − 1 + k)(n − 3 + k)⋯ (n + 2)n
c0.

The decreasing sequence of indices k stopped when it reached the value 1 and together with c0 = 1 we proved the first assertion
of (62) completely. The second, as already previously mentioned, is the content of Lemma 1.

5 ON THE CROSSROADS - A STURM-LIOUVILLE EQUATION

5.1 From the general recurrence to the exponential generating function of n
The further study of recurrence (60) will show that it can be taken as starting point for the detection of a second generating
function for n, namely an exponential generating function. Therefore we apply the holonomic calculus, but now in inverse form
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compared with Subsection 4.2. This means that we transform (60) in a statement about a corresponding differential equation for
an exponential generating function and find its solution F (t, n).
Doing so we have found an approach for relating Gauss’ rational generating function G(t, n) for ck(n) to an exponential

generating function F (t, n) without using some general transformation method between one type and the other type. Instead of
this, we came from one generating function (the continuous object) to the other by using the obtained recurrence (the discrete
object) as vehicle for the determination of an exponential generating function (another continuous object) by “inverting the
recurrence”.
The result of this strategy is the following

Theorem 7. Let
F (t; n) =

+∞
∑

k=0
ck (n)

tk

k!
(65)

be an unknown so far exponential generating function of the sequence n =
(

ck(n)
)∞
0 . Then F (t, n) is the solution of the second

order holonomic differential equation
tF ′′(t) + nF ′(t) − (1 + t)F (t) = 0 (66)

with the initial conditions
F (0) = 1, F ′(0) = 1

n
(67)

Proof. As previously mentioned, the proof consists in transforming the holonomic recurrence (60)-(61) valid for the generalized
Vietoris numbers ck ∶= ck(n), into a holonomic differential equation. To do so we remember the action of derivation or multipli-
cation by the variable or a constant on the coefficients of an exponential generating function (65). The relevant correspondences
are given by

[

tk
]

F = ck,
[

tk
]

(tF ) = kck−1,
[

tk
]

(nF ′) = nck+1, and [

tk
]

(tF ′′) = kck+1.

All together they automatically imply for F = F (t; n) the holonomic differential equation
nF ′ + tF ′′ = (1 + t)F ,

which is the equation (66) we were looking for. It is evident, that the initial values of n imply the initial values of the generating
function F (t; n). We find them by using the first coefficient F (0) = c0 = 1 and by comparing both sides of (66) for t = 0. From

nF ′(0) = F (0) = 1

follows the second initial condition F ′(0) = 1
n
immediately.

In turn, the initial values (67) will be needed to determine the corresponding special solution of the second order ODE (66)
that we are interested in.
To identify the class of ODE’s to which (66) belongs, we multiply this equation by tn−1. Then we can join the first two terms

and end up by recognizing an initial value problem for the Sturm-Liouville equation
(tnF ′)′ − tn−1(1 + t)F = 0, F (0) = 1, F ′(0) = 1

n
. (68)

It is well known that it can be solved by using confluent hypergeometric functions60. More precisely we have
Corollary 1. With the notations introduced in Theorem 7, we have

F (t; n) = e−tM
( n+1

2
, n, 2t

)

, (69)
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whereM(a, b, z) is Kummer’s confluent hypergeometric function 1F1(a; b; z) =
∞
∑

n=0

(a)nzn

(b)nn!
.

5.2 The exponential generating function F (t; n) and its relations with paravector valued
exponential functions

The approach used in the last subsection allow us to compare exponential functions in the hypercomplex framework that have
been studied in the past, coming back to the question about the role of hypercomplexification as mentioned in the introduction.
In 2007, authors of this paper introduced an exponential function22 as a first application of Appell polynomials in the

framework of hypercomplex function theory, in the form
Expn(x) ∶=

∞
∑

k=0

n
k (x)
k!

= ex0Γ( n
2
)
( 2
|x|

)
n
2
−1(

J n
2
−1(|x|) + !J n

2
(|x|)

)

, (70)

where ! is the unit paravector (8) and J�(z) = ∑∞
m=0

(−1)m

m!Γ(m+�+1)

( z
2

)2m+� is the Bessel function of the first kind.
It follows immediately from the representation of n

k by binomial expansion that
Expn(x) = ex0 Expn(x) = ex0F (x; n), (71)

which allows us to write
Corollary 2. With the notations introduced in Theorem 7, we have

F (x; n) = Γ
( n
2

)(

|x|
2

)1−
n
2
(

J n
2
−1(|x|) + !J n

2
(|x|)

)

(72)
Moreover, due to the fact that Appell sequences imply automatically a direct link to a corresponding exponential function61,

we have the following result.
Theorem 8. The exponential generating function of the special monogenic polynomials n

k (x) is

Expn(x t) = S̃c [Expn] + !Ṽec [Expn] =
∞
∑

k=0

n
k (x)t

k

k!
,

where
S̃c[Expn]∶= ex0 tΓ

( n
2

)( 2
|x|t

)
n
2
−1J n

2
−1(|x|t) and Ṽec [Expn]∶= ex0 tΓ

( n
2

)( 2
|x|t

)
n
2
−1J n

2
(|x|t).

It is worth noting that (69) can be written in terms of modified Bessel functions of the first kind. In fact, when b − 2a is a
nonnegative integer, the Kummer function can be expressed as62

M
(

� + 1
2
, 2� + 1 − m, 2z

)

= Γ(� − m)ez
( z
2

)m−�
m
∑

k=0

(−1)k(2� − 2m)k(� − m + k)
(2� + 1 − m)kk!

I�+k−m(z),

where I�(z) = ∑∞
m=0

1
m!Γ(m+�+1)

( z
2

)2m+� is the modified Bessel function of the first kind. This allows to write
Corollary 3. With the notations introduced in Theorem 7, we have

F (t; n) = Γ
( n
2

)( t
2

)1−
n
2
(

I n
2
−1(t) + I n

2
(t)
) (73)

The expression (73) is related to hyperbolic trigonometric functions, in the case of odd dimensions, as is illustrated in Table 6 .
All these results show a deep connection with the results of Laville and Ramadanoff45. Their approach to an exponential

function via an integral transform is based on the relationship of the real and complex exponential function and the hyperbolic
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F (x; n)

n = 1 cos(|x|) + ! sin(|x|)

n = 2 J0(|x|) + !(x)J1(|x|)

n = 3
sin(|x|)
|x|

+ !
sin(|x|) − |x| cos(|x|)

|x|2

n = 4 2
|x|

(

J1(|x|) + !J2(|x|)
)

n = 5
3 sin(|x|) − 3|x| cos(|x|)

|x|3
+ !

9 sin |x| − 3|x|2 sin(|x|) − 9|x| cos(|x|)
|x|4

n = 6 8
|x|2

(

J1(|x|) + !J2(|x|)
)

TABLE 5 The generating function F (x; n); n = 1,… , 6, in terms of Bessel functions.

F (t; n)

n = 1 et

n = 2 I0(t) + I1(t)

n = 3 ett − sinh(t)
t2

n = 4 2
t
(

I1(t) + I2(t)
)

n = 5 3(t − 3)t cosh(t) + 3((t − 1)t + 3) sinh(t)
t4

n = 6 8
t2
(

I2(t) + I3(t)
)

TABLE 6 The generating function F (t; n); n = 1,… , 6, in terms of modified Bessel functions.

functions sinh and cosh. Laville and Ramadanoff developed an interesting by itself transform calculus which led to exactly the
same exponential function.

6 FINAL REMARK

The different recurrent relations as well as the now detected role of a Sturm-Liouville equation on the crossroads of continuous
and discrete confirm in some sense the opinion of V. I. Arnold in the epigraph that no axiomatic scheme should petrify the free
flow of generalizations. Both approaches, by Appell polynomials as well as by integral transforms can enrich our knowledge
about the role of hypergeometric functions in the setting of hypercomplex analysis bridging real, complex and hypercomplex
analysis.
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