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Abstract

We present several improvements to the framework of differential-linear
attacks with a special focus on ARX ciphers. As a demonstration of
their impact, we apply them to Chaskey and ChaCha and we are
able to significantly improve upon the best attacks published so far.
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1 Introduction

Symmetric cryptographic primitives play major roles in virtually any cryp-
tographic scheme and security-related application. The main reason for this
massive deployment of symmetric primitives, i.e., (tweakable) block ciphers,

This article is an extended version of the paper presented at CRYPTO 2020 [1].
Some further improvements introduced in [2] are included.
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stream ciphers, hash functions, or cryptographic permutations, is their signif-
icant performance advantage. Symmetric primitives usually outperform other
cryptographic schemes by up to several orders of magnitude.

One class of design of symmetric primitives that is inherently motivated by
(software) efficiency is the ARX-based design. ARX is short for addition (mod-
ulo a power of two), word-wise rotation and XOR. Indeed, ciphers following
this framework are composed of those operations and avoid the computation
of smaller S-boxes through look-up tables. As CPUs may have these opera-
tions implemented on the hardware level, particularly an addition unit and a
barrel shifter, executing them on such CPUs based on a suitable register size
is inherently fast.

The block cipher FEAL [3] was probably the first ARX cipher presented in
the literature, and by now, several state-of-the-art ciphers follow this approach.
One of the most important (families of) ARX ciphers is certainly the one
formed by Salsa20, ChaCha and their variants [4, 5]. Designed by Bernstein,
these ciphers are now the default replacement for RC4 in TLS due to their high
efficiency and the simplicity of their implementations, and are thus some of
the most widely-used ciphers in practice. Besides being used in TLS, ChaCha
is also deployed in several other products, and in particular, it is used as a
building block in the popular hash functions Blake and Blake2 [6, 7].

The ARX-based design approach is not restricted to stream ciphers, as
it can also be used in the design of efficient block ciphers (e.g., Sparx [8]),
cryptographic permutations (e.g., Sparkle [9]), and message authentication
codes (MACs). For the latter, Chaskey [10] is among the most prominent
examples.

Besides the advantage of having efficient implementations, there are also
good reasons for ARX-based designs regarding security. The algebraic degree
of ARX ciphers is usually high after only a very few rounds, as the carry bit
within one modular addition already has an almost maximal degree. Struc-
tural attacks like integral [11] or invariant attacks [12] are less of a concern
and rotational cryptanalysis [13], originally invented for ARX ciphers, can be
efficiently prevented in most cases by the XOR of constants.

When it comes to differential [14] and linear attacks [15], ARX-based
designs often show a peculiar behavior. For a small number of rounds, i.e., only
very few modular additions, the differential probabilities (resp., absolute linear
correlations) are very high. In particular, for a single modular addition, those
are equal to 1 due to the linear behavior of the least significant and, in the
case of differentials, most significant bits. Moreover, for a single modular addi-
tion, the differential probabilities and linear correlations are well understood,
and we have at hand nice and efficient formulas for their computation [16, 17].
In the case of (dependent) chains of modular additions, bitwise rotations, and
XORs, the situation is different, and experimentally checking the probabilities
is often the best way to evaluate the behavior.
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Table 1 (Partial) Key-Recovery Attacks on Chaskey and ChaCha.

Target Key size Rounds Time Data Ref.

Chaskey 128 6 228.6 225 [19]

7 267 248 [19]
250 240.21 Sect. 9.3

7.5 277 248 Sect. 9.4

ChaCha 256 6 2139 230 [22]
2136 228 [23]
2116 2116 [20]
289 248 Sect. 10.4
277.4 258 Sect. 10.5

7 2248 227 [22]
2246.5 227 [23]
2238.9 296 [24]
2237.7 296 [20]
2235.22 – [21]
2230.86 248.83 Sect. 10.6

7.25 2255.62 248.36 [25]

While a few rounds are thus very weak, for a well-crafted ARX scheme,
the probabilities of differentials and the absolute correlations of linear approx-
imations decrease very quickly as the number of rounds increases. Indeed, this
property led to the long-trail strategy for designing ARX-based ciphers [8].

Now, for symmetric primitives, the existence of strong differentials and
linear approximations for a few rounds with a rapid decrease of probabili-
ties (resp. absolute correlations) is exactly the situation in which considering
differential-linear attacks [18] is promising. In a nutshell, differential-linear
attacks combine a differential with probability p for the first r rounds of the
cipher and a linear approximation with correlation q for the next t rounds into
a linear approximation for r+t rounds with correlation pq2 that can be turned
into an attack with data complexity of roughly p−2q−4.

Indeed, it is not surprising that the best attacks against many ARX con-
structions, including ChaCha and Chaskey, are differential-linear [19–21]. Our
work builds upon those ideas and improves differential-linear attacks on ARX
ciphers along several dimensions.
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1.1 Our Contribution

In this paper, we present the best known1 attacks on Chaskey and ChaCha.
Our improvements over prior work are based on improvements in the dif-
ferential, the linear part, the LLR statistic, and the key-recovery part of
differential-linear attacks.

Differential part

For the differential part, our observation is both simple and effective. Recall
that for a differential-linear attack. One needs many (roughly q−4) pairs to
fulfill the difference in the first part of the cipher, that is many right pairs
for the differential. Now, imagine that an attacker could construct many right
pairs with probability (close to) one, given only a single right pair. It would
immediately reduce the data complexity of the attack by a factor of p−1.
As we will see, this situation is rather likely to occur for a few rounds of
many ARX ciphers, particularly for ChaCha and Chaskey. The details of those
improvements are presented in Sect. 5.

Linear part

For the linear part, our first observation is that it is often beneficial to not
restrict to a single mask but rather consider multiple linear approximations.
As we detail in Sect. 6, this nicely combines with an improved version of
the partitioning technique for ARX ciphers [19, 29], which splits the space of
ciphertexts into subsets to increase the correlation of linear approximations.
The starting point of our attacks is a new way of partitioning the ciphertexts,
summarized in Sect. 3. Note that, although we use multiple linear masks in the
attack, because of partitioning the ciphertexts, we basically use only a single
linear mask for each ciphertext. This way, we avoid possible dependencies that
would be hard to analyze otherwise.

LLR statistic

Our advanced partitioning technique for the linear part exploits linear approx-
imations with different correlations for every ciphertext. One ciphertext pair
causes high absolute correlation, but another might cause lower absolute corre-
lation. It is not appropriate to treat these ciphertext pairs in the same manner.
We use the log-likelihood ratio (LLR) statistic to solve this problem. According
to the Neyman-Pearson lemma [30], the LLR test is the most powerful statis-
tical test and, as such, has been used as a cryptanalytic tool (see e.g. [31, 32]).
In our case, the use of the LLR statistic is beneficial because we can exploit
all partitions which were discarded by the original partitioning technique in
[1]. The details of the LLR-based technique are presented in Sect. 7.

1After presenting those results at CRYPTO 2020 [1], improved attacks on ChaCha have been
proposed [26]. Later, [27] pointed out mistakes in some parts of [26], leading to an updated version
that has been published on the Cryptology ePrint Archive [28]. Very recently, another improved
differential-linear attack has been presented [25].
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Key recovery

Related to the improvement in the linear part and LLR statistic, we present
a significant speed-up in the key recovery part. Here, the main observation is
that after considering multiple masks and the partitioning technique, several
key bits appear only linearly in the approximations. In particular, their value
does not affect the absolute value of the correlation but rather the sign only.
Instead of guessing those keys individually as done in previous attacks, this
observation allows us to recover them by applying the Fast Walsh-Hadamard
Transform (FWHT). Similar ideas have already been described in [33]. Details
of this approach are given in Sect. 8.

Putting these improvements into one framework and applying this frame-
work to round-reduced variants of ChaCha and Chaskey results in significantly
reduced attack complexities. Our attacks and their corresponding complexities
are summarized in Table 1, together with a comparison to the best attacks pub-
lished so far. It is important to note that, as these attacks are on round-reduced
variants of the ciphers only, they do not pose any threat on the full-round ver-
sions of ChaCha or Chaskey. Rather, these attacks strengthen our trust in the
design. We expect that our improvements have applications to other ciphers,
especially ARX-based designs.

2 Preliminaries

By ⊕ we denote the XOR operation, i.e., addition in Fn2 and by + we either
denote the addition in Z, or the modular addition mod 2n (we identify ele-
ments of Fn2 with elements of Z by regarding them as binary representations),
depending on the context. For x ∈ Fn2 , we denote by x̄ the bitwise complement
of x. Note that we have −x = x̄ + 1. Given a non-empty set S ⊆ Fn2 and a
Boolean function f : Fn2 → F2, we define

Corx∈S [f(x)] :=
1

|S|
∑
x∈S

(−1)f(x) .

If for (another) Boolean function g : Fn2 → F2 we have Corx∈S [g(x)⊕ f(x)] =
c, we say that g(x) ≈ f(x) holds with correlation c if x ∈ S.

We denote the ith unit vector of a binary vector space by [i] and the
sum of unit vectors [i1] ⊕ [i2] ⊕ · · · ⊕ [it] by [i1, i2, . . . , it]. Given a vector
x ∈ Fn2 , x[i] denotes the ith bit of x, and x[i1, i2, . . . , it] denotes

⊕t
j=1 x[ij ]. For

γ, x ∈ Fn2 , we define the inner product by 〈γ, x〉 =
⊕n−1

i=0 γ[i]x[i]. In particular,
x[i1, i2, . . . , it] = 〈x, [i1, i2, . . . , it]〉.

In the remainder of this paper we assume that, when a randomly chosen
sampling set S ⊆ Fn2 is a (sufficiently large) subset of Fn2 , Corx∈S [f(x)] is a
good approximation for Corx∈Fn

2
[f(x)]. In other words, we assume that the

empirical correlations obtained by sampling for a sufficiently large number of
messages closely match the actual correlations.
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Fig. 1 The structure of a classical
differential-linear distinguisher.
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Fig. 2 A differential-linear distinguisher with
experimental evaluation of the middle correla-
tion r.

We denote by N (µ, σ2) the normal distribution with mean µ and vari-
ance σ2. By Φ we denote the cumulative distribution function of the standard
normal distribution N (0, 1). Thus if X ∼ N (µ, σ2), it holds that

Pr [X ≤ Θ] = Φ

(
Θ− µ
σ

)
.

2.1 Differential-Linear Attacks

We first recall the basic variant of differential-linear cryptanalysis as introduced
by Langford and Hellman [18], and the enhancement by Biham, Dunkelman,
and Keller [34]. Figure 1 shows the overview of the distinguisher. An entire
cipher E is divided into two sub ciphers E1 and E2, such that E = E2 ◦ E1,
and a differential distinguisher and a linear distinguisher is applied to the first
and second part, respectively.

In particular, assume that the differential ∆in
E1→ ∆m holds with probability

Prx∈Fn
2

[E1(x)⊕ E1(x⊕∆in) = ∆m] = p .

Let us further assume that the linear approximation Γm
E2→ Γout has correlation

Corx∈Fn
2

[〈Γm, x〉 ⊕ 〈Γout, E2(x)〉] = q. The differential-linear distinguisher
exploits the fact that, under the assumption that E1(x) and E2(x) are
independent random variables, we have

Corx∈Fn
2

[〈Γout, E(x)〉 ⊕ 〈Γout, E(x⊕∆in)〉] = pq2 . (1)
Therefore, by preparing εp−2q−4 pairs of chosen plaintexts (x, x̃), for x̃ =
x⊕∆in, where ε ∈ N is a small constant, one can distinguish the cipher from
a pseudorandom permutation.

In practice, there might be a problem with the assumption that E1(x) and
E2(x) are independent, resulting in wrong estimates for the correlation. To
provide a better justification of this independence assumption (and in order
to improve attack complexities), adding a middle part is a simple solution and
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usually done in recent attacks (including ours). Here, the cipher E is divided
into three sub ciphers E1, Em and E2 such that E = E2 ◦ Em ◦ E1 and the
middle part Em is experimentally evaluated. In particular, let

r = Corx∈S [〈Γm, Em(x)〉 ⊕ 〈Γm, Em(x⊕∆m)〉] ,
where S denotes the set of samples over which the correlation is computed.
Then, the total correlation in Equation 1 can be estimated as prq2. Recently,
as a theoretical support for this approach, the Differential-Linear Connectivity
Table (DLCT) [35], has been introduced. The overall attack framework is
depicted in Fig. 2 and we will use this description in the remainder of the
paper.

Finally, in order to better understand Equation (1), we denote the
differential-linear correlation (known as the auto-correlation in the theory of
Boolean functions) on E by

AutE(∆in, α, α
′) := 2−n

∑
x∈Fn

2

(−1)〈α,E(x)〉⊕〈α′,E(x⊕∆in)〉 ,

where Equation (1) is special case such that α = α′ = Γout.

2.2 Partitioning Technique for ARX-based Designs

Partitioning allows increasing the correlation of the differential-linear distin-
guisher by deriving linear equations which hold conditioned on ciphertext and
key bits. We recall the partitioning technique as used in [19]. Let a, b ∈ Fm2
and let z = a + b. When i = 0 (lsb), the modular addition for bit i becomes
linear, i.e., z[0] = a[0]⊕b[0]. Of course, for i > 0, the ith output bit of modular
addition is not linear on the inputs. However, by restricting (a, b) to a specific
subset, we might obtain other linear relations. In previous work, the following
formula on z[i] was derived.

Lemma 1 ([19]) Let a, b ∈ Fm2 and z = a+ b. For i ≥ 2, we have

z[i] =

{
a[i]⊕ b[i]⊕ a[i− 1] if a[i− 1] = b[i− 1]

a[i]⊕ b[i]⊕ a[i− 2] if a[i− 1] 6= b[i− 1] and a[i− 2] = b[i− 2] .

3 New Partitioning Technique

Before introducing our new attack framework for differential-linear attacks, we
first introduce some new partitioning techniques.

The original idea of the partitioning technique [29] is to divide all the data
into some partitions, and only using those partitions that can decrease the
data complexity. The generalized partitioning technique in [19] also has the
same feature, i.e., when a single modular addition is analyzed, all the data is
divided into four partitions and one out of those four is discarded.

Our new partitioning techniques are twofold. First, we introduce linear
masks for partitions that have originally been discarded. Our new FWHT-
based key recovery using the LLR statistic allows us to efficiently use such
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partitions. Second, we additionally introduce a partitioning technique to com-
pute z[i] ⊕ z[i − 1] with the same key guessing cost as the evaluation of z[i].
There are multiple linear trails with high correlation in the ARX ciphers. The
new partition is useful when we dynamically change available linear trails for
each partition.

[ ][i]

z1 z0

y1 y0

z1 z0

y1 y0

Fig. 3 Two examples of the partitioning technique. In the first case (left picture), we are
interested in an approximation for z0[i]. In the second case (right picture), we are interested
in an approximation for z0[i]⊕ z0[i− 1]. The corresponding partitions and approximations
are given in Lemma 2 and Lemma 3, respectively.

Let us consider twom-bit words z0 and z1 and a modular addition operation
F2m

2 → F2m
2 , (z1, z0) 7→ (y1, y0) = (z1, z0 + z1) ,

as depicted in Fig. 3. In the attacks we present later, we are interested in the
value z0[i] = (y0 − y1)[i] = (y0 + ȳ1 + 1)[i]. Notice that for i ≤ 2 there exist
trivial relations for z0[i]. The following lemma deals with the case i ≥ 3, which
is relevant for our applications.

Lemma 2 Let s = y0 ⊕ ȳ1 and let i ≥ 3. Let Sb0b1 := {(y1, y0) ∈ F2m
2 | s[i − 1] =

b0 and s[i− 2] = b1}. We have

z0[i] ≈


y0[i]⊕ y1[i]⊕ y0[i− 1], with cor. −1, if (y1, y0) ∈ S0∗,
y0[i]⊕ y1[i]⊕ y0[i− 2], with cor. −1, if (y1, y0) ∈ S10,
y0[i]⊕ y1[i]⊕ y0[i− 3], with cor. −2−1, if (y1, y0) ∈ S11,

(2)

where S0∗ = S00 ∪ S01.

Proof Figure 4 represents the computation of z0[i], where z0 = y0−y1 = y0 + ȳ1 +1.
In fact, if c[i] denotes the carry occurring at bit position i, and assume that c[−1] := 1,
we have that z0[i] = y0[i]⊕ y1[i]⊕ 1⊕ c[i− 1] for all i ≥ 0.

Let us first assume that (y1, y0) ∈ S0∗, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 0. Then,
c[i− 1] = y0[i− 1] if i ≥ 1. Thus,

z0[i] = y0[i]⊕ y1[i]⊕ 1⊕ y0[i− 1],

for all i ≥ 1, and we obtain the first equality.
Next, let us assume that (y1, y0) ∈ S10, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 1 and y0[i −

2]⊕ ȳ1[i− 2] = 0. Then, c[i− 1] = c[i− 2], and c[i− 2] = y0[i− 2] if i ≥ 2. Thus,

z0[i] = y0[i]⊕ y1[i]⊕ 1⊕ y0[i− 2],
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for all i ≥ 2, and we obtain the second equality.
Finally, let us assume that (y1, y0) ∈ S11, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 1 and

y0[i− 2]⊕ ȳ1[i− 2] = 1. Then, c[i− 1] = c[i− 2], and c[i− 2] = c[i− 3] if i ≥ 3. Thus,

z0[i] = y0[i]⊕ y1[i]⊕ 1⊕ c[i− 3]

holds for all i ≥ 3. The carry c[i − 3] is the output of the majority function as
c[i−3] = maj(c[i−4], y0[i−3], ȳ1[i−3]), and a linear approximation, c[i−3] ≈ y0[i−3],
holds with correlation 2−1. Thus, we have

z0[i] ≈ y0[i]⊕ y1[i]⊕ y0[i− 3]

with correlation −2−1, and we obtain the final approximation. �

z0[i] z0[i− 1] z0[i− 2] z0[i− 3]

y0[i] y0[i− 1] y0[i− 2] y0[i− 3]

ȳ1[i] ȳ1[i− 1] ȳ1[i− 2] ȳ1[i− 3]+

· · ·

· · ·

· · ·

c[i− 1] c[i− 2] c[i− 3] c[i− 4]

Fig. 4 Representation for z0 = y0 + ȳ1 + 1.

The representations for the partitions S0∗ and S10 are the same as in
Lemma 1. We additionally introduce a linear approximation for the partition
S11, which was discarded in the original partitioning technique. Note that the
cost to determine partitions is not increased compared to the previous par-
titioning technique because we simply use the discarded partition. The cost
increase only involves the new bit y0[i − 3], but thanks to our FWHT-based
key recovery technique, the cost increase will be negligible. We discuss it in
detail in Sect. 8.

[i]

[ ] [ ][i]

[i]

[i]

Fig. 5 Two linear trails with correlation 2−1.

Due to the propagation rules for linear trails over modular addition, we
may end up with multiple linear trails that are closely related to each other.
As an example, Fig. 5 shows two possible trails, where [i] and [i, i− 1] denote
the corresponding linear masks. The partitioning technique described above
evaluates z0[i], but we can expect that there is a highly-biased linear trail in
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which z0[i] ⊕ z0[i − 1] needs to be evaluated instead of z0[i]. In the trivial
method, we would apply the partitioning technique of Lemma 2 for z0[i] and
z0[i−1] separately, which requires the knowledge of 3 bits of information from y
in total. Our new partitioning method allows us to determine the partition with
the knowledge of only the same 2 bits of information as needed for evaluating
the case of z0[i], namely (y0[i− 1]⊕ y1[i− 1]) and (y0[i− 2]⊕ y1[i− 2]). This
is especially helpful if y consists of the ciphertext XORed with the key, so we
need to guess less key bits to evaluate the partition.

Lemma 3 Let s = y0 ⊕ ȳ1 and let i ≥ 3. Let Sb0b1 := {(y1, y0) ∈ F2m
2 | s[i − 1] =

b0 and s[i− 2] = b1}. We have

z0[i]⊕ z0[i− 1]

≈


y0[i]⊕ y1[i], with cor. 1, if (y1, y0) ∈ S1∗,
y0[i]⊕ y1[i]⊕ y0[i− 1]⊕ y0[i− 2], with cor. −1, if (y1, y0) ∈ S00,
y0[i]⊕ y1[i]⊕ y0[i− 1]⊕ y0[i− 3], with cor. −2−1, if (y1, y0) ∈ S01,

where S1∗ = S10 ∪ S11.

Proof By evaluating the modular addition z0 = y0 + ȳ1 + 1, we have

z0[i]⊕ z0[i− 1] = y0[i]⊕ ȳ1[i]⊕ c[i− 1]⊕ y0[i− 1]⊕ ȳ1[i− 1]⊕ c[i− 2] ,

where c[i− 1], resp., c[i− 2] denotes the carry occurring at bit position i− 1, resp.,
i− 2. As before, we define c[−1] := 1.

Let us first assume that (y1, y0) ∈ S1∗, i.e., y0[i−1]⊕ ȳ1[i−1] = 1. Then, clearly
c[i− 1] = c[i− 2]. Thus,

z0[i]⊕ z0[i− 1] = y0[i]⊕ y1[i],

and we obtain the first equality.
Next, let us assume that (y1, y0) ∈ S00, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 0 and y0[i −

2] ⊕ ȳ1[i − 2] = 0. Since y0[i − 1] ⊕ ȳ1[i − 1] = 0, we have c[i − 1] = ȳ1[i − 1]. Since
y0[i− 2]⊕ ȳ1[i− 2] = 0, we have c[i− 2] = y0[i− 2]. Thus,

z0[i]⊕ z0[i− 1] = y0[i]⊕ y1[i]⊕ 1⊕ y0[i− 1]⊕ y0[i− 2],

and we obtain the second equality.
Finally, let us assume that (y1, y0) ∈ S01, i.e., y0[i − 1] ⊕ ȳ1[i − 1] = 0 and

y0[i− 2]⊕ ȳ1[i− 2] = 1. Since y0[i− 1]⊕ ȳ1[i− 1] = 0, we have c[i− 1] = ȳ1[i− 1].
Since y0[i− 2]⊕ ȳ1[i− 2] = 1, we have c[i− 2] = c[i− 3]. Thus,

z0[i]⊕ z0[i− 1] = y0[i]⊕ y1[i]⊕ 1⊕ y0[i− 1]⊕ c[i− 3].

The carry c[i − 3] is the output of the majority function as c[i − 3] = maj(c[i −
4], y0[i − 3], ȳ1[i − 3]), and a linear approximation, c[i − 3] ≈ y0[i − 3], holds with
correlation 2−1. Thus,

z0[i]⊕ z0[i− 1] ≈ y0[i]⊕ y1[i]⊕ y0[i− 1]⊕ y0[i− 3]

holds with correlation −2−1, and we obtain the final approximation. �
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In practice, we need to consider a more complicated partition. For example,
we sometimes consider the case that the approximated function consists of
multiple modular subtractions and rotation. A summary of our partitioning is
given in Appendix A.

4 High-Level Overview of the New Attack
Framework

x x̃

z = (zP , zR) z̃ = (z̃P , z̃R)

y = (yP , yR) ỹ = (ỹP , ỹR)

c = (cP , cR) c̃ = (c̃P , c̃R)

∆in

∆m

Γm Γm

Γ
(p1)
outΓ

(p2)
out

. . . Γ
(ps)
out Γ

(p1)
outΓ

(p2)
out

. . . Γ
(ps)
out

γ(p1)γ(p2) . . . γ(ps) γ(p1)γ(p2) . . . γ(ps)

. . . . . .

E1 E1

Em Em

E2 E2

F F

exp. exp.

k = (kP , kR) k = (kP , kR)

kin kin

Fig. 6 The new attack framework.

In this section, we introduce a high-level overview of our new attack
framework for differential-linear attacks with the partitioning technique. The
framework consists of several novel techniques, which are: 1) amplifying the
probability of the differential part by carefully choosing an appropriate linear
subspace U for generating good pairs, 2) choosing the linear masks dynamically
depending on each partition, and 3) an FWHT-based technique for improving
the key recovery part when using partitions.

Figure 6 shows the high-level description of the general structure. Here
F corresponds to the part of the cipher that we are going to cover using
our improved key-guessing strategy. Our aim is to recover parts of the last
whitening key k by using a differential-linear distinguisher given by s (multiple)

linear approximations 〈Γ(pi)
out , z〉 ⊕ 〈Γ

(pj)
out , z̃〉. In the following, we assume that

the ciphertext space Fn2 is split into a direct sum P ⊕ R with nP := dimP
and nR := dimR = n− nP , so that the partitions will be given by the cosets
Tpi = pi ⊕R for any pi ∈ P (i.e. pi represents a set of the partition). Notice
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that, without loss of generality, we can also assume that c ∈ Fn2 is divided into
two parts cP ∈ FnP2 = P and cR ∈ Fn−nP2 = R, and c = (cP , cR); similarly, we
can write k = (kP , kR) and y = (yP , yR). Then, for any pi ∈ P, the partition
Tpi ⊂ Fn2 is defined as Tpi = {y ∈ Fn2 | yP = pi}. Since both formalizations are
equivalent, we will use either interchangeably depending on the context.

4.1 The Differential Part

The first step of the attack is to collect many (x, x⊕∆in) satisfying E1(x)⊕
E1(x⊕∆in) = ∆m, which are called right pairs. Let X be the set defined as

X = {x ∈ Fn2 | E1(x)⊕ E1(x⊕∆in) = ∆m}.
If pairs are used from X , the probability of the differential part becomes 1 and
the correlation of the differential-linear distinguisher also increases. To collect
many such pairs efficiently, we use a linear subspace U . In the simplest case,
this subspace is chosen such that for any x ∈ X and any u ∈ U it holds that
x⊕ u ∈ X , i.e. (x⊕ u, x⊕ u⊕∆in) is a right pair as well. However, this strict
requirement restricts the size of U significantly and for the attack it is sufficient
if this implication is true for most elements in X . To capture this precisely, we
define a subset X ′ of the set of right pairs X as

X ′ = {x ∈ X | x⊕ u ∈ X for all u ∈ U}.
Once we find an x ∈ X ′, we can find 2dimU right pairs for free. The differential
probability p is in fact defined as p = |X |/2n, which means we can reduce the
data complexity by the factor p−1 when X ′ = X . We would like to remark
that this idea has already been used in other contexts, e.g., the differential
attack [36], but to best of our knowledge, it has not been applied to differential-
linear attacks. We discuss the differential part in detail in Sect. 5.

4.2 The Linear Part

The idea is to identify several tuples (Tpi ,Γ(pi)
out , γ

(pi)), i ∈ {1, . . . , s}, where
γ(pi) ∈ R, for which we can observe a high absolute correlation

εi := Cory∈Tpi

[
〈Γ(pi)

out , z〉 ⊕ 〈γ(pi), y〉
]
.

In the simplest case, we would have εi = 1, i.e.,

y ∈ Tpi ⇒
(
〈Γ(pi)

out , z〉 = 〈γ(pi), y〉 = 〈γ(pi), c〉 ⊕ 〈γ(pi), k〉
)
.

In other words, by considering only a specific subset of the ciphertexts (defined
by Tpi) we obtain linear relations in the key with a high correlation.

The correlation of the differential-linear distinguisher for E2 ◦ Em ◦ E1,
which is denoted by qi,j , is defined as

qi,j := Corx∈X such that
(y,ỹ)∈Tpi×Tpj

[
〈Γ(pi)

out , z〉 ⊕ 〈Γ
(pj)
out , z̃〉

]
.

In practice, it is not feasible to compute qi,j for all partitions indexed by (i, j)
when each correlation is low and the number of partitions is large. Therefore,
we introduce the following assumption.
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Assumption 1 The correlation qi,j is independent of Tpi ×Tpj . In other words, we
assume

qi,j = Corx∈X
[
〈Γ(pi)

out , z〉 ⊕ 〈Γ
(pj)
out , z̃〉

]
for all i, j.

We finally observe the following correlation for (y, ỹ) by guessing the secret
key, and the final correlation is defined as

ρi,j := Corx∈X such that
(y,ỹ)∈Tpi×Tpj

[
〈γ(pi), y〉 ⊕ 〈γ(pj), ỹ〉

]
.

In addition to Assumption 1, we use the following assumption in order to
estimate the final correlation.

Assumption 2 The correlations qi,j , εi, and εj are independent of each other, and
ρi,j can be estimated as

ρi,j = εiεjqi,j . (3)

Unfortunately, Assumption 2 does not hold in general because it ignores
the impact of the auto-correlation-linear hull effect. Namely, for a more precise
evaluation, we need to consider multiple differential-linear trails with tuples
(Tpi , ∗, γ(pi)), where ∗ represents arbitrary linear masks, and ρi,j can be com-
puted as the sum of these correlations. In other words, we need to consider

multiple Γ
(pi)
out for each fixed (Tpi , γ(pi)). We later discuss the auto-correlation-

linear hull in Sect. 6. There it is also shown that, when considering the
auto-correlation-linear hull, Assumptions 1 and 2 are replaced by the assump-
tion that the hull is dominated by a single trail in order to justify Equation
(3).

How to identify belonging partitions is very important. It highly depends
on the specification of the target cipher. Applications to Chaskey and ChaCha
are too complicated to understand this behavior. We provide some simple cases
for a more easy understanding of this behavior in Appendix B.

4.3 LLR-Based Statistical Test

According to the Neyman-Pearson Lemma, the LLR test is the most powerful
statistical test and as such has been used as a cryptanalysis tool (see e.g. [31,
32]). Considering the use of multiple linear trails with different correlations,
the LLR test is more appropriate than the simple sum without considering the
different correlations of each linear approximation.

Let us consider our differential-linear attacks using N pairs. An important
remark is that each of the N pairs contributes differently to the correlations.
Therefore, we need to consider the contribution to the theoretical correlation
of each of them. Let (y, ỹ) be the `th pair and let us assume that y and ỹ
belong to the ith and jth partitions respectively, i.e., yP = pi and ỹP = pj (for
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ease of notation, we do not make the dependency of y, ỹ, i, j on ` explicit). We
then get the 1-bit representation

w` = 〈y, γ(pi)〉 ⊕ 〈ỹ, γ(pj)〉
and consider the probability

π` = Pry,ỹ [w` = 0] .
We refer to the theoretical correlation as ρi,j when the ith and jth partitions

are used. Namely, π` =
ρi,j+1

2 . For simplicity, let C` denote this correlation
for the `th pair (and the ith and jth partitions are used for this pair), i.e.,
C` = ρi,j = 2π` − 1.

Let D0 and D1 be the random vector distributions
D0 : (B(1, π1), . . . ,B(1, πN )) , D1 : (B(1, 1/2), . . . ,B(1, 1/2)) .

where B(n, π`) are independent binomial distributions with n trials and success
probability π`, and where the π` are not necessarily distinct.

Our goal is to distinguish whether w := (w1, . . . , wN ) is the result of sam-
pling from D0 (i.e., the real distribution) or D1 (i.e., the random distribution).
Let q0 and q1 be the probability that w := (w1, . . . , wN ) is the result of
sampling from D0 or D1 respectively. Thus,

q0 = Pr [X = w | X ∼ D0] , q1 = Pr [X = w | X ∼ D1] .

The LLR statistic is defined as ln(q0/q1), and it is computed as

ln

(
q0

q1

)
=

1

2

N∑
`=1

ln
(
1− C2

`

)
+

1

2

N∑
`=1

ln

(
1− C`
1 + C`

)
(−1)

w` .

Let us assume that the LLR statistic follows normal distributions N (µ0, σ
2
0)

and N (µ1, σ
2
1) when the correct and wrong keys are guessed, respectively. We

have

µ0 = −µ1 =
1

2

N∑
`=1

C2
` =

N

2
C, σ2

0 = σ2
1 =

N∑
`=1

C2
` = NC,

where by C we denote the average of the squared correlation, i.e. C :=
1
N

∑N
`=1 C

2
` . We later show the formula described above in Sect. 7.

4.4 WHT-Based Key Recovery Technique

We use (y, ỹ) to identify partitions and compute the LLR statistic. Note that
y ∈ Tpi ⇔ c ∈ Tpi ⊕ kP , so we need to guess nP bits of k to partition the
ciphertexts into the corresponding Tpi . Note that, since we require γ(pi) ∈ R,
we obtain linear relations only on kR.

Let (c, c̃) be the pair of ciphertexts. The partition the pair belongs to is
determined by yP = cP ⊕ kP . Therefore, part of the key kP is guessed to
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identify the partition. After guessing kP , we get the following approximation.

〈y, γ(yP)〉 ≈ 〈ỹ, γ(ỹP)〉 ⇒ 〈c⊕ k, γ(yP)〉 ≈ 〈c̃⊕ k, γ(ỹP)〉
⇒ 〈c, γ(yP)〉 ⊕ 〈c̃, γ(ỹP)〉 ≈ 〈k, γ(yP) ⊕ γ(ỹP)〉

Since the left side is known, we get the parity of k with respect to the linear
mask γ(yP) ⊕ γ(ỹP). For a linear subspace W defined by W := Span{γ(pi) ⊕
γ(pj) | i, j ∈ {1, . . . , s}}, the approximations above involve dimW bits of
information for k. By using the Fast Walsh-Hadamard Transform (FWHT),
we do not need to guess dimW bits for every pair of texts, and the time
complexity is estimated as 2nP (2N + dimW · 2dimW ), where nP is the bit
length of kP . We discuss this procedure in detail in Sect. 8.

5 The Differential Part – Finding Many Right
Pairs

Let us be given a permutation E1 : Fn2 → Fn2 and a differential ∆in
E1→ ∆m that

holds with probability p. In other words,
|{x ∈ Fn2 | E1(x)⊕ E1(x⊕∆in) = ∆m}| = p · 2n .

In a usual differential-linear attack on a permutation E = E2 ◦ Em ◦ E1 as
explained in Sect. 2.1, the internal structure of E1 could be in general arbitrary
and we would consider randomly chosen x ∈ Fn2 to observe the ciphertexts
of the plaintext pairs (x, x ⊕ ∆in). For each of those pairs, the differential
over E1 is fulfilled with probability p, which results in a data complexity of
roughly εp−2r−2q−4 for the differential-linear attack. In other words, we did
not exploit the particular structure of E1. In particular, it would be helpful to
know something about the distribution of right pairs (x, x ⊕∆in) ∈ Fn2 × Fn2
which fulfill the above differential.

Let us denote by X the set of all values that define right pairs for the
differential, i.e.,

X = {x ∈ Fn2 | E1(x)⊕ E1(x⊕∆in) = ∆m} .
To amplify the correlation of a differential-linear distinguisher, instead of

choosing random plaintexts from Fn2 , we could consider only those that are in
X . In particular, we have2

Corx∈X [〈Γout, E(x)〉 ⊕ 〈Γout, E(x⊕∆in)〉] = rq2 .
Since the set X might have a rather complicated structure and is key-

dependent, we cannot use this directly for an arbitrary permutation E1.
However, if X presents a special structure such that, given one element x ∈ X ,
we can generate many other elements in X for free,3 independently of the
secret key, we can use this to reduce the data complexity in a differential-
linear attack. For example, if X contains a large affine subspace A = U ⊕ a,

2under the assumption that the sets {〈Γout, E(x)〉 ⊕ 〈Γout, E(x ⊕ ∆in)〉 | x ∈ X} and
{〈Γout, E(x)〉 ⊕ 〈Γout, E(x ⊕ ∆in)〉 | x ∈ S} are indistinguishable, where S denotes a set of
uniformly chosen samples of the same size as X .

3Or at least with a cost much lower than p−1, see Sect. 5.2.



Springer Nature 2021 LATEX template

16 Improved Differential-Linear Attacks with Applications to ARX Ciphers

given x ∈ A, we can generate (roughly) 2dimU elements in X for free, namely
all elements x⊕ u, for u ∈ U . In order to obtain an effective distinguisher, we
must be able to generate enough plaintext pairs to observe the correlation of
the differential-linear approximation. In particular, we require |U| > εr−2q−4.

This will be exactly the situation we find in ChaCha. Here the number of
rounds covered in the differential part is so small that it can be described by
the independent application of two functions (see Sect. 5.1).

If |U| is smaller than the threshold of εr−2q−4, we cannot generate enough
right pairs for free to obtain a distinguisher by this method and we might use
a probabilistic approach, see Sect. 5.2.

In Sect. 5.3 we show how the conditional differential framework can be used
to efficiently find bigger sets U , as well as to recover some information on the
key, and provide some ideas to adapt it to the ARX scenario.

5.1 Fully Independent Parts

Let E1 : Fn2 → Fn2 with n = 2m be a parallel application of two block ciphers

E
(i)
1 : Fm2 → Fm2 , i ∈ {0, 1} (for a fixed key), i.e.,

E1 : (x(1), x(0)) 7→ (E
(1)
1 (x(1)), E

(0)
1 (x(0))) .

Suppose that, E
(0)
1 presents a differential α

E
(0)
1→ β with probability p. We

consider the differential ∆in
E1→ ∆m with ∆in = (0, α) and ∆m = (0, β), which

also holds with probability p. Given one element (x(1), x(0)) ∈ X , any (x(1) ⊕
u, x(0)) for u ∈ Fm2 is also contained in X , and we can thus generate 2m right
pairs for free.

If 2m > εr−2q−4, a differential-linear distinguisher on E = E2 ◦ Em ◦ E1

would work as follows:

1. Choose a = (a(1), a(0)) ∈ Fn2 uniformly at random.
2. Empirically compute

Corx∈a⊕(Fm
2 ×{0}) [〈Γout, E(x)〉 ⊕ 〈Γout, E(x⊕∆in)〉] .

3. If we observe a correlation of rq2 using εr−2q−4 many x, the distinguisher
succeeded. If not, start over with Step 1.

With probability p, we choose an element a ∈ X in Step 1. In that
case, the distinguisher succeeds in Step 3. Therefore, the data complexity of
the distinguisher is εp−1r−2q−4, compared to εp−2r−2q−4 as in the classical
differential-linear attack.

5.2 Probabilistic Independent Parts

Since the previous decomposition is not always possible or 2m might not
be big enough, we are also interested in the situations in which the dif-
ferential part cannot be simply written as the parallel application of two
functions. Again, the goal is, given one element x ∈ X , to be able to gen-
erate εr−2q−4 other elements in X , each one with a much lower cost than
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p−1. Suppose that U ⊆ Fn2 is a subspace with |U| > εr−2q−4 and suppose
that Pru∈U [x⊕ u ∈ X | x ∈ X ] = p1, where p1 is much larger than p. The
data complexity of the improved differential-linear distinguisher would then
be εp−1p−2

1 r−2q−4. Note that the probability p1 may also depend on x. In
particular, there might be x ∈ X ′ ⊆ X for which p1 is (almost) 1, but the
probability to draw such an initial element x from Fn2 is p′, which is smaller
than p. Then, the data complexity would be εp′−1p−2

1 r−2q−4. For instance,
this will be the case for the attack on Chaskey (Sect. 9), where we have p1 ≈ 1
and p′ = p× 222/256.

In such situations, we propose an algorithmic way to experimentally detect
suitable structures in the set of right pairs. The idea, see Algorithm 1 for the
pseudo code, is to detect canonical basis vectors within the subspace U . Run-
ning this algorithm for enough samples will return estimates of the probability
γj that a right pair x ∈ X stays a right pair when the jth bit is flipped, i.e.,

γi = Pr [x⊕ [i] ∈ X | x ∈ X ] .
When applied to a few rounds of ARX ciphers it can be expected that there

are some bits that will always turn a right pair into a right pair, i.e. γi = 1.
Moreover, due to the property of the modular addition that the influence of
bits on distant bits degrades quickly, high values of γj 6= 1 can also be expected.
As we will detail in Sect. 9 this will be the case for the application to Chaskey.

Algorithm 1 Computing probabilistic independent bits

Require: Number of samples T , input difference ∆in, output difference ∆m

Ensure: Probabilities γ0, γ1, . . . , γn−1

1: Let s = 0 and cj = 0 for j ∈ {0, . . . , n− 1}.
2: for i = 1 to T do
3: Pick a random X and compute E1(X) and E1(X ⊕∆in)
4: if E1(X)⊕ E1(X ⊕∆in) = ∆m then
5: Increment s
6: for j ∈ {0, . . . , n− 1} do
7: Prepare X̂ where the jth bit of X is flipped.
8: if E1(X̂)⊕ E1(X̂ ⊕∆in) = ∆m then
9: Increment cj

10: end if
11: end for
12: end if
13: end for
14: for j ∈ {0, . . . , n− 1} do
15: γj = cj/s
16: end for
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5.3 Using the Conditional Differential Framework for
Finding Better Subspaces

A practical way for producing a set of pairs of data whose elements all verify a
certain differential path reflects a similar scenario to the one which is consid-
ered in conditional differential attacks. In [36], in the context of NLFSR-based
primitives, the elements of the basis of U are called freebits and involve more
complex relations derived from the differential paths than just simple single-
bit relations. In Sect. 3.2 of [36], three types of conditions are presented: type
zero, which only involve public bits (which is common in NLFSR initialization,
but not in ARX or SPN constructions); type one, which involve both secret
and public bits; and type two, which are conditions directly on the keybits.
The freebits are actually the ones that do not affect type one conditions. Using
these definitions we can improve previous attacks in two ways: increasing for
free the number of keybits recovered by the differential-linear attack thanks to
type 2 conditions, and increasing the size of U by using the freebits as defined
in [36].

In this section we provide some hints and general ideas on how to use this
framework for improving the analysis in ARX constructions. In Appendix C
we provide a detailed example on how to determine additional keybits with
type 2 conditions and on how to increase the number of freebits with evolved
relations for Chaskey.

Conditional differential framework for differential-linear attacks

Using the definitions from [36, Sect. 3.2], it is easy to see how to improve the
differential part of some attacks (quite straightforwardly for ARX) in three
main ways:

1. We can increase the size of U by exhausting the input values that keep the
conditions of type-1 fixed to a certain value (as was done in the applications
in that paper), as if these conditions were true, they would stay true for
all the sampling set. These exhausted bits might not be completely free as
type one conditions need to remain constant.

2. When considering a particular set of plaintexts to check if it is the one veri-
fying the differential path, some information on the value of some associated
keybits or keybit relations can be presupposed (given directly by condi-
tions of type-2 and indirectly by conditions of type-1). This means that,
for all the cases, we can suppose some information on the key as known.
This information might be used to recover more bits and more importantly,
could reduce the complexity of the key-search part in the final rounds.

3. Combination of both: guessing some keybits, that might be useful for the
linear part, and that simultaneously might allow to detect sampling bit
relations that follow the path with probability 1.
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Main ideas for exploiting the conditions on ARX

We now present some general ideas for exploiting conditions on ARX construc-
tions. Even though some of them might seem trivial, it is nonetheless helpful
to set them as rules to follow.

We can define some rules that apply when flipping the parity of differences.
Instead of using only single non-active bit flipping for defining the freebits,
we can study the effect of flipping the parity of the differences as additional
sampling bits when possible. We can identify several relevant cases, and we
present here four cases of particular interest: (i) If a pair of differences is going
to be erased after a modular addition (which implies they have a different
parity), changing the parity of one will need changing the parity of the other.
(ii) If a bit-difference is staying at the same position (and not propagating
further) after a modular transition, changing its parity will not affect the
transition. (iii) If two active bits at position i will produce a difference after
the modular addition at position i + 1 (move the difference), flipping both
active bits at the same time will change the parity of the output at i+ 1. (iv)
If two words are added with a difference in position i and in positions i and
i + 1 respectively, and we want to absorb the differences after the modular
additions, the carries of the previous positions will not affect the bits after
position i. We can also change the parity of the three bits simultaneously, and
the differences will still be absorbed, and the values will stay the same. Of
course, all this might have an effect on further rounds, which will have, in turn,
to be taken into account.

It is also useful to keep in mind that when we identify several input bits that
only influence the differential transitions by a xor, swapping a pair number of
these will not alter the verification of the path.

When dealing with carries, they might affect transitions with low proba-
bility. It is interesting to keep in mind that, when there is a sum of two zeros
at position i, the value of all the bits at lower positions will not affect the car-
ries at any higher positions. That might imply that a small guess (for instance
2 keybits for fixing two bits to zero) can generate many more bits for the
sampling part with probability one if they only affected the differential path
through these carries.

6 Auto-Correlation-Linear Hulls and
Partitioning

In this section, we want to better understand how to compute the correlations
ρi,j when the ith and jth partitions are used. This will allow us to shed light
on Assumptions 1 and 2.

For this, we will derive general formulas which express the differential-linear
correlation with restricted output of a function composed of two parts. Note
that in the following we do not make any assumptions on the independence of
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these parts. Furthermore, the notion of an auto-correlation-linear hull devel-
oped below will allow to improve upon the attacks by considering multiple
intermediate masks.

G1

G1

G2

G2

∆

Γ

Γ′

γ

γ′

(∈M)

(∈ N)

We start by considering the unrestricted variant. Given two functions
G1, G2 : Fn2 → Fn2 , an input difference ∆ and two output-masks γ and γ′, let
H := G2 ◦G1 and

AutH(∆, γ, γ′) := 2−n
∑
x∈Fn

2

(−1)〈γ,H(x)〉⊕〈γ′,H(x⊕∆)〉

be the differential-linear correlation on H.
We are interested in how to compute the differential-linear correlation when

considering intermediate masks Γ and Γ′. In a second step, the outputs will
be restricted to coming from a set M and a set N , respectively.

Note that this approach is different from the considerations in [37] as there
it was about how to compute the auto-correlation by connecting the differ-
ential and the linear part correctly, while here we extend a differential-linear
correlation using a second linear approximation of the parts.

This auto-correlation can be expressed as

AutH(∆, γ, γ′) =
∑
u∈Fn

2

Ĥ(u, γ)Ĥ(u, γ′)(−1)〈u,∆〉, (4)

where we denote by

Ĥ(u, γ) = 2−n
∑
x∈Fn

2

(−1)〈γ,H(x)〉+〈u,x〉

the correlation of the approximation of H with input and output masks u and
γ. This follows from the connection of the Walsh-Hadamard transform and the
convolution of functions, see e.g. [38, Proposition 11], but can also be verified
directly.

In our attack framework, G1 would correspond to E2 ◦ Em ◦ E1 and G2

to F and we would experimentally estimate the auto-correlation and multiply
it with the correlation of G2 with input mask Γ and output mask γ, i.e., we
estimate

AutH(∆, γ, γ′) ≈ Ĝ2(Γ, γ)Ĝ2(Γ′, γ′) AutG1
(∆,Γ,Γ′) . (5)

This is of course only an approximation and we now want to get an explicit
expression of the hull effect, i.e., of all the parts we ignore in the above
expression without making any assumptions. Furthermore, we have to take the
partitioning of the outputs into account.
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For this, we use the fact (see [39]) that we can split the correlation of H
into

Ĥ(u, γ) =
∑

Γ∈Fn
2

Ĝ1(u,Γ)Ĝ2(Γ, γ)

with an intermediate mask Γ, i.e. the linear hull. Putting this back in the
definition of the auto-correlation, we get the following.

Proposition 1 (Auto-Correlation-Linear Hull) Let G1, G2 : Fn2 → Fn2 . For any
∆, γ, γ′ ∈ Fn2 we then have

AutG2◦G1
(∆, γ, γ′) =

∑
Γ,Γ′∈Fn

2

Ĝ2(Γ, γ)Ĝ2(Γ′, γ′) AutG1
(∆,Γ,Γ′) .

Proof Let H = G2 ◦G1. Then

AutG2◦G1
(∆, γ, γ′)

=
∑
u∈Fn

2

Ĥ(u, γ)Ĥ(u, γ′)(−1)〈u,∆〉

=
∑
u∈Fn

2

∑
Γ∈Fn

2

Ĝ1(u,Γ)Ĝ2(Γ, γ)

 ∑
Γ′∈Fn

2

Ĝ1(u,Γ′)Ĝ2(Γ′, γ′)

 (−1)〈u,∆〉

=
∑

Γ,Γ′∈Fn
2

Ĝ2(Γ, γ)Ĝ2(Γ′, γ′)
∑
u∈Fn

2

Ĝ1(u,Γ)Ĝ1(u,Γ′)(−1)〈u,∆〉

=
∑

Γ,Γ′∈Fn
2

Ĝ2(Γ, γ′)Ĝ2(Γ′, γ) AutG1
(∆,Γ,Γ′) .

�

So, as could be expected, the linear hull theorem has a natural extension to
an auto-correlation-linear hull theorem and the approximation in Equation (5)
corresponds to focusing on a single (Γ,Γ′) while actually all pairs (Γ,Γ′) have
to be considered. It remains to see how restricting the input, i.e. partitioning,
affects this expression.

6.1 Impact of Partitioning on the Correlation

We again consider a function H : Fn2 → Fn2 , an input difference ∆, output-
masks γ and γ′ and two non-empty subsets M,N of Fn2 . We are interested
in

Aut
(M,N)
H (∆, γ, γ′) :=

2n

|M ||N |
∑
x∈Fn

2

H(x)∈M,H(x⊕∆)∈N

(−1)〈γ,H(x)〉⊕〈γ′,H(x⊕∆)〉.

One would hope that one can still use Equation (4) with minor modifications.
That is basically by replacing the correlation of H by its restricted version.
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To capture this, for a function F : Fn2 → Fn2 and a non-empty set S ⊆ Fn2 we
denote by

F̂ |S(a, b) :=
1

|S|
∑
x∈S

(−1)〈b,F (x)〉⊕〈a,x〉

the correlation when the input is restricted to the set S. Later, it will actually
be the output that is restricted, which will be handled by considering the
inverse of the function (and swapping input and output-mask). Using Lemmas
4 and 5 below, we can state the main insight of this Section as Proposition 2.

Lemma 4 We have
Aut

(M,N)
H (∆, γ, γ′) =

∑
u∈Fn

2

Ĥ−1|M (γ, u)Ĥ−1|N (γ′, u)(−1)〈u,∆〉.

Proof We start by expanding the right-hand side of the equation, denoted by L, as
follows

L =
∑
u∈Fn

2

Ĥ−1|M (γ, u)Ĥ−1|N (γ′, u)(−1)〈u,∆〉

=
1

|M ||N |
∑
u∈Fn

2

∑
y∈M

(−1)〈u,H
−1(y)〉⊕〈γ,y〉

∑
y′∈N

(−1)〈u,H
−1(y′)〉⊕〈γ′,y′〉

(−1)〈u,∆〉

=
1

|M ||N |
∑

y∈M,y′∈N
(−1)〈γ,y〉⊕〈γ

′,y′〉 ∑
u∈Fn

2

(−1)〈u,H
−1(y)⊕H−1(y′)⊕∆〉

=
2n

|M ||N |
∑

y∈M,y′∈N
H−1(y′)=H−1(y)⊕∆

(−1)〈γ,y〉⊕〈γ
′,y′〉 .

We now define x as H−1(y) and we get

L =
2n

|M ||N |
∑
x∈Fn

2

H(x)∈M,H(x⊕∆)∈N

(−1)〈γ,H(x)〉⊕〈γ′,H(x⊕∆)〉

which is equal to Aut
(M,N)
H (∆, γ, γ′) by definition. �

In order to get the restricted version of the auto-correlation-linear hull, we
have to understand the linear hull of a restriction first.

Lemma 5 Let H = G2 ◦G1 : Fn2 → Fn2 and let S ⊆ Fn2 be a non-empty set. Then

Ĥ|S(γ,Γ) =
∑
µ∈Fn

2

Ĝ2(µ,Γ)Ĝ1|S(γ, µ)

Proof We have∑
µ∈Fn

2

Ĝ2(µ,Γ)Ĝ1|S(γ, µ)
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=
1

2n|S|
∑
µ∈Fn

2

∑
y∈Fn

2

(−1)〈Γ,G2(y)〉⊕〈µ,y〉

∑
x∈S

(−1)〈µ,G1(x)〉⊕〈γ,x〉


=

1

2n|S|
∑

y∈Fn
2 ,x∈S

(−1)〈Γ,G2(y)〉⊕〈γ,x〉 ∑
µ∈Fn

2

(−1)〈µ,y⊕G1(x)〉

=
1

|S|
∑

x∈S,y=G1(x)

(−1)〈Γ,G2(y)〉⊕〈γ,x〉

=
1

|S|
∑
x∈S

(−1)〈Γ,G2(G1(x))〉⊕〈γ,x〉 = Ĥ|S(γ,Γ) .

�

Proposition 2 (Auto-Correlation-Linear Hull with Restriction) Let G1, G2 : Fn2 →
Fn2 and let M,N ⊆ Fn2 be non-empty sets. For any ∆, γ, γ′ ∈ Fn2 we then have

Aut
(M,N)
G2◦G1

(∆, γ, γ′) =
∑

Γ,Γ′∈Fn
2

Ĝ−1
2 |M (γ,Γ)Ĝ−1

2 |N (γ′,Γ′) AutG1
(∆,Γ,Γ′) .

Proof Starting with Lemma 4, we express the restricted auto-correlation as

T = Aut
(M,N)
H (∆, γ, γ′) =

∑
u∈Fn

2

Ĥ−1|M (γ, u)Ĥ−1|N (γ′, u)(−1)〈u,∆〉,

and substitute the correlations by using Lemma 5 as

Ĥ−1|M (γ, u) =
∑

Γ∈Fn
2

Ĝ−1
1 (Γ, u)Ĝ−1

2 |M (γ,Γ)

and

Ĥ−1|N (γ′, u) =
∑

Γ′∈Fn
2

Ĝ−1
1 (Γ′, u)Ĝ−1

2 |N (γ′,Γ′).

Doing this we get

T =
∑
u∈Fn

2

∑
Γ∈Fn

2

Ĝ−1
1 (Γ, u)Ĝ−1

2 |M (γ,Γ)

 ∑
Γ′∈Fn

2

Ĝ−1
1 (Γ′, u)Ĝ−1

2 |N (γ′,Γ′)

(−1)〈u,∆〉

=
∑

Γ,Γ′∈Fn
2

Ĝ−1
2 |M (γ,Γ)Ĝ−1

2 |N (γ′,Γ′)
∑
u∈Fn

2

Ĝ−1
1 (Γ, u)Ĝ−1

1 (Γ′, u)(−1)〈u,∆〉 .

Using the fact that, when considering the correlation of the inverse, input and output
masks get swapped, we can rewrite this as

T =
∑

Γ,Γ′∈Fn
2

Ĝ−1
2 |M (γ,Γ)Ĝ−1

2 |N (γ′,Γ′)
∑
u∈Fn

2

Ĝ1(u,Γ)Ĝ1(u,Γ′)(−1)〈u,∆〉.
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The last part, according to Equation (4), is nothing else than the auto-correlation of
G1 and thus we conclude

T =
∑

Γ,Γ′∈Fn
2

Ĝ−1
2 |M (γ,Γ)Ĝ−1

2 |N (γ′,Γ′) AutG1
(∆,Γ,Γ′)

as claimed. �

Relation to Assumptions 1 and 2

Proposition 2 provides a more precise interpretation of Equation (3). Recall
that G1 corresponds to E2◦Em◦E1 and G2 to F . The part εi and εj correspond

directly to Ĝ−1
2 |M (γ,Γ) and Ĝ−1

2 |M (γ,Γ), while the value qi,j is now replaced
by AutG1

(∆,Γ,Γ′). Our main observation is that we can still consider the
unrestricted auto-correlations of G1 in this hull, which means that Assumption
1 is actually not needed, and Assumption 2, about the independence of the
parts, can be replaced by the assumption that the hull is dominated by a single
trail, that is a single choice of intermediate masks Γ,Γ′.

Moreover, using Proposition 2 allows to improve upon the correlation by
considering multiple intermediate masks, as we demonstrate in the application
to Chaskey in Sect. 9.

7 LLR-based Statistical Test

Let us consider our differential-linear attacks using N pairs. Following the
notation introduced in Sect. 4.3, we let (y, ỹ) be the `th pair and we assume
that y and ỹ belong to the ith and jth partitions respectively (we recall that,
for ease of notation, we do not make the dependency of y, ỹ, i, j on ` explicit).
Then, let us consider

w` = 〈y, γ(pi)〉 ⊕ 〈ỹ, γ(pj)〉
for the `th pair (y, ỹ), and consider the probability

π` = Pry,ỹ [w` = 0] .

Note that π` =
ρi,j+1

2 , and for simplicity, let C` denote this correlation for the
`th pair (and the ith and jth partitions are used for this pair), i.e., C` = ρi,j =
2π` − 1.

Let D0 and D1 be the distributions
D0 : (B(1, π1), . . . ,B(1, πN )) , D1 : (B(1, 1/2), . . . ,B(1, 1/2)) .

where B(n, π`) is the binomial distribution with n trials, each having proba-
bility π` of success, where 0 ≤ π` ≤ 1 are not necessarily distinct.

Let q0 and q1 be the probabilities that w := (w1, . . . , wN ) is the result
of sampling from D0 (i.e. from the real distribution) or D1 (i.e. the random
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distribution) respectively. Thus

q0 = Pr [w = X | X ∼ D0] =

N∏
`=1

πw`

` (1− π`)1−w` ,

q1 = Pr [w = X | X ∼ D1] =

N∏
`=1

2−1 = 2−N .

The LLR statistic is defined as ln(q0/q1). The likelihood of D0 is larger than
that of D1 when ln(q0/q1) > 0. Then the LLR statistic can be rewritten as

ln

(
q0

q1

)
= ln

(
2N ×

N∏
`=1

πw`

` (1− π`)1−w`

)

= N ln(2) +

N∑
`=1

w` ln(π`) +

N∑
`=1

(1− w`) ln(1− π`)

= N ln(2) +

N∑
`=1

ln(1− π`) +

N∑
`=1

ln

(
π`

1− π`

)
w`.

Note that the first term is constant, but the second and third term depend on
the value of the guessed key bits, which affects the partition of the pairs. With
a slight abuse of notation, we treat qi as a random variable.

Note that, when we use C` instead of π`, the LLR statistic is rewritten as

LLR = N ln(2) +

N∑
`=1

ln (1− π`) +

N∑
`=1

ln

(
π`

1− π`

)
w`

= N ln(2) +

N∑
`=1

ln

(
1− C`

2

)
+

N∑
`=1

ln

(
1 + C`
1− C`

)
1− (−1)

w`

2

=

N∑
`=1

ln
(√

1− C`
√

1 + C`

)
︸ ︷︷ ︸

0.5 ln (1−C2
` )

+
1

2

N∑
`=1

ln

(
1− C`
1 + C`

)
(−1)

w` .

We can now determine the means and variances of the LLR statistic under
D0 and D1 in terms of the correlations Cl.

Proposition 3 Let W and R be the LLR statistics when w is chosen from D1 and
D0, respectively. Then, the means E[W] and E[R] are estimated as

E [W] ≈ −1

2

N∑
`=1

C2
` , E [R] ≈ 1

2

N∑
`=1

C2
` .
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Proof Assuming that w is chosen from D1, the average value of each w` is 1/2.

E [W] = E
[
ln

(
q0
q1

)]
= N ln(2) +

N∑
`=1

ln(1− π`) +

N∑
`=1

2−1 ln

(
π`

1− π`

)

= N ln(2) +

N∑
`=1

ln(1− π`) +

N∑
`=1

2−1 ln(π`)−
N∑
`=1

2−1 ln(1− π`)

= N ln(2) +

N∑
`=1

2−1 ln(π`(1− π`)).

Let C` = 2π` − 1, and π`(1− π`) = 1+C`
2 × 1−C`

2 =
1−C2

`
4 . Therefore,

E [W] = N ln(2) +

N∑
`=1

2−1 ln

(
1− C2

`

4

)

= N ln(2) +

N∑
`=1

2−1 ln(1− C2
` )−

N∑
`=1

ln(2)

=
1

2

N∑
`=1

ln(1− C2
` ).

Using the Taylor series of ln(1− C2
` ) we can approximate this expression with −C2

`
when C2

` is close to 0. Therefore

E [W] ≈ −1

2

N∑
`=1

C2
` .

Next, assuming that w` is chosen from D0, the average value of w` is 1/2+C`/2.
Therefore

E [R] = −1

2

N∑
`=1

C2
` +

N∑
`=1

C`
2

ln

(
π`

1− π`

)
.

Since π`/(1− π`) = 1+C`
1−C`

, we can rewrite the second term as

N∑
`=1

C`
2

ln

(
π`

1− π`

)
=

N∑
`=1

C`
2

ln

(
1 + C`
1− C`

)

=

N∑
`=1

C`
2

(ln(1 + C`)− ln(1− C`)) ≈
N∑
`=1

C2
` ,

where we have used again a Taylor approximation of ln(1 + z) for the last step. We
conclude that

E [R] ≈ 1

2

N∑
`=1

C2
` .

�

Proposition 4 Let W and R be the LLR statistics when w is chosen from D1 and
D0, respectively. Then, the variances Var[W] and Var[R] are estimated as

Var [W] ≈ Var [R] ≈
N∑
`=1

C2
` .
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Proof In order to compute the variance of ln
(
q0
q1

)
, for simplicity we treat the term

π` as a constant. We have experimentally verified that this is reasonable. With this
in mind, we can write

Var

[
ln

(
q0
q1

)]
≈ Var

[
N∑
`=1

w` ln

(
π`

1− π`

)]
.

Assuming that w is chosen from D1, we know that the variance of w` is 1/4. As
before, since π`/(1− π`) = 1+C`

1−C`
, we obtain

N∑
`=1

1

4

[
ln

(
1 + C`
1− C`

)]2

=

N∑
`=1

1

4
(ln(1 + C`)− ln(1− C`))2

and using Taylor approximation:

Var [W] ≈
N∑
`=1

1

4
(ln(1 + C`)− ln(1− C`))2 ≈

N∑
`=1

C2
`

Similarly, assuming that w is chosen from D0, the variance of w` is 1/4− C2
` /4.

Therefore, we want to compute

Var [R] ≈
N∑
`=1

1

4

(
1− C2

`

)[
ln

(
1 + C`
1− C`

)]2

which is approximated with Taylor to

N∑
`=1

1

4

(
1− C2

`

)[
ln

(
1 + C`
1− C`

)]2

≈
N∑
`=1

C2
` − C

4
` .

Therefore, the variance in both cases is approximately

N∑
`=1

C2
` .

�

7.1 Distinguishing Between the Distributions

Our experiments indicate that the LLR statistic is normally distributed both
in the random and in the real case. While this could potentially be treated
theoretically, using e.g. some variant of the central limit theorem, we prefer to
back this up by experiments in the applications. For now let N (µ0, σ

2
0) and

N (µ1, σ
2
1) be the (assumed) normal distributions for the LLR statistics when

the correct and wrong keys are guessed, respectively. The previous computation
has shown that

µ0 = −µ1 =
1

2

N∑
`=1

C2
` =

N

2
C, σ2

0 = σ2
1 =

N∑
`=1

C2
` = NC,

where by C we denote the average of the squared correlation, i.e. C :=
1
N

∑N
`=1 C

2
` .
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In order to distinguish between the two distributions, we are interested in
the gap between µ0 − µ1 and σ0(= σ1).

µ0 − µ1

σ1
=

NC√
NC

=
√
NC =

√√√√ N∑
`=1

C2
` . (6)

Therefore, the larger
∑N

`=1 C
2
` , the bigger the gap is. This implies that in

order to maximize this gap, no data should be discarded. That is, there should
be no partition with correlation zero. This is different from what happened

in [1], where the same gap can approximately be represented as
∑N

`=1|C`|√
N

=√
Nc2, where c = 1

N

∑N
`=1|C`|. In other words, this gap is proportional to the

squared value of the average of the (absolute value of the) correlation (c), while
for the LLR statistic the same gap is proportional to the average of squared
correlations (C). We remark that the latter is always larger than the former,
as expected when using the LLR.

8 WHT-based Key Recovery Technique

We use the LLR statistic to recover the secret key. Recall that the LLR statistic
is calculated as

LLR =
1

2

N∑
`=1

ln
(
1− C2

`

)
+

1

2

N∑
`=1

ln

(
1− C`
1 + C`

)
(−1)

w` ,

where w` = 〈y, γ(yP)〉 ⊕ 〈ỹ, γ(ỹP)〉 and (y, ỹ) is the `th pair in N pairs. Only
ciphertext pair (c, c̃) can be observed by attackers. Which partition the pair
belongs to is determined by yP and ỹP . Therefore, the key denoted by kP is
guessed to identify the partition and yP = cP ⊕ kP . After guessing kP , we can
get the following 1-bit representation:

w` = 〈y, γ(yP)〉 ⊕ 〈ỹ, γ(ỹP)〉
= 〈c, γ(yP)〉 ⊕ 〈c̃, γ(ỹP)〉 ⊕ 〈k, γ(yP) ⊕ γ(ỹP)〉.

We need not only kP but also 〈k, γ(yP)⊕γ(ỹP)〉 to compute w`. Let kR denote
involved key bits, and the size is dimW , where a linear subspace W is defined
by W := Span{γ(pi) ⊕ γ(pj) | i, j ∈ {1, . . . , s}}. The trivial procedure would
require guessing kP and kR for every pair, for a time complexity of 2N ×
2nP+dimW , where nP is the bit length of kP .

In this section, we introduce a more advanced procedure, where the Fast
Walsh-Hadamard Transform (FWHT) is applied instead of guessing kR for
every pair. As a result, the time complexity is reduced to 2nP (2N + dimW ·
2dimW ).
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8.1 Using the FWHT for Key Recovery

The first step in the key recovery procedure is guessing kP to identify parti-
tions. Once we have guessed these key bits, the first term of the LLR statistic,
i.e., α := 1

2

∑N
`=1 ln

(
1− C2

`

)
, is constant and independent of w`. Thus, in order

to determine the LLR, we compute LLR′ = LLR− α as

LLR′ =
1

2

N∑
`=1

ln

(
1− C`
1 + C`

)
(−1)

w`

=
1

2

N∑
`=1

ln

(
1− C`
1 + C`

)
(−1)

〈c,γ(yP )〉⊕〈c̃,γ(ỹP )〉 × (−1)〈k,γ
(yP )⊕γ(ỹP )〉.

Then, by using an array β, whose element β(γ) is defined as

β(γ) :=
1

2

N∑
`=1:γ=γ(yP )⊕γ(ỹP )

ln

(
1− C`
1 + C`

)
(−1)

〈c,γ(yP )〉⊕〈c̃,γ(ỹP )〉
,

LLR′ is computed as

LLR′ =
∑
γ∈W

β(γ)× (−1)〈k,γ〉.

Given a real-valued function f : Fn2 → R, the Walsh-Hadamard transform
evaluates the function

f̂ : Fn2 → R, x 7→
∑
y∈Fn

2

f(y)× (−1)〈x,y〉.

A naive computation needs O(22n) steps (additions and evaluations of f), i.e.,
for each x ∈ Fn2 , we compute (−1)〈x,y〉f(y) for each y ∈ Fn2 . The Fast Walsh-
Hadamard transform is a well-known recursive divide-and-conquer algorithm
that evaluates the Walsh-Hadamard transform in O(n2n) steps. We refer to
e.g., [38, Section 2.3] for the details.

Algorithm 2 shows the attack procedure using the FWHT. We first col-
lect N ciphertext pairs, and therefore, it needs 2N queries to E as the data
complexity. We next guess kP and prepare a real number α and the array of
real numbers β to compute the LLR statistic. For every stored ciphertext pair,
we identify partitions, get corresponding correlation ρi,j and linear mask γ,
and update α and β accordingly. We finally apply the FWHT to β and the
LLR statistics are computed as α + β̂(kL). The overall running time can be
estimated as 2nP (2N + dimW · 2dimW ).

8.2 Success Probability of Algorithm 2

In the following, we assume that the distributions involved can be well esti-
mated by normal approximations. This significantly simplifies the analysis.
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Algorithm 2 Key-recovery

Require: Cipher E, sample size N , threshold Θ.
Ensure: List of key candidates (kP , kL) for nP + dimW bit of information

on k.
1: for ` ∈ {1, . . . , N} do

2: x
$← U ⊕ a

3: (c(`), c̃(`))← (E(x), E(x⊕∆in))
4: end for
5: for k′P ∈ P do
6: α← 0
7: for γ ∈W do
8: β(γ)← 0
9: end for

10: for ` ∈ {1, . . . , N} do
11: (c, c̃)← (c(`), c̃(`))
12: Compute yP = cP ⊕ k′P and ỹP = c̃P ⊕ k′P to identify partitions.
13: Identify Ti ×Tj for (yP , ỹP) and get corresponding correlation ρi,j .
14: γ ← γ(yP) ⊕ γ(ỹP)

15: α← α+ 1
2 ln(1− ρ2

i,j)

16: β(γ)← β(γ) + 1
2 ln

(
1−ρi,j
1+ρi,j

)
(−1)〈c,γ

(yP )〉⊕〈c̃,γ(ỹP )〉

17: end for
18: Compute β̂ by using the Fast Walsh-Hadamard Transform.
19: C(k′P , k′R)← α+ β̂(k′R)
20: if C(k′P , k′R) > Θ then
21: Save (k′P , k

′
R) as a key candidate.

22: end if
23: end for

Note that we opted for a rather simple statistical model ignoring, in particular,
the effect of the wrong key distribution by assuming the simple randomiza-
tion hypothesis and ignoring the way we sample our plaintexts (i.e. known vs.
chosen vs. distinct plaintext). Those effects might have major impact on the
performance of attacks when the data complexity is close to the full code-book
and the success probability and the gain are limited. However, none of this is
the case for our parameters. In our concrete applications, we have verified the
behavior experimentally wherever possible.

For the statistical model for the right key, this implies that the counter can
be expected to approximately follow a normal distribution with parameters

C(kP , kL) ∼ N
(
N

2
C,NC

)
,

where C = 1
N

∑N
`=1 C

2
` . The wrong key counters (under the simple random-

ization hypothesis) are approximately normally distributed with parameters

C(k′P , k′L) ∼ N
(
−N

2
C,NC

)
.
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Fig. 7 The round function of Chaskey.

With this, we can deduce the following proposition.

Proposition 5 After running Algorithm 2 for p−1 times, the probability that the
correct key is among the key candidates is

psuccess ≥
1

2
Pr [C(kP , kL) ≥ Θ] =

1

2

(
1− Φ

(
Θ− N

2 C√
NC

))
.

The expected number of wrong keys is 2nP+dimW

p ×
(

1− Φ

(
Θ+ N

2 C√
NC

))
.

9 Application to Chaskey

Chaskey [10] is a lightweight MAC algorithm whose underlying primitive is an
ARX-based permutation in an Even-Mansour construction, i.e., Chaskey-EM.
The permutation operates on four 32-bit words, i.e., the block size is 128 bits.
In the version proposed in [10], the permutation employs 8 rounds of the form
depicted in Fig. 7. In [40], the author proposed a version with an increased
number of rounds (from 8 to 12), and this version is currently standardized in
ISO/IEC 29192-6:2019. The designers claim security up to 280 computations
as long as the data is limited to 248 blocks.

Let (vr0, v
r
1, v

r
2, v

r
3) be the input of the rth round function, and

(wr0, w
r
1, w

r
2, w

r
3) denotes the state after applying the half round for

(vr0, v
r
1, v

r
2, v

r
3). Please refer to Fig. 7 for each index of the branches.

9.1 Overview of Our Attack

We first show the high-level overview of our attack. Similar to the previous
differential-linear attack from [19], we first divide the cipher into three sub
ciphers. For the 7-round attack, we use E1 covering 1.5 rounds, Em covering
4 rounds, and E2 covering 0.5 rounds, and the key-recovery, i.e., the function
F , is covering 1 round. We also present a 7.5-round attack, where E2 covers 1
round instead of 0.5 rounds.

The differential characteristic and the linear trail are applied to E1 and E2,
respectively, while the experimental differential-linear distinguisher is applied
to the middle part Em. Note that, since the differential-linear distinguisher over
Em is constructed experimentally, its absolute correlation must be high enough
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Table 2 Probability that adding one basis element affects the output difference.

Probability Basis
Number
of indices

γj = 1
v2 : 16,17,18,19,20,22,23,24,25,30,31

18
v3 : 16,17,18,19,20,22,23

0.93 ≤ γj < 1
v0 : 19,20,31 v3 : 24,25,30

8
v1 : 19,20

γj = 1

v0[8]⊕ v1[8, 13]⊕ v2[29]

4
v2[21, 29]⊕ v3[21]
v0[18, 21, 30]⊕ v1[21, 26, 30]⊕ v2[3, 26]⊕ v3[26, 27]
v2[15]⊕ v3[15]

to be detectable by using a relatively small sampling space. Moreover, since
it is practically infeasible to check all input differences and all output linear
masks, we restricted ourselves to the case of an input difference of Hamming
weight 1 and linear masks of the form [i] or [i, i+ 1], i.e., 1-bit or consecutive
2-bit linear masks. As a result, when there is a non-zero difference only in the
31st bit (msb) of w1

0, i.e., ∆m = (([]), ([]), ([31]), ([])), we observed the following
two differential-linear distinguishers with correlations 2−5.1:

AutEm
(∆m, ([], [], [20], []), ([], [], [20], [])) ≈ 2−5.1, (7)

AutEm
(∆m, ([], [], [20, 19], []), ([], [], [20, 19], [])) ≈ 2−5.1. (8)

These correlations4 are estimated using a set consisting of 226 random sam-
ples of w1. This is significant enough since the standard deviation assuming a
normal distribution is 213. Note that we do not focus on the theoretical jus-
tification of this 4-round experimental differential-linear distinguisher in this
paper and we start the analysis for E1 and E2 from the following subsection.

9.2 Using Conditional Differentials

Before we discuss the improved basis we have found using the conditional dif-
ferential technique, we first recall the basis of U introduced in [1] (see the first
two-row blocks in Table 2). Here, the threshold of the probability is relaxed
from 0.95 to 0.93, and v3[30] (in red) is newly added in the basis. The con-
ditional differential techniques provide us with four other basis elements with
probability 1, which cannot be found by Algorithm 1 [1] (see the third-row
block in Table 2). A linear subspace U , formed by elements that don’t affect
the output with probability 1, and whose dimension is 18 + 4 = 22 is finally
used to attack 7-round Chaskey. In addition, all, i.e., 18 + 8 + 4 = 30, basis
elements are used to attack 7.5-round Chaskey.

4The first case is exactly the one shown in [19], but its correlation was reported as 2−6.1. We

are not sure about the reason for this gap, but we think that 2−6.1 refers to the bias instead of
the correlation.



Springer Nature 2021 LATEX template

Improved Differential-Linear Attacks with Applications to ARX Ciphers 33

In Appendix C, we provide the details on how to obtain these relations. We
use the conditional differential framework and Fig. 18 in order to recover for
free the value of some keybits and also to find additional bits of information
for sampling and increase the dimension of U from 18 as given in [1] (and
involving exclusively one-bit relations) to 22, or 23 if one-bit relation on the
key is known. The new proposed set of freebits (or relations with probability
1) is optimal and no more such relations exist.

9.2.1 Keybits That Are Obtained for Free

If we find a set of inputs that verifies the differential path, we can directly
deduce the following linear relations on the keybits, due to the conditions
where differences are absorbed during the first modular additions (or the other
way round, for each guess of these values, build sets of inputs that verify
the 6 related conditions): k1[8] ⊕ k0[8], k1[21] ⊕ k0[21], k1[30] ⊕ k0[30] and
k2[26]⊕ k3[26], k2[21]⊕ k3[21], k2[26]⊕ k3[27]. Note that these techniques can
be used after mounting concrete attacks shown in Sects. 9.3 and 9.4. Thus,
this does not contribute to accelerating our key-recovery attacks.

9.2.2 Additional Space for Sampling

Compared with the linear subspace U shown in [1], the dimension of U increases
by 4 by adding vectors listed in the third-row block in Table 2 to the basis.
In order to find these relations, we have used the rules presented in Sect. 5.3,
and some more detailed explanations can be found in Appendix C for the
interested reader using Fig. 18. We summarize this in the following lemma:

Lemma 6 There is a set X ′ ⊆ F128
2 of size 2128−17 and a 22-dimensional linear

subspace U , such that for any element x ∈ X ′ and any u ∈ U it holds that E1(x ⊕
u)⊕ E1(x⊕ u⊕∆in) = ∆m, where E1 denotes 1.5 rounds of Chaskey.

Our improved 7-round attack uses this linear subspace.

One additional probability-one relation can be obtained if we flip the bit
v2[27] and at the same time v2[29] = v2[29] ⊕ v2[28] ⊕ v3[28]. The issue with
this one is that it depends on the relation of k2[28]⊕ k3[28] (guessing this bit
of information for instance would allow us to have an extra sampling bit) and
it will not be used in the attack.

In addition to the probability-one relations, we can consider a larger linear
subspace by adding relations with very high probabilities.

Lemma 7 There is a set X ′ ⊆ F128
2 whose size is about 2128−17.28 and a 30-

dimension linear subspace U , such that for any element x ∈ X ′ and any u ∈ U it
holds that E1(x⊕u)⊕E1(x⊕u⊕∆in) = ∆m where E1 denotes 1.5 rounds of Chaskey.
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Fig. 8 Four 0.5-round linear trails for the 7-round attack.

We can build a 30-dimensional linear subspace such that all its elements
verify simultaneously the differential with probability 2−17.28. For this, we con-
sider the 22-dimensional linear subspace of Lemma 6 and add to its basis the
7 vectors from [1] and v3[30]. Our 7.5-round attack uses this linear subspace.

9.3 The 7-Round Attack

9.3.1 List of Differential-Linear Distinguishers

As shown in Equations (7) and (8), we have two differential-linear distinguish-
ers with correlations 2−5.1, where two output linear masks, ([], [], [20], []) and
([], [], [20, 19], []) , are available. By extending ([], [], [20], []) and ([], [], [20, 19], [])
by 0.5 rounds, respectively, we can get four linear masks (see Fig. 8). When
both texts in pairs use either of ψ(0) or ψ(1), the correlation is ±2−6.42. More-
over, when both texts in pairs use either of ψ(2) or ψ(3), the correlation is
±2−6.42.

We have other linear masks whose absolute correlation is relatively high
but lower than 2−6.43. Table 3 summarizes 12 output masks. For any (i, j) ∈
{0, 1} × {0, 1} and (i, j) ∈ {2, 3} × {2, 3}, the correlations of the differential-
linear distinguishers are estimated by the combination of two output masks as
follows:

Aut(β
(i)
0 , β

(j)
0 ) = δ

(i)
0 · δ

(j)
0 · 2−6.42, Aut(β

(i)
0 , β

(j)
1 ) = δ

(i)
0 · δ

(j)
1 · 2−7.70,

Aut(β
(i)
0 , β

(j)
2 ) = δ

(i)
0 · δ

(j)
2 · 2−8.76, Aut(β

(i)
1 , β

(j)
1 ) = δ

(i)
1 · δ

(j)
1 · 2−8.95,

Aut(β
(i)
1 , β

(j)
2 ) = δ

(i)
1 · δ

(j)
2 · 2−10.01, Aut(β

(i)
2 , β

(j)
2 ) = δ

(i)
2 · δ

(j)
2 · 2−11.06,

where Aut(β(i), β(j)) = AutE2◦Em(∆m, β
(i), β(j)) and δ

(i)
h ∈ {1,−1} is defined

by the δ column in Table 3. Each correlation is estimated by using 235 pairs.
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Table 3 List of output linear masks after 6 rounds.

Type Linear mask δδδ

β
(0)
0 = ([27], [], [11, 4, 3], []) 1

ψ(0)ψ(0)ψ(0) β
(0)
1 = ([27], [], [11, 4, 2], []) 1

β
(0)
2 = ([27], [], [11, 4, 1], []) 1

β
(1)
0 = ([27, 26], [], [11, 10, 4], []) -1

ψ(1)ψ(1)ψ(1) β
(1)
1 = ([27, 26], [], [11, 10, 4, 3, 2], []) 1

β
(1)
2 = ([27, 26], [], [11, 10, 4, 3, 1], []) 1

β
(2)
0 = ([27, 26], [], [11, 10, 4, 3], []) 1

ψ(2)ψ(2)ψ(2) β
(2)
1 = ([27, 26], [], [11, 10, 4, 2], []) 1

β
(2)
2 = ([27, 26], [], [11, 10, 4, 1], []) 1

β
(3)
0 = ([27], [], [11, 4], []) 1

ψ(3)ψ(3)ψ(3) β
(3)
1 = ([27], [], [11, 4, 3, 2], []) -1

β
(3)
2 = ([27], [], [11, 4, 3, 1], []) -1

Table 4 List of partition points for the attack against 7-round Chaskey.

Choice: (w6
0 [16], w6

0 [16, 15])
ζ1ζ1ζ1 P1 3 pi ∼= (sR[15], sR[14])

Linear: v3[16], v0[16], v0[15], v0[14], v0[13]

Choice: (v62 [11], v62 [11, 10])
ζ2ζ2ζ2 P2 3 pi ∼= (v3[18]⊕ v2[9, 17], sL[10], sL[9], sL[18], sL[17])

Linear: v3[19], v1[11], v2[11], v2[10], v2[9], v2[8], v1[19], v2[19], v2[18], v2[17], v2[16]

Choice: (v62 [4], v62 [4, 3])
ζ3ζ3ζ3 P3 3 pi ∼= (v3[11]⊕ v2[2, 10], sL[3], sL[2], sL[11], sL[10])

Linear: v3[12], v1[4], v2[4], v2[3], v2[2], v2[1], v1[12], v2[12], v2[11], v2[10], v2[9]

Considering that the lowest correlation is 2−11.06, an estimation with 235 pairs
is reliable enough. These differential-linear distinguishers are finally used to
estimate the theoretical correlation by considering the auto-correlation-linear
hull.

9.3.2 Theoretical Correlations with Auto-Correlation-Linear
Hull

To understand how to estimate the theoretical correlation, we provide an exam-
ple. We observe a pair of ciphertexts (c, c̃) and guess key bits to identify the
partition.

Table 4 summarizes the partition points for the 7-round attack. To identify
the partition, we need to know

sR[15], sR[14], v3[18]⊕ v2[9, 17], sL[10], sL[9], sL[18], sL[17],
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v3[11]⊕ v2[2, 10], sL[3], sL[2], sL[11], (sL[10]),

and 11-bit key guessing is enough, where sL = k1⊕k2 and sR = k0⊕k3. After
we guess the 11-bit key, we assume that ζ1 3 pi ∼= (0, 0), ζ2 3 pi ∼= (0, 0, 0, 1, 0),
and ζ3 3 pi ∼= (0, 0, 0, 1, 0) for c. We now consider the case that the linear trail

ψ(3) is used for both texts in a pair. When β
(3)
0 is used, available linear masks

and corresponding correlation are computed as follows:

• To compute w6
0[16], γ = 11100 is used with correlation −1.

• To compute v6
2 [11], γ = 11111011010 is used with correlation −1.

• To compute v6
2 [4], γ = 11111011010 is used with correlation −1.

Note that the partition shown in Fig. 16 is directly available to evaluate
v6

2 [11]. For other bits, e.g., v6
2 [4], corresponding correlations must be reevalu-

ated because the 11th bit and 4th bit provide slightly different correlations.
Assuming all partition points are independent, the correlation is

F̂−1|Tpi (γpi , β
(3)
0 ) = −1×−1×−1 = −1

due to the piling-up lemma [15].
We also assume that ζ1 3 pi ∼= (0, 0), ζ2 3 pi ∼= (0, 0, 1, 0, 0), and ζ3 3 pi ∼=

(0, 0, 0, 1, 0) for c̃. When β
(3)
0 is used, available linear masks and corresponding

correlation are computed as follows:

• To compute w̃6
0[16], γ = 11100 is used with correlation −1.

• To compute ṽ6
2 [11], γ = 11111011100 is used with correlation 2−0.263.

• To compute ṽ6
2 [4], γ = 11111011100 is used with correlation −1.

Again, assuming all partition points are independent, the correlation is

F̂−1|Tpj (γpj , β
(3)
0 ) = −1× 2−0.263 ×−1 = 2−0.263.

Thus, when β
(3)
0 and β

(3)
0 are used for c and c̃, respectively, the correlation

(with one trail) is estimated as

F̂−1|Tpi (γpi , β
(3)
0 )× F̂−1|Tpj (γpj , β

(3)
0 )×AutE2◦Em(∆m, β

(3)
0 , β

(3)
0 )

= −1× 2−0.263 × (δ
(3)
0 × δ(3)

0 × 2−6.42) = −2−6.683.

We now take the auto-correlation-linear hull into account. Instead of β
(3)
0

for c, we use β
(3)
1 and compute the correlation when the same linear mask γ

is used.

• To compute v6
2 [4, 3, 2], γ = 11111011010 is used with correlation 2−0.677.

Therefore,

F̂−1|Tpi (γpi , β
(3)
1 ) = −1×−1× 2−0.677 = 2−0.677.

Therefore, when ψ
(3)
1 and ψ

(3)
0 are used for c and c̃, respectively, the correlation

(with one trail) is estimated as

F̂−1|Tpi (γpi , β
(3)
1 )× F̂−1|Tpj (γpj , β

(3)
0 )×AutE2◦Em

(∆m, β
(3)
1 , β

(3)
0 )
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Fig. 9 Comparison with LLR statistics to attack 7-Round Chaskey.

2−0.677 × 2−0.263 × (δ
(3)
1 × δ(3)

0 × 2−7.70) = −2−8.64.

We estimate 3× 3 = 9 correlations and sum up these correlations (considering

the sign). As a result, when ψ
(3)
1 and ψ

(3)
0 are used, the absolute correlation

increases to 2−5.90893. We similarly estimate correlations when different linear

trails are used, but in fact, using ψ
(3)
1 and ψ

(3)
0 causes the highest absolute

correlation on this partition. Remark that once the indicator is given, the best
linear mask and corresponding correlation are computed. The complexity is
about 22kP , which is negligible in comparison to the time complexity of the
whole attack.

9.3.3 Experimental Reports

The absolute correlation of each partition is high enough so that we experi-
mentally verify our attack procedure. In our experiments, we used the right
pair and the correct key to observe the LLR statistic for the correct case. On
the other hand, the right pair is not used for the wrong case.

The LLR statistic depends on the sum of the squared correlation NC =∑N
`=1 c

2
` . We estimated C ≈ 2−14.711, and NC ≈ 39.1 when N = 220 pairs

are used. The following shows the comparison of the LLR statistics, where the
theoretical distribution is drawn by the normal distribution with mean NC/2
(for a correct case) and −NC/2 (for wrong case) and the standard deviation√
NC. By repeating our attack procedure 1024 times, two experimental his-

tograms are drawn (see Fig. 9). A slight gap is observed between the theoretical
distribution and experimental histogram in the correct case. Note that the
experimental one is more biased than the theoretical estimation. We expect
that the reason comes from the additional auto-correlation-linear hull that we
do not take into account.

We finally estimate the data and time complexities. To identify the parti-
tion, we need to guess the 11-bit secret key. We also enumerated elements of
the linear subspace W and computed the basis by using Gaussian elimination.
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Table 5 List of output linear masks after 6.5 rounds.

Type Linear mask δδδ

β
(0)
0 = ([16, 15], [31, 0], [19, 12, 11, 4, 3], [19, 12]) 1

ψ(0)ψ(0)ψ(0) β
(0)
1 = ([16, 15], [31, 0], [19, 12, 11, 4, 2], [19, 12]) 1

β
(0)
2 = ([16, 15], [31, 0], [19, 12, 11, 4, 1], [19, 12]) 1

β
(1)
0 = ([16, 15], [31, 0], [19, 12, 4], [19, 12, 11]) -1

ψ(1)ψ(1)ψ(1) β
(1)
1 = ([16, 15], [31, 0], [19, 12, 4, 3, 2], [19, 12, 11]) 1

β
(1)
2 = ([16, 15], [31, 0], [19, 12, 4, 3, 1], [19, 12, 11]) 1

β
(2)
0 = ([16], [0], [19, 18, 12, 4, 3], [19, 18, 12, 11]) 1

ψ(2)ψ(2)ψ(2) β
(2)
1 = ([16], [0], [19, 18, 12, 4, 2], [19, 18, 12, 11]) 1

β
(2)
2 = ([16], [0], [19, 18, 12, 4, 1], [19, 18, 12, 11]) 1

β
(3)
0 = ([16], [0], [19, 18, 12, 11, 4], [19, 18, 12]) 1

ψ(3)ψ(3)ψ(3) β
(3)
1 = ([16], [0], [19, 18, 12, 11, 4, 3, 2], [19, 18, 12]) -1

β
(3)
2 = ([16], [0], [19, 18, 12, 11, 4, 3, 1], [19, 18, 12]) -1

β
(4)
0 = ([16, 15], [31, 0], [19, 12, 11, 4], [19, 12]) 1

ψ(4)ψ(4)ψ(4) β
(4)
1 = ([16, 15], [31, 0], [19, 12, 11, 4, 3, 2], [19, 12]) -1

β
(4)
2 = ([16, 15], [31, 0], [19, 12, 11, 4, 3, 1], [19, 12]) -1

β
(5)
0 = ([16, 15], [31, 0], [19, 12, 4, 3], [19, 12, 11]) 1

ψ(5)ψ(5)ψ(5) β
(5)
1 = ([16, 15], [31, 0], [19, 12, 4, 2], [19, 12, 11]) 1

β
(5)
2 = ([16, 15], [31, 0], [19, 12, 4, 1], [19, 12, 11]) 1

β
(6)
0 = ([16], [0], [19, 18, 12, 11, 4, 3], [19, 18, 12]) -1

ψ(6)ψ(6)ψ(6) β
(6)
1 = ([16], [0], [19, 18, 12, 11, 4, 2], [19, 18, 12]) -1

β
(6)
2 = ([16], [0], [19, 18, 12, 11, 4, 1], [19, 18, 12]) -1

β
(7)
0 = ([16], [0], [19, 18, 12, 4], [19, 18, 12, 11]) 1

ψ(7)ψ(7)ψ(7) β
(7)
1 = ([16], [0], [19, 18, 12, 4, 3, 2], [19, 18, 12, 11]) -1

β
(7)
2 = ([16], [0], [19, 18, 12, 4, 3, 1], [19, 18, 12, 11]) -1

As a result, the dimension of W is 10. Because of Lemma 6, 217 iterations are
required to find the right pair. Thus, we need to remove 211+10+17 = 238 wrong
cases. When 221 pairs are used, we have NC ≈ 78.2. With a success probabil-
ity of 90%, we can construct a 45.5-bit filter, which is enough to remove 238

wrong cases. We finally estimate the time complexity by using the formula as
follows:

T = p−1 × 2nP ×
(
2N + dimW2dimW

)
= 217 × 211 ×

(
2× 221 + 10× 210

)
≈ 250.00.
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9.4 The 7.5-Round Attack

We further extend four 0.5-round linear trails to eight 1-round linear trails.
For every linear trail, we have two different trails whose absolute correla-
tion is slightly lower. Table 5 shows 24 such output masks. For any (i, j) ∈
{0, 1, 2, 3} × {0, 1, 2, 3} and (i, j) ∈ {4, 5, 6, 7} × {4, 5, 6, 7}, the correlations of
the differential-linear distinguishers are estimated by the combination of two
output masks as follows:

Aut(β
(i)
0 , β

(j)
0 ) = δ

(i)
0 · δ

(j)
0 · 2−9.72, Aut(β

(i)
0 , β

(j)
1 ) = δ

(i)
0 · δ

(j)
1 · 2−10.99,

Aut(β
(i)
0 , β

(j)
2 ) = δ

(i)
0 · δ

(j)
2 · 2−12.04, Aut(β

(i)
1 , β

(j)
1 ) = δ

(i)
1 · δ

(j)
1 · 2−12.26,

Aut(β
(i)
1 , β

(j)
2 ) = δ

(i)
1 · δ

(j)
2 · 2−13.32, Aut(β

(i)
2 , β

(j)
2 ) = δ

(i)
2 · δ

(j)
2 · 2−14.40,

where Aut(β(i), β(j)) = AutE2◦Em
(∆m, β

(i), β(j)) and δ
(i)
h ∈ {1,−1} is defined

by the δ column in Table 5. These correlations are estimated by using 240

pairs. Considering the lowest absolute correlation is 2−14.6, an estimation with
240 pairs is reliable enough. We use the same method as the attack against
7-round Chaskey to determine a linear mask and estimate the corresponding
correlation.

Table 6 summarizes the partition points for the 7.5-round attack. To
identify the partition, we need to know

sR[22], sR[21], sR[20], sR[19], sR[18], sL[24], sL[23],

v3[28]⊕ v0[27, 14], sL[15], sL[14], sL[28], sL[27],

v1[25]⊕ v2[8, 1], sR[2], sR[1], sR[9], sR[8],

v1[18]⊕ v2[26, 1], sR[27], sR[26], (sR[2]), (sR[1]),

v1[10]⊕ v2[25, 18], (sR[19]), (sR[18]), (sR[26]), sR[25],

sL[30], sL[29], (sL[28]), (sL[27])

and 24-bit key guessing is enough, where sL = k0 ⊕ k1 and sR = k2 ⊕ k3.

9.4.1 Experimental Reports

Each absolute correlation is relatively lower than for a 7-round attack, but it
is still possible to verify our attack procedure experimentally by using about
228 pairs. Like the 7-round attack, we used a right pair and the correct key to
observe the LLR statistic for the correct case, and a right pair is not used for
the wrong case.

We estimated C ≈ 2−24.37, and NC ≈ 12.38 when N = 228 pairs are used.
Figure 10 shows the comparison of the LLR statistics, where the theoretical
distribution is drawn by the normal distribution with mean NC/2 (for a cor-

rect case) and −NC/2 (for wrong case) and the standard deviation
√
NC.

By repeating our attack procedure 256 times, two experimental histograms
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Table 6 List of partition points for the attack against 7.5-round Chaskey.

ζ1ζ1ζ1 P1 3 pi ∼= (sR[22], sR[21], sR[20], sR[19], sR[18])
(v72 [23], v70 [23, 22]) Linear: v3[23], v2[23], v2[22], v2[21], v2[20], v2[19], v2[18], v2[17]

ζ2ζ2ζ2 P2 3 pi ∼= (sL[24], sL[23])
(v70 [25], v70 [25, 24]) Linear: v1[25], v0[25], v0[24], v0[23], v0[22]

ζ3ζ3ζ3 P3 3 pi ∼= (v3[28]⊕ v0[27, 14], sL[15], sL[14], sL[28], sL[27])
(w6

0 [16], v70 [16, 15]) Linear: v3[29], v1[16], v0[16], v0[15], v0[14], v0[13], v1[29], v0[29], v0[28], v0[27], v0[26]

ζ4ζ4ζ4 P4 3 pi ∼= (v1[25]⊕ v2[8, 1], sR[2], sR[1], sR[9], sR[8])
(w6

2 [19], v70 [19, 18]) Linear: v1[26], v3[3], v2[3], v2[2], v2[1], v3[10], v2[10], v2[9], v2[8], v2[7]

ζ5ζ5ζ5 P5 3 pi ∼= (v1[18]⊕ v2[26, 1], sR[27], sR[26], sR[2], sR[1])
(w6

2 [12], v70 [12, 11]) Linear: v1[19], v3[28], v2[28], v2[27], v2[26], v2[25], v3[3], v2[3], v2[2], v2[1])

ζ6ζ6ζ6 P6 3 pi ∼= (v1[10]⊕ v2[25, 18], sR[19], sR[18], sR[26], sR[25])
(w6

2 [4], v70 [4, 3]) Linear: v1[11], v3[20], v2[20], v2[19], v2[18], v2[17], v3[27], v2[27], v2[26], v2[25], v2[24]

ζ7ζ7ζ7 P7 3 pi ∼= (sL[30], sL[29], sL[28], sL[27])
(v70 [31]) Linear: v1[31], v0[31], v0[30], v0[29], v0[28], v0[27], v0[26]
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Fig. 10 Comparison with LLR statistics to attack 7.5-Round Chaskey.

are drawn. Similar to the 7-round attack, a slight gap between the theoret-
ical distribution and experimental histogram is observed in the correct case.
We again expect that the reason comes from the other auto-correlation-linear
hull that we do not consider. We estimate the data and time complexities. To
identify the partition, we need to guess the 25-bit secret key. We also enu-
merated elements of the linear subspace W and computed the basis by using
Gaussian elimination. As a result, the dimension of W is 21. To find a right
pair, we need 217.28 iterations because of Lemma 7. Thus, we need to remove
224+21+17.28 = 262.28 wrong cases. Chaskey outputs at most 248 data, the num-
ber of available pairs is at most 248−17.28−1 = 229.72. Then, NC ≈ 40.78. With
a success probability of 90%, we can construct a 22.5-bit filter, which is insuf-
ficient to remove all wrong cases. Considering 217.28 iterations to find a right
pair, the performance to filter wrong keys decreases to 5.22 bits. We finally
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Fig. 11 Comparison with LLR statistics to attack 7.5-Round Chaskey when multiple linear
masks are used every partition.

estimate the time complexity as

T = p−1 · 2nP ·
(
2N + dimW2dimW

)
= 217.28 · 224 ·

(
2 · 230 + 21 · 221

)
≈ 272.28 .

9.4.2 Using Multiple Linear Approximations Every Partition

Only filtering 25.22 wrong keys is not always enough to attack 7.5-round
Chaskey. To recover the unique key under the restriction of 248 data, we use
an extended attack, where multiple linear approximations are used for every
partition. In the 7.5-round attack, there are 2 × 4 × 4 = 32 linear approx-
imations, and we choose only one approximation with the highest absolute
correlation. However, why do we not use the other 31 approximations? The
use of these approximations allows us to reduce the data complexity signifi-
cantly. Of course, this is a little controversial technique because we are unlikely
to assume that each approximation is independent. Fortunately, since our
attack can be verified experimentally, we implemented our attack under this
controversial assumption.

We estimated C ≈ 2−22.86. When N = 228 pairs are used, NC ≈ 35.26,
which increases from 12.38. Figure 11 shows the comparison of the LLR statis-
tics, where the theoretical distribution is drawn by the normal distribution
with mean NC/2 (for a correct case) and −NC/2 (for wrong case) and the

standard deviation
√
NC. By repeating our attack procedure 256 times, two

experimental histograms are drawn. Despite the controversial assumption, our
theoretical estimation can simulate the experimental result nicely. Therefore,
for the application to 7.5-round Chaskey, we conclude that using multiple
linear approximations independently does not have any issue.
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We estimate the data and time complexities. Again, since only 229.72 pairs
are available, NC ≈ 116.16. With a success probability of 90%, we can con-
struct a 69.6-bit filter, enough to remove 262.28 wrong cases. The number of
approximations, 32, is multiplied. We finally estimate the time complexity as

T = p−1 × 2nP ×
(
2N × 32 + dimW2dimW

)
= 217.28 × 224 ×

(
2× 229.72 × 32 + 21× 221

)
≈ 277.00 .

10 Application to ChaCha

The internal state of ChaCha is represented by a 4× 4 matrix whose elements
are 32-bit vectors. In this section, the input state for the rth round function
is represented as 

vr0 vr1 vr2 vr3
vr4 vr5 vr6 vr7
vr8 vr9 vr10 v

r
11

vr12 v
r
13 v

r
14 v

r
15

 .

The QR (an abbreviation for quarterround) function is applied in odd and
even rounds on every column and diagonal, respectively. We also introduce
the notion of a half round, in which the QR function is divided into two sub-
functions depicted in Fig. 12. Let wr be the internal state after applying a half
round on vr. Moreover, we use the term branches for a, b, c and d, as shown in
Fig. 12.

In the initial state of ChaCha, a 128-bit constant is loaded into the first
row, a 128- or 256-bit secret key is loaded into the second and third rows, and a
64-bit counter and 64-bit nonce are loaded into the fourth row. In other words,
the first three rows in v0 are fixed. For r-round ChaCha, the odd and even
round functions are iteratively applied, and the feed-forward values v0

i � v
r
i

is given as the key stream for all i. Note that we can compute vri for i ∈
{0, 1, 2, 3, 12, 13, 14, 15} because corresponding v0

i is known.

10.1 Overview of Our Attack

We use the same attack strategy as for Chaskey. The cipher is divided into the
sub ciphers E1 covering 1 round, Em covering 2.5 rounds, and E2 covering 1.5
rounds to attack 6 rounds, where the key recovery is applied the last single
round (F ). One difference to Chaskey is the domain space that the attacker
can control. In particular, we cannot control branches a, b, and c because fixed
constants and the fixed secret key are loaded into these states. Thus, only
branch d can be varied. It implies that active bit positions for input differences
are limited to branch d, and a difference ∆m with Hamming weight 1 after
E1 will not be available due to the property of the round function. Therefore,
we first need to generate consistent ∆m whose Hamming weight is minimized.
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Fig. 12 The odd and even round functions of ChaCha.

The following shows such differential characteristics over one QR function:

∆in = (([]), ([]), ([]), ([i])) → ∆m = (([i+ 28]), ([i+ 31, i+ 23, i+ 11, i+ 3]),

([i+ 24, i+ 16, i+ 4]), ([i+ 24, i+ 4])) .

The probability that pairs with input difference ∆in satisfy this characteris-
tic is 2−5 on average. We discuss the properties of this differential characteristic
in Sect. 10.2 in more detail.

We next evaluate an experimental differential-linear distinguisher for the
middle part Em. When the Hamming weight of Γm is 1, and the active bit is
in the lsb, it allows the absolute correlation of linear trails for E2 to be lower.
For i = 6, i.e., ∆m = (([2]), ([5, 29, 17, 9]), ([30, 22, 10]), ([30, 10])), we find the
following four differential-linear distinguishers:

AutEm
(∆m,j , αj , αj) = 2−8.3

for j ∈ {0, 1, 2, 3}, where ∆m,j is a difference such that
∆(v1

j , v
1
j+4, v

1
j+8, v

1
j+12) = ∆m (and other branches are constant), and αj is a

linear mask such that the lsb of the branch w3
(j+1) mod 4 is 1 (and the others

are 0). When this experimental distinguisher is combined with the differential
characteristic for E1, it covers 3.5 rounds with a 1-bit output linear mask
Γm. This differential-linear distinguisher is improved by 0.5 rounds from the
previous distinguisher with 1-bit output linear mask (see [20, 22]).

10.2 Differential Part

The QR function is independently applied to each column in the first round.
Therefore, when the output difference of one QR function is restricted by
∆m, the input of the other three QR functions are trivially independent of
the output difference. It implies that we have 96 independent bits, and we
can easily amplify the probability of the differential-linear distinguisher. On
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the other hand, we face a different problem: the probability of the differential
characteristic (∆in,∆m) highly depends on the value of the secret key. For
example, for ∆v0

12[6] = 1, we expect that there is a pair (v0
12, v

0
12⊕0x00000020)

satisfying ∆(v1
0 , v

1
4 , v

1
8 , v

1
12) = ∆m, but it depends on the constant v0

0 and the
key values v0

4 and v0
8 . We cannot find such a pair for 292 out of 1024 randomly

generated keys in our experiments. On the other hand, when we can find it, i.e.,
on 732 out of 1024 keys, the average probability satisfying ∆(v1

0 , v
1
4 , v

1
8 , v

1
12) =

∆m is 2−4.5. This experiment implies the existence of “strong keys” against
our attack5. However, note that we can vary the columns in which we put a
difference, which involves different key values. Since the fraction of “strong
keys” is not so high, i.e., 292/1024, we can assume that there is at least one
column in which no “strong key” is chosen with very high probability.

To determine the factor p, for 1024 randomly generated keys, we evaluated
p−1 randomly chosen nonces and counters, where the branch in which we
induce the difference is also randomly chosen. As a result, we can find a right
pair on 587 keys with p−1 = 25 iterations. Therefore, with p = 2−5, we assume
that we can find a right pair with a probability of 1/2 in this stage of the
attack.

In the following, we explain our attack for the case that v0
12 is active,

∆(v1
0 , v

1
4 , v

1
8 , v

1
12) = ∆m. Note that the analysis for the other three cases follows

the same argument.

10.3 Linear Part for the 6-Round Attack

To attack 6-round ChaCha, we first construct a 5-round differential-linear
distinguisher, where 1.5-round linear trails are appended (i.e. the E2 part) to
the 3.5-round experimental differential-linear distinguisher from the previous
section. We have two 1.5-round linear trails given by

Cor[w3
1[0]⊕ ψ(1)] = 2−1 , Cor[w3

1[0]⊕ ψ(0)] = −2−1 ,

where ψ(1) = ψ ⊕ v5
10[6] and ψ(0) = ψ ⊕ v5

14[6], and

ψ = (v5
5 [19, 7]⊕ v5

10[19, 7]⊕ v5
15[8, 0])⊕ (v5

1 [0]⊕ v5
6 [26]⊕ v5

11[0])

⊕ (v5
13[0])⊕ (v5

3 [0]⊕ v5
9 [12]⊕ v5

14[7]) .

Figure 13 shows the two 1.5-round linear trails. Since their correlations are
±2−1, we have 2 × 2 differential-linear distinguishers on 5 rounds whose cor-
relations are ±2−10.3. Note that the sign of each correlation is deterministic
according to the output linear mask.

10.4 Key Recovery for the 6-Round Attack

Our 6-round attack uses these 5-round differential-linear distinguishers, and
the 1-round key recovery is shown in Fig. 14. Let ~c = (c0, . . . , c15) be the

5The theoretical justification is discussed in [27] after the proposal of our original paper [1].
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Fig. 13 Two linear trails for 1.5-round ChaCha.

corresponding output, and let ~v = (v0, . . . , v15) be the sixteen 32-bit values
before the secret key is added. Note that the secret key is only added with half
of the state and public values are added with the other state. Therefore, we
simply regard vi = ci for i ∈ {0, 15, 1, 12, 2, 13, 3, 14}.

First, we partially extend two linear masks for the last round to be linearly
computed. Figure 14 summarizes the extended linear masks, where we need to
compute the bits labeled by a red color. Moreover, for simplicity, we introduce
t0, t10, t11, and t3 as depicted in Fig. 14.
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Fig. 14 Key recovery for 6-round ChaCha.

Each bit in ~v to which the secret key is not added can be computed for free.
For the other bits, we need to guess some key bits first. We first explain the
simple case, i.e., we compute vi[j] from ci. As an example, we focus on v7[7],
which involves k7 nonlinearly. We apply the partition technique to compute
this bit. By guessing k7[6] and k7[5] (remember that k7[7] cancels out in the
differential-linear approximation), (3/4) data is available with correlation ±1,
and the remaining (1/4) data6 is available with correlation −2−1. Since vi[0]
is linearly computed by ci[0], there are 13 simple partition points in which we
need to guess key bits. In total, we need to guess a 26-bit key.

Computing bits in ~v5 and ~t is a bit more complicated than the simple case
above. For example, let us consider v5

9 [12], and this bit can be computed as

v5
9 [12] = (c9 � k9 � c14 � (c3 ⊕ (v14 ≫ 8)))[12]

= ((c9 � c14 � (c3 ⊕ (v14 ≫ 8)))� k9)[12].

Since we can compute (c9�c14�(c3⊕(v14 ≫ 8))) for free, this case is equivalent
to the simple case. We also use this equivalent transformation for t10, t11, and
v10[19]. In total, we have 6 such partition points, and some partition points
can share the same key, e.g., 2-bit key k10[18] and k10[17] is already guessed to
compute v10[19]. Guessing 4 bits of additional key is enough to compute each

6This correlation is estimated originally when the key k7 changes randomly, but k7 is a fixed
constant. These correlations are much higher or lower according to the fixed key, but on key
average, which is the natural attack assumption for symmetric-key ciphers, the average correlation
is −2−1.
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bit. Since we have two linear masks ψ(0) and ψ(1), we dynamically change an
applied linear mask according to the data such that correlations to compute
v5

10[7]/v5
10[7, 6] become ±1.

We cannot use the equivalent transformation to compute bits in t0 and t3.
Then, we further extend this linear mask with correlation 2−1. For example,
we have the following approximations

t0[8] ≈ v0[8, 7]⊕ v5[15]⊕ v10[8]⊕ 1, t0[8] ≈ v0[8]⊕ v5[15, 14]⊕ v10[8, 7],

for t0[8] with correlation 2−1, and we can use preferable approximations
depending on the data. Namely, we first guess k10[7] and determine which
linear approximations are available. Then, we guess k5[14] and k5[13] and com-
pute v5[15] (resp. v5[15, 14]). In order words, by guessing 3-bit key, 3/4 data
is available with correlation ±2−1 and 1/4 data is available with correlation
±2−2. We also use the same technique for t3[7]/t3[7, 6].

10.4.1 Estimating the Average of the Squared Correlation

Based on the analysis above, we estimate the average of the squared corre-
lation. We suppose each partitioning point is independent when its indicator
uses different bits to calculate the average.

We start evaluating the function involving the 1st diagonal.

• The indicator to compute t0[8] is (c5⊕k5)[14], (c5⊕k5)[13], and (c10⊕k10)[7].
As discussed before, the average of the squared correlation is 3/4× (2−1)2 +
1/4× (2−2)2.

• The indicator to compute v5[26] is the 25th and 24th bits in (c5 ⊕ k5). As
discussed before, the average of the squared correlation is 3/4× (1)2 +1/4×
(2−1)2.

• The indicator to compute v5[7, 6] is the 6th and 5th bits in (c5 ⊕ k5). As
discussed before, the average of the squared correlation is 3/4× (1)2 +1/4×
(2−1)2.

• The indicator to compute v5
10[19] is the 18th and 17th bits in ((c10 � c15 �

(c0 ⊕ (c15 ≫ 8))) ⊕ k10). As discussed before, the average of the squared
correlation is 3/4× (1)2 + 1/4× (2−1)2.

• The indicator to compute v5
10[7] (or v5

10[7, 6]) is the 6th bit in ((c10�c15�(c0⊕
(c15 ≫ 8))) ⊕ k10). Here, we change the applied linear mask according to
the observed ciphertext such that correlations become 1. Thus, the average
of the squared correlation is 1.

• The indicator to compute t10[19] is the 18th and 17th bits in ((c10 � c15)⊕
k10). As discussed before, the average of the squared correlation is 3/4 ×
(1)2 + 1/4× (2−1)2.

• The indicator to compute t10[7] is the 6th and 5th bits in ((c10� c15)⊕k10).
As discussed before, the average of the squared correlation is 3/4 × (1)2 +
1/4× (2−1)2.
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• The indicator to compute v10[31] is the 30th and 29th bits in (c10 ⊕ k10).
As discussed before, the average of the squared correlation is 3/4 × (1)2 +
1/4× (2−1)2.

• The indicator to compute v10[19] is the 18th and 17th bits in (c10 ⊕ k10).
As discussed before, the average of the squared correlation is 3/4 × (1)2 +
1/4× (2−1)2.

In total, we guess 6 key bits in k5 and 7 key bits in k10. The average of the
squared correlation is the product of these nine partitioning points, i.e., about
2−4.396.

We similarly evaluate the function involving the 2nd, 3rd, and 4th
diagonals.

• The indicator to compute v6[19] is the 18th and 17th bits in (c6 ⊕ k6). As
discussed before, the average of the squared correlation is 3/4× (1)2 +1/4×
(2−1)2.

• The indicator to compute v6[13] is the 12th and 11th bits in (c6 ⊕ k6). As
discussed before, the average of the squared correlation is 3/4× (1)2 +1/4×
(2−1)2.

• The indicator to compute v6[7] is the 6th and 5th bits in (c6 ⊕ k6). As
discussed before, the average of the squared correlation is 3/4× (1)2 +1/4×
(2−1)2.

• The indicator to compute t11[26] is the 25th and 24th bits in ((c11 � c12)⊕
k11). As discussed before, the average of the squared correlation is 3/4 ×
(1)2 + 1/4× (2−1)2.

• The indicator to compute v11[12] is the 11th and 10th bits in (c11 ⊕ k11).
As discussed before, the average of the squared correlation is 3/4 × (1)2 +
1/4× (2−1)2.

• The indicator to compute v11[6] is the 5th and 4th bits in (c11 ⊕ k11). As
discussed before, the average of the squared correlation is 3/4× (1)2 +1/4×
(2−1)2.

For the 2nd diagonal, we guess 6 key bits in k6 and 6 key bits in k11. The
average of the squared correlation is about 2−1.797.

• The indicator to compute v7[7] is the 6th and 5th bits in (c7 ⊕ k7). As
discussed before, the average of the squared correlation is 3/4× (1)2 +1/4×
(2−1)2.

For the 3rd diagonal, we guess 2 key bits in k7. The average of the squared
correlation is about 2−0.300.

• The indicator to compute t3[7, 6] or t3[7] is (c4 ⊕ k4)[13], (c4 ⊕ k4)[12], and
(c9 ⊕ k9)[6]. As discussed before, the average of the squared correlation is
3/4× (2−1)2 + 1/4× (2−2)2.

• The indicator to compute v4[19] is the 18th and 17th bits in (c4 ⊕ k4). As
discussed before, the average of the squared correlation is 3/4× (1)2 +1/4×
(2−1)2.
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• The indicator to compute v4[7] is the 6th and 5th bits in (c4 ⊕ k4). As
discussed before, the average of the squared correlation is 3/4× (1)2 +1/4×
(2−1)2.

• The indicator to compute v5
9 [12] is the 11th and 10th bits in ((c9 � c14 �

(c3 ⊕ (c14 ≫ 8))) ⊕ k9). As discussed before, the average of the squared
correlation is 3/4× (1)2 + 1/4× (2−1)2.

• The indicator to compute v9[12] is the 11th and 10th bits in (c9 ⊕ k9). As
discussed before, the average of the squared correlation is 3/4× (1)2 +1/4×
(2−1)2.

For the 4th diagonal, we guess 6 key bits in k4 and 3 key bits in k9. The average
of the squared correlation is about 2−3.498.

Therefore, we guess 36 key bits in total, and the average of the squared
correlation (for the linear part of one of each pair) is 2−9.991. The average of
the squared correlation for the whole approximation is estimated by

C = (2−10.3)2 × (2−9.991)× (2−9.991) ≈ 2−40.582.
Note that, unlike Chaskey, once these key bits are correctly guessed, all linearly
involved bits are either determined or canceled out by XORing another text.
It implies dim(W ) = 0, and we do not need to proceed with the FWHT.

10.4.2 Data and Time Complexities and Success Probability

Based on the LLR statistic, we estimate the data complexity and the
corresponding success probability.

To find a right pair, we repeat Algorithm 2 25 times. If we use a right pair
and guess the correct key, the LLR statistic follows the normal distribution
N (N2 C,NC) when the correct key is guessed. On the other hand, we assume

that it follows N (−N2 C,NC) for either using a wrong pair or wrong guess.
We need to filter (5 + 36)-bit wrong guess by this difference of the normal

distributions. By using Proposition 5, the expected number of wrong keys is
less than 1 when

Θ ≥
√
NC ×

(
Φ−1(1− 2−41)− N

2
C

)
.

When we use N = 247 pairs, Θ ≈ 23.303 and7 psuccess = 0.491. For this success
probability, the data complexity is 21+47+5 = 253. We guess 236 keys for each
texts, the required time complexity is 253+36 = 289.

10.5 Another 6-Round Attack

The aforementioned attack is the straightforward application of our attack
framework, and it could be optimal considering the data complexity. Interest-
ingly, we have another strategy where less time complexity is possible, although
it increases data complexity.8

7Note that it means that the success probability is 0.491× 2 = 0.982 under the condition that
the right pair is successfully obtained during 25 iterations.

8This is the same attack proposed in our original paper [1].
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In the aforementioned attack, we guessed many key bits for each ciphertext.
Now, instead of guessing many key bits, we deduce kP for observed ciphertexts
such that the absolute correlations become 1 (except for t0[8] and t3[7] or
t3[7, 6]). For example, to compute v5[26], we first check (c5[25]‖c5[24]). When
we guess (k5[25]‖k5[24]) as 00, the indicator is 11 and the absolute correlation is
lower than 1. For another guessing, we have representations whose correlation
is ±1. We skip guessing the key as 00 for this ciphertext only to reduce the
time complexity.

We have 21 partitioning points, and 3/4 data is available for each point.
Only for one point, i.e., v5

10[7]/v5
10[7, 6], we do not need to reduce the available

data by changing the applied linear masks dynamically. In summary, the frac-
tion of available partitions is (3/4)20 ≈ 2−8.3. Both texts in each pair must
belong to an available partition, and the fraction of available pairs is 2−16.6.
The final correlation is 2−10.3× (2−2)× (2−2) = 2−14.3, and the average of the
squared correlation is estimated by C = 2−28.6.

To find a right pair, we repeat Algorithm 2 25 times. By using Proposition 5,
the expected number of wrong keys is less than 1 when

Θ ≥
√
N∗C ×

(
Φ−1(1− 2−41)− N∗

2
C

)
,

where N∗ = N × 2−16.6. When we use N = 252 pairs, N∗ = 235.4 and Θ ≈
19.693 and9 psuccess ≈ 0.5. For this success probability, the data complexity is
21+52+5 = 258.

On this attack, we do not need to guess 236 keys for all 258 data. On
each data, we guess available key bits only. Therefore, the time complexity is
estimated as

1/p× (2N + 2N∗ × 2nP ) = 25 × (253 + 236.4 × 236) ≈ 277.4.

10.6 The 7-Round Attack

Unfortunately, 7-round ChaCha is too complicated to apply our technique to
the linear part. On the other hand, thanks to our contribution for the differ-
ential part, we find a new differential-linear distinguisher which is improved
by 0.5 rounds. Therefore, to confirm the effect of our contribution for the dif-
ferential part, we use the known technique, i.e., the probabilistic neutral bits
(PNB) approach, for the key-recovery attack against 7-round ChaCha. The
PNB-based key recovery is a fully experimental approach. We refer to [22] for
the details and simply summarize the technique as follows:

• Let the correlation in the forward direction (a.k.a, differential-linear distin-
guisher) after r rounds be εd.

• Let n be the number of PNBs given by a correlation γ. Namely, even if we
flip one bit in PNBs, we still observe correlation γ.

• Let the correlation in the backward direction, where all PNB bits are fixed
to 0 and non-PNB bits are fixed to the correct ones, be εa.

9Note that it means that the success probability is almost 1 under the condition that the right
pair is successfully obtained during 25 iterations.
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Then, the time complexity of the attack is estimated as 2256−nN + 2256−α,
where the data complexity N is given as

N =

(√
α log(4) + 3

√
1− ε2aε2d

εaεd

)2

,

where α is a parameter that the attacker can choose.
In our case, we use a 4-round differential-linear distinguisher with corre-

lation εd = 2−8.3. Under pairs generated by the technique shown in 10.2, we
experimentally estimated the PNBs. With γ = 0.35, we found 74 PNBs, where
non-zero bits of the following bit-vectors represent PNB:

v4 : 0x00098080

v5 : 0x8CFFE7FC

v6 : 0xF8087FC0

v7 : 0x0000403C

v8 : 0x80000100

v9 : 0xF8198183

v10 : 0x80700007

v11 : 0xF8000000.

Then, the correlation is εa = 2−10.6769. Then, with α = 36, we have N =
243.83 and the time complexity is 2225.86. Again, since we need to repeat this
procedure p−1 times, the data and time complexities are 248.83 and 2230.86,
respectively.10

11 Conclusion and Future Work

We presented new ideas for differential-linear attacks and, particularly, the
best attacks on ChaCha,11 one of the most widely used ciphers in practice, and
Chaskey. We hope that our framework finds more applications. In particular,
we think that it is a promising future work to investigate other ARX designs
for our ideas.

Besides the direct application of our framework to more primitives, our
work raises several more fundamental questions. As explained in the experi-
mental verification, we sometimes observe higher LLR statistics than expected,
making the attacks more efficient than estimated. The gap would come from

10When we estimate εa, we used the average correlation. When we used the median instead
of the average, εa = 2−11.1687. Then, the data and time complexities are 249.7856 and 2231.823,
respectively.

11Some follow-up works [25–27, 41] have been proposed after our original proposal [1]. Our
attack is still the best for 6-round attack in the context of key recovery. Even for 7 rounds, there
have not been follow-up works that essentially improve the complexity yet. On the other hand,
Coutinho and Neto presented more efficient distinguishing attacks in [41], and Miyashita, Ito, and
Miyaji showed the key-recovery attack on 7.25 rounds in [25].
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the difficulty of estimating the accurate correlation of all partitions. Our paper
does not solve how to estimate these correlations accurately and efficiently.

Another important open question is in the 7-round attack on ChaCha. We
applied the partitioning technique to the 6-round attack. Our result outper-
forms PNB techniques, which is an experiment-based key recovery technique.
Unfortunately, using this technique in 7-round ChaCha is too complicated. A
more simple and powerful key recovery procedure exploiting the partitioning
technique would beat the PNB-based key recovery like the 6-round attack.
However, it is still an open question in our paper.
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A Summary of Partitioning

We summarize various partition rules for modular addition. Note that we can
verify the correlation of each case experimentally because they have a very
high absolute correlation.

A.1 Single Modular Addition

k0k1

c0c1

z0z1

y0y1

F

b0b1b0b1b0b1
z0[i]z0[i]z0[i] z0[i, i− 1]z0[i, i− 1]z0[i, i− 1]

γγγ εεε γγγ εεε

00 11100 -1 11110 -1
01 11100 -1 11101 −2−1

10 11010 -1 11000 1
11 11001 −2−1 11000 1

Fig. 15 Partitions for a single modular addition.

Let us start with the most simple case of a single modular addition. To
compute the parity z0[i] and z0[i] ⊕ z0[i − 1] (shortly denoted by z0[i, i − 1])
from c0 and c1 (see Fig. 15), we represent each element of P as two-bit values
b0b1, therefore dividing the whole set into four subsets

Tb0b1 = {(y1, y0) ∈ (Fn2 )2 | b0b1 ∼= s[i− 1]‖s[i− 2]},
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z  2z1 z3

8

c2c1 c3

k2k1 k3

v 1 v 3v 2

b0b1b2b3b4b0b1b2b3b4b0b1b2b3b4
z2[11]z2[11]z2[11] z2[11, 10]z2[11, 10]z2[11, 10]

γγγ εεε γγγ εεε

00000 11110111100 −2−2 11110011100 1
00001 11111011100 −2−1 11110011100 2−1

00010 11111011010 −1 11111111010 −2−2

00011 11111011010 −2−1 11110011010 −2−1

00100 11111011100 2−0.263 11110011100 2−0.263

00101 11111011111 2−1.263 11110011100 2−0.263

00110 11111011010 −2−0.263 11110011010 2−0.263

00111 11111011010 −2−0.263 11110011001 2−1.263

01000 11100011100 1 11100111100 2−2

01001 11100011100 2−1 11101011100 2−1

01010 11101111010 −2−2 11101011010 1
01011 11100011010 −2−1 11101011010 2−1

01100 11100011100 2−0.263 11101011100 −2−0.263

01101 11100011100 2−0.263 11101011111 −2−1.263

01110 11100011010 2−0.263 11101011010 2−0.263

01111 11100011001 2−1.263 11101011010 2−0.263

10000 11111011100 −1 11111111100 −2−2

10001 11111011100 −2−1 11110011100 2−1

10010 11110111010 −2−2 11110011010 1
10011 11111011010 2−1 11110011010 2−1

10100 11111011100 −2−0.263 11110011100 2−0.263

10101 11111011111 −2−1.263 11110011100 2−0.263

10110 11111011010 2−0.263 11110011010 2−0.263

10111 11111011010 2−0.263 11110011001 2−1.263

11000 11101111100 −2−2 11101011100 1
11001 11100011100 2−1 11101011100 2−1

11010 11100011010 1 11100111010 2−2

11011 11100011010 2−1 11101011010 −2−1

11100 11100011100 2−0.263 11101011100 2−0.263

11101 11100011100 2−0.263 11101011111 2−1.263

11110 11100011010 2−0.263 11101011010 −2−0.263

11111 11100011001 2−1.263 11101011010 −2−0.263

Fig. 16 Partition for two consecutive modular additions.

where s = ȳ1 ⊕ y0. Note that these partition can be constructed by guessing
two bits of key information, i.e., (k1⊕k0)[i−1] and (k1⊕k0)[i−2]. Linear masks
used in the previous partitioning technique involves 4 bits, i.e., y1[i], y0[i],
y0[i − 1], and y0[i − 2]. Our new partitioning technique additionally involves
y0[i− 3], and parities z0[i] and z0[i, i− 1] are approximated to

〈γ, y1[i]‖y0[i]‖y0[i− 1]‖y0[i− 2]‖y0[i− 3]〉,

where γ and the corresponding correlations are summarized in Fig. 15.

A.2 More Complicated Case

In a similar way, we can extend the technique for the case of two consecu-
tive modular additions. A concrete example, which is used to attack 7-round
Chaskey, is shown in Fig. 16.

The goal is to compute the parity z2[11] and z2[11, 10] from c1, c2, and c3
(see Fig. 16). We split the ciphertext into 25 partitions (this time indexed by
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k0k1

c0c1

z0z1

y0y1

F

Fig. 17 A simple toy example with a single modular addition.

five-bit values b0b1b2b3b4 representing the generic element of P) in the following
way:

Tb0b1b2b3b4 = {(v1, v2, v3) ∈ (Fn2 )3 | b0b1b2b3b4 ∼=(v3[18]⊕ v2[17]⊕ v2[9])‖
s[10]‖s[9]‖s[18]‖s[17]} ,

where s = v̄1 ⊕ v2. In order for previously discarded partition to be avail-
able, our new partitioning technique additionally involves v2[8] and v2[16], and
parities z2[11] and z2[11, 10] are approximated to

〈γ, v3[19]‖v1[11]‖v2[11]‖v2[10]‖v2[9]‖v2[8]‖v1[19]‖v2[19]‖v2[18]‖v2[17]‖v2[16]〉 ,

where γ is appropriately chosen following Fig. 16. We remark that this new
way of partitoning the ciphertexts allows us to find high-absolute-correlation
masks for all the 32 partitions, up from the 24 used with the original [1].

B Understanding Partition Points

B.1 A Simple Toy Example

We transfer the above terminology to the simple toy example given in Fig. 17
and already discussed earlier in Sect. 2.2. In this example, for a fixed i ≥ 2,
we want to evaluate z0[i] or z0[i]⊕ z0[i− 1] by using the partitioning rules as
expressed in Lemma 2 and Lemma 3. For this, we say that (z0[i], z0[i]⊕z0[i−1])
defines a partition point ζ. This partition point gives rise to a 2-dimensional
subspace P which can be defined by two parity check equations, i.e., P is a
complement space of the space

R = {(x1, x0) ∈ F2m
2 | x0[i− 1]⊕ x̄1[i− 1] = 0 and x0[i− 2]⊕ x̄1[i− 2] = 0} .

For example, P can be chosen as {([], []), ([i−1], []), ([i−2], []), ([i−2, i−1], [])}.
To demonstrate the attack from the previous section, we split F2m

2 into the
direct sum P ⊕ R. By the isomorphism between P and F2

2, we can identify
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the elements p ∈ P by two-bit values p ∼= b0b1, where b0 indicates the parity
of x0[i− 1]⊕ x̄1[i− 1] and b1 indicates the parity of x0[i− 2]⊕ x̄1[i− 2]. We

then consider the following four tuples (Tb0b1 ,Γ(b0b1)
out , γ(b0b1)) and correspond-

ing εb0b1 , whose definition come from the properties presented in Lemma 2 and
Lemma 3:

T00 = R⊕ 00 = S00 Γ
(00)
out = ([], [i])

γ(00) = ([i], [i, i− 1]) ε00 = −1

T01 = R⊕ 01 = S01 Γ
(01)
out = ([], [i])

γ(01) = ([i], [i, i− 1]) ε01 = −1

T10 = R⊕ 10 = S10 Γ
(10)
out = ([], [i])

γ(10) = ([i], [i, i− 2]) ε10 = −1

T11 = R⊕ 11 = S11 Γ
(11)
out = ([], [i])

γ(11) = ([i], [i, i− 3]) ε11 = −2−1 .
and

T00 = R⊕ 00 = S00 Γ
(00)
out = ([], [i, i− 1])

γ(00) = ([i], [i, i− 1, i− 2]) ε00 = −1

T01 = R⊕ 01 = S01 Γ
(01)
out = ([], [i, i− 1])

γ(01) = ([i], [i, i− 1, i− 3]) ε01 = −2−1

T10 = R⊕ 10 = S10 Γ
(10)
out = ([], [i, i− 1])

γ(10) = ([i], [i]) ε10 = 1

T11 = R⊕ 11 = S11 Γ
(11)
out = ([], [i, i− 1])

γ(11) = ([i], [i]) ε11 = 1 .
For example, we give an intuition for the choice of the second tuple

when (y1, y0) ∈ S01. Lemma 2 tells us that 〈([], [i]), (z1, z0)〉 = 〈([i], [i, i −
1]), (y1, y0)〉⊕ 1, i.e., ε01 = Cory∈T01 [〈([], [i]), z〉 ⊕ 〈([i], [i, i− 1]), y〉] = −1. On
the other hand, Lemma 3 tells us that there is no linear representation with

absolute correlation 1. Thus, if available, we should use Γ
(01)
out = ([], [i]) for this

subset.
We further have

W = Span{γ(a) ⊕ γ(b) | a, b ∈ F2
2}

= {([], []), ([], [i− 1]), ([], [i− 2]), ([], [i− 1, i− 2]),

([], [i− 3]), ([], [i− 1, i− 3]), ([], [i− 2, i− 3]), ([], [i− 1, i− 2, i− 3])},

and we could recover the three bits, k0[i − 1], k0[i − 2], and k0[i − 3], by the
last step using the fast Walsh-Hadamard transform.

B.2 Toy Example Using Multiple Partition Points

Let us now look at another example which consists of two branches of the struc-
ture depicted in Fig. 17 in parallel, i.e., (y3, y2, y1, y0) = (F (z3, z2), F (z1, z0))
and ci = yi ⊕ ki. By using a single partition point as done in the above



Springer Nature 2021 LATEX template

56 Improved Differential-Linear Attacks with Applications to ARX Ciphers

example, we can only evaluate the parity of at most two (consecutive) bits of
z = (z3, z2, z1, z0). Instead of just one single partition point, we can also con-
sider multiple partition points. For example, if we want to evaluate the parity
involving three non-consecutive bits of z = (z3, z2, z1, z0), we can use three
partition points, i.e.

ζ1 = (z0[i], z0[i]⊕ z0[i− 1]) ,

ζ2 = (z0[j], z0[j]⊕ z0[j − 1]) ,

ζ3 = (z2[`], z2[`]⊕ z2[`− 1]) ,

where i, j, ` ≥ 3. In a specific attack, the choice of the partition points depends
on the definition of the linear trail. Those partition points give rise to three
subspaces P1, P2, and P3, defined by two parity-check equations each, i.e., Pi
is a complement space of Ri, where

R1 ={(x3, x2, x1, x0) ∈ F4m
2 |x0[i− 1]⊕ x̄1[i− 1] = 0, x0[i− 2]⊕ x̄1[i− 2] = 0}

R2 ={(x3, x2, x1, x0) ∈ F4m
2 |x0[j − 1]⊕x̄1[j − 1] = 0, x0[j − 2]⊕x̄1[j − 2] = 0}

R3 ={(x3, x2, x1, x0) ∈ F4m
2 |x2[`− 1]⊕x̄3[`− 1] = 0, x2[`− 2]⊕x̄3[`− 2] = 0}.

By defining12 P = P1 ⊕ P2 ⊕ P3 and R to be a complement space of P, we
split F4m

2 into the direct sum P ⊕R.
We can identify the elements p ∈ P by nP -bit values p ∼= b0b1 . . . bnP−1.

We can then again define tuples

(Tb0b1...bnP−1 ,Γ
(b0b1...bnP−1)
out , γ(b0b1...bnP−1)) (9)

by using the properties presented in Lemma 2 and Lemma 3. For example, if
nP = 6, we can define

T010101 = {(x3, x2, x1, x0) ∈ F4m
2 |x0[i− 1] 6= x1[i− 1], x0[i− 2] = x1[i− 2],

x0[j − 1] 6= x1[j − 1], x0[j − 2] = x1[j − 2],

x2[`− 1] 6= x3[`− 1], x2[`− 2] = x3[`− 2]} ,

Γ
(010101)
out = ([], [`], [], [i, j]), γ(010101) = ([`], [`, `−1], [i, j], [i, i−1, j, j−1]), and
ε010101 = −1 by using the first case of Lemma 2.

We can also use the three partition points to compute the parity of more
than three bits of z. For example, if nP = 6, by using Lemma 2 and 3, we can
define

T001011 = {(x3, x2, x1, x0) ∈ F4m
2 |x0[i− 1] 6= x1[i− 1], x0[i− 2] 6= x1[i− 2],

x0[j − 1] = x1[j − 1], x0[j − 2] 6= x1[j − 2],

x2[`− 1] = x3[`− 1], x2[`− 2] = x3[`− 2]} ,

12Note that P is not necessarily a direct sum of P1, P2, and P3. In other words, the dimension
of P might be smaller than 6, for instance if i = j, i.e., ζ1 = ζ2.



Springer Nature 2021 LATEX template

Improved Differential-Linear Attacks with Applications to ARX Ciphers 57

and

Γ
(001011)
out = ([], [`, `− 1], [], [i, i− 1, j])

γ(001011) = ([`], [`], [i, j], [i, i− 1, i− 2, j, j − 2]) , ε001011 = 1 ,

which evaluates the parity of five bits of z. Again, several choices for the
definition of the tuples in Equation (9) are possible.

B.3 Analysis for Two Consecutive Modular Additions

To avoid the usage of long linear trails and to reduce the data complexity,
we may use the partition technique for the more complicated structure of two
consecutive modular additions. Inspired by the round function of Chaskey, we
consider the case depicted in Fig. 16.

Suppose that we have two partition points, i.e.,

ζ1 = (z2[i], z2[i]⊕ z2[i− 1]),

ζ2 = (z3[j], z3[j, j − 1]),

where i, j ≥ 3. We use the same strategy described in Appendix B.2. Namely,
we identify the elements p ∈ P by (5 + 2)-bit values, where 5-bit and 2-bit
indicators come from the partition point ζ1 and ζ2, respectively. The applied
linear mask and corresponding correlation can be computed as depicted in
Figs. 15 and 16.
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C Exploiting the Conditions for Finding
Chaskey Relations
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Fig. 18 Conditions on the differential transitions for the 3 first rounds of Chaskey
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In Fig. 18, we have depicted the relations and the influence of the input bits
on the conditions of the differential path. The bits that stay white (and have
no pink color beneath, coming from the carries of the furthest additions) are
the bits that do not affect the differential transitions.

It is easy to see how the bits provided in [1] as available for sampling
with probability one are the only white ones, and therefore not needed
for the differential conditions: [31,30,25,24,23,22,20,19,18,17,16] from v2 and
[23,22,20,19,18,17,16] from v3. The differences are represented in grey. Depen-
dencies in colors. A ‘g’ in the position of a difference means that this difference
will go away (be absorbed) after the next addition. An ‘s’ means that the dif-
ference stays where it is, while ‘m’ means that it moves one position to the
left. The color of the bits with differences in each transition will be applied to
all the bits that might affect this transition. Carries are not directly applied
to the involved bits but to the upper row to report the difference this implies.

Please note that for instance bits 28 and 27 from v2 cannot be included
as the carry of the position 29 is needed by the orange bit relations, i.e., the
differences after one round at position 29 of v2 and v3, but as said in Sect. 5.3,
the bits of previous positions to 26 and 27 will not affect this orange carry
anymore due to the particular configuration of 26 and 27. The bits provided
in [1] that are neutral with very high probability are 20 and 19 from v1 and
31, 20 and 19 from v0 and 25 and 24 of v3.

Let us now see how can we use the conditional differential ideas and Fig. 18
in order to recover for free the value of some keybits and also to find additional
bits of information for sampling and increasing the dimension of U from 18 as
given in [1] (and involving exclusively one-bit relations) to 22, or 23 if one-bit
relation on the key is known.

Additional space for sampling

Using Fig. 18 we can try to exploit the conditions to find more evolved relations
for increasing the size of U . Let us provide an example: Let us imagine we
flip the bit from v0[8]. The corresponding difference, marked with a ‘g’, will
have a change of parity. In order for this difference to be absorbed, we need
to also flip the other blue difference that will be used for absorbing this one:
v1[8]. However, if we flip this one, the value of the bit v1[13] after one round,
that does not contain a difference, will be flipped also, as to produce it, v1[8]
is shifted of 5 positions and XORed with the sum of v0 and v1, that has a
difference in position 13, marked with an ‘s’: these differences cancel out in
both cases, but the value of the resulting bit will change with the parity of
v1[8], and the value of this pink will affect the final light-pink transition in
the third round, as can be seen in the picture. In order to avoid this, we have
to also flip v1[13]: the state v1 after 1 round will be known the same, but the
orange bit v2[29] after one round that contains a difference and a ‘g’ will have
the parity changed. In order to make the related transition be satisfied, we
need to also change the parity of the other orange bit with a ‘g’: we flip v2[29]
from the first round, that does not have a difference, but that will change the
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parity of v3[29] after the XOR. This bit will not have any more influence in
the remaining transitions, so we have found our close relation. In total, we
found four new probability-one relations by hand using this same technique.
We have verified these relations as well as exhaustively searched all the ones
with weight at most 3, and found that no other such relations exist.
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Udovenko, A., Velichkov, V., Wang, Q.: Lightweight AEAD and hashing
using the Sparkle permutation family. IACR Trans. Symmetric Cryptol.
2020(S1), 208–261 (2020)

https://eprint.iacr.org/2021/820
http://cr.yp.to/chacha.html
http://cr.yp.to/chacha.html


Springer Nature 2021 LATEX template

Improved Differential-Linear Attacks with Applications to ARX Ciphers 61

[10] Mouha, N., Mennink, B., Herrewege, A.V., Watanabe, D., Preneel, B.,
Verbauwhede, I.: Chaskey: An efficient MAC algorithm for 32-bit micro-
controllers. In: Joux, A., Youssef, A.M. (eds.) SAC 2014, Revised Selected
Papers. LNCS, vol. 8781, pp. 306–323. Springer, Cham (2014)

[11] Knudsen, L.R., Wagner, D.A.: Integral cryptanalysis. In: Daemen, J., Rij-
men, V. (eds.) FSE 2002, Revised Papers. LNCS, vol. 2365, pp. 112–127.
Springer, Berlin, Heidelberg (2002)

[12] Todo, Y., Leander, G., Sasaki, Y.: Nonlinear invariant attack: Practical
attack on full SCREAM, iSCREAM, and Midori64. J. Cryptol. 32(4),
1383–1422 (2019)

[13] Khovratovich, D., Nikolic, I.: Rotational cryptanalysis of ARX. In: Hong,
S., Iwata, T. (eds.) FSE 2010, Revised Selected Papers. LNCS, vol. 6147,
pp. 333–346. Springer, Berlin, Heidelberg (2010)

[14] Biham, E., Shamir, A.: Differential cryptanalysis of DES-like cryptosys-
tems. J. Cryptol. 4(1), 3–72 (1991)

[15] Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth,
T. (ed.) EUROCRYPT ’93, Proceedings. LNCS, vol. 765, pp. 386–397.
Springer, Berlin, Heidelberg (1993)

[16] Lipmaa, H., Moriai, S.: Efficient algorithms for computing differential
properties of addition. In: Matsui, M. (ed.) FSE 2001, Revised Papers.
LNCS, vol. 2355, pp. 336–350. Springer, Berlin, Heidelberg (2001)

[17] Wallén, J.: Linear approximations of addition modulo 2n. In: Johans-
son, T. (ed.) FSE 2003, Revised Papers. LNCS, vol. 2887, pp. 261–273.
Springer, Berlin, Heidelberg (2003)

[18] Langford, S.K., Hellman, M.E.: Differential-linear cryptanalysis. In:
Desmedt, Y. (ed.) CRYPTO ’94, Proceedings. LNCS, vol. 839, pp. 17–25.
Springer, Berlin, Heidelberg (1994)

[19] Leurent, G.: Improved differential-linear cryptanalysis of 7-round Chaskey
with partitioning. In: Fischlin, M., Coron, J. (eds.) EUROCRYPT 2016,
Proceedings, Part I. LNCS, vol. 9665, pp. 344–371. Springer, Berlin,
Heidelberg (2016)

[20] Choudhuri, A.R., Maitra, S.: Significantly improved multi-bit differentials
for reduced round Salsa and ChaCha. IACR Trans. Symmetric Cryptol.
2016(2), 261–287 (2016)

[21] Dey, S., Sarkar, S.: Improved analysis for reduced round Salsa and Chacha.
Discrete Appl. Math. 227, 58–69 (2017)



Springer Nature 2021 LATEX template

62 Improved Differential-Linear Attacks with Applications to ARX Ciphers

[22] Aumasson, J., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New
features of latin dances: Analysis of Salsa, ChaCha, and Rumba. In:
Nyberg, K. (ed.) FSE 2008, Revised Selected Papers. LNCS, vol. 5086,
pp. 470–488. Springer, Berlin, Heidelberg (2008)

[23] Shi, Z., Zhang, B., Feng, D., Wu, W.: Improved key recovery attacks on
reduced-round Salsa20 and ChaCha. In: Kwon, T., Lee, M., Kwon, D.
(eds.) ICISC 2012, Revised Selected Papers. LNCS, vol. 7839, pp. 337–351.
Springer, Berlin, Heidelberg (2012)

[24] Maitra, S.: Chosen IV cryptanalysis on reduced round ChaCha and Salsa.
Discrete Appl. Math. 208, 88–97 (2016)

[25] Miyashita, S., Ito, R., Miyaji, A.: Pnb-focused differential cryptanalysis
of ChaCha stream cipher. IACR Cryptol. ePrint Arch. 2021, 1537 (2021).
https://eprint.iacr.org/2021/1537 (to appear at ACISP 2022)

[26] Coutinho, M., Neto, T.C.S.: Improved linear approximations to ARX
ciphers and attacks against ChaCha. In: Canteaut, A., Standaert, F. (eds.)
EUROCRYPT 2021, Proceedings, Part I. LNCS, vol. 12696, pp. 711–740.
Springer, Cham (2021)

[27] Dey, S., Dey, C., Sarkar, S., Meier, W.: Revisiting cryptanalysis on
ChaCha from Crypto 2020 and Eurocrypt 2021. IEEE Trans. Inf. Theory
(2022). https://doi.org/10.1109/TIT.2022.3171865

[28] Coutinho, M., Neto, T.C.S.: Improved linear approximations to ARX
ciphers and attacks against ChaCha. IACR Cryptol. ePrint Arch. 2021,
224 (2021). https://eprint.iacr.org/2021/224

[29] Biham, E., Carmeli, Y.: An improvement of linear cryptanalysis with
addition operations with applications to FEAL-8X. In: Joux, A., Youssef,
A.M. (eds.) SAC 2014, Revised Selected Papers. LNCS, vol. 8781, pp.
59–76. Springer, Cham (2014)

[30] Neyman, J., Pearson, E.S.: On the problem of the most efficient tests
of statistical hypotheses. Philosophical Transactions of the Royal Society
of London. Series A, Containing Papers of a Mathematical or Physical
Character 231, 289–337 (1933)

[31] Baignères, T., Junod, P., Vaudenay, S.: How far can we go beyond linear
cryptanalysis? In: Lee, P.J. (ed.) ASIACRYPT 2004, Proceedings. LNCS,
vol. 3329, pp. 432–450. Springer, Berlin, Heidelberg (2004)

[32] Blondeau, C., Gérard, B., Nyberg, K.: Multiple differential cryptanalysis
using LLR and χ 2 statistics. In: Visconti, I., Prisco, R.D. (eds.) SCN 2012,
Proceedings. LNCS, vol. 7485, pp. 343–360. Springer, Berlin, Heidelberg

https://eprint.iacr.org/2021/1537
https://doi.org/10.1109/TIT.2022.3171865
https://eprint.iacr.org/2021/224


Springer Nature 2021 LATEX template

Improved Differential-Linear Attacks with Applications to ARX Ciphers 63

(2012)

[33] Collard, B., Standaert, F., Quisquater, J.: Improving the time complexity
of Matsui’s linear cryptanalysis. In: Nam, K., Rhee, G. (eds.) ICISC 2007,
Proceedings. LNCS, vol. 4817, pp. 77–88. Springer, Berlin, Heidelberg
(2007)

[34] Biham, E., Dunkelman, O., Keller, N.: Enhancing differential-linear crypt-
analysis. In: Zheng, Y. (ed.) ASIACRYPT 2002, Proceedings. LNCS, vol.
2501, pp. 254–266. Springer, Berlin, Heidelberg (2002)

[35] Bar-On, A., Dunkelman, O., Keller, N., Weizman, A.: DLCT: A new
tool for differential-linear cryptanalysis. In: Ishai, Y., Rijmen, V. (eds.)
EUROCRYPT 2019, Proceedings, Part I. LNCS, vol. 11476, pp. 313–342.
Springer, Cham (2019)

[36] Knellwolf, S., Meier, W., Naya-Plasencia, M.: Conditional differential
cryptanalysis of NLFSR-based cryptosystems. In: Abe, M. (ed.) ASI-
ACRYPT 2010, Proceedings. LNCS, vol. 6477, pp. 130–145. Springer,
Berlin, Heidelberg (2010)

[37] Blondeau, C., Leander, G., Nyberg, K.: Differential-linear cryptanalysis
revisited. J. Cryptol. 30(3), 859–888 (2017)

[38] Carlet, C.: Boolean Functions for Cryptography and Coding Theory.
Cambridge University Press, Cambridge (2021)

[39] Nyberg, K.: Linear approximation of block ciphers. In: Santis, A.D.
(ed.) EUROCRYPT 1994. LNCS, vol. 950, pp. 439–444. Springer, Berlin,
Heidelberg (1994)

[40] Mouha, N.: Chaskey: a MAC algorithm for microcontrollers - status
update and proposal of Chaskey-12 -. IACR Cryptol. ePrint Arch. 2015,
1182 (2015). https://eprint.iacr.org/2015/1182

[41] Coutinho, M., Neto, T.C.S.: New multi-bit differentials to improve attacks
against ChaCha. IACR Cryptol. ePrint Arch. 2020, 350 (2020). https:
//eprint.iacr.org/2020/350

https://eprint.iacr.org/2015/1182
https://eprint.iacr.org/2020/350
https://eprint.iacr.org/2020/350

	Introduction
	Our Contribution
	Differential part
	Linear part
	LLR statistic
	Key recovery



	Preliminaries
	Differential-Linear Attacks
	Partitioning Technique for ARX-based Designs

	New Partitioning Technique
	High-Level Overview of the New Attack Framework
	The Differential Part
	The Linear Part
	LLR-Based Statistical Test
	WHT-Based Key Recovery Technique

	The Differential Part – Finding Many Right Pairs
	Fully Independent Parts
	Probabilistic Independent Parts
	Using the Conditional Differential Framework for Finding Better Subspaces
	Conditional differential framework for differential-linear attacks
	Main ideas for exploiting the conditions on ARX



	Auto-Correlation-Linear Hulls and Partitioning
	Impact of Partitioning on the Correlation
	Relation to Assumptions 1 and 2


	LLR-based Statistical Test
	Distinguishing Between the Distributions

	WHT-based Key Recovery Technique
	Using the FWHT for Key Recovery
	Success Probability of Algorithm 2

	Application to Chaskey
	Overview of Our Attack
	Using Conditional Differentials
	Keybits That Are Obtained for Free
	Additional Space for Sampling

	The 7-Round Attack
	List of Differential-Linear Distinguishers
	Theoretical Correlations with Auto-Correlation-Linear Hull
	Experimental Reports

	The 7.5-Round Attack
	Experimental Reports
	Using Multiple Linear Approximations Every Partition


	Application to ChaCha
	Overview of Our Attack
	Differential Part
	Linear Part for the 6-Round Attack
	Key Recovery for the 6-Round Attack
	Estimating the Average of the Squared Correlation
	Data and Time Complexities and Success Probability

	Another 6-Round Attack
	The 7-Round Attack

	Conclusion and Future Work
	Summary of Partitioning
	Single Modular Addition
	More Complicated Case

	Understanding Partition Points
	A Simple Toy Example
	Toy Example Using Multiple Partition Points
	Analysis for Two Consecutive Modular Additions

	Exploiting the Conditions for Finding Chaskey Relations
	Additional space for sampling


