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Unlocking Large Scale Uncertainty
Quantification with In Transit Iterative Statistics

Alejandro Ribés, Théophile Terraz, Yvan Fournier, Bertrand Iooss, and
Bruno Raffin

Abstract Multi-run numerical simulations using supercomputers are increasingly
used by physicists and engineers for dealing with input data and model uncertain-
ties. Most of the time, the input parameters of a simulation are modeled as random
variables, then simulations are run a (possibly large) number of times with in-
put parameters varied according to a specific design of experiments. Uncertainty
quantification for numerical simulations is a hard computational problem, currently
bounded by the large size of the produced results. This book chapter is about using in
situ techniques to enable large scale uncertainty quantification studies. We provide
a comprehensive description of Melissa, a file avoiding, adaptive, fault-tolerant, and
elastic framework that computes in transit statistical quantities of interest. Melissa
currently implements the on-the-fly computation of the statistics necessary for the
realization of large scale uncertainty quantification studies: moment-based statistics
(mean, standard deviation, higher orders), quantiles, Sobol’ indices, and threshold
exceedance.

1 Introduction

A numerical simulation is a calculation that is run on a computer following a
program that implements a mathematical model for a physical system. Nowadays,
engineers and scientists often use numerical simulation as a tool, and its use in
industries or scientific laboratories is very broad. From the mathematical point of
view, discretized differential equations are numerically solved, often using a mesh as
spatial support. Popular methods include Finite Difference, Finite Volumes, Finite
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Elements, or particle-based methods. From the computer science point of view, a
numerical simulation consists of a workflow of actions. First, the engineer or scientist
prepares the mesh or other spatial discretization such as particles, and she/he defines
the initial and boundary conditions. Second, the calculations are run in a computer
and generate results that are written to files. Finally, the results are analyzed.

Chapter 1 of this book already presented an introduction to in situ techniques
for computational science. We would like to insist on the fact that engineers and
scientists are so used to the classical worklow presented above, that they currently do
not realize that a major change is occurring in current computer systems. The sizes of
the simulations are strongly increasing, and writing files is becoming cumbersome
and time-consuming. This bottleneck, in numerous cases, limits the size of the
simulations. When executing multiple simulation runs, this problem becomes even
more critical.

Multiple simulation runs (sometimes several thousands) are required to compute
sound statistics in the context of uncertainty quantification [44]. Taking uncertainties
into account when dealingwith complex numerical simulations is necessary to assess
their robustness, as well as to answer tighter regulatory processes (security, safety,
environmental control, health impacts, etc.). Many attempts at treating uncertainty
in industrial applications (e.g. automotive and aerospace engine design, nuclear
safety, agronomy, renewable energy production) have involved different mathemati-
cal approaches from many scientific domains as in metrology, structural reliability,
variational analysis, design of experiments, machine learning and global sensitivity
analysis [11]. As an example, in aeronautic and nuclear industries, uncertainty quan-
tification approaches are applied on numerical models simulating non destructive
testing procedures, in order to evaluate probability of detection curves [27]. Such
curves allow the operators to evaluate the performance of their non destructive tests
for the detection of harmful defects of the inspected structure, which is particularly
important for the system safety.

Current practice consists of performing multiple executions of a classical work-
flow. All the necessary instances with different sets of input parameters are run, and
the results are stored to disk, often called ensemble data, to later read them back
from disk to compute statistics. In this context, we are confronted with two important
problems. First, the amount of storage needed may quickly become overwhelming,
with the associated long read time that makes statistic computing time-consuming.
To avoid this pitfall, scientists reduce their study size by running low-resolution sim-
ulations or down-sampling output data in space and time. Second, humans should be
able to somehow navigate through the complexity of these large simulation results.
Down-sampling output data in space and time, extracting probes, or concentrating
on specific features of the ensemble are usually performed to reduce complexity;
this introduces strong dependences on a priori ideas related to the behavior of the
ensemble.

Novel approaches are required. In situ and in transit processing emerged as a
solution to perform data analysis starting as soon as the results are available in the
memory of the simulation. The goal is to reduce the data to store to disk and to
avoid the time penalty to write and then read back the raw data set as required by
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the classical post hoc analysis approach. In recent works, we proposed the Melissa
framework for the on-line data aggregation of high-resolution ensemble runs [46, 40].
As soon as each available simulation provides the results produced to a set of staging
nodes, these nodes process them to update the statistics on a first-come-first-served
basis thanks to one-pass algorithms. This in transit processing mode enables us to
fully avoid storage of intermediate data on disks. Furthermore, this new approach
allows the computation of ubiquitous statistics: we compute multidimensional and
time-varying statistics, i.e. everywhere in space and time; instead of providing a
down-sampled subset, for a limited sample of probes or concentrating on specific
features of the ensemble, as usually done.

In the context of this book, we would like to remark that this chapter does not
present any in situ visualization system but an example of how in situ techniques
can be used for the statistical analysis of large quantities of data; which is defined in
Chapter 1 as "use cases beyond exploratory analysis". As a matter of fact, uncertainty
quantification for numerical simulations is a hard computational problem, currently
bounded by the large size of the produced results. This chapter is about using in situ
techniques to unleash large scale uncertainty quantification (UQ) studies.

In the following Section 2 presents the general methodology for dealing with UQ
studies; Section 3 introduces the iterative statistics necessary to perform on-line UQ;
Section 4 briefly describes the MELISSA platform which implements the statistics
introduced in Section 3; Section 5 uses a fluid mechanics example to illustrate the
realization of a large scale UQ study; finally, a short conclusion and a bibliography
section end up the chapter.

2 Uncertainty Management Methodology

2.1 Introduction

A general framework has been proposed in order to deal with various uncertainties
that arise in numerical simulations [11, 3]. The uncertainty management generic
methodology is schematized in Figure 1. Based on a probabilistic modeling of the
model input variables, it consists of the following steps:

• Step A: specify the random inputs X , the deterministic inputs d, the numerical
model G (analytical, complex computer code or experimental process), the
variable of interest (model output) Y and the quantity of interest on the output
(central dispersion, its distribution, probability to exceed a threshold, . . . ). The
fundamental relation writes:

Y = G(X, d) = G(X),

with X = (X1, . . . ,Xp) ∈ R
p .
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• Step B: quantify the sources of uncertainty. This step consists in modeling the
joint probability density function (pdf) of the random input vector by direct
methods (e.g. statistical fitting, expert judgment).

• Step B’: quantify the sources of uncertainty by indirect methods using some real
observations of the model outputs. The calibration process aims to estimate the
values or the pdf of the inputs while the validation process aims to model the
bias between the model and the real system.

• Step C: propagate uncertainties to estimate the quantity of interest. With re-
spect to this quantity, the computational resources and the CPU time cost of
a single model run, various methods will be applied as linear-based analyt-
ical formula, geometrical approximations, Monte Carlo sampling strategies,
metamodel-based techniques.

• Step C’: analyze the sensitivity of the quantity of interest to the inputs in order
to identify the most influential inputs (useful if one wants to reduce the output
uncertainty) and to rank the uncertainty sources.

Figure 1 The methodology of uncertainty management in numerical simulation.
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2.2 Quantiles of Simulation Outputs

Quantiles are important order statistics for outlier detection or computation of non
parametric prediction and tolerance intervals. Then, in the context of uncertainty
quantification analysis of computer models, quantile estimation is one of the key
steps. Low or high-order quantiles are often required, especially in industrial safety
studies [11, 33, 23].

Standard approaches dealwith the problemof quantile estimation of scalar outputs
[16, 17, 8]. Let us consider a N-sample (Y1, . . . ,YN ) of independent and identically
distributed random variables from an unknown distribution fY (y). We look for an
estimator q̂α of the α-quantile qα defined by:

P(Y ≤ qα) = α , (1)

which is sometimes written as

qα = inf{y |P(Y ≤ y) ≥ α} . (2)

However, simulation models most often return spatial fields varying over time.
For example, recent studies have considered quantiles of one-dimensional func-
tional outputs (temporal curves) [37, 39, 34, 41], that demonstrates users’ interest in
computing these functional quantiles.

2.3 Sensitivity Analysis via Sobol’ Indices

Sensitivity studies are an important application of uncertainty quantification in nu-
merical simulation [44]. The objective of such studies can be broadly viewed as
quantifying the relative contributions of individual input parameters to a simulation
model, and determining how variations in parameters affect the outcomes of the
simulations. In this context, multi-run studies treat simulations as black boxes that
produce outputs when a set of parameters is fixed (Figure 2). Global sensitivity
analysis is an ensemble of techniques that deal with a probabilistic representation of
the input parameters [43, 22] to consider their overall variation range.

G Y

X1

X2

...

Xp

Figure 2 A simple solver G taking p input parameters X1 to Xp , and computing a scalar output
Y .

Variance-based sensitivity measures, also called Sobol’ indices [45], are popular
among methods for global sensitivity analysis because they can deal with nonlinear



6 Alejandro Ribés, Théophile Terraz, Yvan Fournier, Bertrand Iooss, and Bruno Raffin

responses. They decompose the variance of the output, Y , of the simulation into
fractions, which can be attributed to random input parameters or sets of random
inputs.

For example, with only two input parameters X1 and X2 and one output Y (Fig-
ure 2), Sobol’ indices might show that 60% of the output variance is caused by the
variance in the first parameter, 30% by the variance in the second, and 10% due to
interactions between both. These percentages are directly interpreted as measures
of sensitivity. If we consider p input parameters, the Sobol’ indices can identify pa-
rameters that do not influence or influence very slightly the output, leading to model
reduction or simplification. Sobol’ indices can also measure the effect of interactions
in non-additive systems.

Mathematically, the first and second order Sobol’ indices [45] are defined by:

Si =
Var(E[Y |Xi])

Var(Y )
, Si j =

Var(E[Y |XiXj])

Var(Y )
− Si − Sj, (3)

where X1, . . . ,Xp are p independent random variables. In Eq. (3), Si represents the
first order sensitivity index of Xi while Si j represents the effect of the interaction
between Xi and Xj . Higher-order interaction indices (Si jk, . . . ,S1...p) can be similarly
defined. The total Sobol’ indices express the overall sensitivity of an input variable
Xi:

STi = Si +
∑
j,i

Si j +
∑

j,i,k,i, j<k

Si jk + . . . + S1...p . (4)

The previous formula applies for a scalar output Y . Some authors have pro-
posed the generalization of the concept of Sobol’ indices for multidimensional and
functional data [14] by synthesizing all the sensitivity information of themultidimen-
sional output in a single sensitivity value. Few authors have considered the estimation
of Sobol’ indices at each output cell (see [32] for an overview on this subject) and
this estimation has always been applied to small models. Applications of these tech-
niques on environmental assessment can be found for example in [18, 30] for spatial
outputs and in [31, 29] for spatio-temporal outputs. All these works have shown
that obtaining temporal/spatial/spatio-temporal sensitivity maps leads to powerful
information for the analysts. Indeed, the parameter effects are localized in time or
space, and can be easily examined in relation with the studied physical phenomena.

3 In Transit Statistics

Computing statistics from N samples classically requires O(N) memory space to
store these samples. But if the statistics can be computed in one-pass (also called
iterative, on-line or even parallel [35]), i.e. if the current value can be updated as
soon as a new sample is available, the memory requirement goes down toO(1) space.
With this approach, not only simulation results do not need to be saved, but they can
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be consumed in any order, loosening synchronization constraints on the simulation
executions.

There also exist multi-pass algorithms for the computation of statistics, where P
passes are necessary. In this case, the on-line processing system would need to have
access to the same data P times thus forcing the data to be stored till the last pass is
finished. This is not feasible for large scale use cases. These approaches, along with
the classical ones requiring O(N)memory space, are avoided in on-line applications.

3.1 Moment-Based Statistics: Mean, Std, Higher Orders

One-pass variance algorithms were proposed in [48, 9, 12]. Numerically stable,
one-pass formulas for arbitrary centered statistical moments and co-moments are
presented in [5, 35]. Reference Pébay et al. [35] also contains update formulas for
higher order moments (skewness, kurtosis and more). These works set the base for
a module of parallel statistics in the VTK scientific visualization toolkit [36]. In this
context, the one-pass algorithms enables to compute partial results in parallel before
performing a reduction to get the final result. These iterative statistics were used for
computing large scale parallel statistics for a single simulation run either from raw
data files [7], compressed data files [25] or in situ [6]. More recently Lampitella et
al. [26] proposed a general update formula for the computation of arbitrary-order,
weighted, multivariate central moments.

In Melissa, we iteratively compute the moments of a random variable Y as

µ(k),S(Y ) = µ(k),S = µ(k),S1 +
1
n

(
yk − µ(k),S1

)
(5)

for k = 1, 2, 3 and 4, where S = S1 ∪ {y} and n = card(S). Then from these
moments, we compute the mean, variance, skewness and kurtosis:

Mean = µ(1) ,

Variance =
n

n − 1
(µ(2) − µ

2
(1)) ,

Skewness =
µ(3) − 3µ(1)µ(2) + 2µ3

(1)

(µ(2) − µ
2
(1))

1.5
,

Kurtosis =
µ(4) − 4µ(1)µ(3) + 6µ2

(1)µ(2) − 3µ4
(1)

(µ(3) − 3µ(1)µ(2) + 2µ3
(1))

2
.
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3.2 Sobol’ Indices

The information contained in this section can be found in the previously published
article [46]. We include it here for self-completeness. Thus the reader can find the
description, in this book chapter, of all iterative methods currently implemented in
Melissa.

In order to compute Sobol’ indices, we use the so-called pick-freeze scheme
that uses two random independent and identically distributed samples of the model
inputs [45, 19, 24]. One-pass iterative Sobol’ indices formulas directly derive from
the iterative variance (presented in Section 3.1) and iterative covariance [35]. Note
that another iterative computation of Sobol’ indices has been introduced in [15] for
the case of a scalar output.

Our goal is to compute in transit the Sobol’ indices of each input parameter Xi

(Figure. 2). We explain below the so-called pick-freeze scheme that uses two random
independent and identically distributed samples of the model inputs [45, 19, 24].

We first define the p variable input parameters of our study as a random vector,
with a given probabilistic law for each parameter. We then randomly draw two times
n sets of p parameters, to obtain two matrices A and B of size n × p (each row is a
set of parameters for one simulation):

A =
©«
a1,1 · · · a1,p
...

. . .
...

an,1 · · · an,p

ª®®¬ ; B =
©«

b1,1 · · · b1,p
...

. . .
...

bn,1 · · · bn,p

ª®®¬ .

For each k ∈ [1, p] we define the matrix Ck , which is equal to the matrix A but with
its column k replaced by column k of B. Each row of each matrix is a set of input
parameters:

Ck =

©«

a1,1 · · · a1,k−1 b1,k a1,k+1 · · · a1,p
...

...
...

...
...

ai,1 · · · ai,k−1 bi,k an,k+1 · · · ai,p
...

...
...

...
...

an,1 · · · an,k−1 bn,k an,k+1 · · · an,p

ª®®®®®®®¬
.

Then, a study consists in running the n× (p+ 2) simulations defined by the matrices
A, B and Ck for k ∈ [1, p]. For each matrix M with n rows, ∀i ∈ [1,n], let Mi be the
ith row of M , and M[:i] the matrix of size i × p built from the i first lines of M . For
example :

Ck
i =

(
ai,1 · · · ai,k−1 bi,k ai,k+1 · · · ai,p

)
and

Ck
[:i] =

©«
a1,1 · · · a1,k−1 b1,k a1,k+1 · · · a1,p
...

...
...

...
...

ai,1 · · · ai,k−1 bi,k an,k+1 · · · ai,p

ª®®¬ .
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Let Y A
i be the result of G(Ai), and Y A ∈ Rn the vector built from component

i of Y A
i , ∀i ∈ [1,n]. We define YB

i and YB in the same way, as well as YCk

i and
YCk
∀k ∈ [1, p]. Let Var(x) be the unbiased variance estimator, and Cov(x, y) the

unbiased covariance estimator, as defined in [35]. First order Sobol’ indices Sk can
be estimated by the following formula, called Martinez estimator [2]:

Sk( f , A,B) =
Cov(YB,YCk

)√
Var(YB)

√
Var(YCk

)
, (6)

while total order Sobol’ indices STk are estimated by:

STk( f , A,B) = 1 −
Cov(Y A,YCk

)√
Var(Y A)

√
Var(YCk

)
. (7)

Since variances and covariances can be updated iteratively, first order and total
Sobol’ indices can be computed from these formulas. The covariance update formula
between two random variables X and Y writes [35]:

CovS = CovS1 +
n − 1

n
[
x − µ(1),S1 (X)

] [
y − µ(1),S1 (Y )

]
(8)

where S = S1 ∪ {x, y}, n = card(S) and the mean update µ(1) comes from Eq. (5).
There are many other estimators than those of Eqs (6) and (7) (see for example

[38]) relying on the matrices A, B and Ck to compute the variance and the covari-
ance with different formulas. We use the Martinez estimator because it provides an
asymptotic confidence interval [2], which is very simple to express, and is easy to
compute in an iterative fashion. In addition, it has been shown to be unbiased and
one of the most numerically stable estimator.

3.3 Order Statistics: Quantiles

The classical estimator of the α-quantile yα of the random variableY is the empirical
quantile, based on the notion of order statistics [10]. Essentially, we associate with
the independent and identically distributed sample (Y1, . . . ,YN ) the ordered sample
(Y(1), . . . ,Y(N )) in which Y(1) ≤ . . . ≤ Y(N ). The empirical estimator then writes:

q̂α = Y( bαN c+1), (9)

where bxc is the integer part of x.
For an iterative statistical estimation, theRobbins-Monro estimator [42] consists in

updating the quantile estimate qα(n) at each new observationYn+1 with the following
rule:

qα(n + 1) = qα(n) −
C
nγ

(
1Yn+1≤qα (n) − α

)
, (10)
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with n = 1 . . . N , qα(1) = Y1 an independent realization of Y , q̂α = qα(N), 1x the
indicator function, C a strictly positive constant and γ ∈]0,1] the step of the gradient
descent of the stochastic algorithm. Under several hypotheses with γ ∈]0.5,1], this
algorithm has been shown to be consistent and asymptotically normal. A fine tuning
of the constantC is important; several numerical tests have shown that a value ofC of
the order of the dispersion ofY (for example its standard deviation or an interquantile
interval) would be satisfactory [20, 21].

Asymptotically (where N is large), a value γ = 1 is known to be optimal.
However, in practical studies, N is often not large. For example, in nuclear safety
studies (see for example [8, 23]), α = 0.95 and N is in the order of several hundreds
of simulated values. In this case and as we look for γ values that can work for
different distributions of Y (which are unknown in practice), we propose to define
γ as a function of n. Indeed, one can observe that a good γ value for a certain type
of probability distribution produces bad results for another type of distribution (for
example, γ = 0.6 gives good results for a normal distribution and incorrect quantile
estimates for a uniform one). We then use the following heuristic formula for γ:

γ(n) = 0.1 + 0.9
n − 1
N − 1

. (11)

The idea is to have strong mixing properties at the beginning of the algorithm (with
small γ), then to slow down the potential variation of the quantile estimation all
along the iterations of the algorithm.

Slightly different linear profiles can be proposed as γ(n) = 0.5[1+(n−1)/(N−1)].
Several tests on simple analytical functions (where the true quantile can be known)
have been performed in order to calibrate and validate these γ-profiles [40, 20].
Other algorithmic developments are currently under study to further improve the
robustness of the Robbins-Monro estimate.

3.4 Probability of Threshold Exceedance

If ycrit is a safety output value, a classical failure probability estimation problem
occurs:

p f = P(Y > ycrit) , (12)

well-known in structural reliability [28, 4]. For this issue, without loss of generality,
we can turn to:

p f = P(Y < 0) .

Computing a failure probability can be seen as a direct problem of uncertainty
propagation [33].

If the the failure domain is defined by D f = {x ∈ χ ⊆ Rp | G(x) ≤ 0}, the
probability that the event – failure occurs is given by
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p f = P(G(X) ≤ 0) =
∫
D f

fX (x)dx =
∫
χ

1G(x)≤0 fX (x)dx = E[1G(X)≤0] , (13)

where fX is the joint probability density function of X . One of the goals of a structural
reliability study is to provide an estimate of p f and the uncertainty involved. The
complexity of models and large potential number of input variables means that, in
general, we cannot calculate the exact probability of failure. The evaluation of the
integral in formula (13) is the subject of numerous mathematical techniques, laid out
in an abundant array of international scientific literature [11, 44]. The use of Monte
Carlo simulation methods is the most common. The naive Monte Carlo estimator is

p̂ f =
1
n

n∑
i=1

1{G(x(i))≤0}, (14)

where the x(i) are n independent and identically distributed random vectors simulated
according to fX . This is an unbiased estimate of the quantity of interest, for which it
is possible to control the precision via its variance and the provision of a confidence
interval (thanks to the central limit theorem).

Of course, as this estimation is based on an expectation, the trivial iterative
algorithm for the mean (see Section 3.1) applies to compute p f on the fly.

4 The Melissa Framework

Melissa (Modular External Library for In Situ Statistical Analysis) proposes a new
approach to compute statistics at large scale by avoiding to store the intermediate
results produced by the multiple parallel simulation runs. The key enabler is the use
of iterative formulations for the required statistics. This allows for updating statistics
on-the-fly each time new simulation results are available. To manage the simulation
runs as well as the in transit computation of iterative statistics, we developed a full
framework built around an elastic and fault tolerant parallel client/server architecture.
The benefits of this framework are multiple:

• Storage saving: no intermediate files are generated. Melissa fully avoids storage
of intermediate data on disks.

• Time saving: simulations run faster when sending data to the server than when
writing their results to disk. Statistics are computed while simulations are run-
ning, saving the time of post hoc statistic computing that, in addition, requires
time to read back simulation results once all are performed.

• Ubiquitous: performance and scalability gains enable computing ubiquitous
multidimensional and time varying statistics, i.e. everywhere in space and time,
instead of providing statistics for a limited sample of probes as usually done
with post hoc approaches to reduce the amount of temporary data storage.

• Adaptive: simulations can be defined, started or interrupted on-line according
to past runs behavior or the statistics already computed.
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Parallel 
Simulation Run 

Dynamic Connection to Parallel Server
(NxM communication scheme)

Checkpoints Final Results

Parallel 
Simulation Run 

Parallel 
Simulation Run 

Figure 3 Melissa three tier architecture. The launcher oversees the execution in tight link with the
batch scheduler. The job scheduler regulates the number of simulation jobs to run according to the
machine availability, leading to an elastic resource usage. The parallel server, started first, process
incoming data as soon as received from the connected simulations. A fault tolerance mechanism
automatically restarts the failing simulation runs or a failing parallel server.

• Elasticity: Melissa enables the dynamic adaptation of compute resource usage
according to availability. Simulations are independent and connect dynamically
to the parallel server when they start. They are submitted as independent jobs
to the batch scheduler. Thus, the number of concurrently running simulations
providing data to the server can vary during the course of a study to adapt to the
availability of compute resources.

• Fault tolerance: Melissa’s asynchronous client/server architecture supports a
simple yet robust fault tolerance mechanism. Only some lightweight bookkeep-
ing and a few heartbeats are required to detect issues and restart the server or
the simulations, with limited loss of intermediate results.

4.1 Melissa Architecture

Melissa is an open source framework 1 that relies on a three tier architecture (Fig-
ure 3). The Melissa Server aggregates the simulation results and updates iterative
statistics as soon as a new result is available. The Melissa clients are the parallel
simulations, providing their outputs to the server. Melissa Launcher interacts with

1 https://melissa-sa.github.io
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the batch scheduler and server, for creating, launching, and supervising the server
and clients. We present in this section an overview of theMelissa architecture. Please
refer to [46] for more details.

4.1.1 Melissa Server

Melissa Server is parallel and runs on several nodes. The number of nodes required
for the server is driven by 1) memory needs 2) data pressure. The amount of memory
needed for each computed statistic field is of same order as the size of the output
field of one simulation (number of timesteps × the number of cells or points in the
mesh). The number of server nodes should also be large enough to process incoming
data without stalling the simulations.

4.1.2 Dynamic Connection to Melissa Server

When a simulation starts, it dynamically connects to the Melissa Server. Each sim-
ulation process opens individual communication channels to each necessary server
process for enabling a N×M data redistribution. Every time new results are available,
simulation processes push the results toward Melissa Server.

Melissa is designed to keep intrusion into the simulation code minimal. Melissa
provides 3 functions to integrate in the simulation code through a dynamic library.
The first function (Initialize) allocates internal structures and connects the simulation
to the server. At each timestep, the second function (Send) sends the simulation
data to its corresponding Melissa Server processes. The third function (Finalize)
disconnects the simulation and releases the allocated structures.

4.1.3 Melissa Launcher

Melissa Launcher takes care of generating the parameter sets, requesting the batch
scheduler to start the server and the clients, and track the progress of the running
server and clients jobs. It first submits to the batch scheduler a job for the Melissa
Server. Then, the launcher retrieves the server node addresses (the server is par-
allelized on several nodes) and submits the simulation jobs. Each simulation is
submitted to the batch scheduler as a standalone job, making Melissa very elastic,
i.e. capable of adapting to a varying compute resource availability. Simulations can
be submitted all at once or at a more regulated pace depending on the machine policy
for job submissions.
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4.1.4 Fault Tolerance

The Melissa asynchronous client/server architecture leverages the iterative statistics
computations to support a simple yet robust fault tolerance mechanism. Melissa sup-
ports detection and recovery from failures (including straggler issues) of Melissa
Server and simulations, through heartbeats and server checkpointing. Melissa
Launcher communicates with the server and the batch scheduler to detect simu-
lation or server faults. As every simulation runs in a separate job, the failure of one
simulation does not impact the ongoing study:Melissa launcher simply restarts it and
the server discard already processed messages. Please refer to [46] for a complete
description of this fault tolerance system.

5 An Illustrative Example

5.1 A Large Scale Study

We used Code_Saturne [1], an open-source computational fluid dynamics tool de-
signed to solve the Navier-Stokes equations, with a focus on incompressible or
dilatable flows and advanced turbulence modeling. Code_Saturne relies on a finite
volume discretization and allows the use of variousmesh types, using an unstructured
polyhedral cell model, allowing hybrid and non-conformingmeshes. The paralleliza-
tion [13] is based on a classical domain partitioning using MPI, with an optional
second (local) level using OpenMP.

5.1.1 Use Case

Varying parameters for the upper and lower inlet:

• dye concentration,
• width of the injection,
• duration of the injection,

Figure 4 Use case: water flows from the left, between the tube bundle, and exits to the right with
6 varying parameters.

We validated our implementation on a fluid mechanics demonstration case simu-
lating a water flow in a tube bundle (Figure 4). The mesh is composed of 6002400
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hexahedra. We generate a multi-run sensitivity study by simulating the injection of a
tracer or dye along the inlet, with 2 independent injection surfaces, each defined by
three varying parameters (Figure 4). The solved scalar field representing dye concen-
tration could be replaced by temperature or concentration of chemical compounds
in actual industrial studies.

To initialize our multi-run study, we first ran a single 1000 timesteps simulation,
to obtain a steady flow. Each simulation consists of 100 time steps starting from this
steady flow, with different parameter sets.

This study ran a total of 80 000 simulations for computing ubiquitous variances,
covariances, Sobol’ indices, and the 5th , 25th , 50th , 75th and 95th percentiles on the
6M hexahedra and 100 timesteps. Sobol’ index computations rely on the pick-freeze
method that requires to run groups of simulations with non-independent parameter
sets. These correlated simulations are not used for the quantiles that are computed
from the remaining independent 20 000 simulations.

The study took a total 260 000 CPU hours for the simulations and 11 112 CPU
hours for the server (4% of the total CPU time). Melissa Server processed on-line a
cumulated total of 288 TB of data coming from the simulations.

5.2 Ubiquitous Statistic Interpretation

In this sectionwe interpret the ubiquitous statistics computed during the experiments.
By ubiquitous statistics we mean the statistics of multidimensional and time varying
physical quantities, i.e. statistics everywhere in space and time. Using ParaView
we have chosen a timestep and performed a slice on a mid-plane of the mesh
presented in Figure 4. This slice is aligned with the direction of the fluid. The chosen
timestep belongs to the last temporal part of the simulation (80th timestep over 100).
This operation reduces the ubiquitions statistics to 2D spatial maps, thus allow us to
generate the images of this section.We remark that this is just a choice for illustration
purposes, any other visualisation pipeline can be applied to the ubiquitous statistics.

5.2.1 Quantiles

Figure 5 presents six spatial maps extracted from the ubiquitous quantiles. We con-
centrate in percentiles because they are easily interpreted. We recall that a percentile
is not a per cent but a type of quantile: a 10-quantile. Our system can also calculate
4-quantiles, the so-called quartiles that are popular measures in statistics, or any
other kind of quantile.

On the four top panels of Figure 5, Figure 5a, 5b, 5c and 5d, we present the 75th ,
95th , 25th , 5th percentiles, respectively. On the two bottom panels the interpercentile
ranges containing 50% and 90% of the samples are shown. Interpercentile ranges
are easily computed from percentiles by substraction: the 50% interpercentile range
corresponds to the 75th percentile minus the 25th percentile; the 90% interpercentile
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(a) 75th percentiles (b) 95th percentiles

(c) 25th percentiles (d) 5th percentiles

(e) 50% inter-percentile range (f) 90% inter-percentile range

Figure 5 Percentiles and inter-percentile ranges maps on a slice of the mesh at timestep 80. The
top line corresponds to the percentiles while the bottom line corresponds to inter-percentile ranges.
All maps share the same scale.

range corresponds to the 95th percentile minus the 5th percentile. In Figure 5 each
column shows an interpercentile map on the bottom and the percentile maps that
served for its calculation above it. Looking at these maps an analyst can deduce
several things:

1. Extreme high percentile maps such as 95th , Figure 5b, give an idea of the
distribution of the upper bounds of all simulations. In our use case, we can asses
which spatial areas contain low quantities of contaminant. Indeed areas coloured
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in blue necessarily contain low contaminant concentrations for any simulation
in the multi-run study. Extreme low percentiles maps, such as 5th has also a
direct interpretation in the opposite sense.

2. Interpercentile-range maps such as Figure 5e or 5f are maps that show the
spatial variability of statistical dispersion. Indeed, scalar interpercentile ranges
are non-parametric measures of statistical dispersion, which means that no a
priori knowledge about the distribution of the data is needed. This character-
istic makes these ranges both general and robust. Visualising a map of such a
measure of dispersion allows to understand how the data distribution is spatially
concentrated. In our use case the low percentile maps used to calculate the inter-
percentile maps are mainly close to zero for all cells of the mesh, which makes
these maps resemble the higher percentiles maps. However, this is in general
not true. Moreover, if we visually compare Figure 5a and 5e we realise that both
maps are different.

(a) Probe position (b) Quantiles evolution over time

Figure 6 A probe in a cell of the mesh allows an extraction of the temporal evolution of percentiles
at a specific spatial location.

The maps shown in Figure 5 are static and 2D but we recall that we calculate
ubiquitous percentiles, thus 3D and time dependent data is available. Figure 6 shows
the temporal evolution of a probe positioned in the mesh using ParaView. At a
specific location, a temporal evolution of all computed quantiles can be performed.
In Figure 6b this evolution is plotted for the 95th , 75th , 25th and 5th percentiles.
The vertical line indicates the position of the current time step (80th time step).
This figure clearly shows how the output variability of the ensemble study depends
on time. Indeed, all simulations contain no dye for the first 15 time-steps, which is
the time the dye takes to propagate from the top injector to the spatial location of
the probe. After this point, we observe a moment where the variability of the dye
concentration is the highest before a general decrease.

Figure 6b can be seen as the evolution of a Tukey boxplot [47] over time. In fact,
the 25th and 75th percentiles correspond to the 1st and 3rd quartiles thus delimit
the central box of the plot, while the 5th and 95th quantiles can be a choice for the
whiskers. Using this analogy, we can easily observe that the dispersion of the dye
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concentration on the whole ensemble moves over time. Furthermore, the distribution
of this quantity is not symmetrical and its asymmetry is evolving over time.

Finally, Figure 7 shows a different representation of the evolution of the dye
concentration at a fixed probe (the same than in Figure 6). At different regularly
sampled time steps, the quantile functions of the concentration values are plotted (as
a function of the order of the quantiles, between 0% and 100%). One can first observe
zero-valued quantile functions for the first time steps (time steps 4 and 14). Indeed, at
the probe, the dye concentration is zero during the first times of the injection. Then,
from time step 24 to time step 44, all the values of the quantile functions regularly
increase. It means that the dye concentration values homogeneously increase from
0, reaching a maximal value close to 0.82 for the 100%-order quantile. At the end
of the simulation time, from time step 54 to time step 94, the quantile functions
are regularly displaced to the right. The values close to zero disappear and the
concentration of strong values becomes more and more important. As a conclusion,
thanks to the quantile functions, this graph allows to finely and quantitatively analyze
the temporal evolution of this dye concentration phenomena.We remark that, because
we have calculated the ubiquitous percentiles, it is possible to obtain Figure 6 and
Figure 7 for any location on the simulation domain.

Figure 7 Percentile functions of the dye concentration at different time steps of the simulation.
Vertical axis represents dye concentration. Horizontal axis represents percentiles. Each curve
corresponds to different time steps of the simulation. All curves have been extracted from the
probe position shown in Figure 6a.

5.2.2 Sobol’ Indices

In this section we interpret the Sobol’ indices computed during the experiments.
Figure 8 presents six spatial first order Sobol’ maps extracted from the ubiquitous
indices. Looking at these figures an analyst can deduce several things:
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(a) Top injection dye concentration (b) Bottom injection dye concentration

(c) Top injection width (d) Bottom injection width
a

(e) Top injection duration (f) Bottom injection duration

(g) Variance map at the 80th timestep

Figure 8 First order Sobol’ index maps on a slice of the mesh at timestep 80. The left column
corresponds to the Sobol’ indices for the upper injector while right corresponds to the bottom
injector. All maps are scaled between zero (blue) and one (red).
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(a) Top injection (b) Bottom injection

(c) Sum of all first order Sobol’ indices

Figure 9 Addition of first order Sobol’ index maps on a slice of the mesh at timestep 80. The left
panel corresponds to the addition of the Sobol’ indices for the upper injector while right corresponds
to addition for the bottom injector. All maps are scaled between zero (blue) and one (red).

1. The width of the injections influence locations far up or down of each injector
(Figure 8c and 8d). This is because the injectors are located in the center of the
inlet segments, as depicted by the arrows in Figure 4. The parameter controlling
the aperture of an injector makes a thinner or wider aperture around a central
position. When the aperture’s width is small, all dye is injected on the center
while very few will go up and down. On the opposite, when the injector is at its
maximal aperture, dye can easily flow to extreme vertical locations. In any case,
the dye always flows in the center of the injectors which makes this parameter
not influential around these areas.

2. The Sobol’ maps for the duration of the injection (Figure 8e and 8f) can be
understood by thinking about the temporal evolution of the simulation. When
the simulations are just started, they all inject dye and the duration represents
the time at which this injection is stopped. Figure 8 represents a state near the
end of the simulation. Thus, it is not surprising that this parameter does not
influence the right part of the domain (where all simulations were injecting
dye) while it strongly influences the left side (where some simulations already
stopped injecting while others continued).



Unlocking Large Scale Uncertainty Quantification with In Transit Iterative Statistics 21

3. Finally, the dye concentration mostly influences the areas were the other pa-
rameters have less influence, that is to say the center of the top and bottom
channels, and the right side of the flow (Figure 8a and 8b).

We recommend co-visualizing Sobol’ indices with the variance of the whole
model output; Figure 8g shows this variance map for the Sobol’ indices presented
in Figure 8. One of the reasons of this co-visualization is that Var(Y ) appears as
a denominator in Eq. (3), consequently when Var(Y ) is very small or zero, the
Sobol’ indices have no sense due to numerical errors or can even produce a zero
division. Furthermore, it is not conceptually interesting to try to understand which
input parameters influence low variance areas of the simulation once we know that
’not much happens’ in these areas.

5.3 Combining Sobol’ Indices

The sum of Sobol’ indices should be 1 and they partition the total variance of
the outputs. These two characteristics allow Sobol’ indices to be grouped (added)
or subtracted. If the indices are added, the resulting "Sobol group index" keeps
normalised between zero and one. We show two examples of the use of such groups:

1. Figure 9a corresponds to the sum of the Sobol’ indices for the upper injector
while Figure 9b corresponds to the sum for the bottom injector. We clearly ob-
serve that the three parameters that define the behavior of the upper injector have
no influence in the lowest half part of the simulation domain. This phenomenon
can also be observed by simultaneously looking at the Sobol’ maps of the three
parameters for the upper injector (Figure 8a, 8c and 8e). However, the grouped
Sobol map is clearer and gives a straightforward answer to the question "What is
the influence of the upper injector?". Respectively, the parameters of the bottom
injector do not influence the upper part of the simulation as directly observed
on Figure 9b (or looking at Figure 8b, 8d and 8f).

2. We also calculate S1+ ...+Sn, with n = 6, shown in Figure 9c, which gives us an
indication of the importance of the interactions between parameters. Red areas
of Figure 9c indicate that the first order Sobol indices are responsible of the
behaviour of the simulation. On the contrary, when this sum is near zero (blue in
the map) this means that the kind of relationship between input parameters and
model outputs is complex and involves cross-effects among several parameters.
We observe that the areas where interactions among Sobol’ indices are important
concentrates spatially around the injectors.
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6 Conclusion

Dealing with uncertainty quantification may require executing from thousands to
millions of runs of the same simulation, making it an extremely compute-intensive
process that will fully benefit from Exascale machines. However, the large amount
of data generated is a strong I/O bottleneck if the intermediate data is saved to
disk. The proposed approach, implemented in the Melissa framework, demonstrates
that combining one-pass statistics algorithms with an elastic and fault-tolerant in
transit data processing architecture drastically reduces the amount of intermediate
data stored, making it possible to compute ubiquitous statistics.

Melissa currently allows the in transit execution of large scale uncertainty quantifi-
cation studies. This open-source software2 currently implements the computation of
the statistical tools necessary for this purpose: moment-based statistics (mean, stan-
dard deviation, higher orders), quantiles, Sobol’ indices, and threshold exceedance.
Future work will include the integration of Melissa with the OpenTurns uncertainty
quantification software to consolidate and broaden their respective capabilities.
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