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Abstract

ML modules are offer large-scale notions of composition and modularity. Provided as
an additional layer on top of the core language, they have proven both vital to the working
OCaml and SML programmers, and inspiring to other use-cases and languages. Unfor-
tunately, their meta-theory remains difficult to comprehend, requiring heavy machinery
to prove their soundness. Building on a previous translation from ML modules to Fω,
we propose a new comprehensive description of a generative subset of OCaml modules,
embarking on a journey right from the source OCaml module system, up to Fω, and back.
We pause in the middle to uncover a system, called canonical that combines the best of
both worlds. On the way, we obtain type soundness, but also and more importantly, a
deeper insight into the signature avoidance problem, along with ways to improve both the
OCaml language and its typechecking algorithm.

1 A powerful but imperfect module system

Modularity is a key technique to break down a complex program into parts at different levels
of abstraction. Instead of dealing with technical details and complex invariants at all times,
programmers can split the code-base into manageable parts, called modules, and structure
the relationship between those modules by specifying their interfaces and interactions. Code
might be packed into a module to make a component, such as the implementation of a data-
structure, reusable and often polymorphic—effectively factorizing development. Controlling
the interactions between modules through a cautious choice of interfaces is not only a tool for
correctness; using abstraction, it is also a way to enforce invariants and to allow for several teams
of developers to work independently on different parts of the same program while enjoying a
language-level guarantee that they respect the invariants of other parts.

A wide variety of techniques can be used to apply modularity concepts to software develop-
ment: simple compilation units, classes, packages, crates, etc. In languages of the ML-family,
modularity is provided by modules, which form a language layer built on top of the core lan-
guage. The interactions between modules are controlled statically by a strict type system,
making modularity work in practice and with little run-time overhead. A module is described
by its interface, called a signature, which serves as both a light specification and an API.

The OCaml module system is especially rich and still under development for new features.
It provides both developer-side and user-side abstraction mechanisms: developers can control
the outside view of a module by explicitly restricting its interface, while users can abstract
over a module with a given interface using a functor. The signature language allows to both
restrict and control the interface of a module, specifically by hiding fields (which corresponds
to the distinction between public and private fields in Object-Oriented Programming), or by
abstracting type components—keeping types accessible while hiding their definitions.

The OCaml module system is renowned for its expressiveness, ease of use, and the properties
it can statically enforce. All sizable OCaml projects use modules to access libraries or define
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Figure 1: A representation of the mis-
match between the reachable space of mod-
ule expressions (outer-most circle) and the
describable space of signatures (inner el-
lipse). The common use-cases of OCaml
are mainly within the area where the type-
checker behaves correctly. In some cases,
the current OCaml typechecker can lose
type-equalities while still being in the de-
scribable space. This may lead to (1)
producing a signature where some type
fields are unnecessarily made abstract (over-
abstraction) or (2) failing at inferring the
signature (incorrect avoidance).

parametric instances of data structures (sets, hashtables, streams, etc.). Several successful
projects have made heavy use of modules, as in MirageOS [Madhavapeddy et al., 2013] where
modules and functors are even assembled on demand using a DSL [Radanne et al., 2019].
Despite the successes and the interest of the community regarding ML modules, giving it a
formal type-theoretic definition and establishing its properties has proven to be a difficult task.

Besides the academic interest, having a formal semantics is made even more necessary to
envision extensions such as modular implicits [White et al., 2014] where new modules could be
built automatically from their signatures by applications of functors to other modules.

1.1 The signature avoidance problem

The signature avoidance problem is a key issue of ML-module systems. It originates from
a mismatch, illustrated in Figure 1, between the expressiveness of the module and signature
languages: the reachable space of possible module expressions is larger than the describable
space of signatures: some modules can’t be described by a signature. This issue can be solved
either by sticking to the describable space and ensuring that the typechecker correctly covers
it or by extending signatures to make the reachable and describable spaces coincide.

This mismatch is caused by the interaction of three mechanisms. First, type abstraction,
which is key to control access and protect invariants by typing, creates new types that are only
compatible with themselves (or aliases of themselves). Second, sharing abstract types between
modules, which is essential for module interactions, produces trees of type-alias equalities.
Finally, hiding type components (through either explicit projections or implicit subtyping during
functor applications) can remove abstract type aliases from scope, while other components
(values or types) kept in scope may refer to them (for instance, removing an abstract type t
while keeping a value of type t list). In some situations, there is no possible signature to infer
for a module; in other situations, there are several incompatible ones.

We illustrate this abstraction mechanism in Example 1. Each source code comes with a
representation of the type equalities and aliases as a tree of type equalities. The connected
components of the tree represent equal, interchangeable types that all belong to the same
equivalence class. They can be rooted with base types (int, bool, string, etc.) or constructed
over other types (like int list, int → int, int × bool, etc.) or previously defined abstract
types. Abstracting a type effectively removes a link in the type-sharing tree, which splits a
connected component.

Example 1 precisely illustrates this potential loss of type sharing when using module oper-
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1 module type S = sig
2 type t
3 type u = t
4 end
5 module M = struct
6 module X = (struct
7 type t = int
8 type u = t
9 end : S)

10 module Y : struct
11 type a = X.t
12 type b = X.t
13 type c = X.u
14 end
15 end

int

X.t X.u

Y.a Y.b Y.c

×

1 module type S = sig
2 type t
3 type u = t
4 end
5 module M = (struct
6 module X = (struct
7 type t = int
8 type u = t
9 end : S)

10 module Y : struct
11 type a = X.t
12 type b = X.t
13 type c = X.u
14 end
15 end).Y

int

X.t X.u

Y.a Y.b Y.c

×

Example 1: Two examples of modules and associated type-sharing trees.

ations. On the left-hand side, restricting the signature of the module X to the module type S
removes the link between X.t and int (grayed out in the type-sharing tree): this becomes
hidden to the typechecker outside of the body of the module X. On the right-hand side, the
projection on the submodule Y removes X.t and X.u. The types Y.a, Y.b, and Y.c are pointing
to out-of-scope types: they must be changed or deleted. This shows why expressing membership
to an equivalence class through paths is fragile: the removal of type fields can split connected
components apart, resulting in a loss of type-sharing or incorrect signatures.

Strategies for solving signature avoidance When a type declaration is referring to an
out-of-scope type, there are mainly three strategies to correct the signature: (1) abstracting the
type (effectively ignoring the previous link in the tree), (2) rewriting the type equalities using in-
scope aliases (effectively rewiring the tree to maintain connected components), or (3) extending
the signature syntax with existential types. The first strategy can lead to loss of type sharing,
but is easy to implement—it is the one currently in use in the OCaml typechecker. The cases
where the second strategy succeeds constitute the solvable cases of signature avoidance. The
OCaml type-checker only tries to follow directed edges of the tree until it finds an accessible
type, but does not follow reverse edges and thus does not have a notion of connected components.
In Example 1, it would fail at finding that Y.a, Y.b and Y.c are aliases. Sometimes, no in-scope
alias is available and signature avoidance cannot be solved without an extended syntax: those
are the general cases of signature avoidance.

Signature avoidance in practice OCaml developers usually get around this limitation
by explicitly naming modules before using them, which adds always-accessible root points to
the graph. The module syntax of OCaml actually encourages this approach by limiting the
places where inlined, unnamed modules and signatures can be used. In particular, projection
on an unnamed module (as done in Example 1) is forbidden. However, explicit naming is
sometimes cumbersome, which can limit the usability of module-based programming patterns
such as modular implicits. It also prevents a fine-grained management of types shown in public
APIs.

1.2 Related work

Previous work has provided solid formal foundations for ML-modules. The link between ab-
stract types in ML-module systems and existential types in Fω was already explored by Mitchell
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Source (§2) Canonical (§3) Hybrid (§B) Fω (§B)

Canonification
(§3 & Theorem 1)

Anchorability
(§4 & Theorem 2)

Enrichment
(§B & Theorem 5)

Correctness of elaboration
(§B & Theorem 4)

Correctness of elaboration
(§B & Theorem 4)

Figure 2: The different systems: their links, with theorems and sections.

and Plotkin [1985]. This vision was opposed by MacQueen [1986], who considered existential
types to be too weak, and proposed using a restriction of dependent types (strong sums) to
describe module systems. Further work, notably on phase separation by Harper et al. [1989],
supported the idea that dependent types may actually be too powerful (thus, unnecessarily
complex) for module systems. SML modules were first described by Harper et al. [1989]. Two
approaches for the formalization and improvement of abstract types in SML were later concomi-
tantly described by Leroy [1994] (through manifest types) and Harper and Lillibridge [1994]
(via an adapted Fω with translucent sums). The OCaml module system itself was specified
by Leroy [1994, 2000], and later with an extension to applicative functors [Leroy, 1995].

The use of existential types to interpret signatures by Russo [2004] opened the door for
a simplified link between modules and Fω. Type generativity is also explored by DREYER
[2007], using stamps in place of existential types. A similar, but logically-based approach
was later developed by Montagu and Rémy [2009] introducing the concept of open existential
types. Pushing Russo’s idea further, a closer correspondence between ML-modules and Fω

was achieved by Rossberg et al. [2014] by elaborating a significant subset of the SML module
syntax into Fω. The type system is safe by construction, inheriting the property from Fω. A
limit of this approach is that, since the definition of modules is only given by translation, the
programmer must think in terms of the elaboration and only sees the elaborated types instead
of the usual signatures. This makes direct reasoning on the source program more difficult. Their
work, called the F-ing approach, also covered some difficult points like applicative functors and
first-class modules, and was partially mechanized in Coq. Moving one step further, Rossberg
[2018] achieved a unification of the core and module languages (thus, un-stratified) using Fω

as the underlying programming language and seeing module constructs as syntactic sugar.
More recently, Crary [2020] used involved focusing techniques to solve the signature avoidance
problem in the singleton-type approach (for SML modules) in a manner that turns out to have
some similarities with that of F-ing .

1.3 A journey into OCaml modules

Our approach is strongly inspired by previous works, which we re-explore in the context of
OCaml modules. Our goal is to provide a simpler and comprehensive type system for OCaml
modules, which could first serve as a specification, then help correct and improve the current
implementation, and, finally, serve as a basis for future extensions of the module language. Our
contributions are summarized in Figure 2.

We start by presenting a (mostly standard) self-contained specification of the OCaml mod-
ule system in §2, adapted from previous works. Critically, like the current OCaml implemen-
tation, this presentation suffers from the signature avoidance problem.

Then, we build on the insights of the F-ing [Rossberg et al., 2014] translation into Fω to
present a new set of typing rules. However, reasoning only by elaboration in Fω is hard, as
the elaboration introduces encoding layers and, crucially, uses a very different way of handling
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abstract types, making the correspondence between source and Fω terms and types rather
obscure. Instead, as hinted in the work of Russo [2004], we introduce a light extension of the
syntax for signatures with Fω-style quantifiers, which we call canonical signatures. They act
as a middle point between the path-based approach of the source and the quantified approach
of Fω, effectively splitting the translation effort in two steps. We introduce in §3 a new type
system for OCaml modules, called canonical, where the source module expressions are typed
with canonical signatures and source signatures translated into canonical ones. This system is
simpler than the source one and doesn’t suffer from the signature avoidance problem. Using our
one-way translation, we revisit and explain the ad-hoc techniques (strengthening, equivalence)
of the source presentation. We finally give the main result of this section: all source typing
derivations can be translated into canonical typing derivations (Theorem 1).

The reverse translation of signatures (from the canonical system to the source one) is not
always possible, as the former is more expressive than the latter. In §4 we explore when and how
we can translate canonical signatures back into OCaml signatures, which uncovers precisely
why the signature syntax lacks expressivity. This reverse process, called anchoring, is one of
our main contributions. We then show that we can restrict the canonical system at one specific
point to mimic the source system and only produce signatures that are valid regarding the
source typing (Theorem 2). Some details are also given in the appendix §A.

The link between the canonical system and Fω is conceptually easier while presenting some
technical challenges. For lack of space, it is only detailed in the appendix §B. We introduce
an hybrid system that produces both canonical and Fω objects in correspondence. The hybrid
system acts a central justification, as it can yield both the canonical system and the F-ing style
elaboration by projections. The canonical system was actually designed by erasing the terms
from the Fω encoding which can still be seen as implicit proof terms justifying the canonical
rules.

In this work, we restricted our system to a generative subset of the language. We believe our
approach also extends to applicative functors and other features (first-class modules, module
aliases, abstract signatures, etc.), which are left for future work. Our long term goal is to
extend OCaml signatures following the canonical system, thus completely solving the signature
avoidance problem. The canonical system would then be a standalone source system which can
be used by programmers to reason about OCaml programs, with the Fω elaboration ensuring
its soundness.

2 A generative subset of the OCaml module system

In this section we present a module system that models a generative subset of OCaml. We
present its grammar, several auxiliary judgments used, and end with its typing judgment.

2.1 Grammar and syntactic choices

Figure 3 gives the grammar for a generative subset of the module language. The language of
modules is built on top of a core language of expressions e and types τ which we leave abstract,
except for value identifiers x and type identifiers t, so that we can extend expressions with
qualified variables and types with qualified types.

Syntactic choices The language of module expressions and signatures is rather standard,
except for a few minor design choices. We consider the following conventions: module related
meta-variables use uppercase letters, M , X, etc. while lowercase letters are used for expressions

5



Retrofitting OCaml modules C. Blaudeau, D. Remy, G. Radanne

Path

P ::= A.X (Direct access)
| P.X (External Access)
| Y (Functor parameter)

Q ::= A | P (Prefix)

Module Expression

M ::= P (Path)
| M.X (Projection)
| (P : S) (Sealing)
| (Y : S)→M (Functor)
| P (P ′) (Application)

| structA B end (Structure)

Binding

B ::= letx = e (Value)
| type t = τ (Type)
| moduleX = M (Module)
| module type T = S (Module type)

Identifier

I ::= x | t | X | Y | T (Any identifier)

Signature

S ::= Q.T (Module type)
| (Y : S)→ S (Functor signature)

| sigA D end (Structural signature)

Declarations

D ::= valx : τ (Value)
| type t = τ (Type)
| moduleX : S (Module)
| module type T = S (Module type)

Environment

Γ ::= ∅ (Empty)
| Γ, (Y : S) (Functor Argument)
| Γ, (A.I : D) (Declaration)

Core language

e ::= Q.x (Qualified variable)
| . . . (Other expression)

τ ::= Q.t (Qualified type)
| . . . (Other type)

Figure 3: Syntax of the module language

and types of the core language. Lists are written with an overhead bar: D is a list of D. In
order to simplify the treatment of scoping and shadowing, we use self-references, ranged over
by letter A, in both structures and signatures to refer to the current object; their binding
occurrence appears as a subscript to the structure or signature they belong to, so that self-
references can freely be renamed. Abstract types are specified as types pointing to themselves,
e.g., type t = A.t where A is the self-reference of the current structure. In typing contexts Γ,
identifiers, denoted by I, are prefixed by the self-reference A of the structure or signature they
are meant to belong to. As an implicit convention, in entries A.I : D, the identifier extracted
from D is I. We introduce prefixes, written with the letter Q, to range over either a path P or
a self reference A. We use a distinct class of variables, written Y , for functor parameters, which
can be freely renamed. By contrast, and as usual with modules, neither identifiers X and T
for module expressions and signatures, nor the identifiers x and t for core language expressions
and types can be renamed, as they also play the role of an external name.

Projections and accesses Several restrictions are built into the grammar: field accesses
inside a module type are forbidden, since prefixes Q may not originate from a module type
identifier T ; and paths cannot contain functor applications, which makes the system fully
generative. We allow projection on any module expression, but we restrict functor application
to paths. Current OCaml does the opposite, mainly to prevent cases prone to trigger signature
avoidance. Our choice is more general, as the OCaml one can be encoded, while the converse
requires an explicit signature annotation on the functor argument.

Omitted constructs In addition to restricting the system to be generative, we omit some
constructs for the sake of simplicity: the include operator, explicit constraints S with type t = τ
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Subtyping (§2.6)

Γ
src

` S <: S′

Equivalence (§2.4)

Γ
src

` S ≈ S′

Resolution (§2.3)

Γ
src

` P . S and Γ
src

` Q.T /. S

Typing (§2.7)

Γ
src

` M : S and Γ
src

` S : X

Strengthening (§2.5)
Γ ` S/P � S′

Figure 4: Structure of judgments for the source system

(resp. module X = P ) and deleting constraints S with type t := τ (resp. module X := P ). We
believe that they do not impact the overall structure of the system, only adding more cases in
the set of rules. We did not include first-class modules.

2.2 System structure and judgments

The typing judgment uses several auxiliary judgments whose dependencies are presented in
Figure 4. The system we present revolves around two main components: typing (for module
expressions and signatures) and subtyping. The path-based representation of type sharing in
OCaml modules requires us to define two more judgments: equivalence and strengthening.
Finally, as retrieving signatures in the environment is non trivial, we define a pair of resolution
helper judgments. We present and explain these judgments in reversed order of dependency in
the subsequent subsections.

2.3 Resolution

In the OCaml module system, retrieving the signature of a given path (of a module stored in
the environment) is not as simple as a lookup. First, objects are stored with multiple levels of
indirection (like X.X ′.X ′′) which requires to inspect intermediary signatures. Secondly, every
signature can be a module type variables, which must also be resolved to its definition before

accessing a field. For this purpose, we recursively define a path resolution judgment Γ
src

` P . S

which gives the signature S of a path P and a signature resolution judgment Γ
src

` Q.T /. S,
which retrieves the definition S of a module type Q.T (both in an environment Γ).

We show below two examples of resolution rules. Rule S-Res-Modtype links path resolution
and signature resolution: if the path resolution of P returns a module type Q.T , the definition
of Q.T should be resolved to a signature S. Rule S-Res-Proj-Mod accesses a submodule X of
a module path P . This rule illustrates the transformation of local links in the signature S (that
might refer to other components of the module at P via its self-reference A) into absolute ones
by substitution of the self-reference A for the path P . The full set of rules is given in §C.1.

S-Res-Modtype

Γ
src

` P . Q.T Γ
src

` Q.T /. S

Γ
src

` P . S

S-Res-Proj-Mod

Γ
src

` P . sigA D end (moduleX : S) ∈ D

Γ
src

` P.X . S[A 7→ P ]

2.4 Equivalence

In the path-based approach of OCaml, several paths can resolve to the same type, as illustrated
in §1.1. A type definition can have several equivalent expressions, called aliases. This leads
us to consider a notion of type equivalence based on the existence of a common ancestor when
browsing the type sharing tree of aliases. This can be seen in the rules S-Eqv-Type-Res and
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1 module type S1 = sig
2 module X : sig
3 type t
4 type u = t
5 end
6 module Y : sig
7 type a = X.t
8 type b = X.t
9 type c = X.u

10 end
11 end

X.t X.u

Y.a Y.b Y.c

1 module type S2 = sig
2 module X : sig
3 type t
4 type u = t
5 end
6 module Y : sig
7 type a = X.t
8 type b = a
9 type c = a

10 end
11 end

X.t X.u

Y.a Y.b Y.c

Example 2: Two equivalent signatures S1 and S2: they define two different type sharing trees
that yet have the same connected components. Specifically, two types are aliases in S1 if and
only if they are also aliases in S2.

1 module M =
2 (struct ... end : sig
3 type t (* abstract *)
4 type u = t
5 end)
6

7 module N = M

w
ith

ou
t str

en
gt

hen
in

g

with strengthening

1 module N : sig
2 type t
3 type u = t
4 end

M.t

M.u

N.t

N.u

×

1 module N : sig
2 type t = M.t
3 type u = t
4 end

M.t

M.u

N.t

N.u

Example 3: Strengthening and its graphical interpretation

S-Eqv-Type-Local: a type is equivalent to its definition (and only to itself for abstract types).
With transitivity, symmetry, and reflexivity, we get an equivalence relationship on types.

S-Eqv-Type-Res

Γ
src

` P . sigA D end (type t = τ) ∈ D

Γ
src

` P.t ≈ τ [A 7→ P ]

S-Eqv-Type-Local

(A.t : type t = τ) ∈ Γ

Γ
src

` A.t ≈ τ

Building on this type equivalence, we define signature equivalence : two signatures are equivalent
if we can go from the first one to the second one by only substituting type aliases. This is
illustrated by the two signatures in Example 2. The full set of rules is given in §C.2.

2.5 Strengthening

The need for strengthening is illustrated in Example 3. When aliasing the module M on line 7,
the inferred signature for N cannot be straightforwardly obtained by copying the signature of M
without loss of type-sharing. Indeed, M defines an abstract type which is a root of a connected
component of the underlying type-sharing tree. Duplicating the signature duplicates the root,
effectively creating a separated connected component and thus, a new abstract type. The known
solution to this problem is to use a strengthening operation Γ ` P/S � S′ of a signature S by
a path P , producing S′, a strengthened version of S where each abstract type field has been
rewritten into a concrete type field pointing to its original definition in P .

Rule S-Str-Sig-Sig shows the case for declarations inside a signature. Our technical choice of
having abstract types represented as pointers to themselves (type t = A.t) makes the definition
of strengthening easy, as substituting the self-reference for the path suffices to transform local
links into absolute ones (type t = P.t). Thus, strengthening does not change declarations, except

8
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for submodules (rule S-Str-Decl-Mod) where the signature is strengthened with the extended
path P.X. Functor signatures are not strengthened, as they do not introduce new abstract
types. The full set of rules is given in §C.3.

S-Str-Sig-Sig

Γ ` D[A 7→ P ] /P � D′

Γ ` sigA D end/P � sigA D
′ end

S-Str-Decl-Mod

Γ ` S/ (P.X)� S′

Γ ` (moduleX : S) /P � moduleX : S′

2.6 Subtyping

The subtyping judgment has a fundamental role in the OCaml module system, as it allows
the user to define an abstract (polymorphic) interface and assign it to a module that has
a richer signature than this interface. In OCaml, some (but not all) subtyping operations
have computational content: the removal and reordering of fields implies a runtime copy of
the memory representation of the module. We thus distinguish two operations: Subtyping by

abstraction, written Γ
src

` S1 C: S2, which has no computational content and Subtyping, written

Γ
src

` S1 <: S2, which includes the former and also allows for removal and reordering of fields and
therefore has some computational content. Both judgments have the same rules, except for the
comparison of structural signatures.

Subtyping on signatures enforces a structural match (up to name resolution): functor signa-
ture against functor signature and structural signature against structural signature. The latter
case is where the only distinction between the two modes of subtyping appears: in subtyping
by abstraction, the two lists of declarations D and D′ are compared directly as shown in rule
S-Sub-Sig-Sig. In the general form of subtyping, a subset D0 of the declaration list D is com-
pared with D′, allowing for reordering and deletion, as shown in Rule S-Sub-Sig. Using a subset
instead of a subsequence allows for reordering.

S-SubEq-Sig-Sig

Γ, A.D
src

` D C: D′

Γ
src

` sigA D end C: sigA D
′ end

S-Sub-Sig-Sig

D0 ⊆ D Γ, A.D
src

À D0 <: D′

Γ
src

` sigA D end <: sigA D
′ end

In both rules, the subtyping is done declaration by declaration (independently), in an environ-
ment that contains all the declarations of the richer (left-hand-side) signature. This approach
matches well with our representation choice of abstract types, allowing us to have only one rule
for comparing both abstract types and concrete types declarations (rule S-Sub-Decl-Type).
The other subtyping rules for declarations are straightforward, and depends on signature sub-
typing. As a module type field can be used in both covariant and contravariant positions (as
functor arguments for example), the rule for subtyping a module type declaration checks sub-
typing in both directions. In §C.4 and in the following, the rules that are similar between
abstraction and general subtyping are given with the symbol ≺: being either <: or C:

S-Sub-Decl-Type

Γ
src

` τ ≺: τ ′

Γ
src

À (type t = τ) ≺: (type t = τ ′)

S-Sub-Decl-ModType

Γ
src

` S ≺: S′ Γ
src

` S′ ≺: S

Γ
src

À (module type T = S) ≺: (module type T = S′)

2.7 Typing

Once all the auxiliary judgments have been laid out, the typing judgment is mostly straightfor-

ward. All rules are given in §C.5. The judgments for signature typing Γ
src

` S : X and declarations
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typing Γ
src

À D : X ensure that no shadowing occurs and no free variables are used. We omit

the rules here. The judgment for bindings Γ
src

` B :D uses a core-language typing judgment for
expressions and typing of signatures, and is mutually recursive with the typing of modules (for
submodules). The rules are straightforward and omitted.

Module typing The judgment for modules contains both syntax-directed and free-floating
rules, making the presentation purposefully logical rather than algorithmic. There is an equiva-
lent algorithmic presentation, but it is more involved and hides the key insights of the separation
of operations between resolution, equivalence, strengthening, subtyping, and typing. Besides,
the equivalent, canonical model that we propose in the next section is better suited for deriving
algorithmic presentations for the source system. Free-floating typing rules must have no com-
putational content. Therefore, general subtyping (which has some computation content), is not
free floating: it should only be used at specific program points, namely functor application and
signature ascription, where the target signature of the runtime coercion is explicit in the source.
While having no computational content, subtyping by abstraction is still not made free-floating
to prevent unnecessary abstraction of types (which would lead to loss of type-sharing). The
syntax-directed rules are as follows:

S-Typ-Mod-Res

Γ
src

` P . S

Γ
src

` P : S

S-Typ-Mod-Sealing

Γ
src

` S : X Γ
src

` P : S′ Γ
src

` S′ <: S

Γ
src

` (P : S) : S

S-Typ-Mod-Struct

Γ
src

À B :D A /∈ Γ

Γ
src

` structA B end : sigA D end

S-Typ-Mod-Functor

Γ
src

` Sa : X Γ; (Y : Sa)
src

` M : S Y /∈ Γ

Γ
src

` (Y : Sa)→M : (Y : Sa)→ S

S-Typ-Mod-App

Γ
src

` P : (Y : Sa)→ S Γ
src

` P ′ : S′
a Γ

src

` S′
a <: Sa

Γ
src

` P (P ′) : S
[
Y 7→ P ′]

S-Typ-Mod-Proj

Γ
src

` M : sigA
(
D1,moduleX : S,D2

)
end Γ, D1

src

` S C: S′ Γ
src

` S′ : X

Γ
src

` M.X : S′

Functor application (Rule S-Typ-Mod-App) is normally a place where signature-avoidance may
occur. In our presentation however, the restriction of functor application to paths prevents
this issue. Indeed, as all the abstract types of the argument are defined in the context, no
type field is hidden by the application, and thus, no escaping of scope can occur. In contrast,
as the grammar allows projection on any module expression (which can hide type fields and
could trigger signature avoidance), the projection rule S-Typ-Mod-Proj is designed to tackle

the issue. The abstraction subtyping Γ, D1

src

` S C: S′ allows for cutting the links to types in S
that will become inaccessible outside of the signature of M , i.e., without the fields declared in
D1, so that the resulting signature S′ is wellformed in Γ. This rule is however too permissive,
as we allow to implicitly abstract more than necessary and lose some type sharing. Additional
conditions to prevent unnecessary loss of type sharing could be added to this rule, but they
would be complex to write down in this setting. Fortunately, they will be easy to express using
the canonical system.

Free-Floating rules Before doing a projectionM.X, we must allow to rewire the type sharing
tree so that types used in X point to other aliases (either external ones, i.e., accessible outside
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of M , or local ones, accessible inside of X). Similarly, we must allow strengthening to keep
sharing information between aliases. This leads to two additional free-floating rules:

S-Typ-Strengthen

Γ
src

` P : S Γ ` S/P � S′

Γ
src

` P : S′

S-Typ-Equiv

Γ
src

`M : S Γ
src

` S ≈ S′

Γ
src

`M : S′

Remarks on the source system While this declarative presentation of the source system
may appear relatively simple, it actually suffers from three main issues. First, it relies on the
equivalence judgment to guess correct rewritings in signatures. Second, type sharing can be
lost when projecting on a submodule via over-abstraction. Thirdly, the strengthening judgment
may seem ad-hoc, while being necessary to prevent loss of type-sharing. In current OCaml,
these problems are partially solved via heuristics which are sufficient in simple cases, but fail for
more advanced uses of modules. We now study a canonical presentation of the module system
that solves all three issues.

3 Canonical signatures and existential types

Some issues of the source presentation come from the ambiguity and weaknesses of the path-
based type-sharing. In this section, we present an alternative set of typing rules with an
extended syntax for signatures inspired by previous work on representation of modules in Fω.
This system, called canonical, has simpler typing judgments and does not suffer from the
signature avoidance problem. We show that the canonical system is more expressive than the
source one, as every module expression that can be typed in the source system can also be typed
in the canonical system with a signature that has at least the same amount of type sharing.

3.1 The need for existential types

In the source presentation, maintaining the connected components of the type sharing tree
throughout projection —where fields can be deleted— sometimes require rewriting type equali-
ties (through equivalence) or abstracting type fields (through abstraction subtyping). The core
issue is that source signatures store type equalities via a type sharing tree that is cumbersome
to handle. However, the information we are actually interested in is not the type sharing tree
itself, only the connected components. To handle those directly, we introduce an existential
type that acts as a canonical representative of the equivalence class. In the type sharing tree,
it can be seen as an additional point with a special status, and the whole tree is flattened to
one level of depth, as illustrated in Example 4. Rooted with an existential type that cannot be
deleted, the connected components become insensible to the loss of some type fields. Building
on this intuition, we present a new system, called canonical, where signatures use quantifiers
to handle abstract types.

3.2 System structure and judgments

The grammar of the language, given in Figure 5, extends the OCaml grammar of Figure 3.
Crucially, the source syntax (for modules and signatures) remains the same, including source
signatures, while new syntactical categories are introduced to represent canonical signatures
(and canonical types). By convention, we use curvy capitals (R, S, D, . . . ) for canonical
objects.

11
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1 module M : sig
2 module X : sig
3 type t
4 type u = t
5 end
6 module Y : struct
7 type a = X.t
8 type b = X.t
9 type c = X.u

10 end
11 end

X.t X.u

Y.a Y.b Y.c

1 module M : ∃α, sig
2 module X : sig
3 type t = α
4 type u = α
5 end
6 module Y : struct
7 type a = α
8 type b = α
9 type c = α

10 end
11 end

X.t

X.u

Y.a

Y.b

Y.c

α

Example 4: Comparison between the source and canonical signatures and their associated type-
sharing trees. Canonical signatures are extended with an existential binder that acts as a special
anchor point for the tree.

Canonical Types

τ ::= α (Existential identifier)
| . . . (Other types)

Environments

Γ ::= ∅ (Empty)
| Γ, α (Abstract types)
| Γ, (Y : R) (Functor Argument)
| Γ, (A.I : D) (Declaration)

Canonical abstract signatures

S ::= ∃α.R (Abstract signature)

Canonical manifest signatures

R ::= ∀α. (Y :R)→ S (Functor)

| sigA D end (Signature)

Canonical declarations

D ::= valx : τ (Values)
| type t = τ (Types)
| moduleX : R (Modules)
| module type T = λα.R (Module types)

Figure 5: Syntax extensions of the canonical module language.

We distinguish between manifest canonical signatures R that only refer to abstract types
bound in the context and abstract canonical signatures ∃α.R (written S) that also specify the
existential types α created by the module. Notice that canonical manifest signatures cannot
refer to other signatures (e.g., using paths), as these are always inlined. Signatures of functors
are polymorphic in the abstract types provided by the argument: indeed, these should be treated
abstractly, while they can also be returned and thus shared in the result. Signatures stored
in module type declarations are just parameterized by their abstract types: these will later be
existentially or universally quantified, depending on context. We use an Fω style λ-binding for
these. As we will see in the typing rules, the grammar restricts the positions where abstract
types are bounded (existentially or universally). For instance, inside a structural signature, all
submodules have manifest signatures, while functor bodies may bound new abstract types.

Canonical signatures remove the need for resolution, equivalence, and strengthening, which
significantly simplifies the overall presentation. The judgments are thus reduced to typing of
modules (and bindings), typing of source signatures, which we enrich to produce a canonical
signature, and subtyping.

3.3 Signature typing

We start with signature typing Γ
can

` S : λα.R and declaration typing Γ
can

À D : λα.D, as they
illustrate the key mechanism of abstract type lifting. The positions where abstract types are
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bound are crucial to ensure the correct sharing of types. First, abstract types are introduced
only by an abstract type declaration (Rule C-Typ-Decl-TypeAbs). Then, they are gathered
and lifted from abstract type definitions and submodules to their parent module to ensure
sharing between declarations in the same structure (rules C-Typ-Decl-Mod and C-Typ-Decl-

Seq). The lifting does not go through a functor definition (Rule C-Typ-Sig-Functor): indeed,
in the generative case, each application of the functor should create new unrelated abstract
types. The full set of rules are in §D.2.

C-Typ-Decl-TypeAbs
A.t /∈ Γ

Γ
can

À type t = A.t : λα. type t = α

C-Typ-Decl-Mod

Γ
can

` S : λα.R A.X /∈ Γ

Γ
can

À (moduleX : S) : λα. (moduleX : R)

C-Typ-Decl-Seq

Γ
can

À D1 : λα1.D1

Γ, α1, A.I1 : D1

can

À D : λα.D

Γ
can

À

(
D1, D

)
: λα1 α.

(
D1,D

)
C-Typ-Sig-Functor

Γ
can

` Sa : λα.Ra Γ, α, Y : Ra

can

` S : λβ.R Y /∈ Γ

Γ
can

` (Y : Sa)→ S : ∀α. (Y :Ra)→ ∃β.R

3.4 Subtyping

The subtyping between two canonical signatures ∃α.R and ∃α′.R′ is similar to the source
subtyping, with the addition of the mechanism to deal with quantifiers.

Rule C-Sub-Sig-Match allows us to compare abstract signatures, while the other subtyping
rules deal with concrete signatures. The types α created by the left-hand-side signature are
made available (i.e., pushed in the context), while the right-hand-side ones α′ are instantiated
with some types τ . If both signatures define the same abstract types (up to α-conversion),
a simple renaming instantiation α 7→ α′ is sufficient. Otherwise, the left-hand-side signature
R can be less abstract (i.e., binding fewer abstract types) than the right-hand-side one R′, in
which case some right-hand side abstract types are instantiated with concrete types.

For functor signatures (Rule C-Sub-Sig-Functor), the parameter is in a contravariant po-
sition, hence we check subtyping of the argument signatures in reverse order. As with the
source presentation, we distinguish between two kinds of subtyping: abstraction-only subtyping

Γ
can

` S1 C: S2 and general subtyping Γ
can

` S1 <: S2, which allows both abstraction and deletion
of fields. They differ only by the rules C-Sub-Sig-Sig vs. C-SubEq-Sig-Sig. In §D.1 and in the
following, the rules that are similar between abstraction and general subtyping are given with
the symbol ≺: being either <: or C:.

C-Sub-Sig-Match

Γ, α
can

` R ≺: R′[α′ 7→ τ
]

Γ
can

` ∃α.R ≺: ∃α′.R′

C-Sub-Sig-Functor

Γ, α′ can

` R′ ≺: R[α 7→ τ ] Γ, α′,
(
Y : R′) can

` S[α 7→ τ ] ≺: S ′ Y /∈ Γ

Γ
can

` ∀α. (Y :R)→ S ≺: ∀α′.
(
Y :R′)→ S ′

C-Sub-Sig-Sig

D0 ⊆ D Γ
can

` D0 ≺: D′

Γ
can

` sigA D end ≺: sigA D′ end

C-SubEq-Sig-Sig

Γ
can

` D C: D′

Γ
can

` sigA D end C: sigA D′ end

3.5 Typing

As with subtyping, the use of canonical signatures and existential types makes the typing simpler
and syntax directed. The key technical point is the lifting of the existential quantification that
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happens during typing, as already explained for the signature typing in §3.3.

Bindings typing The rules presented below for typing a binder give a list of canonical
declarations alongside a list of (created) existential types. The signature typing judgment is
used to convert source types and signatures (as in Rule C-Typ-Decl-ModType for instance)
into canonical types and signatures.

C-Typ-Decl-Mod

Γ
can

` M : ∃α.R A.X /∈ Γ

Γ
can

À (moduleX = M) : ∃α.(moduleX : R)

C-Typ-Decl-ModType

Γ
can

` S : λα.R A.T /∈ Γ

Γ
can

À (module type T = S) : (module type T = λα.R)

C-Typ-Decl-Seq

Γ
can

À B1 : ∃α1.D1 Γ, α1, A.I1 : D1

can

À B : ∃α.D

Γ
can

À B1, B : ∃α1α.D1,D

The existential types—which are lifted from submodules with Rule C-Typ-Decl-Mod—are
merged by Rule C-Typ-Decl-Seq, to extend their scope to the local enclosing module. For
example, if a module M has a submodule X which defines an abstract type α, the existential
quantification is lifted from the submodule X to the whole module M .

Module expressions typing Existential types are introduced only by explicit sealing (Rule
C-Typ-Mod-Sealing). Applying a functor to its argument (Rule C-Typ-Mod-App) can share
the types of the argument via the substitution [α 7→ τ ].

C-Typ-Struct

Γ
can

À B : ∃α.D A /∈ Γ

Γ
can

` structA B end : ∃α.sigA D end

C-Typ-Mod-Sealing

Γ
can

` S : λα.R Γ
can

` P :R′ Γ
can

` R′ <: R[α 7→ τ ]

Γ
can

` (P : S) : ∃α.R

C-Typ-Mod-Functor

Γ
can

` S : λα.R Γ, α, (Y : R)
can

` M : S

Γ
can

` (Y : S)→M : ∀α. (Y :R)→ S

C-Typ-Mod-App

Γ
can

` P : ∀α. (Y :R)→ S
Γ

can

` P ′ :R′ Γ
can

` R′ <: R[α 7→ τ ]

Γ
can

` P (P ′) : S[α 7→ τ ]

C-Typ-Mod-Proj

Γ
can

` M : ∃α.sigA D1,moduleX : R,D2 end

Γ
can

` M.X : ∃α.R

In the source presentation, the projection rule S-Typ-Mod-Proj is the only place where sig-
nature avoidance can arise, by cutting local links in unsolvable ways. We needed to allow for
abstraction subtyping. In the canonical presentation (Rule C-Typ-Mod-Proj), all the local
links go through existentially quantified abstract types in front of the signature. By keeping
all the existentially quantified types, projecting a component cannot cause signature avoidance:
all the abstract types (that could go out of scope and cause signature avoidance issues) that
M.X could use are in the list α and remain bound in the signature of M.X. The full set of
typing rules is given in §D.2.
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3.6 From the source to the canonical system

Both presentations share the same grammar for module expressions and signatures, and thus
have the same input for typing. By extending the typing predicate to environments (to check
wellformedness), we can translate source judgments (resolution, equivalence, strengthening)
into the canonical presentation. This translation—called canonification—gives insight on how
the source mechanisms can be understood in the canonical framework.

Typing of source environments We translate environments with source signatures into
their canonical counterparts, using signature typing, declaration typing, and the following rules:

C-Cf-Empty

∅
can

` ∅

C-Cf-FctArg

Γ
can

` Γs Γ
can

` S : λα.R

Γ, α, (Y : R)
can

` Γs, (Y : S)

C-Cf-Decl

Γ
can

` Γs Γ
can

À D : λα.D

Γ, α, (A.I : D)
can

` Γs, (A.I : D)

Canonification of resolution We now state how the resolution behaves regarding canonifi-
cation. The main difference between the two systems comes from the fact that abstract types
are quantified outside of the signature in the canonical system (the signature is always concrete),
while they are introduced anywhere inside source signatures (which may contain abstract type
definitions). Thus, the source signature obtained via resolution of P and the canonical signature
of P only differ by the presence of quantifiers.

Γs
src

` P . S ∧ Γ
can

` Γs ∧ Γ
can

` S : λα.R =⇒ Γ
can

` P :R (1)

Γs
src

` Q.T /. S ∧ Γ
can

` Γs ∧ Γ
can

` S : λα.R =⇒ Γ
can

` Q.T : λα.R (2)

Canonification of strengthening Via resolution, the introduction of abstract types is re-
exposed by the signature. To prevent an actual duplication of abstract types, the source pre-
sentation relies on strengthening. While the resolution of a path P corresponds to a canonical
signature with existential types bound in front, a strengthened signature can be made fully
concrete (no quantified types): all types refer to their original definition through the path P .
In the canonical presentation, this is a no-op, as all type definitions already go through the
proper quantified existential types in the context:

Γs
src

` P . S ∧ Γs ` S/P � S′ ∧ Γ
can

` Γs ∧ Γ
can

` S : λα.R =⇒ Γ
can

` S′ :R (3)

Canonification of equivalence As we described in the previous section, two equivalent
signatures have the same connected components of their type sharing tree. In the canonical
model, all connected components are flattened into a tree of depth 1, with an existentially
quantified variable at the root. This means that two equivalent signatures actually have the
same canonification, which matches the intuition (and naming) that canonical signatures are
indeed canonical. We get the following result:

Γs
src

` S1 ≈ S2 ∧ Γ
can

` Γs ∧ Γ
can

` S1 : S1 ∧ Γ
can

` S2 : S2 =⇒ S1 = S2 (4)

Canonification of subtyping As the rules of subtyping in the source and canonical systems
are very similar, the two judgments are also very similar. The only difference is that source
subtyping can lose type equalities by over-abstraction. However, in the canonical system, with
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Rule C-Sub-Sig-Match, the correspondence between the abstract types is dealt with at the
signature level, with no abstraction done at the declaration level. We get the following result:

Γs
src

` S1 <: S2 ∧ Γ
can

` Γs ∧ Γ
can

` S1 : S1 ∧ Γ
can

` S2 : S2 =⇒ Γ
can

` S1 <: S2 (5)

Canonification of typing Once all canonification results have been laid out, the typing
result becomes easy to write. All typing derivations can be translated into canonical ones, with
the only difference being that some over-abstraction during projections and resolutions can lead
to a source signature having lost some type sharing. This type-sharing loss, can be delayed to
the last step of the derivation (combining the losses of all the intermediary signatures), which
gives the following result:

Theorem 1 (Canonification of typing). Considering any module expression M that admits a
signature S in the source presentation, it also admits a corresponding canonical signature S
with more type equalities:

Γs
src

`M : S ∧ Γ
can

` Γs ∧ Γ
can

` S : S =⇒ Γ
can

` M : S ′ ∧ Γ
can

` S ′ C: S

This link between the source and canonical system shows the expressiveness of the latter
one, but is only half of the story. Exploring at which conditions the canonical derivations can
be translated back into the source will uncover a new concept: anchorability.

4 Anchoring: back to the source system

In this section we study the process of translating typing derivations from the canonical system
back into the source system, which we call anchoring. As the canonical system is more expressive
than the source one, it is not always possible to translate signatures back into the source syntax.
Still, we can precisely exhibit the conditions under which anchoring is possible. This gives a
new specification of the source system, which could also be used to improve the way signature
avoidance is actually resolved in OCaml.

The canonical system thus provides the intuition, formal guarantees, and algorithmic in-
sights for the design of OCaml’s modules mechanisms.

4.1 Quantification vs structural information

The key insight is the semantic difference in the source syntax between the declaration of a
concrete type (type t = τ) and that of an abstract type (type t). An abstract type declaration
states the introduction of both a new type and of a new field that may later be used as a
handle to refer to this abstract type, directly or indirectly via a path. For a signature used
in a covariant position, an abstract type declaration effectively creates a new type (existential
quantification) and adds a type field (structural information) to the signature. By contrast, a
concrete type definition only introduces structural information—adding a field to refer to an
existing type but without introducing a new type.

Canonical signatures separate the quantification information (existential, universal, or lambda
binders) from the structural information (fields). Thus, it makes the scope of abstract types
explicit, using the logical notion of binder, which is perfectly suited for that purpose. More
importantly, it allows to refer to types that do not yet have a handle, while the source system
cannot. This is illustrated in the following code :
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1 module X = (struct
2 module X0 = (... : sig type t end)
3 module X1 = struct
4 type u = X0.t * int
5 type v = X0.t * bool
6 end
7 end).X1

10 (* Canonical signature of X *)
11 module X : ∃α. sig
12 type u = α * int
13 type v = α * string
14 end

Here, a type definition (t) is lost when projecting only on the submodule X1. The source syn-
tax cannot express the existence of a type that is the first component of both u and v without
already having a handle to that type1: being forced to merge quantification and structural in-
formation limits the expressiveness. However, the module X can be given a canonical signature,
where the two kinds of information are clearly separated.

This allows us to better describe the solvable and unsolvable cases of signature avoidance
for the source presentation. In the solvable cases of signature avoidance, each use of an abstract
type has an in-scope alias (that can serve as a handle) defined before the type is used. In such
cases, the quantification and structural information coincide in a way expressible by the source
syntax. In other cases, signature avoidance is unsolvable.

4.2 Anchoring of canonical signatures

Building on the insights of the previous subsection, we can describe the anchoring process
that translates a canonical signature back into the source system when the quantification and
structural information coincide. The main mechanism boils down to identifying the first place
where an abstract type α is used. If it is at the top level of a type declaration type t = α, we say
that the existential type α is anchorable. In the corresponding source signature, we can make
t an abstract type definition, creating a handle to t that can then be used instead of α in the
canonical signature. The type t must be the first reference to the abstract type α, regardless
of whether or not it is the original definition point. If the type α is used earlier, we raise a
signature avoidance failure.

Example 5 illustrates the process of finding the first available position to rewire the type-
sharing tree of Example 1. We see the change of the defining instance of α, from X.t to Y.a
after a projection that makes X.t and X.u unreachable.

The anchoring process consists of associating abstract types with their first available aliases,
which we gather using an anchoring map θ : α 7→ Q.t. We define a signature anchoring judgment

Γ
anc

` S ↪→ Γs; θΓ ` S : θ that, given an environment Γ and a canonical signature S, produces a
source environment Γs associated with an anchoring map θΓ and a source signature S associated
with an anchoring map θ. In a nutshell, the judgment produces the source counterpart of the
canonical signature S by gathering the handles of the abstract types, and replacing the uses of
abstract types by their handles. The full set of rules is given in §D.3.

Using the anchoring judgment, we define anchorable typing, written Γ
anc

` M : S. The judg-

ment is defined by a copy of the typing rules for the judgment Γ
can

` M : S presented in §3.5,
except for the projection rule which takes an additional premise checking for anchorability of
the resulting signature. All anchorable typing derivations can be translated into source typing
derivations.

1Adding a type field for t would not work, as it would not be an equivalent signature.

17



Retrofitting OCaml modules C. Blaudeau, D. Remy, G. Radanne

X.t

X.u

Y.a

Y.b

Y.c

α

Canonical signature S1

↪→

X.u

Y.a

Y.b

Y.c

X.t

Source signature S1

X.t

X.u

Y.a

Y.b

Y.c

α

Canonical signature S2

↪→

X.t

X.u

Y.b

Y.c

Y.a

Source signature S2

Example 5: Graphical representation of the anchoring process on the type sharing trees. In the
two canonical signatures S1 and S2, the existential type α is anchorable. For S1, we can use
X.t for the handle to α, as done in S1. For S2, a projection removed X.t and X.u. The handle
becomes Y.a as shown in S2.

Theorem 2 (Anchorable typing). Anchorable typing produces a signature that is valid regard-
ing the source typing rules:

Γ
anc

` M : S ∧ Γ
anc

` S ↪→ Γs; θΓ ` S : θ =⇒ Γs
src

`M : S (6)

More explanations and the formal definition of the anchoring process are given in §A. This
completes the link between the source and canonical systems: canonical derivations can be
translated back into the source when we restrict their expressiveness. The last link, namely the
actual encoding in Fω that inspired the design of the canonical system, is detailed in §B.

Conclusion

ML-Module systems are known for being a well-studied but complex topic. The path-based,
OCaml approach has proven to be successful in practice, but has some structural issues. While
being restricted to a generative subset, our study of the signature avoidance problem in the
source presentation exposes the limitations of the current signature syntax. These limitations
are at the heart of the need for ad-hoc and complex fixes (strengthening, equivalence). Building
on previous works, we introduced the canonical system as a more expressive yet simpler lan-
guage, equipped with the right construction (existential types) to separate quantification and
structural information, and solve the main issues of the source system. Using the canonical
system, we shined a new light on the ad-hoc techniques of the source presentation and provided
a detailed description of the solvable and unsolvable cases of signature avoidance. While still
being close to the OCaml source, the canonical presentation can easily be elaborated into Fω,
which provides formal guarantees. As a middle-point between usability and formalism, the
canonical system is both a comprehensive description and a framework for building new fea-
tures and improving the algorithms (specifically for the solvable cases of signature avoidance)
of the current OCaml typechecker.
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A Anchoring

A.1 Anchoring of signatures

In this section we present in more details the mechanism that, under certain conditions, allows
to build one of the source signatures corresponding to a given canonical signature. As mentioned
in §4.2, the anchoring judgment, written

Γ
anc

` S ↪→ Γs; θΓ ` S : θ

states that, given a canonical signature S and environment Γ, we can build a corresponding
source signature S and source environment Γs. Both are returned with an anchoring map (θ for
the signature and θΓ for the environment) that gives a path Q.t for the handle of every abstract
type α.

The anchoring map is extended when a type declaration with an un-mapped existential is
encountered, which can be seen in rule C-Ach-Decl-AnchorPoint: the anchoring of the type
declaration returns a non-empty map α 7→ t. In contrast, if the type field is concrete, an empty
anchoring map is produced, as in Rule C-Ach-Decl-Type. Maps are merged together with
the sequence rule C-Ach-Decl-Seq, via the merging operator ]. The map associated with the
left-hand-side declaration is prefixed with the self-reference. More generally, we write Q.θ as a
shortcut for the map α 7→ Q.θ(α).

C-Ach-Decl-AnchorPoint

Γ ↪→ Γs : θΓ α /∈ dom(θΓ)

Γ
anc

À type t = α ↪→ Γs; θΓ ` type t = A.t : (α 7→ t)

C-Ach-Decl-Type

Γ
anc

` τ ↪→ Γs; θΓ ` τ ′ : ∅

Γ
anc

À type t = τ ↪→ Γs; θΓ ` type t = τ ′ : ∅

C-Ach-Decl-Seq

Γ
anc

` D ↪→ Γs; θΓ ` D : θ Γ
anc

` D ↪→ (Γs, A.I : D) ; (θΓ ]A.θ) ` D : θ′

Γ
anc

À D,D ↪→ Γs; θΓ ` D,D : θΓ ] θ′

The judgment is easily extended to signatures and environments. Rule C-Ach-Env-Decl shows
how the anchoring map associated with a single declaration is merged with the environment
map.

C-Ach-Env-Decl

Γ ↪→ Γs : θΓ Γ, α
anc

À D ↪→ Γs; θΓ ` D : θ dom(θ) = α

Γ, α,A.I : D ↪→ (Γs, A.I : D) : θΓ ]A.θ

A.2 Anchorable typing

As mentioned in §4.2, we can use the anchoring judgment to restrict the canonical typing to
anchorable signatures. In our approach, the only place where a non-anchorable signature can
be introduced is during projection on a submodule. Thus, we reuse all the rules of §3.5, except
for the projection rule, which is modified to force the resulting signature to be anchorable:

C-TypA-Mod-Proj

Γ
anc

` M : ∃α.sigA D1,moduleX : R,D2 end Γ
anc

` ∃α.R ↪→ Γs; θΓ ` S : θ

Γ
anc

` M.X : ∃α.R
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As expected, the anchorable typing, as a restriction of the canonical typing to source-only
mechanisms, respects the source typing. More formally:

Theorem 3 (Anchorable typing). Given any environment Γ, module M and (canonical) sig-
nature S, the anchored signature S is a valid signature for the source typing:

Γ
anc

` M : S

Γ
anc

` S ↪→ Γs; θΓ ` S : θ

 =⇒ Γs
src

`M : S (7)

The proof of this theorem uses the following lemma :

Lemma 1 (Anchorability of subtyping). Given Γ, Γs, σΓ, two canonical signatures S1 and S2,
two source signatures S1 and S2, and two substitutions σ1 and σ2, we have:

Γ
anc

` S ↪→ Γs; θΓ ` S : θ

Γ
anc

` S ′ ↪→ Γs; θΓ ` S′ : θ′

Γ
can

` S <: S ′

 =⇒ Γs
src

` S <: S′ (8)

This completes the presentation of the link between the source and the canonical systems.
As mentioned, the canonical system was designed as a simpler presentation of the mechanisms
found in the Fω encoding of modules. To complete this presentation, the next section gives in
more details the encoding and the main techniques used, especially regarding the sharing of
abstract types.

B Fω and elaboration

To properly finish the transition from source to Fω via the canonical system, we are missing
one final link from the canonical system to Fω. In this section we give formal foundations and
guarantees for the canonical system through elaboration into Fω: the elaboration is defined
by hybrid judgments that relate module expressions and canonical signatures to terms and
types of Fω. This gives a precise correspondence between the key mechanisms of the canonical
system, in particular existential types, and standard mechanisms of Fω. The canonical system
can actually be understood as a particular mode of use of Fω. Thanks to Fω, elaborated
terms enjoy the properties of soundness, progress, and type preservation. In fact, the canonical
system has been designed with the elaboration in mind, mainly by erasing proof terms and only
retaining Fω types. Hence, the elaboration is mostly straightforward.

Although, we use Fω as the target language, we do not actually need the power of Fω

to model generative functors. The reason to pursue the development in Fω is to also allow
parameterized types in the source language and to be able to extend the encoding to the case
of applicative functors in the future.

We start by giving the syntax and rules of the version of Fω (extended with existential
types and records) that we use for the elaboration and present the Fω terms and types that
encode modules and signatures. Then, we introduce the hybrid judgments. Finally, we state
the correctness theorem for the elaboration and the link between the canonical system and Fω.

This section is largely inspired by Rossberg et al. [2014]. We only made minor changes to the
encoding of module expressions and signatures: the encoding of module types use λ-abstraction
rather than existential quantification; declarations are encoded differently. The main difference
is the extension of the judgments to produce both the Fω type and the canonical signature,
whereas in Rossberg et al. [2014], typing and subtyping are only defined by elaboration.
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κ := Ω | κ→ κ (kinds)

ρ := α | ρ→ ρ | {` : ρ} | ∀α : κ.ρ | ∃α : κ.ρ | λα : κ.ρ | ρ ρ (types)

E := x | λx : ρ.E | E E | {` = E} | E.` | λα : κ.E | E ρ
| pack 〈ρ,E〉ρ | unpack 〈α, x〉 = E inE (terms)

W := λx : ρ.E | {` = W} | λα : κ.E | pack 〈ρ,W 〉ρ (values)

Γ := · | Γ, α : κ | Γ, x : ρ (environments)

Figure 6: Syntax of Fω

Abstract signature

Π := ∃α.Σ
Concrete signature

Σ := ∀α.Σ→ Π (Functor)

|
{
ζ
}

(Signature)

Declaration (with syntactic sugar)

ζ := valx : ρ , `x : ρ (Value)

| type t = ρ , `t : 〈〈ρ〉〉 (Type)

| moduleX : Σ , `X : Σ (Module)

| module type T = λα.Σ , `T : 〈〈λα.Σ〉〉 (Module type)

Figure 7: Syntactic categories and encoding

B.1 F-omega and encoded signatures

We use a standard variant of explicitly typed Fω with primitive records and existential types;
We only give its syntax in Figure 6; its typing rules are available in §E. We use letters ρ and E
to range over types and expressions so as to distinguish them from the core language types and
expressions, τ and e, although these should be seen as a subset of ρ and E. While kinds are
part of terms, we usually omit them in Fω terms for the sake of conciseness and readability.

To help with the elaboration, we assume a collection `I of record labels indexed by iden-
tifiers of the canonical (and source) system. The encoding of the canonical system into Fω is
described in Figure 7. Functors are encoded as functions and structural signatures as records.
Declarations are encoded as record entries: we use the category of the identifier to distinguish
between the encoding of values, types, modules and module types. We also introduce some
syntactic sugar to have the encoding of declarations look similar to the usual canonical and
source syntax. We use the following (overloaded) operator to shorten the encoding of type and
module-type fields, with the type encoding on the left and the corresponding term on the right:

〈〈ρ〉〉 := ∀(β : κ→ ?).β ρ→ β ρ (Type) 〈〈ρ〉〉 := Λ(β : κ→ ?).λ(x : β ρ).x (Term)

This allows to represent type fields as Fω terms, specifically record fields: the term is always
the identity and only its type encoding in the annotation matters, namely to enforce typing
constraints. Indeed, erasing type fields during elaboration would have been possible, but this
would prevent the elaboration from distinguishing canonical terms that would only differ from
their type fields. This will ensure that two modules that differ only from their type definitions
(i.e., their type fields) will also differ in their signatures. The type is generalized with a type
operator β to allow the encoding of higher-kinded types.

A representative example of the encoding of a simple module is given in Example 6. The
encoded signature is a type of Fω that can be read as a canonical signature. Using the syntactic
sugar makes the similarity with the source type even more striking. In the evidence term, we
can see that the sealing of int corresponds to a pack〈int, . . .〉 term. To share the abstract type
between the two fields (X and u), the abstract type is unpacked and then repacked, using a
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pattern of the form unpack〈α, ·〉 = · in pack〈α, ·〉 called a repacking pattern.

1 module M = struct
2 module X = (struct
3 type t = int
4 let v = 42
5 end : sig
6 type t
7 val v : t
8 end)
9 type u = X.t*bool

10 end

Encoded signature

Π = ∃α


`X :

{
`t : 〈〈α〉〉
`v : α

}
`u : 〈〈α× bool〉〉

 , ∃α


moduleX :

{
type t = α
val v : α

}
typeu = α× bool


Encoded module

E = unpack〈α1, y1〉 = pack 〈int, {`X = {`t = 〈〈int〉〉, `v = 42}}〉 in
unpack〈∅, y2〉 = {`u = 〈〈(α1 × bool)〉〉} in
pack 〈α1, {`X = (y1.`X), `u = (y2.`u)}〉

Example 6: A simple module with two components (a submodule X and a type definition u).
Its signature is encoded into a type Π of Fω. A term E (called an evidence term) represents
the module and has type Π.

B.2 An extension of the canonical system

The hybrid system can be seen as an extension of the canonical one: the judgments are extended
to actually present both the canonical and Fω parts. We define all judgments over an extended,
hybrid environment ∆ that contains both canonical and Fω terms, defined as follows:

∆ ::= ∅ | ∆, α | ∆, (Y : (R,Σ)) | ∆, (A.I : (D, ζ))

The elaborated judgments rely on a core-language translation into Fω for terms and types, that
is omitted here.

B.2.1 Subtyping

We define the subtyping judgment ∆
elab

` S1 <: S2 Π1 <: Π2 ⇒ f , which follows closely the
canonical one, as the handling of canonical signatures and Fω types are similar. We use a version
of Fω with explicit subtyping, so the judgment is extended to produce a subtyping function
f : Π1 → Π2. The nature of this subtyping function gives interesting insights on the compilation
of modules. For abstraction-only subtyping, the subtyping function is βη-convertible to the
identity as the memory representation of modules (the terms) are the same when stripped of
types. For general subtyping (with reordering or deletion of fields), the subtyping function is
not code-free; correspondingly, it requires a specific action from the compiler (copy, access table,
etc.).

The rule for functor subtyping E-Sub-Sig-Functor illustrates the main mechanisms: build-
ing on the subtyping functions (and type matching τ) for the parameter and the body, we craft
a subtyping function from the left-hand-side functor signature to the right-hand-side one. All
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the rules are given in §F.1.

E-Sub-Sig-Functor

∆, α′ elab

` R′
a <: Ra[α 7→ τ ] Σ′

a <: Σa[τ 7→ α]⇒ fa

∆, α′, (Y : (R′
a,Σ

′
a))

elab

` S[α 7→ τ ] <: S ′ Π[α 7→ τ ] <: Π′ ⇒ f Y /∈ ∆

∆
elab

` ∀α. (Y :Ra)→ S <: ∀α′. (Y :R′
a)→ S ′ ∀α.Σa → Π <: ∀α′.Σ′

a → Π′

[λ (g : (∀α.Σa → Π)) .Λα′.λ (x : Σ′
a) . f (g τ (fa x))]

B.2.2 Typing

As for subtyping, the typing rules extend the canonical ones and produce an Fω type (and term
for module and bindings). When handling signatures and types, the lifting of existentials is
just a rewriting. Producing the actual proof terms shows how the extension of scope is made
using the repacking pattern. All the rules are given in §F.2.

Binding typing rules A binder is encoded with a single-field declaration record. The extru-
sion of existential types is illustrated in Rule E-Typ-Decl-Mod. In the sequence rule E-Typ-

Decl-Seq, two bindings are merged using a let-binding for renaming. The extension of scope
needed to make the abstract types of the first declaration α1 available to the rest also uses the
repacking pattern.

E-Typ-Decl-Mod

∆
elab

` M : ∃α.R e : ∃α.Σ A.X /∈ ∆

∆
elab

À (moduleX = M) : (∃α.moduleX : R)  unpack〈α, y〉 = e in pack〈α, {`X = y}〉
: (∃α.moduleX : Σ)

E-Typ-Decl-Seq

∆
elab

À B1 : ∃α1.D1 e1 : ∃α1. {ζ1} ∆, α1, A.I1 : (D1, ζ1)
elab

À B : ∃α.D e : ∃α.
{
ζ
}

∆
elab

À B1, B : ∃α1α.D1,D  unpack〈α1, x1〉 = e1 in

unpack〈α, x〉 = (letA.I1 = x1.`I1 in e) in

pack〈α1α,
{
`I = x1.`I , `I = x.`I

}
〉

: ∃α1α.
{
ζ1, ζ

}

Module expressions typing We only present the key typing rules for module expressions.
The introduction of abstract types is done by sealing (E-Typ-Mod-Sealing), and features an
explicit isolated packing (as opposed to a repacking). The application of functor (E-Typ-

Mod-App) shows how the polymorphic interface (universally quantified) is instantiated with
types (obtained from the matching of the argument’s and parameter’s signatures). Finally, the
projection rule (E-Typ-Mod-Proj) illustrates another usage of the repacking pattern to collect
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abstract types, project on the X submodule, and put back the abstract types.

E-Typ-Mod-Sealing

∆
elab

` S : λα.R λα.Σ ∆
elab

` P : R′ e : Σ′

∆
elab

` R′ <: R[α 7→ τ ] Σ′ <: Σ[α 7→ τ ]⇒ f

∆
elab

` (P : S) : ∃α.R pack〈τ , (f e)〉 : λα.Σ

E-Typ-Mod-App

∆
elab

` P ′ : R′ e′ : Σ′

∆
elab

` P : ∀α. (Y :R)→ S  e : ∀α.Σ→ S
∆

elab

` R′ <: R[α 7→ τ ] Σ′ <: Σ[α 7→ τ ]⇒ f

∆
elab

` P (P ′) : R[α 7→ τ ] e τ (f e′) : Π[α 7→ τ ]

E-Typ-Mod-Proj

∆
elab

` M : ∃α.sigA D1,moduleX : R,D2 end e :
{
ζ1, `X : Σ, ζ2

}
∆

elab

` M.X : ∃α.R unpack〈α, y〉 = e in pack〈α, e.`X〉 : ∃α.Σ

B.3 Correctness and link with the canonical system

We write ∆can and ∆F for the left and right projections of the hybrid context ∆, defined in the
obvious way. We present implications as rules.

Theorem 4 (Correctness of elaboration). The elaboration judgment ensures well-typedness on
both sides. For subtyping, we have the following result:

∆
elab

` S <: S ′ Π <: Π′ ⇒ f =⇒

∆F
can

` S <: S ′

∆F ` f : Π→ Π′
(9)

For typing, we have the following result:

∆
elab

` M : S e : Π =⇒

∆can
can

` M : S

∆F ` e : Π
(10)

Conversely, we show that well-typedness in the canonical system ensures that elaboration is
well-defined. We first observe that there is an isomorphism between canonical and Fω-encoded
signatures. This allows us, for a given signature S (resp. R) to consider its encoding in Fω,
noted ΠS (resp. ΣR). Similarly, we may consider the extension of an environment Γ into a
hybrid enriched environment ∆Γ (we omit the definition.)

Theorem 5 (Enrichment of canonical judgments). The Fω terms (e, f , ΠS) corresponding to
canonical derivation always exist. More formally, we have:

Γ
can

` S : S =⇒ ∆Γ

elab

` S : S ΠS (11)

Γ
can

` S1 <: S2 =⇒ ∃f, ∆Γ

elab

` S1 <: S2 ΠS1
<: ΠS2

⇒ f (12)

Γ
can

` M : S =⇒ ∃e, ∆Γ

elab

` M : S e : ΠS (13)

C Source system – Complete rules

C.1 Resolution

C.1.1 Γ
src

` P . S – Path resolution
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S-Res-LocalMod

(A.X : S) ∈ Γ

Γ
src

` A.X . S

S-Res-FctArg

(Y : S) ∈ Γ

Γ
src

` Y . S

S-Res-Proj-Mod

Γ
src

` P . sigA D end (moduleX : S) ∈ D

Γ
src

` P.X . S[A 7→ P ]

S-Res-Modtype

Γ
src

` P . Q.T Γ
src

` Q.T /. S

Γ
src

` P . S

C.1.2 Γ
src

` S /. S′ – Signature resolution

S-Res-LocalSig

(A.T : S) ∈ Γ

Γ
src

` A.T /. S

S-Res-Proj-ModType

Γ
src

` P . sigA D end (module type T = S) ∈ D

Γ
src

` P.T /. S[A 7→ P ]

S-Res-ModType-Rec

Γ
src

` Q.T /. Q′.T ′ Γ
src

` Q′.T ′ /. S

Γ
src

` Q.T /. S

C.2 Equivalence

C.2.1 Γ
src

` τ ≈ τ ′ – Type equivalence

S-Eqv-Type-Local

(A.t : type t = τ) ∈ Γ

Γ
src

` A.t ≈ τ

S-Eqv-Type-Res

Γ
src

` P . sigA D end (type t = τ) ∈ D

Γ
src

` P.t ≈ τ [A 7→ P ]

S-Eqv-Type-Trans

Γ
src

` τ1 ≈ τ2 Γ
src

` τ2 ≈ τ3

Γ
src

` τ1 ≈ τ3

S-Eqv-Type-Sym

Γ
src

` τ ′ ≈ τ

Γ
src

` τ ≈ τ ′

S-Eqv-Type-Refl

Γ
src

` τ ≈ τ

C.2.2 Γ
src

À D ≈ D′ – Declaration equivalence
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S-Eqv-Decl-Val

Γ
src

` τ ≈ τ ′

Γ
src

À (valx : τ) ≈ (valx : τ ′)

S-Eqv-Decl-Type

Γ
src

` τ ≈ τ ′

Γ
src

À (type t = τ) ≈ (type t = τ ′)

S-Eqv-Decl-Mod

Γ
src

` S ≈ S′

Γ
src

À (moduleX : S) ≈ (moduleX : S′)

S-Eqv-Decl-ModType

Γ
src

` S ≈ S′

Γ
src

À (module type T = S) ≈ (module type T = S′)

S-Eqv-Decl-Empty

Γ
src

` ∅ ≈ ∅

S-Eqv-Decl-Seq

Γ
src

À D1 ≈ D′
1 Γ, A.I1 : D1

src

À D ≈ D′

Γ
src

À D1, D ≈ D′
1, D

′

C.2.3 Γ
src

` S ≈ S′ – Signature equivalence

S-Eqv-Sig-Modtype

Γ
src

` Q.T /. S

Γ
src

` Q.T ≈ S

S-Eqv-Sig-Functor

Γ
src

` Sa ≈ S′
a Γ, Y : Sa

src

` S ≈ S′

Γ
src

` (Y : Sa)→ S ≈ (Y : S′
a)→ S′

S-Eqv-Sig-Sig

Γ
src

À D ≈ D′

Γ
src

` sigA D end ≈ sigA D
′ end

S-Eqv-Sig-Trans

Γ
src

` S ≈ S′ Γ
src

` S′ ≈ S′′

Γ
src

` S ≈ S′′

S-Eqv-Sig-Refl

Γ
src

` S ≈ S

S-Eqv-Sig-Sym

Γ
src

` S′ ≈ S

Γ
src

` S ≈ S′

C.3 Strengthening

C.3.1 Γ ` S/P � S′ – Signature strengthening

S-Str-Sig-Functor

Γ ` (Y : Sa)→ S/P � (Y : Sa)→ S

S-Str-Sig-Sig

Γ ` D[A 7→ P ] /P � D′

Γ ` sigA D end/P � sigA D
′ end

C.3.2 Γ ` D/P � D′ – Declaration strengthening
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S-Str-Decl-Val

Γ ` valx : τ/P � valx : τ
S-Str-Decl-Type

Γ ` type t = τ/P � type t = τ

S-Str-Decl-Mod

Γ ` S/ (P.X)� S′

Γ ` (moduleX : S) /P � moduleX : S′

S-Str-Decl-ModType

Γ ` module type T = S/P � module type T = S

C.4 Subtyping

Rules for both general and abstraction subtyping are shown, ≺: being either <: or C:.

C.4.1 Γ
src

` S <: S′ – Signature subtyping

S-Sub-Sig-Equiv

Γ
src

` S ≈ S′

Γ
src

` S ≺: S′

S-Sub-Sig-Trans

Γ
src

` S ≺: S′ Γ
src

` S′ ≺: S′′

Γ
src

` S ≺: S′′

S-Sub-Sig-Functor

Γ
src

` S′
a ≺: Sa Γ, Y : S′

a

src

` S ≺: S′ Y /∈ Γ

Γ
src

` (Y : Sa)→ S ≺: (Y : S′
a)→ S′

S-Sub-Sig-Sig

D0 ⊆ D Γ, A.D
src

À D0 <: D′

Γ
src

` sigA D end <: sigA D
′ end

S-SubEq-Sig-Sig

Γ, A.D
src

` D C: D′

Γ
src

` sigA D end C: sigA D
′ end

C.4.2 Γ
src

À D <: D′ – Declaration subtyping

S-Sub-Decl-Val

Γ
src

` τ ≈ τ ′

Γ
src

À (valx : τ) ≺: (valx : τ ′)

S-Sub-Decl-Type

Γ
src

` τ ≈ τ ′

Γ
src

À (type t = τ) ≺: (type t = τ ′)

S-Sub-Decl-Mod

Γ
src

` S ≺: S′

Γ
src

À (moduleX : S) ≺: (moduleX : S′)

S-Sub-Decl-ModType

Γ
src

` S ≺: S′ Γ
src

` S′ ≺: S

Γ
src

À (module type T = S) ≺: (module type T = S′)
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C.5 Typing

C.5.1 Γ
src

` S : X – Signature typing

S-Typ-Sig-LocalModType

Γ
src

` P.T : sigA D end module type T = S ∈ D

Γ
src

` P.T : X

S-Typ-Sig-ModType

A.T : module type T = S ∈ Γ

Γ
src

` A.T : X

S-Typ-Sig-Functor

Γ
src

` Sa : X Γ, Y : Sa
src

` S : X Y /∈ Γ

Γ
src

` (Y : Sa)→ S : X

S-Typ-Sig-Sig

Γ
src

À D : X A /∈ Γ

Γ
src

` sigA D end : X

C.5.2 Γ
src

À D : X – Declarations typing

S-Typ-Decl-Val

Γ
src

` τ : X A.x /∈ Γ

Γ
src

À (valx : τ) : X

S-Typ-Decl-Type

Γ
src

` τ : X A.t /∈ Γ

Γ
src

À (type t = τ) : X

S-Typ-Decl-TypeAbs

A.t /∈ Γ

Γ
src

À (type t = A.t) : X

S-Typ-Decl-Mod

Γ
src

` S : X A.X /∈ Γ

Γ
src

À (moduleX : S) : X

S-Typ-Decl-ModType

Γ
src

` S : X A.T /∈ Γ

Γ
src

À (module type T = S) : X

S-Typ-Decl-Empty

Γ
src

À ∅ : X

S-Typ-Decl-Seq

Γ
src

À D1 : X Γ, A.I1 : D1

src

À D : X

Γ
src

À

(
D1, D

)
: X

C.5.3 Γ
src

` τ : X – Type checking

S-Typ-Type-LocalType

A.t : type t = τ ∈ Γ

Γ
src

` A.t : X

S-Typ-Type-QualifiedPathType

Γ
src

` P : sigA D end type t = τ ∈ D

Γ
src

` P.t : X

C.5.4 Γ
src

` M : S – Module typing
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S-Typ-Mod-Res

Γ
src

` P . S

Γ
src

` P : S

S-Typ-Mod-Strengthen

Γ
src

` P : S Γ ` S/P � S′

Γ
src

` P : S′

S-Typ-Mod-Equiv

Γ
src

`M : S Γ
src

` S ≈ S′

Γ
src

`M : S′

S-Typ-Mod-Sealing

Γ
src

` S : X Γ
src

` P : S′ Γ
src

` S′ <: S

Γ
src

` (P : S) : S

S-Typ-Mod-Functor

Γ
src

` Sa : X Γ; (Y : Sa)
src

`M : S Y /∈ Γ

Γ
src

` (Y : Sa)→M : (Y : Sa)→ S′

S-Typ-Mod-FctApp

Γ
src

` P : (Y : Sa)→ S Γ
src

` P ′ : S′
a Γ

src

` S′
a <: Sa

Γ
src

` P (P ′) : S[Y 7→ P ′]

S-Typ-Mod-Struct

Γ
src

À B :D A /∈ Γ

Γ
src

` structA B end : sigA D end

S-Typ-Proj

Γ
src

`M : sigA
(
D1,moduleX : S,D2

)
end Γ, D1

src

` S C: S′ Γ
src

` S′ : X

Γ
src

`M.X : S′

C.5.5 Γ
src

À B :D – Bindings typing

S-Typ-Bind-Let

Γ
src

` e : τ A.x /∈ Γ

Γ
src

À (letx = e) : (valx : τ)

S-Typ-Bind-Type

Γ
src

` τ : X A.t /∈ Γ

Γ
src

À (type t = τ) : (type t = τ)

S-Typ-Bind-AbsType

A.t /∈ Γ

Γ
src

À (type t = A.t) : (type t = A.t)

S-Typ-Bind-Mod

Γ
src

`M : S A.X /∈ Γ

Γ
src

À (moduleX = M) : (moduleX : S)

S-Typ-Bind-ModType

Γ
src

` S : X A.T /∈ Γ

Γ
src

À (module type T = S) : (module type T = S)

S-Typ-Bind-Empty

Γ
src

À ∅ : ∅

S-Typ-Bind-Seq

Γ
src

À B1 :D1 Γ, A.I1 : D1

src

À B2 :D2

Γ
src

À B1, B2 :D1 ++D2
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D Canonical system – Complete rules

D.1 Subtyping

Rules for both general and abstraction subtyping are shown, ≺: being either <: or C:.

D.1.1 Γ
can

` S <: S ′ – Signatures subtyping

C-Sub-Sig-Functor

Γ, α′ can

` R′ ≺: R[α 7→ τ ] Γ, α′, (Y : R′)
can

` S[α 7→ τ ] <: S ′ Y /∈ Γ

Γ
can

` ∀α. (Y :R)→ S ≺: ∀α′. (Y :R′)→ S ′

C-Sub-Sig-Match

Γ, α
can

` R ≺: R′[α′ 7→ τ ]

Γ
can

` ∃α.R ≺: ∃α′.R′

C-Sub-Sig-Sig

D0 ⊆ D Γ
can

` D0 <: D′

Γ
can

` sigA D end <: sigA D′ end

C-SubEq-Sig-Sig

Γ
can

` D C: D′

Γ
can

` sigA D end C: sigA D′ end

D.1.2 Γ
can

` D <: D′ – Declarations subtyping

C-Sub-Decl-Val

Γ
can

` τ ≺: τ ′

Γ
can

` (valx : τ) ≺: (valx : τ ′)

C-Sub-Decl-Type

Γ
can

` τ ≺: τ ′

Γ
can

` (type t = τ) ≺: (type t = τ ′)

C-Sub-Decl-Mod

Γ
can

` R ≺: R′

Γ
can

` (moduleX : R) ≺: (moduleX : R′)

C-Sub-Decl-ModType

Γ
can

` R ≺: R′ Γ
can

` R′ ≺: R

Γ
can

` (module type T = λα.R) ≺: (module type T = λα.R′)

D.2 Typing

D.2.1 Γ
can

` Q.t : τ – Type checking

C-Typ-Type-LocalType

A.t : type t = τ ∈ Γ

Γ
can

` A.t : τ

C-Typ-Type-PathType

Γ
can

` P : sigA D end (type t = τ) ∈ D

Γ
can

` P.t : τ

32



Retrofitting OCaml modules C. Blaudeau, D. Remy, G. Radanne

D.2.2 Γ
can

À D : λα.D – Declaration typing

C-Typ-Decl-Val

Γ
can

` τ : τ ′ A.x /∈ Γ

Γ
can

À valx : τ : valx : τ ′

C-Typ-Decl-Type

Γ
can

` τ : τ ′ A.t /∈ Γ

Γ
can

À type t = τ : type t = τ ′

C-Typ-Decl-TypeAbs

A.t /∈ Γ

Γ
can

À type t = A.t : λα. type t = α

C-Typ-Decl-Mod

Γ
can

` S : λα.R A.X /∈ Γ

Γ
can

À (moduleX : S) : λα. (moduleX : R)

C-Typ-Decl-ModType

Γ
can

` S : λα.R A.T /∈ Γ

Γ
can

À (module type T = S) : (module type T = λα.R)

C-Typ-Decl-Empty

Γ
can

À ∅ : ∅

C-Typ-Decl-Seq

Γ
can

À D1 : λα1.D1 Γ, α1, A.I1 : D1

can

À D : λα.D

Γ
can

À

(
D1, D

)
: λα1 α.

(
D1,D

)
D.2.3 Γ

can

` S : λα.R – Signature typing

C-Typ-Sig-Sig

Γ
can

À D : λα.D A /∈ Γ

Γ
can

` sigA D end : λα.sigA D end

C-Cf-ModType

Γ
can

` P : sigA D end module type T = λα.R ∈ D

Γ
can

` A.T : λα.R

C-Typ-Sig-LocalModType

(A.T : module type T = λα.R) ∈ Γ

Γ
can

` A.T : λα.R

C-Typ-Sig-Functor

Γ
can

` Sa : λα.Ra Γ, α, Y : Ra
can

` S : λβ.R Y /∈ Γ

Γ
can

` (Y : Sa)→ S : ∀α. (Y :Ra)→ ∃β.R

D.2.4 Γ
can

` M : S – Module typing
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C-Typ-Mod-FctArg

(Y : R) ∈ Γ

Γ
can

` Y :R

C-Typ-Mod-Local

(A.X : R) ∈ Γ

Γ
can

` A.X :R

C-Typ-Struct

Γ
can

À B : ∃α.D A /∈ Γ

Γ
can

` structA B end : ∃α.sigA D end

C-Typ-Mod-Sealing

Γ
can

` S : λα.R Γ
can

` P :R′ Γ
can

` R′ <: R[α 7→ τ ]

Γ
can

` (P : S) : ∃α.R

C-Typ-Mod-Functor

Γ
can

` S : λα.R Γ, α, (Y : R)
can

` M : S

Γ
can

` (Y : S)→M : ∀α. (Y :R)→ S

C-Typ-Mod-App

Γ
can

` P : ∀α. (Y :R)→ S Γ
can

` P ′ :R′ Γ
can

` R′ <: R[α 7→ τ ]

Γ
can

` P (P ′) : S[α 7→ τ ]

C-Typ-Mod-Proj

Γ
can

` M : ∃α.sigA D1,moduleX : R,D2 end

Γ
can

` M.X : ∃α.R

D.2.5 Γ
can

À B : ∃α.D – Bindings typing

C-Typ-Decl-Let

Γ
can

` e : τ Γ
can

` τ : τ ′ A.x /∈ Γ

Γ
can

À (letx = e) : (valx : τ ′)

C-Typ-Decl-Type

Γ
can

` τ : τ ′ A.t /∈ Γ

Γ
can

À (type t = τ) : (type t = τ ′)

C-Typ-Decl-Mod

Γ
can

` M : ∃α.R A.X /∈ Γ

Γ
can

À (moduleX = M) : (∃α.moduleX : R)

C-Typ-Decl-ModType

Γ
can

` S : λα.R A.T /∈ Γ

Γ
can

À (module type T = S) : (module type T = λα.R)

C-Typ-Decl-Empty

Γ
can

À ∅ : ∅

C-Typ-Decl-Seq

Γ
can

À B1 : ∃α1.D1 Γ, α1, A.I1 : D1

can

À B : ∃α.D

Γ
can

À B1, B : ∃α1α.D1,D

D.3 Anchoring
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D.3.1 Γ
anc

` τ ↪→ Γs; θΓ ` τ ′ – Type anchoring

C-Ach-Type-Anchor

Γ ↪→ Γs : θΓ θΓ(α) = Q.t

Γ
anc

` α ↪→ Γs; θΓ ` Q.t

C-Ach-Decl-Type

Γ
anc

` τ ↪→ Γs; θΓ ` τ ′ : ∅

Γ
anc

À type t = τ ↪→ Γs; θΓ ` type t = τ ′ : ∅

D.3.2 Γ
anc

À D ↪→ Γs; θΓ ` D : θ – Declaration anchoring

C-Ach-Decl-Val

Γ
anc

` τ ↪→ Γs; θΓ ` τ ′ : ∅

Γ
anc

À valx : τ ↪→ Γs; θΓ ` valx : τ ′ : ∅

C-Ach-Decl-AnchorPoint

Γ ↪→ Γs : θΓ α /∈ dom(θΓ)

Γ
anc

À type t = α ↪→ Γs; θΓ ` type t = A.t : (α 7→ t)

C-Ach-Decl-Type

Γ
anc

` τ ↪→ Γs; θΓ ` τ ′ : ∅

Γ
anc

À type t = τ ↪→ Γs; θΓ ` type t = τ ′ : ∅

C-Ach-Decl-Mod

Γ
anc

` R ↪→ Γs; θΓ ` S : θ

Γ
anc

À moduleX : R ↪→ Γs; θΓ ` moduleX : S : X.θ

C-Ach-Decl-Sig

Γ, α
anc

` R ↪→ Γs; θΓ ` S : θ dom(θ) = α

Γ
anc

À moduleT : λα.R ↪→ Γs; θΓ ` moduleT : S : ∅

C-Ach-Decl-Seq

Γ
anc

` D ↪→ Γs; θΓ ` D : θ Γ
anc

` D ↪→ (Γs, A.I : D) ; (θΓ ]A.θ) ` D : θ′

Γ
anc

À D,D ↪→ Γs; θΓ ` D,D : θΓ ] θ′

D.3.3 Γ
can

` S : λα.R – Signature anchoring

C-Ach-Sig-Functor

Γ, α
anc

` R ↪→ Γs; θΓ ` Sa : θa

dom(θa) = α Γ, α, Y : R
anc

` S ↪→ (Γs, Y : Sa) ; (θΓ ] Y.θ) ` S : θ

Γ
anc

` ∀α. (Y :R)→ S ↪→ Γs; θΓ ` (Y : Sa)→ S : ∅

C-Ach-Sig-Sig

Γ
anc

À D ↪→ Γs; θΓ ` D : θ

Γ
anc

` sigA D end ↪→ Γs; θΓ ` sigA D end : θ
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D.3.4 Γ ↪→ Γs : θΓ – Environment anchoring

C-Ach-Env-Empty

∅ ↪→ ∅ : ∅

C-Ach-Env-FctArg

Γ ↪→ Γs : θΓ Γ, α
anc

` R ↪→ Γs; θΓ ` S : θ dom(θ) = α

Γ, α, Y : R ↪→ (Γs, Y : S) : θΓ ] Y.θ

C-Ach-Env-Decl

Γ ↪→ Γs : θΓ Γ, α
anc

À D ↪→ Γs; θΓ ` D : θ dom(θ) = α

Γ, α,A.I : D ↪→ (Γs, A.I : D) : θΓ ]A.θ

D.3.5 Γ
anc

` M : S – Anchorable typing

C-TypA-Mod-Proj

Γ
anc

` M : ∃α.sigA D1,moduleX : R,D2 end Γ
anc

` ∃α.R ↪→ Γs; θΓ ` S : θ

Γ
anc

` M.X : ∃α.R
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E Fω– Complete rules

E.1 Γ : wf – Environment checking

· : wf
Γ : wf α /∈ Γ

Γ, α : κ : wf

Γ ` τ : ? x /∈ Γ

Γ, (x : τ) : wf

E.2 Γ ` τ : κ – Type checking

Γ ` τ1 : ? Γ ` τ2 : ?

Γ ` τ1 → τ2 : ?

Γ ` τ : ? Γ : wf

Γ `
{
`l : τ

}
: ?

Γ : wf

Γ ` α : Γ(α)

Γ, α : κ ` τ : ?

Γ ` ∀α : κ.τ : ?

Γ, α : κ ` τ : ?

Γ ` ∃α : κ.τ : ?

Γ, α : κ ` τ : κ′

Γ ` λα : κ.τ : κ→ κ′
Γ ` τ1 : κ′ → κ Γ ` τ2 : κ′

Γ ` τ1 τ2 : κ

E.3 Γ ` e : τ – Term typing

Γ : wf

Γ ` x : Γ(x)

Γ, x : τ ` e : τ ′

Γ ` λx : τ.e : τ → τ ′
Γ ` e1 : τ ′ → τ Γ ` e2 : τ ′

Γ ` e1 e2 : τ

Γ ` e : τ Γ : wf

Γ `
{
l = e

}
:
{
l : τ

} Γ ` e :
{
l : τ, l′ : τ ′

}
Γ ` e.l : τ

Γ, α : κ ` e : τ

Γ ` Λ(α : κ).e : ∀(α : κ).τ

Γ ` e : ∀α : κ.τ ′ Γ ` τ : κ

Γ ` e τ : τ ′[τ 7→ α]

Γ ` τ : κ Γ ` e : τ ′[τ 7→ α] Γ ` ∃α : κ.τ ′ : ?

Γ ` pack 〈τ, e〉 as ∃α : κ.τ ′ : ∃α : κ.τ ′

Γ ` e1 : ∃α : κ.τ ′ Γ, α : κ, x : τ ′ ` e2 : τ Γ ` τ : ?

Γ ` unpack〈α, x〉 = e1 in e2 : τ

F Elaborated system – Complete rules

F.1 Subtyping

F.1.1 ∆
elab

` S <: S ′ Π <: Π′ ⇒ f – Signature subtyping
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E-Sub-Sig-Functor

∆, α′ elab

` R′
a <: Ra[α 7→ τ ] Σ′

a <: Σa[α 7→ τ ]⇒ fa

∆, α′, (Y : (R′
a,Σ

′
a))

elab

` S[α 7→ τ ] <: S ′ Π[α 7→ τ ] <: Π′ ⇒ f Y /∈ ∆

∆
elab

` ∀α. (Y :Ra)→ S <: ∀α′. (Y :R′
a)→ S ′ ∀α.Σa → Π <: ∀α′.Σ′

a → Π′

[λ (g : (∀α.Σa → Π)) .Λα′.λ (x : Σ′
a) . f (g τ (fa x))]

E-Sub-Sig-Sig

D0 ⊆ D ∆
elab

À D0 <: D′ ζ0 <: ζ ⇒ f

∆
elab

` sigA D end <: sigA D′ end 
{
`I : ζ

}
<:
{
`I : ζ ′

}
⇒ λx.

{
`I0 : (f ζ)

}
E-SubEq-Sig-Sig

∆
elab

À D <: D′ ζ <: ζ
′ ⇒ f

∆
elab

` sigA D end <: sigA D′ end 
{
`I : ζ

}
<:
{
`I : ζ ′

}
⇒ λx.

{
`I : (f ζ)

}

F.1.2 ∆
elab

À D <: D′ ζ <: ζ ′ ⇒ f – Declaration subtyping

E-Sub-Val

∆
elab

` τ <: τ ′ ↑ f

∆
elab

À (valx : τ) <: (valx : τ ′) JτK <: Jτ ′K⇒ λx.Jf(x.val)K

E-Sub-Type

∆
elab

` τ <: τ ′ ↑ f

∆
elab

À (type t = τ) <: (type t = τ ′) Jτ : κK <: Jτ ′ : κK⇒ λx.Jτ ′ : κK

E-Sub-Mod

∆
elab

` R <: R′ Σ <: Σ′ ⇒ f

∆
elab

À (moduleX : R) <: (moduleX : R′) JΣK <: JΣ′K⇒ λx.Jf(x.mod)K

E-Sub-ModType

∆, α
elab

` R <: R′ Σ <: Σ′ ⇒ f ∆, α
elab

` R′ <: R Σ′ <: Σ⇒ f ′

∆
elab

À (module type T = λα.R) <: (module type T = λα.R′) Jλα.ΣK <: Jλα.Σ′K
⇒ λx.Jλα.Σ′K

F.2 Typing

F.2.1 ∆
elab

` Q.t : τ – Type checking
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E-Typ-Type-LocalType

A.t : (type t = τ, type t = τ) ∈ ∆

∆
elab

` A.t : τ

E-Typ-Type-PathType

∆
elab

` P : sigA D end : Σ (type t = τ) ∈ D Σ.`t : 〈〈τ〉〉

∆
elab

` P.t : τ

F.2.2 ∆
elab

`A D : λα.D λα.ζ – Declaration typing

E-Typ-Decl-Val

∆
elab

` τ : τ ′ A.x /∈ ∆

∆
elab

`A valx : τ : valx : τ ′ valx : τ ′

E-Typ-Decl-Type

∆
elab

` τ : τ ′ A.t /∈ ∆

∆
elab

`A type t = τ : type t = τ ′ type t = τ ′

E-Typ-Decl-TypeAbs

A.t /∈ ∆

∆
elab

`A type t = A.t : λα. type t = α λα. type t = α

E-Typ-Decl-Mod

∆
elab

` S : λα.R λα.Σ A.X /∈ ∆

∆
elab

`A (moduleX : S) : λα. (moduleX : R) λα.moduleX : Σ

E-Typ-Decl-ModType

∆
elab

` S : λα.R λα.Σ A.T /∈ ∆

∆
elab

`A (module type T = S) : (module type T = λα.R) (module type T = λα.Σ)

E-Typ-Decl-Empty

∆
elab

`A ∅ : ∅ ∅

E-Typ-Decl-Seq

∆
elab

`A D1 : λα1.D1 λα1.ζ1 ∆, α1, A.I1 : (D1, ζ1)
elab

`A D : λα.D λα.ζ

∆
elab

`A
(
D1, D

)
: λα1 α.

(
D1,D

)
 λα1 α.

(
ζ1, ζ

)
F.2.3 ∆

elab

` S : λα.R λα.Σ – Signature typing
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E-Typ-Sig-Sig

∆
elab

`A D : λα.D λα.ζ A /∈ ∆

∆
elab

` sigA D end : λα.sigA D end λα.
{
ζ
}

E-Cf-ModType

∆
elab

` P : sigA D end : Σ′ module type T = λα.R ∈ D Σ′.`T : 〈〈λα.Σ〉〉

∆
elab

` A.T : λα.R λα.Σ

E-Typ-Sig-LocalModType

A.I : (module type T = λα.R,module type T = λα.Σ) ∈ ∆

∆
elab

` A.T : λα.R λα.Σ

E-Typ-Sig-Functor

∆
elab

` Sa : λα.Ra λα.Σa ∆, α, Y : (Ra,Σa)
elab

` S : λβ.R λβ.Σ Y /∈ ∆

∆
elab

` (Y : Sa)→ S : ∀α. (Y :Ra)→ ∃β.R ∀α.Σa → ∃β.Σ

F.2.4 ∆
elab

` M : S e : Π – Module typing
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E-Typ-Mod-FctArg

Y : (R,Σ) ∈ ∆

∆
elab

` Y : R Y : Σ

E-Typ-Mod-Local

A.X : (R,Σ) ∈ ∆

∆
elab

` A.X : R A.X : Σ

E-Typ-Struct

∆
elab

À B : ∃α.D e : ∃α.
{
ζ
}

A /∈ ∆

∆
elab

` structA B end : ∃α.sigA D end e : ∃α.
{
ζ
}

E-Typ-Mod-Sealing

∆
elab

` S : λα.R λα.Σ

∆
elab

` P : R′ e : Σ′ ∆
elab

` R′ <: R[α 7→ τ ] Σ′ <: Σ[α 7→ τ ]⇒ f

∆
elab

` (P : S) : ∃α.R pack〈τ , (f e)〉 : λα.Σ

E-Typ-Mod-Functor

∆
elab

` S : λα.R λα.Σ ∆, α, Y : (R,Σ)
elab

` M : S e : Π

∆
elab

` (Y : S)→M : ∀α. (Y :R)→ S ∀α.λ(Y : R).e : ∀α.Σ→ Π

E-Typ-Mod-App

∆
elab

` P : ∀α. (Y :R)→ S eP : ∀α.Σ→ S

∆
elab

` P ′ : R′ e : Σ′ ∆
elab

` R′ <: R[α 7→ τ ] Σ′ <: Σ[α 7→ τ ]⇒ f

∆
elab

` P (P ′) : R[α 7→ τ ] eP τ (f e) : Π[α 7→ τ ]

E-Typ-Mod-Proj

∆
elab

` M : ∃α.sigA D1,moduleX : R,D2 end e :
{
ζ1, `X : Σ, ζ2

}
∆

elab

` M.X : ∃α.R unpack〈α, y〉 = e in pack〈α, e.`X〉 : ∃α.Σ

F.2.5 ∆
elab

À B : ∃α.D e : ∃α.
{
`I : ζ

}
– Bindings typing
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E-Typ-Decl-Let

∆
elab

` e : τ  e′ : τ ′ ∆
elab

` τ : τ ′ A.x /∈ ∆

∆
elab

À (letx = e) : (valx : τ ′) {`x = e′} : (valx : τ ′)

E-Typ-Decl-Type

∆
elab

` τ : τ ′ A.t /∈ ∆

∆
elab

À (type t = τ) : (type t = τ ′) {`t = 〈〈τ ′〉〉} : (type t = τ ′)

E-Typ-Decl-Mod

∆
elab

` M : ∃α.R e : ∃α.Σ A.X /∈ ∆

∆
elab

À (moduleX = M) : (∃α.moduleX : R) unpack〈α, y〉 = e in pack〈α, {`X = y}〉
: ∃α.moduleX : Σ

E-Typ-Decl-ModType

∆
elab

` S : λα.R λα.Σ A.T /∈ ∆

∆
elab

À (module type T = S) : (module type T = λα.R) {`T = 〈〈λα.R〉〉}
: (module type T = λα.R)

E-Typ-Decl-Seq

∆
elab

À B1 : ∃α1.D1 e1 : ∃α1. {ζ1} ∆, α1, A.I1 : (D1, ζ1)
elab

À B : ∃α.D e : ∃α.
{
ζ
}

∆
elab

À B1, B : ∃α1α.D1,D unpack〈α1, x1〉 = e1 in

unpack〈α, x〉 = (letA.I1 = x1.`I1 in e) in

pack〈α1α,
{
`I = x1.`I , `I = x.`I

}
〉

: ∃α1α.
{
ζ1, ζ

}
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