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Abstract

Lipschitz bounded neural networks are certifiably
robust and have a good trade-off between clean
and certified accuracy. Existing Lipschitz
bounding methods train from scratch and are
limited to moderately sized networks (< 6M
parameters). They require a fair amount of
hyper-parameter tuning and are computationally
prohibitive for large networks like Vision
Transformers (5M to 660M parameters).
Obtaining certified robustness of transformers is
not feasible due to the non-scalability and
inflexibility of the current methods. This work
presents CertViT, a two-step proximal-projection
method to achieve certified robustness from
pre-trained weights. The proximal step tries to
lower the Lipschitz bound and the projection step
tries to maintain the clean accuracy of pre-trained
weights. We show that CertViT networks have
better certified accuracy than state-of-the-art
Lipschitz trained networks. We apply CertViT on
several variants of pre-trained vision transformers
and show adversarial robustness using standard
attacks. Code : https://github.com/
sagarverma/transformer-lipschitz

1 Introduction

Deep neural networks (DNNs) are vulnerable to adversarial
examples [1], where the perturbations to the input are
constructed deliberately to confuse the classifier. This
erratic behavior of DNNs is possible even when the model
accuracy on the clean samples is excellent. Numerous
heuristic solutions for adversarial defenses have been
proposed in the literature, but these solutions are often
broken using more carefully crafted stronger attacks [2].

(a) Input Image (b) Perturbation for ViT

(c) ViT Prediction (d) Perturbation for CertViT

Figure 1: Transformers vs Certified Transformers.
Shown here are adversarial perturbations (`2) computed
for a transformer and its certified version using the proposed
method (CertViT). While , ViT fails under perturbation
and predicts the input image of panda as badger, CertViT
predicts it correctly.

This suggests that these methods provide only empirical
robustness without any formal guarantees. Formal
guarantees are of much importance in mission- and
safety-critical applications. For such scenarios, we need
certified defenses with formal robustness guarantees that
any norm-bounded adversary will not be able to alter the
network predictions. One such line of work providing
certified robustness concentrates on estimating and
subsequently bounding the Lipschitz constant of a neural
network. This can be done in both global and local contexts.
Global Lipschitz constant is computationally cheap and
scalable but often loose and hence tends to over-regularize
the training and reduce the network capacity to learn. In
comparison, local Lipschitz estimates are tight since it uses
information in the local neighborhood of the input data but
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are hard to estimate and time-consuming. State-of-the-art
methods obtain global and local Lipschitz bounded
networks when training from scratch. These methods have
been applied to moderately sized networks comprising
convolutional and dense layers. The largest network
experimented in [3] consists of 6M parameters. These
methods become untenable for deeper and more complex
architectures such as transformers.

Transformers proposed by [4] for machine translation has
become the state-of-the-art method in many NLP tasks.
BERT [5] uses a denoising self-supervised pre-training task,
and Generative Pre-trained Transformer (GPT) [6] uses
language modeling as its pre-training task. In [7], the
authors have proposed Vision Transformer (ViT) with very
few changes to the original transformer. They proposed to
split the input image into small patches and provide the
sequence of linear embedding of the patches as input.
Data-efficient ViT (DeiT) reduces the dependence of ViTs
on large-size datasets. DeiT improved the efficiency of
ViTs by employing data augmentations and regularization.
Swin Transformer presented a hierarchical transformer that
reduces the number of tokens through patch merging while
using attention in non-overlapping local windows. Many
different Vision Transformer architectures are proposed for
various tasks, but the attention layer remains the backbone
of most of them. It has to be noted that, for ViT, the number
of parameters tends to be very large, so it is
computationally expensive to train them from scratch.
Instead, researchers use their pre-trained models for
fine-tuning desired tasks or datasets.

Although there have been many works around the empirical
robustness of transformers and several adversarial attacks
specifically designed for fooling transformers, the internal
properties relating to robustness are not well studied. As
mentioned earlier, one way of providing theoretical
guarantees of robustness is through Lipschitz bounds. In
[8], authors have proved that the standard dot product (DP)
self-attention is not Lipschitz continuous. They provide a
Lipschitz continuous `2 distance based self-attention as the
replacement of DP. They show the efficacy of their
transformer-based architecture on language modeling tasks
in terms of performance. To the best of our knowledge, the
certified robustness of pre-trained transformers has not been
investigated. Transformers being large networks efficacy of
current certifiable robust training methods is unknown.
This paper focuses on obtaining the certified robustness of
large pre-trained transformers. Our main contributions are
summarized as follows:

• We present a method to constrain the Lipschitz bounds
of pre-trained transformers using the
Douglas-Rachford method. The algorithm consists of
two steps: lowering the Lipschitz constant of the
network and maintaining good clean accuracy.

• We first compare the effectiveness of our proposed
method CertViT in certifying standard convolution and
linear layer-based models on different datasets and
compare it to various Lipschitz bound-based certifying
methods.

• For transformers, we adopt a Lipschitz continuous L2
self-attention from pre-trained DP attention networks,
making them Lipschitz continuous. We then
demonstrate the effectiveness of our method in
certifying different transformer architectures.

• We demonstrate the computational cost aspects of
training a robust transformer from scratch using
existing methods and compare them with our proposed
method.

• We report results on several varieties of ImageNet-
1K pre-trained vision transformers using our proposed
method. We also discuss the limitations associated
with it.

2 Related Work

In [3], the problem of computing the exact Lipschitz
constant of a differentiable function is shown to be
NP-hard; hence most works focus on finding the tightest
upper bound. Virmaux et al. [3] proposed the first generic
algorithm (AutoLip) for upper bounding the Lipschitz
constant of any differentiable function. RecurJac [9] is a
recursive algorithm analyzing the local Lipschitz constant
in a neural network using a bound propagation [10].
FastLip [11] is a weaker form of RecurJac. SDP-based
Lipschitz Constant estimates were explored in [12]. Using
the non-expansiveness property of the activation function,
the optimization problem of estimating a Lipschitz constant
is recast as solving a semi-definite positive programming
problem, and this estimate is limited to `2 perturbations.
Jordan et al. [13] compute tight Lipschitz bound using
mixed integer programming. In [14], authors proposed a
polynomial constrained optimization (LipOpt) based
technique for estimating the Lipschitz constant. This
estimate can be used for any `p norm for input and output
perturbations, but it is valid for a neural network with a
single output. These estimates though tight are only limited
to small and pre-trained models since it is difficult to
parallelize the optimization solver and make it
differentiable for training.

Utilizing the Lipschitz constant to certify robustness has
been studied in several instances in the literature. Neural
networks trained without any robustness constraint usually
have very large global Lipschitz constant bounds [1], most
existing works train the network with the criterion that
promotes small Lipschitz bound. Cisse et al.[15] designed
networks with orthogonal weights whose Lipschitz
constants are exactly 1. Miyato et al.[16] showed control



on the Lipschitz constant using spectral normalization for
GANs and in [17], authors learn 1-Lipschitz networks
using hinge regularisation loss for binary classifiers.
Lipschitz Margin training (LMT) [18] trains networks that
are certifiably robust by constructing a loss on worst logits
which are calculated using the global Lipschitz bounds. It
adds

√
2εLglob, where ε is the perturbation radius to be

certified, to all logits other than that corresponding to the
ground-truth class. Box constrained propagation (BCP)
[19] achieves a tighter outer bound than the global
Lipschitz-based outer bound, by considering local
information via interval bound (box) propagation. They
also compute the worst-case logit based on the intersection
of a (global) ball and a (local) box. GloRo [20] bounds the
upper bounds on the worst margins using the global
Lipschitz constant. It constructs a new logit with a newly
constructed class called the bottom class and determines if
the sample can be certified. Local-Lip [21] utilizes the
interactions between activation functions (e.g. ReLU,
MaxMin) and weight matrices. By eliminating the
corresponding rows and columns where the activation
function output is constant they guarantee a lower provable
local Lipschitz bound than the global Lipschitz bound for
the neural network. Gouk et al. [22] proposed a relaxed
Lipschitz constrained training method in which neural
network optimizers can be adapted with a projection step to
lower the Lipschitz constant. This is achieved by
normalizing the parameters of a neural network by its
spectral norm at every training step.

On robustness of Transformers - Adversarial robustness
of Vision Transformers (ViT) has been studied in
[23, 24, 25] and they compare different ViTs to their
ResNet counterparts. [24] studied commonly used
adversarial attacks and concluded attacks do not transfer
readily between transformers and ResNets. They also
proposed a new attack SAGA(Self-Attention Gradient
attack) for attacking an ensemble of transformers and
CNNs. Benz et al. [25] did a frequency analysis which
suggests that the most robust ViT architectures tend to rely
more on low-frequency features compared to CNNs. In
[23] experiments suggest that ViTs are more robust to the
removal of any single layer. An interesting observation
from the paper suggests a high correlation in the later layers
of ViTs, indicating a larger amount of redundancy.

Adversarial robustness of pre-trained classifiers -
Salman et al.[26] proposed a method called denoised
smoothing to make pre-trained classifiers robust without
any retraining or fine-tuning. It prepends a custom-trained
Gaussian denoiser to the pre-trained classifier and applies
randomized smoothing [27] to the whole network resulting
in a certifiably robust classifier. It applies to `2 bounded
perturbations and is not easily extensible to other
perturbation models. [28] offers a higher empirical robust
accuracy than denoised smoothing, eliminating the need for

multiple queries per sample and reducing the high
computational cost of multiple forward passes during
inference time. [28] show the applicability of their
approach to `∞ perturbations as well. Such methods also
provide a high degree of empirical robustness but do not
provide any formal guarantees of robustness.

3 Proposed Method
3.1 Lipschitz Continuity

Definition 1 Lipschitz constant of a function f is an upper
bound on the ratio between the output and the input
variations of a function f . If L ∈ [0,+∞[ is such that, for
every input x ∈ RN0 and perturbation z ∈ RN0 ,

‖f(x+ z)− f(x)‖ 6 L‖z‖ (1)

then L is a Lipschitz constant of f . ‖.‖ denotes the
standard Euclidean norm, but any other norms can be
applied. If X is defined as the ε-ball at point x, i.e.,
X = {x′ |‖x− x′‖ 6 ε}, then L is the local Lipschitz
constant of f at x.

The first upper bound on the Lipschitz constant of a neural
network was derived by analyzing the effect of each layer
independently and considering a product of the resulting
spectral norms [29]. For an m-layered neural network the
global Lipschitz Bound is given as follows:

Lglob 6 ‖Wm‖S‖Wm−1‖S · · · ‖W1‖S. (2)

(∀i ∈ {1, . . . ,m}) xi = φi(Wixi−1 + bi),

where, at the ith layer, xi−1 ∈ RNi−1 designates the input,
xi ∈ RNi the output, Wi ∈ RNi×Ni−1 is the weight matrix,
bi ∈ RNi is the bias vector, and φi : RNi → RNi is the
activation operator, and ‖ · ‖S denotes the spectral matrix
norm and is equal to the maximum singular value of W
and note bias don’t contribute to the Lipschitz bound. An
important assumption is that the activation operators are
nonexpansive, i.e., 1-Lipschitz. This assumption is satisfied
for all the standard choices of activation operators ReLU,
tanh etc.

3.2 Linear layers and variational principles

A single layer linear network without any bias can be defined
as:

y = R(Wx) (3)

where x ∈ RM is the input, y ∈ RN the output,
W ∈ RN×M is the weight matrix, and R is a nonlinear
activation operator from RN to RN . Combettes et al.
[30, 31] recently showed that most neural network
activation functions are proximity operators of convex



functions. This shows that there exists a proper
lower-semicontinuous convex function f from RN to
R ∪ {+∞} such that R = relaxf . We recall that f is a
proper lower-semicontinuous convex function if the area
overs its graph, its epigraph{
(y, ξ) ∈ RN × R

∣∣ f(y) 6 ξ
}

, is a nonempty closed
convex set. For such a function the proximity operator of f
at z ∈ RN [32] is the unique point defined as

relaxf (z) = argmin
p∈RN

1

2
‖z − p‖2 + f(p). (4)

It follows from standard subdifferential calculus that Eq. (3)
can be re-expressed as the following inclusion relation:

Wx− y ∈ ∂f(y), (5)

where ∂f(y) is the Moreau subdifferential of f at y defined
as

∂f(y) =
{
t ∈ RN

∣∣ (∀z ∈ RN )f(z) > f(y) + 〈t | z − y〉
}
.

(6)
The subdifferential constitutes a useful extension of the
notion of differential, which is applicable to nonsmooth
functions. The set ∂f(y) is closed and convex and, if y
satisfies Eq. (3), it is nonempty. The distance to this set of a
point z ∈ RN is given by

d∂f(y)(z) = inf
t∈∂f(y)

‖z − t‖. (7)

We thus see that the subdifferential inclusion in Eq. (5) is
also equivalent to

d∂f(y)(Wx− y) = 0. (8)

Therefore, a suitable accuracy measure for approximated
values of the layer parameters (W ) is d∂f(y)(Wx− y).

3.3 Constraining Lipschitz of a layer

Aiming for a tight Lipschitz bound of a network consists of
making the Lipschitz constant of individual layers of the
network small independently while keeping an overall
satisfactory accuracy. We assume that, for a given layer, a
training sequence of input/output pairs is available which
results from a forward pass performed on the
original/pre-trained network for some input dataset of
length K. The training sequence is split into J
mini-batches of size T so that K = JT . The j-th
mini-batch with j ∈ {1, . . . , J} is denoted by
(xj,t, yj,t)16t6T . To lower the Lipschitz constant of the
network, we propose to solve the following constrained
optimization problem

Problem 2
minimize
W∈C

L(W ) (9)

with

C =
{
W ∈ RN×M | (∀j ∈ {1, . . . , J})

T∑
t=1

d2∂f(yj,t)(Wxj,t − yj,t) 6 Tη
}
, (10)

where L is a Lipschitz measure defined on RN×M , η ∈
[0,+∞[ is defined accuracy tolerance, and d∂f(y)(Wx− y)
is a suitable accuracy measure for approximated values of
the layer parameters W .

Since, for every j ∈ {1, . . . , J}, the function
W 7→

∑T
t=1 d

2
∂f(yj,t)

(Wxj,t − yj,t) is continuous and
convex, C is a closed and convex subset of RN×M . In
addition, this set is nonempty when there exist
W ∈ RN×M such that, for every j ∈ {1, . . . , J} and
t ∈ {1, . . . , T},

d2∂f(yj,t)(Wxj,t − yj,t) = 0. (11)

This condition is satisfied when W are the parameters of the
pre-trained layer. A standard choice for such a function is
the `1-norm of the matrix elements, L = ‖ · ‖1.

A standard proximal method for solving Problem 2 is the
Douglas-Rachford algorithm [33, 34].This algorithm
alternates between a proximal step (relaxβ) aiming at
lowering the Lipschitz value of the weight matrix and a
projection step (projC ) to maintain original accuracy of the
pre-trained network. This algorithm can be written as :

Algorithm 1: CertViT: Constraining a Layer

Initialize :Ŵ0 ∈ RN×M
for n = 0, 1, . . . do

Wn = relaxβ(Ŵn)

W̃n = projC(2Wn − Ŵn, η)

Ŵn+1 = Ŵn + λn(Wn − W̃n)

The Douglas-Rachford algorithm uses positive parameters
β and (λn)n∈N. Throughout this article, projS denotes the
projection onto a nonempty closed convex set S.

Proposition 3 [34] Assume that Problem 2 has a solution
and that there existsW ∈ C suchW is a point in the interior
of the domain of h. Assume that β ∈ ]0,+∞[ and (λn)n∈N
in ]0, 2[ is such that

∑
n∈N λn(2 − λn) = +∞. Then the

sequence Wn∈N generated by Algorithm 1 converges to a
solution to Problem 2.

The projection step relaxβ reduces the magnitude of each
parameter or element of the input matrix Wn by β (i.e
(sign(Wn) ∗ (abs(Wn) − β))). This is equivalent to
making a matrix sparse also known as magnitude pruning



[35]. In turn, since the convex set C has an intricate form,
an explicit expression of projC does not exist. Finding an
efficient method for computing this projection for large
datasets thus constitutes the main challenge in the use of
the above Douglas-Rachford strategy, which we will
discuss in the next section.

3.4 Maintaining clean accuracy

For every mini-batch index j ∈ {1, . . . , J}, we define the
following convex function:

(∀W ∈ RN×M )

cj(W ) =

T∑
t=1

d2∂f(yj,t)(Wxj,t − yj,t)− Tη. (12)

Note that, for every t ∈ {1, . . . , T} and j ∈ {1, . . . , J},
function cj is differentiable and its gradient at W ∈ RN×M
is given by

∇cj(W ) = 2

T∑
t=1

(Wxj,t − yj,t)x>j,t. (13)

Weight parameters belong to C if and only if it lies in the
intersection of the 0-lower level sets of the functions
(cj)16j6J . To compute the projection of some
W ∈ RN×M onto this intersection, we use Algorithm 2
(‖ · ‖F denotes here the Frobenius norm).

Algorithm 2: Mini-batch algorithm for computing
projC(W, η)

Initialize :W0 =W
for n = 0, 1, . . . do

Select a batch of index j ∈ {1, . . . , J}
if cj(W ) > 0 then

δW =
cj(W )∇cj(W )

‖∇cj(W )‖2F
πn = ((W0 −W )>δW )
µn = ‖W0 −W‖2F
νn = ‖δW‖2F
ζn = µnνn − π2

n

if ζn = 0 and πn > 0 then
W =W + δW

else if ζn > 0 and πnνn > ζn then
W =W0 + (1 + πn

νn
)δW

else
W =W + νn

ζn
(πn(W0 −W )− µnδW )

else
Wn+1 =Wn

This algorithm has the advantage of proceeding in a
mini-batch manner. The simplest rule is to use each
mini-batch once within J successive iterations of the

algorithm so that they correspond to an epoch. The
proposed algorithm belongs to the family of block-iterative
outer approximation schemes for solving constrained
quadratic problems [36]. One of the main features of this
algorithm is that it does not require performing any
projection onto the 0-lower level sets of the functions cj ,
which would be intractable due to their expressions.
Instead, these projections are implicitly replaced by
subgradient projections, which are much easier to compute
in our context.

3.5 CertViT for a Network

Algorithm 3: Parallel CertViT for multi-layer network

Input: input sequence X ∈ RM×K , β magnitude for
soft-thresholding, error tolerance parameter
η > 0, λ is update rate, weight matrices
W 1, . . . ,WL

Y 0 ← X
for l = 1, . . . , L do

Y l = Rl(W
lY l−1)

Ŵ l ← CertViT(β, η, λ,W l, Y l, Y l−1)

Ŵ 1, . . . , ŴL ← fine-tune(Ŵ 1, . . . , ŴL, X, Y )

Output: Ŵ 1, . . . , ŴL

Algorithm 3 describes how we make use of CertViT for a
transformer. We use a pre-trained transformer and the
training sequence to extract layer-wise input-output
features. Then we apply CertViT on individual layer l by
passing parameter β, η, and λ for magnitude based
soft-thresholding, error tolerance, and Douglas-Rachford
update rate, respectively. Rl is the activation function just
after the layer l. Layer parameters W l and input-output
features (Y l−1, Y l) are extracted and passed to
Algorithm 1. The benefit of applying CertViT to each layer
independently is that we can run CertViT on all the layers
of a network in parallel. This reduces the time required to
process the whole network and compute resources are
optimally utilized. Once all layers have been constrained
using CertViT, we finally do a fine-tuning on training set to
overcome any accuracy lost during the process. This is
similar to retraining after magnitude based pruning.

3.6 Computing Lipschitz constant of Transformers

Transformer model comprises of fully connected,
convolutional, and self-attention layers. Though the
estimates of the Lipschitz constant of fully connected and
convolutional layers are now widely studied in the
literature, self-attention layers are still under-explored in
terms of Lipschitz bounds and hence their certified
robustness is of question. In [8] authors investigate the
Lipschitz bounds of self-attention layer.They prove the
standard DP self-attention used in all the current



transformer models is not Lipschitz. They propose an
alternative L2 Multi headed self-attention (L2-MHA).

These estimates are Lipschitz continuous for the condition
that query and key weight matrices are shared for each head
in multi-headed self attention module. The estimates
presented imply transformers have intrinsically high
Lipschitz constant due to the self-attention module and
naively restricting them to attain lower Lipschitz constant
makes them difficult to learn leaving both clean and
certified accuracy very low. Since this form of
self-attention is Lipschitz continuous we adapt it to learn
the ViTs from scratch and also adapt the DP-attention to L2

attention weights in pre-trained transformers.

The patch embedding layer is used for generating patches
and translating the patches to fixed dimension with their
positional embeddings. This layer can be constructed using
convolutional or dense layers. The output of the patch
embedding layer serves as the input to the transformer
encoder. The output of this encoder is fed to the MLP layer.
The Lipschitz bounds for the weights of both of these types
of layers can be estimated using spectral norm via the
power iteration method. The MLP layer consists of two
dense layers. The first dense layer of MLP is followed by
the GeLU activation function. GeLU is not 1-Lipschitz, but
Lipschitz continuous with value 1.12 which can be trivially
obtained (Appendix A). So we calculate the Lipschitz
bound for the MLP layer in the transformer as 1.12‖W‖s.

4 Experiment

We perform various experiments to demonstrate our
proposed method’s effectiveness in making neural network
models more robust and provide a good trade-off between
clean and certified accuracy. In order to manage our
experiments we use Polyaxon1 on a Kubernetes2 cluster
and use 2 computing nodes with 16 A100 GPUs in each
node (40GB VRAM per GPU). Experimental details are
available in Appendix C.

4.1 Comparison to Existing Lipschitz Bounding
Methods

To concertize the effectiveness of the proposed method in
reducing the Lipschitz bounds, we first compare it with
existing Lipschitz based methods used in certifying
mid-size networks with convolution and dense layers. We
compare our results with state-of-the-art of methods such as
GloRo [20], Local-Lip [21], and BCP [19]. We show these
results on limited-sized datasets: MNIST, CIFAR-10,
CIFAR-100 and TinyImageNet in Table 1. We used the
custom networks used in the certified robustness literature.
i.e., 4C3F: MNIST, 4C3F and 6C2F for CIFAR-10, 8C2F

1https://github.com/polyaxon/polyaxon
2https://kubernetes.io/

for CIFAR-100 and TinyImageNet. We trained our model
with the same configurations as provided in Local-Lip [21]
for fair comparisons. Next, we perform experiments on
ViTs on each of the datasets. We train a 6-layer ViT on
MNIST and CIFAR-10, 10-layer ViT on CIFAR-100, and
12-layer ViT on TinyImageNet. We replace DP attention
with L2 attention to make architecture Lipschitz continuous,
as explained in the previous sections. For all experiments of
CertViT, we use β = 0.01, η = 0.1, and λ = 1.2. More
details about ViT patch size, number of heads, MLP ratio,
and embedding dimension is available in the Appendix C.

For each experiment, we report accuracy on non-perturbed
inputs (clean accuracy), accuracy on adversarial
perturbations generated via PGD attack [37] (PGD
accuracy), and the proportion of inputs that can be correctly
classified and certified within ε-ball (certified accuracy).
Certified accuracy gives a lower bound on the number of
correctly classified points that are robust, and PGD
accuracy serves as an upper bound on the same quantity.
We also report the Lipschitz bounds for the trained models.
We test our Lipschitz constrained neural networks to certify
robustness against `2 perturbations within an
ε-neighborhood of 1.58 for MNIST, 36/255 for CIFAR-10,
CIFAR-100, and TinyImageNet (these are the `2 norm
bounds that have been commonly used in the previous
literature.). We also tabulate the computational budget
required to train each of these models in terms of FLOPs.
More details on the training setup can be found in
Appendix B. For different state-of-the-art, we used
hyper-parameters mentioned in the respective works
detailed in Appendix C for details.

Observations: As mentioned earlier, unconstrained neural
network models have very high Lipschitz bounds. We
observe that ViTs with just 1M parameters have very high
Lipschitz constant of order 1013, making them unsuitable
for certification. The high value can be attributed to the
multi-headed self-attention layer in the transformers and
residual branches. Our proposed method, CertViT is very
successful in lowering the Lipschitz bounds of networks
compared to the existing works on networks with
convolution and dense layers. CertViT also maintained
accuracy close to the pre-trained network. We achieved
better PGD and certified accuracy than existing works for
all the datasets. CertViT also takes less computational time
than other methods, which can be attributed to its
applicability to pre-trained weights. Moving to ViTs,
CertViT successfully lowered the Lipschitz bounds of
pre-trained classifiers by orders of magnitude in all the
cases, and we were able to certify the samples. It is can also
be observed that the performance of existing methods on
ViTs is unknown, and the theory usually revolves around
non-expansive operators such as ReLU. We still tried these
methods on ViTs using a few modifications and found they
failed miserably in lowering Lipschitz bounds and hence

https://github.com/polyaxon/polyaxon
https://kubernetes.io/


Method (Params) Model Clean (%) PGD (%) Cert. (%) Lip. FLOPs (×1013)

MNIST (ε = 1.58)

Standard (1973536) 4C3F 99.3 45.9 0.0 2.5× 103 6.1
BCP 4C3F 92.4 65.8 44.9 6.9 18.2
GloRo 4C3F 97.0 68.9 50.1 2.3 30.3
Local-Lip 4C3F 96.2 78.2 55.8 0.7 17.6
CertViT (Ours) 4C3F 98.2 82.9 61.3 0.8 5.5

Standard (1094528) ViT 98.6 63.4 0.0 1.4× 1013 9.3
CertViT (Ours) ViT 97.8 64.2 54.5 1.2 8.4

CIFAR-10 (ε = 36/255)

Standard (2528096) 4C3F 84.6 51.1 0.0 2.7× 104 8.2
BCP 4C3F 64.4 59.4 50.0 5.7 16.3
GloRo 4C3F 73.2 66.3 49.0 6.3 49.1
Local-Lip 4C3F 75.7 68.3 67.6 2.5 20.4
CertViT (Ours) 4C3F 81.2 69.8 69.1 1.9 7.4

Standard (2360672) 6C2F 86.4 50.5 0.0 2.8× 105 17.5
BCP 6C2F 65.7 60.8 51.3 11.35 35.0
GloRo 6C2F 70.7 63.8 49.3 9.21 140.1
Local-Lip 6C2F 69.8 64.3 54.1 7.89 43.7
CertViT (Ours) 6C2F 82.1 63.2 57.3 6.12 19.2

Standard (4086912) ViT 81.4 33.7 0.0 8.2× 1016 331.5
CertViT (Ours) ViT 75.1 42.7 33.1 9.1 358.0

CIFAR-100 (ε = 36/255)

Standard (2436864) 8C2F 62.3 25.3 0.0 8.1× 107 128.6
GloRo 8C2F 29.3 27.7 21.3 10.2 514.3
Local-Lip 8C2F 34.0 31.1 22.9 8.9 360.7
CertViT (Ours) 8C2F 42.4 35.2 25.4 7.2 77.1

Standard (4916736) ViT 55.3 15.4 0.0 6.3× 1014 397.6
CertViT (Ours) ViT 46.2 21.6 9.1 12.1 429.4

TinyImageNet (ε = 36/255)

Standard (5257984) 8C2F 39.1 12.1 0.0 2.9× 108 583.0
GloRo 8C2F 35.5 32.3 22.4 7.7 2331.8
Local-Lip 8C2F 37.4 34.2 27.4 5.9 1020.2
CertViT (Ours) 8C2F 38.1 34.9 26.3 6.1 349.8

Standard (9060864) ViT 42.4 10.8 0.0 1.64× 1028 2860.1
CertViT (Ours) ViT 36.3 13.1 2.3 13.2 3088.9

Table 1: Comparison of CertViT with state-of-the-art Lipschitz bounding methods. We use Clean, PGD and Certified
Accuracy as the performance metrics. We also report the Lipschitz constant values obtained and the FLOPs taken by each
method. Note that for CertViT we do not consider the training FLOPs used to obtain the pre-trained network. In case of
CIFAR-10 (6C2F) BCP takes less time (FLOPs) compared to standard + CertViT.

did not certify any samples. Therefore, we have removed
them from our comparisons. In contrast, our method was
able to tighten the Lipschitz bound and improve PGD and
certified accuracy. In the case of transformers, too CertViT
requires considerably fewer FLOPs than the existing works
implying it requires fewer epochs to converge.

4.2 Constraining Lipschitz of large pre-trained
transformers

To show the applicability of our proposed method on large
transformers, we apply it on ImageNet-1K pre-trained
weights of ViT (tiny, small, base, and large), DeiT (tiny,
small, and base), and Swin (tiny, small, base, and large).



Model (→) ViT DeiT Swin

T/16 S/16 S/32 B/8 B/16 B/32 L/16 T S B T S B L

DP Params (×106) 5.7 22.0 22.9 86.4 80.5 88.2 304.1 5.7 22.0 86.4 28.3 49.5 87.7 196.4
L2 Params (×106) 5.2 20.2 21.0 78.8 79.2 81.0 278.4 5.2 20.2 78.8 25.7 44.9 79.9 179.4
L2 FLOPs (×1016) 6.4 25.0 6.4 392.7 100.6 25.6 350.4 6.4 26.7 396.8 26.3 50.1 90.3 199.9
CertViT FLOPs (×1016) 7.7 31.2 7.7 471.2 120.7 30.7 420.5 8.2 33.2 473.2 31.5 59.9 108.4 239.8

Table 2: Comparison of parameters of DP-attention and L2-attention transformers and the computation utilized to obtain the
L2-attention from DP attention along with FLOPs used to constrain the L2-attention transformer using CertViT. T/16 means
Tiny variant with patch size 16. S, B, and L are Small, Base, and Large, respectively.

Model (↓) DP Attention L2 Attention CertViT on L2 Attention

Clean(%) PGD(%) Clean(%) PGD(%) Lip. (×1028) Clean(%) PGD(%) Cert.(%) Lip.

ViT-T/16 63.0 29.1 62.5 28.2 0.2 57.9 32.4 21.7 10.9
ViT-S/16 74.2 48.2 73.7 47.3 1.1 69.2 51.3 0 72.9
ViT-S/32 67.6 40.6 67.5 39.5 2.3 63.1 44.5 0 317.4
ViT-B/8 80.9 59.2 79.9 58.2 13.2 75.5 60.1 0 785.1
ViT-B/16 78.8 57.0 77.8 56.1 13.7 73.2 59.3 0 1720.4
ViT-B/32 75.0 53.7 74.1 52.0 25.8 70.4 56.4 0 8791.7
ViT-L/16 82.6 71.8 81.9 70.2 1.6× 1010 77.8 74.8 0 1.7× 109

DeiT-T 72.6 30.4 71.8 29.2 0.5 67.2 31.6 17.3 13.6
DeiT-S 71.5 45.4 70.5 44.8 1.7 64.6 49.3 0 93.7
DeiT-B 75.2 44.6 74.2 43.4 16.1 69.6 48.3 0 4592.0

Swin-T 72.6 21.2 71.2 20.5 7.2 65.8 22.8 0 483.6
Swin-S 75.7 26.0 74.3 25.1 3.8× 109 69.7 28.0 0 2.7× 108

Swin-B 79.8 30.1 78.5 29.1 11.7× 1010 73.6 31.1 0 1.9× 1010

Swin-L 81.5 28.1 79.8 27.7 23.1× 1010 73.9 30.2 0 4.1× 1010

Table 3: Comparisons of different ViT variants pre-trained on ImageNet-1K adapted to have L2 attention and constrained
using CertViT. Lip. denotes Lipschitz constant of the network.

All weights were obtained from timm3 library. First, we
replace the DP attention in ViT and DeiT networks with L2
attention. Similarly, in Swin, we replace the shifted window
and window attention with their L2 variants as described in
Appendix D. We then apply our Lipschitz constraining
method (CertViT) on these L2-adapted networks. Table 2
shows the number of parameters for DP attention and L2
attention versions of all the large transformers used in our
experiments. The Table also reports the computational
cycles (FLOPs) used in adapting pre-trained DP attention to
L2 attention and the computational cycles used by CertViT
when constraining L2 attention pre-trained networks.
Table 3 shows results obtained by DP attention, L2
attention, and Lipschitz constrained (CertViT) L2 attention
networks. Our proposed method managed to constrain the
Lipschitz constant while maintaining acceptable clean and
PGD. We were only able to obtain certified accuracy for
ViT-T/16 and DeiT-T. This is because we are calculating a
very loose upper Lipschitz bound that increases with the
depth and parameters of the network. In all other cases, we
reduced Lipscthiz, leading to increased PGD accuracy. For
PGD accuracy on ImageNet-1K, we randomly select 1000

3https://github.com/rwightman/
pytorch-image-models

samples such that each class has one sample from the test
set and report the accuracy of the selected sample. The
value of ε-neighbourhood is kept at 36/255.

5 Conclusion

In this work, we propose an efficient way of providing
certified robustness using Lipschitz bounds focusing on
vision transformers. With the ever-increasing deployment
of neural networks, such formal guarantees are necessary
for safety-critical applications. Such Lipschitz constrained
training has been missing in the literature for transformers.
We have presented a proximal projection step for lowering
the Lipschitz bounds while maintaining the accuracy of the
classifier. We show the efficacy of CertViT on simple
architectures with convolution and fully-connected layers
compared to existing techniques. We establish this pipeline
for making the transformer layers Lipschitz continuous by
using L2 attention layers. In the case of pre-trained
transformers, we have adapted DP attention to L2 attention
layers. We use our proposed method, CertViT, for
pre-trained transformers. Results obtained on large
transformer variants pre-trained on ImageNet-1K show the
efficacy of our proposed method.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models


References

[1] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna,
D. Erhan, I. Goodfellow, and R. Fergus, “Intriguing
properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013. (Cited on 1, 2)

[2] A. Athalye, N. Carlini, and D. Wagner, “Obfuscated
gradients give a false sense of security: Circumventing
defenses to adversarial examples,” in ICML, pp. 274–
283, 2018. (Cited on 1)

[3] A. Virmaux and K. Scaman, “Lipschitz regularity
of deep neural networks: analysis and efficient
estimation,” in NeurIPS, pp. 3835–3844, 2018. (Cited
on 2)

[4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin,
“Attention is all you need,” NeurIPS, vol. 30, 2017.
(Cited on 2)

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova,
“Bert: Pre-training of deep bidirectional transformers
for language understanding,” arXiv preprint
arXiv:1810.04805, 2018. (Cited on 2)

[6] A. Radford, K. Narasimhan, T. Salimans, and
I. Sutskever, “Improving language understanding with
unsupervised learning,” 2018. (Cited on 2)

[7] A. Dosovitskiy, L. Beyer, A. Kolesnikov,
D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani,
M. Minderer, G. Heigold, S. Gelly, et al., “An
image is worth 16x16 words: Transformers
for image recognition at scale,” arXiv preprint
arXiv:2010.11929, 2020. (Cited on 2)

[8] H. Kim, G. Papamakarios, and A. Mnih, “The lipschitz
constant of self-attention,” in ICML, pp. 5562–5571,
2021. (Cited on 2, 5)

[9] H. Zhang, P. Zhang, and C.-J. Hsieh, “Recurjac: An
efficient recursive algorithm for bounding jacobian
matrix of neural networks and its applications,” in
AAAI, vol. 33, pp. 5757–5764, 2019. (Cited on 2)

[10] H. Zhang, H. Chen, C. Xiao, S. Gowal, R. Stanforth,
B. Li, D. Boning, and C.-J. Hsieh, “Towards stable and
efficient training of verifiably robust neural networks,”
arXiv preprint arXiv:1906.06316, 2019. (Cited on 2)

[11] L. Weng, H. Zhang, H. Chen, Z. Song, C.-J. Hsieh,
L. Daniel, D. Boning, and I. Dhillon, “Towards fast
computation of certified robustness for relu networks,”
in ICML, pp. 5276–5285, 2018. (Cited on 2)

[12] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and
G. Pappas, “Efficient and accurate estimation of
Lipschitz constants for deep neural networks,” in
NeurIPS, pp. 11423–11434, 2019. (Cited on 2)

[13] M. Jordan and A. G. Dimakis, “Exactly computing
the local lipschitz constant of relu networks,” NeurIPS,
vol. 33, pp. 7344–7353, 2020. (Cited on 2)

[14] F. Latorre, P. Rolland, and V. Cevher, “Lipschitz
constant estimation of neural networks via
sparse polynomial optimization,” arXiv preprint
arXiv:2004.08688, 2020. (Cited on 2)

[15] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and
N. Usunier, “Parseval networks: Improving robustness
to adversarial examples,” in ICML, pp. 854–863, 2017.
(Cited on 2)

[16] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida,
“Spectral normalization for generative adversarial
networks,” arXiv preprint arXiv:1802.05957, 2018.
(Cited on 2)

[17] M. Serrurier, F. Mamalet, A. González-Sanz,
T. Boissin, J.-M. Loubes, and E. del Barrio, “Achieving
robustness in classification using optimal transport
with hinge regularization,” in CVPR, pp. 505–514,
2021. (Cited on 3)

[18] Y. Tsuzuku, I. Sato, and M. Sugiyama, “Lipschitz-
margin training: Scalable certification of perturbation
invariance for deep neural networks,” NeurIPS, vol. 31,
2018. (Cited on 3)

[19] S. Lee, J. Lee, and S. Park, “Lipschitz-certifiable
training with a tight outer bound,” NeurIPS, vol. 33,
pp. 16891–16902, 2020. (Cited on 3, 6)

[20] K. Leino, Z. Wang, and M. Fredrikson, “Globally-
robust neural networks,” in ICML, pp. 6212–6222,
2021. (Cited on 3, 6)

[21] Y. Huang, H. Zhang, Y. Shi, J. Z. Kolter, and
A. Anandkumar, “Training certifiably robust neural
networks with efficient local lipschitz bounds,”
NeurIPS, vol. 34, 2021. (Cited on 3, 6)

[22] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree,
“Regularisation of neural networks by enforcing
lipschitz continuity,” Machine Learning, vol. 110,
no. 2, pp. 393–416, 2021. (Cited on 3)

[23] S. Bhojanapalli, A. Chakrabarti, D. Glasner, D. Li,
T. Unterthiner, and A. Veit, “Understanding robustness
of transformers for image classification,” in ICCV,
pp. 10231–10241, 2021. (Cited on 3)

[24] K. Mahmood, R. Mahmood, and M. Van Dijk, “On
the robustness of vision transformers to adversarial
examples,” in ICCV, pp. 7838–7847, 2021. (Cited on
3)



[25] P. Benz, S. Ham, C. Zhang, A. Karjauv, and I. S.
Kweon, “Adversarial robustness comparison of vision
transformer and mlp-mixer to cnns,” arXiv preprint
arXiv:2110.02797, 2021. (Cited on 3)

[26] H. Salman, M. Sun, G. Yang, A. Kapoor, and J. Z.
Kolter, “Denoised smoothing: A provable defense for
pretrained classifiers,” NeurIPS, vol. 33, pp. 21945–
21957, 2020. (Cited on 3)

[27] J. Cohen, E. Rosenfeld, and Z. Kolter, “Certified
adversarial robustness via randomized smoothing,” in
ICML, pp. 1310–1320, 2019. (Cited on 3)

[28] M. S. Norouzzadeh, W.-Y. Lin, L. Boytsov, L. Rice,
H. Zhang, F. Condessa, and J. Z. Kolter, “Empirical
robustification of pre-trained classifiers,” in ICML
Workshop on Adversarial Machine Learning, 2021.
(Cited on 3)

[29] I. Goodfellow, J. Shlens, and C. Szegedy, “Explaining
and harnessing adversarial examples,” in ICLR, 2015.
(Cited on 3)

[30] P. L. Combettes and J.-C. Pesquet, “Deep neural
network structures solving variational inequalities,”
SVVA, 2020. (Cited on 3)

[31] P. L. Combettes and J.-C. Pesquet, “Lipschitz
certificates for layered network structures driven by
averaged activation operators,” SIMODS, 2020. (Cited
on 3)

[32] J.-J. Moreau, “Fonctions convexes duales et points
proximaux dans un espace hilbertien,” Comptes
rendus hebdomadaires des séances de l’Académie des
sciences, 1962. (Cited on 4)

[33] P.-L. Lions and B. Mercier, “Splitting algorithms for
the sum of two nonlinear operators,” SIAM Journal on
Numerical Analysis, 1979. (Cited on 4)

[34] P. L. Combettes and J.-C. Pesquet, “A
Douglas–Rachford splitting approach to nonsmooth
convex variational signal recovery,” IEEE JSTSP,
2007. (Cited on 4)

[35] S. Verma and J.-C. Pesquet, “Sparsifying networks via
subdifferential inclusion,” in International Conference
on Machine Learning, pp. 10542–10552, PMLR, 2021.
(Cited on 5)

[36] P. L. Combettes, “A block-iterative surrogate
constraint splitting method for quadratic signal
recovery,” IEEE TSP, 2003. (Cited on 5)

[37] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and
A. Vladu, “Towards deep learning models resistant to
adversarial attacks,” arXiv preprint arXiv:1706.06083,
2017. (Cited on 6)



A Appendix

A GELU activation

The Lipschitz constant of any function f(x) : R → R,
which follows Lipschitz continuity, can be calculated as the
absolute maximum value of its derivative f ′(x). That is
|f ′(x)| 6 L ∀x then L is the Lipschitz constant of f .
GELU activation function (f(x)) and its derivative (f ′(x))
is given as

f(x) =
x

2
[1 + erf(x/

√
2)] (14)

where, erf(x) =
2√
π

∫ x

0

e−t
2dt (15)

f ′(x) =
xe−x

2/2

√
2π

+
erf(x/

√
2)

2
+

1

2
(16)
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Figure 2: Representation of GELU activation function and
its derivative. The maximum absolute value of the derivative
is 1.12, as seen from the graph.

From the figure 2 we see that the maximum of |f ′(x)| is
1.12. So, for the GELU activation function in the
transformers, we loosely take the Lipschitz constant as 1.12
and the Lipschitz constant of the MLP layer with the GELU
activation function as 1.12‖W‖s.

B Training Setup

B.1 Training Strategies

Figure 3 describes the different training strategies and
pipelines we have used in our experiments.
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Figure 3: (a) L2 adaptation in a pre-trained network
that was trained with DP-MHA. All the layers in the
transformer encoder (shown in red) are frozen and the DP-
MHA is replaced with L2 MHA and trained for adaptation.
(b) Depiction of the proposed approach CertViT, which
alternates between maintaining a good accuracy and a small
Lipschitz constant.

B.2 Experimental Setup

PyTorch is employed to implement all the experiments. We
use timm4 implementation of ViT5 and Swin6. We replace
Linear and Convolutional layers with our own
implementation called LinearX and ConvX, respectively.
These layers allow us to compute the Lipschitz constant
and project weight according to the requirement of CertViT.
We also implement L2 attention to replace attention in ViT
and Swin. In order to manage our experiments we use
Polyaxon7 on a Kubernetes8 cluster and use 2 computing
nodes with 16 A100 GPUs in each node (40GB VRAM per
GPU).

C Hyper-parameter

C.1 Architectures

Table 4 shows ViT architecture parameters used to train
from scratch on MNIST, CIFAR-10, CIFAR-100 and
TinyImageNet datasets. Table 5 shows ViT and DeiT
variants parameters for ImageNet-1K pre-trained networks

4https://github.com/rwightman/
pytorch-image-models

5https://github.com/rwightman/
pytorch-image-models/blob/0.5.x/timm/
models/vision_transformer.py

6https://github.com/rwightman/
pytorch-image-models/blob/0.5.x/timm/
models/swin_transformer.py

7https://github.com/polyaxon/polyaxon
8https://kubernetes.io/

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/vision_transformer.py
https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/vision_transformer.py
https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/vision_transformer.py
https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/swin_transformer.py
https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/swin_transformer.py
https://github.com/rwightman/pytorch-image-models/blob/0.5.x/timm/models/swin_transformer.py
https://github.com/polyaxon/polyaxon
https://kubernetes.io/


Dataset Input Channels Patch Layers Embed MLP
Size Size Dim Ratio

MNIST 28 1 7 6 128 4
CIFAR-10 32 3 4 6 192 3
CIFAR-100 32 3 4 12 192 3
TinyImageNet 64 3 4 12 384 3

Table 4: ViT architectures used for different datasets when
trained from scratch.

Name Input Channels Patch Layers Embed MLP
Size Size Dim Ratio

ViT-T/16 224 3 16 12 192 3
ViT-S/16 224 3 16 12 384 6
ViT-S/32 224 3 32 12 384 6
ViT-B/8 224 3 8 12 768 12

ViT-B/16 224 3 16 12 768 12
ViT-B/32 224 3 32 12 768 12
ViT-L/16 224 3 16 24 1024 16

DeiT-T 224 3 16 12 192 3
DeiT-S 224 3 16 12 384 6
DeiT-B 224 3 16 12 768 12

Table 5: ViT architectures are used for different datasets
when ImageNet-1K pre-trained weights are used.

Name Input Chnls Patch Window Layers Embed HeadsSize Size Size Dim

Swin-T 224 3 4 7 2, 2, 6, 2 96 3, 6, 12, 24
Swin-S 224 3 4 7 2, 2, 18, 2 96 3, 6, 12, 24
Swin-B 224 3 4 7 2, 2, 18, 2 128 4, 8, 16, 32
Swin-L 224 3 4 7 2, 2, 18, 2 192 6, 12, 24, 48

Table 6: Swin architectures used for ImageNet-1K.

used in the experiment. Swin variants (pre-trained on
ImageNet-1k) details is shown in Table 6.

C.2 Training from scratch

Dataset MNIST CIFAR-10 CIFAR-100 TinyImageNet

Warm-up 5 15 30 35
Batch Size 512 512 512 512
Epochs 500 800 800 500
εtrain 1.74 0.16 0.16 0.16
εtest 1.58 0.141 0.141 0.141
Optimizer Adam Adam Adam Adam
Init LR 1e-3 1e-3 1-e3 2.5e-4
LR Decay 5e-6 5e-6 5e-6 5e-7
εschedule single single single single
Power Iter 5 5 5 5

Table 7: Hyperparameters used for training GloRo.

Table 7 and Table 8.show hyperparameters used in GloRo
and LocalLip training of convolutional networks. We use
TensorFlow implementation provided here9. Table 9 shows
the hyperparameters required to train convolutional and
ViTs on MNIST, CIFAR-10/100, and TinyImageNet from
scratch.

9https://github.com/klasleino/gloro,https:
//github.com/yjhuangcd/local-lipschitz

Dataset MNIST CIFAR-10 CIFAR-100 TinyImageNet

Warm-up 0 5 20 30
Batch Size 256 256 256 128
Epochs 300 300 800 250
εtrain 1.58 0.1551 0.1551 0.16
εtest 1.58 0.141 0.141 0.141
Init LR 1e-3 1e-3 1-e3 2.5e-4
End LR 5e-6 5e-6 5e-6 5e-7
λsparse 0.0 0.0 0.0 0.01
λθ 0.0 0.0 0.0 0.1
LR Decay Epoch 150 200 400 150
εschedule Epochs 150 200 400 125
Power Iter 5 5 2 1

Table 8: Hyperparameters used for training Local-Lip

Dataset MNIST CIFAR-10 CIFAR-100 TinyImage

Batch Size 512 512 512 512
Epochs 100 200 200 200
Optimizer Adam Adam Adam Adam
Init LR 1e-3 1e-3 1e-3 2.5e-4
LR Decay 5e-6 5e-6 5e-6 5e-7
Scheduler MultiStep CosAneal CosAneal CosAnneal
Milestones (50, 60, 70, 80) NA NA NA
γscheduler 0.2 NA NA NA
ηmin NA 1e-5 1e-5 1e-5
CertViT Epochs 5 5 5 5
projC Epochs 2 2 2 2
η 1e-2 1e-2 1e-2 1e-2
β 0.1 0.1 0.1 0.2
λ 1.1 1.2 1.2 1.2

Table 9: Hyperparameters used for training transformers
with L2 attention and then using CertViT to constrain the
trained network.

C.3 Constraining pre-trained networks

Dataset Batch Adaptation CertViT projC η β λSize Epochs Epochs Epochs

ViT-T/16 2048 50 5 2 1e-2 0.1 1.2
ViT-S/16 2048 50 5 2 1e-2 0.1 1.2
ViT-S/32 1024 70 5 2 1e-2 0.1 1.2
ViT-B/8 128 70 6 2 1e-2 0.2 1.3
ViT-B/16 256 50 5 2 1e-2 0.2 1.2
ViT-B/32 256 50 6 2 1e-2 0.2 1.3
ViT-L/16 256 70 6 2 1e-2 0.2 1.3
DeiT-T 2048 50 5 2 1e-2 0.1 1.2
DeiT-S 2048 70 6 2 1e-2 0.2 1.2
DeiT-B 256 70 6 2 1e-2 0.2 1.3
Swin-T 1024 40 5 2 1e-2 0.1 1.2
Swin-S 512 50 6 2 1e-2 0.2 1.2
Swin-B 256 50 6 3 1e-2 0.25 1.3
Swin-L 128 70 7 3 1e-2 0.25 1.3

Table 10: Hyperparameters used for L2 adaptation and
CertViT applied on different transformer architectures pre-
trained on ImageNet-1K.

Hyper-parameters used in L2 adaptation and constraining
using CertViT of transformer variants pre-trained on
ImageNet-1K are shown in Table 10.

https://github.com/klasleino/gloro
https://github.com/yjhuangcd/local-lipschitz
https://github.com/yjhuangcd/local-lipschitz


D Swin

The Swin transformer builds hierarchical feature maps by
merging image patches in deeper layers and has linear
computation complexity to input image size due to
computation of self-attention only within each local
window, unlike in other ViTs where the attention is
calculated globally and hence the complexity is quadratic
with respect to patch number. Global self-attention in most
ViTs variants is generally unaffordable for high-resolution
images, while window-based self-attention is scalable.
Window-based self-attention lacks connections across
windows, limiting its modeling power. They propose a
shifted window partitioning that introduces a connection
between neighboring non-overlapping windows in
consecutive Swin transformer blocks.

In simple terms, Swin transformers calculate self-attention
in non-overlapping local windows and are suitable for
applications where the image resolution is high. The
windows are arranged to partition the image in a
non-overlapping manner evenly. The Swin transformers
block is built by replacing the standard multi-head
self-attention (MSA) module in the standard transformer
block with a module based on shifted windows (W-MSA),
with other layers kept the same. This W-MSA layer is still
calculated using standard Dot product attention. We replace
the Dot product in each W-MSA layer with L2 attention to
make the layer Lipschitz continuous and everything else in
the architecture remains the same.
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