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Abstract

The study of numerical models for the human body has
become a major focus of the research community in biol-
ogy and medicine. For instance, numerical ionic models of
a complex organ, such as the heart, must be able to rep-
resent individual cells and their interconnections through
ionic channels, forming a system with billions of cells, and
requiring efficient code to handle such a large system. The
modeling of the electrical system of the heart combines a
compute-intensive kernel that calculates the intensity of
current flowing through cell membranes, and feeds a linear
solver for computing the electrical potential of each cell.
Considering this context, we propose limpetMLIR, a code
generator and compiler transformer to accelerate the kernel
phase of ionic models and bridge the gap between compiler
technology and electrophysiology simulation. LimpetMLIR
makes use of the MLIR infrastructure, its dialects, and trans-
formations to drive forward the study of ionic models, and
accelerate the execution of multi-cell systems. Experiments
conducted in 43 ionic models show that our limpetMLIR
based code generation greatly outperforms current state-of-
the-art simulation systems by an average of 2.9%, reaching
peak speedups of more than 15X in some cases. To our knowl-
edge, this is the first work that deeply connects an optimizing
compiler infrastructure to electrophysiology models of the
human body, showing the potential benefits of using com-
piler technology in the simulation of human cell interactions.

CCS Concepts: « General and reference — Performance;
Computer systems organization — Parallel architec-
tures; » Software and its engineering — Compilers.
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1 Introduction

The fields of biology, chemistry, and physics do not only
rely on experimental, laboratory-related researchers, but
also on analyzing and experimenting with computer models
that require significant computational performance. Many
computer-experimented works are based on mathematical
concepts to design and model the physical behavior of the
matter of interest. This modeling often involves relying on a
language abstraction, typically a domain-specific language
(DSL), to provide the necessary instrument to describe the
computation. As an example, this work is addressing the sim-
ulation of cardiac tissues in the domain of electrophysiology,
which is fundamentally modeled by ordinary differential
equations (ODEs). Specifically, the openCARP [26] frame-
work aims to foster the needs of large parts of this community
for reproducible research with such simulations. The chal-
lenge for representing ODEs boils down to how should one
translate this level of language abstraction into efficient code,
so that compilers can optimize it for fast execution. However,
openCARP provides a simplified code generation process
that hinders compilers for optimization opportunities.
Compiler technology has become paramount to harness
performance of applications. The rise of Multi-Level Interme-
diate Representation (MLIR) [15] as a new compiler infras-
tructure has enabled the expansion of code transformations
to higher abstraction levels. Though MLIR has already been
applied in a number of fields, from linear algebra [4, 32]
to quantum technology [20], it has not yet been leveraged
as a viable replacement to traditional code generators in
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frameworks that model electrophysiology. In electrophysi-
ology, ionic models describe the interactions between cells
composing tissues, as for example the human heart.

The purpose of this work is precisely to bring the MLIR
compiler technology into the field of electrophysiology to
improve the code generation from a DSL. After the con-
struction of Abstract Syntax Trees (ASTs), limpetMLIR code
generator makes use of conventional MLIR dialects to pro-
duce a binary code that is far more optimized than the one
produced by a traditional compiler from a C/C++ translation.
In particular, our optimizations fully take advantage of the
Single Instruction Multiple Data (SIMD) execution capability
(vectorization) supported by modern CPUs.

The main contributions of this paper are:

1. a compiler frontend for a seamless integration between
ionic models and MLIR, capable of harnessing the
power of compiler technology into electrophysiology,

2. a set of code transformations and optimizations to
further improve the execution of ionic models,

3. a full experiment platform for ODE models that takes
advantage of MLIR and demonstrates the benefit of
integrating novel compiler technology and differential
equations.

The paper is organized as follows. Section 2 first presents
the motivation and the software pieces making up open-
CARP, and details the current compilation flow, from the
model description using a DSL to the code generation. Sec-
tion 3 details our code generation using MLIR and optimizing
transformations. A thorough evaluation of our proposal is
done in section 4 on 43 models included in openCARP. A dis-
cussion is provided in section 5, and related work is covered
in section 6. Finally, section 7 concludes this paper.

2 Compilation Flow in openCARP
2.1 Motivation

Computational modeling and simulation of cardiac electro-
physiology have gained importance in recent years, play-
ing a major role in cardiac research. Myokit [7] and open-
CARP [26], although having different objectives, are the two
most commonly used cardiac electrophysiology simulators
based on ionic model descriptions in academia and research.
Ionic models are written using domain-specific (markup)
languages such as EasyML [1], CellML [16], and SBML [11],
and provide biomedical researchers a high-level abstraction
to describe electrical currents (as ions) flowing through cell
membranes. These ionic models compute the right-hand side
of the ODEs solved in the simulation, that corresponds to the
right-hand side of a matrix that is fed to a high-performance
solver (outside the scope of this paper).

One should notice that such simulations on multiple cells
(a human heart contains about 2 billion muscle cells) could
take very long to complete on computationally expensive
cardiac models, raising concerns in terms of the viability of
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their execution. This motivates new research to tackle how
code generation is handled by the aforementioned frame-
works. And ultimately, harnessing compiler technology for
optimizing the code generation of these models will make
it possible to simulate much larger or more precise systems.
This will contribute to cardiac research by providing a bet-
ter understanding of the heart electrical functioning, and
potential malfunction causing arrhythmia.

2.2 Representation of Ionic Models

Ionic models essentially represent the chemical interactions
that occur between the muscular cells of cardiac tissue. They
compute the current flows crossing cell membranes from a
given state of the cells (the cells state variables). Being a math-
ematical discretized representation of a dynamic system, an
ionic model is a combination of arithmetic, mathematical
and even control-flow operations.

The choice of a language for describing an ionic model is
challenging. A high-level abstraction accelerates the model-
ing process, but may not provide the flexibility one wants for
expressing models. As a counterpart, a low-level abstraction
provides the needed flexibility and expressiveness, while
providing a more cumbersome modeling strategy. On the
other hand, a variety of scientific fields rely on a discretized
mathematical model for simulating a complex system solved
by ODEs, each imposing different restrictions to code gener-
ation and to specific data structures and computations.

The description of an ionic model should ideally combine
expressivity and flexibility, along with allowing fast descrip-
tion of a model. In the previously mentioned openCARP
framework, models are described using EasyML, a conve-
nient and robust markup language that is widely used by
specialists as a DSL. From a compiler perspective, EasyML
expressions follow the ideas behind the static single assign-
ments (SSA) [8], a form of representation that is common
within compiler representations. SSA values can only be as-
signed once, a property that eases the use of many known
optimizations by the compiler. For all these reasons, we bor-
row the syntax and semantics of EasyML in order to enable
compatibility between our proposed solution and a state-of-
the-art format for describing ionic models.

The adoption of EasyML has not only been considered
as a result of its use by modeling specialists. Indeed, the
realization that EasyML serves as a common point to other
language references is one of the main advantages and mo-
tivation for its use. The language delivers characteristics of
both a frontend and intermediate representation: one can
not only design its own model directly using EasyML, but
the language can serve as intermediate representation for
other description languages. Figure 1 illustrates how EasyML
serves as an intermediate representation for different for-
mats: CellML [16], SBML [11], and MMT [7] formats can be
converted to EasyML through semi-automatic scripts avail-
able in the openCARP and Myokit.
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Figure 1. An overview of the lifting strategy used to enable ionic models in MLIR. The left-hand side show EasyML working
as a frontend language and as an intermediate representation for different formats. The right-hand side describes the proposed

compilation flow that takes EasyML as input language.

The language was primarily designed to allow for fast im-
plementation of differential equations. Variable assignments,
if statements and the precedence of arithmetic operations
follow those of C/C++ languages. While focusing on the
expressivity of computational models in electrophysiology,
EasyML is not seen as comparable to traditional program-
ming languages. Its main characteristics are:

1. The language is not Turing complete in that it cannot
express loops.

. Variables diff_ and _init are recognized as part of
the language and represent the differential equation
for a variable and its initial value, respectively.

. Markup statements can be used to change the variables
handled by the code generation. Examples of markup
keywords are external, lookup, method(integra-
tion_name), etc. These keywords allow the user to
control different aspects of the generated code, such
as, variables that are external to the cell state variables,
creation of lookup tables for fast linear interpolation,
or which discrete integration method (among a collec-
tion) should be used for a specific equation.

These language structures and features make EasyML
compatible with numerous models for cardiac cell simulation.
In the following section, we describe the code generation we
have developed for the betterment of cardiac-cell simulation.

3 Optimized Code Generation
3.1 Overview

Our code generation for cardiac models, called limpetMLIR
in the following, is conceptualized to leverage the inherent
parallelism found within cells and improve the efficiency
of the compute stage. The simulation flow in openCARP is
mainly divided into two stages: (1) In the compute stage, cells
compute ionic currents written in the EasyML format. Each
cell can have access to a shared read-only state that store
common information among them, along with a private read/
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write state which is updated at the end of the stage. (2) The
solver stage starts once all cells have synchronized after the
compute stage completion. In this stage, computed values
are passed to a linear solver for the actual ODEs solving.

While the simulation flow is a two-stage execution, we
take advantage of the lack of synchronization among cells
in the compute stage to parallelize their execution through
SIMD operations. In other words, we make use of MLIR di-
alects and operations to fully vectorize the computation of
cells state variables. We have adapted many features from
the openCARP framework and C/C++ languages to seam-
lessly work in MLIR. Function pointers from C, integration
methods, and lookup table (LUT) acceleration are automati-
cally ported to MLIR for vector support. While our overall
contribution is to connect a simulating infrastructure for
the study of the human heart to compiler technology, our
work shows a proof-of-concept MLIR code generation that
does not require an additional dialect proposal. Though this
could be perceived as lacking since many previous work on
MLIR [9, 28, 29] have proposed new dialects, we have found
no justification for the addition of a new language. Indeed,
MLIR includes all necessary dialects and operations required
to optimize the execution of ionic models. An MLIR dialect
extension would conflict with the proposal of an easy-to-use
and upstream-compatible code generator.

Figure 1 shows the complete compilation flow:

1. EasyML works as a frontend language (or high-level in-
termediate representation) for different formats (Cell-
ML, SBML, MMT). Semi-automatic tools can be used
for language conversion.

. Inside openCARP, a frontend called limpet, written in
Python, translates EasyML into an abstract syntax tree
(AST) representation for syntax and semantic analysis
in the implemented ionic model description. This pro-
cess is a common component between our code gener-
ator limpetMLIR and the original openCARP limpetC++
that generates C/C++ code.
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Vm; .external(); .nodal(); .lookup(-100,100,0.05);
Iion; .external(); .nodal();
group{ ul; u2; u3; }.nodal();

N U A W N e

group{ Cm = 200; beta = 1; xi = 3; }.param();
ul_init = @; u2_init = @; u3_init = @; Vm_init = 0;
diff_u3 = 0;

gl diff_u2 = -(ul+u3-Vm)=*cube (u2);

9/ diff_ul = square(ul+u3-Vm)*square(u2)+0.5%x(ul+u3-vm);

10| ul;.metho
11
12| Iion =

(rk2);

(-(Cm/2.)*(ul+u3-Vm)*square (u2)*(Vm-u3)+beta);

Listing 1. Modified version of Pathmanathan [25] ionic
model written in EasyML

3. From the AST, limpetMLIR makes use of vector, con-
trolflow, arith, math, memref, and openmp dialects
to implement the majority of EasyML features.

4. Finally, limpetMLIR includes two additional code trans-
formations for further performance improvements: a
vectorization-based LUT computation, and a data lay-
out optimization to avoid the effects of non-consecutive
data storage of variables within ionic models.

In the following paragraphs, we walk the reader through
the proposed compilation flow and detail aspects of the code
generation and proposed optimizations.

3.2 Preprocessor

The description of an ionic model generates AST nodes with
distinct properties: some can only be computed at runtime,
while others generate a set of values with constant-qualified
behavior. Therefore, it becomes necessary to provide a pre-
processor capable of analyzing nodes in order to determine
which values can be calculated at compile time. We have
included in limpetMLIR a preprocessor akin to C/C++ pre-
processors, capable of handling a myriad of compile-time
operations, such as arithmetic, mathematical, and condition.
We keep track of constant-qualified values and their utiliza-
tion in order to propagate compile time constant values. The
preprocessor stage works as part of the code generator phase
that is described below. Once operations with constant val-
ues are found, the preprocessor kicks in and compute their
propagation values and computations.

3.3 MLIR Code Generation

3.3.1 Example. In order to give an overview of the code
generation process, we use a slightly modified version of
the Pathmanathan [25] model written in EasyML, shown in
Listing 1. The model was artificially changed to include two
features: (1) LUT for the Vm variable where values of Vm are
known to vary between -100 and 100, and we chose a step
of 0.05; and (2) the use of rk2 integration method for u1. We
have also simplified the equations for ul to u3 in order to
limit the example size. One may notice that this modified
model does not correspond to a real case scenario, and is
only an illustrative example for the presented section.

71

A. Thangamani, T. Trevisan Jost, V. Loechner, S. Genaud, and B. Bramas

1| #pragma omp parallel for schedule(static)

2| for (int __i=start; __i<end; __i++) {

3 Pathmanathan_state *sv = sv_base+__ij;

4 //Initialize the ext vars to current values
5 Iion = Iion_ext[__il, Vm = Vm_ext[__il;

6 //Compute lookup tables

LUT_data_t Vm_row[NROWS_Vm];

8 LUT_interpRow (&IF->tables[Vm_TAB], Vm, __i,
9 //Compute storevars and external modvars

10 Iion = (((((-(p->Cm/2.))*((sv->ul+sv->u3)-(Vm)))
11 *(square(sv->u2)))*(Vm-sv->u3))+p->beta);

12 //Complete Forward Euler Update

Vm_row) ;

13 diff_u2 = ((-((sv->ul+sv->u3)-Vm))*cube(sv->u2));
14 u2_new = sv->u2+diff_u2xdt;

15 u3d_new = sv->u3+diff_u3xdt;

16 //Complete RK2 Update

17 diff_ul = (((square(((sv->ul+sv->u3)-(Vm))))*
18 (square(sv->u2))) +(0.5%x(sv->ul+sv->u3-vm)));
19 double ul_new;

20 {

21 t =t + dt/2;

22 sv_intermed_ul = sv->ul+dt/2xdiff_ul;

23 diff_ul = (square(sv_intermed_ul+sv->u3-Vm)x*

24 square(sv->u2))+(0.5*(sv_intermed_ul+sv->u3-Vm));

25 ul_new = sv->ul+dtxdiff_ul;

26 3

27 //Finish the update

28 Iion = Iion, sv->ul = ul_new;

29 sv->u2 = u2_new, sv->u3 = u3_new;

30 //Save all external vars

31 Iion_ext[__i] = Iion, Vm_ext[__i] = Vm;
32| }

Listing 2. Baseline version generated code snippet of the
modified Pathmanathan [25] model from Listing 1

Lines 1 and 2 declare variables Vm and Iion as external,
which means they represent voltage and current that flows
in and out of a cell. Lines 3 and 4 define groups of variables,
that are specific to each cell (line 3), and common values
among cells (line 4). Value initialization is done in line 6
through the _init suffix, and equations from u1 to u3 are
defined in lines 7-9. Line 10 tells the code generator to use
the 2-point Runge-Kutta (rk2) integration method for the
derivative of u1, while the default Forward Euler (fe) method
is used for the remaining variables. Finally, the current flow
(Iion) follows the equation from line 12, while Vm is not
updated.

3.3.2 Overview of the code generation. The original
openCARP framework uses a simple code generator written
in python to translate EasyML into different C/C++ func-
tions that initialize parameters, state variables, lookup tables,
and that compute the current flows across the cell mem-
branes. Considering Amdahl’s law [2] and the impact of
each function in execution time, we focus on optimizing the
compute function of models, where a considerable amount
of execution time is spent.

Listing 2 depicts a snippet of the compute function gener-
ated by openCARP. It shows a straightforward translation
from the EasyML code of Listing 1 to C/C++.

One may notice that there is no loop-carried dependency
between iterations of the loop. Indeed, each iteration corre-
sponds to the execution of the model from a different cell. In
line 3, we retrieve the state of each cell that will be used to
compute its new state. The absence of synchronization and
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%3 = call load_single_value_to_vec(%arg2,
(memref<1xi8>, i32) -> vector<8xf64>

scf.for %argl3 = %0 to %1 step %c8 {

%4 arith.index_cast %argl3 : index to i32

%5 arith.muli %arg6, %4 : i32

%6 arith.index_cast %5 : 132 to index

%7 memref.cast %arg5 : memref<8xi8> to memref<?xi8>

%c8_i32)

N U A W N e

8| %8 memref.view %7[%6]1[] : memref<?xi8> to memref<1
xi8>

9] %9 = arith.muli %arg8, %4 : i32

10 %10 = arith.index_cast %9 : 132 to index

11| %11 = memref.cast %arg7 :memref<8xi8> to memref<?xi8>

12| %12 = memref.view %11[%10]1[] : memref<?xi8> to memref
<1xi8>

13| %13 = arith.muli %arglo, %4 : 132

14| %14 = arith.index_cast %13 : 132 to index

15| %15 = memref.cast %arg9 :memref<8xi8> to memref<?xi8>

16| %16 = memref.view %15[%141[] : memref<?xi8> to memref
<1xi8>

17| %c3_i32 = arith.constant 3 : i32

18] %17 = call load_struct_to_vec (%8, %c8_i32, %c3_i32)

19 : (memref<1xi8>, i32, i32) -> vector<8xf64>

20| %c@_i32_1 = arith.constant @ : i32

1| call LUT_interpRow_n_elements_vec(%argll, %17,

2 %4, %argl2, %c0_i32_1) : (memref<1xi8>,

23 vector<8xf64>, 132, memref<ixi8>, i32) -> ()

24| %cst = arith.constant dense<2.0e+0> : vector<8xf64>
arith.divf %2, %cst : vector<8xf64>

250 %18
261 %19

arith.negf %18 : vector<8xf64>

Listing 3. MLIR code snippet generated by limpetMLIR for
the modified Pathmanathan [25] model from Listing 1.

communication among cells inside the loop, shown by the
simplicity of the omp directive in line 1, allows us to lever-
age SIMD execution: that is, each cell can be thought of as
representing one element of a vector operand.

Therefore, we provide a full SIMDfication of the for loop
through MLIR in order to improve performance over the
original generated code. While the latter tries to rely on
the compiler for vector-based optimization opportunities,
we make use of MLIR to explore vectorization not as an
optimization feature, but as an intrinsic feature. More specif-
ically, vector and openmp dialects are used to vectorize and
parallelize the code, along with control-flow, arith, math,
and memref dialects. Through these dialects, we can express
vectors of ionic models that: access external and state vari-
ables of cells, support a variety of integration methods for
differential equations, LUTs to accelerate computation, and
communicate data among cells through function pointers.
Listing 3 shows part of the main scf. for loop that iterates
over cells numbered between %@ and %1, and that increments
the counter by the vector length, user-defined as eight (%c8).
Every generated operation uses vector types of size eight,
leading each loop iteration to execute eight cells in parallel.

Integration methods. An important aspect of an ordinary
differential equation lies in the selection of the appropriate
method for the temporal discretization of an approximate
solution. Depending on the desired accuracy, users can use
different methods to compute a value of the next time step.
We have implemented directly in MLIR the following inte-
gration methods.

Forward euler (fe) [5] is a fast and explicit first-order method
for solving ODE:s. It is the default method used by openCARP
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when none is specified by the user. In Listing 2 (Lines 14 and
15), variables u2 and u3 use fe as their integration method.

Runge-Kutta with 2 steps (rk2) [10] is an explicit second-
order method. It provides better accuracy than fe, with twice
as much computations (two calls to the f function). Variable
ul in Listing 1 (line 10), and Listing 2 (lines 17-26) show an
example use of rk2.

Runge-Kutta with 4 steps (rk4) [10] is an explicit fourth-
order method that provides more accuracy than rk2 with
more than twice computations, i.e. 4 times slower than fe.

Rush-larsen [27] is one of the most popular first-order
methods for discretizing ODEs in dynamic models of cardiac
electrophysiology [19]. Easy to implement and more stable
than fe and its variants, it is the preferred method for simulat-
ing gates, which represent the movement of proteins forming
the ion channel in response to the membrane potential.

Sundnes method [30] is an extension of the Rush-larsen in
a second-order scheme, which is proven to be more efficient
than its predecessor over stiff problems.

Markov_be is a backward method inspired by Euler. It uses
an implicit first-order Runge-Kutta method, where models
require values to be in between 0 and 1. A refinement process
is used to keep values as precise as possible, so this method
is used for models where accuracy is paramount.

These integration methods were all directly implemented
through the multiple dialects found within MLIR, from arith
and math to scf. This has also corroborated to showing that
no extra IR language is needed to express the operability of
the ionic models.

Data access. Accessor functions are implemented to retrieve
values of external variables of ionic models, and state vari-
ables of a cell. Stride accesses are enabled by gather and
scatter operations from the vector dialect, allowing to
fetch state variables stored in non-contiguous memory ad-
dresses. We also generate accessor functions for single-valued
broadcasts, and contiguous memory accesses, the latter be-
ing necessary for our code transformation discussed in sec-
tion 3.4.1. Lines 1 and 18 from Listing 3 show examples of
accessors for contiguous and non-contiguous memory ac-
cesses that fetch data from eight cells in parallel.

Multimodel support. Electrophysiology simulations also
allow multiple models to interact, accessing the same data.
This leads to a hierarchy of cells relying on a parent-offspring
relation. Offspring cells are allowed to access and modify the
content (or state) of their parent. In the openCARP frame-
work, this feature is supported through a combination of
conditional statements that check the existence of the parent
and its values, and function pointers that connect the appro-
priate parent data with its offspring. We support this feature
by conditionally accessing data from the parent through
MLIR gather and scatter operations that also handle such
conditions. If the parent information cannot be found, it falls
through the common local variable storage.
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The code generation process described previously sup-
ports most of the features found in the original openCARP
code generator. More precisely, 43 out of 47 ionic models for
cardiac cell simulation are supported, and illustrate the flexi-
bility of our code design. In the next sections, we describe
two optimization opportunities for improving the perfor-
mance of the generated code: a data layout transformation,
and an optimization on the LUT interpolation.

3.4 Code Transformations

Two code transformations were implemented for improving
the performance of the generated code: (1) a data layout
transformation to avoid the effects of non-consecutive data
storage of variables within ionic models in memory; and
(2) the vectorization of LUT interpolation.

3.4.1 Data layout transformation. From the data per-
spective, ionic models are described as a combination of
shared and private information among cells. While the for-
mer is defined as a read-only region that delivers no opti-
mization opportunities (SIMD memory loads of a single data
are usually efficiently implemented by the hardware), the
latter has been originally modeled as to regroup values of a
single cell in a contiguous manner (an array-of-structures,
AoS). This design becomes non-optimal when multiple cells
are processed in parallel, as is the case of vector memory
accesses in our solution.

We implemented a data layout transformation to avoid
the effects of non-consecutive data storage of cell variables
within ionic models. This classical approach consists of rear-
ranging the same state variable from successive ionic cells
consecutively: data is stored in an array-of-structures-of-
blocks (or array-of-structures-of-arrays, AoSoA) form [14,
34], a combination of the classical array-of-structures (AoS,
non-consecutive) and structure-of-arrays (SoA, completely
consecutive but large) forms. Using the AoSoA data storage
format, we:

1. avoid memory operations on addresses that are far
from one another - and thus avoid TLB misses,

2. improve data locality - and thus improve cache ac-
cesses,

3. enable efficient vector load/store hardware operations.

This transformation is implemented as part of the code gen-
eration process, and can be enabled through a compiler flag.

3.4.2 Linear interpolation optimization. By analyzing
the generated assembly code and checking the hardware
performance counters in our benchmarks, we noticed that
in many models, one particular function is called very often
and needs to be manually vectorized: the LUT (lookup ta-
ble) interpolation function, a powerful means within ionic
models to avoid recomputation of mathematical formulas.
LUT variables are computed using a linear interpolation
from a set of precomputed values, in a user-defined interval
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and step. Although LUT utilization significantly improves
the performance of models (reaching more than 6x from the
non-LUT version), we have seen considerable speedup degra-
dation when relying on the original scalar LUT implemen-
tation that the compiler could not automatically vectorize.
To overcome this issue, we implemented a fully vectorized
MLIR version of LUT interpolation, leading to a considerable
gain in performance. A call to its function implementation
(LUT_interpRow_n_elements_vector_8xf64) is shown in
line 21 of Listing 3.

To conclude, along with the aforementioned optimizations,
having our code generation fully compatible with MLIR fur-
ther motivates us to use the myriad of available transforma-
tions. Loop invariant code motion and common subexpres-
sion elimination are two examples of in-tree optimizations
that are also beneficial for speeding up performance.

4 Experimental Results

In this section, we evaluate our proposed technique on a 2x
18-core Cascade Lake Intel Xeon Gold 6240 @2.6GHz CPU,
with Turbo Boost and Hyperthreading disabled, and 192GB
(5.3 GB/core) of RAM @2933MT/s. The Intel Xeon Cascade
Lake processor architecture supports all the three SSE, AVX2,
and AVX-512 vector instruction sets that we tested.

We implemented our proposed compiler scheme on top of
the openCARP source from the git source repository' (Jul.
2022). We compiled the codes using the LLVM infrastruc-
ture from trunk (July. 2022), which includes all necessary
compilation tools, from the Clang compiler to MLIR.

We evaluated our proposed technique on 43 different ionic
models available in openCARP. The benchmark program we
used is provided by the openCARP package as the bench
binary, which runs by default a 100,000 steps simulation
(one-second duration with a 0.01ms time step). It calls the
ionic model at each time step to compute the state of each
mesh element as described in the model. Each model was run
using a total of 8,192 cells, in order for the largest models not
to take more than two hours to execute, and thus, limiting the
duration of the experiments to a few hours. Execution times
were measured by running the models five times, eliminating
the two extrema, and averaging the remaining three.

Experiments were conducted using three vector architec-
tures: SSE - with a vector size of two doubles; AVX2 (four
doubles); AVX-512 (eight doubles). On each architecture, we
evaluated the codes on a number of threads (and cores) rang-
ing from 1 to 32, and used the geometric mean (geomean) to
average speedup results in all cases.

4.1 Single Thread Execution

Figure 2 shows speedups comparing the execution time of
the baseline openCARP version to our limpetMLIR version,
both on one thread. The horizontal axes are composed of

Ihttps://git.opencarp.org/openCARP/openCARP
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Figure 2. Speedup of the limpetMLIR version of the code

compared to the baseline openCARP version, using one sin-
gle thread (sequential) on an AVX-512 architecture.
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Figure 3. Speedup of the limpetMLIR version of the code com-
pared to the baseline openCARP version, using 32 OpenMP
threads on a 32 cores AVX-512 architecture.

43 jonic models, ordered from the shortest to the longest
execution time from the baseline openCARP version. We ar-
bitrarily split those models into three sets of small, medium,
and large ionic models. The small set is composed of the
eight models running in less than a minute on our experi-
mental platform, the medium one of 22 models running in
1-5 minutes, and the large one of 13 models taking more
than 5 minutes. Large models are usually the most precise
and close to the physiology, and as such, they are the most
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relevant ones for many practical applications, e.g., virtual
drug testing in cardiac research.

The limpetMLIR version achieves a geomean speedup of
5.25X on AVX-512 architecture. These results show one im-
portant aspect of our code generation: the acceleration can
be much higher than the size of the vectors, up to more than
26X. Although it may sound surprising, the effects of our
optimizations go far beyond the raw vectorization and CPU
computation power, reaching also how memory is accessed
(simultaneous load/store assembly instructions) and taking
advantage of our data layout optimization (efficient use of the
memory caches). A different version of the code might also
trigger other compiler optimizations that affect, e.g., register
allocation, pipelined execution, and out-of-order execution.

The observed speedups are low and irregular in small mod-
els, and more significant and consistent for larger models.
This is expected: on short codes executing short optimized
loops in less than a fraction of a millisecond, it is more diffi-
cult to achieve good performance than on longer loops con-
taining more computationally-expensive operations. Some
notable exceptions (e.g., ISAC Hu) are more operationally
intensive than appeared to be: they share the characteris-
tics of (1) calling costly mathematical functions that were
efficiently vectorized® by our optimizer and (2) not using
lookup-tables (LUT).

4.2 Thirty-two Threads Execution

Figure 3 presents the speedup results on a 32 OpenMP threads
execution (with using 32 physical cores). The measured
speedups compare the baseline and limpetMLIR versions
in the same conditions, both running in parallel on 32 threads:
the 1x line represent the execution time of the baseline open-
CARP parallel code on 32 cores. The limpetMLIR version
achieves a geomean speedup of 1.93x%, but only 0.83% on
small models, 1.34X on medium models, and a very good
6.03% on large models. Smaller models with very short exe-
cution times suffer a slowdown, mainly because of the syn-
chronization and optimization overheads, or because they
are by nature memory-bound and not compute-bound.

4.3 Execution Time and Speedup over SSE, AVX2,
and AVX-512

We confirmed our analysis of those differences between
small, medium, and large models in fig. 4. We compare the av-
erage execution times (y-axis) of the three classes of models
running on 1 to 32 cores (x-axis). The dashed lines represent
linear speedup. All models running in less than some 50
seconds suffer a slowdown compared to the dashed line. In
small models, we observe that the scalability is very poor due
to the execution of very short parallel loops: the overhead
of synchronizations between threads is very high compared

2We rely on Intel’s Short Vector Math Library (SVML) library for the vec-
torization of mathematical functions.
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Figure 5. Geomean speedups for SSE, AVX2, and AVX-512
across varying threads (in the power of two)

to the computation time itself, and the curve flattens as the
number of cores increases. Although our optimizations (filled
symbols) have some positive effect using a small number of
threads, they induce a slowdown when reaching 32 cores,
as the gain due to parallelism also completely disappears.
This is less perceptible in medium models, but still present
starting at 8 cores: the limpetMLIR execution times get closer
to the baseline version at this point. In large models, the
limpetMLIR version consistently executes 8 — 10X faster than
the baseline, along with an almost ideal parallel speedup
both on the baseline and the optimized version.

Figure 5 shows the geometric mean speedups, with respect
to the baseline openCARP version, achieved by the limpetM-
LIR version on all the three (SSE, AVX2, and AVX-512) vector
architectures across varying threads from 1 to 32. In all cases
the AVX-512 architecture outperforms AVX2 and AVX2 outper-
forms SSE. This behavior is expected as AVX-512 calculates
eight values for one hardware operation, whereas AVX2 cal-
culates four, and SSE calculates two. Notice that this is true
even if instructions cost and frequency might differ between
these three vector architectures.
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The difference flattens as the number of cores increases,
mainly due to the slowdowns of small models. When restrict-
ing those results to the set of large models, we get consis-
tent speedups of 3.80x on SSE, 5.13X on AVX2, and 6.03X on
AVX-512 on 32 cores. The overall geomean speedup over all
models and all architectures is 2.90X.

4.4 Impact of Data Layout Optimization

We found that the data layout optimization was essential in
increasing the speedups of medium and large ionic models.
This happens because they access more memory (state value)
than smaller models. For instance, the Stress_Niederer model
has its speedup increased from 4.98% to 6.03x in a 32-thread
AVX-512 configuration. The geomean speedup of all models,
in a 1 to 32 thread AVX-512 configuration, goes from 3.12x
to 3.37x thanks to the data layout optimization.

4.5 Roofline Model

Figure 6 shows the roofline model for our various ionic mod-
els. The operational intensity on the x-axis is the number of
floating point arithmetic operations divided by the number
of memory operations (in Flops/Byte). The number of mem-
ory loads and stores were extracted by instrumenting the
generated MLIR code of the ionic models. The number of
arithmetic operations were measured for each ionic model
using the processor performance counters.

The y-axis of fig. 6 represents the GFlops/s performance,
as the number of arithmetic operations divided by the ex-
ecution time, on our 32 cores AVX-512 platform. The peak
performance using 32 cores was measured experimentally
with the Empirical Roofline Tool (ERT) [35] as 760GFlops/s,
DRAM bandwidth as 199GB/s, and L1 cache bandwidth as
1052GB/s. Notice that the maximum DRAM bandwidth ac-
cording to the architecture specification is 140.8GB/s (shown
as a gray dashed line in the figure).

One can observe in fig. 6 that many of these codes have
an operational intensity lower than the DRAM bandwidth
versus performance limit (around 4 Flops/Byte); the majority
of them are memory-bound. Codes of the large class perform
quite well: those on the right of the figure are compute-bound
and of same order as the peak 760 GFlops/s limit (GrandiPan-
ditVoigt for example), and those on the left are also close to
the memory maximum bandwidth limit (OHara and Wang-
Sobie for example). OHara and some medium models (e.g.,
Courtemanche) exceed the DRAM bandwidth thanks to their
efficient cache usage.

There are models with less than 20 GFlops/s performance
from in the small and medium models and they are mostly
memory-bound. The DrouhardRoberge model in particular
does 19 GFlops/s, but its operational intensity is less than 1/4
Flops/Byte. We observed the slowdown for the small models
(the limpetMLIR version is below the baseline version), as
explained earlier (fig. 4) by their very short execution time.
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Figure 6. Roofline model for the different ionic models with AVX-512 vectors on 32 cores when compared to baseline openCARP
(peak performance of our experimental platform: 760 GFlops/s, DRAM bandwidth: 199 GB/s, L1 cache bandwidth: 1052 GB/s)

Overall, those roofline results are as expected. The roofline
model just confirms our previous analyses and shows that
many of our optimized codes are reasonably close to the max-
imal performance of this architecture. Some improvements
still seem possible in some of them (e.g., HodgkinHuxley,
Maleckar), and this will be investigated in the future.

5 Discussion

We discuss the broad applicability and generalization of the
optimized code generation proposed in limpetMLIR. Our
technique essentially applies to a parallel loop in which we
can arrange data access uniformly. A particular instance
of this pattern is stencil computations. The simulation of
cardiac tissues we have dealt with can be seen as a stencil
computation expressed in a DSL. The heavy computations lie
in a parallel for loop, in which is computed the updated states
of the stencil elements, for each time step of the simulation.

Many DSL relies on code generators to produce high-level
language code while the stencil computation part exhibits
properties that enable a more specific compilation process. In
that case, the burden of optimizing the code falls on a general
compiler. In our case, clang and gcc failed to vectorize the
loop even when specifying aggressive optimization options.
Intel icc 19.1.3 could vectorize the loop when annotated with
the OpenMP simd directive, but only reached an overall AVX-
512 geomean speedup of 2.19%, much lower than limpetMLIR
(3.37% as seen in fig. 5). Indeed, the loop body contains many
challenging constructs for the compiler’s auto-vectorizer,
among which are complex control-flow operations, function
calls, or pointer arithmetic with hard aliases used in com-
plex stride-based memory accesses for which compilers are
unable to derive access patterns.
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More generally, our proposal is applicable and beneficial
to a parallel loop whose body has the following properties:
(i) the code (or DSL) can be expressed using MLIR dialects;
(ii) loop iterations should perform regular access to data
stored in arrays to enable our accessor functions to gather
to and scatter from vector types; and (iii) if the code con-
tains control flow operations, it has to be SIMD-friendly
for the vectorization to be efficient. For example, the vec-
torization of an if/else condition requires both blocks to be
executed and element-wise selected according to a mask,
which may lead to performance degradation in large por-
tions of conditional code. If the code only contains compute
intensive arithmetic operations and math library function
calls, it can be efficiently vectorized.

The main difficulty to generalize our technique is to trans-
late the body of the loop to MLIR vectorized code. However,
using a DSL harnesses the expressivity of the loop body so
that the translation of the DSL operations to MLIR code has
about the same complexity as translating them to C code.

6 Related Work

Our solution intersects with previous research in two sub-
jects: (i) from an application-focused side, frameworks that
simulate electrophysiological systems through differential
equations, such as FEniCS [17], Myokit [7], Chaste [21] and
even openCARP [26], have their own code generators; and
(ii) proposals of compiler extensions, languages and trans-
formations to accelerate domain-specific applications.
Myokit [7] is a Python-based tool for modeling and simu-
lating cardiac cellular electrophysiology that share similar
simulation characteristics with openCARP. Its major advan-
tage lies in the ability to export models into multiple for-
mats and programming models, such as, openCL, CUDA,
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and Matlab. FEniCS [17] focuses primarily on solving partial
differential equations to simulate systems of finite elements,
and thus, it has been conceived for modeling and simulat-
ing physics problems. Chaste [21] is another example of an
open-source tool for the simulation of mathematical models
in physiology and biology. In spite of these frameworks ad-
vance simulation of real systems, their code generators do
not intend to provide a tight integration with the optimizing
compiler, and rather means for simulation. While Myokit can
produce code for heterogeneous architectures with OpenCL
and CUDA support, it still relies on the compiler to find
opportunities for parallelism. On the other hand, FEniCS
handles parallelism through an OpenMP SIMD directive and,
therefore, it also delegates the optimization task directly to
the compiler. Contrary to the code generation process from
these frameworks and the original openCARP code genera-
tion, our tight integration with novel compiler technology
enables to provide helpful optimization hints to the compiler.

The emergence of MLIR has brought new possibilities
for the use of multiple simultaneous IRs within different
abstraction levels. It has also driven the idea of using MLIR
as a building block for new IRs in order to permit interleaving
levels of abstractions and further optimization opportunities.

Gysi et al. [9] propose a hierarchy of dialects (IRs) for
GPU-based stencil computations that is effective in weather
and climate applications. A multi-level rewriting flow is pro-
posed to progressively lower abstractions level-by-level, ap-
plying optimizations at the most appropriate abstraction.
The approach has shown significant speedup in comparison
to state-of-the-art solutions for climate and weather sim-
ulation, proving that extra levels of abstractions can help
to devise new optimizations. Sommer et al. [29] propose a
dialect, and a lowering process to optimize sum-product net-
work inference in both CPUs and GPUs, while DistIR [28]
is an IR for distributed computation that employs MLIR to
optimize neural networks. Recently, many works have pro-
posed to extend MLIR with new dialects to analyze, optimize
and accelerate heterogeneous applications in a variety of
domains [12, 18, 24]. Our work, however, requires no extra
abstraction layer and no additional dialect, and can be seen
as complementary to previous solutions. We make use of
MLIR as an enabling tool for our code generator and compiler
transformations, similar to some previous works [6, 13, 33]:
Bondhugula [6], and Katel et al. [13] present evaluations of
the modularity of MLIR with sequences of transformations
and customizable passes to optimize matrix multiplications.
Vasilache et al. [33] builds composable abstractions for lever-
aging tensor algebra computation.

Polygeist [23] is possibly the project that most resembles
our work. It was primarily proposed as an entry point for gen-
erating MLIR affine code from C/C++ polyhedral-compatible
code. The project has since evolved to support a wider set
of C/C++ languages, and could now be seen as a frontend
for these languages into MLIR. One could potentially benefit
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from this new support and use it to transform the original
C/C++ generated code from openCARP to MLIR. However,
this approach would lead to many complications: openCARP
does not have a compiler-friendly implementation. It heav-
ily relies on function pointers, external linear solvers, and
pointer-based data structures for representing the state of
each cell, along with their potentials and currents. A transla-
tion from the original C/C++ implementation of openCARP
to MLIR would be cumbersome, in order to adapt each un-
friendly feature to a data structure that can be understood
by MLIR and its dialects. It also does not cope well with any
change that may be done within the ionic model framework,
as any important modification will reflect into a new imple-
mentation change into MLIR transformations. Our solution is
directly embedded into EasyML, the markup language used
to describe ionic models, and eases MLIR code generation
by adapting to its data structures.

7 Conclusion

We proposed several compilation techniques based on MLIR
to automatically transform a parallel for loop embedding an
ionic model computation (described using a DSL) into an
efficient vectorized parallel for loop. It illustrates how a novel
compiler technology such as MLIR can be used to produce
efficient code in situations where traditional compilers fail
in vectorization.

Our ongoing work aims to generalize our approach to en-
able ionic models not only to execute efficiently on CPUs, but
also on other heterogeneous hardware supported by MLIR.
Having e.g., both CPU and GPU codes can further benefit
from task-based programming libraries for heterogeneous
architectures, such as StarPU [3]. We also consider exploring
some ionic models description or optimization variations,
such as an efficient spline interpolation method to replace
or complement in some cases the currently used linear in-
terpolation. Future investigations will also focus on power
consumption versus compute time performance evaluation,
along with enabling compiler-aware techniques for the use
of approximate computing [22] in ionic models.
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A Artifact Appendix
A.1 Abstract

This artifact provides all required tools and dependencies
needed to compile and execute applications, and generate
figures 2, 3, 4 (optional), and 5 of our paper. Among the tools
you will find are: the openCARP source code that implements
limpetMLIR (the main contribution of this paper), LLVM-
15.0.2 infrastructure, with all necessary compilation tools,
from the Clang compiler to MLIR, and evaluation scripts.
More specifically, our artifact (comprised file) consists of:

o A docker image containing all dependencies needed
for the experiments,

e A Dockerfile showing all dependencies needed by the
experiments,

o Patchs to LLVM and openCARP, and scripts to run the
ionic models (benchmarks) and save the results in .txt
files.

e And inside the docker image, 1ibintlc.so.5 and
libsvml. so libraries to support vectorization.

For each of the ionic model under consideration, the arti-
fact evaluation can be used to compute (i) the execution time
resulting from using limpetMLIR openCARP and baseline
openCARP, (ii) the speedup compared to baseline openCARP.
Note that the exact speedups may differ from the ones re-
ported in the paper, because of the differences in the actual
hardware.

A.2 Artifact Check-list (meta-information)

o Algorithm: LimpetMLIR to generate optimized code for

ODEs.

Program: LimpetMLIR and baseline openCARP code with

ionic models (benchmarks).

e Compilation: Clang, Clang++, and Python.

Data set: 43 ionic models available in openCARP cardiac

electrophysiology simulator.

¢ Run-time environment: Our artifact has been developed
and tested on Linux environment.

e Hardware: We recommend a 2x 18-core Cascade Lake In-
tel Xeon Gold 6240 @2.6GHz CPU, with Turbo Boost and
Hyperthreading disabled, and 192GB (5.3 GB/core) of RAM
@2933MT/s with different vector instruction sets (SSE, AVX2,
and AVX-512) for establishing the exact results presented in
our paper.

e Execution: We provide scripts to (i) build openCARP (both

versions), (ii) run the experiments and (iii) calculate speedups

as displayed in the paper.

Output: Executing the scripts will output simulation data

and execution time for each ionic model (both limpetMLIR

and baseline version).

e How much time is needed to complete experiments:
To reproduce (i) Figure 2 takes around 10 hours; (ii) Fig-
ure 3 takes around 30 minutes; (iii) Figure 5, which includes
the results for Figures 2 to 4, takes 30 hours approximately.
One should notice that experiments highly depend upon the
processor in use. Execution times mentioned above were
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collected in a 2x 18-core Cascade Lake Intel Xeon Gold 6240
@2.6GHz CPU. Since Figure 5 contemplates all results needed
for previous figures, running its experiments will guarantee
that all figures can be generated.

e Publicly available: Yes

e Code licenses: ACADEMIC PUBLIC LICENSE

A.3 Description

A.3.1 How delivered. As a comprised file, allowing users to
choose from two approaches: (1) docker image with all dependen-
cies and scripts needed for the experiments, and (2) scripts, patchs to
LLVM and openCARP, and a Dockerfile that users may use to build
their own image to run experiments. Although both approaches
can be used, we advise users to rely on (1) since all that is needed
is already included in the image.

A.3.2 Hardware dependencies. An x86-64 machine with sup-
port for SSE, AVX2, and AVX-512 vector instruction sets. The results
in this paper were obtained using a 2x 18-core Cascade Lake Intel
Xeon Gold 6240 @2.6GHz CPU machine.

A.3.3 Software dependencies. All software dependencies have
been pre-installed in the provided docker image. However, if the
user chooses to use approach (2) from section A.3.1, Intel libraries
libintlc.so and libsvml. so should be provided and are not de-
livered separately in this artifact (but only inside the Docker image).
Docker software is required for both approaches.

A.3.4 Data sets. 43 ionic models available in openCARP cardiac
electrophysiology simulator.

A.4 Installation

Download the compressed file available in ACM DL [31] at https:
//doi.org/10.1145/3554349, extract it, and enter in the cgo-paper9/
directory.

- For approach (1):

(the first command can take several minutes to complete)

$ docker load < docker-paper9.img

$ docker run ——volume $(pwd):/results -it
cgo-paper9-artifact bash

- For approach (2):

$ docker build -f Docker-cgo-paper9 .
cgo-paper9-artifact

$ docker run --volume $(pwd):/results -it
cgo-paper9-artifact bash

More information can be found in the README.md file inside
this artifact. The next sections will explain how to run and evaluate
applications using the two approach.

-t

A.5 Experiment Workflow

Once the docker image is set up, you can run the evaluation.sh

script to build and run ionic models on limpetMLIR and baseline

openCARP version. We provide various command line options to

the script in order to run different experiments. The options are:

$ ./evaluation.sh -fig2 true # run experiments for Fig. 2,

$ ./evaluation.sh -fig3 true # run experiments for Fig. 3,

$ ./evaluation.sh -fig5 true # run experiments for Fig. 2-5.
By default -fig3 option is set to true. Once the script completes

its evaluation, you can see all the output result files in the folder

named output.
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A.6 Evaluation and Expected Result

Once all the output files available are in the output folder, you
can run the res. sh script to see the speedups obtained thanks to
limpetMLIR compared to the baseline version. Similarly, res.sh
provides various options:

$ ./res.sh -fig2 true # generates fig2.pdf of Figure 2,

$ ./res.sh -fig3 true # generates fig3.pdf of Figure 3,

$ ./res.sh -fig4 true # generates fig4.pdf of Figure 4,

$ ./res.sh -fig5 true # generates fig5.pdf of Figure 5.
You can find the PDF plots in the output folder.

Expected results can be analyzed for each figure produced by
the evaluation process:

- Figure 2 depicts the speedup of limpetMLIR against the base-
line openCARP version, using one thread on an AVX-512 archi-
tecture. Speedups are expected in most of the applications, with
those marked as large models showing a more significant speedup
compared to the medium or small ones;

- Figure 3 shows similar speedup comparison, but using 32
threads on a 32 cores AVX-512 architecture. The multi-thread en-
vironment has a deeper impact on small applications. Equivalent
performance or even slowdowns are expected for these applica-
tions due to synchronization overheads, or because they are by
nature memory-bound. Therefore, speedups should be observed for
medium and large models, with the latter showing better overall
speedups due to being more compute-bound;

- Figure 4 illustrates the average execution time of the three
classes (small, medium, and large) on an AVX-512 architecture.
The figure is expected to show that large models scale better than
the other two classes, and that our technique shows better perfor-
mance over the baseline since its lines are higher in the figure;

- Lastly, Figure 5 summarizes the effects of different architec-
tures (SSE, AVX2, and AVX-512) across multi-thread environments
(in the power of two). We expect to see overall speedups for all
combinations of number of threads and architectures. However,
the trend will show better speedups (1) for fewer threads due to
effects of synchronization overhead and higher cache usage for
large threads counts, and (2) for higher vector length instruction
sets (speedup of AVX-512 > speedup of AVX2 > speedup of SSE).

One should notice speedups are highly dependent upon the
processor frequency, number of threads and cache size. Thus, we do
not expect for users of this artifact to obtain the exact same results
found in section 4. Instead, results should show that limpetMLIR
outperforms the baseline on the large and medium application
set, while small applications can potentially observe slowdowns.

A.7 Experiment Customization

Users can customize experiments in the following ways:

- We have written the scripts in a simple way for easy under-
standing and customization. You can use . /bin/bench executable
available in build folders (build_base, build_sse, build_avx2
and build_avx512) to run/test different experiments.

- Our comprised file consists not only of a docker image pre-
built with all dependencies needed, but also a Dockerfile, scripts
for running and obtain speedups, and an LLVM patch (link) that
fixes SVML code generation. Users may use the Dockerfile to set up
their own testing environment, build and install all dependencies
needed for the experiments. Keep in mind that access to Intel’s
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SVML library (not included inside this artifact, but only inside the
Docker image) is needed to reproduce our results.

- You may also venture yourself on creating ionic models. Add
a new file in openCARP/physics/limpet/models with your own
equations, following the syntax of EasyML. Update openCARP/
physics/limpet/models/mlir_imp_list.txt to tell limpetMLIR
to use the MLIR code generation.

A.8 Notes

- We recommend disabling Intel Turbo Boost and Hyper Threading
technologies in the host machine to avoid the effects of frequency
scaling and resource sharing on the measurements.

- We request the user to make sure that the 1ibsvml library is linked
to the bench executable because math operations are vectorized
using libsvml.
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