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Abstract—One of the most common assumptions regarding
indoor positioning systems based on Wi-Fi fingerprinting is
that the Radio Map (RM) becomes outdated and has to be
updated to maintain the positioning performance. It is known
that propagation effects, the addition/removal of Access Points
(APs), changes in the indoor layout, among others, cause RMs to
become outdated. However, there is a lack of studies that show
how the RM degrades over time. In this paper, we describe an
empirical study, based on real-world experiments, to evaluate how
and why RMs degrade over time. We conducted site surveys and
deployed monitoring devices to analyse the radio environment
of one building over 2+ years, which allowed us to identify
significant changes/events that caused the degradation of RMs. To
quantify the RM degradation, we use the positioning error and
propose the RM degradation ratio, a metric to directly compare
two RMs and measure how different they are. Obtained results
show that the positioning performance is much better when RMs
are collected on the same day as the test data, and although RM
degradation tends to increase over time, it only leads to large
positioning errors when significant changes occur in the Wi-Fi
infrastructure, making previous RMs outdated.

Index Terms—radio map, radio environment, Wi-Fi finger-
printing, degradation, radio signals, indoor propagation

I. INTRODUCTION

Due to the proliferation of Wireless Local Area Networks
(WLANs), Wi-Fi-based positioning systems have been used
since the 2000s to locate and track users inside buildings. Wi-
Fi fingerprinting, used in RADAR [1], is one of the most used
techniques for indoor positioning based in WLAN. It is based
on the idea that each indoor location is characterized by a
unique set of Received Signal Strength Indicator (RSSI) values
from existing Access Points (APs). The collection of several
Fingerprints (FPs) associated with the Reference Points (RPs)
where they were collected allows to build a Radio Map (RM).
Then, a position estimate is obtained using an algorithm that
compares an operational FP to the ones in the RM. Due to the
high variability of Wi-Fi signals, Wi-Fi fingerprinting has an
accuracy between 2m to 8m [2].

It is commonly assumed by the research community that
one of the main drawbacks of Wi-Fi fingerprinting is the need
to update the RM in order to maintain the performance of the
system over time [3, 4]. The problem with the RM degradation
is that it represents a snapshot of the radio environment at the
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time when the FPs were collected and, after some time, they
no longer represent the reality, thus the RM becomes outdated
and needs to be maintained. As stated in the literature [1,
5, 6, 7], some factors associated with RM degradation are:
the propagation of radio signals indoors (reflection, scattering,
multipath, etc); modifications in the indoor layout (moving
furniture or other objects); the removal/displacement/addition
of APs; and, the presence/absence of people and their Wi-Fi
enabled devices, including Wi-Fi hotspots that often appear,
change position, and disappear from the building.

RM maintenance can be accomplished by performing peri-
odic manual site surveys, or by exploring methods for auto-
matic maintenance, e.g., using Simultaneous Localization and
Mapping (SLAM) [8] or collaborative approaches [9] where
users contribute to the RM, among others [10, 11]. Despite
those ways of updating the RM (manually or automatically),
selecting the appropriate timing for the update is still an open
issue. Detecting when a RM has actually degraded signifi-
cantly –requiring to be updated in order to provide reliable
indoor positioning– can be considered a major challenge.

By having several versions of the building’s RM, it is
possible to conduct an empirical analysis of the RM degra-
dation over time. We analyse the Wi-Fi infrastructure to
detect changes regarding the addition/removal of APs and
observe how these events may affect the Wi-Fi fingerprinting
performance using RMs collected. Then, we analyse the AP
observation frequency, i.e., the number of times an AP is
detected over the total number of scans, and determine why
some APs are detected more or less often.

To conduct our study, we collected two types of long-term
Wi-Fi fingerprinting datasets in the same building. The first is
based on a comprehensive manual site survey and the second
relies on several fixed Monitoring Devices (MDs), also known
as anchors, that periodically collect Wi-Fi FPs. In addition, we
used two metrics: the averaged positioning error and the Radio
Map Degradation Ratio (RMDR). We propose the RMDR as a
metric to measure the variations between two RMs. With both,
we can assess whether the changes in the radio environment
(observed in the WLAN analysis) lead to a poorer accuracy.

The main contributions of this paper are: 1) Analysis of the
Wi-Fi infrastructure based on long-term datasets; 2) Radio map
degradation ratio, a metric to quantitatively compare two RMs;
3) Real-world evaluation of RM degradation in a building, over
2+ years; 4) Study of the AP observation frequency, to assess
which APs are more likely to be detected in Wi-Fi scans.



II. RELATED WORK

The main focus of the research community regarding the
degradation of RMs is on solutions to overcome the problem of
the dynamically changing environment [3, 4, 11, 12]. Although
these works assume that the RM tends to become outdated
with time, they lack an analysis of the degradation of RMs.
Instead, they try to propose methods to automatically build
and maintain a RM.

In an effort to avoid repeating the site survey, which is
laborious and time-consuming, some solutions explore fixed
anchors collecting FPs to refresh the RM [10, 11, 13], while
others [9, 14] explore crowdsourced data from users to perform
automatic construction of RMs. SLAM has also been explored
to perform the site survey [8, 15]. In addition, there are
techniques to optimize the RM [3] hence, avoiding the RM
maintenance process.

In [4], a brief analysis is presented about the signal strength
variation of APs after 3, 6 and 9 days, and after 6 months. It
shows a clear deterioration in the APs’ signal strength after
6 months. This experiment showed that RMs tend to degrade
over time but it did not justify how the RM degraded, whether
the degradation was continuous, or if there was an event that
caused such change.

In addition, this analysis only compared periodically col-
lected data that goes up to 6 months, which can be in many
cases a short period of time. The work in [7] proposes a
method to detect RM degradation, by identifying changes in
the APs’ position in space. This is achieved by computing the
average of the RSSI distance to the best match over multiple
operational points. To detect RM degradation, alterations in
the Wi-Fi infrastructure are simulated by manipulating the
test data of the datasets. In [16], it is proposed an outlier
detection system to identify RM degradation based on the
detection of APs abnormal signal strength. It is capable of
identifying events when an AP has suffered RSSI changes
in time, however, it mostly focuses on short-term changes
(over two days in the performed experiments). This excludes
significant long-term changes that occur in the building.

Some tools, such as Netspot, TamoGraph Site Survey,
Ekahau Connect1, among others, allow to analyse the radio
environment, e.g. to detect areas with a lower coverage or
areas with interference. Being mostly focused on the network
performance, these tools can be used to analyse the radio
environment, but they do not provide ways of comparing the
RM of the building over time nor comparing how they perform
if they are old. Furthermore, these tools need manual surveying
which is laborious to accomplish especially in large buildings.

Several Wi-Fi fingerprinting datasets have been made public
aiming to improve research comparability and reproducibil-
ity [17, 18]. Most datasets available are collected during
one day or a few consecutive days, thus both RM and test
dataset are collected in close time proximity. To enable the
evaluation of RMs as they become older, Mendoza-Silva [19,

1https://www.netspotapp.com, https://www.tamos.com/products/wifi-site-
survey/, https://www.ekahau.com/solutions/wi-fi-heatmaps/

20] proposed a long-term dataset. Periodic manual site surveys
were performed every month to collect different types of
datasets at a library building. This allowed to collect different
RM versions over a period of 25 months, and evaluate the RMs
over time. During the first month (June 2016), they collected
15 RMs, with 4 being collected on the same day.

III. APPROACH

This paper builds on previous contributions but goes further.
It considers two types of long-term datasets for evaluation of
RM degradation, one based on manual site surveys to collect
FPs in RPs, and another, based on MDs that continuously
collect data in a period longer than 2 years. This allowed
to perform an analysis of the Wi-Fi infrastructure to detect
events that caused changes in the network and evaluate how
they impacted the performance of the Indoor Positioning
Systems (IPSs). RM degradation was quantified and evaluated
in long term without manipulating the datasets to simulate
alterations in the Wi-Fi infrastructure. Furthermore, an analysis
of the AP’s observation frequency was performed to model the
behaviour of APs detected in FPs according to the RSSI.

We start this work following the same assumption as the
research community, i.e., RMs tend to degrade over time, with
the purpose of quantifying the RM degradation and finding
whether the degradation of RMs is related to events that
have caused significant changes in the radio environment. This
section focuses on the definition of the RM, and the metrics
for measuring RM degradation.

In this paper, the RM is defined as RM =
{(ρ1, ws1), ..., (ρm, wsm)}, which is the set of m FPs,
each associated to the RP ρ where it was collected. Each FP,
defined as ws = {RSSI1, ..., RSSIn} represents the set of
n RSSI values of the APs detected by the Wi-Fi interface.

A. Radio Map Degradation Ratio

The RMDR metric measures how much a RM has changed
since it was initially collected by comparing it to a more recent
one. It calculates the difference in estimated RSSI values at
each position, assuming that two versions of the RM share
the same RPs. Essentially, the RMDR defines the amount of
RSSI variation (degradation) per RP per AP. In case there
are multiple FPs per RP, they are averaged into one FP
with averaged RSSI values. This allows to reduce noise from
consecutive FPs. We define the RMDR between two RMs a
and b (b older than a):

RMDR =
$a,b

NRP ×NAP
[dBm] (1)

where NRP represents the number of RPs, NAP represents the
number of APs detected in both RMs, and $a,b represents the
dissimilarity between pairs of FPs from RMs a and b collected
at the same RP, defined as:

$a,b =

NRP∑
i=1

NAP∑
j=1

∣∣RSSIaij −RSSIbij∣∣ (2)
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Fig. 1. DSI building: monitoring devices (blue hexagons) and test points (salmon circles).

where RSSIij represents RSSI of APj in RP ρi for RMs a
and b. In order to account for missing APs, whenever an AP
is not detected in a FP its RSSI is assumed to be −120 dBm.

The RMDR is higher when the differences between RMs
are also higher. Conversely, it is lower when both RMs are
similar, hence it is zero when computed for the same RM,
meaning that no degradation occurred.

B. Wi-Fi Fingerprinting

A complementary metric to evaluate the degradation of RMs
is the positioning error (which is the ultimate goal). Wi-Fi
fingerprinting has been used since the beginning of the century
when RADAR was introduced [1]. For the estimation algo-
rithm, we adopted the k-Nearest Neighbour (k-NN) method,
where an operational FP is compared against the ones from the
RM using a distance function. We opted to use the Manhattan
distance, defined as:

dM (ws∗, ws) =

NAP∑
i=1

∣∣RSSIiws∗ −RSSIiws

∣∣ (3)

where NAP defines the number of detected APs, ws∗ and
ws represent the operational and RM FPs, respectively. If an
AP is missing in either FP, a default RSSI of −120 dBm is
assumed. After computing the Manhattan distance between the
operational and all the RM fingerprints, the estimated position
is computed using k-NN, by obtaining the centroid of the k
(with k = 5) most similar RM fingerprints:

ρ̂ =

∑k
i=1 ρi(x, y)

k
(4)

where ρi represents the position of a ws.

IV. LONG-TERM WI-FI DATA COLLECTION

In order to evaluate the degradation of RMs, we adopted
two procedures to collect Wi-Fi FPs over time. The first is
based on a site survey, where FPs were manually collected
at the building. The second is based on MDs, also known as
anchors, which were installed in known locations continuously
collecting FPs. The manual site survey method has the advan-
tage of containing Wi-Fi FPs from more reference locations,
thus being a more dense RM. The method based on MDs has
the advantage of being able to autonomously collect Wi-Fi
samples without human intervention, over a long time.

A. Experiments Setup

Experiments were conducted at the Department of Infor-
mation Systems (DSI) building located in the University of
Minho’s Azurém Campus. The building measures 106× 19m
and has several office rooms, laboratories, and classrooms. It
is used daily by a couple of hundred people to attend classes
and to conduct research activities. Fig. 1 depicts the floor
plan of the building, the test points (RPs where FPs were
collected in the site survey), and the MDs (used for continuous
collection of FPs). The DSI building is equipped with multiple
Wi-Fi APs to ensure that all users of the building can access
the internet efficiently. These APs (Cisco Aironet Series) are
easily identified in Wi-Fi scans due to their SSID being the
same in the entire campus, however many other networks
are also found in Wi-Fi scans. These networks are usually
associated with printers, mobile APs, or other APs installed
in laboratories and office rooms.

B. Manual Site Survey

On a period over 2 years, 12 datasets were obtained using
a Raspberry Pi 3B+. Site surveys in which datasets were
obtained are represented in blue in Fig. 5. Each dataset is
composed of 20 FPs at each testing point (see Fig. 1) and
can be seen as a different version of the building’s RM.
Unfortunately, due to the pandemic, it was not feasible to
perform the manual site surveys during most of 2020.

Although it is a time-consuming and laborious task, the
datasets resulting from this work can be directly compared
to evaluate the RM degradation. Since these datasets contain
samples from a wider set of test points (a total of 49), they
better represent the building’s radio environment than the
datasets obtained with MDs (only 7 in total). In order to enrich
these datasets, in addition to the manually surveyed points,
we also considered FPs from MDs collected around the same
time that these datasets were obtained. In summary, 12 datasets
were collected, each integrating a total of 13 440 FPs collected
across 56 distinct positions.

C. Monitoring Devices Data

Although the installation of infrastructure to collect data
tends to be expensive, we chose the Raspberry Pi 3B+ to
implement the MD. The main advantages of this device
are that it is low-cost, it already includes 2.4 and 5 GHz
Wi-Fi interfaces (802.11b/g/n/ac), it is simple to configure



Fig. 2. APs detected by the MDs over time.

and deploy, and it is based on Linux which facilitates the
development of software modules. We devised a Java program
to collect a new FP every 60 seconds. In order to avoid getting
outdated RSSI values, the program performs two scans and
considers the last one, ensuring that the previously buffered
FP is replaced by new RSSI values. The program sends FPs
to a centralized server that gathers data from all MDs and also
saves the data locally into an SQLite database.

After testing the data collection program, seven MDs were
deployed in the DSI building (Fig. 1) on 2019-02-19 and
started collecting data on that day. Since the MDs are contin-
uously collecting Wi-Fi FPs, one can easily obtain the RM of
the building based on MD data, at any time period. Although
it has a low number of RPs (only 7) for the size of the building
considered, this RM can be used with Wi-Fi fingerprinting as
a metric to evaluate if the positioning performance degrades
when the RM is older. MD data was used to create RMs in two
ways: to complement the manual site surveys, and to generate
RMs integrating MD data only. The blue and yellow marks
in Fig. 5 represent the dates when these data were obtained.
More than 7 million FPs were collected from all MDs since
they started collecting data.

V. RADIO ENVIRONMENT OVER TIME

The continuous monitoring provided by MDs allows to
observe variations in the radio environment over time. Fig. 2
shows all visible APs, since we started this work, in 2019. This
plot aggregates data from all MDs deployed in the building,
hence, it shows all visible APs over the analysed period.
APs are sorted according to the first time of detection. Since
some MDs are deployed near windows, they can detect APs
from neighbour buildings, which are also included in Fig. 2.

Each line, represented in a different colour, depicts a period
during which an AP was detected. A total of 417 unique APs
were detected during this period, considering that each unique
Media Access Control (MAC) address counts as one AP. A
total of 4 448 APs that were rarely observed (in less than 1%
of FPs) were ignored and are not displayed in the plot.

Fig. 2 serves as a tool for analysing changes in the radio
environment. It shows that there are some APs that were
detected over the entire observation period. Some APs have
intermittent behaviour (around AP160), being switched on and
off several times. There is also the case where APs only show
during a short period of time (in Oct. 2019 and Sept. 2020).
Some APs appear at a specific time (Dec. 2019) and remain
visible until the end of the data collection. The variations
observed in Fig. 2, demonstrate that the radio environment
is highly dynamic, including many short-term variations and
several significant changes in the Wi-Fi infrastructure over
time. A description of the more significant events (highlighted
in grey in Fig. 2) is presented next.

1) Sept. 2019: A set of new APs are detected over one
month, then disappear and are not observed again. Upon a
deeper analysis through the FPs obtained during that period,
we observed that many new APs, associated with the Univer-
sity’s WLAN infrastructure, were detected during this period.

2) Dec. 2019: Many APs stopped being detected and
several new ones started being detected around the same time.
Due to the significant amount of APs that changed in this
period, this is a dramatic change in the radio environment.

3) Sept. 2020: We see similar behaviour to the one ob-
served in Sept. 2019, but the newly added APs were detected
during a shorter period.



4) Dec. 2020: Immediately before Jan. 2021, almost all
APs stopped being detected during a couple of days (vertical
white space around the time indicating that the vast majority
of APs was switched off). This suggests that there was a power
outage that caused APs to be down during this period. APs
return to normal operation after this period. See Section VII
for further details.

5) Other events: Many other variations and periods in
which APs are switched on and off can be found in Fig. 2,
demonstrating that the radio environment is highly dynamic
not only in the long-term but also in short-term. These short-
term variations are probably associated with the building’s
activity where people use their APs and hotspots, which are
easily moved, switched on and off, hence they are not as con-
stant as the APs from the university’s WLAN infrastructure.

VI. RADIO MAP DEGRADATION OVER TIME

Whether or not the highly dynamic radio environment has
an impact on IPSs is analyzed in this section, where the
results regarding the RM degradation over time, using the
mean positioning error and the RMDR metrics, are presented.

A. Manual Site Surveys Data

Each dataset was used as RM and all subsequent datasets
(the ones obtained after the RM) were used as test datasets.
This allows the evaluation of the RM over time since the day
it was initially collected. For example, the 2019-12-11, 2020-
01-15, 2020-02-19, 2021-04-23 datasets were used as test data
when considering the 2019-12-11 dataset as RM. In the case
where the RM and test datasets are the same (when the RM
is tested on the same day it was created), we have selected 5
FPs as test data and the remaining 15 as RM data, for each
testing point. During the majority of 2020, it was not possible
to perform the manual site survey due to COVID.

Fig. 3 (a) depicts the mean error achieved for each version
of the RM. Each line in the plot represents the times when
a RM was evaluated, over time. As expected, better results
are obtained when the RM is more recent. When the RM
is obtained on the same day as the test dataset, the results
are very good. The plot shows that the degradation is not
incremental over time and it is not guaranteed that time itself
is the reason for an increase in the RM degradation. In general,
we can see that older RMs have similar performance as they
get older, for instance, between Sept. 2019 and Dec. 2019.

The positioning results obtained with RMs and testing data
collected on the same day are much better than results obtained
in more realistic conditions where testing data is collected days
or months after the RM was created. Many results reported
in the literature might suffer from this problem, thus not
representing the real performance of the IPSs.

Furthermore, results show that Sept. 2019 was not a good
period to build the RM because, as described in Section V,
during this period many new APs were added and removed
about a month later. All tests with the Sept. 2019 RM had
worse performance than older RMs. This shows that when
the RM contains a set of APs that are removed, it affects

(a)

(b)

(a)

(b)

Linear time

Fig. 3. Manual site survey metrics: (a) mean error of Wi-Fi fingerprinting;
(b) RMDR.

the positioning results based on Wi-Fi fingerprinting since the
implemented version assigns a default RSSI to APs that are
not detected.

A clear degradation of results in all RMs collected before
Jan. 2020, is observed in 2020. As shown in Fig. 2, in Dec.
2019, there were many APs that were disconnected, and new
ones were added, causing significant changes in the radio
environment. Therefore, all RMs that were created before Jan.
2020 became outdated, as shown by the worse positioning
results in 2020.

Despite a very long time between the last two datasets
(2020-02-19 and 2021-04-23), the RMs that were obtained
in 2020 did not have significantly worse results with the 2021
dataset. This is justified by the reduced activity in the building
and almost no changes in the Wi-Fi infrastructure during 2020.

The RMDR was evaluated for each RM version by com-
paring it with itself and the subsequent ones. Fig. 3 (b) shows
the RMDR of each RM over time. When compared with itself,
the RMDR is zero, as shown in the plot. The RMDR achieved
for all RMs follows a similar behaviour as the one observed
in Fig. 3 (a), except for the values observed in 2019-07-29
and 2019-09-11. During this period, the RMDR increased but
it did not translate into significantly worse positioning results.
The RMDR rose substantially in the RMs after Dec. 2019,
following the same behaviour observed in Fig. 3 (a). This



shows that changes that occurred in the radio environment
after Dec. 2019 are different than the ones observed in Jul.
and Sept. 2019 (where the RMDR was higher, but the mean
error remained almost the same). Our analysis of the building’s
Wi-Fi infrastructure (see Section VII) shows that these changes
are related to distinct events.

In sum, these results demonstrate that better results are
achieved when the RM and test dataset are collected on the
same day. When a RM is tested after some time, there is a
degradation in the positioning performance. RM degradation
is directly related to changes in the Wi-Fi infrastructure,
especially when several APs are removed from the building.

B. Monitoring Devices Data

We adopted the same approach as the one in Section VI-A
in order to evaluate RM degradation using Wi-Fi fingerprinting
and the RMDR metric. As a result of being continuously
collecting Wi-Fi FPs, it allowed to obtain more datasets in
comparison to the manual site surveys. In this experiment,
we considered MDs datasets on the same dates as manual
site surveys experiments, to validate whether the results are
similar. MDs datasets include data from months during which
the university was closed or partially opened, due to COVID.

Fig. 4 (a) depicts the Wi-Fi fingerprinting mean error over
time, for each RM version. These results are in accordance
with the ones of Fig. 3 (a). Again, the Sept. 2019 RM is
only valid during the period when it was collected. It has a
large positioning error in all other tests. The event from Dec.
2019 significantly affected the results of RMs that were built
before that. In 2020, we see that new RMs created after Dec.
2019 have good performance results, demonstrating that no
significant changes in the radio environment have occurred
during the year. In this period, the mean error is low because
only 7 test points (MDs positions) were considered, and the
building’s activity was substantially reduced due to COVID
restrictions. Regarding the RMDR, Fig. 4 (b) shows that RMs
from MDs also register high RMDR values in Sept. 2019 and
Jan. 2020, having a similar behaviour to the results achieved
with the site survey RMs (Fig. 3 (b)).

In Sept. 2019, a significant change in the radio environment
has occurred, represented by the peak in the RMDR for
all RMs. The RMDR is lower for the RMs created after
Dec. 2019, showing that the radio environment has changed
significantly during that period.

VII. EVENTS TIMELINE

In order to establish a cause/effect relationship between the
changes in the radio environment (identified in Section V) and
the obtained results (in Section VI), we tried to identify the
major events that occurred during the data collection period
(see Fig. 5). This timeline includes times when there were
interventions in the building’s Wi-Fi infrastructure, periods
during which the university was closed due to COVID, and
times (blue and yellow marks) when datasets were obtained.
Blue and yellow marks represent times when both types of
datasets were collected. Yellow marks represent dates when

(a)

(b)

(a)

(b)

Linear time

Fig. 4. Monitoring devices metrics: (a) mean error of Wi-Fi fingerprinting;
(b) RMDR.

only MD datasets were collected. The last time a manual site
survey was conducted was on 2021-04-23, a few days after
the university re-opened after being closed due to COVID
restrictions. No datasets from MDs were obtained between
Nov. 2020 and Apr. 2021, because one of the devices stopped
working, and was only fixed in Apr. 2021. The main interven-
tions in the building’s Wi-Fi infrastructure, which affected the
results (see Section VI), are described next:

• In Sept. 2019, with the beginning of the school year, the
technicians performed several tests in the network, during
which they used the existing APs to transmit several new
SSIDs which were not previously detected. A similar test
was also conducted in Sept. 20202.

• The building’s WLAN suffered a maintenance interven-
tion in Dec. 2019. New APs with a larger user and
traffic capacity were installed in classrooms (right side in
Fig. 1), and some of the replaced APs were moved into
the office areas to increase coverage (left side in Fig. 1).

• In Dec. 2020, a power outage caused problems in the
building’s power supply and a significant number of APs
were switched off for a couple of days. This caused
the network to be down, and since it occurred around

2Information about operations in the Wi-Fi infrastructure was obtained from
the University services.
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Christmas time, the technicians were only able to solve
this problem after a couple of days. Although the building
suffered power outages, the circuit that powers MDs
seems to be independent of the one that powers the APs,
since we can see that there are a few APs that are still
visible during this period (Fig. 2), hence MDs were still
operating and some APs were also working. We suppose
that the APs detected during this period are either rogue
APs (not from the university’s dedicated WLAN), or APs
from neighbour buildings, which can be detected by MDs.
After this issue was solved, the APs returned to their
previous state and were detected by MDs.

VIII. APS OBSERVATION FREQUENCY

The FPs collected by MDs allowed us to conduct an analysis
of the APs observation frequency. APs are not always detected
in Wi-Fi FPs due to being far from the receiver device, or
due to characteristics of signal propagation. When an AP is
missing in a FP, it is either ignored or assigned a default value.
Usually, this value serves as a penalization in the localization
algorithm for the AP not detected in the FP.

Researchers tried to characterise the APs RSSI distribution
[11, 21] by showing histograms of AP’s signal levels over a
time window. Although there are some conflicting conclusions
about which model better fits RSSI distribution, most authors
agree that RSSI histograms resemble a Gaussian distribution
in most cases. Many other distributions are also considered in
the literature due to the diversity of RSSI histograms. Despite
performing an analysis of the signal distribution in RSS space,
these works miss an important aspect which is the ratio of the
times the AP is detected over the total number of FPs analysed.
This aspect is important especially in solutions that perform
AP selection, either to improve positioning performance or to
reduce computational effort [22].

In order to characterize APs according to the ratio of times
they are detected in Wi-Fi FPs, we defined the AP observation
frequency as:

r =
n

N
(5)

where n represents the number of times the AP was detected
over the total of N FPs considered.

To analyse AP observation frequency, we considered FPs
collected from all MDs during one day. Each MD detects
unique APs, and for each MD, one can obtain the observation

frequency of each detected AP in the considered set of FPs.
In order to understand whether the APs observation frequency
is affected by signal strength, we also obtained the mean and
Standard Deviation (stdev) for each AP.

Each AP detected by MDs in the considered period is
represented by a point in Fig. 6. Each AP is represented
according to its observation frequency, mean RSSI, and RSSI
stdev defined by the colour of each point. Fig. 6 shows that
there is a moderate positive correlation between the mean RSSI
and the observation frequency (Pearson correlation r = 0.566),
demonstrating that APs with higher RSSI values are detected
more often. This is expected because for APs whose signal is
weak are detected fewer times due to the receiver sensitivity
and variations in signal propagation. In this particular case, the
receiver sensitivity of the Raspberry Pi 3B+ is ≈−92 dBm,
since there is no AP detected whose RSSI is below that value.
Since the Pearson correlation p < 10−4, it rejects the null
hypothesis, therefore these results have statistical relevance.

Regarding the RSSI stdev of APs, we see a higher concen-
tration of APs whose RSSI stdev is close to zero when the
mean RSSI is low. This is probably related to the number
of FPs in which an AP is detected, being that, when the
AP has lower signal strength, it is detected fewer times (low
observation frequency), which consequently leads to lower
RSSI stdev. There is no clear tendency regarding the APs
whose RSSI stdev is high, because, these APs appear in areas
with low and high observation frequency.

We observed similar results using the same approach in
other periods, a few months apart. Also, we conducted the
same experiment considering all FPs collected by MDs over
a week, and the obtained results are in line with the ones
presented in this document. Those results are omitted in this
paper due to space constraints.

This study is important to support works that model the
behaviour of APs. Many models, such as the Log-Distance
Path Loss (LDPL) model ignore the probability of an AP not
being detected in a FP. This empirical study shows that, in
order to accurately model the behaviour of radio signals at
the receiver, propagation models should account for the AP’s
observation frequency according to the signal strength, being
that APs whose signal is stronger are detected more often.
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Fig. 6. APs observation frequency vs. RSSI mean and stdev.

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we conducted an empirical study on the
degradation of RMs at an office/classroom building. We col-
lected long-term Wi-Fi data, by performing several manual
site surveys and deploying multiple MDs that autonomously
collected Wi-Fi data.

The long-term RM degradation was assessed with the
positioning error and the proposed RMDR. Achieved results
showed that, although there is a tendency to increase over time,
the RM degradation is mostly caused by dramatic changes
in the Wi-Fi infrastructure. The positioning performance is
significantly affected when many APs are removed from the
building, making all RMs created before this change, outdated.
Therefore, the RM should be updated after significant changes
occur in the Wi-Fi infrastructure. The RMDR measures how
different two RMs are by comparing existing APs and their
signal levels for each RP. The RMDR can be used to detect
RM degradation, but it is not an indicator of worse positioning
performance. When just a few APs are added to the Wi-Fi
infrastructure, it does not affect the positioning performance,
but still leads to an increase of the RM degradation defined by
the RMDR. Also, the positioning results obtained with training
and testing data collected on the same day might be misleading
by providing unrealistically good performance.

Regarding the APs observation frequency, we found that
there is a positive correlation between signal strength and AP
observation frequency, i.e., APs whose signal is stronger are
detected more often than APs whose signal is weaker.

Plans for our future work include: explore other functions
for the RMDR; evaluate this method in other scenarios; devel-
opment of a solution to automatically detect RM degradation;
continue with the MDs data collection; publish the datasets
analysed in this paper; explore other fitting functions for the
APs observation frequency; and, analyse the variation of day-
to-day positioning performance to evaluate how short-term
variations in the radio environment affect the results.
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