
Universidade do Minho
Escola de Engenharia
Departamento de Informática

Pedro Jorge Rito Lima

Machine Learning applied
to Fault Correlation

October 2021



Universidade do Minho
Escola de Engenharia
Departamento de Informática

Pedro Jorge Rito Lima

Machine Learning applied
to Fault Correlation

Master dissertation
Integrated Master’s in Informatics Engineering

Dissertation supervised by
Professor Rui Mendes: Universidade do Minho
Engenheiro Carlos Guilherme Araújo: Altice Labs

October 2021



C O P Y R I G H T A N D T E R M S O F U S E F O R T H I R D PA R T Y W O R K

This dissertation reports on academic work that can be used by third parties as long as the internationally
accepted standards and good practices are respected concerning copyright and related rights.

This work can thereafter be used under the terms established in the license below.

Readers needing authorization conditions not provided for in the indicated licensing should contact the author
through the RepositóriUM of the University of Minho.

L I C E N S E G R A N T E D T O U S E R S O F T H I S W O R K :

CC BY

https://creativecommons.org/licenses/by/4.0/

https://creativecommons.org/licenses/by/4.0/


A C K N O W L E D G E M E N T S

To my supervisors at industry and academy, Eng. Guilherme Araújo and Professor Rui Mendes, for their advice
and guidance. I would also like to thank Guilherme for the numerous well-paced briefings, that allowed me to
better understand Altice Labs’ tool and the project’s main challenges, and Professor Rui Mendes for the scientific
suggestions to improve my work.

To Altice Labs for including me on the team and providing me a scholarship for developing this project.

In a more relaxed writing style:
To my parents who supported and endured me during the most difficult times of this project and all previous ones.
In particular, to Solange who, if I don’t give a direct thanks to, will disown me. In fact, she deserves it for guiding
me in key academic and life decisions.

To my grandmother, who was on the frontline of my education from a young age, and pushed me to never settle
below greatness. I believe she would be proud of me, however, for sure she would point out things to improve,
as always.

To my friends who have always been by my side, providing memories of a lifetime, and without whom this disser-
tation would have been finished a month ago.

To my sisters, always creating chaos that prevents me from being relaxed at home. Indirectly, they helped me by
leaving me no choice but to isolate myself to finish the dissertation. Inês deserves a special bonus for encourag-
ing me in pursuing AI research.

Thank you all, and to myself, who did the hard work without ever losing much mental sanity.

a



S TAT E M E N T O F I N T E G R I T Y

I hereby declare having conducted this academic work with integrity.

I confirm that I have not used plagiarism or any form of undue use of information or falsification of results along
the process leading to its elaboration.

I further declare that I have fully acknowledged the Code of Ethical Conduct of the University of Minho.

b



A B S T R A C T

Over the last years, one of the areas that have most evolved and extended its application to a multitude of possi-
bilities is Artificial Intelligence (AI). With the increasing complexity of the problems to be solved, human resolution
becomes impossible, as the amount of information and patterns that can be detected is limited, while AI thrives
on the dimension of the problem under analysis. Furthermore, as nowadays more and more traditional devices
are computerized, an increasing number of elements are producing data that has many potential applications.
Consequently, we find ourselves at the height of Big Data, where huge volumes of data are generated, being
entirely unfeasible to process and analyze them manually.

Additionally, with the increasing complexity of network topologies, it is necessary to ensure the correct func-
tioning of all equipment, avoiding cascade failures among devices, which can lead to catastrophic consequences
depending on their use. Thus, Root Cause Analysis (RCA) tools become fundamental since these are developed
to automatically, through rules established by its users, realize the underlying causes when some equipment mal-
functions. However, with the growing network complexity, the definition of rules becomes exponentially more
complicated as the possible points of failure scale drastically.

In this context, framed by the Altice Labs RCA and network environment use case, the main objective of this
research project is defined. The aim is to use Machine Learning (ML) techniques to extrapolate the relationship
between different types of equipment alarms, gathered by the Alarm Manager tool, to have a better understanding
of the impact of a failure on the entire system, thus easing and helping the process of manual implementation of
RCA rules. As this tool manages millions of daily alarms, it becomes unfeasible to process them manually, making
the application of ML essential. Furthermore, ML algorithms have tremendous capabilities to detect patterns that
humans could not, ideally exposing which specific failure causes a series of malfunctions, thus allowing system
administrators to only focus their attention on the source problem instead of the multiple consequences.

The ML approach proposed in this project is based on the causality among alarms, instead of their features,
and uses the cartesian product of a specific problem, the involved technology, and the manufacturer, to extrap-
olate the correlations among faults. The results achieved reveal the tremendous potential of this approach and
open the road to automatizing the definition of RCA rules, which represents a new vision on how to manage
network failures efficiently.

keywords Root Cause Analysis, Fault Correlation, Machine Learning, Artificial Intelligence, Network
Topologies, Rules automation, Alarm Manager
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R E S U M O

Ao longo dos últimos anos, uma das áreas que mais tem evoluído e estendido a sua utilização para uma
infinidade de possibilidades é a Inteligência Artificial (IA). Com a crescente complexidade dos problemas, a
resolução humana torna-se impossível, uma vez que a quantidade de informação e padrões que podem ser
detectados é limitada, enquanto a IA prospera na dimensão do problema em análise. Além disso, como hoje em
dia cada vez mais dispositivos tradicionais são informatizados, um número crescente de elementos está a pro-
duzir dados com muitas potenciais aplicações. Consequentemente, encontramo-nos no auge do Big Data, onde
enormes volumes de dados são gerados, sendo totalmente inviável processá-los e analisá-los manualmente.
Esta é uma das razões que tem levado à prosperidade da IA.

Além disso, com a crescente complexidade das topologias de rede, é necessário assegurar o correcto fun-
cionamento de todos os equipamentos, evitando falhas em cascata entre dispositivos, o que pode levar a con-
sequências catastróficas dependendo da sua utilização. Assim, as ferramentas de Root Cause Analysis (RCA)
tornam-se fundamentais, uma vez que são desenvolvidas para, através de regras estabelecidas pelos seus
utilizadores, se aperceberem automaticamente das causas subjacentes quando algum equipamento apresenta
anomalias. No entanto, com a crescente complexidade da rede, a definição de regras torna-se exponencial-
mente mais complicada, uma vez que os pontos possíveis de falha escalam tremendamente.

Neste contexto, enquadrado pelo ambiente de rede e cenários de RCA da Altice Labs, foi definido o principal
objectivo deste projecto de investigação. Este objectivo consiste na aplicação de técnicas de Machine Learning
(ML) para extrapolar a relação entre os diferentes tipos de alarmes dos equipamentos, geridos pela ferramenta
Alarm Manager, para ter uma melhor compreensão do impacto de uma falha em todo o sistema, facilitando e
ajudando assim o processo de implementação manual das regras RCA. Como esta ferramenta gere milhões
de alarmes diários, torna-se inviável processá-los manualmente, tornando essencial a aplicação do ML. Além
disso, os algoritmos ML têm uma enorme capacidade para detectar padrões que os humanos não conseguem
detectar, idealmente expondo quais as falhas específicas que causam uma série de falhas, permitindo assim
que os administradores do sistema apenas concentrem a sua atenção no problema de raiz em vez das suas
múltiplas consequências.

A abordagem ML proposta neste projecto baseia-se na causalidade entre os alarmes, em vez das suas car-
acterísticas, e utiliza o produto cartesiano de um problema específico, da tecnologia envolvida, e do fabricante,
para extrapolar as correlações entre falhas. Os resultados alcançados revelam o enorme potencial desta abor-
dagem e abrem o caminho para automatizar a definição de regras RCA, o que representa uma nova visão sobre
como gerir eficazmente as falhas da rede.

palavras-chave Root Cause Analysis, Correlação entre Falhas, Aprendizagem Máquina, Inteligência
Artificial, Topologias de Rede, Automatização de Regras, Gestão de Alarmes
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1

I N T R O D U C T I O N

Over the last decades, the evolution of the Artificial Intelligence field and the emergence of society into a global
network have highlighted a potential and promising relationship between these two areas. While the former
depends on a high volume of data for its success and accuracy, the latter is known for its Big Data generation;
thus, a perfect symbiosis is envisioned.

Nowadays, telecommunication networks are increasingly more complex, with more elements connected and,
consequently, subject to more failures and the generation of more alarms. Moreover, as most of the connected
nodes of the network are essential to its proper function, all alarms need to be processed in order to understand
the underlying problem and its correction, so that the anomalous device can proceed with its functions. However,
as stated before, due to the increase in network complexity and number of devices, it is no longer humanly
feasible to analyze all alarms generated, creating significant entropy and malfunction due to the delay in fixing
them.

Hence, Root-Cause Analysis (RCA) tools are becoming increasingly more crucial to the efficient and smooth
support of operational networks. However, the manual definition of RCA rules is becoming more and more
difficult. Not only the increased complexity generates more problems and alarms, but it also makes it impossible
to fix them manually. This creates a problem that needs to be solved to maintain the correct functioning of
communication platforms needed to support all technical equipment essential to our daily lives. Therefore, as
aforementioned, it is imperative to combine with the RCA tools Machine Learning (ML) techniques capable of
detecting patterns, which a mere human would not be capable of.

1.1 M O T I VAT I O N A N D O B J E C T I V E S

As a leader in the telecommunications innovation sector in Portugal, Altice Labs understands and operates on
network topologies of high complexity with numerous alarms from different sources. Currently, Alarm Manager
manages more than 25 million events per day worldwide, making its full resolution based on a human component
completely impossible. Solving the problems that arise in a timely manner is also crucial to satisfy the Service
Level Agreements (SLAs) established with customers.

Either in scenarios of success (fault correction) or failure (fault is still active or was forcibly terminated), alarm
instances are saved in a database. This implies that during the Alarm Manager continuous operation time, a vast
amount of data is stored and, currently, not further processed. On the other hand, it is known that ML techniques,

1



1.2. Dissertation Layout 2

although extremely powerful and able to detect patterns invisible to the human eye and brain, require a large
volume of data for their success, hence the colossal explosion of ML in research fields involving big data [1]. Thus,
it became evident that the Alarm Manager tool would benefit from such a combination, allowing the discovery of
relationships between previously unknown failures, providing system administrators with new information about
fault relationships and hierarchies, thus easing and speeding up the manual process of RCA rule creation. This
would be a considerable contribution to the consistent and correct operation of the tool.

In this context, the main objective of this research project is to apply ML techniques to the Alarm Manager data,
to analyze and identify the relationships between failures, in order to assess and extrapolate which faults cause
which, thus extracting helpful information from the fault history stored. Furthermore, by extracting information
from the developed ML models, manual creation of correlation rules is simplified, since new information about
the system is now available, allowing a system administrator to significantly reduce the number of alarms that
he has to process manually. Therefore, this project deals with a RCA problem, where the models developed
throughout this thesis will be trained on real datasets, made available by a telecommunications operator (TO),
with a high volume of real alarms, essential to train and determine the models’ pattern detection ability.

The achievement of the proposed objective requires the attainment of multiple partial objectives, such as:

• the study of state of the art in ML for the resolution of RCA problems, thus taking advantage of the scientific
knowledge available in this area for a better implementation of the proposed problem resolution;

• the understanding, categorization and pre-processing of the data, as only after its complete interpretation
will it be possible to apply feature engineering techniques to extract and enhance all helpful information
that data may contain;

• the implementation, validation and testing of the models developed, to ensure that the information and
patterns detected by the models are reliable, thus avoiding the creation of incorrect rules, which would
further delay manual fault processing.

1.2 D I S S E R TAT I O N L AYO U T

This dissertation is structured in seven different chapters to better expose all the different strands involved, so
the goals described in the previous section can be achieved.

In chapter 1 - Introduction - an overview of the motivation that led to the need and creation of this project is
provided. Additionally, the objectives that need to be fulfilled for the success of the project and the structure of
the dissertation are mentioned.

In chapter 2 - State of the Art - different solutions and approaches in the literature to identical problems are
explained, since before starting the development phase of a project, it is necessary to ascertain the state of the
art in the application area. Additionally, some introductory concepts necessary for a complete understanding of
the developed project are mentioned.

In chapter 3 - Alarm Manager - is explained the current Altice Labs’ product which manages the data to be
used, showcasing its operation workflow and all information that categorizes an alarm instance and its corre-
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sponding type. The perception of this tool is essential, as it addresses the constitution of each alarm instance,
which is the main entity of the project.

In chapter 4 - Data Processing - is explained how the dataset to be used during the project was created from
the raw data provided by a TO. Additionally, it also mentions all the processing applied to the data in order to
purify it, thus generating the final dataset for the application of ML techniques.

In chapter 5 - Proposed ML Approaches - the primary approach used in the project and its sub-variants are
explained in depth. These variants are worth mentioning as they were not a change of direction of the project
but a refinement process to extrapolate as much helpful information as possible from the data provided.

In chapter 6 - Results Discussion - all the results obtained during the most intensive phase of model testing
are exposed in multiple degrees of granularity. In addition, the system used throughout the development stage is
characterized, as it is a factor to be taken into consideration in ML and big data processing fields. The automation
process developed, to obtain results for all unique problems and areas of the entire country, thus extrapolating
as many relationships and patterns as possible, is also exposed.

In chapter 7 - Conclusion and Future Work- an analysis and retrospective of the objectives proposed in this
project and its achievement are presented. Additionally, it is mentioned what contributions in the real world were
accomplished and envisioned. Lastly, a debate on the possible improvements towards a robust, individual ML
tool is provided.
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S TAT E O F T H E A R T

In order to ground the conceptual and practical decisions of this project, it is first necessary to study the main
concepts and state of the art in the involved areas. Therefore, this chapter’s purpose is twofold: i) to identify and
explain the crucial concepts used throughout the thesis; ii) to analyze state of the art techniques used on similar
RCA problems. While the former allows to deepen and expose concepts essential to developing the project at
hand, the latter serves to better understand how to tackle the problem and what solutions have already been
implemented for similar scenarios.

2.1 B A C K G R O U N D C O N C E P T S

Throughout this project, numerous tools, models, metrics, and methods related to the ML field were used. How-
ever, for a complete understanding of the dissertation, from the variety of techniques used to the testing phase
applied, it is necessary to have certain core notions well established. Thus, several concepts will be explained
in this section, from algorithms and ML models to their respective metrics, referred to and used throughout the
thesis.

2.1.1 Algorithmics

In the ML area, there is a wide range of possible learning algorithms to be used, so it is necessary to understand
the problem in analysis and its data to identify better the optimal model for the use case. In total, there are six
different types of machine learning algorithms [2]; however, two of these are variants of the four best known and
worth of briefly highlighting:

• Supervised learning: when the data of the problem under analysis has labels, i.e., it is known for a certain
input given to an ML model what is the correct output, a supervised learning algorithm can be used. These
labels work as a supervisor of the algorithm as through them the model can correct its learning phase if
the labels’ predictions are wrong, based on the deviance (error) from its true label. In this way, the model
optimizes itself to understand the data better and maximize the labels’ correctness. Within Supervised
Learning, there are two different paths regarding the type of variable the model has to predict:

4



2.1. Background Concepts 5

– Continuous Target Variable: the output value expressed by the model is, as the name implies, a
continuous variable [3]. It has a continuous spectrum of possible values that it can take, and there
is a direct relationship between the different values. This algorithm is used for regression problems
[4];

– Categorical Target Variable: the target variable is categorical [3], so, unlike continuous, it can take
on one of a limited and usually fixed number of possible values. Any problem with labels and where
it is desired to predict a categorical variable, i.e., a state, uses this learning algorithm. This algorithm
is used for classification problems [5].

• Unsupervised Learning: Contrary to the previous algorithm, that is, when the data to be used by the
model does not have labels, and the model does not know which output it should reach, we are faced with
unsupervised learning. Thus, the algorithm must be able to aggregate information/data according to its
characteristics and patterns to extract useful information. It can be used for clustering [6] or association
[7] problems;

• Semi-supervised learning: while in the previous algorithms the existence of labels was binary: either they
existed, or they did not; this algorithm is used when there is an intermediate scenario: labels exist for
some inputs, but not all, and the cost of labeling them all is too high. This is possible when the existing
labels are categorical, where the success scenario of the algorithm depends on being able, through the
existing labels, to identify the patterns of that group/state, thus aggregating the entries that have no inputs
in their corresponding groups [8];

• Reinforcement Learning: this algorithm is quite different from the previous ones as the label concept does
not apply. In this technique, a new concept arises, an actor will perform an action and have a respective
reward depending on the chosen action [9]. This algorithm applies this action process continuously and
learns according to its reward, aiming to maximize it. This continuous process is based on four simple
steps: i) the agent observes the state of the input; ii) according to the received state it makes a decision,
thus performing an action; iii) the agent receives a reward or reinforcement according to the action it
previously took; iv) a pair (initial state, action performed ) on the received reward is stored. During this
last step, the algorithm tries to extract knowledge about what just happened so that it can get an equal or
better reward in a future similar input.
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Figure 1: Diagram of the four di�erent types of machine learning algorithms (adapted from [10])

Considering the spectrum of ML algorithm types previously presented, illustrated in Figure 1, and the super-
vised learning task resulting from the approaches explained in Section 5, the present section also discusses
the ML algorithm used to fulfill it. In this sense, the fundaments of Random Forests are further explored in this
section, along with how the models’ features importance contribute to the analysis.

Random Forests

As an ensemble algorithm, to better understand random forests’ principles, it is pivotal to recognize its primary
component: decision trees [11]. Random forests comprise a variable number of decision trees (hence being an
ensemble algorithm) being the final result the weighted score amongst them (average value or majority voting).

Decision Trees get their name from the tree-like format they use to make decisions [12]. Thus, they are
composed of a root, the top node of the entire tree, multiple branches, intermediate nodes, and decisions, the
last node/leaf. Its behavior is to distribute features of the dataset across the tree branches so an input can
traverse the tree according to the values of its fields, reaching a leaf, i.e., the decision/prediction of the model
[13].

To better understand its operation, a brief theoretical example of its workflow will be presented below. Thus,
assuming the data shown in Figure 2 as the base dataset for the problem, the implementation of this learning
algorithm could lead, since from the same data, it is possible to generate an infinity of different trees, to the
decision tree seen in Figure 3.
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Figure 2: Small sample dataset

Figure 3: Decision tree generated from the small sample dataset

As can be seen, all nodes except the leaves (nodes at the lowest level) represent variables of the dataset, and
the path applied is relative to the value an input has for each field. That is, as an example, if entry number 5 of
the dataset in Figure 2 was used for testing, i.e., the model did not know the value of "Play", the path would be
as follows: (i) the first feature under analysis is "weather", as for this entry, the value is "Rainy", the path used is
the one on the far right. ii) now, the feature under analysis is "wind", as for this entry, the value is "Strong", so
now the left path is used iii) the last level of the tree is reached, so the model has reached its decision, in this
case: "No". As can be seen in the dataset, the decision obtained by the ML algorithm is correct.

This example is purely theoretical, and as can be seen, only three of the four variables were used as decision
nodes. The depth of the tree depends on the number of estimators used. However, these can be repeated; in
the above example, after the "Humidity" node, there could be a node for the "weather" feature to filter its value
once again.

Having understood how a decision tree works, it is possible to understand the workings and benefits of random
forests. These are composed of nothing less than multiple decision trees. While in the last example, only one
decision tree was built to forecast, in random forests, several are implemented. So at the end of the process, the
model’s final forecast is not the one of a single tree, but a weighted forecast of all decision trees [14], as shown
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in figure 4. Thus, numerous trees are implemented in random forests, all with the same base dataset but with
different construction, i.e., different decision nodes.

Figure 4: Example of a random forest architecture

Feature Importance

The increasing growth of ML applications in academic, industrial, and health contexts has been triggering the
need for explanations regarding the behavior of machine learning algorithms [15]. In this sense, Explainable AI
(XAI) is an emerging field [16, 17]. Besides fostering the general public trust in ML [17], studying and assessing
the machine learning internal decision criteria can help unveil meaningful novel insights [15] in business/industrial
contexts.

In the case of random forests, one can use feature importance as a form of XAI [18]. As the name implies,
feature importance allows identifying what impact each feature has on the model’s decision-making process.
When applying feature importance to a model, an array of size equal to the number of predictors used by the
model is obtained, where each field has a percentage value of the impact of the feature on that index. The value
for each feature can range from 0%, the feature has no impact on the decision, to 100%, that unique feature
has all the decision power over the data (implying that all others have 0%, as the sum of the feature importance
array must be 100%). For the decision tree represented in Figure 3, an example of applying feature importance
is present in Figure 5.

Figure 5: Example of the application of Feature Importance



2.1. Background Concepts 9

The tree creation process is not random: choosing for the top levels of the tree, the features that minimize
entropy [19], it is expected, as seen in the figure above, that the feature with the highest impact is the root of the
tree, as being the feature with the highest impact and being the root of the tree, the depth of the tree is minimized
as the forecast/leaf is reached faster.

In the context of this project, as will be seen later in this dissertation, the final approach used is based on
the ML model of random forests, using the trios of past incidents as features. The goal is to train a model for
each unique trio to predict whether a specific series of trios will cause the model’s trio. Thus, having a trained
model that can process trios from the network and identify whether its trio occurred or not. However, this model’s
prediction is not the information sought by this project. Thus, this approach aims to have a model trained to
analyze the causality of a particular trio and then dissect it to see how the decision was made. That is, what
patterns the model discovered to identify the correlations between the trios correctly.

Since the features of each trio model are the other existing trios, the application of Feature Importance allows
drawing for each trio what is the impact of all others. Thus, in the successful scenario of training the models, it is
then possible to extrapolate the correlations between all different trios, completing the objective proposed in this
dissertation.

2.1.2 Metrics

Just as critical as the development of an approach is the analysis of its results. However, before analyzing the
results obtained by a model, it is mandatory to assess its quality since if the model has not been able to learn
effectively, all the results obtained are useless and most likely false. Therefore, this sub-section will explain what
a confusion matrix is and the metrics it allows to calculate.

Confusion Matrix

A confusion matrix [3] is a technique used to summarize the performance of classification algorithms [20]. Its
size is equal to the number of target classes, i.e., in a binary problem, it will be 2x2, and in multiclass NxN, where
N corresponds to the number of values the categorical target variable can take. For the project at hand, since a
model will be created for each trio, it only needs to predict whether or not the failure will occur, resulting in many
binary problems. Thus, in Table 1, the appearance and content of a models’ confusion matrix can be seen.

Actual Positive Actual Negative

Predicted Positive Number of True Positive (TP) Number of False Positive (FP)
Predicted Negative Number of False Negative (FN) Number of True Negative (TN)

Table 1: Contents of a confusion matrix

As shown in the table above, the confusion matrix distributes the model predictions into four different classes
[3]:
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• True Positive: the model predicted the positive class, and it was the actual class. Shown in the upper-left
corner (2nd quadrant).

• False Positive: the model predicted the positive class; however, it was wrong as the actual class is negative.
Shown in the upper-right corner (1st quadrant)

• False Negative: the model predicted the negative class; however, it was wrong as the actual class is
positive. Shown in the lower-left corner (3rd quadrant)

• True negative: the model predicted the negative class, and it was the actual class. Shown in the lower-right
corner (4th quadrant)

Having understood the distribution of predictions within the confusion matrix, it becomes evident that a model
is as good as the more significant distribution of values is on the y = −x diagonal (correct predictions) and
minor on the y = x (wrong predictions).

From the confusion matrix is possible to calculate several metrics, of which is worth highlighting [3]:

• Accuracy : represents the ratio between the number of correct predictions over the total number of pre-
dictions. This metric answers the question: "How often is the model successful". It can be calculated as
follows:

Accuracy(ACC) =
TP + TN

TP + TN + FP + FN

• Precision: represents the ratio of the number of correct positive predictions over the total number of
positive predictions. This metric answers the question: "Having predicted the positive class, how often is
the model successful". It can be calculated as follows:

Precision =
TP

TP + FP

• True Positive Rate (TPR): represents the ratio between the number of correct positive predictions over the
total number of positive entries on the dataset. This metric, also known as recall, answers the question:
"If the actual class is positive, how often is the model successful". It can be calculated as follows:

TPR =
TP

TP + FN

• False Positive Rate (FPR): represents the ratio between the number of wrong positive predictions over the
total number of negative entries on the dataset. This metric answers the question: "If the actual class is
negative, how often is the model unsuccessful". It can be calculated as follows:

FPR =
FP

FP + TN

• ROC-AUC: a Receiver Operating Characteristic curve (ROC curve) is a metric that reflects how well a
classification model performs across all categorization levels. The TPR vs. FPR at various categorization
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criteria is plotted, in form of a graph on a ROC curve. As the classification threshold is lowered, more
items are classified as positive, increasing both False Positives and True Positives. The Area Under the
Curve (AUC) is the term used to describe the area beneath the ROC Curve. The AUC score can vary
between 0 and 1, being a 0.5 AUC score associated with a model with random prediction,i.e., that has not
captured the data interdependencies. The ideal model reaches a AUC score of 1 whereas a model whose
all prediction are contrarily predicted has a 0 AUC score.

Throughout the development, the ROC and ACC metrics will be used to ascertain the quality of a model as
they are the metrics with the most significance [21]. Thus, to the confusion matrix presented previously, two new
columns are added, as shown in Table 2, so that these two metrics will always be present when evaluating a
model’s quality.

Actual Positive Actual Negative Metrics

Predicted Positive - - Accuracy ROC-AUC

Predicted Negative - - - -

Table 2: Template of the confusion matrix and metrics considered

2.2 R E L AT E D W O R K

The work to be carried out during this project focuses on applying machine learning techniques to root cause
analysis, thus being able to extrapolate correlations among multiple failures automatically. Through this newly
acquired knowledge about the system, an administrator is able to manually define new RCA rules that can more
efficiently manage the countless alarms produced by the system topologies.

Therefore, thorough evaluation of previous studies conducted in the field is paramount for adequate methods,
tools and techniques’ selection. Through root cause analysis, these past studies aim to identify the relation
of causality between multiples interdependent variables, in order to assess, predict and therefore prevent fault
occurrence.

Root cause analysis can be applied to a wide range of fields of research, from biological science and medicine [22]
to manufacturing engineering [23, 24, 25] and telecommunication industries [26, 27, 28, 29, 30].

Being able to determine the root cause of any given problem is determinant to properly and permanently
address and eradicate it. Doing so in business contexts can have substantial impact perceived service quality of
its users and consequent business stability.

Although being a widely active field of research, the concrete application of root cause analysis to tracking
devices failure in network topology is still an open issue. Nevertheless, data processing pipelines and learning
algorithms across multidisciplinary fields can be transposed and adjusted to maximize information retrieval for
RCA.
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The study carried out in [26] targets a root cause problem with a similar area of application to the one of the
present work, however simplified, both in terms of data dimensionality, root problems and number of devices. In
this sense, some strategies and techniques presented inspired the strategies used for problem characterization
and approach definition for this thesis. In this study, Random Forest models are created for each type of event, in
order to predict whether a specific fault on a specific device will occur or not. The analysis correlates all devices
faults within a 5 minutes time frame of each occurrence.

Similarly, [31] also resorts to random forests in order to properly detect anomalies in Internet-based services.
Through multiple detectors functions, it is possible to extract features from the data, which cooperatively with
the operator’s labels, allows for a continuous retraining of the anomaly classifier. This approach was able to
achieve an accuracy of 66%, which is a reasonable value considering the field of application, that is known for
the complex data patterns to recognize.

The potential of applying random forests in root cause analysis fostered the use of a variation of this algorithm,
in particular a Random Decision Forest Regressor, to cancer analysis [22].

With a similar goal as [31], the study carried out in [23] applied a different approach based on Bayesian
networks for Root Cause Analysis in the field of quality deviation in manufacturing. In this study a Bayesian
networks model represented by direct, acyclic graphs, was developed in order to identify the causal relationship
between manufacturing stages.

Considering other root cause analysis strategies applied to other fields, [32] also uses Bayesian networks
to networking monitoring and security, whereas [33] focuses on predicting service failure resorting to neural
networks.

Neural networks are also the core algorithm underneath the [34] study, where root cause analysis aims to
determine the failure of power transformers. Although of a divergent field, this type of power failure problem
deeply relates with some of the key root problems that are targeted in this thesis project.

The [35] study is also based on neural networks, however focusing more on identifying the correlation of
variables more than the root of the problem itself. Complementary, the research method resorted to clustering in
an attempt to handle the unsupervised nature of the dataset considered.

Furthermore, within the field of RCA for the telecommunication sector, [30] focuses primarily on alarm corre-
lation discovery, having resorted to a graph-based ML algorithm to help detect fault patterns in order to reduce
network maintenance costs. Similarly, [29] also resorts to graph theory, having developed a hybrid causal
graph-based algorithm, tested in both artificial data and real telecom data.

Conversely to previously approaches used for RCA, a Principal Component Analysis (PCA) technique is used
in [28] for data dimensionality reduction, as well as to, in an unsupervised learning strategy, detect anomalies
and the root cause of telecommunication network problems.

Lastly, the study carried out in [27] explores an alternative solution to a simplified version of fault correlation
and RCA problems in the telecommunication field. The algorithm used is different from the previously described,
where to solve this issue was used generalized sequential patterns, which allow a time-gape constraint, thus
being optimal for mining alarm databases.
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The study was able to achieve a 70% accuracy in detecting failures. However, the frequency and types of
such occurrences have increased over the past few years, as well as the number of devices spread throughout
the country. The technological developments in the telecommunication sector over the past few years may also
increase the layers of dependencies between devices, and therefore the complexity of tracking the source of the
problem.

The specific problem of root cause analysis applied to fault correlation in real network topologies can be per-
ceived and handled differently. Although ultimately the fault analysis can be recognized as a binary classification
problem, since the malfunction either occurs or not [26], in the context of the specific problem under assess-
ment, the fault occurrence can be of multiple natures or sources, and therefore, a multiclass analysis can be also
adequate [33].

Another factor to take into consideration regarding root cause problems refers to the frequency of fault occur-
rences. As in most failure and anomaly detection problems, being able to determine the root cause of failure in
devices connected in a massive network topology composed of a variety of different equipment is greatly affected
by the imbalanced nature of fault occurrences in the datasets.

Resorting to the valuable principles, processing techniques and machine learning algorithms considered in
previous works in the field, the current thesis project can focus on devising a strategy and pipeline to adequately
and accurately identify the root cause for fault and malfunction in a real world network context.

2.3 S U M M A R Y

In this chapter, various approaches used in problems identical to the one outlined for this project have been
exposed. The analysis of these allowed to conceive a plan of the best way to tackle this problem, thus speeding
up the following development stage.

Additionally, concepts regarding the types of ML algorithms and their respective metrics were also exposed,
which are essential for the complete understanding of the thesis.



3

A L A R M M A N A G E R

Due to the increasing complexity of network topologies, RCA tools have become vital for their correct operation.
Nevertheless, network knowledge is required to manually define rules necessary for alarm aggregation and cor-
rection, which is increasingly complex due to the growing number of devices in the network. Thus, as mentioned
before, in this project, ML techniques will be applied to extrapolate new information from the network, helping
and improving the subsequent rule creation process.

In this case study, the RCA tool used and developed by Altice Labs is Alarm Manager [36]. This is the tool
responsible for generating and storing all the alarm instances related to the failure of its customers’ equipment.
So, before going into more details regarding the project development, it is necessary to properly understand how
Alarm Manager works, its workflow and what data is stored for each alarm instance.

3.1 D E S C R I P T I O N

Alarm Manager is the product of the NOSSIS suite responsible for the Fault Management area, which concen-
trates the reception of alarms from the network, storage, treatment, monitoring and correlation of faults. It carries
out the management of states, severity levels and other standardised alarm parameters. It allows defining the
cycle of all alarms created in the system and monitors the processing infrastructure, as well as the various
collection channels.

Built on the experience of Altice Labs and its customers in the area of Telecommunications, it guarantees fault
monitoring, problem detection and the opening of fault tickets, streamlining processes and making them more
efficient. This translates into operational gains and an expeditious adjustment to the business through flexibility
the introduction of the management of new platforms and/or network elements.

3.2 F U N C T I O N I N G

As the name indicates, the Alarm Manager controls the alarms of numerous instances of equipment, so if any
problem arises, it is quickly reported and corrected. For multiple reasons, such as good practice and data persis-
tence, no alarm is changed after its emission. Instead, whenever necessary, a new alarm is issued with new or
updated information on the same malfunction. All alarms have four different types of events, regarding its current

14
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point of situation, so they can be: NEW, the moment an alarm is created; CHANGE whenever any information
has to be updated or added; CLEAR the moment the problem is solved and the equipment can register its back
to the desired state issuing the end of that alarm instance; PURGE where instead of the equipment detecting the
problem is solved, the alarm instance is manually closed. The life cycle of a common problem generated on the
network, accompanied by images of the tool’s documentation [37], is as follows: at an arbitrary moment, a piece
of equipment starts to malfunction, thus initiating the "point of failure" - the instant when the equipment detects
that it is malfunctining and issues the alarm, as can be seen in Figure 6 on the first timeline.

Figure 6: Issue of detection of a problem by network equipment [37]

Thereafter, the alarm is received by the Alarm manager servers, which immediately create an "Alarm Instance",
as can be seen in Figure 7 on the second timeline. This instance identifies which equipment has detected
irregular behaviour and needs to be fixed and generates a network’s event, as seen in the figure’s third timeline.

Figure 7: System creates an alarm instance entry with type NEW ans severity Critical [37]

This alarm instance persists in the network until its resolution or manual closing by a system administrator.
In both cases, a network’s event is generated, as can be seen in Figure 8 on the third timeline, identifying the
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resolution of the problem but not yet the termination of the instance. Then, after a pre-defined guard time, in
order to ensure that the equipment has not reported any more failures, the instance can be terminated, and the
problem is considered solved, as can be seen on the figure’s second timeline.

Figure 8: Reception of a CLEARED alarm for the same instance, referring the problem is no longer active [37]

However, the alarm instance’s flow is not always so straightforward, so scenarios with different behaviors than
described above may arise. Since it is essential to understand the possible behaviors of the system, for better
modeling of the problem, some common alternative scenarios will be exposed, also documented in the Alarm
Manager’s manual as proof of concept.

• More than one alarm about the same malfunction is issued before CLEARED. This can be multiple
NEW’s, occurring from synchronization problems between AM’s servers, or multiple CHANGE’s if the
alarm needed to update or add any new info to better detail the problem. In this scenario, the same alarm
instance will have multiple entries besides the default/minimum 2. Such behavior can be seen in Figure
9a.

• As stated before, all alarms have a guard period that needs to be complied with after the reception of the
CLEARED event in order for its alarm instance to be closed. If after the system receive a CLEARED, it
receives another critical event, before the guard time is over, the CLEARED event is ignored, and such
instance remains active, needing another CLEARED or PURGE to terminate the instance. Such behavior
can be seen in Figure 9b.

• After an alarm instance is closed, either by failure correction or being forced by a system administrator,
if another problem, same as before, occurs in the same device, another alarm instance is open. So, no
matter what may happen in the future, when an alarm instance is closed, it cannot be opened again. If a
malfunction is repeated, another alarm instance will be created, thus exposing the problem again, without
affecting the previous one that has already been resolved. Such behavior can be seen in Figure 9c.
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• Sometimes, due to network issues, the event CLEARED may appear before the NEW alarm. In this
scenario, the instance is created at the reception of CLEARED and only closed when another CLEARED
alarm is received and guard time is over, thus avoiding its termination in an error situation. Such behavior
can be seen in Figure 9d.

(a) Reception of multiple alarms from the same instance, be-
fore CLEARED

(b) Reception of a new alarm from the same instance within
the guard period

(c) Successful closure of an alarm instance and re-opening of
an identical one after receiving a new alarm for the same
issue

(d) Creation of an alarm instance at reception of a CLEARED
alarm, instead of the alarm that would trigger the instance
creation

Figure 9: Alternative behaviors to the default �ow of an alarm instance (adapted from [37])
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3.3 A L A R M D ATA

Since the alarm is the primary entity of the alarm manager, it is composed of a myriad of fields to describe all the
necessary information. Since for the project at hand, many of these fields do not have any helpful information, it
is necessary to initially ascertain what each one represents for a later pre-processing and field removal phase.
The following table 3 shows all the features of an alarm saved by the Alarm Manager, as well as the meaning of
each one, which is essential to the perception of the problem and its resolution and the possible range of values
that each can take.

Feature Description Range of Values / Type

Id unique identi�er of an alarm N>0

eventType Describes the event/state of the alarm New / Change / Clear / Purge
eventCount How many occurrences of the alarm has entered the system, only increases when aiState opens after closing N>0

totalEventCount How many occurrences of the alarm has entered the system, increases with every event type N>0

systemCreationTime Creation time of the alarm instance, measured by the Alarm Manager clock N>0

systemLastUpdateTime Time of the last alarm input, irrelevant of the event type, measured by the Alarm Manager clock EqpA

startTime Creation time of the alarm instance, measured by the equipment clock N>0

lastStartTime Time of the last alarm input, irrelevant of the event type, measured by the equipment clock N>0

systemAckTime Acknowledgement time by system user Nan / N>0

ackSystemId System user’s Team responsible for the acknowledgement None / Maestro
ackUserID System User’s Unique Identi�er responsible for the acknowledgement None / Maestro

severity Degree of severity of the alarm Warning / Minor / Major / Critical / Indeterminate
urgency Degree of urgency of the alarm, similar to severity Warning / Minor / Major / Critical / Indeterminate
aiState State of the alarm instance Open / Close

ackStatus Whether the alarm was acknowledge or not Acknowledged / Unacknowledged
additionalText Additional alarm information, too disparate to be set in a static �eld XML

tags Extra information String
variableSpeci�cProblem Extra Information about the problem identi�ed String

inhibitted Flag added by AM to whether it is displayed or not in the network True / False
manualCloseUserId System User’s Unique Identi�er responsible for the alarm instance manually closure None

manualCloseSystemId System user’s Team responsible for the alarm instance manually closure None
manualCloseTime Moment the alarm instance was manually closed None

notVisible Whether the alarm is displayed or not in AM True / False
subsystem Supplier of the equipment that generates the alarm String
summary A brief summary of the alarm - virtual �eld String

managedObjectClass Type of equipment where the failure occurred String
managedObjectInstance Speci�c equipment where the failure occurred String

localCode Location of the equipment where the failure occurred String
node No information available about this �eld Not applicable

nodeAlias No information available about this �eld Not applicable
alarmType Deprecated feature, no longer used String

probableCause Deprecated feature, no longer used String
probeHost AM server that received the alarm String

probeDirectory Deprecated feature, no longer used String
extraAttributes Additional alarm attributes, too disparate to be set in a static �eld String

anomaly Anomaly detected in the alarm, identical anomalies between alarms indicate causality String
correlatedId Unique Identi�er of the alarm which caused this alarm to occur N>0

domain Technology used by the equipment String
inMaintenance Whether the equipment is under maintenance or not True / False

moiFriendlyName Alias of the speci�c equipmet String
technology Technology used by the equipment, same as domain String

inToeOrFlap Indicator if alarm is occurring excessively, causing spam True / False
sync Only false alarm are to be considered True / False

Table 3: All native features from an alarm instance
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3.4 D ATA B A L A N C I N G

For the problem under analysis in this dissertation, the correlation between failures, the most relevant factor in
the data is the one that identifies the failure that occurred: specificProblem. The main goal will be to analyze the
relationship between different specificProblems, so, in an initial phase, it is helpful to ascertain the distributions
of the problems to analyze their balancing.

Before analyzing the distribution of problems in the area with the most occurrences, it is necessary to analyze
the distribution of problems in all country zones. Thus, in the interval from May 1st to May 16th, as shown in
Figure 10, it was identified for each country’s zone: i) how many unique specificProblems were detected (left); ii)
how many failures occurred during the period in question (right).

Figure 10: Distribution of the faults across the various zones of the country.

Although there are 55 different zones in the country, only 54 are present in the figure above, as one of the
zones, "QwA", due to a system error, has 539396 unique problems in 775316 entries. As can be seen, the
distribution is not at all homogeneous, considering that the most recurrent country zone, "QwE", has about
23.5% of all failures in the country. Thus, this will be the zone used henceforth for testing.

Using a dataset sample, relative to the period between May 1st and May 16th, consisting of 2.77 million
entries, which, after a filtering process, which will be explained in the next chapter, and the removal of all non-New
entries, remains with about 670 thousand entries. Figure 11 shows the number of occurrences of each problem
in the top20 and the cumulative percentage of problems in the dataset (i.e., the sum of previous problems with
itself). The orange bars represent the number of occurrences (with its scale at the left) of the specific problem
of the X-axis, which, as can be seen, is not constant among all problems but significantly decreasing (thus
showing a notorious unbalance among the different problems). In blue is represented the cumulative value of the
problems (with its scale at the right), i.e., the aggregate sum of the occurrences, thus representing the "analyzed"
percentage of the dataset (within the 670k).

As shown in the figure, the distribution is not homogeneous (where the most recurrent problem constitutes
almost 21% of the entire sample dataset), and still within the top30, the 70% barrier is quickly surpassed. Al-
though in this sample there are 4036 different problems, as we can see in Figure 12, most are pretty insignificant,
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since the first 133 problems represent 90% of the dataset, and the top 1191 (which is not even a third of the total
number of problems) composes 99% of the dataset’s entries.

Figure 11: Occurrence distribution and cumulative percentage of the top20 problems in the sample dataset

Figure 12: Cumulative percentage of all problems in the sample dataset

3.5 S U M M A R Y

In this chapter, the motivation for understanding the Alarm Manager tool has been exposed. Thus, it was ex-
plained in detail what it is and what it is used for, its typical workflow and behavior in more anomalous scenarios,
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the data stored for each alarm instance created, and, finally, the distribution of the different types of problems in
an arbitrary period of time.

Having properly understood the tool’s behavior and data, which led to this project’s origin, it becomes possible
to move on to a pre-processing data phase, thus transforming the raw data exposed in this chapter into helpful
information that an ML model can process.
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D ATA P R O C E S S I N G

As the dataset to be used for the development of this project, as mentioned before, is the actual output of Alarm
Manager, it has an enormous variety of fields and information that is not necessary nor useful for this project.
So, for the application of machine learning techniques, it is necessary to understand what the goal is so that it is
viable to apply data processing techniques, thus extracting as much helpful information as possible. Therefore,
in this chapter, all techniques, and processing applied to the original dataset will be addressed, thus creating a
base dataset used to train the ML models, ergo achieving the stipulated project goal.

4.1 D ATA S E T I M P O R T

Although the data to be used is, as mentioned above, the actual output of Alarm Manager, it is not aggregated
in a single file but a vast set of parquet files, with several for each day. In order to facilitate the application of
ML techniques in python, it is quite helpful to read/convert the data to a dataframe, thus allowing a more agile
use [38]. On a first impression, the solution for merging the files seems relatively trivial: i) reading the parquet
files to dataframe; ii) recursive application of the append method [39], concatenating the dataframes into a single
one. However, although dataframes are mutable [40], their length is unchangeable after creation, so the append
method does not add rows to a dataframe; instead, it returns the desired concatenated dataframe [39].

Due to this property, the linear concatenation of dataframes becomes quite heavy and slow, as it has to
continuously rewrite the same lines along the concatenation of the numerous dataframes in the same variable.
To mitigate this issue, a concatenation mechanism based on the divide and conquer algorithm, similar to the
one used on quicksort [41], was implemented, working as follows: recursively, divide the number of files to be
imported by half, until the moment when there are only 2 or 1 in the case of the division of an odd number of files;
concatenate those two in an auxiliary dataframe; recursively repeat this process upwards, thus concatenating
the auxiliary dataframes of the previous iteration into a new dataframe. In this way, the number of lines repeated
per append is drastically reduced. This concatenation process can be seen in the diagram of Figure 13. For the
initial development of this project, since it has no use until the final solution is found to use the entire dataset
available, it was imported 64 parquet files that represented 15 days of issues (same dataset sample used to
analyze the problems’ distribution in Section 3.4).

22
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Files to be appended First division in half Last divison, stop condition achieved

First parallel concatenation of the �les Process done, all �les appended

Figure 13: Parallel concatenation process developed

4.2 A D D I T I O N A N D R E M O VA L O F F E AT U R E S

At this point, a dataset corresponding to 2 weeks of Alarm Manager entries is created, thus forming a dataframe
with millions of lines, where each row has the information represented in table 3, as can be seen in Figure 15.
However, as seen in the table and figure, there is a lot of redundant, unnecessary and deprecated features, so it
is important to remove them from the dataset, leaving only useful information for the implementation stage. The
following columns have been removed for such purpose: startTime, lastStartTime, lastEndTime, systemAckTime,
ackSystemId, ackUserID, ackUserID, ackStatus, inhibited, manualCloseUserId, manualCloseSystemId, manual-
CloseTime, notVisible, summary, node, nodeAlias, alarmType, probableCause, domain, moiFriendlyName, tags
and additionalText.
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Figure 14: Alarm’s features before preprocessing

The "extraAttributes" feature, being a JSON field as can be seen in Figure 15, may at first glance seem useless
since ML models cannot process it. However, it has two information fields that are very relevant to the project at
hand:

• sol_ne - identifies, for the equipment that reported the failure, which equipment is hierarchically above it,
thus being its aggregator (1 level above). In Figure 15, this field is outlined by the red rectangle;

• sol_neMaster - identifies, for the equipment that reported the failure, which equipment is hierarchically
above its aggregator, being thus the aggregator of the aggregator of the equipment that malfunctioned (2
levels above). In Figure 15, this field is outlined by the blue rectangle.

Thus, two new fields are created: "moiExternalId" and "moiMaster". This information can be quite relevant as
it demonstrates a hierarchy between components, which can be helpful to solve RCA problems where several
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pieces of equipment fail because their aggregator fails. Regarding "moiExternalId", this field already existed;
however, its information was not consistent with the one presented in extraAttributes, and sometimes the field ap-
peared null while the corresponding information was present in the JSON field. Hence, its creation is mentioned
because it was removed and later added through iteration throughout the dataframe to obtain the new values for
this field due to inconsistencies with the previous data. To optimize this process, since iterating through massive
dataframes is an exhausting process, a lambda expression [42] was used, which updated the two new fields cre-
ated with the information present in the extraAttributes. Therefore, the feature "extraAttributes" can be removed
at the end of this process, as it no longer has valuable information for the project.

Figure 15: JSON Content of the Feature "extraAttributes"

For data security and privacy reasons, in the datasets provided by a TO, some of the fields have undergone
an encryption process, thus maintaining due anonymity regarding critical information from its customers. Such
fields were, for example, the equipment id that generated the alarm and its location. While the id being encrypted
has no impact on the project development, since this encryption is consistent between all the inputs, the location
encryption prevents the larger scale perception of where the failure occurred. For example, if two problems occur
in the same street, which is the granularity of the location feature, it is possible to understand the spatial impor-
tance of this malfunction, but it will be unnoticeable if they occur in the same block as there is no relationship
between the encrypted addresses. Ergo the need to create fields that represented spatial proximity between
encrypted addresses arose. So, three new fields were additionally provided by the TO: "localCode2D", "local-
Code4D" and "localCode6D"; where the higher the number, the greater the granularity of the area represented by
that field, thus creating three new per zone aggregation levels for solving the problem. After applying the process
aforementioned, an alarm input is represented by the features that can be seen in Figure 16.

4.3 D ATA S E T P U R I F I C AT I O N

As the dataset has the necessary and valuable features for the project’s development, its content must be verified
to analyze its quality since a ML model is only as good as the data used for its training. For this purpose, several
operations were performed to the dataset to become more consistent, and it was possible to get more critical
information from it.

Initially, all "NEW" entries with an eventCount greater than ’1’ were removed since these result from synchro-
nization issues between Alarm Manager’s servers. This is a simple dataframe drop operation, where the referred
condition is verified. Additionally, all repeated entries have been removed, as these do not add any extra infor-
mation to the dataset. Besides the trivial drop duplicates operation, it was necessary to remove repetitions that
had different times, which for the event type ’CHANGE’ is impossible to distinguish, as they could be effectively
different alarms. However, it is relatively easy for the event type ’NEW’, as there should only be one entry. Finally,
all the inputs of an alarm instance that did not have the event type ’NEW’ were removed since that instance
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Figure 16: Alarm’s features after preprocessing

would be biased if the temporal start of the malfunction were unknown. For this removal, it was detected that if it
were done through the iteration of a list with the ids to be removed, the process would be highly time-consuming
(over eight hours). So, the solution applied was based on calculating the list with all the rows to be removed
beforehand, thus applying the drop method only once, which speeded up the process massively, taking only
seconds instead.

4.4 S U M M A R Y

This chapter explains in detail the pre-processing applied to the datasets provided by a TO in order to convert
their raw data into usable datasets for ML models.

Due to the Alarm Manager’s daily splitting of the data, the import process implemented to minimize the number
of dataframes copies and the time to import them was also explained. Finally, a data cleansing process was also
exposed, where inputs originating from entropy and Alarm Manager Servers’ errors are discarded to maximize
the usefulness of the data for the models.
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P R O P O S E D M L A P P R O A C H E S

Root cause analysis, which aims at understanding and detecting the underlying failure (root cause) in a cascade
of its consequent events, is a subfield of the broader area of Pattern recognition. In the past years, pattern recog-
nition (PR) has presented immense growth due to the usage of Machine Learning techniques [43], which are
capable of consuming enormous amounts of data (big data) and consistently identify patterns within themselves.
For this project, the approach mentioned in [26], seemed an excellent starting point since, although simplified, it
has similarities to the challenge proposed here. Furthermore, this article uses Random Forests that shine when
using many features that individually have weak predictive power but collectively a much stronger one.

As with many projects in the AI-ML field, the most significant difficulty is not adjacent to the technology stack
used, being this knowledge the default premise for development, but rather to how to approach the problem and
critically analyze the results. A common misconception in AI is that it only needs substantial data to apply ML
techniques. This reasoning is fallacious as it is necessary to have data with helpful information and minimally
standardized so that a model can detect patterns and extrapolate information. However, in this use case, it is
known a priori that there is a causal relationship between the alarms, even if it is not theoretically or empirically
known. Thus, a very high standard is set, as now, as hard as it may be, the patterns and information that this
project is intended to identify are known to exist.

While in several areas of computer science, one can consider the development process deterministic: the
same operation with the same inputs will always lead to the same result; in ML, this does not occur. This
requires a deeper understanding of the model implemented and, above all, of the results obtained. Only then is
it possible to understand what is happening within the model being trained and how it can identify the existing
patterns. During the development of this thesis, varied approaches were used, but one stood out as the most
accurate and consistent among the entirety of the dataset.

Finally, in this chapter, the three adaptations of the core approach will be thoroughly explained, showcasing
what knowledge it was possible to draw from each one and the reason for the transition between them. These
approaches can be considered mutations of the main one, and the transition between them is due to the critical
analysis of the results, the problems encountered, and the attempt to maximize the extrapolation of patterns
detected in the data. Therefore, all are considered relevant to mention in this chapter to better understand the
solution implemented and the reasoning that led to it. Due to the aforementioned reasons, this chapter can be
considered a logbook of the development process.

27
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5.1 C A R T E S I A N P R O D U C T : S P E C I F I C P R O B L E M × D E V I C E

As there is a time causality property in this problem, since, logically, the root problem has to happen before
its consequences, such will be exploited in this approach. Additionally, as stated in chapter 3, an alarm is
composed of multiple fields, but all that data is disregarded for implementing this approach since the purpose is
to understand which alarms trigger others based merely on its occurrence and history. Thereby, a new type of
event is created and, henceforth, an alarm is represented by the following tuple: (equipment where it occurred,
its specific problem).

The goal is to create a model for each different type of event, so each model will try to predict the occurrence
of a specific problem on a specific device through the history of alarms that have occurred. However, initially,
due to dimensionality issues, the model is only defined for the problem, and the equipment, in which it occurs,
is ignored. For the purpose of this approach, there will be two sliding windows: the observation window, where
alarm occurrences are monitored and counted; and the prediction window, where through the alarms captured in
the observation window, the model will try to predict if its alarm (the one which characterizes the model) is going
to occur or not. For the observation window, it was used a 5-minute gap since it is considered that more than
80% of causality is present in 60 seconds or less [26], thus giving a secure margin for causality.

5.1.1 Feature Engineering

As stated before, for this approach, a new dataset has to be generated by applying the same operation to the
entirety of the native dataset, which in this case is the scalar product between the specific problem of an alarm
and the equipment where it occurred. This process aims to create a dataset where every row represents an
observation window for every alarm entry of the default dataset. Therefore, applying this process to the entire
dataset will generate a new one of equal dimension, and the value of each column represents how many times
a specific problem on a specific device occurred during the observation window that led to the creation of such
row.

Understanding this approach to the problem and the way the new dataset for the model is generated, it quickly
becomes evident that all datasets (one for each different unique problem) will be identical(since the operation to
generate every row is deterministic and equivalent between all models since they are all generated from the same
initial dataset) with the only difference being the target variable. As an ML model is developed for every problem,
each one only has to predict whether the problem it represents occurs or not, thus being binary classification
models.

Having the original dataset concatenated, since Alarm Manager divides its data into multiple parquet files for
every day, the process of generating a new dataset for the ML model training can be started. To better understand
how it was solved at the code level, it will be explained step by step, thus allowing a more in-depth analysis of
the process:

• Dataset purification - before using the native dataset to generate the one needed for the model, it is
necessary to cleanse it again in order to remove as much noise and entropy as possible. Thereby, firstly, all
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entries whose type is not "NEW" are removed, as they do not represent the spawn of a new alarm but the
update of an existing one, which for the thesis purpose represent no helpful information. Additionally, the
entire native dataset is sorted by the attribute systemCreationTime, so every alarm entry is chronologically
ordered, which will mitigate any possible redundancy during the following steps;

• Pair Calculation - as stated before, this approach uses the pair (specific problem detected, equipment
where it occurred) as predictors. Thus, before starting the sliding windows process, it is necessary to
know and list every existing unique pair. For this, a simple tolist of both features and a subsequent zip of
both lists is enough, as both methods keep the order of each item.

• Sliding Window Analysis - at this point, it is finally possible to start analyzing each alarm history, hence
creating the sliding windows. For this purpose, initially, it is created an array with the same length as the
number of alarms to be analyzed, and each entry represents an array with the same length as the list of
all unique pairs detected, initialized with zeros in every entry. Thereafter, for each alarm, the algorithm
iterates through the native dataset and counts how many times each pair has occurred, and updates the
value on the array of occurrences. At the end of this procedure, it achieves a matrix where the number of
rows is equal to the number of alarms, the number of columns is equal to the number of unique pairs, and
each entry represents how many times such pair has occurred during the observation window of its alarm.
This step is crucial to be efficient as it is the heaviest and will iterate multiple times through the dataset.
If a naive approach was used for this step, the sliding windows algorithm would be Θ(N2); however,
through the following optimizations, it was possible to lower it close to Θ(N):

– Chronological Order - as stated in step one, the entire native dataset was chronologically ordered,
which helps to reduce the number of iterations through the dataset massively. Having this property
means that during iteration through all the alarms, from the first detected (oldest) to the latest
(newest), when the alarm that originated the sliding window process is detected, the process can
stop as all the alarms forward will be more recent than the originator, so it can never have any
degree of causality.

– Saving Last Used Index - since the alarms are temporally organized, it is evident that an event
that is not part of the observation window of a past alarm can never be part of one that occurred
afterward (since if it already violated the maximum time deviation of 5min, the difference will be even
more significant). Thus, by saving the index of the first alarm used in the past observation window,
it is possible to know which was the first event to be part of the last observation window. So, instead
of having to iterate from the first alarm to fill in the causality matrix, this process can start at the
first input used in the last observation window. Thus, reducing the number of iterations significantly
through the native dataset for each window.

• Class balancing - having the causality matrix created and ready to pass to the random forest model for
training, only one last step remains regarding the balancing of the target class. Since a different model is
created for every unique specific problem, they are obviously binary models as either the model’s desired
problem occurred or not, a new setback arises: data unbalancement. Therefore, it is necessary to crop
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the causality matrix rows to balance the number of entries where the desired problem is detected versus
the opposite scenario, simulating a 50/50 distribution, thus avoiding any model bias.

5.1.2 Data Example

Since it can be intricate to understand all the processing applied and the dataset obtained, a brief theoretical
example, where the real would be too extensive and counterproductive for the purpose of this section, will be
presented. Assuming the dataset seen in Table 4 as the one provided by Alarm Manager

Id Problem Extra Features Equipment

1 Energy ... EqpA
2 Signal ... EqpA
3 Energy ... EqpB
4 Signal ... EqpA
5 Disk Space ... EqpC

6 Signal ... EqpA

Table 4: Alarm Manager’s simulation dataset to exemplify the �rst approach

applying the process described in this section, assuming that the time difference between the first and last
alarm is less than 5 minutes, generates an intermediate causality matrix and an array of problems, as can be
seen in Table 5.

Energy@EqpA Energy@EqpB Signal@EqpA Disk Space@EqpC

0 0 0 0
1 0 0 0
1 0 1 0
1 1 1 0
1 1 2 0
1 1 2 1

Problem

Energy
Signal
Energy
Signal

Disk Space
Signal

Table 5: Intermediate causality matrix and its corresponding array of problems (�rst approach)

After the process is complete and the intermediate causality matrix is generated, a dataset can be created for
each model. As an example, for the model related to the "Energy" problem, the dataset that can be seen in Table
6 would be generated for its training and testing, thus completing the causality matrix for this problem.
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Energy@EqpA Energy@EqpB Signal@EqpA Disk Space@EqpC Target

0 0 0 0 1
1 0 0 0 0
1 0 1 0 1
1 1 1 0 0
1 1 2 0 0
1 1 2 1 0

Table 6: Causality Matrix for the Energy Model (�rst approach)

5.1.3 Discussion

In order to have a fair testing standard among the various approaches, a native dataset, relative to the time
between 1 and 16 of May, was created, thus assuring every ML model would have the same initial data from
which it could extrapolate patterns. Additionally, instead of using standard CPU tools, such as Apache Spark,
the RAPIDS.AI library seemed a way better option since it allows the model to run on GPU, which due to its high
number of cores, has substantially higher performance in the range of up to 2000x times [44]. In a primary phase
of this approach, no significant learning could be detected by the model due to insufficient and unbalanced data.
Hence, it was necessary to create, as mentioned above, a consistent dataset (which was used for the multiple
approaches) that had many alarm occurrences so that, in the scenarios where it is necessary to force balancing,
there were still enough inputs for the model to be able to learn.

After solving this minor setback, a new, much more critical problem arose: dimensionality/scaling issue. As
the columns of the causality matrix to be used are not native from the application that generates the data, but
instead come from this approach’s algorithm calculation, as described in this section, more rows represent more
columns, as new pairs (Problem, Device) appear as more rows of the original dataset are processed. Here was
detected an almost 2:1 relationship between the growth of rows and columns, as can be seen in the table 7.

Rows 10 000 100 000

Columns 6139 32 809

Table 7: Impact of the increase of rows processed on the number of columns (�rst approach)

The reasons why this scalability issue is so critical are: i) since the number of columns grows with the number
of rows, the approach will always be limited to the amount of data it can process by hardware limitations (RAM),
as the causality matrix grows in both dimensions simultaneously; ii) with the variable and increasing number of
columns, the maximum column limit allowed by rapids.ai (close to 13k) is quickly reached, making it impossible
to use such tool.

Considering the above problems, it was necessary to return to scikit-learn’s random forest implementation,
which solved the columns limit issue within the scalability problem. With this tool, it was possible to train the
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model and finally have learning results to analyze. To do so, as previously indicated, the dataset corresponding
to all the alarms of the most frequent zone of the country between 1 and 16 of May was used, balancing the
causality matrix in order for the alarm to be predicted Loss of Signal would represent close to 50% of its entries.

As expected, this approach demonstrated it was able to identify patterns and indeed learn to predict based
only on the alarms causality, and quickly achieved accuracy in the 83-87% range. As the dataset is balanced, one
can quickly conclude that this value is impossible to achieve if the model, instead of learning, always predicts
the same class. However, to ensure that it was indeed learning, which is essential for the next step - feature
importance - a confusion matrix was developed, as can be seen in Table 8, in order to be possible to visualize
the model’s behavior.

Actual Positive Actual Negative Metrics

Predicted Positive 15 997 497 Accuracy ROC-AUC

Predicted Negative 4345 12 148 85.32% 83.5%

Table 8: Confusion Matrix of the Loss of Signal model (�rst approach)

It can immediately be detected that not only is the model effectively trying to predict the correct class target, but
it is also achieving a high success rate at it. Additionally, it is visible that the number of false positives is meager,
which is excellent for the project because, as something that was discussed with the product development team,
it is preferable that events are related and the model is unable to detect the pattern, rather than detecting a
pattern, and it is false. So, all errors in the model predictions are preferably false negatives over false positives.

After obtaining these positive results, it was possible to move on to a feature importance phase, which aims
to identify how vital each column is in the model’s decision making, and can thus be seen, as explainable AI [45].
This step was expected to find most decision certainty in the pair (device, problem) that was the root cause of the
observation window in analysis. Using the result of the feature importance stage regarding all features with more
than 0.5% impact on the model, as can be seen in figure 17, it is possible to quickly extrapolate two conclusions:
i) the Loss of Signal problem is recursive/hierarchical, which is quite logical since if one device loses signal, a
lower hierarchical device will also lose signal; ii) the model is not able to separate what is effectively the root
cause of an alarm from its consequences.

While the first conclusion is positive and allows for new information about the system, the second presents
a new setback. However, for the project under development during the curricular internship, it was considered
that this root cause detail was not the goal since it is sought the relationship between problems. Thereby, and
considering the problem just mentioned and the scalability issue, this was not the way to go, as these issues
resolution would be pretty complex for something that is not the objective of the project. Thus, the second variant
of this approach emerges, which will be described in detail in the following section, where instead of using the
Cartesian product between Specific Problem × Device, only the problem will be used. In a successful training
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Figure 17: Features with more than 0.5% impact on the Loss of Signal model’s decision

scenario, this change of predictors will allow the feature importance process to indicate which past problems
caused the one under analysis, thus showing the relationship between the problems as desired in the project.

5.2 S I N G L E P R E D I C T O R : S P E C I F I C P R O B L E M

Since the project aims to identify the relationships between alarms and, considering the strengths and weak-
nesses of the last approach, it becomes evident that using only the problem as the column of the causality matrix
is extremely promising.

In this section, the second variant of the aforementioned approach will thus be exposed, and, additionally, a
sub-variation of this one will also be examined: division of the columns by temporal deviation from the event
under analysis.

As mentioned before, despite the positive results of the approach - it effectively demonstrated learning and
pattern detection capabilities - it was doomed to failure due to its scaling issue, which would permanently prevent
the model from training with high amounts of data since the number of Problem-Device combinations increased
significantly with the introduction of new lines to the causality matrix. However, this problem is mitigated with
this approach, since by only using the SpecificProblem feature, the number of columns is drastically reduced,
allowing not only a more extensive training but also, in the feature importance phase, the knowledge extraction
about alarms’ specific problem correlation.

5.2.1 Feature Engineering

As this approach is a permutation of the previous one referred to in this chapter, the feature Engineering steps are
almost identical to the ones described in subsection 5.1.1, with the only difference in the "Pair Calculation" step
and its transition to "Sliding Window Analysis". Whereas in the previous approach, all combinations (Problem,
Device) existing in the dataset were pre-calculated, since they would be the columns of the causality matrix, this
step is now unnecessary. Instead, it is necessary to identify all the unique existing problems since they will now



5.2. Single Predictor: Speci�c Problem 34

be the columns of the causality matrix. Having the list of all unique specificProblem, its possible to proceed to
the "Sliding Window Analysis" step, similarly to the previous approach, with the only difference being that now
only the problems detected during the past 5 minutes are accounted for regardless of in which equipment they
occurred. Hence, the number of columns is significantly reduced, thus reducing the causality matrix size, which
also allows a much more extensive training. However, this will be further discussed in the Discussion subsection
of this approach.

Time Deviation Sub-Approach

As mentioned at the beginning of this approach section, a sub-variant was implemented in a time separation
perspective. Since the approach is now merely relying on the past problems as predictors for the model, an idea
emerged during development: separate them according to their temporal remoteness. That is, instead of just
using the Problems as columns, subdividing them into three different predictors:

• Problem < 30s - the specificProblem at issue occurred up to 30 seconds before the alarm that led to the
construction of the observation window under analysis;

• Problem ∈ [30-60]s - the specificProblem at issue more than 30 seconds, but less than 1 minute, before
the alarm that led to the construction of the observation window under analysis;

• Problem > 60s - the specificProblem at issue occurred over 1 minute before the alarm that led to the
construction of the observation window under analysis;

After the construction of the list with all different specificProblem and their subsequent division into three
temporal spaces, the process is identical to the one previously described for the construction of the causality
matrix, with the only difference that this will now have three times as many columns.

5.2.2 Data Example

Similar to the demonstration in the previous approach, this subsection will showcase a simple theoretical example
of the application of the Feature Engineering phase of this approach for a better understanding of how it works.
Assuming the dataset seen in Table 9 as the one provided by Alarm Manager
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Id Problem Extra Features Equipment

1 Energy ... EqpA
2 Signal ... EqpA
3 Energy ... EqpB
4 Signal ... EqpA
5 Disk Space ... EqpC

6 Signal ... EqpA

Table 9: Alarm Manager’s simulation dataset to exemplify the second approach

applying the process described in this section, assuming that the time difference between the first and last
alarm is less than 5 minutes, generates an intermediate causality matrix and an array of problems, as can be
seen in Table 10.

Energy Signal Disk Space

0 0 0
1 0 0
1 1 0
2 1 0
2 2 0
2 2 1

Problem

Energy
Signal
Energy
Signal

Disk Space
Signal

Table 10: Intermediate causality matrix and its corresponding array of problems (second approach)

After the process is complete and the intermediate causality matrix is generated, a dataset can be created for
each model. As an example, for the model related to the Energy problem, the dataset that can be seen in Table
11 would be generated for its training and testing, thus completing the causality matrix for this problem.

Energy Signal Disk Space Target

0 0 0 1
1 0 0 0
1 1 0 1
2 1 0 0
2 2 0 0
2 2 1 0

Table 11: Causality Matrix for the Energy Model (second approach)
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Time Deviation Sub-Approach

For the sub-variant of this approach with the concern of temporal remoteness and, assuming for the sake of this
theoretical explanation, that the alarms in Table 9 are all equally 30s apart from each other, after applying the
additional feature engineering steps, it would then reach the intermediate causality matrix that can be seen in
Table 12.

Energy
< 30s

Energy
⊆
[30s-
60s]

Energy
> 30s

Signal
< 30s

Signal
⊆
[30s-
60s]

Signal
> 30s

Disk
Space
< 30s

Disk
Space
⊆
[30s-
60s]

Disk
Space
> 30s

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
1 0 1 0 1 0 0 0 0
0 1 1 1 0 1 0 0 0
0 0 2 0 0 2 1 0 0

Problem

Energy
Signal
Energy
Signal

Disk Space
Signal

Table 12: Intermediate causality matrix and its corresponding array of problems (second approach with time
deviation)

After this intermediate step, as mentioned in the past examples, it is possible to enter the final stage, where
through a Boolean comparison, it is possible to generate the final causality matrix, as can be seen in Table 13
for the Energy model.

Energy
< 30s

Energy
⊆
[30s-
60s]

Energy
> 30s

Signal
< 30s

Signal
⊆
[30s-
60s]

Signal
> 30s

Disk
Space
< 30s

Disk
Space
⊆
[30s-
60s]

Disk
Space
> 30s

Target

0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1
1 0 1 0 1 0 0 0 0 0
0 1 1 1 0 1 0 0 0 0
0 0 2 0 0 2 1 0 0 0

Table 13: Causality Matrix for the Energy Model (second approach with time deviation)
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5.2.3 Discussion

Contrary to the last approach, which used the Cartesian product between specificProblem and managedOb-
jectInstance, through the one described in this section, it becomes possible to train the Random Forest model
with a significantly larger dataset, as the number of columns increases very slightly with the introduction of more
rows, as shown in Table 14.

Rows 10 000 100 000 400 000

Columns 340 1481 3233

Table 14: Impact of the increase of rows processed on the number of columns (second approach)

Considering the success of the previous approach, which, due to the scaling issue, was disadvantaged for
the training phase, it was expected that this variation in analysis, that despite only using specificProblem as a
predictor, with access to a more extensive and varied dataset, would also be able to identify patterns between
alarms and achieve a satisfactory success rate. In a test scenario of the same problem, "Loss of Signal" - the
most frequent in the dataset, constituting 21% of it - the model showed its ability to learn and detect patterns
effectively. Not only did it achieve a high success rate, as can be seen in Table 15, but it also had high percentage
values at the feature importance phase, thus showing its capacity to identify the relationships among problems,
as can be seen in Figure 18.

Figure 18: Top 10 feature importance of the Loss of Signal model

Actual Positive Actual Negative Metrics

Predicted Positive 11 958 275 Accuracy ROC-AUC

Predicted Negative 3176 8261 85.42% 85.35%

Table 15: Confusion Matrix of the Loss of Signal model (second approach)

Having solved the scaling problem, the current approach demonstrating a good success rate and a new ability
to train with large volumes of data, it became possible to transition from the top1 - Loss of Signal - to the top 7
most recurring problems, which represent about 58% of the dataset. At this stage, unexpectedly, it was detected
that the problem with more significance in the dataset was also the one with the least successful model. Although
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initially off-putting, this makes perfect sense when considering the degree of repetition of the same failure, as it
was so recurrent that the model had more difficulty in detecting which combination of failures caused it. When the
models started to analyze the following problems, which despite belonging to the top7 are much less significant
than the top1, each model started to reach very high success rates, as can be shown in Figure 19. These models
have approached the maximum theoretical value of AUC - 1 - meaning the model has almost 100% capable of
distinguishing between the two classes (the problem occurring or not).

Figure 19: ROC-AUC and Accuracy metrics for the top7 models

At this point, the thesis goal seemed to have been achieved, as the model effectively demonstrated a consid-
erable capacity to detect patterns among the various faults, and it would be possible to move on to a much more
extensive training and testing phase in order to collect all possible information present in the dataset. However,
after a new exchange of ideas with the Alarm Manager’s development team, an idea for an even better model for
the task in question emerged. Instead of just using the specificProblem as a predictor, do the cartesian product
between it, the subsystem - which represents the supplier of the equipment where the failure occurred - and
technology - which identifies the technology the equipment uses. Thus, a new approach emerges, which, after
all that has already been achieved, promises to be the perfect solution to the problem proposed in this thesis and
is therefore described in detail in the next section.

Time Deviation Sub-Approach

Regarding the sub-variant with time offset concerns, it was found to have no impact, positive or negative, on the
model’s performance as it maintains the same values in the test metrics. However, it could be considered that
it provided more information to the reader/results analyst by identifying the temporal distance between failures,
which in itself is not sufficiently favorable for the scaling problem it generates by tripling the number of columns
in the causality matrix.
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5.3 C A R T E S I A N P R O D U C T : S P E C I F I C P R O B L E M × T E C H N O L O G Y × S U B S Y S T E M

Although initially, it may seem that this will restore the scaling issue since the cartesian product will be applied
between 3 features, such does not happen. While the number of combinations of (Problem, Device) is colossal,
since all devices can suffer from different problems, the number of permutations between the three features used
in this approach is relatively small, since the number of different manufacturers or technologies used by the same
device is meager.

5.3.1 Feature Engineering

As in subsection 5.2.1, this approach is a new variant of the one mentioned in subsection 5.1.1, so the whole
preprocessing process is quite identical with only two differences:

• Triples Calculation - likewise the past approaches, before creating the observation windows that will lead
to the causality matrix, it is necessary to calculate all the unique predictors. In this case, such can be
achieved by applying the Cartesian product among the following features: specificProblem, Technology
and Subsystem. As stated before, even though this product is between 3 different features, their relation is
almost bijective; hence the number of combinations is so close to the number of unique specificProblem.

• Model For Each Triple - In contrast to the past approaches, where a model was problem-oriented, meaning
a model was created for every unique problem in the dataset, and it would try to predict whether if the
observation window in the analysis was of its type or not, now a model is created for every unique triple of
(specificProble, Technology,Subsystem). Since the predictors now go into a much more specific degree
of detail, taking into account not only the manufacturer but also the technology used by the equipment,
and, fortunately, the number of combinations is quite similar to the unique problems, it becomes pretty
advantageous to generate a model for each triple. Through this, each model can find even more specific
relationships since the root for a problem in one manufacturer does not have to be identical to that of
another manufacturer or even one using a different technology.

5.3.2 Data Example

Similar to the demonstration in the previous approach, this subsection will showcase a simple theoretical example
of the application of the Feature Engineering phase of this approach for a better understanding of how it works.
Assuming the dataset seen in Table 16 as the one provided by Alarm Manager
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Id Problem Extra Features Technology Subsystem

1 Energy ... Tech1 Sub1
2 Signal ... Tech2 sub2
3 Energy ... Tech1 Sub2
4 Signal ... Tech3 Sub2
5 Disk Space ... Tech3 Sub3

6 Signal ... Tech2 Sub2

Table 16: Alarm Manager’s simulation dataset to exemplify the third approach

applying the process described in this section, assuming that the time difference between the first and last
alarm is less than 5 minutes, generates an intermediate causality matrix and an array of problems, as can be
seen in Table 17.

Energy-
Tech1-Sub1

Energy-
Tech1-Sub2

Signal-
Tech2-Sub2

Signal-
Tech3-Sub2

Disk Space-
Tech2-Sub1

0 0 0 0 0
1 0 0 0 0
1 0 1 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1

Problem

Energy
Signal
Energy
Signal

Disk Space
Signal

Table 17: Intermediate causality matrix and its corresponding array of problems (third approach)

After the process is complete and the intermediate causality matrix is generated, a dataset can be created for
each model. As an example, for the model related to the Energy problem, the dataset that can be seen in Table
18 would be generated for its training and testing, thus completing the causality matrix for this problem.
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Energy-
Tech1-Sub1

Energy-
Tech1-Sub2

Signal-
Tech2-Sub2

Signal-
Tech3-Sub2

Disk Space-
Tech2-Sub1

Target

0 0 0 0 0 1
1 0 0 0 0 1
1 0 1 0 0 1
1 1 1 0 0 1
1 1 1 1 0 1
1 1 1 1 1 1

Table 18: Causality Matrix for the Energy Model (third approach)

5.3.3 Discussion

Since the previous approach was very successful and showed full learning capacity, through the improvement
explained during this section to the approach, it was expected to get as good or even better results, since: i) the
model has two more predictors than the previous version, thus having two more information variables for decision
making; ii) the models are now oriented to triples (specificProble, Technology,Subsystem) instead of only to the
problem, thus avoiding wrong generalizations, since the same problem in equipment from different manufactures
or with different technologies may have different failure causes.

Applying the same test phase used on the previous approach quickly showed that the models could effectively
at least maintain, but mostly improve their performance, both in a metric perspective of the models (ROC and
ACC) and also in a feature importance phase where it was able to identify triples with relatively high impact on
the origin of the triple under analysis, as can be seen in Figures 20 to 22.

Figure 20: Top5 feature importance of the model (Loss of Signal, DSLCLIENTE, AWS)

Figure 21: Top5 feature importance of the model (Receive Dying-Gastp, ONT, SQR)

Figure 22: Top5 feature importance of the model (Loss of signal, PON, SQR)

So, even before moving on to a much more extensive training and testing phase, the approach was tested for
the top 15. The goal was to check whether it would still be able to find the patterns in the eight new problems,
which were less significant in the dataset than those analyzed so far. As in subsection 5.2.3, the discovery that



5.4. Summary 42

less common problems in the dataset (although still quite significant: Top15) are easier to predict and detect
patterns was again verified. Given this empirically obtained result, it becomes evident that the reason why the
less significant problems in the dataset are easier to predict is due to the specificity of their failure cause. While
the problem, for example, "Loss of Signal", is caused by a myriad of different reasons, the less frequent ones
have a consistent pattern of occurrence. This way, no matter how complex or not evident that pattern may be to
a human, a machine learning algorithm quickly detects it and improves its predictive ability, thus making the new
models reach the almost utopian metric values (ROC above 99.5%, being the maximum theoretical value 100%),
as can be seen in Figure 23.

Figure 23: ROC-AUC and Accuracy metrics for the top15 models

At this point, it was considered that the approach had reached its maximum point of maturity and improvement
since it became possible to conclude previously unknown relationships between alarms. Thus, the chapter
regarding the approaches and their functioning is closed, and it is possible to move on to the results chapter,
where all the training stages and methods will be exposed, alongside all the results obtained with the development
of this thesis.

5.4 S U M M A R Y

This chapter explains in detail the approach used in this project, considering three variants regarding different pre-
dictors. Thus, the potential of each is exposed, accompanied by a theoretical example for a better understanding
and a result obtained to ascertain the usefulness of the approach.
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At the end of this chapter, the specific variant of the approach to be used is defined, and it becomes necessary
to enter a more extensive and intensive testing phase.



6

R E S U L T S D I S C U S S I O N

After developing and refining the approach, an expansion of the training and test case becomes necessary.
Whereas previously, it was only tested up to the top15 most significant problems in the most recurrent area of the
country, having the approach optimized allows expanding the training and testing phase. Thus, it will be applied
to all problems in all areas to extrapolate as much knowledge as possible from the data provided for the project.

This chapter will cover not only the technical specifications of the machine used during the training and testing
phase (since in a big data and machine learning area, hardware resources are fundamental for a fluid devel-
opment), the automation process that allowed a more accurate and consistent training across all zones and
problems and, finally, the results and knowledge obtained after all the continuous training of the models.

6.1 H A R D W A R E

One of the main limiting factors in big data processing and machine learning is the hardware resources [46], as
it not only needs to access many data simultaneously but also needs to apply computationally heavy learning
algorithms. Additionally, there is a considerable gap between the minimum requirements and the recommended
ones, i.e., even if it is a heavy process, most of the currently available machines can run it, but the processing
times can be so high that makes the development stage utterly impossible. On the contrary, there are machines
available to rent that have immense computational power and would almost immediately do the training stage
for this project. However, they are costly to rent, and due to their power, in the development stage, it would not
make sense to rent as most of the paid time would not be on training but refining the approach, thus wasting the
money spent on the machine. So it is necessary to find a middle ground that allows a stable development and
that allows running the models several times without waiting endless hours for results, which always delays the
efficient development of the project.

Thus, the machine used for the development of the project was my personal computer, which has the technical
specifications that can be seen in Table 19.

44
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Component Name Speed/Capacity/Quantity

CPU Intel i7-6700k 4 64-bit cores @ 4.2GHz
GPU Nvidia Geforce GTX 1070 8GB GDDR5 @ 1683 Mhz
Motherboard Asrock Fatal1ty Z170 Gaming K6 Socket 1151
RAM Kingston HyperX Fury DDR4 2 x 16GB @ 3000MHz CL15
RAM GeIL SUPER LUCE 2 x 8GB @ 3000MHz CL15
Storage Western Digital Blue 1TB, SATA3
Storage Crucial 2.5" 256GB, SSD

Table 19: Speci�cation of the system used during the development stage

These are the machine’s components worthy of mentioning, as others have no significance for the project,
such as the power supply. Of these components, it is worth highlighting that:

• CPU - as the random forest models are trained on CPU, this component performance has a huge impact
on the training time. The processor used here is quad-core with hyper-threading, meaning despite having
four fixed cores, it has eight execution threads, thus allowing multiple parallel processing. Additionally, it
is the "K" version, so the processor frequency is "unlocked", allowing it to overclock during higher load
scenarios;

• GPU - in the initial phase in which models were run over GPU, this was the most crucial component, but
with the change to sklearn, it is no longer used. In the machine learning area, the essential factors in a
GPU are the high number of CUDA cores and the dedicated memory available, since when models are
trained on GPU, the memory they have access to is not the RAM, but the graphics dedicated VRAM.

• RAM - after the CPU, this is the component with the most impact as it is where all the information relating
to and necessary for training is stored. As described in the approach chapter, the causality matrix is of
very high dimension, not only for having lots of rows but also lots of columns, thus requiring immense
amounts of RAM for storage. At an early stage of the project, the machine was equipped with only 16GB
of RAM, but it was quickly detected that it was necessary to upgrade for more extensive training. So, an
additional kit of 32GB of RAM was purchased, making a total of 48GB of RAM (sufficient for training with
more extended periods, thus more significant causality matrices).

• Storage - this component only needs to be able to store all the data provided by a TO and the results
generated from the processing. Although the SSD has a significantly higher performance than the HDD
[47], this aspect has no impact on the project’s performance, as the disk time for reads and writes are
minimal compared to the rest of the learning and testing process.
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6.2 A U T O M AT I O N P R O C E S S

During the development phase, as mentioned in Chapter 5, the training was limited to a single zone (the one
with the highest number of problems in the country), from only a single problem to the top15 after the successful
evolution of the implemented approach. However, there are thousands of different problems in the dataset, as
stated in section 3.4 and 55 different zones in the country. So the approach needs to be extended and tested in
all possible scenarios to extract as much information as possible from the system. While when running for just
one zone, it is possible to manually do it with different balancing and then do a weighted analysis of the results to
change whatever is needed; this becomes quite complicated when needed to expand the length of the training
phase massively.

Therefore, an "automation" of the training process was necessary and implemented, allowing that instead of
manually running the models and then applying the necessary test changes, this occurs automatically. Thus
allowing the model to run non-stop until it reaches the stop case condition. To better understand the automation
process and why it is fundamental, it will be described step by step:

• Creation of Files by Zone - since now it is desired to expand the approach to all zones of the country in
order to detect if patterns are consistent between zones or if their location has an impact on the relation-
ships detected, the datasets for each zone must be created. Thus, it was necessary to go back to using
the native Alarm Manager files in order to: i) aggregate all the files corresponding to the interval from
May 1st to May 16th (same spatial interval used during the testing of the approaches); ii) separate the
corresponding dataframe by the lowest granularity zone "localCode2D", in order to generate 55 datasets,
each corresponding to a unique zone of the country;

• Cycles - as expected, automating the training process involves applying the entire learning process to all
problems, in this case, all triples (specificProble, Technology,Subsystem) of the dataset. The simplest and
most efficient way to do this is through a cycle. However, it was necessary to use four nested cycles in
order to automate the entire process, being those as follows:

– Zone Files Cycle - the first and most broad cycle, which encompasses the entire pre-processing and
training process, is responsible for the zone files. This cycle iterates through all the different zones in
order to train models for all unique triples (specificProblem, Technology,Subsystem) in every zone,
thus allowing, as previously mentioned, to determine whether the location has an impact on the
relationship between problems. After removing unnecessary entries from the dataset, as the files
generated for the zones do not take into account the approach in practice, a new, "clean" version of
the dataset is generated, and it becomes possible to calculate all the different existing triples, which
is fundamental for the next cycle implemented. Additionally, the causality matrix for the zone in the
analysis is calculated during this step.

– Triples Cycle - while previously the number of problems to be analyzed was pre-defined, the ap-
proach is now considered mature enough to remove this limitation. Thus, the second cycle iterates
through all the different trios (specificProble, Technology,Subsystem), allowing models to be trained
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for, in a best-case scenario, all the problems. However, it is considered useless for models with past
mediocre results to be trained as it will not be possible to extract any useful information from them.
So, a new guard was added to the cycle: the model must obtain more than 60% ROC: since 50%s
is the value at which the model identifies that it has 0 ability to separate the two classes and 100%
is the theoretical maximum value (the model has full ability to distinguish the two target classes)
60% seemed good as a middle ground and an acceptable minimum threshold value. Additionally,
the target variable array (list of 0’s and 1’s determining whether the problem in analysis occurred or
not) is calculated during this step, thus allowing the next step to have all information necessary for
training.

– Balancing Cycle - Since when running manually, different balancing was consistently used in order
to see the impact on the quality of the model, it was considered valuable to keep this concern
during the automation process. So, this third cycle makes three iterations to simulate the following
balancing scenario: 50-50 (yes-no), 40-60 and 30-70. This allows the analysis of balancing has for
training a model and identifying which scenario allows for the best learning ability. As can be seen
in Table 20, the 50-50 balancing scenario is the one that consistently shows the best overall results.
The difference in metrics is mitigated by analyzing more problems because, as we will see in the
next section, after a certain point, the problems are so consistent in their occurrence process that
the models get 100%, absolute theoretical maximum no matter the balancing applied. Additionally,
the model’s metrics for the different balancings are saved during this step to detect when the first
cycle should stop: 60% ROC limit achieved.

Top1 Top5 Top15 Top50

Balancing 50/50 85.31% 94.09% 97.35% 99.08%
Balancing 40/60 79.49% 91.40% 96.01% 98.59%
Balancing 30/70 72.94% 88.92% 94.79% 98.18%

Table 20: Class balancing impact on models performance

– Saving the Results - this last cycle is responsible for saving the model results obtained at the end
of the second cycle, that is, at the end of the training with three different balancings. Through this,
a new excel file is generated for each zone, which will be composed of multiple tables, where each
one corresponds to one of the triples (specificProble, Technology,Subsystem) analyzed, and its 14
columns are: the ten triples with the most impact on the one under analysis, the ROC value obtained
by the model during training, the Accuracy value obtained, the number of positive inputs used during
training and the number of negative inputs. These last four metrics are recorded alongside the
model results to describe better the quality/veracity of the information drawn.

Finally, having the automation process implemented, it was possible to move on to a much more intensive
training phase, from which all the conclusions and patterns obtained in this work were drawn, thus being exposed
in the following section.
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6.3 R E S U LT S

In order to better understand the results obtained during the development of the project, these will be exposed
according to their granularity, thus allowing a more critical and precise interpretation. Initially, the results obtained
when the approach was applied to a single problem (the most significant one in the dataset) will be shown,
followed by the results of applying it to an entire zone (the one with the most alarm occurrences in the country)
and, finally, the result of iteratively applying the approach to all the zones in the country, analyzing all the different
problems.

6.3.1 One Problem

For the problem that will be showcased, the dataset used is relative from May 1st to May 16th, of the most
significant area in the country, which, after all the dataset processing, has approximately 670k entries; however,
due to hardware limitations (RAM capacity), the first 400k will be used. Therefore, before applying the approach
to the problem, it is necessary to calculate, as indicated in the approaches chapter, all the triples existing in the
dataset to be used as they will be the columns of the causality matrix. Thus, in the dataset used, there are 3713
different trios, as shown in Figure 24. Additionally, for a better sense of the distribution of the trios on the 400k
entries dataset, the number of occurrences of each was saved.

Figure 24: All unique trios present in the zone with most alarms in the country
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At this point, it is already possible to apply the approach to be used to the dataset for the most frequent trio,
in this case being the ("Loss of Signal", "DSLCLIENTE", "AWS"). During the algorithm execution, since it will
be applied three times to each trio, in order to test different balances, the program will print relevant information
about the model for better monitoring of the processing, as shown in Figure 25.

Figure 25: Information printed during the training phase of a problem

Some boxes were added to the above figure to highlight the most critical details printed. Initially, inside the
red box is the number of occurrences of the trio under analysis in the dataset, which is relevant information since
if this value is too low, the model will not be able to learn and detect patterns. Next, relevant metrics are printed
about the model for each of the three different balancing scenarios, presented in the following order: 50-50 (True-
False), 40-60 and 30-70, each highlighted by a green box on the figure. The first line indicates the dimensions
of the causality matrix to train and test the model, followed by the exact distribution of the target class for an
accurate view of the balance in the training phase. Thereafter, 3 model metrics are printed regarding its errors
(the smaller they are, the better), followed by the confusion matrix obtained by the model during the testing phase
- 80% of the data is used for training and 20% for testing - and finally, the ROC and accuracy values obtained by
the model are printed, these being are the most relevant metrics of the model.

After the end of the training and testing process of the three balances, the model with the best performance
- usually the 50-50, but coded to choose the one with the best metrics - is saved, thus allowing it to move to a
feature importance phase to detect the impact of each triple on the triple under analysis. Through this step, it
is then possible to generate a dataframe, as can be seen in Figure 26, whose columns are identical to those of
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the causality matrix, but instead of storing how many times that triple occurred, the direct impact of that triple
forecasting the one under analysis is store.

Figure 26: Result of applying Feature Importance to the Model (Loss of Signal, DSLCLIENTE, AWS)

However, as seen in the above figure, several columns have values without any significance (values lower than
0.01%). Since the project aims to discover the relationship between problems, an analysis of all the predictors is
useless, so it is necessary to filter the most important ones, which impact the trio under analysis. Thus, instead of
saving the dataframe with the impact of all the predictors, a new one is generated, as shown in Figure 27, which
identifies the ten most important features and their corresponding significance. As can be seen, all the predictors
now displayed have a higher impact and allow to extract information about the system, such as: since the "Loss
of Signal" problem has itself as the predictor with the highest impact, it is immediately apparent that this is a
recursive/hierarchical problem (if a piece of equipment loses access to the network, a hierarchically dependent
one will also lose it) and that it is more problematic if the subsystem and technology the equipment uses are
"PON-SQR" instead of "DSLCLIENTE-AWS", even tho the trio under analysis has "DSLCLIENTE-AWS" as its
subsystem and technology.

Figure 27: Top10 feature importance of the model (Loss of Signal, DSLCLIENTE, AWS)

These results were obtained by applying the approach explained in section 5.3 on the machine with the
specifications referenced in Table 19, having an average execution time (average between 5 distinct executions)
of 37 minutes.

6.3.2 One Zone

Once understood the approach used and the results obtained for a single problem in a single zone, the training
phase can be expanded: all unique problems existing in a single zone, being this the one with more occurrences.
As previously mentioned, in a utopian scenario, the model would run for all 3713 different triples; however,
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several occurred so few times during the observed time that the model cannot detect patterns and learn relations
effectively. Thus, the new guard referred to in 6.2 was added, so the process only continues to be applied as
long as the best version of the model (within the three balance variations) has a ROC value greater than 60%.

With this new guard and applying the previously described approach, it is possible to train 1344 different trios;
that is, 1344 models are generated with ROC values higher than 60%. Although it may initially seem minor,
considering that there are 3713 unique trios, 1344 processed correspond to 98.92% of the 400 thousand entries
of the dataset. Despite being numerous, the remaining unexamined trios have very few occurrences; more
precisely, the maximum value of detected occurrences in these trios is 5. Therefore it is impossible to train such
models, as not only the value is already low, but also 20% are separated for testing the model. After the process
is done, analogous to Figure 26, a dataframe is generated with all the trios processed and the impact of each
feature in its model, as shown in Figure 28.

Figure 28: Result of applying Feature Importance to the 1344 processed models

Once again, as shown in the figure above, most columns have little values, showing almost 0 correlation with
triple under analysis. To this end, the filtering process is applied once again, keeping for each trio only the top
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10 features with the most impact on the model, as can be seen in Figs. 29 to 31. Analyzing these results shows
that although the three triples are distinct, the root cause of failure among the 3 is the same, thus pinpointing the
impact that such triple has on the entire system.

Figure 29: Top10 feature importance of the model (Received Dying Gasp indication from ONT, ONT, AWS)

Figure 30: Top10 feature importance of the model (Loss of Power, DSLCLIENTE, AWS)

Figure 31: Top10 feature importance of the model (The dying-gasp of GPON ONTi(DGi) is generated, ONT,
HWI)

Analogous to the diagram in Figure 23, a graph with the ROC and accuracy values of each model was de-
veloped to assess the quality concerning the metrics of the models. However, due to the very high number of
processed triples, it becomes impossible to correctly perceive them in a bar chart. Thus, this information will
be divided into two graphs for better analysis: Figure 32 shows the ROC and ACC of the top20 models and
Figure 33 shows the accuracy, in orange 33a, and the ROC, in blue 33b, of the 1344 models. Despite of visually
appearing as a continuous line, the graph is composed by points, where X represents the trio processed and Y
the ROC and ACC).
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Figure 32: ROC-AUC and Accuracy metrics for the top20 models

(a) Accuracy of the 1344 processed models (b) ROC-AUC of the 1344 processed models

Figure 33: Metrics obtained for every model processed

These results were obtained by applying the approach explained in section 5.3 on the machine with the
specifications referenced in Table 19, having an average execution time (average between 5 distinct executions)
of 1h36 minutes.

6.3.3 All Problems on All Zones

After the success of analyzing a single trio and the subsequent expansion to all the different trios of a single zone,
it is once again possible to expand the approach test scenario. So, the approach will now be applied to all 55
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zones of the country, thus being the broadest test scenario possible. Moreover, this expansion allows, in case of
success, to maximize the extrapolation of system-wide knowledge and relationships.

Since now the training and testing process is applied cyclically between all zones, a subsequent manual
analysis of the results becomes unfeasible (also because between iterations, all variables have to be freed
and/or reset, thus avoiding cycle stops due to lack of RAM).Thus, at the end of each iteration of the zones cycle,
the filtered results (top 10) of each trio are saved for excell, as can be seen in Figure 34, together with the ROC
and ACC obtained, in order to understand the significance of the results, and the number of positive and negative
inputs used for training, in order to understand the degree of "depth" of the training phase and the veracity of the
results. Thus, at the end of the process, the folder with the 54 files of the zones grows to 110 files, being the 54
new ones the results for each individual zone.

Figure 34: Example of the excel �le generated after the processing of a zone

To better analyze the approach’s success in expanding to all country zones, a graph was developed with the
number of trios processed per zone, as shown in Figure 35 in orange. However, since not all zones have the
same number of problems within the same time frame, as shown in Figure 10, it was necessary to add a second
metric in blue to the graph to understand what percentage of the dataset was processed. As shown in the above
figure, almost the entire dataset of the country was correctly processed: 48 out of 54 zones with more than 95%
alarms processed and 41 with more than 99%. Overall, 95% of the entire dataset for all zone intervals between
May 1st and May 16th was correctly processed. Thus, it is possible to conclude that the approach was a success,
and it was possible to extrapolate the maximum amount of information from the data provided by the TO, thus
having fulfilled the objective proposed in the thesis.
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Figure 35: Number of triples processed per zone (orange) and the respective percentage they represent in the
total dataset (blue)

6.4 S U M M A R Y

In this chapter, the technical specifications of the machine used during the development of this project and the
automation process developed were exposed to apply the final approach to all areas and problems in the country,
thus maximizing the knowledge possible to extrapolate from the system.

Additionally, the results for each of the three different levels of granularity are also exposed: one problem, one
zone, and all the problems on all the zones; in order to understand in more detail the results obtained and what
percentage of the data it was possible to process.
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C O N C L U S I O N S A N D F U T U R E W O R K

This research project arose from the possibility of applying ML techniques to Altice Labs’ Alarm Manager tool.
The main goal was to extrapolate the relationship between different types of alarms in order to have a better
understanding of the impact of a failure on the entire system, thus easing and helping the process of manual
implementation of RCA rules.

During this dissertation, the whole development process of the project was presented, from the treatment
and pre-processing of data received by a TO, to the creation and implementation of an approach capable of
absorbing such data variability and effectively learning the existing relationships between alarm instances, to the
results obtained during the whole refinement process. Thus, it becomes possible for the reader to closely follow
the entire developing process and the decisions taken throughout the project.

In more detail, the first step involved evaluating the state of the art techniques used in similar problems
since, through the analysis and interpretation of the solutions exposed in the literature, it was possible to better
understand the problem and how to tackle it. Then, the creation of a new structured dataset was essential
since the data provided for the project development was taken directly from the Alarm Manager tool database,
containing many incongruences and irrelevant information to the project at hand. So, all unnecessary information
was dropped, removing outdated and deprecated fields, and through the dataset purification, all initial entropy
was removed, becoming possible to pass to a development stage.

After implementing and testing different approaches, one was found to have a higher learning capability, this
being based on the proposal on [26], which tackles a simplified RCA scenario showcasing the possibility of
the development of a model without using the specific fields of each alarm, which allows a better perception
of the causality effect among alarms, based only on their occurrence. However, numerous adjustments and
enhancements had to be made in order to fit the Altice Labs Alarm Manager scenario best, solving the issues
that originated from this being a broader and real-life problem with big data. The new proposed approach allowed
to maximize the valuable knowledge possible to draw from the results, which is essential for a later phase of
manual creation of correlation rules.

Finally, the results obtained during the intensive testing phase, applying the final approach in all zones for all
problems, were exposed. These results are crucial to the project, not only for being its primary goal but also for
confirming previously known relationships (hence proving the truthfulness of the results) and ascertain new ones
(providing new helpful information to the system administrators to create more specific RCA rules). Thus, the
implemented ML approach was considered a success, as it allowed not only to achieve the goal outlined initially,
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but it also opened a window to an even more exciting and complex scenario, which will be followed after the end
of this project.

7.1 M A I N C O N T R I B U T I O N S

The project developed and described throughout this dissertation focused on the analysis and exploration of
actual relations between alarms of real equipment from a TO and controlled by Alarm Manager. It is also essential
to take into account that, in this TO and at this moment, Alarm Manager processes about 4 million daily alarms
with a forecast of expansion to more than 10 million in a few years so. For this reason, its manual processing
is entirely impossible. Thus any alarms’ hierarchy information that can be extracted and empirically proven is
exceptionally beneficial because it supports the system administrators in the creation of proper and previously
unknown RCA rules.

The development of this project was considered a success, as it was not only possible to discover the rela-
tionship between thousands of problems in 55 different areas, but it was also able to take into consideration the
technology used by the equipment and its supplier, which allowed for a new and more thorough perspective of
the hierarchy and relationship between failures. Additionally, it was possible to elaborate excel reports for each
one of the 55 different zones, including all the relations between all the trios of (specificProblem, Technology,
Subsystem), the impact percentage value of its top10 at feature importance level, alongside the metrics obtained
by the model, for a detailed insight into the veracity of the results.

In this way, this project outcome has real impact, because now, through the application of machine learning
techniques on the causality matrix (thus implying that all discoveries are through patterns detected by the failure
history), immense previously unknown relationships were discovered, allowing the generation of new RCA rules
and reducing the manual processing currently performed by system administrators.

7.2 F U T U R E W O R K

As in all projects, having reached an end, it becomes possible to look back and question and/or identify aspects
in which the work could be improved or continued. In this particular case, and for all the reasons previously
mentioned throughout the dissertation, I believe that the ideal scenario for the proposed challenge was reached.
However, during the testing phase of the approaches considered, specifically, the one that uses the Cartesian
product between the problem and the equipment in which it occurred, a glimpse of a possible different path to
follow with a more ambitious objective emerged.

While in the scope of this master thesis, the proposed goal was the detection of correlations between alarms,
the approach in Section 5.1 revealed the possibility of, instead of using the ML models results for a posterior
manual RCA rule definition phase, the ML models would automatically be able to identify for each problem
which was the precedent that triggered it and, in a cascade of failures scenario, identifying which is the real
source failure that has to be solved. Therefore, it can be considered that, through this successful expansion, an
administrator would never have to manually define rules again, as ML would automatically do this process which
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furthermore represents the highest possible aggregation scenario, considering the outstanding capabilities of
detecting patterns provided by ML techniques.

After the delivery of this project and, since my work will continue at Altice Labs, this new path will be explored
to develop a fundamental tool that would run on top of the Alarm Manager and would be able to receive an
instance of an alarm sent by a device and add, in real-time, which precedent alarm triggered it. This tool would
be highly beneficial since, in its successful scenario, when series of faults occur, all stemming from the same
cause, instead of the system administrator having to deal with them all sequentially, he would see them all
aggregated on the alarm instance source. Thus, only one instance would have to be fixed to solve numerous
problems, which would otherwise be much more time consuming for the administrator, hence providing a massive
reduction in dimensionality, maximizing the systems’ efficiency.
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