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Resumo

Sessões de reabilitação de pacientes com deficiências na marcha é importante para que a qualidade

de vida dos mesmos seja recuperada. Quando auxiliadas por andarilhos robóticos inteligentes as sessões

têm mostrado melhorias significativas, face aos resultados obtidos por métodos clássicos. O andarilho

WALKit é um dos dispositivos mencionados e permite ser conduzido por parte do paciente enquanto

um especialista supervisiona todo o processo de forma a evitar colisões e quedas. Este processo de

supervisão é moroso e requer constante presença de um especialista para cada paciente.

Nesta dissertação é proposto um controlador autónomo e inteligente capaz de partilhar a condução

do andarilho pelo paciente e pelo supervisor evitando colisões com obstáculos.

Para remover a necessidade constante do médico supervisor, um módulo de condução autónoma foi

desenvolvido. O modo autónomo proposto usa um sensor Light Detection and Ranging e o algoritmo de

Simultaneous Localization and Mapping (Cartographer) para obter mapas e a localização do andarilho.

Seguidamente, os planeadores global e local , A* e Dynamic Window Approach respetivamente, traçam

caminhos válidos para o destino, interpretáveis pelo andarilho.

Usando o modo autónomo como especialista e as intenções do paciente, o controlador partilhado

usa o algoritmo Proximal Policy Optimization, aprendendo o comportamento pretendido através de um

processo de tentiva e erro, maximizando a recompensa recebida através de uma função pré-estabelecida.

Uma rede neuronal com camadas convolucionais e lineares é capaz de inferir o risco enfrentado pelo

sistema paciente-WALKit e determinar se o modo autónomo deve assumir controlo de forma a neutralizar

o risco mencionado.

Globalmente foram detetados erros inferiores a 38 cm no sistema de mapeamento e localização.

Quer nos cenários de testagem do controlador autónomo, quer nos do controlador partilhado, nenhuma

colisão foi registada garantindo em todas as tentativas a chegada ao destino escolhido.

O modo autónomo, apesar de evitar obstáculos, não foi capaz de alcançar certos destinos não

contemplados em ambientes de reabilitação. O modo partilhado mostrou também certas transições

bruscas entre modo autónomo e intenção que podem comprometer a segurança do paciente.

É necessário, como trabalho futuro, estabelecer métricas de validação objetivas e testar o controlador

com pacientes de forma a corretamente estimar o desempenho.

Palavras-chave: controlo compartilhado, reabilitação, andarilho inteligente,

aprendizagem por reforço, navegação autônoma
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Abstract

Rehabilitation sessions of patients with gait disabilities is important to restore quality of life. When

aided by intelligent robotic walkers the sessions have shown significant improvements when compared to

the results obtained by classical methods. The WALKit walker is one of the devices mentioned and allows

the patient to drive it while a medical expert supervises the entire process in order to avoid collisions and

falls. This supervision process takes time and requires constant presence of a medical expert for each

patient.

This dissertation proposes an intelligent controller capable of sharing the walker’s drivability by the

patient and the supervisor, avoiding collisions with obstacles.

To remove the constant need of a supervisor, an autonomous driving module was developed. The

proposed autonomous mode uses a Light Detection and Ranging sensor and the Simultaneous Localization

and Mapping (Cartographer ) algorithm to obtain maps and the location of the walker. Then, the global

and local planners, A * and Dynamic Window Approach respectively, draw valid paths to the destination,

interpretable by the walker.

Using the autonomous mode as a expert and the patient’s intentions, the SC uses the Proximal Policy

Optimization algorithm, learning the intended behavior through a trial and error process, maximizing the

reward received through a pre-established function. One neural network with convolutional and linear

layers is able to infer the risk faced by the patient-WALKit system and determine whether the autonomous

mode should take control in order to neutralize the mentioned risk.

Globally, errors smaller than 38 cm were detected in the mapping and localization system. In the

testing scenarios of the autonomous controller and in the SC no collisions were recorded guaranteeing the

arrival at the chosen destination in all attempts.

The autonomous mode, despite avoiding obstacles, was not able to reach certain destinations not

covered in rehabilitation environments. The shared mode has also shown certain sudden transitions

between autonomous mode and intention that could compromise patient safety.

It is necessary, as future work, to establish objective validation metrics and testing the controller with

patients is necessary in order to correctly estimate performance.

Keywords: shared-controller, rehabilitation, smart walker, reinforcement learning,

autonomous navigation
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Chapter 1

Introduction

This dissertation was developed during the last year within the scope of the Integrated Master’s

in Biomedical Engineering at the Biomedical Robotic Devices Laboratory included in the Center for

Micro-Electro-Mechanical Systems (CMEMS), a research center of the Department of Industrial Electronics

(DEI) in University of Minho.

The focus of this dissertation was to implement an intelligent artificial supervisor capable of sharing

the drivability of the WALKit walker between an autonomous driving algorithm and patient input, within

gait rehabilitation scenarios. The Shared-controller (SC) of the walker aims to prevent possible dangerous

situations, while also forcing the walker to be compliant to human commands.

1.1 Motivation

Gait Disorders (GD) lead to a poor quality of life due to the lack of mobility capabilities needed to

perform daily tasks [8]. Mahlknecht et al. [8] reported a prevalence of 32.2% (95% confidence interval)

of impaired gait on a population study of people aged 60-97 years, due to neurological, non-neurological

and combined types of disorders (sensory ataxia, Parkinson, etc.), correlating the data with low indexes of

physical health, psychological health and social relationships.

Robotic-aided rehabilitation of patients with GD is not a new concept [9], but recent developments in

the field show a reduction in the time required and improvements in quality of gait achieved [10, 11], while

diversifying the types of devices available - exoskeletons [12], orthosis [13], walkers [14, 15].

Robotic walkers are good options for rehabilitation scenarios due to lowering the gravitational load,

allowing the medical expert not having to carry the patient and granting the user with the ability to ”drive”
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[14–16], creating a safe and practical environment for aided locomotion. These devices also allow an

efficient use of medical personnel because one expert can ”program” multiple walkers to perform specific

actions of rehabilitation while attending to other patients.

The WALKit smart walker [17] (previously named ASBGo*) is a walker like the previously mentioned

and it is the one used in the proceedings of this dissertation. When the ideal walker reaches the end of its

development it should provide a personalized assistance according to the user needs which are decoded

by Artificial Intelligence algorithms from the built-in sensorial data, performing a multitude of tasks for gait

rehabilitation, namely: gait quality assessment, fall risk assessment and prevention, autonomous driving,

rehabilitation biofeedback and full or semi-autonomous rehabilitation scenario programmer.

Each of these can induce different kinds of behaviors in the walker and these might not be balanced

symbiotically with the patient. The following situation tries to explain the possible competition between

the multiple subsystems. Let’s assume the modules output the following information: the gait quality

assessment module realizes that the patient has trouble initiating the gait so the rehabilitation scenario

programmer tries to force the walker to move in constant accelerations and full-stops to force the patient to

re-experience the initiation-gait-phase; the fall risk assessment and prevention determines that the patient

has been unstable and advises the interruption of that rehabilitation scenario; the walker is too far away

from the target so the autonomous driving module tries to go as fast as possible towards the destination.

In this case, performing the actions advised by each module is not wise due to lowering the performance

of all other modules.

The development of a SC that is able to manage the symbiotic relationship between all sub-controllers

(single task controllers) and the patient is of high interest to the rehabilitation field. Recent research

indicates that the main focus is given to the effectiveness of the robotic-aided rehabilitation with its

biomechanical implications [16, 18], however, it is rare when research actually pays attention to the

nuances of the proposed autonomy and how to actually deliver it as a functional feature of a walker.

1.2 Problem Statement

When using the WALKit in rehabilitation scenarios, the walker is able to be driven locally by commands

issued by the patient and remotely by the medical expert [19]. The patient controls the walker on the

majority of occasions, although the medical expert supervisor assumes control when any risk of fall is

detected [19].

The fall risk associated to gait rehabilitation scenarios with robotic walkers is evaluated based on 3
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main variables: gait pattern quality, walker-patient interface compliance and rehabilitation

setting complexity. Moreira et al. [19] state that the prevalence of muscle fatigue, poor

centralization/verticalization of the patient’s trunk, among others, caused by the inherent GDs, produce

low stability, low physical support and poor gait patterns. When commands issued by a remote-controller

or autonomous algorithms greatly differ from the commands issued by the patient, the walker behaves

in unexpected ways from the patient’s point-of-view, lowering the stability of the patient even more [19].

Also, many patients suffer from cognitive impairments, compromising the ability to simultaneously perform

the rehabilitation scenario, driving the walker, avoiding obstacles and reaching a certain destination [19].

The overwhelming nature of multi-tasking raises the probability of performing poor driving trajectories

(collisions) and non-healthy gait patterns, which in turn cause unwanted falls[19].

The expert monitors the gait pattern quality of the patient and determines how much he needs to

interfere. When patients are highly debilitated the interference is more frequent, forcing the patient to

re-experience certain poor performance gait phases, while also keeping the walker close to the patient

(great physical support)[19, 20]. Also, the supervisor is always aware of the patient’s intention, never

producing trajectories alienated from the patient’s intention, inducing a sense of responsiveness and

compliance, avoiding collisions patient-walker. The medical expert also possesses an acute sense of

spatial awareness, i.e., he is able to sense the properties of the environment - identifies walls, people,

furniture, other patients, etc. -, assume unique characteristics about the objects detected - assume that

furniture and walls are static, people are dynamic -, and locating the patient-walker system. This allows

the supervisor to guide the patient to a certain destination and not collide with obstacles. All the actions

performed by the supervisor diminish the risk faced by the patient, although the existence of multiple

patients creates the need for dynamical behaviours from the supervisor that are based on the patient

diagnosis which drastically increases the complexity of the risk management process .

Srivastava and Kao [21] state, according to the assist-as-needed principle, that allowing the patient to

assume control is essential to achieve better results in rehabilitation, except when the user is putting himself

in danger or when is executing rehabilitation behaviours too far from the target. Using the assist-as-needed

principle in gait rehabilitation scenarios with a robotic walker forces the supervisor to allow the patient to

drive the walker at all times, except when risk of fall is non-negligible [19].

In summary, the medical expert is able to not only evaluate risk and prevent it, but also determine

when it is actually beneficial to override the patient’s commands. The symbiotic shared control established

between the patient, walker and medical expert is necessary to guarantee a safe and efficient gait

rehabilitation scenario [19].
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As already mentioned in section 1.1, synthesizing an autonomous agent capable of mimicking the

decision making process of the medical expert is of high interest to the rehabilitation field. Although, when

asking gait rehabilitation experts to describe the decisions made along a rehabilitation process, non-specific

answers are given because the supervision done by medical experts is based on a lifetime of experience,

so objectivity in the decision making process is hard to obtain.

Recent studies present SCs capable of replacing the supervisor with an autonomous agent which is

capable of calculating gait quality and stability metrics [15, 19], sensing obstacles present [5, 6, 15, 20,

22–24], following a pre-defined path to a goal [20, 22, 23], avoiding obstacles [15, 22], while sharing the

control with the patient following safety constraints [5, 6, 15, 20, 22–24]. Nevertheless, most approaches

use simple heuristics which heavily constrain the behaviour of the SC, prioritizing excessively the supervisor

over the patient.

To symbiotically merge the suggestions of each from the autonomous agent and patient, state-of-the-art

approaches (chapter 2) suggest the use of a SC, where the system dynamics are perfectly described,

each sub-controller is parameterized and hand-tuned (with help of medical experts) for the desired

task/environment, low number of sub-controllers are used and the structure of the controller is

sub-controller specific. These properties of the SCs pose many disadvantages, namely: not using

sophisticated algorithms might not allow optimal behavior to be reached, describing system dynamics

might be difficult to achieve and the controller parameter optimization might not be very intuitive

[5, 6, 15, 20, 22–24].

1.3 Goals

The SC hypothesized needs to accomplish two tasks: evaluate the risk faced by the system

patient-walker and determine how to counteract the risk from simultaneously trying to reach a destination,

avoiding obstacles, and merging the patient’s intention, like shown in Figure 1.1. Despite being mentioned

in section 1.2 that gait quality of the patient impacts the overall risk, this was not considered in this

dissertation due to the unavailability of testing with disabled patients.
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Shared-Controller
WALKit

Human Intention

Environment 
Configuration

Destination

Gait Quality

Figure 1.1: The conceptual SC proposed in this dissertation. This SC is responsible for interpreting each source

of information available to the medical expert in a rehabilitation scenario - gait quality, destination, environment

configuration and human intention - and symbiotically merging the inputs, producing WALKit commands that always

guarantee a symbiotic relationship between walker and patient . Gait quality (red), although considered in normal

gait rehabilitation scenarios, was not considered in this disseration due to the unavailability of testing with patients.

To build an intelligent SC able to replace or aid the medical expert, certain goals need to be achieved:

• Goal 1: Present a review of the state-of-the-art approaches to understand what are the

advantages and disadvantages of each method in the literature, so that an informed decision can

be made about how to actually deploy an efficient SC.

• Goal 2: Determine the necessary sensors to effectively create an environment

representation, so that the autonomous agent is able to run risk assessment and prevention

algorithms. The walker is used in multitude of medical installations, each with a different

configuration, so the sensing structure deployed cannot be environment-specific and

should require no preparation by a technical expert. To avoid this, the chosen sensors

need to be included within the walker, with minimal structural and functional changes.

• Goal 3: Acquire maps of the environment so that the autonomous agent can determine within

which regions it can travel and how to actually plan efficient paths to reach the destination. The

map should not only be accurate enough to be used by an autonomous agent, but should also be

readable by a patient or a doctor, due to the need to pick a destination for the rehabilitation

scenario.

• Goal 4: Assess the risk faced by the patient-walker system given the environment’s

configuration, walker’s limitations and inputs from the patient. All restrictions are going to be the
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target of extensive examination in the following chapters.

• Goal 5: Develop an autonomous agent responsible for generating trajectories

that always prioritize patient’s safety, avoiding collisions with obstacles and reaching the

destination.

• Goal 6: Deploy a SC capable of symbiotically merging the suggestions of both

autonomous driving agent and patient. The controller needs to meet certain requirements:

– Sophisticated Intelligence - Guaranteeing the possibility of optimal behavior.

– Scalable - Support additional number of sub-controllers with minimal changes, in case other

modules in the walker need to interfere with the drivability, like the example described in

section 1.1;

– Generic - Not sub-controller specific.

– Human-like tunability - The medical expert should be able to easily understand and tune

the controller parameters, parameterization which needs to be close to what actually the

expert ponders when performing gait rehabilitation. This tries to remove the ambiguity in the

description of optimal supervision by medical staff.

• Goal 7: Validate the proposed framework within gait rehabilitation scenarios.

The following Research Questions (RQ) are also expected to be answered:

• RQ 1: Can the medical expert be replaced by the autonomous agent developed?

• RQ 2: Which information is required to assess risk faced by the patient-WALKit system?

• RQ 3: Which metrics need to be measured to validate both the Autonomous Driving System (ADS)

and SC?

1.4 Proposed Solution

This dissertation proposes a hierarchical control structure, as presented in Figure 1.2. On the base of

the hierarchy, multiple sub-controllers are deployed, each responsible for monitoring the risk from one of

the sources already mentioned - gait pattern quality, walker-patient interface compliance and rehabilitation

setting complexity - and creating plans that diminish each. On the top of the hierarchy the prioritizer
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evaluates the recommendations from the base-level commands and determines the relative contribution

of each to the actual command supplied to the WALKit. The modularity of the hierarchy proposed allows

for each sub-controller to be used separately, without the need for significant structural changes.

  

Prioritizer
WALKit

Human Intention

Environment 
Configuration

Destination

Gait Quality

Autonomous 
Driving

Controller

Intention 
Controller

Gait Quality 
Controller

Shared-Controller

Figure 1.2: Representation of the hierarchy of the SC. Each sub-controller supplies the prioritizer with the

commands to perform a specific task. The prioritizer ponders its commands received as inputs and determines

the relative contribution of each sub-controller command, given the current circumstances of the rehabilitation

scenario. Gait quality (red), although considered in normal gait rehabilitation scenarios, was not considered due

to the unavailability of testing with patients.

An autonomous driving agent is developed and used as the expert in avoiding obstacles and reaching

a certain destination, serving as a replacement for the supervisor. The intention controller proposed is

responsible for expressing the patient intention into valid WALKit commands. If the walker faces a near

collision situation the prioritizer resorts to autonomous driving agent and when the risk is neutralized the

control falls back to the patient, following the assist-as-needed requirement.

It should be referenced that the implemented ADS is based on a heavily benchmarked approaches to

guarantee the efficiency of the autonomous driving mode while performing the task, while the prioritizer

component is the main focus of this dissertation.

The autonomous mode developed uses a Simultaneous Localization and Mapping (SLAM) system

(Google’s Cartographer [25]) that is able to map the environment and localize the walker simultaneously

without the need for hardware to be placed in the environment, taking the scan of Light Detection And

Ranging (LiDAR) system as input. The A* [26] global planner is used to create a path from the location

of the walker to the chosen destination and the local planner Dynamic Window Approach [4] algorithm is
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used to translate the spatial path from A* into velocity commands.

Reinforcement Learning (RL) is a field within Artificial Intelligence that specializes in learning the

behaviour needed to perform a certain task based on the capitalization of a pre-established reward

function [27]. The SC proposed uses this kind of algorithms, enabling a medical expert to indicate a

highly abstracted reward function and allowing the controller to try to match the behaviour inferred, by

running multiple scenarios and learning from experimenting with the environment.

Proximal Policy Optimization (PPO) is an algorithm that belongs to the Deep Reinforcement Learning

(DRL) field, which carries the advantages of Deep Learning by using non-linear function approximators

like Deep Neural Network (DNN) as generic controllers [27] and uses as input the raw mapping of the

environment and commands from both autonomous mode and patient intention, being able to perform

obstacle detection, collision avoidance and sub-controller prioritization all within one structure, without

the need for heavy data pre-processing and creation of a set heuristics and assumptions to simplify the

problem.

1.5 Solution Requirements

To prove the possible use of the proposed solution as an efficient rehabilitation tool, the WALKit walker

needs to achieve the goals set not only in terms of functionality but also work in a time-efficient manner.

The mapping and localization algorithm should be able to create maps and localize the walker with

the lowest error possible. Also, the mapping and localization, global planner, local planner and shared

controller should be able to function in at highest frequency possible. Due to the computation power

limitations this is not possible, so conservative targets were used to solve the tradeoff between efficiency

and optimality. Presenting errors in mapping and localization below 0.5 m were deemed sufficient to track

accurately the walker due to the value attributed being negligible when comparing to the size of the walker

(1.2x1m approximately). The target for the update rate was chosen to be 10 Hz based on the capacity

for the walker to break and guarantee safety. With a maximum velocity and acceleration of 1 m/s and

2 m/s2, the WALKit can transition from full-velocity to full-stop in 0.5 seconds, then, following Nyquist’s

sampling theorem, the controller should work at least at 4 Hz, however, for establishing a margin of error,

we set the goal at 10 Hz.

To validate the ADS the relative frequency of collisions and goals reached should be used metrics, as

evidenced in literature [15, 20, 23].

The SC, similar to the ADS, is validated using the relative frequency of collisions and goals reached
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in the benchmark scenarios while also measuring the restrictiveness of the paths as described in the

state-of-the-art [5, 22].

It was deemed acceptable for the SC and ADS not being able to reach a certain goal, however it is

unacceptable that the walker collides with an obstacle, so that patient safety is guaranteed.

1.6 Contributions

The work developed in this dissertation offers an insight to a multitude of technological features used

in multiple fields of research. The main contributions are:

• A system capable of creating high-quality maps with localization system allowing for a portable and

multi-functional walker, without the need for external setup in plug-and-use fashion;

• An autonomous mode capable of driving the walker without the need for human supervision and

able to avoid obstacles;

• A SC able to calibrate the gait rehabilitation session to the patient’s needs.

The developed work has lead to one conference paper, one conference abstract and one book chapter,

all accepted and awaiting publication.

• A. Pereira, J. Lopes, J. Afonso, L. Costa, J. Figueiredo, and C. P. Santos, “ Adaptive SC of a robotic

walker to improve human-robot cooperation in gait biomechanical rehabilitation.” in 9th National

Conference of Biomechanics. Porto: Taylor & Francis Group, 2021. (accepted)

• A. Pereira, J. Lopes, J. Afonso, L. Costa, J. Figueiredo, and C. P. Santos, “ Adaptive SC of a robotic

walker to improve human-robot cooperation in gait biomechanical rehabilitation.” (Abstract) in 9th

National Conference of Biomechanics. Porto, 2021. (accepted)

• João M. Lopes, João André, António Pereira, Manuel Palermo, Nuno Ribeiro, João Cerqueira and

Cristina P. Santos, ”ASBGo: A smart walker for ataxic gait and posture assessment, monitoring, and

rehabilitation” In: Gupta D., Sharma M., Chaudhary V., Khanna A. (eds) Robotic Technologies

in Biomedical and Healthcare Engineering. CRC Press, Taylor & Francis Group, USA., 2021.

(accepted)
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1.7 Dissertation Outline

This dissertation contains 9 chapters.

The current Chapter 1 offers a presentation to the motivation of this dissertation, along with a summary

and relevant information about this dissertation.

Chapter 2 and chapter 3 contains the a review about the state-of-the-art of ADSs and SCs, respectively.

The discussion of advantages and disadvantages is relevant to offer a foundation for discussion of the

proposed controller in this dissertation.

Chapter 4 offers some insight on theoretical concepts about: basic concepts of RL, DRL and a full

explanation of PPO (the algorithm used in this dissertation).

Chapter 5 explains in detail the functionalities of the WALKit walker, the robotic device target of this

dissertation, and presents an overview of the SC proposed.

In Chapter 6 the full implementation of the ADS is described, along with considerations and validation

protocols.

In Chapter 7, following the same structure from Chapter 6, the full implementation of the SC is

described, along with considerations and validation protocols.

In Chapter 8, the results obtained from the validation protocols are shown along with some particular

experiments showing interesting behaviour cases.

Chapter 9 the full discussion of efficiency of the proposed framework and description of the inherent

limitations is presented.

Chapter 10 concludes the dissertation with a short summary of the results and discussion, presenting

some future improvements to the system.
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Chapter 2

Research on Autonomous Control

In this chapter a review of autonomous of ADSs is presented. The following review was built around

the search of scientific information available, using the certain keywords as filter, such as: autonomous

driving, robotics, smart walkers, slam, global planner, local planner, collision avoidance, path planning

and autonomous driving sensors. Only benchmarked ADSs will be used, so this review will only include

already validated algorithms which are already implemented in software packages.

2.1 Introduction

The main objective of the ADS is to fully guide the system walker-patient to a certain destination, while

avoiding obstacles. The development of this type of system allows for a medical expert/user to plan an

adequate destination and departure points for a rehabilitation scenario to be performed, without the need

for constant supervision. In a review paper done by Yurtsever et al. [1], it is referenced that the ”Core

functions of a modular ADS can be summarized as: localization and mapping, perception, assessment,

planning and decision making, vehicle control, and human-machine interface.”.

Localization and Mapping is the component responsible for recreating an accurate description of the

surroundings of the walker to allow for further planning. Perception and Assessment are the blocks

that identify obstacles and infer the risk that the autonomous agent is subjected to. The Planning and

Decision making components allow for the robot to define, within the risk constraint space, to draw a set

of trajectories and translate those into commands that can be interpreted by the hardware (wheel motors

and driving software). The pipeline mentioned before, with a schema in Figure 2.1, is widely accepted due

to it is modularity. Yurtsever et al. [1] state an advantage of that modularity which consists in allowing for
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the study of the problems related to each block of the pipeline to be independent, but it has downsides

when information cannot be interpreted by blocks which are not adjacent, e.g., the decision making block

cannot directly access the sensor data because it does not know how to interpret it.

  

Environment

Sensors

Autonomous Driving Module

Localization
Mapping

Perception
Assessment

Planning
Decision
Making

Actuators

Figure 2.1: Pipeline of a modular ADS [1].

The analysis of each individual module is presented in the following sections. Sensors and actuators

are also analyzed as part of the ADS though they are not part of the autonomous driving system per se.

Instead, they can be considered as limitations or specifications of the system being discussed.

Most of the knowledge from autonomous driving comes from generic robotics and automobile industry,

which is a completely different field from the studied in this dissertation but serves as a good basis for the

autonomy component.

2.2 Localization and Mapping

To travel to any destination, two components are needed: the mapping of the environment and the

current position [1]. Only when a broad answer is known, it can be possible to plan a trajectory to a certain

destination. Firstly let us assume that acquiring the mapping of the surroundings and locating a reference

point within it are trivial tasks, and let us focus on what type of data can be acquired from the environment.

2.2.1 Sensors

As source of information, typically there are four types of devices: global navigation satellites, range

sensors (LiDAR, Radio Detection And Ranging (RaDAR), Sound Navigation and Ranging (SoNAR)), vision
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sensors(video cameras) and motion sensors (Inertial Measurement Unit (IMU), encoders) [28]. Each of

these is used in specific localization methods, all with advantages and disadvantages.

Range sensors are able to measure the distance of multiple points across space in reference to the

sensor. LiDAR, RaDAR and SoNAR systems determine the distance to a certain obstacle by measuring

the time difference between the emission of waves and the reception of their reflection [28]. These active

sensors emit waves with different properties obtaining a different range of results, each more adequate for

different conditions. LiDAR systems use laser and are the widely used due to their high range and angular

resolution [28], with an example shown in Figure 2.2. They suffer from not working with same performance

on low reflective surfaces and harsh climate conditions (rain, fog). Because rehabilitation scenarios are

performed indoors, a lot of the disadvantages considered in automobile autonomous driving are not a

factor in this dissertation. RaDAR systems emit radio waves and have lower angular resolution[29], but

are commonly used in cars because they are impervious to most climate conditions. SoNAR systems use

mechanical waves (sound), typically deployed in short range devices, where high data rate and low cost

are mandatory requirements [30].

Figure 2.2: A scan of LiDAR system.

Note. By Daniel L. Lu - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=

84598949

The Global Positioning System (GPS) is able to triangulate the position of any receiver around the

globe [28] based on the captured electromagnetic signals originated from 3 different source satellites. Low

precision and availability in indoor settings are usually the cause for not using this approach in the scenarios

related to this dissertation [31]. Mirowski et al. [32] demonstrated a similar approach, in which instead of

using GPS, Wi-Fi and the respective routers were used as signals and sources, serving a replacement for

the satellites.

Video sensors (video cameras) are a great source of information, because they offer a full colorized
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picture of the environment in multiple scenarios, similarly to human vision [28]. When interfaced with

computer vision algorithms, the images are subjected to feature detectors which originate high levels of

useful metadata beyond the raw data already presented by the physical sensor [28, 33]. They possess

the big disadvantage of requiring larger bandwidth to transmit data and needing visible light, which poses

a challenge for poorly lit environments.

Motion sensors like IMUs are able to inform the robot of accelerations and changes in heading, through

its components like accelerometers and gyroscopes. The double integral of acceleration allows to calculate

the position of the robot, but the errors are accumulated since the beginning, degrading the quality of their

use as positioning sensors over time [29]. Wheel encoders can count wheel revolutions and calculate

robot displacement, but suffer from the same disadvantages as IMUs.

The following Table 2.1 summarizes the main features, advantages and disadvantages of each

controller.

Table 2.1: Summary of the sensors used in autonomous driving.

Sensor Advantages Disadvantages

LiDAR

+ High angular resolution

+ High range

- Poor detection of high

light absorbent materials

- Expensive

RaDAR

+ High range

+ Not affected by

environmental factors

- Low angular resolution

SoNAR

+ Cheap

+ Fast scans
- Short range

GPS
+ Accurate in exteriors

- Low availability indoors

- Low precision indoors

Video Cameras

+ Very rich raw data

+ Possibility of extracting

useful metadata

- Increased data rate

- Dependent on good

lighting conditions

Motion Sensors —
- Suffer from error

accumulation
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2.2.2 SLAM

When a source of environment data is available, mapping and localization is the logical next step. Many

types of algorithms can be implemented using global/local ”fixed” references like GPS [32, 34] or other

similar techniques. Due to autonomous driving being explored more consistently in automobile autonomy,

it is acceptable to use global reference approaches because they possess properties like resolution which

are compatible with the nature of the problem. However, when talking about GDs and walker aided

rehabilitation, this is not acceptable. In the context of this dissertation the localization algorithms need to

identify the position in a centimeter scale and use mappings of environments with enough resolution to

detect people, hospital beds, etc. Also, it is of high interest to use data from sensors that can be placed

in the walker, avoiding connectivity issues to Wi-Fi routers, bluetooth devices or even GPS satellites.

Considering the restriction of sensors being implemented within the robot structure, SLAM algorithms

have been developed, because the localization and mapping processes go hand-in-hand, i.e., the location

of the walker is determined from the definition of the environment, but the environment’s mapping requires

the knowledge of the walkers position in order for the sensor data to be correlated [2].

Cadena et al. [2] state that a SLAM algorithm is a maximum a posteriori estimation problem where, if

X is the set of trajectories performed by the walker and Z is the set of measurements of the environment

properties acquired by the used sensors, then Equation 2.1 translates the problem

X? .
= argmax

X
P (X|Z) (2.1)

that falls under the Bayes’ theorem. So, to solve a SLAM problem, the algorithm performs a constant

optimization of a set of trajectories over time with new data from the sensors [35], like shown in Figure

2.3.
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Figure 2.3: Conceptual results of a SLAM algorithm. The mapping of both path and environment mapping optimize

from (a) to (b), (c) and (d) sequentially [2].

It is seen in Figure 2.3 that in the beginning of the SLAM process, the mapping and trajectories don’t

quite make sense, however, through optimization techniques the results get closer to the ground-truth

like in Figure 2.3 (d), finally obtaining a good approximation of both mapping and pose. The quality

depends highly on the general performance of the algorithm, the quality of the tuning, the properties of

the environment, quality of the sensors and computational power.

There are 3 main types of SLAM systems - grid-based, graph-based and feature-based.

Grid-based (also named as particle-filter-based) approaches [36] try to create occupancy grid maps

by creating individual maps from both scanner (measurements) and odometry data (pose) and trying to

find the best distribution for the whole set of particles (measurement-pose pair). These algorithms have

the disadvantage requiring a lot of data and in consequence a huge amount of memory, constituting a

poorly scalable strategy.

Graph-based algorithms, as the ones developed by Sunderhauf and Protzel [37] and Mu et al. [38],

work by creating nodes of a graph - which consist of pairs of measurements and poses - and connecting

them by either soft or hard mathematical constraints. Comparing to grid-based, graph-based methods

are more sample efficient because they learn the relationships between the samples acquired from

odometry and scanners/cameras/other sources, instead of saving every pair and attributing an importance

factor to each, avoiding large memory requirements.

When unique characteristics can be detected in an environment, the use of feature-based approaches

increases the efficiency of SLAM algorithms, e.g., when mapping an outdoor environment, trees can
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be used to serve as a relevant landmark to improve the quality of mapping and trajectories[39, 40].

These algorithms need feature detection algorithms, which sometimes can be ”tricky” to implement due

to different detection algorithms producing different results. The extensive research of DNN allied with

video camera feed, allowed for the improvement of feature detection algorithms on computer vision which

opens doors for the field of Visual SLAM [39]. With this it is possible to use, for example, a mainly static

object like a lamp post to be identified as such and used as a strong reference point [39].

2.3 Perception and Assessment

Yurtsever et al. [1] state that an automobile ”ADS should constantly evaluate the overall risk level

of the situation and predict the intentions of surrounding human drivers and pedestrians”. For generic

applications, the Perception and Assessment enables the ADS to extract meta-data from the environment

so that safe and efficient trajectories can be planned.

Yurtsever et al. [3] try to solve the problem of risk estimation of the driving patterns of surrounding

humand drivers. Performing segmentation of individual video frames captured by a monocular camera

with DNNs, as seen in Figure 2.4, proved to be capable of inferring the risk created by external factors.

Figure 2.4: Two lane change samples and classification outputs of the system proposed by Yurtsever et al. [3].

The Perception and Assessment component is an important part of all ADSs, however, in rehabilitation

scenarios it is always assumed that external factors do not actively try to induce disturbances in the safety

of the patient [19], e.g., people walking close to the walker do not actively try to collide with it. For this

reason this portion of the ADS was not explored.
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2.4 Planning and Decision Making

After obtaining a map of the environment and the current position of the robot, a plan needs to be

established to reach the destination. Yurtsever et al. [1] state that ”Planning can be divided into two

sub-tasks: global route planning and local path planning”. Each component is going to be analyzed in the

following sections.

2.4.1 Global Planner

The goal of the global planner is to find the best route from the start position to the destination, taking

into consideration the mapping of the environment, only considering spatial constraints [1].

The state-of-the-art contains multiple kinds of approaches for the Global Planner although only

Dijkstra’s[41] and A* [26] algorithms were considered. The reason for only analyzing the two algorithms

mentioned is going to be analyzed in chapter 5. Dijkstra’s [41] and A* [26] are solvers of the shortest path

problem between 2 nodes in a graph.

2.4.1.1 Dijkstra’s

When using Dijkstra’s algorithm [41], the objective is to choose the sequence of vertices that minimizes

the cumulative distance between start and destination of a graph. To determine the optimal path, the steps

from Figure 2.5 are performed.
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Dijkstra’s algorithm

- Input: Graph G, source node s

- N is the set of neighboring vertices of each vertex v ∈ V which corresponds to the vertex

set of graph G. L corresponds to the length between each to vertices

- Create set of visited vertices Q initially equal to V

- for each v ∈ V :

- d(v) = ∞, p(v) = undefined where d is the accumulated distance and p is the

ordered set of vertices from vertex s of the shortest path.

- d(s) = 0

- while Q is not an empty set:

- c← Element in Q with minimum d(v)

- Exclude c from Q

- for each v ∈ N(c):

- dtemp(c) = d(c) + L(c, v)

- if dtemp(c) < d(v) :

- d(v) = dtemp(c)

- p(v) = c

- return d, p

Figure 2.5: Dijkstra’s algorithm [41].

Each node in a graph is connected to others with a certain length. The original Dijkstra algorithm

calculates every possible path, starting from the initial vertex, and searching all neighboring vertices

opting for the one with the shortest path. At every step, the next vertex to be analyzed is the one which

accumulated distance from the initial position is the smallest. This guarantees that the more promising

paths (shortest accumulated distanced) are first searched, this way establishing a priority queue.

In Figure 2.6, an example solving a simple graph is shown. Even though there are multiple possible

ways of getting to node 3, going directly to 3 from the start is better, even though from the starter node

perspective it is apparently shorter to go to node 2 first, due to the shorter distance, as evidenced by the

shortest distance after the solving of the full graph in Figure 2.6e.
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(a) (b) (c)

(d)
(e)

Figure 2.6: Dijkstra’s algorithm to find the shortest path between a and b, sequentially from 2.6a to 2.6e Note.

By Ibmua - Work by uploader., Public Domain, https://commons.wikimedia.org/w/index.php?curid=

6282617 (edited).

For graphs with bigger complexity - bigger vertex space and increased amount of connections - this

algorithm does not perform well [26]. The prioritization of the new vertices searched is based on the

accumulated distance, raising the probability of exploring local minimums with the disregard for long-term

effects [26]. The priority in searching new vertices is simple and guaranteed to converge but it is inefficient,

because it lies on the assumption that the current accumulated length is a good indicator of path optimality

which is not a good assumption due to the local minimums already mentioned [26].

2.4.1.2 A*

The A* (A star) algorithm is a generalization of the Dijkstra’s algorithm and it tries to solve the scalability

issue. In most contexts, when trying to find the optimal path between two nodes, certain heuristics can

be used to prioritize the search [26]. If we consider traveling from New York to Los Angeles, it can be

noticed that the euclidean distance from New York to Los Angeles (3,936 km) is higher when comparing

to the distance from Las Vegas to Los Angeles (360 km) so probably going to Las Vegas helps to get to

the destination. Using euclidean distance as a heuristic that suggests the optimality of the path being

drawn, can hugely improve the quality and sample efficiency of the algorithm [26]. The use of heuristics
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allows, in the context of traveling from New York to Los Angeles, not having to search if it is possible to

pass through cities in Europe, Asia, South America, because those distances are significantly bigger than

travelling through any city in the United States of America.

The algorithm finds the best path by establishing a priority queue like in Dijkstra’s, but it calculates

the accumulated length dtemp(c) using the expression

dtemp(c) = d(c) + L(c, v) + h(c) (2.2)

and h is the heuristic cost estimation [26]. A* is a generalization of Dijkstra’s because if h(v) = 0 for all

v, then f(v) is the simple cumulative length function described in section 2.4.1.1.

In Figure 2.7, a comparison between Dijkstra’s and A* is presented, and it shows that A* is more

efficient because it searches for the most promising nodes according to the sum of the heuristic and the

pure accumulated length.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.7: Comparison between Dijkstra’s (2.7a - 2.7d) and A* (2.7e - 2.7h) algorithms.

Note. By Subh83 - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=

14916867 (adapted).
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2.4.2 Local Planner

The local planner is an algorithm that uses as input the path from the global planner, and translates

it to velocity commands used by the walker. Trajectory Rollout [4] and Dynamic Window Approach [42]

were the two considered local planners for reasons which are going to be discussed also in chapter 5.

These algorithms ponder the outcomes of performing certain movements within a constrained

environment. Global Planners, as mentioned in section 2.4.1, solve a spatial problem where no information

w.r.t. system dynamics is available. The driving patterns of different robots can be quite different because

each holds different specifications, e.g., one robot can have bigger acceleration limits and lower maximum

velocities in comparison to others. Spatially, the path followed by different robots might be the same,

however, when considering the time domain these paths might differ.

Before planning any velocity commands these algorithms need some constraints to be defined - shape

of the robot , maximum and minimum velocities and accelerations. Then, a map of the surroundings of

the robot (usually a sub map of the map of the global planner only including the immediate surroundings)

is given as input [4, 42].

When every input is ready, the algorithms run as shown in Figure 2.8 with a specific example shown

in Figure 2.9.

Trajectory Rollout

Sample a number N of velocities to perform in the following step within the space, velocity

and acceleration constraints;

Simulate/predict the configuration(position and velocity) of all sampled velocities (Figure

2.9);

Evaluate the quality of the movement of each sampled velocity resorting to a predefined

score function;

Choose the best evaluated trajectory;

Perform the chosen trajectory;

Repeat the process.

Figure 2.8: Trajectory Rollout algorithm [4].
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Figure 2.9: Schematic of the simulated trajectories.

As mentioned in Figure 2.9, the trajectories are evaluated by a parameterized score function, that

indicates what the walker should or should not do. The score is influenced by three variables: proximity

to the goal, proximity to obstacles and proximity to the predetermined global path. The last can be tuned

by weighing each component, and adapting the score function to each desired behavior and setting.

Various algorithms try to first create paths that can be followed, and then evaluate them with no regard

of the robot’s limitations [4]. If the robot has a certain velocity and does not have enough acceleration to

reduce its velocity and avoid a collision with an obstacle in front of it, the local planner should not even

consider a trajectory that stops in front of the obstacle. Instead of just considering spatial constraints, like

presence of obstacles, robot constraints are also considered at every time step because they efficiently

decrease the amount of possible outcomes that need to be calculated - this is called a dynamic window

[4].

The Trajectory Rollout samples velocities from the achievable velocity space thought a sequence of

accelerations, while the Dynamic Window Approach only considers one constant acceleration [4]. The

Dynamic Window Approach is computationally efficient, but might be less effective in certain scenarios,

generating trajectories that take uncessary paths wasting more time than necessary [42].
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Chapter 3

Research on Shared Control

After understanding how an ADS works, it is necessary to understand how a SC framework should

function in smart-walkers. This section will describe innovations from a scientific point-of-view, since all

the innovation and contributions of this dissertation is related to the SC.

The SC is responsible for sharing the control between patient and supervisor allowing the system

walker-patient to not collide with walls and reach the destination, as shown in Figure 1.2. Smart walkers

can be used for a multitude of GDs, so the requirements, specifications and limitations of each walker are

correlated to the nature of the disability incurred by the patient.

The overwhelming majority of research on the field splits the problem of building a fully autonomous

walker into 3 sections: patient intention detection, autonomous supervisor and prioritizer [6, 15, 20, 22–

24], similar to block diagram of Figure 3.1. Similar to ADSs, splitting the controller into multiple layers

turns the system modular, allowing each module to function independently.

In this chapter, a review of each module is presented, with also a section dedicated to the explanation

of how the SCs were validated.

25



Research on Shared Control

  

Prioritizer
Smart
Walker

Human 
Intention

Autonomous
Driving

Controller

Intention 
Controller

Human 
Intention
Sensors

Environment 
Configuration

Destination

Environment
Configuration

Sensors

Patient Intention Detection

Autonomous Supervisor

Figure 3.1: Block diagram of the common structure of SCs in state-of-the-art.

3.1 Patient Intention Detection

The patient intention detection module is responsible for, as the name suggest, detecting the intention

of the patient. The transmission of intention from the patient to the walker must not overwhelm the user

cognitively, so that the patient can always drive the walker without losing focus from other tasks - avoiding

obstacles while performing the gait rehabilitation patterns advised by the supervisor. Also, the sensing

structure must not compromise the stability of the user [19, 20].

Morris et al. [20] detected the intention of the patient by reading the force exerted in force sensors

implemented in two horizontal bars of the improvised walker built on top of a Nomad XR4000 mobile

robot platform. The handles can be displaced forward and backwards, so that the user can push and

pull both handlebars equally producing forwards and backwards intention commands, respectively [20].

If the handles are differentially displaced, the commands produced indicate a rotation intention [20]. This

approach avoids the use of joysticks and buttons, which require significant hand movements, which in turn

compromise physical support and stability of the patient [20].

Jiménez et al. [6], Sierra et al. [15], Spenko et al. [22], Graf and Schraft [23] apply similar structures to

the one suggested by Morris et al. [20] in the walkers AGoRA, UFES, PAMM and Care-O-bot II, respectively,

however the handles do not move.

Huang et al. [5] improve on the intention detector proposed by Morris et al. [20], processing the

forces and torques registered by force sensors with a ”dynamic model (...) comprised of a set of coupled

nonlinear differential equations derived from the Lagrangian and the Lagrange multipliers”[5] of the walker

COOL Aide, in a way of not only registering the immediate intention but also predicting the actual long-term
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intention of patient. This dynamical model is not only capable of detecting the long-term intention but also

differentiates inputs from actually intended commands from commands produced when the patient is

unstable and grabs the handles.

3.2 Autonomous Supervisor

The autonomous supervisor module is the entity responsible for always diminishing risks of falls,

always keeping the patient safe. Some of the controllers referenced in this section do not try to meet the

same objectives as the ones set for this dissertation, e.g., do not try to reach a destination or try to follow

a path.

Morris et al. [20] implement in the Nomad walker an ADS similar to the methods presented in chapter

2. A SLAM algorithm produces a grid map, with the obstacles registered through the use of a LiDAR sensor,

followed by planning using global and local planners, included in the robot native navigation modules [20].

Most approaches suggest the use of local planners like Morris et al. [20], similar to the local planners

mentioned in chapter 2 (Dynamic Window Approach and Trajectory Rollout), although it is not specified

which are used and how they behave [6, 20, 22]. Sierra et al. [15] mention using the Dynamic Window

Approach algorithm as local planner, however the global planner is not specified.

The autonomous component of the SC proposed by Huang et al. [5] does not consider a destination,

focusing only in obstacle avoidance. The COOL Aide is a mostly passive robot, only being able to control

the steering angle [5]. This way, it only uses a local planner built on the Virtual Force Field framework

[43], imposing virtual moments on the COOL Aide walker to avoid obstacles registered by a infrared sensor,

scaling the moment with the relative velocity [5]. McLachlan et al. [24] uses the same approach as Huang

et al. [5] and improve it by including the global path information in the Virtual Force Field, taking into

account the information of the destination.

3.3 Prioritizer

The prioritizer uses the commands supplied by the Patient Intention Detection and Autonomous

Supervisor, choosing which the most adequate based on the risk faced by the system.

Morris et al. [20] implemented a simple thresholding technique. The angle between the autonomous

mode trajectory and user’s intention trajectory is measured and if it is bigger than a certain predefined

value, the walker becomes autonomous. Despite being a functional technique it is not optimal, because

the decision making process does not take into account the presence of obstacles directly. It is fair to
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say that the global planners used in this approach take into account the presence of obstacles, so if the

SC uses as input the outputs of the global planner, then it indirectly considers the obstacle component.

This might lead to results where the SC always forces the walker to follow closely the path planned, for

fear of colliding with obstacles, which is not necessary. It also does not allow for a diversity of behaviours

performed, specifically it only allows 2 behaviours to be ”coded in” - below threshold and above threshold

behaviours - and transitions between modes with high accelerations, possibly creating instabilities in the

patient.

Graf and Schraft [23] created a full local planner with SC embedded within the same system. The

structure proposed can use 1 of 4 behaviours, namely: direct control - patient commands are directly

fed into the walker control -, re-plan path - find other path due to obstacle presence -, docking - full stop

of the walker - and wall following - moves the walker without colliding parallel to obstacles. To prioritize

each behaviour, the walker uses a angle thresholding technique similar to Morris et al. [20], but instead of

using the described angle between autonomous and user intention paths, it uses the angles between the

orientation of the walker and the obstacle tangent. Using the direct obstacle information obtained from

the sensors, unlike Morris et al. [20], enables the proposed controller by Graf and Schraft [23] to directly

determine when crashes are likely to happen and interfere when needed, showing a improved variability

in the paths registered and increased relative control by the patient.

In the framework proposed by Morris et al. [20], only the current angle described by intention

and autonomous paths is used, meaning that if, for any reason, one of the path’s orientation changes

drastically the walker will always prioritize the autonomous mode because only the immediate orientation

is considered. Sierra et al. [15] instead of executing a simple thresholding with the immediate orientations,

created a window considering also the ”future” orientations of the ideal path (Figure 3.2).

28



Research on Shared Control

Figure 3.2: Triangular window for admissibility of following user’s intention [15].

If the direction of the intention of the user is within green triangle window from Figure 3.2, the user

intention is a valid one and it assumes control. In the opposite case the autonomous component assumes

control. The size of the window is pre-parameterized, turning the walker more trustful of the patient

commands by increasing the size of window, and vice-versa [15]. The walker uses a discretized threshold,

inheriting the disadvantages from the mentioned approach, but is able to plan on the long-term, becoming

complacent to the user’s instructions.

Jiménez et al. [6] suggest a solution without the previous discrete (thresholding) approaches and

implement a gradual transition from autonomous to intention control. The attraction and path velocity

vectors are defined as the velocity vectors needed to get closer and to follow the path, respectively, together

composing the ”desired” autonomous velocity vector. The angle between the ”desired” autonomous and

user intention velocity vectors is measured and used to determine the damping parameter of the impedance

controller used as SC [6]. Two curves are created to determine how the damping parameters for both

linear and angular velocity vary according to the angle registered. When angle values are close to 0 the

damping parameters are at a minimum which allows for the patient to drive the walker. When angle values

increase, the damping parameters start rising toward the maximum value, turning the walker gradually

autonomous. The curves can be dilated or constricted and maximum values can be increased so that

the walker behaviour changes [6], turning the walker more or less trustful of the patient’s commands.

Opposite to the state-of-the-art approaches mentioned before, the present one allows for the removal of

the abrupt change behaviour making the walker more predictable and comfortable [6]. This controller,

however, does not avoid obstacle, instead, it gradually decreases both linear and angular according to

the measured distance to obstacles [6]. The hyper-parameterization of the impedance controller requires
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some understanding of the underlying functionality, which turns this approach hard to understand by a

medical point-of-view.

Using fuzzy logic, McLachlan et al. [24] provide a smooth transition between autonomous and intention

modes. Five discretized commands of driving (Large Negative, Small Negative, Zero, Small Positive and

Large Positive) for both linear and angular velocities are available and consequently subjected to the fuzzy

rules established. The rules can be changed from patient to patient allowing for optimal behaviour [24],

evidencing patient adaptability. Finally the results are applied to a membership function, like in Figure

3.3, obtaining the actual applied velocity commands. McLachlan et al. [24] state ”The premise behind

fuzzy logic is that precise outputs can be obtained from imprecise or vague inputs”, which represents a

relevant advantage of this method over the already mentioned. However, this controller also infers the

position of obstacles through the global path, inheriting the disadvantage of needing to stay close to the

path, compromising the patient driving freedom.

Figure 3.3: Triangle Fuzzy Logic Membership Function [24].

Huang et al. [5] use a similar impedance controller to the one from Jiménez et al. [6], but tries to

implement the missing obstacle avoidance feature. It does so by acquiring a map and classifying a map

as obstacle and non-obstacle while also measuring distance and relative velocity to each. When distances

to obstacles are small and relative velocities of obstacles are high, the impedance controller parameters

turn the walker more autonomous, producing virtual moments which deviate the walker from a collision

trajectory to a safe one [5]. Despite tackling the obstacle avoidance problem it does not offer any method

to perform any kind of autonomous driving converging to a goal.

Spenko et al. [22] merge both concepts from Huang et al. [5] and Jiménez et al. [6], creating a

impedance controller that implements obstacle avoidance and destination convergence. Spenko et al.

[22] propose a metric which consists of a quadratic function that uses as input the differences between

actual and ideal positions, velocities and accelerations and patient stability. The introduction of a stability
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criteria read from the patient is a significant advantage of the proposed SC that guarantees directly the

safety of the patient, however, following the goals already mentioned in section 1.3, the gait quality metrics

are not taken into consideration of performance. To merge the commands from the global planner and

patient, the controller tunes the two parameters Kcomputer, Khuman both constrained by the following

equation

Kcomputer +Khuman = 1 (3.1)

. It is not clear if Spenko et al. [22] pre-established functions describing the correlation between the

performance metric and control parameters or if optimization algorithms were used to find the combination

which produced the best metrics. If optimization algorithms are used, the controller falls under the

policy-based RL category, which is going to be explained in following chapters. Using RL approaches

allows the controller to be learned from experimentation, acquiring a human-like tunability (one goal of this

dissertation), advantage which is going to be fully described in the following chapter 5.

3.4 Validation Metrics

To validate the SC, 3 main methods are used: case-by-case analysis, qualitative metrics and

quantitative metrics.

Case-by-case analysis is used when specific rehabilitation scenarios are performed and the driving

paths are compared. Huang et al. [5] tests 4 scenarios by comparing the paths of the intended and

autonomous controllers with the actual walker COOL Aide path. The scenarios described try to evaluate

how the SC behaves when: the intention commands initially try to cause collision, although, after some

time, the user complies with the autonomous recommendations (shown in Figure 3.4 (a)), the user

commands consistently try to cause a collision, the commands of intention and autonomous mode are

in agreement with a low velocity, and the walker and user passing through a narrow door [5]. In all

scenarios where the user commands pointed to collision, the SC was able to prioritize the autonomous

controller, and after the obstacle was circumvented the walker returned the control to the user. Jiménez

et al. [6] established also 2 test scenarios where it is studied how the SC behaves when: the reference

path is composed by straight paths and the walker starts on top to the path, and the walker is not on top

of a circular reference path (Figure 3.4 (b)). Jiménez et al. [6] proved that the walker is always able to

follow the path closely while allowing smooth trajectories to be performed aligning with the intention of the

patient. Many other studies evaluate the system by performing scenarios similar to the ones mentioned

before [15, 20, 22–24], proving that each offers a certain level of freedom for the user to manipulate the
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walker, however, establishing a comparison between all controllers and scenarios is complicated due to

the subjective nature of the results and the diversity of scenarios.

(a) (b)

Figure 3.4: Examples of case-by-case analysis of the SC in the state-of-the-art controllers. In (a), Huang et al. [5]

compare the trajectories performed by the actual with the trajectories predicted to be performed by the intention and

autonomous controllers. In (b), Jiménez et al. [6] intended to evaluate the pattern of the SC when the UFES walker

and patient were positioned outside the predefined path.

Qualitative metrics are used by Jiménez et al. [6] and Sierra et al. [15] through the use functionality

questionnaires. Sierra et al. [15] use question such as: ”I think the robotic device makes me feel safe?”,

”I think the device guides me well”, ”In this session, I felt that the device had the control of the path to

be followed”, among others, while Jiménez et al. [6] ask ”I felt that the smart walker was guiding me”

and ”I felt an intuitive interaction with the smart walker”. Answers to both sets of questions lead to the

conclusion that both SCs are able to reach the set objectives [6, 15]. The question used are useful from

an ergonomic standpoint, however, they do not necessarily indicate safety and efficiency in rehabilitation

or guided assistance, and do not help in the comparison between literature controllers.

Quantitative metrics try to solve the subjectivity issue from the case-by-case analysis and quantitative

metrics. Jiménez et al. [6] use the Kinematic Estimation Error which compares spatially the global path

and the actual path of the UFES walker. The Kinematic Estimation Error (KTE) is expressed by the following

expression

KTE(xactual, xglobal path) =

√
[E [xactual − xglobal path]]

2 + Var [xactual − xglobal path] (3.2)
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where xactual and xglobal path are the actual and global path coordinates described in the rehabilitation

scenario. The highest KTE values registered by Jiménez et al. [6] were 0.3 ± 0.1337 which might infer

that the walker is able to diverge from the initial planned global path. Graf and Schraft [23] and Sierra et al.

[15] measure the relative ammount of time that the SC prioritized the autonomous and intention modes

throughout the episodes. Sierra et al. [15] register an average of user control of 66.71% over 7 subjects

replaying 10 episodes each, while Graf and Schraft [23] registered 31%. Sierra et al. [15] also measured

the average velocity of 0.3m/s which is within normal gait velocities - important to avoid falls. Lastly,

Spenko et al. [22] compares the distance to obstacles registered in scenarios with SC and free-driving,

reaching the conclusion that the controller is able to always maintain a distance to obstacles with increased

average (around 0.17) and diminished variance. Following the conclusions referenced by the authors, the

controllers proposed indicate themselves capable of solving the issue of this dissertation. The quantitative

metrics present are indeed more objective, although the lack of standardization compromises, again, the

comparison between the different controllers, e.g., the 66.71% and 31% of scenario time given to the

patient registered by Sierra et al. [15] and Graf and Schraft [23], respectively, can lead the reader to think

that the controller proposed Sierra et al. [15] is better than the one from Graf and Schraft [23], however,

the comparison is not valid due to neither the environment configuration nor the paths described being

the same.

Overall, the metrics presented by literature vary from author to author, compromising the validation

process of each controller developed. Case-by-case scenario analysis, despite validating with an inherent

subjectivity and only being capable of validating the SC for use in scenarios similar to the ones tested (not

being able to extrapolate to general scenarios), are the ones that are most capable of understanding directly

the behaviour of the walker, because they only try to explain certain constrained scenarios. Qualitative

metrics and Quantitative metrics are based on simple and indirect heuristics that might be able to indicate

the efficient and safe use of the device, however most metrics might lead to a false sense of validity for

general scenarios of aided locomotion.

Summary In the following Table 3.1, a summary of the SC frameworks that exist in the state-of-the-art

are presented, with the respective properties and functionality bullet points.
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Table 3.1: Summary of SCs available in the state-of-the-art.

Authors

(Walker)

Path

Following

Obstacle

Avoidance

Shared

Controller
Bullet Points

Morris et al.

[20] (Normad

XR4000)

4 6
Angle

Threshold

- Angle between ideal and walker

paths

Graf and

Schraft [23]

(Care-O-bot II)

4 4
Angle

Threshold

- Angle between obstacle tangent

and walker path

Sierra et al.

[15] (AGoRA)
4 6

Angle

Threshold

- Angle between ideal and walker

paths

- Windowed long term approach

Jiménez et al.

[6] (UFES)
4 6

Impedance

Controller

- Angle between atractor-path and

intention velocites

McLachlan

et al. [24] (UTS)
4 6

Fuzzy

Controller

- Fuzzy Rules

- Membership Function

Huang et al. [5]

(COOL Aide)
6 4

Impedance

Controller

- Relative Distance and Velocity to

obstacles

Spenko et al.

[22]
4 4

Impedance

Controller

- Difference in position, velocity and

acceleration between ideal and

actual path;

- Stability Criteria
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Chapter 4

Review of Reinforcement Learning

Go is a board game, created in China 3000 years ago, which puts 2 players competing against each

other. The basis of the game is placing stones (either white or black dependent on the player) on the

board creating territory boundaries. The player that covers the most area in the board is the winner [44].

The number of available configurations in the board is not trivial to calculate because not all permutations

of board configurations are valid, so Tromp and Farnebäck [45] proposed a method that calculates in

a board of 19x19 (standard board size) there are 3n
2
= 319

2
= 1.74 × 10172 valid and non valid

board configurations and 1.2% of those are actual legal positions. Each player has to filter the valid from

the invalid plays, which might be difficult in some circumstances, and within each valid calculate which

presents itself as the most promising play.

In March 2016, the algorithm AlphaGo [46] developed by DeepMind ”competed against legendary Go

player Mr Lee Sedol, the winner of 18 world titles, who is widely considered the greatest player of the past

decade” with a 4 - 1 victory in AlphaGo’s favor [44].

AlphaGo uses DRL as its functionality basis, by tuning a DNN that determines what are the best actions

for each board configuration and another that determines how favorable a choice is to make. It tunes both

DNNs by capitalizing on a reward function which represents the autonomous agent wins [46].

The use of RL is explored within the context of this dissertation, mainly for two reasons: these

algorithms use an abstract reward capable of being specified by a medical expert with ease, and are

capable of learning highly complex behaviours, while avoiding the use of simple heuristics to perform any

task.

In this chapter a review of theoretical concepts about RL is presented. There is a wide range of

algorithms within the field of RL but this is review is pointing towards explaining DRL, more specifically
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PPO because this is the used approach in this dissertation.

4.1 Basics

RL is a scientific field dedicated to understanding how an agent is able to learn how to perform a

certain task by trying to maximize a reward [27]. It does so by interacting with the task’s environment

and figuring out which actions obtain the greater rewards, towards possibly converging to a behaviour that

achieves task completion. The simple pipeline of any RL algorithm is shown in Figure 4.1 and 4.2.

Environment

Agent

A
c
ti
o
n

Interpreter

Reward

State

Figure 4.1: Schematic showing the main components of an RL algorithm.

Note. By Megajuice - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=

57895741

Reinforcement Learning

Choose an action a according to the agent’s behaviour;

Perform the chosen action a on the environment;

The information needed for the decision making process is registered (state s) once the

effects of the action a have taken place;

A reward r is attributed to the transition between states and the respective action a
performed.

The agent uses the information from the transition and reward to tune its behaviour.

The cycle repeats with the new environment configuration and the updated behaviour.

The algorithm ends when a certain task performance criteria is met.

Figure 4.2: Reinforcement Learning generic algorithm [27].
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The agent’s behaviour is always tuned so that the maximum amount of reward is earned in future

interactions, meaning that if a certain action obtained a good reward, the agent chooses to perform that

action in that environment configuration and vice-versa. It can be stated that the agent learns by making

good decision but also by making mistakes [27].

4.1.1 Markov Decision Process

Markov Decision Process (MDP) is a mathematical framework that models the decision making

process. It can be described by relationships between 4 vector spaces - state space S, action space A,

probability space P and reward spaceR. As explained before, the agent interacts with the environment at

each time step selecting an adequate action a for each state s, registering also the ”next state” or ”future

state” s′ and reward r [47].

A possible configuration of a certain MDP is shown in Figure 4.3, which contains multiple states (blue

square) and actions (red circles). The state-action pairs are connected to another state with a reward

and a probability associated. The reward represents the ”quality” of each transition, in terms of task

performance.

Figure 4.3: Graph of a possible MDP.

MDPs are stochastic frameworks so there is a uncertainty associated with each transition such that

[47]:

∑
s′∈S

∑
r∈R

p(s′,r|s,a) = 1, for all s ∈ S, a ∈ A(s) (4.1)

where p is the probability of a transition. In the example given above, it can be seen that if the agent is

situated in s0 and executes action a1, it has a chance of ending up in s1 and s2 of 0,3 and 0,7, respectively.

With each transition - triplet (s, a, s′) - there is an associated reward, but due to the uncertainty of
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each transition it is useful to determine the expected reward of each state-action (s,a) pair [27]. The

expected reward obtained when performing a at s is calculated as suggested in the following expression.

r(s,a) =
∑
r∈R

r
∑
s′∈S

p(s′, r|s, a) (4.2)

In the case of Figure 4.3, the expected reward of performing a1 on s0 is:

r(s = s0, a = a1) = (ra1,s2 × pa1,s2) + (ra1,s1 × pa1,s1)

= (1× 0,7) + (2× 0.3) = 1,3
(4.3)

A simple example of an MDP is the mathematical formulation of playing in a slot-machine. The state

space is filled by the possible configurations of the slots and the action space is filled with only the ”play”

or ”not play” options. Each configuration of the slot when played has a chance of ending up in any state,

and the reward corresponds to the amount of money it outputs with such transition.

Up until this point, the reward of each transition is given as a known component, but in a real context

it is up to the user to describe a reward function that specifies the optimal behaviour of the agent on a

certain task. On simple tasks like the slot-machine context, it is simple to understand that the reward

should be the amount earned with a certain transition. On complicated tasks like winning a game of Go,

it is hard to quantify individually each transition between board configurations, because one only wins

when the game is over [27]. A ”simple” solution to the problem, for the game of Go, is considering

that the sequence of board configurations (state) and piece placement (action) from start to the end of

the game group together as one super state and action, respectively. The agent is rewarded in case the

state-action pair originates a win, otherwise no reward is attributed. This solution poses serious issues

from an optimization point-of-view, despite being theoretically possible. The shaping of the reward in any

MDP needs to describe well the task at hand, considering also the demands forced by the certain reward

function upon the capacity of an agent to learn from highly-abstracted rewards, like the one mentioned

before for game of Go [27].

4.1.2 Policy and Value Functions

With MDPs as a formulation of the environment, it is time to define how the reward is maximized by

the learning agent.

Up until this point, it was defined that the agent tries to maximize the reward at every step. This is

not necessarily true because, in most tasks, if the reward is maximized at every step, the overall reward
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accumulation on the long-term might be compromised. When considering investing in any business, the

businessman tries to maximize his earnings, but there might be some short-term losses that allow for

long-term gains. Then, instead of maximizing rewards at every step, the cumulative reward is proposed as

maximization target

Gt = rt+1 + rt+2 + ...+ rt+T (4.4)

where G is the return, t is the time step index and T is the number of time steps to the task’s episode [27].

An episode is defined by the interval between the start and end of the task. An episode might be

finite or infinite. On both types of episode, maximizing the total return might pose some problems like

obtaining infinite return on infinite-type episodes when the optimal behaviour is considered. Then, to learn

the optimal behaviour, one has to consider a certain limited horizon that allows the agent to track long-term

performance while paying attention to short-term actions. For that, the concept of discounted return is

introduced:

Gt = γrt+1 + γ2rt+2 + ...+ γT rt+T =
∞∑
k=0

γkrt+k+1 (4.5)

where γ is the discount rate between 0 and 1. This means that, at each time step the importance of each

reward falls by a factor of γ. With a quick analysis it can be seen that Equation 4.5 is a geometric series

and so convergence is always guaranteed for 0 ≤ γ < 1. It also can be noticed that when γ is 0 only

the immediate reward is considered, and when is 1 (despite convergence not being guaranteed) the full

episode is considered [27].

Now, with a clear idea of what actually the agent is trying to maximize, the concept of policy is

introduced. Policy is the entity responsible for describing the behaviour of a certain agent because it

constitutes the mapping between states and the probability associated with the execution of each action

π : S → A (4.6)

.

The ”quality” of such policy is given by its associated value functions, making RL the algorithm

responsible for finding the optimal policy π∗, which is the policy (or policies) that maximize the respective

value functions. There are two types of value functions: the state-value function v and the action-value

function q [27]. The state-value function outputs the expected return when a policy π is always followed
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from state s thereon, as showed by the following expression.

vπ(s) = Eπ [Gt|St = s] (4.7)

The action-value function outputs the expected return when a certain action a is executed at state s and

a policy π is followed thereafter:

qπ(s,a) = Eπ [Gt|St = s,At = a] (4.8)

.Each of the value functions has specific uses in the learning process, because both track the performance

of the policy, but have the capacity to be more specific or more generic, with respect to the action-value

and state-value functions, respectively. Equations 4.7 and 4.8 are correlated by

vπ(s) = qπ(s,π(s)) (4.9)

, so the state-value function can be described as the action-value function when the actions analyzed are

always drawn from the policy π. The reverse correlation is also determined as the following expression

4.10.

qπ(s, a, s
′) = r(s, a) + vπ(s

′) (4.10)

4.1.3 Learning

The learning process can be performed in different ways, some more time efficient but more

memory-consuming and vice-versa. Dynamic Programming (DP) and Monte Carlo (MC) methods are the

ones classically used as learning processes but an amalgamation of the two called Temporal-Difference

(TD) is also used. In this sections all methods are going to be discussed.

4.1.3.1 DP

In dynamic programming the learning process occurs by following the Generalized Policy Iteration

method. This method contains 2 essential elements: the policy evaluation and the policy improvement.

The Policy Evaluation refers to how the value functions are estimated based on the policy behaviour and

the Policy Improvement step refers to how the policy is changed w.r.t. the new value function [27].

Policy Evaluation is done by recursively, through Bellman equations, calculating the values of each
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state based on the value of the next state:

vπ(s) = r(s, π(s)) + γ
∑
s′

p(s′|s,π(s))vπ(s′) (4.11)

Policy Improvement is done by finding the best actions for each state:

π′(s) = argmax
a

∑
s′,r

p(s′,r|s,a) [r + γvπ(s
′)] (4.12)

With a continuous cycle of Evaluation and Improvement, shown in Figure 4.4, both policy and value

functions are guaranteed to converge to an optimal state, where the task is performed perfectly [27].

Figure 4.4: Generalized Policy Iteration Schematic [27].

From Equations 4.11 and 4.12, one can determine that a model of the environment is needed - to

know the transition probability p one requires a model to determine which future states s′ are reachable

from current state s. Dynamic Programming approaches allow for solving model-based problems - a

problem where the full transition distribution is known - while model-free problems are impossible to solve.

Creating models of games like Tic-Tac-Toe is easy, but in the context of autonomous driving the task is not

trivial. Also, DP does not scale well due to the curse of dimensionality, caused by the recursiveness in the

equations [27].

4.1.3.2 MC Methods

MC methods use a similar framework to the Generalized Policy Iteration except the way that policy

evaluation is done, because they try to remove the model required by the DP algorithms. Due to a model

not being present in MC, an approximation of the value’s distribution is needed. The approximation is
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done by averaging multiple returns G from episodes starting from state s. Two problems arise from the

last requirement:

• Because no model is present, multiple trajectories need to be rolled out so that the agent

understands the dynamics of the environment at hand. So, to infer the value of a state at least one

trajectory needs to include that same state, otherwise no information about its viability is available

due to the unavailability of a model. Due to the stochasticity of the MDP if only one sample of each

state is available, the estimation will have low chances of representing the actual average value of

the state.

• When creating an estimation of the value function, the state-action pairs included in the

episode-sample-dataset must be representative of the state and action spaces. In certain cases,

the dataset acquired might only contain samples from a subset of both the state and action spaces,

due to bad exploration. If optimal behaviour lies outside of one of these subsets, then the agent will

not be aware of such fact and will never try to converge to such behaviour.

MC methods solve the first problem by rolling out numerous episodes, so that the expectation values

are the most accurate possible and slowly update the estimation with the following expression

v(st)← v(st) + α [Gt − v(st)] (4.13)

with α being a step-size for smooth the updates [27]. With multiple samples available and with small

enough α the value converges to an accurate estimate.

The second problem is solved with use of on- and off-policy methods. On-policy methods try to find

the best policy by using just one policy as expected. This means that the training process will always be

executed with trajectories (episode samples) performed by the policy itself. Off-policy methods find the

best policy by sampling trajectories with a different policy, creating the need for a target and a behaviour

policy. The target policy is the actual policy that the agent is trying to learn, while the behaviour policy

translates how the agent searches the state-action space [27].

4.1.3.3 TD

TD methods work as an alternative solving the issues of previous methods which are: DP is

model-based and MC does not bootstrap (update estimates based on other estimates). TD fixes these

issues by dropping the need to rollout full trajectories using the bootstrapping of DP through the estimation
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of v, consequently dropping the need for a environment’s model [27]. So, the equations 4.11 and 4.13

can be merged into the Temporal-Difference value update with the following Equation 4.14 [27].

v(st)← v(st) + α [rt+1 + γv(st+1)− v(st)] (4.14)

4.2 Deep Reinforcement Learning

4.2.1 Deep Learning

Deep Learning and DNNs have achieved revolutionary results on speech recognition, computer vision,

pattern recognition, and many others [48]. DNNs are able to, for example, classify images of animals

and their breeds just from ”feeding” it examples of what is and what is not a certain type of animal

[49]. These DNNs are included within the group of the function approximators, because they transform a

certain dataset into a parameterized model [49]. Then, one only needs to know the parameter values and

model to fully represent the initial dataset distribution, reducing enormously the amount of memory and

computation time to estimate the output of a certain distribution [27].

These networks, like the one in Figure 4.5, are composed of various layers each with a specific function.

The layers connect to each other sequentially and their multiple connections from the input to the output

and activation functions are able to model highly abstracted non-linear models [49].

Figure 4.5: Example of a DNN. Adapted from [50].

There are two ways of training such networks: supervised learning and unsupervised learning [49, 51].

Supervised learning tunes the network by minimizing the error between the output of the network and the
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set of ideal outputs when the network’s input is subjected to a certain vector, meaning that is going to try to

mimic a pre-built dataset [49]. Unsupervised learning on the other hand is going to find the best network

parameters by tuning them by finding structure and patterns within the data [51]. Algorithms like gradient

descent and its variations for non-differentiable equations are used to adjust the network parameters

minimizing the output errors mentioned before - either by using external metrics as in supervised learning

[49] or using internal metrics in unsupervised learning [51].

Different kinds of layers originate different behaviours. Fully-connected layers are the ones responsible

for creating generic non-linear classifiers or regressors in the discrete and continuous domains, respectively

[52]. Convolutional layers are mainly responsible for the success of computer vision because they

detect local features, taking the context of the input into consideration. In Figure 4.5, the first layer is

convolutional and is able to detect edges within the images [52]. The symbiosis within the full structure

of the neural-network allows for the creation of a useful and efficient non-linear model.

4.2.2 Deep Actor-Critic

RL algorithms can be split into two sections: policy-based and value-based. Policy-based algorithms,

upon each update, create a new estimation of the value function based on the trajectories sampled and

update the previously saved policy [27]. Value-based algorithms, on the other hand, update the saved

estimation of the value function and create a new policy every time [27]. Policy-based algorithms have

faster convergence and are good with continuous and stochastic environments, while value-based are more

sample efficient and stable [27].

When using either policy-based or value-based algorithms, some structure will need to function as

an approximator for the component saved (policy or value). In the Basics section of this Chapter, the

information shown refers to discrete state and action spaces. When considering a continuous environment

the properties and algorithms can still roughly apply but the dimensionality of the problem increases

drastically. In simple problems, e.g., the game of tic-tac-toe, there is 255.168 possible configurations, so by

today’s computer memory capacity, a table or a table-like structure can be used to store the optimal action

for each environment state. When considering cases where either the environment is not discretizable

(autonomous driving scenario) or the dimensionality is enormous (game of Go), saving the optimal policy

π∗ in a table-like structure is not feasible for two reasons: there is not enough memory to store the

information, and even if this was not the case it would take a lot of time just to find the position of the table

where a certain state is positioned.

Deep Actor-Critic algorithms try to solve the issues originated by the curse of dimensionality and by
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policy/value-based algorithms. Actor-Critic algorithms consist of a mix of the policy- and value-based kinds

of methods, by keeping an estimation of value and policy, avoiding the need always build new estimates

from scratch [27]. Figure 4.6 depicts a diagram of the actor-critic pipeline.

Reward Action

Critic Actor

Current
Value 

Estimation

Value Error
Calculation

Value
Estimate

𝑣 𝑠 /𝑞(𝑠, 𝑎)

Policy 
π

Policy 
Update

Environment

State

Agent

Figure 4.6: Diagram of the Actor-Critic algorithms.

The Actor (Policy) depicts how the agent behaves while the Critic ”criticizes” the actions of the actor

based on previous knowledge of the state (v) / action (q) values. Both Actor and Critic always keep

an estimation of both policy and value function, respectively, removing the necessity for creating a new

estimation of each at every cycle.

Deep Actor-Critic, inherit the structure of Actor-Critic, trying to solve the scalability issue, using DNNs

as estimators of the value function and policy.

4.3 PPO

PPO is a Deep Actor-Critic algorithm and it is going to be detailedly analyzed due to being used in the

context of this dissertation. It was first proposed by Schulman et al. [53] in 2017 with the support of the

OpenAI team. PPO focuses on achieving 3 objectives:

1. Improving the agent performance - This is done by a similar policy gradient approach using the

advantage function A part of gradient estimator.

2. Stabilizing the training process - If the agent, coincidently, evaluates a group of trajectories as

”extremely good”, it has a big incentive to update its policy drastically and might compromise the

whole training process converging to a local instead of a global maximum.
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3. Acting in a conservative manner - If no evidence exists proving that a certain policy is good, then

the behaviour should stay generic allowing for exploration.

The loss function defines the performance of the current state of the DNN allowing optimizers -

algorithms responsible for running gradient descent algorithms [54] - to tune parameters towards reducing

the loss [27]. To translate the mentioned goals of PPO, the policy is tuned with the following loss function

L(θ) = E [Lclip(θ)− aLv(θ) + bS[πθ(s)]] (4.15)

, where L is the global, Lclip the clipped surrogate, Lv the value and S the entropy loss functions, and θ

the network parameters.

The clipped surrogate loss emphasizes the necessity of improving the agent’s performance, but not

allowing the policy change its behaviour drastically. It uses the Advantage metric A which measures how

much better it is to perform a certain action over the action advised by the current policy in state s, i.e.,

what is the relation between qπ(s,a) and vπ(s). The following Equation 4.16 expresses the advantage A

formally.

Aπ(st, at) = Qπ(st, at)− Vπ(st) = Rπ(st, at) + Vπ(st+1)− Vπ(st) (4.16)

The clipped surrogate loss also uses the probability ratio pr between old and new policies to quantify the

change caused by the update. Given equation

prt(θ) =
πθ(at|st)
πθold(at|st)

(4.17)

, the certainty of performing a given s and πθ is higher, lower and equal if prt is higher, lower and equal

to 1, respectively, all relative to the previous policy πθold . Finally all the previous components merge into

one equation

Lclip(θ) = Eπ

[
T∑
t=0

min (prt(θ)At, clip(prt(θ), 1− ε, 1 + ε)At)

]
(4.18)

where ε is the clip-factor responsible for not allowing the policy to diverge - this value usually is around 0.2

Schulman et al. [53]. The first member of the minimization function in J allows the policy to be optimized

by maximizing both Advantage and certainty. The second member is responsible for setting the limits

for each update of the policy. The minimization is used so that the more conservative choice is always

prioritized.
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Analyzing PPO from a Deep Actor-Critc point of view, it can be assumed that the actor and critic

networks must be essentially similar, due to the inputs of both networks being equal - for both policy and

state-value function the input is the state vector - and the networks trying to generalize essentially the same

data. The difference between the networks is usually located in the output sections - the policy outputs the

action vector and the state-value function outputs a scalar value. The value loss Lv component includes

this similarity in the networks, motivating the policy to progressing to where the actual state-values are

equal to the estimations.

The last component of the loss function is the entropy S, motivating its increase, allowing the networks

to not become overconfident promoting exploration.

With the global loss L fully composed, a gradient-descent algorithm is run on the policy network

parameters, converging π to π∗. The state-value network is tuned similarly, but instead of the loss

function described for the policy, the mean-squared error loss between the outputs of estimation and

true state-values is used. PPO runs episodically like demonstrated in the algorithm of Figure 4.7.

PPO

for iteration = 1, 2, ... do

for iteration = 1, 2, ..., N do

Run policy πold in environment for T time steps

Compute advantage estimates A1, ..., AT

end for

Optimize L w.r.t. θ, with K epochs and mini-batch size M ≤ NT

θold ← θ

end for

Figure 4.7: PPO’s algorithm. Adapted from Schulman et al. [53].
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Chapter 5

WALKit and Shared-Controller Architecture

Overview

The current chapter offers a general review of the WALKit walker and the SC architecture implemented

in the walker. This chapter tries to expose the walker’s features and hardware/software components

with and without the implementation of the SC proposed. The WALKit system and environments were

also implemented in the simulator Gazebo [55] and a description of the simulation environment is also

presented in this chapter.

5.1 WALKit Walker

The WALKit is a complex walker composed of multiple systems like gait and posture assessment,

local and remote driving modules. In Figure 5.1 a complete view of the walker is shown with its multiple

components.

Two motorized wheels in the rear (Figure 5.1b (F)) are controlled to steer the walker in any direction,

but software restrictions do not allow the walker to drive backwards to avoid collisions with the patient. The

walker is fully electric and the motors are supplied by the batteries in the low-level hardware (Figure 5.1b(I)).

The low-level hardware is also responsible for controlling the motors and relaying the sensor data from

wheel encoders, sonars, and others to the high-level computer.

The patient controls the motorized wheels by moving the handles (Figure 5.1c (J)) to the desired

direction (front, left, right) or leaving it in neutral (no movement). The walker can also be controlled

remotely, but this is not included in this dissertation because the remote control is only used by experts.
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13 
 

according to the desired direction. Each motor is controlled independently using a dedicated architecture, 323 

allowing to move forward, turning left, and turning right. Additionally, they can be decoupled from the wheels if 324 

needed, becoming a fully passive device, to facilitate transportation within the clinical facilities. The device is 325 

controlled using a user-friendly and ergonomic handlebar (Figure 2J) and fed with two 12V rechargeable 326 

batteries. The handlebar, consisting of a spring-based system with embedded potentiometers, was specially 327 

designed to fulfill the patients’ morbidities, and it is responsible to directly decode the users’ motion intention 328 

(Alves et al. 2016).  329 

The smart walker is composed of numerous embedded sensors, namely RGB-D cameras (Figure 2A and 2C), 330 

ultrasonic sensors (Figure 2G), a laser range finder sensor (Figure 2G), and an infrared sensor (Figure 2H), that 331 

will allow the user’s continuous monitorization and the implementation of safety strategies. Additionally, the 332 

smart walker contains an external IMU to estimate the center-of-mass (COM) and perform a biomechanical 333 

analysis. 334 

 335 

Figure 2: ASBGo’s views: a) front, b) rear, and c) top. The fifth prototype will have minor modifications to the mechanical structure. It will 336 
pass to a three-wheel configuration to provide more manoeuvrability while maintaining the patient’s stability. The prototype includes (A) 337 
RGB-D camera for posture analysis, (B) touch screen, (C) RGB-D camera for gait analysis, (D) an electric lifting system, (E) main CCU, (F) 338 
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Figure 5.1: WALKit overview. (a) Front, (b) rear, and (c) top views are presented.This figure shows the RGB-D

cameras for postural and gait analysis ((A) and (C) respectively), (B) touch screen, the (D) lifting columns, (E)

high-level computer, (F) motors and motorized wheels, (G) sonar array, (H) infrared sensor, (I) low-level hardware,

(J) patient driving handles, (K) forearm support with force sensors, (L) emergency button, (M) wood table, (N)

harness (removable), and (O) horizontal handles.

A touch screen is included to interface the machine and human so that either the patient or the medical

expert can tune maximum velocities, engage the multiple functioning modes (local, remote, autonomous,

SCs), perform rehabilitation assessments and record data, and receive feedback from the machine in a

human readable way.

Also the walker has additional features important to tasks unrelated to this dissertation like: video-depth

cameras associated to gait and posture assessment algorithms; lifting columns, table and removable

harness for increased comfort and support; and other sensors that offer a more complete depiction of the

system patient-walker-world.

In relation to the architecture of the software, represented in Figure 5.2, the walker splits into two parts:

high-level - responsible for running highly abstracted and computationally heavy algorithms like graphical

interfaces, operative systems, gait and quality assessment (computer vision) - and low-level - responsible for

interfacing the physical components like sensors and actuators and also running some low level software

and firmware such as proportional–integral–derivative controllers. All the software in the high-level needs

to always communicate with other components in an efficient and organized way, and for that the software

Robot Operative System (ROS) is used [56]. ROS requires all communications between modules to be
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centralized, e.g., if the autonomous mode is driving the walker, the message from the sensors is acquired

and structured by the low-level components, sent to the high-level ROS core, interpreted by the autonomous

controller, and a command finally sent back to the ROS core which redirects to the low-level consequently

to the wheels. In the sections 2.4.1 and 2.4.2 it was mentioned that only some planners, either global or

local would be analyzed. This restriction was based on the requirement that the algorithm chosen needed

to be included within ROS Navigation Stack1, guaranteeing the robustness of the packages.
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Motors’
Drivers
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High-Level
(computer)
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Linux 
(Ubuntu)

Sensor Data
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Figure 5.2: An overview of the hardware and software deployed in the WALKIt walker.

The walker is designed with maximum linear and angular velocities of 1 m/s and 0.39 rad/s so

that patients with GD can keep up with the walker’s movement, and it should always guarantee smooth

movement so accelerations are always limited to a maximum of 2.0m/s2.

For further reference in this dissertation, a origin reference frame will have to be established as ”root”

for the whole walker, and it will be mentioned solely as ”origin” or ”origin point/frame”. The origin is

positioned at the point with equal and lowest distance from both back wheels, as shown in Figure 5.3.

1http://wiki.ros.org/navigation
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Figure 5.3: Origin reference frame of the WALKit walker. Also the XYZ axis are colored in red, green and blue

respectively.

When a certain algorithm publishes velocity commands it does so by describing the linear and angular

velocities. The linear velocity is a vector aligned with the X axis of the origin reference frame, and the

angular velocity is expressed around the Z axis. These commands are translated into angular wheel

velocity commands by the expressions

wleft (vwalker, wwalker) =
1

rwheel

(
vwalker − wwalker

d

2

)
wright (vwalker, wwalker) =

1

rwheel

(
vwalker + wwalker

d

2

) (5.1)

where vwalker is the linear velocity, wwalker the angular velocity, rwheel the rear wheel radius, d the

distance between the rear wheels, and wleft and wright the angular velocities of the left and right wheels,

respectively.

When driving the walker it is essential that the walker does not collide with the patient. The origin

reference frame was placed at the position which the patient is located, so that the walker always turns

using the patient vertical axis as turning axis.

5.1.1 Simulator

Developing and debugging all the components introduced in the walker is a time-consuming process

so a simulator was constructed to aid in this phase. The simulator must replicate the walker-world physics

interactions, the hardware present and the software restrictions.

Koenig and Howard [55] developed a robotics simulator named Gazebo, that evolved into a highly

benchmarked framework capable of being interfaced with ROS [57] while having a diverse library of

modules that simulate real world hardware components like LiDAR, ultrasound, motor controllers, etc.
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The WALKit mechanical design was created using the Computer-aided design (CAD) software

SolidWorks (Dassault Systèmes SE, Vélizy-Villacoublay, France). To export the design to Gazebo, ROS

offers the library solidworks_urdf_exporter2 that creates an Unified Robot Description Format file with

the correspondent STL meshes files for each part. The walker CAD design contains multiple parts and

subparts, so it was deemed acceptable to export the static components as one part and the movable

separated from each other. Then, the chassis, touch screen, handles were exported as one part (Figure

5.4 (green)), while the rotating pieces from the front wheels (Figure 5.4 (red)) and wheels (Figure 5.4

(blue)) are independent.

(a)

(b)
(c)

Figure 5.4: WALKit Gazebo model. (a) Front, (b) rear, and (c) top views are presented. A model of a nurse is

included for spatial scale reference. The chassis is green, the rear and front wheels are blue, and the rotating front

pieces are red.

In the real walker, to send a velocity command to the wheels and to determine the actual rotational

velocity of the wheels the data sent and received is converted through multiple modules, like shown in

Figure 5.5 but, when using Gazebo, multiple pre-developed and tested packages like gazebo_ros_control3

exist and allow to fully interface with ROS. Ideally, it would be better to use exactly the same packages

in both simulated and real environments, but due to some constraints in the real walker requirements

this was not possible. A workaround to this problem is the existence of an interface, so that high-level

information can adequately transform depending if the real or simulated environments is used.

2Source code: https://github.com/ros/solidworks_urdf_exporter
3Source code: https://github.com/ros-simulation/gazebo_ros_pkgs
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Figure 5.5: Control framework schematic for real and simulated environment.

In Figure 5.5, the framework shown only represents the control portion of the global framework and a

similar structure is used for the sensor system.

Two Gazebo worlds were used in the simulation, with very different properties:

• Corridor - This corridor, shown in Figure 5.6, was created from scratch and it is generally used to

benchmark the walker performance under very strict circumstances due to being narrow and full of

obstacles. Usually these environments do not exist in gait rehabilitation scenarios with the walker,

but it is useful to stress-test the machine. This world is fully static and only contains obstacles next

to the walls.

(a)

(b)

Figure 5.6: Corridor world in the Gazebo Simulation. A top view a and perspective view b are presented.

• Hospital - This world, show in Figure 5.7, was adapted from an online repository

53



WALKit and SC Architecture Overview

aws-robomaker-hospital-world4. This world is an accurate depiction of a real hospital, so it is the

ideal environment for the development process. Unlike the Corridor world, the Hospital world is full

of obstacles, not just close to walls, but also in the middle of corridors which prohibits the walker’s

passage. The version of the hospital in this dissertation is different from the one in the repository,

because more static obstacles were added in, so that corridors and rooms would be more varied.

Also, models of nurses move around the hospital with predefined and diverse trajectories so that

the dynamic nature of this kind of scenarios is accurately portrayed.

(a)

(b) (c)

Figure 5.7: Hospital world in the Gazebo simulation. A top view a and prespective views b and c are presented.

5.2 Shared-controller Architecture

The purpose of this section is to offer a generic overview of the SC developed in this dissertation

merging the different concepts referenced in literature with ours. Nevertheless, each decision is going to

be detailedly described in the following chapters 6 and 3.

The SC proposed, shown in Figure 5.8 splits into 3 sections as suggested by most literature

approaches: patient intention detector, autonomous supervisor and prioritizer, as mentioned in chapter 7.

4Source code: https://github.com/aws-robotics/aws-robomaker-hospital-world
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This structured showed an overwhelming acceptance Jiménez et al. [6], Sierra et al. [15], Spenko et al.

[22], Graf and Schraft [23] due to inheriting the benefits of modular architectures.
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Figure 5.8: Overview diagram of the SC proposed in this dissertation.

To detect the intention of the patient, we resort to the movable handles implemented in the WALKit (see

Figure 5.4 (c) (J)). As already mentioned in section 3.1, Morris et al. [20] reference that movable handles

are not ideal due to risking the well being of the patient. Then, using the WALKit’s movable handles might

not be safe. However, the table from Figure 5.4 (c) (M) is the actual structure that offers physical support,

so, the movable handles implemented the WALKit are safe to use in this context, while possibly increasing

the intuitiveness of use. The input of the handles is then translated to velocity commands (Equation 5.1).

To replace the supervisor, a SLAM system with global and local planners to locate, map and

autonomously control the walker for collision avoidance. The Cartographer SLAM algorithm [25] and

the LiDAR sensor Hokuyo’s scanning rangefinder URG-04LX-UG01 (Hokuyo Automatic Co., Ltd., Japan)

were implemented. Cartographer performs its task by splitting the problem into a grid-based method for

local small maps and using a graph-based approach to merge all local small maps into one coherent

map [25], which enables the WALKit walker to map huge environments with high-precision efficiently,

advantages which were already mentioned in section 2.2.2. Also, Cartographer was already implemented

in a ROS package, facilitating the implementation process. Despite being expensive, Hokuyo’s LiDAR

system was available for use and, following literature reviews, these sensors are the most promising in
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terms of functionality, as referenced in Table 2.1.

To drive the walker autonomously to a certain pre-chosen goal, the A* global planner was used. The

A* algorithm was chosen due to its increased efficiency over Dijkstra’s. A* converts the pose acquired

and map by Cartographer into a path capable of reaching the destination. To convert the spatial path to

velocity commands (Equation 5.1) readable by the walker, the local planner Dynamic Window Approach

algorithm was used on the basis that is theoretically more efficient and faster [42]. The Dynamic Window

Approach ROS package allows for a point cloud representing the cost of the surrounding of the WALKit

walker w.r.t. the score function used in the local planning process to be published.

To prioritize either the autonomous supervisor or the patient, the PPO algorithm with its Actor-Critic

structure is used. The intention and autonomous velocity commands and the local planner’s cost map is

used as a state space. The velocity inputs allow the RL agent to be aware what the patient and autonomous

supervisor recommend. The cost map allows for the DNNs to be aware of obstacles and viability of certain

paths relative to the convergence to the goal. The action obtained in the output of the policy (Actor),

named admittance value α, determines the relative contribution of each input command to the overall

shared velocity. If α is close to 1 the walker is fully autonomous and if close to 0 the walker is fully drivable

by the patient. The critic evaluates the performance of the actor network based on a reward function,

which motivates the WALKit walker to become autonomous when close to walls (< 0.6 m) and completely

drivable by the patient when far from walls. Choosing RL as a framework to learn how to prioritize each

source of velocity commands was due to learning the intended behaviour through the use of a highly

abstract reward function [27], trying to remove the subjectivity in rehabilitation scenarios performed by

human supervisors. The use of PPO was related to the use of DNN as non-linear, generic and scalable

function approximators towards achieving the goals set for the controller referenced in chapter 1. If in

the future we want to implement the discarded Gait Quality fall risk variable, only minimal changes are

possibly needed.

5.2.1 Computation Hardware and Updated Hardware/Software Structure

Following the rationale presented in section 5.1 and Figure 5.2, the full SC is implemented in the

high-level portion of the WALKit architecture, due to requiring increased computational power. The changes

to the system architecture are presented in the Figure 5.9, showing the addition of the SC and ADS

modules.
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Figure 5.9: An overview of the updated hardware and software deployed in the WALKIt walker.

The following Table 5.1 presents the computational resources available in the WALKit walker and in

the computer used for simulation of Gazebo environments.

Table 5.1: Computation Resources Available

Property WALKit Intel NUC-6i7KYK Gazebo PC

Processor Model Intel Core i7-6770HQ Intel Core i7-8550U

Processor Frequency 2.6 - 3.5 GHz 1.8 - 4 GHz

No. of Cores 4 4

No. of Threads 8 8

RAM Capacity 8 GB 8 GB

GPU Model None None

The computer implemented in the WALKit walker simply runs the algorithms developed, while the

Gazebo PC not only runs the algorithms developed but also runs simulation and trains DNNs used in the

PPO framework, training which will be described in chapter 7. Training DNNs is a very demanding process

in terms of computational power, and shows significant better results when using GPUs comparing to the

use of CPUs [58]. For that reason, the used computation hardware used in this dissertation is not the

most suitable for the task at hand, however certain design choices were made to filter unnecessary data

improving efficiency.
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Chapter 6

Autonomous Driving

6.1 Introduction

In chapter 2 a description of all the individual components of the developed ADS was presented. In this

chapter the implemented ADS will be fully discussed along with the consequences of the various choices

along development, with the details about the validation protocols of the system.

As stated before, the main objective of the ADS is to create an accurate mapping of the environment,

drive the walker autonomously to the goal and avoid obstacles. These 3 objectives have a high range of

possibilities and outcomes considering the high variability of environments.

In summary, a LiDAR device scans the environment’s obstacles profile and a SLAM algorithm creates

a map and estimates the position within the map. Once a destination is chosen, the global planner creates

a path from origin to destination and the local planner translates a portion of the global plan into velocity

commands, avoiding obstacles.

The implemented packages which are going to be mentioned in this section are fully interfaced with

ROS and are developed in C++.

6.2 Sensors

The ADS needs relevant data to deduce where it locates itself and how to avoid obstacles. The sensors

chosen must feed the data to the algorithms while meeting some important criteria. The sensors chosen

should be relatively cheap so that the WALKit walker can, in the future, become a useful and necessary tool

for rehabilitation while being able to be mass-produced. Also, the sensors should not change significantly
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the structure of the walker. The walker was specifically designed to work within certain constraints, and

changing the specifications could compromise the whole walker as a rehabilitation tool, so drastic changes

on weight or area occupied are not acceptable.

The walker already contains an array of ultrasounds disposed in the front of the chassis, shown in

Figure 5.1 (a) (G). These sensors were not considered due to their low range, low angular resolution, and

occurrences of crosstalk.

The implementation of motion sensors like IMUs was deemed unviable due to the ”noisy” signals

produced by the nonexistence of ground shock absorbers making the whole walker shake on minimally

irregular surfaces.

To use the wheel encoders as sources of odometry, the roll of the wheels should be close to pure,

meaning that the wheel should not slide, and so the distance traveled can be calculated using the perimeter

and the number of rotations of the wheel. In sudden acceleration and breaking situations the wheel has

some difficulty to get a good grip with the floor, producing wheel slide, making the wheel revolutions

counted by the encoder not match the distance traveled. It should be referenced that the grip registered

in a scenario is dependent of both floor and wheel physical properties. To guarantee equal functionality in

all scenarios, using wheel encoders as sources of odometry is not advised due to dependency to the floor

properties.

The Hokuyo’s scanning rangefinder URG-04LX-UG01 (Hokuyo Automatic Co., Ltd., Japan) was

available, and was determined to be a good fit for the established requirements. Its specifications are

presented in Table 6.1. It is small and light allowing it to be placed anywhere without compromising the

structure of the walker, it has good angular resolution, and requires low power. At maximum range, the

laser can register two neighboring points as close as 4.28 cm, resolution which is able to provide a good

depiction of the environment (Figure 6.1). The only disadvantage of this laser is its short range (5 m) and

consequent failure to detect walls or any obstacles that the walker should be able to detect in a hospital

environment, which are beyond the maximum range. Also, the laser scans in 2D, so the autonomous

Table 6.1: Hokuyo’s URG-04LX-UG01 Specifications

Property Value

Range 5 m

Angular Resolution 0,352°
Accuracy 30 mm

Power Consumption 2,5 W

Weight 0,16 kg

Size 5x5x7 cm

59



Autonomous Driving

5 m0,352º

0,0428 m

Figure 6.1: Representation of the distance between two points of the a scan obtained by the Hokuyo’s

URG-04LX-UG01 LiDAR.

driving will only be achievable in a 2D space, so no significant changes in vertical position should exist,

which usually is not a problem due to rehabilitation scenarios not being performed in environments with

elevations. The 2D nature of the LiDAR system forces an assumption to be made, which is that the

environments used must be fully scannable by the rangefinder, i.e., all obstacles must be observable by

the sensor point-of-view, so, for example, furniture smaller than the height of the sensor must not be placed

in the environment. The best location in the walker for the LiDAR (Figure 6.2) was determined to be on

top of the chassis due to being one of the only positions where the field of view is not obstructed by the

walker itself nor the patient.

Figure 6.2: Photo of the Hokuyo’s scanning rangefinder URG-04LX-UG01 and its positioning in the walker.

When thinking about the consequences of 240° as field of view, one might conclude that the walker

cannot be aware of obstacles behind it. This is irrelevant because in rehabilitation scenarios the walker is

not supposed to move backwards so that no collision with the patient are registered guaranteeing patient

safety.

6.3 SLAM

With relation to the SLAM algorithm many already existing packages were considered that are widely

used: HectorSLAM [59], Gmapping [36], KartoSLAM [60] and Google’s Cartographer [25].
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When guessing the robot’s position, many SLAM algorithms need an odometry input, so that an

initial guess of the robot’s position can be used to bootstrap the optimization process. This requires the

development and implementation of odometry computation algorithms, which becomes unviable when

noisy sensors (IMU, encoders, etc.) are used. Google’s Cartographer was specially considered to be the

best algorithm because it offers support for a non-odometry-input mode. The scan-matcher - algorithm

responsible for calculating the most likely position of the robot given a certain map - of the Cartographer

software is good enough to infer estimates of initial odometry, without the need for additional sensors and

algorithms.

Google’s Cartographer [25] splits into 2 two parts: the local SLAM - a grid-based approach that creates

a small local map (submap) - and the global SLAM - a graph method that establishes constraints between

submaps, making sure that the submaps interlace, allowing loop closures. Each scan from the LiDAR is

fed as an input and the map, shown in Figure 6.3, and pose serve as outputs of the SLAM algorithm.

(a) (b)

Figure 6.3: Comparison between map created by Cartographer (a) and the real Hospital simulation environment

(b).

6.4 Global Planner

When a destination is selected by the user, the global planner creates a path using the map and pose

obtained by the Cartographer algorithm.

Cartographer outputs a map in the Occupancy Grid ROS message format which consist of a matrix

with values between -1 and 100. The higher the matrix entry value the more likely it is to be an obstacle,

and the value -1 represents a entry with no information. Usually path planners do not take the shape of

the robot into account and consider that every robot is an infinitesimal point in space. These solvers come

from graph problems and do not necessarily comply with the requirements from robotics. In this walker,

the infinitesimal point is the origin. If the robot’s pose is translated in an entry too close to an obstacle, the

walker is probably (or even certainly) in collision, so, some points on the map should not be considered
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as viable options for the path planning.

The package costmap_2d 1 is a package that creates a map with multiple layers, each with a specific

function. The layers are: the static layer - map of the environment -, the obstacle layer - tracks obstacles

directly from the sensors -, and inflation layer - pads the area next to obstacles in the other layers. The static

layer registers obstacles that are included in the map, so mostly keeps track of mapped static obstacles,

while the obstacle layer is usually used for obstacles that are not present in the map like dynamic obstacles.

The two parameters, inflation_radius and cost_scaling_factor from the package need to be tuned carefully

so that optimal behaviour can be achieved. The inflation_radius is responsible for the size of the padding

around the obstacles, while the cost_scaling_factor determines how steep the values of padding should

decrease along the center of the padding outwards. In this implementation the values used were for 0.6

for the inflation_radius and 10 for the cost_scaling_factor, with an example of the results in Figure 6.4,

tuned by a trial and error. The choice of the parameter inflation_radius was based on the area occupied

by the walker, in order to pad the obstacles so that the walker does not collide. The cost_scaling_factor

was chosen based on offering a smooth gradient of cost values to the padding.

Figure 6.4: Global Path (green line) created by the A* algorithm in a walker scenario. Around the obstacles, a

padding gradient(light-blue - red - purple) was created by the costmap_2d package.

Now, with the obstacles registered and fully padded, a path can be created. The global_planner2

package contains implementations of both Dijkstra and A*. Only A* (Figure 6.4) was used, due to its

computational efficiency (section 2.4.1.2). The parameters lethal_cost, neutral_cost, and cost_factor

regulate how close the global path gets to obstacle, turning the walker very conservative when these are

high. The global planner does not have, theoretically, any temporal constraints, due to only being used at

the goal selection (beginning of the scenario). When the patient selects the goal, the path planner is called

outputting a path, and unless the walker deviates too much from the initial trajectory the global planner

1http://wiki.ros.org/costmap_2d
2http://wiki.ros.org/global_planner
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is not called again. The time used by the global planner is not shown in the Results chapter 8 because it

always planned all the paths adequately in all validation scenarios below 1 second, due to the simplicity

of the environment graphs considered.

6.5 Local Planner

With a global plan like in Figure 6.4, the path is then translated into velocity commands. The conversion

is done by the base_local_planner3 package. The local planner uses the a portion (5x5 m) of the global

map (Figure 6.4) surrounding the walker and the portion of the path included within it and Dynamic Window

Approach algorithm (section 2.4.2) is run.

Unlike the global planner, the local planner must function at a higher rate because it needs to, at every

single time step, simulate possible trajectories and determine which is the best trajectory to follow. So,

most parameters that regulate the local planner’s behaviour are related to the tradeoff between number

scenarios simulated and time used for the calculations. In Table 6.2 the most essential parameters are

mentioned, which were tuned by trial and error.

Table 6.2: base_local_planner parameters.

base_local_planner parameters

Parameter Description Value

holonomic_robot Robot is holonomic False

sim_time Trajectory simulation time limit 1 s

sim_granularity Step-size of the simulation 0.2 s

vx_samples Number of linear velocities to sample 5

vtheta_samples Number of angular velocities to sample 5

pdist_scale Weight of the score given to motivate staying close to the path 0.6

gdist_scale Weight of the score given to motivate staying close to theighal 0.8

occdist_scale Weight of the score given to avoiding obstacles 0.01

The output of this algorithm is a vector of both linear and angular velocities compatible with the already

accepted velocity commands of the walker (Equation 5.1).

The base_local_planner package allows the publishing of the cost cloud created by the local planner

while calculating the velocity commands. The cost cloud is a set of points in the space close to the walker

that represent the cost to travel through a location, forcing the walker to minimize the cost of the overall

path. In Figure 6.5 an example of a cost cloud is presented, where it is possible to observe that with

3http://wiki.ros.org/base_local_planner
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this ”map” the walker can be aware of obstacles, the position within the environment and infer if it is

approaching the goal.

Figure 6.5: Example of the cost cloud published by the local planner. The map is square with a predefined size

(5 meters) around the walker, showing low (green) and high (red) cost values, whose values are attributed by the

parameterization of the local planner. The empty space in the square map are due to the presence of obstacles, so

their cost is not marked.

6.6 Validation Protocols

6.6.1 LiDAR-SLAM

The goal of the described protocol in this section is to determine if the LiDAR and SLAM systems

are creating quality environment maps and drawing coherent trajectories performed by the walker. The

following validation protocol is based on the approach presented by Steder et al. [61].

If one is able to acquire a ground-truth map of the testing environment and deploy a static positioning

system with low error to obtain the real position of the walker in the world then, both the quality of the map

and position can be calculated by comparison between ground-truth and walker-registered data, after the

reference frames from all systems are aligned. Acquiring accurate maps and deploying a good positioning

system is not easy, for the following reasons: difficult access to positioning tools with low-error widely

accepted by the scientific community [61]; scarce availability of maps containing the full description of the

environment - usually the ones available are architectural building plans which do not include obstacles

like furniture, minor wall alterations, etc. [61].

Instead of performing direct comparison between the outputs of the proposed and ground-truth

systems, some metrics can be tracked that indirectly quantify the obtained results. The following case

is presented in an attempt to explain the concept of indirect metrics. In each environment there are
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metrics, e.g., the distance between 3 distinct objects, that are exclusive to that environment. If the metrics

used can be tracked by the walker and a simpler ground-truth system, and are specific enough to the

environment’s configuration, then the assumption that those metrics can be used as validation metrics of

the LiDAR-SLAM system is reasonable [61].

The package OpenCV contains a module called Aruco4 capable of tracking QR code markers (Figure

6.6) with video feed and calculate the relative position to the camera. If a video camera is implemented in

the WALKit, and if multiple of these markers can be placed throughout each environment, then they can

be used as environment specific and easily detectable features, whose euclidean distances between each

other can be measured with a ruler, serving as a ground-truth metric.

Figure 6.6: QR code marker used in the SLAM validation process.

Following the concept of indirect metrics the following procedure was developed. Ten Aruco markers

were dispersed throughout 2 different environments: the real environment similar to the corridor world

in Gazebo (Figure 6.7), and a 100m2 atrium. To detect the Aruco markers, a video camera Orbbec

Astra (Orbbec 3D Technology International Inc., United States) was placed on the walker. The euclidean

distances between the markers were measured with a ruler (precision 0.05 m). The mean squared error

between the ground-truth and Aruco-LiDAR-SLAM systemmeasurements is presented as a validation metric

for the mapping and localization component, with each environment being scanned 3 times. In Figure 6.7

an example of the placement of the markers and Aruco marker detection in the real corridor world.

4Source Code: https://docs.opencv.org/master/d5/dae/tutorial_aruco_detection.html
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Figure 6.7: QR code marker detection by the Aruco module in the real corridor world.

While measuring the marker pair distance error, we can calculate the walker’s positioning error, but

nothing can be said about the quality of the map. However, for the LiDAR-SLAM to actually infer that the

walker moved to a certain position and for the inference to be correct, then the created map must be

accurate, due to the localization process needing an accurate depiction of the environment in the first

place. So, when the SLAM algorithm outputs small positioning errors it does so by building a good map,

otherwise it would not. This means that the evaluation of mapping and localization precision are one and

the same. It should be noticed that this statement is only true if the results are accurate, but if not, the

source of the error cannot be determined.

The Aruco marker detection algorithm showed errors of localization that scale with the true distance to

the marker. For markers with distance beyond 5 m the error standard-deviation was 0.3 cm. For markers

position at a distance of 3 below meters the error is reduced to 0.05. Because Aruco is supposed to be

a low-error sensor, only marker position measurements with values below 3 cm were considered correct

measurements.

6.6.2 Global-Local Planner

The validation of both Global and Local planners had a main focus on functionality, instead of how

optimal the found solution is. This means that special emphasis was put on determining if the walker

can actually avoid obstacles and reach the destination, instead of quantifying how efficient the established

plans are, possibly serving as a safe option to replace the human supervisor.

Five scenarios were used to test the WALKit autonomous driving capabilities, those being shown in
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Table 6.3. The autonomous supervisor testing scenarios were chosen based on the fact that these are

similar to the rehabilitation scenarios with disabled patients [19]. Each of the scenarios was recorded

with 3 trials. Each scenarios tries to represent different possible situations faced by the walker, namely:

navigating in free-space, performing 180°turns, avoid static obstacles and avoid dynamic obstacles not

previously scanned and included in the map created by the LiDAR-SLAM system.

Table 6.3: Global-Local Planner validation scenarios.

Scenario

No.
Goal* Obstacle Type Description

0
5 m straight

ahead
None Testing unimpeded driving.

1
5 m straight

back
None Testing capability of 180° turns.

2
8 m to the

right

90° corner (static) to the

right

Testing if walls can be avoided while

turning to the right.

3
8 m to the

left

90° corner (static) to the

left

Testing if walls can be avoided while

turning to the left.

4
8 m straight

ahead

Person walking (dynamic)

perpendicular to the

walker’s trajectory

Testing if dynamic obstacles not present in

original map can be avoided and if walker

is able to reach the goal nevertheless.

* Goal with relation to the initial position of the walker.

6.6.2.1 Metrics

The performance of the autonomous supervisor (Global-Local Planner) is evaluated using 5 metrics

suggested by literature.

Number of collisions is used to determine if the WALKit walker, with its autonomous planners, is

capable of detecting and avoiding collisions, either static or dynamic (dependent on the scenario), and

consequently come to a conclusion if the current controller is capable of replacing the human supervisor

w.r.t. reducing the risk created by possible collisions.

Number of goals reached is calculated to evaluate if the hypothesized autonomous supervisor is

capable of directing the patient-walker system towards the destinations, complying with the predefined gait

rehabilitation scenario.

As already referenced in the solution requirements, it is unacceptable to register collisions, due to the

fall-risk associated, however, it is acceptable if the autonomous supervisor fails to reach the destination in

a minority of trials.
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KTE values, already mentioned in chapter 3, are also measured to determine how close the walker’s

actual described path is to the path planned by the global planner A* [6]. If values are orders of magnitude

below the length of the path, it is suggested that the local controller is following the global plan accurately.

Update Frequency of the local planner commands are evaluated to determine if the autonomous

supervisor is capable of simulating a set of trajectories in time for safe driving scenarios. It was already

established that the update rate should meet the 10 Hz mark, however, 4 Hz is the minimum safe threshold

for the walker.

Case-by-case analysis is the most used technique for validation in literature due to the abstract

nature of the task. Therefore, a trial from each scenario is presented, so that a comparison between

scenarios can be made. Multiple snapshots dynamic obstacle scenario (scenario 4) are included to

evaluate the behaviour of the walker along the scenario and its interactions with the obstacle.
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Shared Control

7.1 Introduction

When a medical expert is present in a rehabilitation scenario, he or she interferes with the system

walker-patient when a certain situation is deemed dangerous. In this chapter, the prioritizer block

mentioned in section 5.2 is detailedly described, block which is responsible for determining whether

the control should be given to the patient or to the autonomous supervisor, given the environment’s

configuration.

In state-of-the-art approaches it is usually implied that the methods by which the SC is done, translate,

in a way, what the medical expert is doing. This assumption is many times misleading because the

controllers only express an approximation of what the expert is actually doing, e.g., the medical assistant

does not interfere when a threshold is met, instead it acts gradually. To avoid this, the controller should

follow a more abstract notion of what the expert is actually doing. RL allows the walker, through trial and

error, to learn how to capitalize on a highly-abstracted reward function. This allows the walker to not be

built around biases about how the controller should behave. Instead it expresses the behaviour implied by

the reward function built.

PPO trains both the actor and critic DNN following the steps in Figure 4.7. D’Eramo et al. [62] built

a RL library, named MushroomRL1 and the full implementation of PPO and the walker’s environment was

developed considering the library and ROS requirements. The PyTorch2 library was used to implement the

DNNs used in PPO. The full implementation was done using the programming language Python 3.83 due

1https://github.com/MushroomRL/mushroom-rl
2https://pytorch.org/
3https://www.python.org/
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to the need for interfacing with MushroomRL (a Python package).

7.2 State and Action Space

Before any kind of controller can be built, the state and action spaces need to be defined so that the

controller can create a policy. The state space needs to have a full description of the components needed

to make a decision, so it was hypothesized that it should be composed of 5 elements: current position of

the walker (Dimension: 2) current velocity of the walker (Dimension: 2), patient intention target velocity

(Dimension: 2), autonomous target velocity (Dimension: 2), map and obstacle map (Dimension: size of

the map) and goal.

To optimize the training time required to train a controller with computational resource limitations it

is necessary to strict and optimize the state space to its limit. Theoretically, the current velocity of the

walker is required to define the present state. However, if accelerations, either positive or negative, are

not limiting, then the walker’s velocity can change instantaneously, removing the need for the prioritizer to

take into account the current velocity. This is not usually the case for most controllers due to the existence

of a settling time. As already mentioned in the requirements, the controller will function at 10 Hz with

and the maximum acceleration of 1 m/s2, which means that the walker can transition from maximum

velocity (1 m/s) to a full-stop within 1 second. No significant changes in driving patterns were detected

with the addition of the current velocity, due to the short time required to change velocity, so this data was

eventually discarded from the state-space.

For the SC to actually share the control, it needs input from intention detection and autonomous

supervisor modules, otherwise the agent does not know the choices that can be made, rendering a possible

optimization impossible w.r.t. both the inputs mentioned.

Both map and obstacle map are the main problem to the dimensionality issue of the state space,

because they both consist of matrices with a size up to the thousands or tens of thousands of entries - the

map of 5x5 m with resolution 0.1 m produce a matrix of 2500 entries. Ideally, the SC should only give

the priority to the autonomous mode if obstacles are nearby or if significant divergence from the goal is

registered. To avoid obstacles the controller only needs local information but, to not diverge from the goal,

some global information is theoretically needed. This can be circumvented by assuming that the global

path is a good metric for goal convergence, and if the local portion of the global path is being followed

then the walker is performing well. Then, if only local information is needed then global position becomes

redundant. The cost cloud published by the local planner from Figure 6.5 allows the walker to infer all the
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components mentioned before - goal and obstacles - within the same map.

So, instead of using a full state-space mentioned in the beginning of this section - current position and

velocity, patient and supervisor intention, map and obstacle map and goal - only the target velocities and

cost map are needed for the state description, resulting in a vector like,

s = (vauto, wauto, vint, wint, costcloud0, ...costcloudN) (7.1)

where vauto and wauto are the linear and angular velocities of the autonomous mode, vint and wint are

the linear and angular velocities of the intention mode, and costcloudi is the cost of point i.

In terms of action space, the actions need to express the partial contributions of the autonomous and

intention modes. A one dimensional vector is used as action

a = (α) (7.2)

where α is the admittance value. The admittance value is then transformed into velocity commands by

the expression

(vshared, wshared) = α(vauto, wauto)× (1− α)(vint, wint) (7.3)

where vshared and wshared are the linear and angular velocities calculated by the SC. α is continuous

variable that can assume values in the [0,1] interval, turning the walker completely autonomous when α

is closer to 1 and completely drivable by the patient when closer to 0.

7.3 Reward

The reward chosen for the training needs to translate 3 components: the risk of falls associated to

collisions with obstacles, the necessity of giving control (following the assist-as-needed concept) to the

patient and converging to the goal.

As already defined in the action space, the admittance value α regulates the contribution of both

autonomous and intention modes. A simple reward function is

r(s,a) = (1− α) (7.4)

, where the reward motivates the autonomous supervisor to produce low α, turning the walker less

autonomous and rewarding being driven by the patient. Even though this reward expresses the requirement
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of following the patient’s intention, it does not necessarily translates the desire to stay away from obstacles.

The obstacle penalty is expressed when the walker collides and the episode ends, stopping the agent from

accumulating more reward. The penalty received by colliding (r = 0), at this moment, is the same as

following the autonomous mode when close to obstacles (α = 1 ⇒ r = 0), which is problematic due

to the walker not ”feeling” motivated enough to engage the autonomous mode. However, with a reward

of −1 when the walker collides with obstacles, the SC is motivated to behave autonomously (0 reward)

when close to obstacles.

Because we want the walker to actually finish the task, if no reward is given at the end of the episode,

the walker will always give priority to not end the task and keep earning reward from the prioritization.

The reward given at the end cannot be 1 because there is not enough incentive, but a reward like 10 is

sufficient.

Assembling every component produces an expression like

r(s,a) =


−1 if s ∈ collision

10 if s ∈ goal

1− α otherwise

(7.5)

. With some study of the Equation 7.5, it can be stated that to actually learn when to prioritize the

autonomous mode while avoiding obstacles, the walker will have to crash into the obstacles and get

a penalization. So, when rolling out N episodes with PPO, the walker will only use the last sample

(representing the collision) of each episode to optimize itself in terms of obstacle avoidance. The scarce

number of samples w.r.t. obstacle avoidance will translate into a very slow learning of this behaviour. To

overcome this, a heuristic was created to express more gradually the presence of obstacles in the reward

function with the expression

distfactor = max (min (2.5min (obstdistances)− 1.5, 1) , 0)

r(s,a) =


−1 if s ∈ collision

10 if s ∈ goal

− (distfactor + α− 1) otherwise

(7.6)

where obstdistances is the set of distances from obstacles acquired by the LiDAR. With the help of Figure 7.1,

one can see that when the distance between the walker and an obstacle is inferior than 0.6 it should

choose an α closer to 1 (autonomous) and vice-versa. A region of transition is seen in the middle and the

steepness of this portion of the surface determines how smoothly the walker transitions between intention
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and autonomous modes. This reward simply represents the danger faced by the walker and the patient

when the full system is at a distance at least 0.6 meters.

min obstdistance

0.0
0.5

1.0
1.5 0.00

0.25
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r(s
, a

)

0.0
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Figure 7.1: Reward surface created by the reward function, in Equation 7.6. Red - > 0.5 reward, Blue - < 0.5

reward.

Simple reward functions like Equation 7.5 should always be used, because they include the minimal

amount of human behaviour biases, but the trade-off between simplicity and computational requirements

must be always considered when building an intelligent agent, as already mentioned in section 4.1.1.

7.4 Discount Rate

When training, the policy needs the discount rate γ to track the reward on the long and short-term.

This time ”window” needs to be big enough in order for the agent to be able to do a correct assessment

and stop in time to not collide with an obstacle. Because of that, γ is highly dependent on the walker’s

driving properties - maximum accelerations and velocities.

When driving the WALKit walker, it is always assumed that other dynamic obstacles do not try to

purposely crash with the walker. This assumption is fair considering that the walker is built to work in

hospital and environments where the patient’s well being is a priority. Still, there are no guarantees that an

unknown entity will not suddenly appear in the walker’s range and crash with it. This is a possible situation

but unavoidable, because the sensors do not detect such a range necessary and actuators cannot make

sudden movements so that the patient does not fall. Because the SLAM system works at 10 Hz and the

range of the LiDAR system is 5 m, the sensor is able to detect one sample of any movable obstacle with
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a velocity of 50 m/s (180 km/h), value which is well above the normal speed of any movable entity in

day-to-day activities.

The only restriction for γ is the effective maximum acceleration of walker, i.e., taking into account

wheel sliding and break inefficiency.

The discount factor was established in the time domain, instead of time-step domain, allowing for the

automatic change of γ when the time-step is changed. A γtime (discount factor in the time domain) of

0.3 was chosen which expresses a behaviour that discards a future beyond the 2 − 3 seconds from the

decision making process at every step, as shown in Figure 7.2, allowing the walker to ponder the necessity

to break, accelerate or even change trajectory within that period. The controller will function at 10 Hz,

therefore, the actual γ is γ = γ
1
f

time = 0.3
1
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Figure 7.2: Sample importance decay with γ equal to 0.3.

7.5 Policy and State-Value Networks

As seen in the PPO section 4.3 of this dissertation, two DNNs are needed to work as function

approximators. Because PPO only estimates, in terms of value functions, the value of each state, then the

input of both actor and critic network is the state-vector. This means that the structure of the networks is

practically the same except for the outputs - the actor outputs the action to perform on the environment

and the critic output the value of the state. Because both the outputs are of dimension 1, the structure of

the networks is coincidentally similar.

The network used, with a representation in Figure 7.3, can be separated into two parts: the cost map

feature detection and shared-command regression.

The cost map is fed into 3 consecutive convolutional layers that are responsible for extracting the

relevant information from the map, constituting the part of cost map feature detection. The output of each

convolutional layer is subjected to a ReLU activation function and produces 10 channels, like suggested
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by Li and Yuan [63]. The first convolutional layer uses a kernel of size 7 and stride 2, and the second and

third used a kernel size of 10 and stride 1.

Three dense layers compose the shared-command regression and are responsible for learning the

regression required for the prioritization process. The first dense layer connects to the flattened output

from the convolutional layers and to the velocity commands of both intention and autonomous mode,

leaving the other two to connect sequentially with sizes 256.

  

Convolution Convolution Dense DenseConvolution

1x91x91 (5x5 m)

10x43x43

10x34x34

10x25x25
(6254 flatenned 

w/ velocity 
commands) 256

256

1

Dense

Cost Map Feature 
Detection

Shared-Command 
Regression

Figure 7.3: A representation of the DNNs used as policy and value estimators. The number of entries

(inputs/outputs) in this figure is not representative of the actual number present in the network.

7.6 Policy Structure

PPO is an on-policy method, so, the policy that is used for sampling trajectories is the same on which

optimization is run on. So the policy must be capable of achieving optimal behavior, but still be able to

explore the possible actions. Because DNNs model are deterministic, this means that a certain policy will

always execute the same actions given a certain state, so no exploration is done. Also, PPO optimizes

stochastic policies, so the network must be wrapped in a way that confers stochasticity to the policy and

allows it to explore.

The MushroomRL library allows the network to be wrapped by a Gaussian Policy. This Gaussian

Policy adds to the output of the network a random value drawn from a Gaussian distribution with a

standard-deviation σπ and mean 0, like the expression

a(s) = π(s) = NN(s) +GD(σπ) (7.7)
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where NN(s) is the neural network function GD is the Gaussian distribution sampler. To initiate the

policy, a initial standard-deviation σπinitial
of 0.4 for the Gaussian noise was chosen. The initial noise

needs to be high enough for decent exploration of the action and state space, but also small enough

so the actions performed are not random. If σπ remains always constant it cannot be expected for the

policy to converge to a decent policy, so the parameter σπ is included with the network parameters in the

optimization process allowing it to change noise intensities according to the loss function.

7.7 Data Normalization

LeCun et al. [64] state that ”convergence is usually faster if the average of each input variable over

the training set is close to zero (...) but also if they are scaled so that all have about the same covariance”.

All network inputs (states) were normalized using the domain limits, according to Table 7.1.

Table 7.1: State domain limits and standardization parameters.

State Minimum Maximum Mnorm ∆norm

Cost map 0 100 50 100
vauto, vintention 0 1 0.5 1
wauto, wintention −0.39 0.39 0 0.78

The normalization of the states is done as follows,

s̄ =
s−Mnorm

∆norm

(7.8)

where Mnorm is the vector of the domain intermediate values and ∆norm the domain range.

The inverse process of the normalization of the states should be applied to the actions so that they

are scaled adequately. In the section 7.2, it was mentioned that the parameter α is in the interval [0, 1],

however, the outputs of the policy are within the range of ]−∞,∞[. The logistic function, shown in

Figure 7.4, scales the unbounded outputs from the network to the α domain, with the equation

l(x) =
1

1 + e−x
(7.9)

, where l is the logistic function and x is the unscaled output of the policy.
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Figure 7.4: Logistic Function used in the adjustment of network outputs to environment actions.

7.8 Training Pipeline

To train the controller both the Gazebo environments (Corridor and Hospital) were used, and no training

in real environments was done, leaving only testing for the real environments.

Because DRL , in most cases, needs millions of samples to converge to a decent policy, training

the controller in real-time becomes very limiting due to the constant need of human feedback in the

intention component. To avoid this, a simulator of human intention was developed. The intention simulator

cannot output just random velocity commands because most humans drive the walker predominantly well,

otherwise the actions would not be representative of the actual human distribution. So, the human intention

simulator copies 70% of the time the output of the autonomous commands and 30% left outputs random

commands. The proportion of each source of intention commands were chosen based on trial and error,

and also because they offer diverse enough behaviour to train.

The process begins by placing the walker in the initial position and picking a goal from a pool choice of

size 50, which was found to be sufficient number of destinations to force the walker to experience sufficient

obstacles configurations. All destinations should be reached within 30 seconds but each episode is limited

to 90 seconds just in case the walker gets stuck.

PPO evaluates the policy based on 2048 samples (3 min and 24 s), which is a decent size of samples

to create a good estimation of the walker’s behaviour. The Advantage (Equation 4.16) of each state-action

pair is compared to the state-value estimation using Generalized Advantage Estimation [65] the λ factor

with value 0.95 and the γ of 0.8865. The new state-value estimates are calculated using the old estimation

of the state-value function from the critic network and the new reward is obtained from the trajectories.

In the update step of PPO, the 2048 samples (now with also the advantages) are randomly separated

into mini-batches of 256 samples and policy is updated by calculating the mean score w.r.t. the loss
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functions in Equations 4.15 and 4.18 with ε as 0.95 , a as 0 and b as 0.01. The value error component

Lv was not used (a = 0) because MushroomRL library does not support parameter sharing. Each

mini-batch is used to update the policy (actor network) running the stochastic gradient descent algorithm,

repeating the same process 4 times so that the process is accelerated. The critic network is also updated

by fitting the samples 10 times with the using the new value estimates, but this time using backpropagation

with the mean squared error between new and old state-value estimates.

The parameters from both networks are optimized using Adam optimizers [54], with learning rate per

update of 1e− 4.

7.9 Validation Protocols

In this validation protocol we want to test the ability for the walker to prioritize the autonomous

supervisor when a danger is faced while also maximizing the contributions of the patient to the control of

the WALKit.

To validate the SC, the same scenarios from the autonomous mode described in Table 6.3 were used.

In this validation protocol, because the SC is being put to the test, it is important that the velocity commands

from the patient are adequate for the SC to prioritize the actions from the patient and vice-versa. Due to

the impossibility of testing the SC with gait-disabled patients, the healthy drivers were told to try to mimic

possible actions from the patients, meaning that they should try to crash with obstacles, and try to increase

the distance to the goal allowing to simulate dangerous inputs, but also to drive adequately to simulate

correct inputs. A precise protocol of driving was not forced upon the drivers to simulate the unpredictability

of the patients in this context. Each scenario was performed 3 times by 3 different users.

7.9.1 Metrics

All the metrics evaluated in the Global-Local Planner section of the autonomous supervisor are also

included in the validation of the SC, with the addition of one other specific to the SC’s task - the patient

relative control time.

The patient relative control time is the percentage of time that the patient controls the walker

when compared to the total amount of time in the trial, which is represented by the following equation

patient relative control time = 100
1

N

N∑
n=0

α (7.10)
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To validate the training of the SC, the same was performed 10 times to guarantee uniformity in the

results. At the end of the training procedure, when the walker is performing at theoretical maximum

performance, the discounted reward, referenced in Equation 4.5, should be

∞∑
k=0

γkrt+k+1 =
1

1− γ
=

1

1− 0.883
= 8.54 (7.11)

due to the convergent nature of the discounted reward series [27].
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Chapter 8

Results

The current chapter presents the results obtained from all validation procedures mentioned in

chapters 6 and 7, regarding the Mapping and Localization system (LiDAR-SLAM), autonomous supervisor

(Global-Local Planner) and prioritizer (Shared-Control).

8.1 Autonomous Driving

The results from the current section regard only the task of the autonomous supervisor with its

mapping, localization, planning and control capabilities.

8.1.1 LiDAR-SLAM

For each of the validation environment (atrium and corridor) mentioned in section 6.6.1, the QR code

markers were positioned like referenced in the validation protocol. The following maps will be specific

to the corridor world, but the metric values regard both environments. The euclidean distances between

the QR code markers positioned in the corridor world, used as ground-truth measurements, are shown in

Table 8.1. The distance between QR code markers were calculated using the Aruco-LiDAR-SLAM system,

and the mean squared error in relation to the ground-truth measurements is show in Figure 8.2, through

the respective box plot. With the presented errors of the LiDAR-SLAM system, it is possible acquiring maps

similar to the shown in Figure 8.1.
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Table 8.1: Aruco marker ground-truth euclidean distances in the corridor environment.

Marker IDs Euclidean Distance (m)

0 - 5 3.70± 0.05
5 - 10 3.05± 0.05
10 - 15 3.05± 0.05
15 - 20 1.22± 0.05
20 - 25 2.50± 0.05
25 - 30 2.73± 0.05
30 - 35 1.90± 0.05
35 - 40 2.37± 0.05
40 - 45 2.65± 0.05

1 m

Path

Figure 8.1: An example of the map obtained and the trajectory(green path) in one trial from the corridor

environment.

Regarding the spatial errors, the box plot from Figure 8.2 shows that all 100th percentiles are below

0.21 m and a maximum outlier of 0.38 m, which represents errors of 58% and 25% for the mapping and

localization process below the set requirement (0.5 m) for the WALKIt walker, respectively.
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Figure 8.2: Box plot of the mean squared error between the distances of the Aruco markers measured by the

LiDAR-SLAM system and the ground-truth. rel_x_y represents the error relative to the relation between marker x and

y, from Table 8.1.

Considering the timing performance, the Cartographer SLAM system was able to update the map

and position with the frequencies shown in the box plot from Figure 8.3. Results from Figure 8.3 show a

0th, 25th, 75th and 100th percentiles at 7 Hz, 8.9 Hz, 10 Hz and 10 Hz respectively, suggesting that the

update rate of map and localization is below the established requirement for the full controller of 10 Hz.

Also, the worst case outlier was registered to be located at 0.5 Hz, however, it should be referenced that

these delays in computation were detected when the SLAM system worked with full SC active with all CPU

cores of the WALKit’s computer being used at maximum capacity and while scanning the environment for

the first time.

0 2 4 6 8 10
Frequency (Hz)

Figure 8.3: Box plot of the map/pose publishing frequencies along the scenarios.

Figure 8.4 shows a specific map acquired by the developed framework, evidencing the obstacles

present in the environment (walls and furniture) and some unexpected artifacts. The noise from Figure 8.4
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is included in the map due to rare wrong measurements of the LiDAR sensor or calculations by the SLAM

system. While Cartographer maps the environment and converges to a solution close to ground-truth, the

sections with inaccurate mapping are neither deleted nor remapped, originating maps with the mentioned

noisy artifacts.

  

1 m

Path

WALKit 
Path

Obstacles

Noise

Figure 8.4: Example of uncertainty of interpretation of the created map.

8.1.2 Global-Local Planner

To test how the Global Planner created ideal paths and how the Local Planner controlled the walker’s

velocity, the scenarios explained in the validation procedures from section 6.6.2 were followed. In Table

8.2 the amount of collisions and goals reached is presented. No collision were detected and the WALKit

was always able to converge to the destination.

Table 8.2: Number of collisions and goals reached in each scenario of validation of the global and local planners.

Scenario

No.

No. of

Goals

Reached

No. of

Collisions

0 3 (100 %) 0 (0 %)

1 3 (100 %) 0 (0 %)

2 3 (100 %) 0 (0 %)

3 3 (100 %) 0 (0 %)

4 3 (100 %) 0 (0 %)

Also, the KTE values were measured to compare the difference between the actual and planned paths

from the autonomous mode, shown in Table 8.3, registering an average over all scenarios and trials of

0.3101 m. Considering the length of the scenario paths performed (5− 8 m), the registered KTE values

are about at least 16 times below the length of the overall path (5/0.3101 = 16.12), which respect the

set requirement that the walker path deviations should be orders of magnitude smaller than the overall

path. The values registered in scenario 1 (180°turn) were higher (average 0.9383 m) when comparing

to the rest of the scenarios, even when comparing to scenario 4 where the walker tries to avoid dynamic
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obstacles (average 0.2328 m), which was expected to produce the highest KTEs caused by the deviations

forced by the obstacle.

Figure 8.5 presents one example of path rolled out by the walker in each scenario, so that a

case-by-case analysis can be performed. In the scenarios where the walker had to only move forward

or make slight deviations - scenarios 0, 2 and 3 (Figures 8.5a, 8.5d, 8.5c) - the walker followed the path

planner accurately as also evidenced by the lowest KTE values. Regarding scenario of turning 180° (Figure

8.5b), the walker started by performing a pure turn (no linear velocity), but after 1 ∼ 2 seconds it started

performing a wide curve. The expected behaviour would make the walker turn purely until fully aligned

with the path, followed by traveling forward until reaching the destination. This unexpected wide curve

causes a significant deviation from the initial path, as shown in Figure 8.5b, producing exceptionally high

KTEs.

Table 8.3: KTE values registered in the ADS validation scenarios. Units: meters.

Scenario

No.
Trial 0 Trial 1 Trial 2 Average

Standard

Deviation

0 0.0636 0.3000 0.1973 0.1870 0.1185

1 1.0401 0.4116 0.8856 0.7791 0.3275

2 0.2158 0.0598 0.2251 0.1669 0.0929

3 0.0532 0.2150 0.2192 0.1625 0.0947

4 0.2813 0.3857 0.0976 0.2549 0.1459
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Figure 8.5: Walker paths performed in the benchmarking scenarios of the Global-Local planner system. An example

of each scenario is show: driving straight ahead ((a) - Scenario 0), turning 180°((b) - Scenario 1), right corner ((c) -

Scenario 2), left corner ((d) - Scenario 3), and presence of a dynamic obstacle ((e) - Scenario 4))

In the scenario 4, where dynamical obstacles are present, a temporal analysis is required to undestand

the decisionmaking process of the ADS. Figure 8.6 offers multiple snapshots of the walker and environment

along the scenario 4, also showing the plots of distance to the closest obstacle and velocity commands. The

walker initiates the scenario by detecting some obstacles behind, which do not impede travel (Figure 8.6a).

After it initiates movement, the walker starts: detecting an obstacle to the right (Figure 8.6b), reducing its

linear velocity and changing the angular velocity, as the distance to the obstacle decreases (7.5 seconds

Figure 8.6e). After deviating course (Figure 8.6c), the WALKit heads once again to the destination finishing

its trajectory (Figure 8.6d). The velocity of the human interacting with the walker as an obstacle was not

constant in all trials, because it was deemed important to test the autonomous controller in environments

where humans walk without restrictions. So, in certain trials the walker performed like Figure 8.5, but

when human-obstacles moved at higher velocity, the walker was forced, in one case, to stop and wait for

the obstacle to move. From Figure 8.6 we can detect that, as expected, the walker stops and changes

course by reducing its linear velocity - trying to avoid collision - and raising the absolute value of the
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angular velocity - trying to head towards alternative directions with no obstacles - when obstacles become

too close. In scenario 4, despite the walker deviating from the original path due to the presence of the

dynamic obstacle, it still arrived at the destination. The KTE values of this scenario 4 were not as high as

in scenario 1 because in the first half of the episode the path is followed accurately, only increasing the

values once the obstacle forces the walker to deviate.
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Figure 8.6: Environment and walker while benchmarking with scenario with dynamical obstacles. The walker starts

by initiating its trajectory (a), after a while detects an obstacle (b), avoids collision (c), and arrives at the destination

(d). A plot of the linear and angular velocities and distance to the closest obstacle (e).
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A analysis of the update rate of the autonomous commands was done to determine how fast the local

planner is able to plan, and the results are show in Figure 8.7. All the frequency quartiles are located

closely to the 10 Hz mark, which respects the established requirement of 10 Hz.

2 3 4 5 6 7 8 9 10
Frequency (Hz)

Figure 8.7: Box plot representing the rate at which the local planner Dynamic Window Approach was able to

calculate each velocity command over all scenarios and trials.

Some testing was done in environments which are unlikely to be used in gait rehabilitation scenarios.

In the scenario from Figure 8.8, the walker reached a position where it had to go the opposite way it was

headed, but surrounded by close obstacles (different from the tested scenario 1). The walker started to

turn continuously (Figure 8.8a), but at a certain moment started slowing down (Figure 8.8b), until reaching

a distance of 10 cm from the wall to the chassis (Figure 8.8c). The behaviour performed was not adequate

to reach the destination resulting in the robot not being able to figure out how to solve the situation.
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Figure 8.8: Walker unable to autonomously turn 180° when close obstacles are present. The walker initiates the

turning (a), approximating continuously its chassis to the obstacle (b) and finally being unable to continue (c). A plot

of the linear and angular velocities (d) through the episode

.

8.2 Shared-Control

The current section presents the results related to the prioritizer and its ability to keep the patient safe

while following patient’s intention.

8.2.1 Controller Behaviour

The scenarios in the SC validation protocols were performed, as described in section 3.4, with the

amount of collisions and goals reached registered in Table 8.4. No collisions were detected, however, the

destination was not reached in all trials - despite not crashing, in one trial in scenario 2 the walker did not

reach the destination.
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Table 8.4: Number of collisions and goals reached in each scenario of validation of the SC.

Scenario

No.

No. of Goals

Reached

No. of

Collisions

0 9 (100 %) 0 (0 %)

1 9 (100 %) 0 (0 %)

2 8 (88.89 %) 0 (0 %)

3 9 (100 %) 0 (0 %)

4 9 (100 %) 0 (0 %)

The KTE values and relative patient control time registered in the validation scenarios are shown in

Table 8.5 and Table 8.6, respectively. The values from Table 8.6, exposing the relative control time of the

patient, suggest that the patient is able to control on average 70.72% of the time, resulting in KTE values

around 0.6343 meters on average over all trials and scenarios performed.

Similar to the validation of the Global-Local Planner, a trial of each scenario was included to present

the trajectories described by the SC (Figure 8.9), so that a case-by-case analysis is presented to study the

correlation between α and the path of the walker.

Table 8.5: KTE values registered in the SC validation scenarios. Units: meters.

Scenario

No.
Trial 0 Trial 1 Trial 2 Average

Standard

Deviation

0 0.4216 0.1912 0.8249 0.4792 0.3208

1 1.1832 1.3266 0.4495 0.9864 0.4705

2 1.2495 0.3845 0.9090 0.8477 0.4357

3 0.5664 0.7854 0.7155 0.6891 0.1119

4 0.1840 0.2600 0.0632 0.1690 0.0992
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Table 8.6: Relative patient control time values registered in the SC validation scenarios. Units: Percentage.

Scenario

No.
Trial 0 Trial 1 Trial 2 Average

Standard

Deviation

0 84.65 91.11 79.04 84.93 6.04

1 70.43 71.08 78.31 73.27 4.37

2 63.98 62.91 76.10 67.66 7.32

3 70.43 55.18 62.53 62.71 7.63

4 70.78 56.88 67.52 65.06 7.26
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Figure 8.9: Walker paths performed in the benchmarking scenarios of the Shared-Controller system. An example

of each scenario is show: driving straight ahead ((a) - Scenario 0), turning 180°((b) - Scenario 1), right corner ((c) -

Scenario 2), left corner ((d) - Scenario 3) and presence of a dynamic obstacle ((e) - Scenario 4).

In scenario 0 from Figure 8.9a where no obstacles are present and the destination is 5 meter straight

in front of the walker, the relative control time was the highest over all scenarios, registering uniformly low

α values (0 ∼ 0.25).

In scenario 1 from Figure 8.9b where no obstacles are present and the destination is 5 meters straight

behind the walker, the patient control time is the second highest and the KTE values are also exceptionally

high, as registered in the Global-Local Planner results. Opposite to all other scenarios, in scenario 1 the

α values are exceptionally high within the first meters of the scenario, around 0.75.

In Figures 8.9c, 8.9d and 8.9e, a trial from scenario 2, 3 and 4, respectively, present portions of the

path whose α values are superior to the overall path (> 0.5). These ”spikes” in α are registered when the
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walker’s distance to an obstacle is smaller than 1 meter. These spikes are going to be detailedly analyzed

when the scenario 4 is examined temporally. In scenario 2 from Figure 8.9c, the value of α also increases

gradually, surpassing the 0.5 threshold as the walker goes beyond the 2 meters of distance relative to the

global path, and also gradually reducing as the walker gets closer to the path. Also, the scenarios 2, 3 and

4, which represent the scenarios where obstacles are present, possess the lowest relative patient control

time, shown in Table 8.6.

In every trial from every scenario (Figure 8.9), the α consistently rise gradually from any value to 1

when the walker is located at less than a meter from the destination.

Similar to the Global-Local planner results section 8.1.2, the scenario 4 (presence of a dynamic

obstacle) was analyzed with detail so that each decision along the scenario could be analyzed. In the

context of the SC the mentioned detailed analysis is included in Figure 8.10, so that a future comparison

can be made between autonomous and shared modes. When the walker starts its trajectory (Figure

8.10a) with no obstacles present, the α value is 0, allowing the patient to express his intention. When the

walker-patient system finds an obstacle, despite the command from the patient inciting a collision, the SC

prioritized the autonomous control (α = 1) which was informing the walker to stop, avoiding the obstacle

(Figure 8.10b). Still, the patient’s commands kept trying to collide, even when the obstacle was moving, but

the prioritizer produced α equal to 1, keeping the control on the autonomous supervisor (Figure 8.10c).

The patient and autonomous supervisor suggest valid commands after the dynamical obstacle moves,

clearing the path between walker and the destination. As expected, α drops to 0, returning the control to

the patient (Figure 8.10d) and finally finishing the scenario (Figure 8.10e).
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Figure 8.10: Snapshots of the WALKit’s interpretation of the environment in the scenario with dynamical obstacles

while validating the SC. The walker starts the scenario by presenting low admittance (α = 0) (a), finds an obstacle

and becomes autonomous (b) staying still until the obstacle leaves (c). The scenario ends by lowering the α value

to 0 (d), allowing the patient to drive, reaching the destination (e). The plots of the distance and orientation of the

closest obstacle along the plot of the admittance value α throughout the entire trial are shown (f), highlighting regions

where the distance to obstacle (I) and the orientation to the obstacle (II) influenced the values of α, respectively.

Also, in the trial from Figure 8.10f, we can notice that when the orientation of the walker relative the

obstacle is zero (in front) and the distance is below 1 meter, the prioritizer raises the α value directing the

control towards the autonomous supervisor. However, in another trial from scenario 4, when distance is

below 1 meter but the closest obstacle is not directly in front of the walker, as shown in Figure 8.11, the

admittance level does not transition to 1 due to the relative orientation of the walker.

A real photograph showing the WALKit when a user is trying to collide with a dynamic obstacle (person

in front of the WALKit) is shown in Figure 8.12, similar to the situation shown in Figure 8.10b.
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Figure 8.11: Plot of admittance, obstacle distance and orientation relative to the walker throughout one trial of

scenario 4. As shown in the gray highlighted are, the α value does not change to 1 despite the distance inferior to

1 meter, as evidenced in Figure 8.10.
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Figure 8.12: WALKit autonomously stopping in front of obstacle despite user’s commands inciting the collision.

Regarding the update frequency of the SC, whose box plot is presented in Figure 8.13, suggest that

the recommended value of 10 Hz was not met, however, the minimum update rate (4 Hz) was. These

low update rates are created by the implementation of the full SC using Python 3.8, allied to all the other

software already being executed, such as: Cartographer and Dynamic Window Approach.

2 3 4 5 6 7 8 9 10
Frequency (Hz)

Figure 8.13: Box plot of the SC update frequency.
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8.2.2 Training

To study the controller training procedure, the training was executed 10 times and the results were

analyzed with a confidence interval of 95%, like shown in Figure 8.14.
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Figure 8.14: Plot of the Discounted Reward J throughout training.

The controller was trained until J stabilized around 1.25× 105 steps, which corresponds to 3 hours

and 28 minutes of gait rehabilitation time. Due to the training being performed in a low performance PC,

the Gazebo simulation speed was limited to 30% of the real time so that the simulation steps would not

interfere with the performance of other algorithms (SLAM, Local Planner, Gait Analysis, etc.), increasing

the time of training to 11 hours and 34 minutes.
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Chapter 9

Discussion

9.1 Localization and Maps

The spatial errors detected in the LiDAR-SLAM are below the set threshold, as already mentioned in

section 8.1.1, suggesting that the present system is capable of creating accurate maps, while also correctly

identifying the position and orientation of the walker within it. These errors are below the requirements (25%

in the worst case scenario), however, these might be even inferior than registered due to the ground-truth

measurements performed by Aruco and the ruler inheriting errors of 0.05 m, which are non-negligible.

The Cartographer package associated with the Hokuyo’s LiDAR works as intended in terms of

functionality with low spatial errors, but in a temporal analysis the results present a higher variance,

not always being able to reach the goal update rate. As already mentioned the majority of delays in the

SLAM computations take place when the environments are being scanned for the first time. To avoid these

delays, a pre-driving scan was performed by an expert so that Cartographer does not need to create a full

map from scratch while performing gait rehabilitation. The pre-driving scan improved the performance

of the system significantly allowing for elimination of the frequency outliers registered in Figure 8.3. The

mentioned pre-driving scan is not only advantageous for efficiency of the mapping algorithm but also to

avoid performing a new mapping for every session of rehabilitation. Due to the fact that these pre-scans

are done using the same system as the one used in gait rehabilitation scenarios it is completely valid to

assume that they can be performed in hospital environments, offering no additional effort for medical

staff.

The maps created however presented some unexpected artifacts, as shown in Figure 8.4, possibly

introducing some ambiguity in the map interpretation for patients and doctors, hampering the use of such
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maps by inexperienced users. Some post-processing of the scanned maps could remove the ambiguity of

interpretation of the noisy maps. Lavrenov et al. [7] propose a filtering process with a non-linear median

filter obtaining 3D models as show in Figure 9.1. The 3D models can be uploaded to the Gazebo simulator

or just a renderer, possibly helping with the interpretation of the maps created.

Figure 9.1: Refined map obtained by Lavrenov et al. [7].

Despite the current system being capable of mapping all the tested scenarios, the same is not

guaranteed for environments that lie slightly outside the gait rehabilitation environment set. It should

be referenced that the current framework was developed only having certain specific scenarios in mind,

but building a robust walker that works in most should be the target. Nevertheless, the characteristics

of the current framework, especially the LiDAR, cause some limitations in system. The LiDAR Hokuyo

URG-04LX-UG01, due to its short range and incomplete field-of-view, is incapable of building a complete

surrounding obstacle profile in environments like big halls. In multiple scenarios, some shown in Figure

9.2, the current systemmight not be able to infer the correct position, and in result not be able to determine

the velocity which poses a problem from safety standpoint. Also, the fact that the LiDAR sensor does not

scan in 3D, makes it impossible for the walker to detect downward stairs and features that could be used

for the SLAM algorithm like roof lamps. Using a SLAM approach similar to the long-range 3D sensor

mentioned in the work developed by Moosmann and Stiller [66] could greatly improve the robustness of

the system.
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Figure 9.2: Examples of the uncertainty in localization caused by the short range LiDAR in uniform environments.

The walkers and fields-of-view without transparency represent the true position of the walker. The ones with

transparency represent some possible outputs of the position determined by the LiDAR-SLAM system. If the walker

is not detecting any obstacle (a) it might output a multitude of positions. If it detects a wall (c), the system only can

position the walker close to a portion of the map which contains a wall. If the system detects a corner (d) it cannot

determine in which corner is the correspondent. Finally, even when it detect obstacles (b), if the profile is uniform,

the results may vary.

9.2 Autonomous Mode

Executing rehabilitation scenarios related to moving forward and performing a 180°turn (Scenario

0 and 1), proved the ability for the global planner to draw straight paths from start to the destinations

and the local planner to drive in uniform paths close the global path without taking unnecessary turns,

when no obstacles and no complex environments are present. However, in scenario 1 from Figure 8.5b,

the walker did not perform the expected behaviour by performing a pure turn of 180°at the start of the

scenario, instead performing the wide-turn reported. The reason why it does not perform the mentioned

behaviour is closely related to what happens in the non-standard scenario from Figure 8.8. The Dynamic

Window Approach local planner from the base_local_planner package is optimized to uniformly shaped

robot footprints - the area occupied by the walker is highly symmetrical and centered in the rotation axis.

When the robot’s footprint is uniformly shaped, the local planner does not have to predict the changes

of area occupied by the robot while performing pure turns because these do not occur. However, the

WALKit’s rotation axis is not positioned at the center of the footprint, as evidenced in Figure 8.8, so pure

turns produce changes in the area occupied by the walker forcing for a more rigorous planning with longer

prediction horizons [67]. For this reason, the walker produces certain behaviours which do not fully comply
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with the expected, suggesting that the chosen local planner is not the best for the task at hand. Demeester

et al. [67] presented an alternative for non-holonomic arbitrarily shaped robots which builds a local path in 2

phases: a first phase similar to the Dynamic Window Approach simulates multiple trajectories considering

kynematic constraints and the cost of each path (as described in 2.4.2) and a second phase that, instead

of only using the robot origin point, plans using the robot’s geometry and kinodynamic constraints. The

newly mentioned algorithm could possibly solve the limitations of the local planner currently being used

in the WALKit.

The trials performed in validation scenarios 2 and 3 (turning right and left corners) prove that, given

certain static obstacles scanned and mapped by the LiDAR-SLAM system, the A* global planner is capable

of delineating a path which takes the environment into consideration by never crossing any obstacle. The

local planner Dynamic Window Approach proved to able to detect obstacles and perform collision avoidance

of obstacle previously scanned andmapped, due to no collisions occurring and the destination always being

reached.

In scenario 4, the A* global planner was able to plan a direct path from start to destination identical

to scenario 0, but, instead of strictly following the global path, the local planner was able to detect the

dynamic obstacle not present in the pre-scanned map, deviating from global path and avoiding the movable

obstacle. In this scenario the local planner proved not only capable of following the global path closely

(low KTEs), but also, when necessary, to completely ignore the global path and avoid the obstacle.

In addition to the ability of the local planner always being capable of directing the walker autonomously

to the destination, the low values of KTE suggest that the paths described are indeed close to the path

suggested by the global planner A*, which turns the trajectories predictable when the global plan is known.

Furthermore, based on the fact that no collisions occurred and the destinations were always reached, it

can be stated that the planners were able to adequately drive the walker autonomously.

In some occasions the local planner showed some indecisiveness due to desynchronization between

the map and pose and the real position of the WALKit, which translated into full stops. These

desynchronizations are rare and usually happen after loading the map obtained from pre-driving scan

described in the previous section 9.1. To avoid this, it is advised that, when using previously scanned maps

from another session, before engaging the autonomous mode, synchronization ”laps” are performed by

an expert so that WALKit can start the autonomous mode with correct pose and map measurements. The

probability of the desynchronization effect decreases significantly after the first synchronization, however

there is low probability of occurring at any stage. Despite this effect, the walker is always able to transition

to a full-stop, guaranteeing patient’s safety, due to the local planner always keeping track of obstacles using
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data from the LiDAR system that is not subjected to any kind of processing.

The ability to create global paths taking into consideration obstacles present in the maps in a negligible

time, and the ability to propose velocity commands which avoid either static or dynamic obstacles, while

keeping close to the global path suggest that the use of a global and local strucutre suggested by the

ADS [3] and walker SC [6, 15] literatures can perform collision risk assessment and prevention, while also

performing a trajectory, possibly serving as autonomous supervisors replacing human ones.

9.3 Shared-Control

By performing scenario 0, the low and uniform α values, the highest patient control time percentage

(relative to other scenarios) and higher values of KTE when comparing to the same scenario in autonomous

driving validation, suggest that the SC proposed is capable of mainly prioritizing the control patient when

no obstacles are present and the path is straight. Moreover, the prioritizer does not allow the patient to

fully control the walker, as evidenced by the patient control time not being 100%, pointing towards the fact

that the SC is capable of taking into account the advice from the autonomous supervisor and converging

to the destination.

In scenario 1, where the walker is supposed to perform an 180°turn, the KTE values were exceptionally

high, which contradict the expected lower values when comparing to collision avoidance scenarios,

however, these results are influenced by the exceptionally high KTEs registered in the autonomous

supervisor module. As already discussed, the local planner in the autonomous mode does not perform

the expected behaviour, so, the wide-turn reported ”spills” over to the SC. Changing the used local planner

could remove the wide-turn behaviour, reducing the KTEs, removing the unexpected paths.

Also, in scenario 1, the exceptional high α at the start evidences that, the walker was capable of

inferring that its orientation at the beginning was opposite to the direction of the destination and that the

probability of reaching the goal with that orientation is low, which caused the autonomous supervisor

to assume control and gradually transition the control back to the patient upon pointing towards the

destination. Therefore, the use of the local cost map as a component of the state-space proved to supply

the information necessary for the walker to understand if it is approaching the destination.

In scenario 2, 3 and 4, the registered α close to 1 caused by proximity to obstacles suggests that

the controller is capable of detecting obstacles and determine that the autonomous supervisor is the

entity most capable of dealing with the dangerous situation, which complies with the expected behaviour,

producing the lowest relative patient control times. Scenario 2 and 3, specifically, show that the WALKit
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is capable of handling pre-mapped and static obstacles, while scenario 4 demonstrates the ability of

dealing with ob not pre-mapped and dynamic. Due to raising the α value to 1, the patient’s input did not

influence the walker’s control when close to obstacles, which is expected because, as it was defined in

the SC structure, the autonomous mode would function as an expert whose commands are followed until

the risk is neutralized. Therefore, the policy DNN output does not change despite of the different velocity

commands supplied by the patient. This can be dangerous for the well being of the user for the reason that

the walker starts moving in an unexpected way - prevalence of a sense of unresponsiveness. To avoid this,

a communication system should be implemented in the walker so that the patient is aware of what both

the SC and ADS intend to do. A feedback system with human-in-the-loop, as shown in Figure 9.3, with the

objective of exerting torques and forces through actuators implemented in the handles so that the position

and stiffness of handles themselves possibly give the necessary information for the patient to ”feel” the

autonomous instructions. If the patient perceives the handles being stiff and moving autonomously he

can understand where the walker wants to drive to and prepare for the upcoming movement. Otherwise,

the handles become soft and stop moving autonomously allowing the patient to drive. The mentioned

interface follows a similar structure as proposed by Steele and Gillespie [68], however the cited work is

applied to a haptic steering wheel to aid in land vehicle guidance.

  

Handles

Autonomous
Driving
Agent

Cost Map
Generator

Patient
Intention
Converter

Autonomy
Feedback
Converter

Wheel
Controllers

Shared-Controller

Patient

Figure 9.3: Proposed feedback and human-in-the-loop shared control system. F - Linear Force, τ - Torque.

The increased values of KTE in the SC validation, when compared to the same regarding the

autonomous supervisor suggest that the walker did not strictly follow the path recommended by the global

planner, showing a possible improvement over the strategies proposed by the state-of-the-art that always

try to force the walker to stay close to the original path [15, 20].

The orientation of the walker seems to affect the prioritization of the actions, as shown in Figures 8.10f

and 8.11, i.e., the walker seems to have higher α (autonomous) when obstacle are directly on the front of

the walker (0°), which is expected due to the chances of collision being higher when the walker is facing the
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obstacle. This property shows that the policy network structure - feed-forward, convolutional and linear - is

not only able to detect the presence of obstacles, but also determine what are the consequences of their

position to the driving patterns, property which advantageous when comparing to the SC not embedded

with obstacle avoidance features as Morris et al. [20] and Jiménez et al. [6].

When approaching the goal, the admittance values always converged to 1, turning the walker

autonomous. The walker is always more motivated to converge to the goal when close to it than following

patient’s instructions. Despite in certain circumstances no obstacles being present and the patient’s

intention not causing any dangers, when close to the goal, the walker prefers to not consider the patient’s

intention and finish the episode, so that situations where the walker drives close to the goal and the scenario

is not finished are avoided. This pattern is seen in all finishing steps of every scenario due to the reward

function, in Equation 7.6, supplying the agent with a bigger reward when the walker finishes the episode

successfully. The probability that the patient commands are adequate to reach the destination is inferior

to the commands from the autonomous supervisor, so the agent learns to ignore the patient completely.

The disregard for patient commands might cause some problems similar to the problems of engagement

of the autonomous mode for obstacles avoidance mentioned above, creating one extra reason for the

development of the mentioned active handles with autonomous mode feedback and human-in-the-loop.

In scenarios where the walker is approaching the obstacle, the time the SC takes to change α from

0 to 1 is within the established time-window created (1 ∼ 2 seconds) by the γ factor (0.883), as

evidenced by the transition highlighted in gray from Figure 8.10f. However, in certain circumstances,

the α transitions do not occur smoothly, as also evidenced in the plot from Figure 8.10f, transitions which

can be too abrupt risking the stability of the patient [19]. Certain changes could avoid the problematic

behaviours: implementing penalizations included in the reward function for the high velocity derivative

values, increasing γ and decreasing the rate of change of the distfactor from Equation 7.6. Penalizing

the derivative of velocity directly turns the agent unmotivated to capitalize on such reward. Increasing the

γ forces the Critic network to estimate the state-value based on a bigger horizon and so the walker can

become more conservative, transitioning gradually. Also, reducing the rate of change of the distfactor

changes the reward function, motivating the walker to become gradually autonomous when the obstacles

are farther away. It should be referenced that increasing γ causes the optimization problem to become

significantly more difficult to solve because a wider time window (Figure 7.2) needs to be considered, as

already mentioned in chapter 4, due to the need for studying the influence of each action in each state for

a longer period, requiring more training and time [27]. Through experimentation it was determined that

the chosen value for γ offers the best tradeoff between risk management performance and computation
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time, considering the limitations in computational power mentioned in section 5.2.1.

If values of α constantly changed smoothly, the full action-space range established [0,1] would be

used, and the continuity of the action space would prove to be as important as firstly hypothesized.

Nevertheless, the continuity of the action space is always an advantage because it allows for γ to be

increased in the future, creating smooth α signals without the need to change the policy structure.

Using the cost map and velocity commands from the patient and autonomous mode as state-space

with the exclusion of dynamic information to reduce the state-space dimensionality proved to be sufficient

to prioritize control, due to no collisions being registered. However, in one trial from scenario 2, the

walker was not able to reach the destination because the patient driver tried, consistently, to collide with a

specific obstacle. The walker avoided the obstacle faced in scenario 2, returned the control to the patient,

but the patient always returned to the same near-collision position. Some controllers, as the one proposed

by Huang et al. [5], perform a temporal analysis, in the specific case of predicting where the obstacle

might move in the next steps. Performing this analysis in our controller could avoid the registered abrupt

changes in α, and also allow the controller to understand that the patient is constantly trying to avoid

goal convergence, becoming gradually more autonomous if the user persists. Adapting the policy and

state-value DNNs structure to a recurrent one with Long Short-Term Memory layers, as suggested by Gers

et al. [69], without adding the previously mentioned dynamic information to the state-space, could enable

the agent to perform temporal analysis on multiple static frames. The augmentation of the DNN structure

would increase the number of parameters to be tuned and increase training times, although the controller

framework would be more generic (one goal of this dissertation).

In terms of training procedure, the algorithm PPO was able to maximize the discounted reward J but

not up to the maximum theoretical value, as evidenced in Figure 8.14. The RL algorithm should always

find the optimal policy π∗ which maximizes the discounted reward with the assumption that the reward

function represents the optimal behaviour. In our training scenarios, the chosen reward was capable of

producing the behaviour shown in Figure 8.9, which is close to the behaviour implied by the reward. Still,

J does not achieve its maximum because the indication to become autonomous when the distance is

inferior to 0.6 m, implied by the reward function, was proven to be too aggressive, producing the already

reported sudden changes in the admittance. Then, the agent decided to converge to a policy that gets

penalized when choosing to become autonomous for distances to obstacles higher than 0.6 m, and avoid

the high probability of getting closer to the obstacle, colliding, and receiving the worst reward, consequently

choosing to become a better agent on the long-term. Using a new reward that influences the walker to

engage the autonomous mode at a distance above 0.6 m represents more accurately the behaviour trying
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to be reproduced, allowing the J values to reach the maximum.

The SC presents the different results as the ADS, mentioned in section 9.2, with regard to the update

rate of the SC. The SC was not able to keep up with the pre-established 10 Hz, when every functionality is

running - SC, ADS, LiDAR-SLAM - and all computer resources are used, leaving no additional resources for

other WALKit features, like gait and posture analysis, however, it still respected the 4 Hz mark. The

reason for the complete computer power use is the execution of the RL and SC with an interpreted

language (Python). If these software packages were written in a compiled language like C++ the execution

time could possibly decrease drastically leaving more time for other algorithms to compute data. This

translation between languages was not done due to the need for interfacing with packages like PyTorch

and MushroomRL.

Data obtained from the validation protocols supports the fact that the SC developed, follows all the

set objectives in terms of functionality due to never colliding, which is the ultimate goal. The use of a RL

algorithm (PPO) with a trial and error training and optimization through the gradient descent algorithm

allows the agent to express a behaviour that considers a full range of possibilities, instead of using simple

heuristics with hard constraints to solve the problem as in the state-of-the-art, evidencing sophisticated

intelligence.

If some feature or sub-controller needs to be added to the shared-controller hierarchy, one only needs

to change the DNN structure, state and action space, followed by a re-train of the policy. Despite the need

for training a new policy every time the structure is changed, it should be faster to re-train than to create

and validate a set of heuristic which will probably behave in a non-optimal way. The scalabe and generic

nature of DNNs used in Deep Actor-Critc RL algorithms enable the structure to be changed without the

need for a complete rework, as suggested with the implementation of recurrent layers.

The reward function proved to be easily parameterizable without compromising functionality. One

simple change was already mentioned in this discussion to improve the behaviour of the walker,

improvement which is abstract in terms of long-term consequences, but the through a trial and error

process, the walker is able to converge to the broad behaviour implied by the reward. No tests were

performed with medical experts but due to the simple nature of the reward function it is assumed that the

controller possesses human-like tunability.

In the validation protocols delineated in this dissertation, the used metrics were chosen due to their

use in literature, such as: number of collisions [5, 6, 15, 20, 23], number of destinations reached [5, 6,

15, 20, 23], KTE values [6], relative patient control time [15, 23] and case-by-case analysis [5, 20, 23].

In results from the SC presented in this dissertation, we obtain an average relative patient control time of
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70.70%, which is a higher value when compared to the 66.71% og Sierra et al. [15], suggesting that our

controller is better in terms of patient prioritization. The previous conclusion might be incorrect because

the variety of scenarios in literature and scarcity of standards imposing restrictions and rules for validation,

force the evaluation process to be subjective and comparisons between methods to be misleading. Also,

certain metrics, such as KTE, do not guarantee that the controller is working at maximum performance,

because the patient might deviate from the global path and the SC task of diminishing fall-risk might not

be compromised, due to its dependence to obstacles presence. The only two objective metrics that do

not depend on the validation protocol performed are the number of collisions and number of destinations

reached. For the context of this dissertation, it is usually assumed (as referenced in the Problem Statement

section 1.2) that if the walker behaves in unpredictable ways and collides with obstacles, falls and poor

gait metrics are likely to occur. This assumption is generally true, although it does not include the full

range of causes for poor performance. Nevertheless, to completely replace the human supervisor, it must

be guaranteed that autonomous gait rehabilitation scenarios are performed in such a way that fall-risk is

diminished and gait quality improvement is, at least, similar to the achieved by the human supervisor, if

not better. So, to validate the system, we propose the use fall-risk and gait quality assessors to measure

directly the metrics instead of using rough assumptions. Also, patient/medical expert reviews should also

be used for evaluating these SCs in regards to functionality and ergonomy. However, it was impossible to

assess such metrics in this dissertation due to the unavailability of patients and medical personnel testing,

and for the great amount of time needed to deploy gait quality and fall-risk assessment features.
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Chapter 10

Conclusions

The SC proposed is able to correctly evaluate the risk faced by the patient-WALKit system, and

symbiotically prioritize which entity should control the walker (either autonomous supervisor or patient

intention), based on information about the surroundings of the walker.

An association of a LiDAR sensor with the Google’s Cartographer SLAM software enabled the

acquisition of the environment map and localization of the walker, system which was exposed to a thorough

validation process by the detection of QR Code markers as position references. The validation process led

to conclusion that both positioning and mapping presented errors maximum errors of 0.38 m, 25% below

the set requirement. The Cartographer software updated the map (7 Hz) slightly below the target update

frequency (10 Hz), however a pre-driving scan was implemented to improve mapping efficiency.

An ADS was implemented in the walker, which is responsible for supplying autonomous supervision,

so that when the walker is in a dangerous situation, it can resort the autonomous commands reducing

the risk faced. The autonomous mode uses the global planner A*, responsible for drawing a spatial path

from the current position to the goal selected by either the patient or the medical expert. A* showed

always being able to plan from start to the destination positions. The local planner Dynamic Window

Approach responsible for creating velocity commands to converge to the goal while avoiding collisions,

showed the capacity to autonomously drive the walker safely, possibly being capable of replacing the

human supervisor. Despite the promising results within the validation environments, the same was not

evidenced in environments where gait rehabilitation are unlikely to occur.

In this dissertation, the proposed SC developed uses a RL algorithm named PPO, which learns the

intended behaviour by capitalizing on a medically defined reward function, through a process of trial and

error. The DNNs used as policy and as state-value estimator were able to accurately perform collision-risk
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assessment and avoidance. Overall, the controller proposed was capable of delegating the control of

the WALKit 70.70% of the time to the patient with no collisions detected, in this way respecting the

assist-as-needed concept [21]. Due to the short discounting factor γ and the detection of a movable

obstacles, sudden breaking patterns were induced in the walker caused by the fast transitions between

intention to autonomous control. These transitions might cause, in certain circumstances, some danger

for the patient.

Results indicate that the SC proposed is a promising solution in the validation scenarios with healthy

patients, although further testing with patients with GD is needed.

All goals set for this dissertation were achieved with exception for Goal 7 (Validate the proposed

framework within gait rehabilitation scenarios). The completion of this dissertation enables to answer

the raised Research Questions (RQs):

• RQ 1: Can the medical expert be replaced by the autonomous agent developed?

Results show that the ADS developed is able to produce velocity commands capable of avoiding

obstacles and reach the goal in gait rehabilitation environments, keeping the patient safe. In

environments where gait rehabilitation scenarios are unlike to occur, the walker might not converge

to goal, requesting the help of medical personnel as a last resort. However, the autonomous mode

guarantees patient safety at all times.

• RQ 2: Which information is required to assess risk faced by the patient-WALKit

system? In the system proposed, the walker was able to assess risk with just static information

about obstacles, path and velocity commands from the interfering parties (autonomous and

patient). However, results show that this state space can only work within certain assumptions

where the walker is able to fully break in a short time frame. Expanding the state space to

accommodate information about the dynamic nature of the environment or recursion networks

could greatly improve the smoothness of the behaviour, guaranteeing the safety of the patient.

• RQ 3: Which metrics need to be measured to validate both the ADS and SC?

State-of-the-art approaches trying to solve the issue of SC in smart robotic walkers show a lack

of standardization and objectivity for key performance indicators. Metrics for evaluation should

be stipulated in close work to medical experts and patients. We present frequency of collisions,

frequency of reaching the destination, KTE and relative patient control time as objective metrics for

evaluation as the most objective metrics to validate the current system. However, these metrics are

indirect risk assessors that rely on diverse amount of assumptions, therefore, creating metrics that
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directly evaluate fall-risk and gait quality should be studied.

10.1 Future Work

As already discussed along this dissertation, multiple changes could improve robustness of the SC.

Functionality reviews by patients and medical experts should be performed, but more importantly

key performance indicators should be defined as to standardize the validation process for future

implementations of this controller. This would allow an increased objectiveness to be induced in the

work flow, and clear metrics would possibly induce relevant improvements for SC of smart walkers.

The introduction of a novel autonomous driving algorithm capable of performing long-term planning,

instead of just being capable of performing simple movements of rotation and translation, would be able

to solve the cases where the current local planner Dynamic Window Approach failed to do so, turning the

walker fully independent from the medical supervisor.

Implementing an active controller in the drivable handles that induces haptic sensation on the patient,

would help the last to infer where the walker is trying to go, removing the feeling of unresponsiveness when

autonomous agent assumes control. This could greatly improve complacency of the patient to the walker,

making the user feel more confident while using the rehabilitation device.

Training the same model with increased discounting factor γ, in a variety of worlds (not only hospital

and corridor simulation environments) and with higher computational power could greatly improve on the

trajectory smoothness issue, reducing the chances of dangerous events for the patient.

When mapping environments with increased size (outside the normal values for rehabilitation) the use

of a LiDAR system capable of tracking a higher range and even in 3D could highly improve both the quality

of mapping and interpretation of the same map for patient and medical expert.

Finally, the RL packages developed in a compiled language like C++ could greatly improve the time

required for training and execution time of the algorithms, and even interfacing with ROS, allowing other

features of the walker to operate simultaneously.
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