
Citation: Gaspar-Cunha, A.; Costa, P.;

Monaco, F.; Delbem, A.

Many-Objectives Optimization: A

Machine Learning Approach for

Reducing the Number of Objectives.

Math. Comput. Appl. 2023, 28, 17.

https://doi.org/10.3390/

mca28010017

Academic Editors: Carlos Coello,

Erik Goodman, Kaisa Miettinen,

Dhish Saxena, Oliver Schütze and

Lothar Thiele

Received: 6 November 2022

Revised: 14 January 2023

Accepted: 25 January 2023

Published: 30 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Mathematical 

and Computational 

Applications

Article

Many-Objectives Optimization: A Machine Learning Approach
for Reducing the Number of Objectives
António Gaspar-Cunha 1,* , Paulo Costa 1, Francisco Monaco 2 and Alexandre Delbem 2

1 Institute of Polymers and Composites, University of Minho, 4800-058 Guimarães, Portugal
2 Institute of Mathematics and Computer Science, University of São Paulo, São Paulo 05508-060, Brazil
* Correspondence: agc@dep.uminho.pt

Abstract: Solving real-world multi-objective optimization problems using Multi-Objective Optimiza-
tion Algorithms becomes difficult when the number of objectives is high since the types of algorithms
generally used to solve these problems are based on the concept of non-dominance, which ceases
to work as the number of objectives grows. This problem is known as the curse of dimensionality.
Simultaneously, the existence of many objectives, a characteristic of practical optimization problems,
makes choosing a solution to the problem very difficult. Different approaches are being used in the
literature to reduce the number of objectives required for optimization. This work aims to propose a
machine learning methodology, designated by FS-OPA, to tackle this problem. The proposed method-
ology was assessed using DTLZ benchmarks problems suggested in the literature and compared
with similar algorithms, showing a good performance. In the end, the methodology was applied to
a difficult real problem in polymer processing, showing its effectiveness. The algorithm proposed
has some advantages when compared with a similar algorithm in the literature based on machine
learning (NL-MVU-PCA), namely, the possibility for establishing variable–variable and objective–
variable relations (not only objective–objective), and the elimination of the need to define/chose a
kernel neither to optimize algorithm parameters. The collaboration with the DM(s) allows for the
obtainment of explainable solutions.

Keywords: objectives reduction; data mining; multi-objective optimization; many objectives

1. Introduction

Real-world optimization problems are usually multiobjective, in which multiple con-
flicting objectives must be taken into account simultaneously. Manly, there are two ways to
tackle these types of problems, scalarization functions and population-based algorithms.
The use of scalarization functions presented some drawbacks, which led to the develop-
ment of population-based metaheuristics that use the concept of Pareto-dominance and
niching to evolve a population of solutions in the direction of the Pareto-optimal front [1,2].

There are at least three basic types of population-based algorithms commonly em-
ployed to solve Multiobjective Optimization Problems MOPs, namely, evolutionary algo-
rithms, swarm-based methods, and colony-based algorithms, which can use the dominance
concept, the metric indicators, or the decomposition strategy [3]. In most of these algo-
rithms, a random initial population of solutions is generated and the new populations are
consecutively obtained by selection and variation strategies until a stop criterion is met.
It is expected from this procedure that the successive populations evolve towards, or to
a good approximation of, the Pareto-optimal frontier. In each one of these populations,
complex relations exist between the Decision Variables (DVs) and the objectives, as well as
between DVs and DVs and objectives and objectives.

These algorithms work well when the number of objectives is low; however, as the
number of objectives grows, the percentage of non-dominated solutions decreases, making
it difficult for an algorithm based on Pareto-dominance to work effectively, a problem that
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is known as the curse of dimensionality. There is no consensus on the number of objectives
for which this problem occurs; some authors indicate this number as ten [4] and others as
four [5], but in reality, these difficulties arise when the number of objectives is four or more.

Two different methods are used to deal with this problem, either using relaxed forms
of Pareto optimality or reducing the number of objectives [5]. The reduction of the number
of objectives is useful either for the search process or for the decision-making process
during and/or at the end of the optimization.

In previous years, some work related to objective reduction for many objectives
optimization was proposed in the literature, which can be sub-divided into four different
categories: (i) methods in which the aim is to maintain the dominance relation for the
non-dominated solutions [6,7]; (ii) methods based on unsupervised feature selection [8];
(iii) methods based into a comparative analysis between the results obtained when the
number of objectives is reduced [9]; (iv) methods based on data mining [5,10–12]; and
methods based on the use of multi-objective formulations [13]. These approaches will be
presented in more detail here.

Brockoff and Zitzler [6,7] suggested the use of two different approaches for objectives
reduction, which are based on the definition of two types of problems. The first problem
aims to obtain the minimum objective subset that produces a certain error (δ), designated
by δ-MOSS problem (δ- Minimum Objective Subset problem), and the second problem
aims to obtain an objective subset of a predefined size (k) with the minimum possible
error, designated by k-EMOSS problem. For each one of these cases, two algorithms were
presented, an exact and a greedy algorithm, characterized for maintaining the dominance
relation. They were tested using different knapsack problems and the DTLZ2, DTLZ5, and
DTLZ7 benchmark problems for different numbers of objectives.

In López et al. [8], a methodology based on unsupervised feature selection was pro-
posed to address the δ-MOSS and k-EMOSS problems. A correlation matrix obtained from
the non-dominated set is used to divide the objective set into homogeneous neighbour-
hoods. Then, based on the idea that if the distance between the objectives is higher, this
signifies that those objectives are more conflicting. Thus, only the objectives in the centre
of those neighbourhoods are chosen and the others are discarded. The algorithms were
validated by comparing the results obtained with those of the reference [7].

Singh et al. [9] proposed an algorithm, designated by the Pareto Corner Search Evo-
lutionary Algorithm (PCSEA) that, instead of searching for the complete Pareto front,
searches for the corners of the Pareto front based on a ranking scheme. Those solutions
are used to identify the relevant objectives and the others are discarded. Some bench-
mark problems and two engineering problems were used to show the performance of the
methodology proposed.

Deb and Saxena [10] suggested an approach based on Principal Component Analysis
(PCA) for the same purpose of objectives reduction, considering the hypothesis that if
two objectives are negatively correlated, they are conflicting. In this way, they maintain
the objectives that can explain most of the variance in the objective space, which are
the most positive and the most negative of the eigenvectors of the correlation matrix.
The authors designated this method as PCA-NSGAII. Afterwards, due to the problem of
misinterpreting the data when it lies in sub-manifolds, a new proposal is made based on
nonlinear dimensionality reduction [11]. For that purpose, the authors developed two
new algorithms to replace the linear PCA, one based on correntropy [14] and the other
on Maximum Variance Unfolding (MVU). However, the method lacks information on the
means by which objective reduction alters the dominance structure, cannot guarantee the
preservation of the dominance relation and provides no measure to specify how much the
dominance relation changes when objectives are disregarded. The different procedures
proposed were applied to solve DTLZ2 and DTLZ5 benchmark problems for different
numbers of objectives.

Later, the same group, Saxena et al. [5], proposed a framework for using linear and
nonlinear objective reduction algorithms, namely, L-PCA and NL-MVU-PCA, which are
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based on machine learning techniques, PCA and MVU, to remove the secondary higher-
order dependencies in the non-dominated solutions. The idea was very similar to that
of given in previous work by the same authors [10,11], but this time, they proposed a
reduction of the number of algorithm parameters and an error measure. The algorithms
were tested on a broad range of problems and the results were compared with others in the
literature. Based on the same methodology, Sinha et al. [15] proposed an iterative procedure
to reduce the objectives in which a Decision Maker (DM) chose the best solutions. The
methodology was applied to solve some real-world problems, namely storm drainage and
car-side impact. Finally, Duro et al. [12] proposed to extend the methodology presented in
reference [5] to rank all objectives by a preference order, as well as to solve the δ-MOSS and
k-EMOSS problems, i.e., to obtain the smallest set of objectives that can originate the same
POF, and the smallest objective set corresponding to a minimum pre-defined error and the
objective sets of a certain size that originates a minimum error.

The main drawback of all these methodologies based on PCA is that they need to use
a kernel and, as a consequence, to optimize the kernel parameters. The characteristics of
this methodology, NL-MVU-PCA, were compared with the one proposed in the present
paper at the end of the next section.

Yuan et al. [13] proposed a methodology based on the use of multi-objective evo-
lutionary algorithms to solve a MOOP formulation. The authors applied this approach
to some benchmark problems and two real optimization problems. In both cases, the
calculation of the objective functions is based on simple analytical equations where the
computational cost is not relevant when compared with the problems that we intend to
solve here, which are based on numerical calculation. Therefore, besides performance, this
type of methodology will not be explored in the present work.

The present paper aims to propose a method for objectives reduction based on data
mining that:

1. can be applied independently on the type and the size of the data and the shape of
the Pareto-optimal front,

2. is independent from the choice/definition of the algorithm parameters,
3. considers the relations DVs-DVs and objectives-objectives (and not only the relations

between the DVs and objectives), and
4. can provide explainable results for a DM that is a non-expert in optimization or

machine learning.

The central aim of the works cited above was to find a reduced set of objectives that
could exactly reproduce the results from the original set. Thus, only the redundant objec-
tives could be discarded after a reduction process. That is not the aim of the present work,
since our purpose is to apply the proposed methodology to real-world and complex prob-
lems where the relations between DVs and the objectives are complex, and the objectives
are, in general, partially redundant. Thus, redundancy is not a helpful criterion to eliminate
an objective.

For that purpose, a methodology was developed to capture those complex relations
and define the relative importance of the objectives based on the determination of the
objectives–objectives relations. Doing this makes it possible to determine objectives that
can be discarded but with a certain error. In other words, the approximation of the Pareto
optimal found (with the reduced number of objectives) has some error when compared
with the approximation to the optimal Pareto front (when using all the objectives). Simulta-
neously, the redundant objectives are also eliminated. Such an approach has at least two
significant advantages. First, it aids an optimization algorithm in finding a POF estimate;
second, it makes it easier to explain the results found to the DM.

The contents of the paper are as follows: in Section 2, the concepts of machine learning
and the methodology proposed are presented; in Section 3, the methodology is tested using
some benchmarks; in Section 4, the methodology is applied in a real polymer extrusion
problem and the results obtained are discussed and, finally, the conclusions are stated in
Section 5.
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2. Machine Learning Approach
2.1. Concepts

Bandaru et al. [4] reviewed several proposals from Statistics, Data Mining, and Ma-
chine Learning to improve optimization techniques for MaOPs. The approaches usually
apply data-driven methods to the solutions in a non-dominated set. The authors arranged
the proposals based on the knowledge representation and summarized them into three
main classes: (i) Descriptive Statistics, (ii) Visual Data Mining and (iii) Machine Learning
itself. Those methods have an origin outside the MOO literature. Thus, they usually are
not applied to find properties between variables, objectives, and the non-dominated set. In
general, the relatively complex nature of those relations makes their performance inade-
quate for MaOPs. Other drawbacks relate to some classes of real-world MaOPs that require
interactions with a practitioner due to the complexity of the system modelled or for a stake-
holder making decisions. Usually, such classes of problems also involve raw or observed
data or small datasets (due to the expensiveness of generating, collecting, or simulating
samples) involving different data types, varying from continuous to nominal variables.
This way, methods that produce explainable models and work with distinct data types
are essential for those real-world problems. The strategies proposed by Duro et al. [12]
and Bandaru et al. [16] have overcome some of those challenges, including an interactive
approach for dealing with two and three objectives and pattern recognition from nomi-
nal variables. Another proposal facing those challenges is FS-OPA, initially designed for
multidimensional analysis focused on MaOPs. FS-OPA generates explainable (explicit)
models, has a relatively low computational cost (aiming at working with high dimensional
decisions and objective spaces), and can deal with different data types and their mixtures.

First, this paper compares the principal features of an extension of FS-OPA to the
NL-MVU-PCA approach (Duro et al. [12]) for determining the essential objective set. NL-
MVU-PCA learns a Kernel matrix by unfolding a high-dimensional data manifold subject
to local constraints that preserve the local isometry. Then, eigenvalues are used to identify
the principal dimensions that should correspond to a set of conflicting objectives. On
the other hand, FS-OPA uses no manifold learning; it maps the problem’s fundamental
structures into one or more phylograms (not a Cartesian graphical representation). FS-OPA
employs data clustering, but not in the usual way, since it instantiates DAMICORE [17], a
pipeline with Normalized-compressions distance (NCD), Neighbor-Joining (NJ), and Fast
Newman algorithm, that produces intermediate representations enabling the detection of
the strongest associations of dimensions. The embedding produced by FS-OPA does not
focus on reducing the decision (or objective) space; otherwise, it augments the space by
adding new variables, the internal nodes of the phylogram (while the terminal nodes corre-
spond to the original variables). The phylogram construction also searches for preserving
the isometry for different neighborhood sizes. Finally, FS-OPA can obtain similar results
as manifold learning (i.e., the determination of the essential dimensions) by finding the
closest common ancestors in a phylogram (a clade) and the frequency of common ancestors
between clades (obtained from several phylograms by data resampling). Such ancestors
highlight the principal relationships between variables and/or objectives.

Second, this paper applies the extension FS-OPA to the MOO of extruders, which
requires dealing with the relatively poor data from initial populations of an MOEA. In other
words, there is an assumption that the solutions belonging to a specific Pareto-optimal
front have some characteristics that identify the optimal behavior of the process considered.
The critical question is to know if it is possible, from a set of random solutions, as the initial
population of an MOEA, to extract information about the complex relationship between
the DVs and the objectives and between objectives and objectives. Therefore, the idea is
to capture this type of information using data mining methods from multivariate data,
independently of its location on the objectives or decision variables spaces, i.e., if the data
represents or is not optimal (or near optimal) solutions. Moreover, no distinction between
DVs and objectives will be made.
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2.2. FS-OPA

The foundations of FS-OPA are based on two methodologies that deal with large-scale
and multidimensional data of any type, named DAMICORE [17] and FS-OPA [18]. The
latter is a pipeline involving methods from Information Theory, Complex Networks, and
Phylogenetic Inference, aiming at revealing hidden relationships of objects from an unstruc-
tured (raw) dataset. It runs in three main Steps: (S1) given a metric of similarity, build a
distance matrix comparing every two objects; (S2) convert the matrix into a phylogenetic
tree by connecting close objects according to hierarchical levels of similarity; (S3) apply a
community detection process to group near subtrees into clusters. Figure 1 shows a set
of generic objects xi. The elements dij of the distance matrix correspond to a measure of
dissimilarities between objects xi and xj, according to some given metric. The matrix is
broken down into a tree, where the distance between any two objects (leaves) corresponds
to the sum of the lengths of the branches connecting them. Finally, the third step merges
objects strongly connected (according to the tree topology) into a community, generating a
set of different similarity clusters.
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The first implementation of DAMICORE used three specific algorithms for S1, S2,
and S3 (Figure 1), respectively, Normalized Compression Distance (NCD) [19], as it works
with for any data type and mixed types; Neighbor-Joining (NJ) [20], widely employed
in bioinformatics; and Fast Newman (FN) [21], that constructs a graph partition using a
greedy algorithm based on a bottom-up strategy for maximizing the graph modularity
function [22]. The pipeline with NCD, NJ, and FN possesses some distinctive properties.
NCD makes DAMICORE a data-type agnostic method; in the sense that it works with
any object (continuous, discrete, categorical-ordinal, and nominal variables, texts, images,
audio, etc.) and a mixture of data types.

DAMICORE has some properties that make it proper for dealing with problems with a
low level of previous knowledge, carried out by non-experts, or that would require a large
multidisciplinary team of experts. First, it can run without any data pre-processing (such
as filtering, outlier detection, feature extraction, parameter setup, and knowledge of the
problem domain). Second, it requires no parameters setup to run and is therefore not biased
toward arbitrary tuning constants. Naturally, pre-processing steps and some execution op-
tions may improve the DAMICORE performance. Its success in such a challenge has been
checked for problems in a variety of fields, such as software-hardware co-design [23–25],
compiler optimization [26], student profiling in e-learning environments [27,28], identifica-
tion of phytopathology from sensor data [29], systematic literature review, identification of
cross-cut concerns [30], and electrical distribution systems [31].

A Feature Sensitivity (FS) analysis aims to make salient the principal features of a
problem (that may differ from selecting the main components), facing common challenges
in some classes of real-world problems. For example, the quality of observed data, the
database consistency and representativeness, and the discovery of interactions between
features and their contributions to each target or objective are hard to check from a raw
dataset with low previous domain knowledge. Thus, such a scope differs from those
where the standard feature selection algorithms have usually succeeded. Moreover, an FS
strategy is expected to aid in learning the fundamental structures of a complex problem
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from scratch. The learned structures can induce a probabilistic model used by optimization
algorithms, such as in the Estimation of Distribution Algorithms [32]. In this research, we
use phylogram-based models since they can work with small datasets, they are compu-
tationally efficient, and there is an optimization approach designed to use such models:
Optimization based on Phylogram Analysis (OPA).

Figure 2 shows a diagram summarizing OPA and its use of the FS analysis. Such
a combination is called FS-OPA. The two main FS steps are (A) "Salienting Samples (SS)
according to a criterion" and (B) applying DAMICORE to construct a phylogram-based
model. SS ranks the samples according to each of the M criteria (or non-dominated fronts),
producing the sets of selected samples (Figure 3), denoted BC1 (the samples in the best
quantile according to Criterion 1), BC2, . . . , BCM. DAMICORE constructs a phylogram (a
rough model) from BCi, i = 1, . . . , M, generating M models (BC1-based model, . . . , BCM-
based model). Then, a consensus strategy produces a unified phylogram-based model. An
OPA cycle completes when the unified model generates new samples.
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OPA performance has been verified for relatively complex combinatorial mono- and
multi-objective optimization problems [32]. Basic proofs concerning (stochastic) conver-
gence to optima and time–space complexity have been provided [32,33].

2.3. Comparison of FS-OPA with NL-MVU-PCA for MaOPs Data-Driven Structural Learning

NL-MVU-PCA is the primary method used by Duro et al. [12] for finding the essential
objective set in MaOPs. Such a scheme also runs PCA based on the objective–function
correlation matrix, aiming to improve objectives’ preference ranking. On the other hand,
NL-MVU-PCA maximizes the variance in objective space while preserving the local isome-
try (common property in dimensionality reduction through embedding’s). NL-MVU-PCA
is computationally more complex than PCA since the former solves an optimization prob-
lem. The non-linear (NL) approach performs the optimization of the Kernel (Gram) matrix
values by minimizing the Maximum Variance Unfolding (MVU) to find the best mapping
that preserves the geometric properties of each neighbourhood.
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Table 1 synthesizes some relevant properties of NL-MVU-PCA and FS-OPA for MaOPs.
The latter analyses three types of associations: variable-variable (producing results similar
to the Gibbs measure for Ising Models or Markov Random fields [34]), objective–objective
(the dissimilarities, when found, can favour the construction of (non-dominated) front
distributions [35]), and the variable–objective (that may benefit inference as Markov Blan-
kets [36]). The former works on the objective space for space reduction to determine
the essential objective set [12]. FS-OPA also has other properties that are relevant for
some classes of real-world problems: (i) it preserves the original variable space, which
favours non-experts interpretability; (ii) it works with any data type (continuous, discrete,
categorical—not only ordinal, but also nominal data, addressed by Bandaru et al. [4]) and
mixed types (proper for multiple heterogeneous databases with observed data); (iii) it has
a relatively low time complexity; (iv) and, finally, it has generated applicable models when
applied to learn from small datasets [17,23–31].

Table 1. NL-MVU-PCA and FS-OPA for multidimensional data-driven structural learning applied to
real-world MaOPs.

Category Types NL-MVU-PCA FS-OPA

Analyses

Objective-objective X X

Variable-variable X

Variable-objective X

Objective space reduction X

Sensitivity X

Priors
Kernel function usage X Not necessary

Parameter optimization X # Not necessary

Variable and
objective

representation

Continuous X X

Discrete (integers, real intervals) X X

Ordinal X X

Nominal X X

Mixed X

Explainability
Implicit X

Explicit (The Why) X

User-
friendliness

Stakeholders can easily run FS-OPA
and understand results even for a
large number of variables and/or

objectives

X

Scalability

Time-complexity Usual cases O(M3q3) * O(l3) **

The worst case O(M6) O(nl2 + l3)

Sample-size support Empirical Theoretical and
empirical

* M is the number of objectives, and q is the number of clusters; ** l is the number of variables and objectives, and
n is the number of data resamples; # Reference [5] shows that one can avoid parameter optimization for a new
problem by choosing q = M − 1 for NL-MVU-PCA.

Reference [5] shows the use of NL-MVU-PCA for a mixed-variable problem, the
gearbox problem (with continuous and discrete variables and continuous objectives). NL-
MVU-PCA works on the (continuous) objective vectors for the gearbox problem. It differs
from the meaning of mixed in Table 1, which relates to both the variable and objective
representation (important for the “explicit explainability”), i.e., the mixture may include
data vectors simultaneously from both spaces with different types. Moreover, FS-OPA
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can naturally work with any number of combinations of data types due to its foundation
on NCD.

Concerning Explainability, "Explicit" means to provide a knowledge representation
(with clues for "The Why" as the potential influence of variables on objectives) that benefits
decision-maker interaction, while "Implicit" refers to the capacity to reveal the objectives’
relative importance for an optimization problem, e.g., by ranking them.

The Feature Sensitivity (FS) analysis of FS-OPA aims at finding the variable and/or
objective data-driven interactions to construct structural (graph-based) and probabilistic
modelling. Probabilistic results are fundamental when dealing with the odds of bias in
observed data or small-data sampling. Explainability is also essential for some classes of
real-world problems, mainly those concerning decisions by stakeholders. Moreover, a user-
friendly tool (instantiating the FS-OPA methodology) is relevant for real-world applications
involving practitioners or stakeholders who are not optimization or artificial intelligence
experts. Variable–variable and variable–objective interactions can also benefit practitioners’
comprehension (The Why), increasing their confidence. Finally, the phylogram-based
representation of those interactions has scaled up the understanding of results for some
problems with dozens of variables or objectives (note that the interactive data mining
approach proposed by Bandaru et al. [4] works with two or three objectives).

Table 1 also shows the time complexity for usual cases and the worst case to estimate
the overhead of both procedures. The number of clusters in NL-MVU-PCA relates to the
number of constraints to maintain the local isometry (M q; but in the worst case q = M − 1,
resulting in M2) [12]. FS-OPA with usual resampling is O(l3) since n ≤ l (as in leave-one-out
resampling) [34]. Moreover, l = M in a space analysis only uses objectives. Thus, the time
complexities of FS-OPA and NL-MVU-PCA have a ratio (n + M)/M4 (l/q3) of running time
for l = M in the worst case (in the usual case).

Another relevant factor is the minimal samples required to ensure reliable findings.
Usually, the sample size for the PCA-based approach is empirically determined. FS-OPA
has a theoretical model to decide the minimal amount of samples that guarantees high
confidence in the results, which has been empirically corroborated for relatively complex
problems in the decision space of binary variables [32].

2.4. FS-OPA Framework

Figure 4 shows a flowchart of the global procedure of FS-OPA to reduce the number
of objectives. Two options exist (i) automatic procedure, and (ii) procedure with the
intervention of the DM(s). In the first case, the selection of the number of objectives to be
used in the optimization is defined by the program automatically, using the table of the
distance between objectives and applying the following rules:

1. choose the objective(s) of the less distant clusters;
2. choose one objective of the more distant (single) cluster;
3. choose one objective from each of the remaining clusters.

In the second case, the selection is made by the DM(s), using both the phylogram and
the table with the distance of objectives–objectives, as follows:

1. choose the objective(s) of the less distant clusters;
2. choose one objective of the more distant (single) cluster;
3. choose objective(s) from each of the remaining clusters taking into account, also, the

phylogram and the knowledge of the DM(s) about the process.
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The reasons for rules 1 and 2 are different: the less distant cluster is the one that trans-
ports more information concerning the entire process, since it is near most of the decision
variables, while the more distant cluster, besides everything, also has some information
about the process that cannot be lost. The idea is that the intermediate clusters, selected by
rule 3, have some information regarding the process that is already present in the objectives
selected by rules 1 and 2, and thus, the objectives that can be discarded are those that
belong to these clusters.

Both cases will be illustrated in the next section using a practical example. However,
there are advantages and disadvantages to using one or the other. The first procedure
provides the final solution directly, but the DM(s) does not take part in the process, which
can imply some discomfort and distrust with the solution found. This does not happen
when, after the analysis of the initial population of solutions, the DM(s) is confronted with
relevant information about the process and, given these intermediate results, is asked about
a possible way to advance. We are facing a situation in which the results may be explainable
to the DM(s).

3. Examples of Application: DTLZ Benchmark Problems

A strategy to deal with many-objective real-world complex optimization problems
(e.g., those with no explicit objective functions) is prioritizing objectives. In the case
of unknown priorities, their relative importance can be estimated from samples of the
decision space, as proposed in this paper. Such prioritization has a certain resemblance
to the problem of determining the essential objective set, since a redundant objective has
low priority.

The DTLZ problems (with and without redundant objectives) have been used to test the
method’s capacity to find such a set and to evaluate algorithms for many-objective optimization.

Some algorithms have succeeded in finding the set from samples in POF, near POF,
or, for example, from the last generation of an NSGAII run, although more recently, some
of them failed for new challenging problems with other types of redundancies, as shown
in [37]. This way, evaluating how much FS-OPA can estimate objectives’ relevance for
DTLZs from a random population (or from the first fronts of it) may be useful, since they
are well-known problems.

Figure 5A illustrates an FS-OPA output for unconstrained DTLZ5, also used by
Duro et al. [12] for explaining the capacity of their method to find redundant objectives
(objectives f 1, f 2, f 3, f 4, f 5, f 6, f 7, f 8, and f 9 are linearly correlated in DTLZ5). A random
population of size 31 with samples normalized and Euclidian distance was used to obtain
a distance matrix. SS procedure in Figure 3 was not applied. The output of Figure 5A
shows variables and objectives arranged into a phylogram with leaf nodes (the objects
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under analysis) composing clusters (similarly to the end of the pipeline in Figure 1)—they
are identified by the same color.
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DTLZs from a random population (or from the first fronts of it) may be useful, since they
are well-known problems.

Figure 5A illustrates an FS-OPA output for unconstrained DTLZ5, also used by Duro
et al. [12] for explaining the capacity of their method to find redundant objectives (objectives
f 1, f 2, f 3, f 4, f 5, f 6, f 7, f 8, and f 9 are linearly correlated in DTLZ5). A random population
of size 31 with samples normalized and Euclidian distance was used to obtain a distance
matrix. SS procedure in Figure 3 was not applied. The output of Figure 5A shows variables
and objectives arranged into a phylogram with leaf nodes (the objects under analysis)
composing clusters (similarly to the end of the pipeline in Figure 1)—they are identified by
the same color.

Figure 5. Phylogram and the clusters found: (A) for unconstrained DTLZ5 with 10 objectives and (B)
for constrained DTLZ5 (2,10).

Objective functions f 1, . . . , f 9 are partitioned into three neighbor clusters ({f 1, f 2}, {f 3,
f 4, f 5, f 6}, and {f 7, f 8, f 9}) in the phylogram structure; while f 10 is together with the leaf
nodes, corresponding to variables. The phylogram structure aggregates f 1, . . . , and f 9
into the same subtree, while f10 is isolated from the other objectives in the complementary
subtree. The unique node with the label "100" (another type of result from a tree consensus)
splits the phylogram into those two subtrees. Such a label (“100”) means that the leaf
nodes f 10 and x1, ..., x10, and f 10 were in the same subtree (with the remaining leaf nodes
in the complementary subtree) in 100% of all the constructed phylograms, independently
of each subtree topology in a phylogram. Such an interpretation suggests a hypothesis:
f 10 is weakly correlated to the other objectives, which are significantly associated with
themselves. Thus, f 10 and one of the other objectives could compose an essential objective
set; this result is consistent with the DTLZ5 problem structure.

Figure 5B shows the proposed phylogram for DTLZ5(2,10) with constraints (Saxena
et al. [5]). It requires an additional variable, x11, to generate samples outside POF, as
samples used to construct a phylogram from Figure 5A. The phylogram from Figure 5B
shows that f 10 is isolated in a subtree, while f 1, . . . , f 9 are in the complementary subtrees.
Such a result suggests that f 10 and f 1 (for example) would enable proper POF estimates;
this result agrees with the DTLZ5(2,10) problem structure.

Figure 6 shows the phylograms obtained by FS-OPA for DTLZs 1–4 obtained from
random populations of size 31 as a way to check if the FS-OPA clues about the objective
relationships are plausible.

Figure 5. Phylogram and the clusters found: (A) for unconstrained DTLZ5 with 10 objectives and
(B) for constrained DTLZ5 (2,10).

Objective functions f 1, . . . , f 9 are partitioned into three neighbor clusters ({f 1, f 2}, {f 3,
f 4, f 5, f 6}, and {f 7, f 8, f 9}) in the phylogram structure; while f 10 is together with the leaf
nodes, corresponding to variables. The phylogram structure aggregates f 1, . . . , and f 9
into the same subtree, while f10 is isolated from the other objectives in the complementary
subtree. The unique node with the label "100" (another type of result from a tree consensus)
splits the phylogram into those two subtrees. Such a label (“100”) means that the leaf
nodes f 10 and x1, ..., x10, and f 10 were in the same subtree (with the remaining leaf nodes
in the complementary subtree) in 100% of all the constructed phylograms, independently
of each subtree topology in a phylogram. Such an interpretation suggests a hypothesis:
f 10 is weakly correlated to the other objectives, which are significantly associated with
themselves. Thus, f 10 and one of the other objectives could compose an essential objective
set; this result is consistent with the DTLZ5 problem structure.

Figure 5B shows the proposed phylogram for DTLZ5(2,10) with constraints
(Saxena et al. [5]). It requires an additional variable, x11, to generate samples outside
POF, as samples used to construct a phylogram from Figure 5A. The phylogram from
Figure 5B shows that f 10 is isolated in a subtree, while f 1, . . . , f 9 are in the complementary
subtrees. Such a result suggests that f 10 and f 1 (for example) would enable proper POF
estimates; this result agrees with the DTLZ5(2,10) problem structure.

Figure 6 shows the phylograms obtained by FS-OPA for DTLZs 1–4 obtained from
random populations of size 31 as a way to check if the FS-OPA clues about the objective
relationships are plausible.
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Given that these problems do not have redundant objectives, the unique possibility is
to present some clue about the prioritization of objectives, considering that a reduction in
the number of objectives only can be made with a certain error, as explained before. For
example, the behaviours of functions DTLZ1, DTLZ2, and DTLZ3 are very similar. The
simultaneous analysis of the clusters found and of the distances between objectives and the
decision variables show that objectives can be portioned in the following sets:

• DTLZ1: {f 1}, {f 2, f 3, f 4, f 5}, {f 6, f 7, f 8}, {f 9} and {f 10};
• DTLZ2: {f 1}, {f 2, f 3, f 4, f 5}, {f 6, f 7, f 8}, {f 9} and {f 10};
• DTLZ3: {f 1}, {f 2, f 3, f 4}, {f 5, f 6, f 7, f 8}, {f 9} and {f 10};
• DTLZ4: {f 1}, {f 2, f 3, f 4}, {f 5, f 6} and {f 7, f 8, f 9, f 10};

This signifies that a possible hierarchization of the objectives for these problems can
be made by selecting, in the first step, a single objective of the groups identified above and
then, by selecting all the others to a second level.

In addition, all the objectives in the phylograms found for DTLZ2 and DTLZ4 are not
in a subtree without a variable. That may mean that the disagreement of objectives of those
two problems is more salient from an initial random sampling.

However, the objective of this paper is not only to define the minimum number of
objectives that can be used without error but also to identify the situations where the
reduction can be done with a certain error. Anyway, a deep analysis will be necessary here,
which is outside of the scope of the present paper.

The FS-OPA also produces other outputs (useful for human comprehension of some
classes of real-world problems), which are explored in Sections related to the extrusion problem.

4. Polymer Extrusion Problem
4.1. The Problem to Solve

To demonstrate the complexity of this system regarding the modelling program and
the interrelations between the decision variables and the objectives, some details are
given here. However, the system is much more complex, as can be seen in the following
references [38–41].

Figure 7A shows an axial cut of the extruder and die fitted with a barrier screw.
The sequence of the physical phenomena developing typically along the screw is also
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represented, and comprises [38–40]: (i) gravity conveying of the solid material in the
hopper; (ii) drag solids conveying in the first screw turns; (iii) development of a thin film
of melted material separating the solids from the surrounding metallic walls; (iv) melting
of the solid plug, with physical separation of the solid plug from the melt pool; (v) melt
conveying following a relatively complex regular helical flow pattern; vi) pressure flow
through the die. Figure 7B shows the complex flow pattern quantified by the velocity fields
and the temperature profile in the Conventional Screw (CS) and Maillefer Barrier Screw
(MBS), while Figure 7C shows the complete system geometry used in the calculations.
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The aim is to determine if the best solution is to use a CS or an MBS for fixed and/or for
changing operating conditions and, simultaneously, to optimize the corresponding geometry.

The following equations represent the momentum and energy equations for the melted
region of the channel (melting and melt conveying in Figure 7), which resulted from some
specific simplifications of the general tri-dimensional (3D) set of equations. These equations
were solved numerically, considering a 2D space representing the cross-screw channel
(X and Y directions) for small increments along the channel (Z direction). However, it
is necessary to note that all the regions identified above and in Figure 7 have different
thermomechanical models that must be put together using the appropriate boundary
conditions. This is a very complex system in which the polymer properties, the operating
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conditions of the machine, and the screw geometry contribute in a complex way to measure
the process performance quantified by the objectives (see Table 2).

Table 2. Optimization objectives, aim of optimization and range of variation.

Objectives Aim xmin xmax

Output—Q (kg/hr) Maximize 1 20
Length for melting—L (m) Minimize 0.1 0.9
Melt temperature—T (◦C) Minimize 150 210

Power consumption—Power (W) Minimize 0 9200
WATS Maximize 0 1300

Viscous dissipation—Viscous Minimize 0.9 1.2

For example, to only illustrate the complexity of this process and the corresponding
numerical modelling, Equation (3) shows the melt rate per unit of channel length (Φ) that
represents the quantification of solids material that changes the physical state to melt in
each of the increments along the screw channel. However, we must take into account that
it is an analytical model that resulted from further simplifications of Equations (1) and (2).
For more details of the model used, the reader is referred to references [41–43].
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The variables in these equations represent the polymer properties, operating conditions
and flow variables: ρm is the melt density, km is the melt thermal conductivity, h is the
melting entropy, Cm and Cs are specific heat of melt and solids, respectively, Tm is the
melting temperature, η is the melt viscosity, Tso and Tc are the solids and the barrel
temperatures,

.
γ is the shear rate, T is the melt temperature in each node of the mesh,

Tavg is the average temperature of the melt, Vz is the melt velocity in the Z direction, Vs is
the solid velocity in the y direction, and Vbx is the barrel velocity in the X direction.

Therefore, the performance of the process depends on the polymer properties, machine
operating conditions and geometry. In the present example, a Low-Density Polyethylene
(LDPE) is used, and for the operating conditions, two situations are considered, as shown in
Table 3, i.e., in some cases, they are fixed, and in one of the cases, they are also considered as
a DVs. The DVs are the operating conditions and the geometrical parameters as identified
in Tables 3 and 4, respectively.

Table 3. Cases studied for LDPE—only in case 7 the operating are used as decision variables.

Case Operating
Conditions

Decision Variables

N (rpm) Tb1 (◦C) Tb2 (◦C) Tb3 (◦C) Geometry

1 Constant 40 140 150 160 Table 4
2 Constant 60 140 150 160 Table 4
3 Constant 80 140 150 160 Table 4
4 Variable [40, 80] [140, 160] [150, 170] [160, 200] Table 4
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Table 4. Geometrical parameters of both CS and MBS screws.

Screw Type Decision Variables

CS case L1 L2 H1 H3 P e
MBS L1_ L2_ H1_ H3_ P_ e_ Hf wf

Interval [0, 1] [100, 400] [170, 400] [18, 22] [22, 26] [25, 35] [3, 4] [0.1, 0.6] [3, 4]

The performance of the machine was quantified using six objectives, two to maximize
(output and degree of mixing) and four to minimize (length of screw required to melt the
polymer, melt temperature at the exit, mechanical power consumption required to rotate
the screw, and viscous dissipation quantified as the ratio between the melt temperature
and the fixed barrel temperature), as shown in Table 2.

The geometrical parameters involved in the description of both types of screws are
shown in Table 4. Since only one screw can be used each time in the machine, an addi-
tional decision variable was added, identified as “case,” to trigger the decision variables
corresponding to one of the types of screws, i.e., when case ranges in the interval [0.0, 0.5]
the decision variables of the conventional screw are used, while when case ranges in the
interval [0.5, 1.0], the other screw is considered. Consequently, the total number of decision
variables is 15.

For each case studied (Table 3), 11 optimization runs are made for statistical compari-
son using the hypervolume (HV) and the Inverted Generational Distance (IGD).

4.2. Results and Discussion

The FS-OPA analysis for Cases 1 and 4 are presented in Figure 8 and Tables 5 and 6.
The results were very similar, generating the same three groups of objectives, (Q, L), (Power,
WATS), and (T, TTb). The application of the methodology defined in Section 2.4 allows
for identifying the objectives Q, Power, WATS, and T to be used in the optimization after
reduction (see Tables 5 and 6): (i) the objectives with lower distance. Power and WATS; (ii)
one objective of the cluster with higher distance, T; and (iii) one objective of the remaining
cluster, Q. It is clear, also, that instead of T, it is possible to select TTb, and instead of Q, it is
possible to select L.
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Table 5. Distances between the objectives for Case 1.

‘Q’ ‘L’ ‘T’ ‘Power’ ‘WATS’ ‘TTb’ Average
‘Q’ 0.00 0.07 0.73 0.27 0.27 0.73 0.345
‘L’ 0.07 0.00 0.73 0.27 0.27 0.73 0.345
‘T’ 0.73 0.73 0.00 0.67 0.67 0.07 0.478

‘Power’ 0.27 0.27 0.67 0.00 0.07 0.67 0.325
‘WATS’ 0.27 0.27 0.67 0.07 0.00 0.67 0.325
‘TTb’ 0.73 0.73 0.07 0.67 0.67 0.00 0.478

Table 6. Distances between the objectives for Case 4.

‘Q’ ‘L’ ‘T’ ‘Power’ ‘WATS’ ‘TTb’ Average
‘Q’ 0.00 0.08 1.00 0.42 0.42 1.00 0.480
‘L’ 0.08 0.00 1.00 0.42 0.42 1.00 0.480
‘T’ 1.00 1.00 0.00 0.83 0.83 0.08 0.620

‘Power’ 0.42 0.42 0.83 0.00 0.08 0.83 0.430
‘WATS’ 0.42 0.42 0.83 0.08 0.00 0.83 0.430
‘TTb’ 1.00 1.00 0.08 0.83 0.83 0.00 0.620

To assess the capacity of using only the four objectives selected, the optimization
results obtained using SMS-EMOA provided with the problem with these four objectives
will be compared with the case with the initial six objectives using the Pareto-optimal fronts
obtained after 100 generations for a population of 100 individuals in each generation and
11 runs with different seeds values are made for statistical comparison. Additionally, this
comparison will be made with a situation with three objectives one of each of the clusters
found, specifically Q, WATS, and T.

Figures 9 and 10 show the Pareto-optimal fronts found in each one of the cases (Case
1 and Case 2) using the three sets of objectives: (i) all objectives; (ii) objectives Q, Power,
WATS, and T; (iii) objectives Q, WATS, and T. The results are, apparently, very similar
when comparing the cases with six and four objectives. In the other situation, with three
objectives, the multi-objective optimization algorithm is clearly lost, since the final solution
found alternates in the different runs between one type of screw and the other (i.e., between
the CS and the MBS). The results for Cases 2 and 3 are very similar to those presented here
and, thus, no specific discussion is made here.

By using the 11 runs performed for each case studied, the Hypervolume (HV) and the
Inverted Generational Distance (IGD) were applied and the results are presented in Table 7,
where it is possible to see the average and the percentage of losses when the number of
objectives is reduced [42–44]. To calculate IGD, all Pareto-optimal solutions found in each
run were put together in a pool and the non-dominated solutions of this pool were used
for comparison.

As shown in Table 7, it is possible to conclude that the use of four objectives (Q, Power,
WATS, and T) does not significantly deteriorate the final solutions found, the maximum
difference found is 11.6%, which, for a process like the extrusion process, and taking into
account a final population of 100 solutions, is not expressive. Additionally, the differences
in the IGD value are too small, indicating that at least the solutions found for the case of
four objectives are near the best solution found in the 11 runs. The results found for the
situation with three objectives corroborate the results shown in Figures 9 and 10.
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Table 7. Performance comparison using Hypervolume and IGD for the total number of objectives
and the automatic reduction to four and three objectives (between brackets the standard deviation,
and loss percentage relative to six objectives) for the four cases studied.

Case Study Metric 6 Objectives 4 Objectives
(Q, Power, WATS, T)

3 Objectives
(Q, WATS, T)

1
HV 0.21518 (0.008145) 0.19148 (0.012324) −11.0% 0.02555 (0.024707) −88.1%

IGD 0.10966 (0.004972) 0.11159 (0.003607) −1.76% 0.66727 (0.143866) −508%

2
HV 0.23233 (0.013760) 0.20867 (0.010411) −10.2% 0.04689 (0.028991) −79.8%

IGD 0.10966 (0.004972) 0.11205 (0.003526) −2.17% 0.69042 (0.105262) −529%

3
HV 0.24809 (0.006384) 0.21932 (0.014301) −11.6% 0.04598 (0.0285391) −81.5%

IGD 0.11076 (0.005756) 0.11326 (0.006315) −2.25% 0.69042 (0.105262) −523%

4
HV 0.24809 (0.006384) 0.22911 (0.009955) −7.7% 0.01967 (0.011256) −92.1%

IGD 0.11076 (0.005756) 0.11431 (0.007949) −3.21% 0.72078 (0.046369) −550%

Finally, it is important to point out that during this process, the DM(s) play an im-
portant role in the procedure. Indeed, they have some intervention when selecting the
objectives. For example, it is necessary to opt for Q or L, two objectives from the same
cluster having apparently the same importance in the process. In this case, an informed DM
will make the option for Q because this objective is the output of the machine and is directly
linked with the economic issue of the problem, while L is the length for melting that is
related to the quality of the product obtained; however, this quality is also quantified by
WATS, which was already selected by the algorithm. This example shows the importance
of the DM(s) that simultaneously help the optimization process and are informed about the
process of obtaining the results.

5. Conclusions

A methodology for reducing the number of objectives for many-objective optimization
problems using population-based algorithms is proposed. This approach, based on machine
learning, is an improvement over similar state-of-the-art methodologies; namely, it allows
analysis of the relations variable–variable and variable–objective relations (and not only
objective–objective), does not need kernel function choice and parameters optimization,
allows for obtaining explainable solutions to assist the decision maker with interpreting
the results, its time complexity is also low, and it supports theoretical and empirical
sample sizes.

The approach showed its potential to reduce the number of objectives by capturing
the complex relations between the different objectives with an additional possibility, which
is to capture the objective-variable relations. This is done by applying the methodology to
a set of benchmark and real-world problems. The comparison of the Pareto-optimal fronts
obtained with another machine learning approach in the literature allows for the conclusion
that its performance is very competitive, but with the great advantage of being much easier
to use. Additionally, there is the possibility of strong interaction with the DM(s).

The application of the proposed approach to a difficult real-world problem has proven
that it is automatically possible to reduce the number of objectives by losing only around
ten percent of the Pareto-optimal frontier obtained, for the case of 100 individuals in the
population. The use of a second possibility, which is to require the intervention of the
decision maker during the process, e.g., when selecting the objectives to be considered in
the optimization, can be very useful because the person interested can see how the process
works and interpret the results obtained. Finally, an important characteristic of the method
proposed is the capacity to explain the solutions found.
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