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Abstract
Although global climate change is receiving considerable attention, the loss of biodiversity
worldwide continues. In this study, we investigated the dynamics of land use/land cover (LULC)
change in the Paraguai/Jauquara Basin, Mato Grosso, Brazil. Two analyses were performed
using R software. The first was a comparative study of LULC among the LULC classes at the
polygon scale, and the second was a spatio-temporal analysis of moving polygons restricted
to the agricultural regions in terms of topology, size, distance, and direction of change. The
data consisted of Landsat images captured in 1993, 1997, 2001, 2005, 2009, 2013, and 2016,
and processed using ArcGIS software. The proposed analytical approach handled complex data
structures and allowed for a deeper understanding of LULC change over time. The results
showed that there was a statistically significant change from regions of natural vegetation to
pastures, agricultural regions, and land for other uses, accompanied by a significant trend of
expansion of agricultural regions, appearing to stabilize from 2005. Furthermore, different
patterns of LULC change were found according to soil type and elevation. In particular, the
purple latosol soil type presented the highest expansion indexes since 2001, and the elevated
agricultural areas have been expanding and/or stabilizing since 1997.
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1. Introduction1

Over the last decades , tropical forests have been significantly degraded and destroyed by anthro-2

pogenic activities. Deforestation destroys the natural habitat and, consequently, leads to a decline in3

biodiversity. It can also result in forest fragmentation, which can result in areas that are too small for4

some species to survive or in large distances between species. Therefore, a long process of decay in5

residual diversity is observed (Morris, 2010), and land management becomes one of the most important6

factors influencing the supply of ecosystem services (van Oudenhoven et al., 2012).7

In short, human activities make use of natural resources, and this impacts ecological processes and8

functions. This is known as land use (Veldkamp and Fresco, 1996). Information about land cover is9

essential for the planning and management of natural resources (Zhu, 1997). Thus, the analysis of10

ecosystem changes, particularly land use/land cover (LULC) change, has become relevant during the11

process of land management decision-making. Such changes can include losses of forest, water bodies,12

agricultural areas, and other vegetated green spaces. Detecting change dynamics has attracted great13

attention (Lu et al., 2013); however, it faces some challenges.14

Although many change detection methods have been developed, most are only used to detect binary15

change and non-change categories (Lu et al., 2004). According to Mizutani and Murayama (2011), the16

major data formats used to represent LULC are the raster format and polygon-based formats. While17

in raster-based LULC data each location has an individual value and is described pixel by pixel, in18

polygon-based LULC data homogeneous space is defined as one polygon. Polygon representation is the19

most useful since it is the only one that can fully contain all geometric information, and it may consider20

polygon adjacency and topological relationships, which are important features for understanding LULC21

change (French and Li, 2010). Polygon-based data can also permit LULC fragmentation analysis; this is22

important for assessing how anthropogenic and natural factors can influence LULC changes (Lu et al.,23

2013).24

Methods based on the polygon format to study LULC change have been proposed. To explain how25

societal and natural systems are affected by landscape changes, Sohl et al. (2019) applied a unique26

parcel-based modeling framework to produce high-resolution landscape projections at a national scale,27

the “Land Change Monitoring, Assessment, and Projection”. Jacobson et al. (2015) introduced a method28

for accessing localized information in developing countries called GE Grids. This method is used to29

identify anthropogenic land conversion across East Africa and compare this against available land cover30

datasets through an interactive user-specified binary grid laid over Google Earth’s high-resolution im-31

agery. Galvanin et al. (2019) proposed a mixed-effects modeling approach for analyzing LULC change32

in the Brazilian Pantanal subregions of Cáceres, Mato Grosso State, Brazil. The models allow analysis33

of complex data structures and incorporate both fixed effects, associated with observed covariates, and34

random effects, which consider the particularities of each LULC class dependent on the year of data35

collection. Lu et al. (2013) provided a comparative analysis of LULC changes in the Brazilian Amazon36

at multiple scales, including per pixel, polygon, and census sector. Their research highlighted the ne-37

cessity to implement change detection at multiple scales to understand LULC change patterns. Williams38

and Wentz (2008) proposed the TOSS method to understand LULC patterns. This method is used to39

examine whether similar geographic areas exhibit specific spatial patterns using additional attributes of40

polygons, such as type, orientation, size, and shape. Groups of similar regions are then created based on41

these attributes using cluster analysis, and the nearest neighbor analysis is used to compute the spatial42

distributions for each group.43

Land use change modeling can be very challenging, and other advances have been made, such as44

the approaches presented by Gao and O’Neill (2019) and Verweij et al. (2018). Gao and O’Neill (2019)45

took a data-driven approach to develop a long-term spatially explicit urban land change model. The46

estimation process for each grid cell includes the capture of both the average grid-cell-level trajectory47

of land development applicable to all global grid cells and the local variations in the process of built-up48

land conversion across the world. The model incorporates the residuals resulting from both. Verweij49

et al. (2018) presented a new version of the CLUE model, the iCLUE model. This version incorporates50

solutions that address CLUE model issues, such as the process being time consuming and not producing51
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self-explanatory results, and other issues directly related to the software. Both methods present good52

results, but they cannot be applied to the polygon data format, the importance of which has already been53

discussed. Very recently, Machado et al. (2020) introduced the LDTtool, a toolbox designed to assess54

landscape dynamics. The LDT method requires binary landscapes; as such, the area of interest must55

contain only one class of polygon, and it compares two metrics from two dates: the area and the number56

of patches. Although this method provides a diagnostic analysis and designs a future pattern, it works57

better in situations where there is little human interference (Machado et al., 2020).58

Spatial dependency gives us information on spatial patterns, structures, and processes. Overmars59

et al. (2003) studied the spatial autocorrelation in LULC data from Ecuador. Since the analyzed LULC60

indicators were continuous, Moran’s I was applied to study spatial dependency. In many LULC studies,61

the variable of interest is a factor, and Moran’s I cannot be used. For this purpose, a join count test62

was developed, and it is not only used for binary data but can also be applied to multi-categorical data63

(Cliff and Ord, 1981). Mizutani and Murayama (2011) established an analytical framework for polygon-64

based studies of LULC change by defining polygon event and polygon state. Polygon event is related65

to changes in shape and attributes, while polygon state considers the spatial continuity and adjacency66

during the process. In particular, the combination of polygon events constitutes the change in polygon67

distributions (Sadahiro and Umemura, 2001), where events (such as stable, expansion, convergence,68

and division) characterize the change patterns based on a combination of the shape and the attributes.69

However, a more specific classification of changes can be considered, particularly the one proposed by70

Robertson et al. (2007).71

The two main objectives of this study were (i) to compare and analyze the evolution of LULC for dif-72

ferent LULC classes in the Paraguai/Jauquara Basin (BHPJ) and (ii) to study the spatial pattern, structure,73

and processes of changes in agricultural regions in the Bugres River Basin (BHRB). The ideas proposed74

here are illustrated with these two case studies, BHPJ and BHRB, but they can be easily applied to similar75

studies.76

2. Methods77

2.1. Study area78

The BHPJ territory covers 16,482 km2 and is located in the Brazilian area of the north-eastern Upper79

Paraguay Basin (BAP), in the central-west region of Brazil (Figure 1). The BHPJ area includes the80

Cerrado, Amazon, and Pantanal biomes, which are predominately savanna and seasonal forest (Brasil.81

Ministério do Meio Ambiente e Instituto Brasileiro de Geografia – IBGE, 2004; IBGE, 2012).82

According to the Köppen classification, the region has a Cwa climate (tropical climate), and it has83

two well-defined seasons: the rainy season in the summer and the dry season in the winter (Fenner et al.,84

2014). The mean monthly temperature ranges from 23.0oC to 26.84oC, and total annual rainfall ranges85

from 1,200 to 2,000 mm (Souza et al., 2013).86

The Serra das Araras Ecological Station is a conservation unit integral to the protection of nature87

that extends for 271 km2 of the Cerrado biome, present relief dissected , with elevations above 700m. It88

is located in the southwest region of the BHPJ, with a mountain corridor connecting the Amazonian and89

Pantanal biomes (Brasil, 1982). It contains the Umutina Indigenous Land, an area of 28,120 hectares90

located between the municipalities of Barra do Bugres and Alto Paraguai (ISA, 2018; Monzilar, 2018).91

The source of the Paraguay River is located in the northeast region of the BHPJ; this is an important92

contributor to the flood pulse of the Pantanal.93

According to Opršal et al. (2016), soil type may influence LULC changes. In addition to soil char-94

acteristics, elevation is a significant biophysical factor in agricultural land change since most cultivated95

lands are situated at lower elevations (Warra et al., 2015). Elevation can influence other factors that con-96

tribute to agricultural occupation, such as soil quality, land accessibility, and the capacity to use modern97

mechanical equipment (Opršal et al., 2016).98
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Figure 1: Map of BHPJ, Mato Grosso State, Brazil. On the right map, area 3 marked in dark-grey identifies BHRB.

2.2. Data pre-processing99

A spatio-temporal analysis was used to study the LULC change in the BHPJ, Mato Grosso, Brazil.100

The methodology flowchart is presented in Figure 2.101

Spatio-temporal data were collected to extract the LULC information. Image composites from the102

Thematic Mapper (TM) sensor onboard Landsat-5 (bands 3, 4, and 5) and the Operational Land Imager103

(OLI) sensor onboard Landsat-8 (bands 4, 5, and 6) were obtained; both were freely available from the104

image catalogs of the United States Geological Survey (USGS, 2017).105

The BHPJ was covered by the Landsat scenes (path: 227; rows: 70 and 71) (30-m spatial reso-106

lution; 185-km swath width; 16-day temporal resolution; and 8-bit or 16-bit radiometric resolutions)107

(USGS, 2017). The images were captured in 1993, 1997, 2001, 2005, 2009, 2013 (Landsat-5, overpass:108

September), and 2016 (Landsat-8, overpass: August). Both August and September are in the dry period.109

The delimitation of the BHPJ and BHRB was performed with the Digital Elevation Model from the110

Shuttle Radar Topography Mission (SRTM), with a spatial resolution of 30m, adapted for the Datum111

SIRGAS 2000, using the QGIS software (version 2.14.21) (QGIS Development Team, 2016).112

The Landsat-5 images were geo-referenced using the Geo-reference Information Processing System113

(SPRING) (version 5.5.2) (Câmara et al., 1996) with Landsat-8 images as reference and a minimum error114

tolerance of 0.5 per pixel. ArcGIS (version 9.2) (ESRI, 2011) was used by radiometric correction. The115

mosaic of the images obtained by Landsat-5 and -8 and the geo-referenced images were imported into116

the Geo-reference Information Processing System (Câmara et al., 1996).117

Landsat images were processed using the region growth algorithm available in the SPRING software.118

The best combinations for grouping two spectrally similar regions into a single region were: similarity119

value 10 and area 16 (1.44 hectare) for 1993, 1997, 2001, 2005, 2009 and 2013 images; and similarity120

value 10 and area 20 (1.8 hectare) for 2016 images.121

Five thematic classes were considered based on the LULC classes proposed by IBGE (2013): pasture122

(grassland composed of cultivated pastures); natural vegetation (savanna and seasonal forest); agriculture123
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TM/OLI Landsat image
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LULC maps (1993, 1997, 2001, 2005, 

2009, 2013, 2016)

Segmentation and Classification

Polygon classification according to soil 

type and elevation

Figure 2: Methodology flowchart.

(all types of agricultural crops); water (all water bodies); and other uses (urban areas, farmhouses, roads,124

civil constructions, and mining).125

The class training samples were identified, and the classification was supervised using Bhattacharya’s126

method, which was performed in SPRING with a threshold of acceptance of 95% (Xaud and Epiphanio,127

2014). The maps generated by SPRING were converted to matrix-vector form and exported in a shape128

file format to ArcGIS for cartographic mapping and quantification of thematic classes.129

2.3. Spatio-temporal analysis130

The spatio-temporal analysis was split into two steps. First, an exploratory method was used to131

analyze LULC changes at the polygon scale in the BHPJ, and this included a spatial autocorrelation132

analysis. Second, the area of interest was restricted to the BHRB, the area with more agricultural regions133

of the BHPJ. This second part consisted of a detailed spatio-temporal moving analysis of agricultural134

land use polygons in terms of topology, size, distance, and direction of change.135

All analyses were performed using RStudio statistical software version 1.2.5033 (RStudio Team,136

2019). The spdep package (Bivand, 2020) was used to study the spatial autocorrelation, while the stampr137

package was used for the spatio-temporal moving analysis (Long and Robertson, 2018).138

The analyzed geodata consisted of polygons, each identified by: year of data collection (seven dis-139

tinct years); area of the polygon (in hectares); LULC class (five classes); and geographical area of the140

region of interest (four classes: northwest, northeast, southwest, and southeast). Note that different rep-141

resentations of polygons were considered for the two data sets used in this study. For the BHPJ data,142

the polygon was identified by a pair of coordinates, while for the BHRB data, each polygon had defined143

boundaries determined by the LULC class.144

2.3.1. Spatial autocorrelation145

Spatial autocorrelation represents the relationship between nearby spatial units, where each unit has146

a realization of a single associated variable. In fact, the concept of spatial autocorrelation can be adopted147

in different situations. It can be used as a test for model mis-specification, a measure of the strength of148

the spatial effects on any variable, a means of identifying spatial clusters, a test for hypotheses about149

spatial relationships, and for other purposes. Examples of applications are reported by Getis (2010);150

Garcia-Soidan and Menezes (2012); Menezes et al. (2016).151
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In the current study, the spatial units were polygons, and the presence of spatial autocorrelation152

among realizations of the variable of interest, LULC class, was tested. Therefore, to assess the degree of153

clustering and dispersion of each LULC class, the joint count statistics test was used, with the assumption154

of independence between sampling outcomes and each locality.155

The test statistic is given by the standardized normal statistic of the number of same-color joins156

(also denoted by Black-Black [BB] joins), testing whether they occurred more frequently than would157

be expected if the zones were labeled in a spatially random way (Cliff and Ord, 1981; Sokal and Oden,158

1978). The spatial weights used were binary and retained a weight of unit for each neighbor relationship.159

On the other hand, the neighborhood was defined according to the k-nearest neighbor method, which160

involved finding, for each spatial unit, the closest group of k objects in terms of the Eucledian distance.161

The choice of k was based on a thumb rule, the square root of the data set dimension.162

2.3.2. Spatio-temporal moving polygon163

Spatio-temporal moving polygon analysis started with a categorization of polygon movement events164

based on the intersection of polygons from two different time stamps, and a distance threshold was used165

to verify whether the polygons were related between the time stamps. This categorization was performed166

with a hierarchical system (Robertson et al., 2007):167

• Level 1 - stable (STBL), generation (GENR), and disappearance (DISA);168

• Level 2 - STBL, GENR, DISA, expansion (EXPN), and contraction (CONT);169

• Level 3 - STBL, GENR, DISA, EXPN, CONT, displacement (DISP), convergence (CONV), con-170

centration (CONC), fragmentation (FRAG), and divergence (DIVR).171

According to Robertson et al. (2007), this approach requires two assumptions: only unmovable172

polygons can be considered, and polygon changes are discontinuous. In the present case, both were173

verified since the agricultural regions were not movable objects and the observed time was discrete.174

Furthermore, the polygon events were classified based on combinations of change in shape and LULC175

class.176

To compare different periods, the ratio and area of the observed events may be used (Sadahiro and177

Umemura, 2001; Mizutani and Murayama, 2011). However, the size measures only provide information178

about local changes in the sizes of temporally related polygons. In addition to the ratio and the size of179

events, other spatial properties associated with polygons may be taken into account, such as distance180

and direction, which may show the spatial relationships of polygons. In particular, the combination of181

local size changes with measures of direction can provide a metric and topological description of the182

characteristics of local change (Robertson et al., 2007).183

Methods for quantifying distance relationships in polygon sets are well developed, and the calcula-184

tion can be relatively straightforward. For this purpose, the Hausdorff distance may be adopted, which185

can be described as the maximum distance separating two polygons; that is, it measures the degree of186

mismatch between two polygons (Shao et al., 2010). The choice of the Hausdorff distance is justified187

by its greater sensitivity to changes in shape when compared to the centroid distance. Hence, the Haus-188

dorff distance was used to quantify the distance between a polygon observed in a specific year and in the189

following year.190

Conversely, there are many methods for performing polygon direction analysis. In this study, the191

simplest and most straightforward method was used—the centroid angle method. It measures the angle192

between two polygon centroids.193

For this analysis, the study area was restricted to the agricultural areas of the BHRB due to the clear194

increases in these regions over time. Furthermore, after the categorization of polygon movement events,195

the soil type and elevation data were obtained for each area corresponding to each topological event.196

Soil type was classified into three categories: purple latosol (PL), red-yellow podzolic (RP), and red-197

yellow latosol (RL). PL soil is characterized by its great agricultural potential; it has higher fertility than198

the remaining latosols. RL soil has the largest and widest geographic distribution in Brazil, although it199
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Figure 3: Distribution of thematic Land Use/Land Cover classes in the BHPJ.

generally has low-medium fertility (Ker, 2013). RP soil is mostly used for pasture activities on the tops200

and slopes of hills. Elevation was categorized by intervals of 100 m: 100–200m, 200–300m, 300–400m,201

400–500m, and 500–600m.202

3. Results and Discussion203

3.1. Analysis of BHPJ data204

Figure 3 provides an overview of the LULC classes that were present in the BHPJ from 1993 to 2016.205

The intensification of agricultural LULC and the decrease in the natural vegetation area can be observed.206

Figure 4 hands an overview of the LULC changes in the BHPJ from 1993 to 2016 in terms of the207

average polygon area and the observed number of polygons. In particular, Figure 4 indicates that there208

has been a decreasing trend in the average area of natural vegetation polygons over the years. The209

decline is prominent in the first years; the rate was lower from 2005 to 2009 (also highlighted by Neto210

et al. (2009)), and an increase is seen in 2016. While the opposite has occurred with land used for pasture,211

agriculture (also reported in the temporal analysis by Ribeiro et al. (2016)) and other LULC use classes.212

Therefore, it can be noted that the natural vegetation regions are disappearing and/or contracting and213

changing to pasture, agriculture, and other uses. According to Ribeiro et al. (2005), over the centuries,214

forests have been suppressed to allow the practice of economic activities such as agriculture, livestock215

rearing, and mining. Also, Casarin (2007) reported that forests, wetlands, and water sources were trans-216

formed into pasture in the Paraguay/Diamantino Basin, Mato Grosso. In particular, the LULC changes217

from agriculture to pasture can be due to the ever lower yields of various agricultural crops (Kosmas218

et al., 2000).219
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Figure 4: Evolution of the average polygon area and the number of polygons.

To understand the fragmentation caused by LULC change, a deep analysis of the number of polygons220

over time for each LULC class is relevant. Due to the LULC characteristics of the BHPJ, the number221

of polygons representing the LULC classes varied by orders of magnitude (right panel of Figure 4). For222

example, the number of natural vegetation polygons ranged from 23,514 to 31,089, while the number of223

water polygons was 565 to 1,947. This reflects the results for the large green areas and the rare water224

resources presented in Figure 3. Figure 5 shows that, for regions of natural vegetation larger than 0.5225

hectares, the number of polygons sharply decreased. This may be due to conversion of the area into pas-226

ture and agriculture or destruction or degradation of habitat by wild fire, water pollution, unsustainable227

tourism, or the introduction of invasive exotic species (Alho and Sabino, 2011). Moreover, the dryness228

observed over time was confirmed by the decreasing number of polygons for all ranges of water areas.229

For the natural vegetation and pasture LULC classes, the number of polygons, in general, decreased230

across the range of area, independently of the year, which implies that these areas are more fragmented231

than the remaining areas. Furthermore, for the agriculture and pasture classes, the number of polygons232

of smaller areas decreased, but the number of polygons of larger areas increased and remained. The233

expansion of larger agricultural areas and the reduction of natural vegetation areas were also observed in234

the data presented in Figure 3. In summary, Figure 5 suggests that there were relevant changes in LULC235

classes from 2009 to 2016, mainly in agriculture regions.236

Spatial LULC data tend to be dependent (Overmars et al., 2003), once most biophysical processes237

exhibit spatial autocorrelation (Munroe et al., 2001). That is, random variables have values over dis-238

tance that are more or less similar than expected for randomly associated pairs of observations. This239

phenomenon is known as spatial autocorrelation, and it was studied using the statistical test described in240

Section 2.3.1.241

For all data sets corresponding to each year and each LULC class, the observed p-values were less242

than 0.05, so it is reasonable to assume the presence of spatial autocorrelation. Furthermore, all observed243

values were higher than the corresponding expected values, which is an indicator of clustering (positive244

spatial autocorrelation). Thus, the closest regions were more similar than the distant ones, reflecting the245

interaction between sites, since most changes are consequences of anthropogenic activities and these also246

exhibit neighborhood effects (Munroe et al., 2001).247

Since the number of joins allows assessment of the degree of clustering or dispersion (Section 2.3.1),248

the analysis of the percentage of BB joins over time by LULC class may be very informative (Figure249

6). The results presented in Figure 6 enable visualization of a decreasing tendency of the percentage of250

BB joins for the pasture and natural vegetation areas, and an increasing trend for the agriculture areas.251

Despite the observed values for the agriculture and natural vegetation areas in 2013, the pasture and252

natural vegetation areas were sparser and the agriculture areas more clustered over time. This pattern in253
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Figure 5: Comparison of polygon areas of LULC classes among different years.

Figure 6: Percentage of the number of BB joins by LULC class.
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agricultural areas can be justified by the importance of this activity for the Mato Grosso state. In fact,254

farming and raising cattle were defined as the main economic activities of this state, representing almost255

30% of the state’s gross domestic product, and agriculture accounted for 23% of this percentage (Mato256

Grosso (Estado). Secretaria de Estado de Planejamento e Coordenação Geral – Seplan, 2012). In short,257

the data verified that there was an increase in agricultural regions at the expense of natural vegetation and258

pasture zones, which contracted or disappeared. Furthermore, the increase in BB joins for the natural259

vegetation LULC class in 2013 can be justified by the increase in the respective area.260

3.2. Analysis of Bugres river basin data261

As alluded to in Section 2.3, this spatio-temporal analysis was fostered by the growth of agricultural262

areas over time. Table 1 shows the number of regions and the corresponding total areas over time, and263

Figure 7 presents the evolution of the agricultural regions’ area in the BHRB.264

Table 1: Observed number of regions and total area over time.

Year 1993 1997 2001 2005 2009 2013 2016
Number of regions 427 841 1149 653 767 444 308
Total area (hectares) 32,880.98 40,137.70 61,458.97 73,416.89 74,566.48 71,395.65 67,762.06

Table 1 shows that the number of regions and the corresponding total area for agriculture265

were not correlated (for instance, in 1993 and 2013, almost the same number of polygons was266

observed, but the total areas were very different). However, there was a pattern of growth in the267

total agriculture area until 2009, which is an indicator of expansion according to Pessoa et al.268

(2014). The observed decreases in 2013 and 2016 show a change in the BHRB agricultural area.269

Therefore, the results indicate that changes were occurring in space and time. In particular,270

Figure 7 shows the changes that occurred in the sizes of regions, which mainly happened in the271

south, where some regions were increasing and others decreasing without a well-defined pattern.272

The northern area comprises smaller areas, and it seemed to present a more discrete evolution273

of sizes over the years. Overall, these changes may indicate the expansion and contraction of274

agricultural regions. These results indicate the importance and relevance of spatio-temporal275

moving polygon analysis.276

The acquired data included seven periods; therefore, six change intervals were included in277

the analysis of topological events; these were labeled 1–6 in ascending order. Analysis was278

restricted to a level 2 change indicator, once at least 98% of agricultural area remained, gen-279

erated, disappeared, contracted, or expanded, which revealed that displacement, convergence,280

divergence, concentration, and fragmentation were rare in agricultural regions’ changes over281

time (see Table A.2 from Appendix A). Figure 8 provides an overview of this indicator in the282

BHRB over the six change intervals. Most regions remained stable over time, while the dis-283

appearance and the appearance of regions were rare when compared with the expansion and284

contraction events.285

Even though the expansion event was significant in the first change interval, there was a286

decreasing trend in this event until 2009, and an increase in contraction events. Hence, this287

resulted in a balance between these events in the following years. Another important inference288

based on the level 2 changes indicator was that the regions that appeared or expanded in a289

certain time frame ended up disappearing or contracting, indicating a greater change in the290

BHRB agricultural regions.291

Next, the geographical area, soil type, and elevation were investigated due to the noticeable292

differences in these variables (Figure 7). Spatial representation of these variables is presented293

in Figure 9. Most of the BHRB agricultural areas are at low elevation (100–300m) and use RL294
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Figure 7: Evolution of the area of agricultural regions.

Figure 8: Level 2 topological events: GENR (generation), EXPN (expansion), STBL (stable), CONT (contraction)
and DISA (disappearance).
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Figure 9: Geographical area, soil type and elevation maps.

soil. Higher areas (400–600m) seem to be associated with PL soil (see Figure 9). Additionally,295

the elevation increases from south to north of the basin.296

Analysis of Table A.2 in Appendix A indicated that there was a pattern in contraction297

and expansion events mainly in the western and southeastern areas. More specifically, there298

was more area expanding than contracting until 2005, and then the pattern changed. In the299

northeast, since 2005, the stable agricultural area has been larger than the contracting area, with300

variations in the expansion area rate over time. Therefore, it may suggest that since 2005 there301

has been a stabilization of agricultural regions, which indicates a slowdown in its expansion.302

This fact is congruent with the observed stabilization of intensive agricultural areas since 2006303

in BAP by Coutinho et al. (2016).304

Similarly,Table A.3 in Appendix A shows the changes in areas by soil type. The PL soil305

type corresponded to the highest expansion indexes since 2001, the RL soil type corresponded to306

the highest stabilization percentage until 2013, and the RP soil type corresponded to the highest307

generation rates since 2001, despite its decreasing trend and showing the highest disappearing308

percentage over time. Also, worthy of note is the observation that the fertility of PL soil seems to309

be higher than that of the other latosols (Ker, 2013), which likely explains the larger stabilization310

observed in this soil type.311

Furthermore, different change patterns were observed according to the elevation (see Table312

A.4 in Appendix A). For lower lands, there was more contraction than expansion, in terms313

of the change area percentage since 2005. In contrast, areas at 200–300m, 400–500m, and314

500–600m recorded more expansion events than contraction events, except during change in-315

tervals 6, 4 and 5, respectively. Despite the contraction area being larger than the expansion316

area for elevations of 200–300m and 500–600m in the 6 and 5 change intervals, respectively,317

the difference between the agricultural area expansion and contraction was very small. Lower318

agricultural lands (100–300m) were more stable than areas at 300–600m; this was also observed319

by Opršal et al. (2016). The generation event was the most observed event at higher elevations320

during the first interval change, and then expansion/stabilization events dominated.321

Another index of change, described in Section 2.3.2, was the distance between moving322

regions. Since the distance index is given by the distance between two regions from different323
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years, it allows analysis of the evolution of region movement. In particular, for contracting324

regions, an increase in distance may indicate that the area of the region has decreased and its325

shape and location have changed. The four geographical areas (Figure 10a), the three soil types326

(Figure 10b), and the various elevation classes (Figure 10c) may also display different patterns327

in terms of the distance of contracting and expanding regions, so the average of the distance by328

time interval was computed.329

We may conclude that agricultural regions have been contracting and expanding at increas-330

ingly distant places in the north and southwestern areas, which also reflects an increasingly331

drastic change. Furthermore, Figure 10a suggests that changes in the southwest occur at a332

higher level than in the remaining areas in terms of distance. While in the southeastern area,333

the average distance from the events of contraction has been constant regardless of the class of334

change, despite the larger variation in terms of distance. This allows us to conclude that there335

has been more change in contracting areas than in expanding areas over time in the southeastern336

area.337

The average of change distance for PL soil exhibited an exponential behavior, which was338

also observed for higher elevations (≥300m). In fact, higher elevations are associated with the339

PL soil type, as confirmed by Figure 9. Nevertheless, the contraction occurred at more distant340

places than the expansion regarding areas with elevation between 400m and 600m, while the av-341

erage distance of expanding and contracting moving areas were similar over time at 300–400m.342

Therefore, in agricultural regions at higher elevations, there were more significant contracting343

changes than expanding ones in terms of moving distance. Similarly, an increase in the con-344

tracting distance over time for RL soil areas was confirmed. In the RP soil type, the moving345

distance of expansion and contraction decreased until 2009 and 2013, respectively, and then the346

change index started to increase.347

It was noted that the contracting distance was larger than the expanding distance for the last348

two intervals of change. Comparing the regions at 100–200m and 200–300m, similar patterns349

of expanding and contraction average distance were found, although the values were lower for350

the second elevation class. Thus, regions at 100–200m exhibited greater indexes of change than351

the remaining regions until 2013 in terms of the moving distance, possibly due to the propen-352

sity for agricultural practice in these areas, as stated by Warra et al. (2015) and Opršal et al.353

(2016). However, higher areas presented greater average distance in 2016 for both contraction354

and expansion events, likely explained by the farmers’ necessity to expand agricultural regions355

to higher elevations (Warra et al., 2015).356

The changes in moving regions may also be explained in terms of their direction, as dis-357

cussed in Section 2.3.2 (see Figure 11). Figure 11a shows distinct patterns of direction change358

for the different soil types and Figure 11b for the elevation classes. Until 2009, larger areas359

of RL soil were expanding to the south, while contraction was occurring in all directions from360

2009. In the PL soil, there was less contraction in the northwest, a decreasing trend of expan-361

sion to the southeast was verified, and the expansion event was higher in the southwest over the362

last three change intervals.363

Furthermore, most of the areas at an elevation of 100–200m were found to be moving to364

the south despite the observed decrease in corresponding area in the last year, while expan-365

sion mostly occurred to the north over time, at an elevation of 200–300m. At an elevation of366

400–500m, there was a decreasing trend of contraction in the northwest, presenting a contrac-367

tion rate in this direction lower than 4% in the last year. Regarding areas at 500–600m, most368

changes occurred to the southwest. In particular, the contraction rate increased over time, al-369

though most expanding regions also moved in this direction. The expansion rate was higher370

than the contraction rate in only the second and third change intervals, highlighting agricultural371
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(a)

(b)

(c)

Figure 10: Average and standard deviations for Hausdorff distance over change interval and topological event
(CONT and EXPN) by geographical area (a), soil type (b) and elevation class (c).
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(b)

 

Figure 11: Directional changes over change interval and topological event (CONT and EXPN) by soil type (a) and
elevation class (b).

deintensification. It is also noteworthy that the events of contraction and expansion did not372

always occur in opposite directions.373

4. Conclusion374

A spatio-temporal analysis of LULC changes was conducted. The results were used to de-375

termine the general changes in the BHPJ and to analyze the specific changes in agricultural areas376

in the BHRB. Data for the analysis were obtained from multi-year satellite imagery, processed377

using ArcGIS software, and subjected to statistical analysis in the R environment.378
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The statistical analysis incorporated exploratory methods and a study of spatial dependency.379

We concluded that natural vegetation is disappearing and/or contracting and changing to pas-380

ture, agriculture and land for other uses, reflecting economic practices and other human activi-381

ties.382

The spatial dependency study pointed to a significant interaction between the locations, in-383

dicating that the closest regions are similar. In particular, the agricultural area has been increas-384

ingly concentrated, since this similarity is growing. The spatio-temporal analysis of moving385

agricultural areas consisted of the categorization of polygon changes and their combination386

with metrics such as area, number of patches, distance, and direction of change. This analysis387

revealed an expansion of the agricultural area but also its stabilization since 2005. However, the388

pattern of change was different across the study area. Thus, agricultural regions are contract-389

ing and expanding at increasingly distant places in the BHRB. In fact, greater changes were390

observed between 1993 and 2016.391

This study demonstrated that the combination of remote sensing, GIS, and spatio-temporal392

analysis offers relevant results for analyzing LULC change. In fact, it can add value to studies393

related to the planning and management of land and biodiversity conservation.394

Nevertheless, this analysis has strengths and limitations. The strengths are the easy inter-395

pretation of the outputs, the simplicity of the metrics used, the deep study of changes with the396

incorporation of distance and direction metrics, and the friendly environment used to perform it397

(R software). However, the purpose of this study was to assess the dynamics of LULC changes398

and project them into the future, and not to predict the LULC. Another limitation of this work399

is the time-consuming nature of the categorization of polygon changes for big data.400

Therefore, one direction for future study is to develop a predictive method that takes into ac-401

count the restrictions and characteristics of LULC data and introduces environmental/biological402

and economic variables to the polygon data format.403

Appendix A. Evolution of the percentage of the topological events area by explanatory404

factors405
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Table A.2: Evolution of the percentage of the topological events area by geographical area

Geographical area LEV3 Change interval
1 2 3 4 5 6

Northeast

CONC 0.02 0.01 0.04 0.00 0.00 0.00
CONT 31.81 9.15 22.70 25.70 22.81 22.90
CONV 0.00 0.06 0.10 0.01 0.00 0.00
DISA 10.58 4.23 7.99 3.76 4.71 10.20
DISP1 1.68 0.20 0.15 0.01 0.00 0.00
DISP2 0.04 0.15 0.37 0.01 0.00 0.00
DIVR 0.01 0.06 0.49 0.05 0.06 0.00
EXPN 28.94 56.70 30.32 34.02 39.34 25.17
FRAG 0.00 0.18 0.00 0.01 0.00 0.00
GENR 12.48 23.59 4.45 5.36 3.22 3.71
STBL 14.43 5.67 33.39 31.07 29.86 38.01

Northwest

CONC 0.00 0.00 0.07 0.00 0.00 0.00
CONT 19.88 20.71 12.60 22.89 26.76 22.02
CONV 0.00 0.00 0.00 0.15 0.03 0.00
DISA 2.32 2.01 2.79 2.15 2.91 4.95
DISP1 0.00 0.08 0.01 0.06 0.00 0.00
DISP2 0.00 0.06 0.01 0.17 0.00 0.00
DIVR 0.01 0.03 0.03 0.04 0.10 0.00
EXPN 35.01 34.13 30.77 19.33 22.39 21.53
FRAG 0.00 0.14 0.00 0.03 0.00 0.00
GENR 9.56 3.61 2.65 2.40 2.91 1.92
STBL 33.22 39.24 51.07 52.78 44.91 49.58

Southeast

CONC 0.00 0.00 0.00 0.00 0.07 0.00
CONT 9.92 7.53 3.63 17.98 25.54 20.13
CONV 0.00 0.37 0.00 0.00 0.00 0.00
DISA 2.24 2.21 3.83 1.04 1.55 0.81
DISP1 0.00 0.00 0.00 0.00 0.00 0.00
DISP2 0.00 0.00 0.00 0.00 0.00 0.00
DIVR 0.00 0.00 0.00 0.00 0.00 0.00
EXPN 52.69 10.83 17.66 13.14 26.64 17.86
FRAG 0.00 0.00 0.00 0.00 0.00 0.00
GENR 5.53 3.58 1.60 2.51 1.21 1.60
STBL 29.61 75.48 73.29 65.32 44.99 59.60

Southwest

CONC 0.00 0.02 0.01 0.00 0.13 0.00
CONT 28.65 18.92 11.64 15.80 36.60 29.94
CONV 0.04 0.00 0.05 0.00 0.04 0.00
DISA 2.18 1.02 1.08 0.38 0.82 1.64
DISP1 0.00 0.01 0.02 0.01 0.00 0.00
DISP2 0.00 0.02 0.01 0.01 0.00 0.00
DIVR 0.03 0.12 0.00 0.03 0.00 0.00
EXPN 30.16 38.80 30.47 15.69 14.52 28.38
FRAG 0.03 0.01 0.01 0.03 0.00 0.00
GENR 4.65 2.44 0.47 0.76 0.46 0.94
STBL 34.27 38.64 56.24 67.29 47.44 39.11
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Table A.3: Evolution of the percentage of the topological events area by soil type

Soil type LEV2 Change interval
1 2 3 4 5 6

Purple
Latosol

CONT 6.39 13.49 20.66 28.28 24.48 13.11
DISA 8.64 2.85 4.23 5.56 1.65 2.77
EXPN 25.44 48.71 32.71 29.12 40.14 30.99
GENR 49.02 8.40 6.48 2.21 2.56 3.05
STBL 10.50 26.55 35.92 34.83 31.16 50.09

Red-Yellow
Latosol

CONT 25.01 15.43 13.71 20.35 28.81 24.54
DISA 4.55 2.05 3.71 1.49 2.34 5.02
EXPN 35.22 37.00 28.81 21.26 24.93 23.81
GENR 5.87 7.98 1.93 2.61 1.61 2.07
STBL 29.35 37.53 51.85 54.28 42.31 44.56

Red-Yellow
Podzolic

CONT 29.61 18.58 14.42 20.92 19.17 45.02
DISA 9.54 10.85 11.27 8.81 15.10 20.14
EXPN 21.93 37.42 28.28 23.35 32.04 9.69
GENR 22.88 13.30 12.76 13.75 12.58 4.66
STBL 16.04 19.85 33.27 33.17 21.11 20.49

Table A.4: Evolution of percentage of the topological events area by elevation categories

Elevation LEV2 Change interval
1 2 3 4 5 6

100-200m

CONT 27.57 17.72 11.12 19.47 34.45 29.72
DISA 3.99 2.71 3.12 1.01 2.52 3.69
EXPN 33.83 34.73 31.09 17.61 20.43 24.86
GENR 6.41 5.90 1.68 2.88 1.59 2.40
STBL 28.19 38.94 52.99 59.04 41.01 39.33

200-300m

CONT 23.29 14.17 15.32 21.10 24.89 22.84
DISA 5.24 2.09 4.23 2.03 2.94 6.63
EXPN 35.68 38.74 27.44 23.48 27.76 22.44
GENR 6.20 9.12 2.54 3.00 2.35 2.04
STBL 29.59 35.88 50.48 50.39 42.06 46.04

300-400m

CONT 39.09 2.21 14.82 12.44 29.40 43.35
DISA 44.96 9.02 22.53 22.39 15.72 8.36
EXPN 0.00 8.60 45.51 45.37 28.36 25.46
GENR 15.95 78.67 10.00 12.19 3.00 5.09
STBL 0.00 1.51 7.13 7.61 23.52 17.74

400-500m

CONT 7.23 11.06 20.67 31.25 21.79 11.79
DISA 8.11 2.42 6.08 7.76 2.46 1.84
EXPN 27.95 46.48 30.21 23.74 47.28 30.11
GENR 44.18 10.70 6.66 2.69 3.22 2.85
STBL 12.53 29.34 36.38 34.56 25.25 53.41

500-600m

CONT 3.40 18.37 22.55 19.07 28.73 17.11
DISA 7.40 3.42 4.69 2.83 2.16 4.29
EXPN 15.53 47.57 32.62 41.78 28.73 31.82
GENR 69.92 13.46 8.09 2.36 1.00 2.91
STBL 3.74 17.17 32.05 33.96 39.38 43.86
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na Bacia do Alto Paraguai, in: Anais 6o Simpósio de Geotecnologias no Pantanal, Embrapa Informática422
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