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Abstract: In this thesis we present compact analytic expressions for the production
of the Higgs boson plus two jets at one-loop mediated by both a scalar and a fermion.
The results are derived using generalised unitarity methods and retain the full mass
dependence of the mediating particle. We use the relationship between the fermion
and scalar theories to simplify the algebra in the fermion theory; many of the required
integral coefficients are identical and for those that differ, the difference is of a lower

rank than the scalar result.

We use these calculations to study the production of the Higgs boson plus two
jets in the Minimal Supersymmetric Standard Model, assuming stop squarks are
the dominant mediator. This is a potential channel for an indirect search for stop
squarks, in particular we focus on the region where the lightest stop squark mass is
similar to that of the top quark. However, although the 1-jet process shows improved
discrimination over the inclusive process, we find there is no benefit gained from the

2-jet process.
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Chapter 1

The Standard Model

The Standard Model (SM) of particle physics is the theory describing the fundamental
particles in our universe as well as three of the four fundamental forces. In order
to mathematically describe the Standard Model we need to build a quantum field

theory (QFT) that combines quantum mechanics and special relativity.

To begin with, in section 1.1 we will introduce quantum field theories, moving on to
study the Standard Model Lagrangian in section 1.2. We will then briefly discuss
the known limits of the Standard Model in section 1.3, introducing supersymmetry

as a potential extension of the SM.

1.1 Quantum Field Theory

Just as for classical field theories, the dynamics of the theory are calculated by
starting with the Lagrangian, L =T — V', where T' is the kinetic energy and V' the

potential energy, and building the action, S,

S:/d4x£(t,f) :/dtL(t), (1.1.1)

where L is the Lagrangian density, but is commonly referred to as the Lagrangian.
The dependency on spacetime within the Lagrangian is through the field(s) it de-

scribes: ¢;(z). From the action we can derive the Euler-Lagrange equations of
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motion by using the principle of least action, .5 = 0,

oL oL
90, =0, (8(6,@0) , (1.1.2)

which tell us about the dynamics of our field ¢ in the classical limit.

The Lagrangian can be built by considering the symmetries of our theory, since the
Lagrangian itself must obey these symmetries. It is then a case of writing down every
possible term with mass dimension less than or equal to four. This ensures that our
theory is renormalisable, a concept that will be discussed in section 1.1.2. Symmetries
play another important role in our understanding of the theory: Noether’s theorem

tells us that for every continuous symmetry there is a conserved current j*,

GH = aé;‘z)éqs, (1.1.3)

where d¢ is an infinitesimal change in the field ¢.

The field ¢ can be either a boson (integer spin) or fermion (half-integer spin). These
two types of particles behave very differently. Fermions obey Fermi-Dirac statistics:
no two fermions will be in the same state. On the other hand, an unlimited number

of bosons can be in the same state, known as Bose-Einstein statistics.

Particle theory aims to describe not only the basic properties of particles but how
they interact with particles of both the same type and different types. To do this
we study the process of moving from an initial state ¢ to a final state f,

:E,> x /Dx exp (;_L /ttf dtL(x,:t)) . (1.1.4)

7

e~ (ti=ty)

This equation can be understood as an integration over all possible paths from one
state to the other. By analogy with statistical physics this is known as the partition
function Z. Promoting the partition function to a generating functional with a

source term J(x),

Z[J) = [ Dpetsietn [ faso) o), (1.1.5)

we can calculate the matrix element of any process by differentiating the generating
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h1 b3 h1 J b3

P2 o o o

Gp % Q h— b5

b 0 " "
(© @)

Figure 1.1: The four types of diagrams produced from Wick’s the-
orem: fully connected (a), partially connected (b), dis-
connected (c¢) and unamputated (d).

functional with respect to the source term and setting the source to zero,

"6 In Z[J]

(1.1.6)

The factors of ¢(z) which are brought down by the functional derivatives act on
the vacuum states to create or annihilate particles, leading to an expression that
describes the scattering of particles of the field ¢. The notation T (¢ (x;) ... ¢ (z,))
means “time-ordered”, so that the operator ¢; with the largest value of ¢ is on the
left, and sequentially to the smallest on the right. We can then use Wick’s theorem
to convert from time ordered to normal ordered (all creation operators to the left of

all annihilation operators),

T{D10g... 0} =: G105... ¢, : + : all possible contractions :, (1.1.7)

where : ¢1¢, ... ¢, : represents a normal ordered expression, and a contraction of a

pair of fields is

o(xy) ... o(x,) = ... Dp(x; — x,) (1.1.8)
with
_ d4p ( —ip-x
Di(z) = / i (1.1.9)

Applying Wick’s theorem to eq. (1.1.6) produces a sum of terms that can be
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considered diagramatically, where a contraction between two fields is an internal
propagator. These diagrams can be divided into four types: fully connected, partially
connected, disconnected and unamputated. These types are illustrated in fig. (1.1)
for a 2 — 2 scattering process. Only fully connected (every part of the diagram is
connected to all external lines) and amputated (once loops on external lines have
been removed from unamputated diagrams) contribute to the scattering matrix.

Partially connected diagrams are however important for renormalisation.

Once the disconnected and partially connected diagrams have been discarded, we
can derive the Lehmann-Symanzik-Zimmermann (LSZ) formula for calculating the

scattering matrix, S, for an N particle process,

[¢] 5 \" [¢]
’Lso¢ iSint¢
/ng <5¢< )> e : (1.1.10)

The S-matrix can be decomposed into the identity (i.e. nothing happens) plus a

term proportional to the matrix element, or amplitude, A,

S=1+iT=1—i2n)*Y(p; — pp)A. (1.1.11)

It is imperative that a theory can be experimentally tested, and to test a quantum
field theory’s predictions we use this invariant matrix element A to calculate the

cross section, o, for the 2 — n particle scattering process,

_ 1 d’p 45(4)
"= 5. = w2E, 2k, <112E (2@3)(2”” (p““’” Zp’) AT,
(1.1.12)

where the subscripts a and b refer to the initial particles, ¥ = p/Ej, and the index i

sums over the n final particles.

1.1.1 Feynman Diagrams

Feynman diagrams are a common tool for the calculation of amplitudes so that we
do not have to go through Wick’s theorem and the LSZ formula for every process.

Feynman diagrams provide a “recipe book” that gives us a much simpler way to
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Figure 1.2: Two possible diagrams for the scattering process ¢, —
¢3¢, where the field ¢ has a triple self-coupling. (a)
shows a tree level diagram while (b) is a one-loop dia-
gram.

calculate the matrix element. The scattering process is drawn as a series of diagrams.

Two possible diagrams for a 2 — 2 scattering process are shown in fig. (1.2).

Each line represents the propagation of a particle and each allowed propagator and
vertex is defined by the terms of the Lagrangian. Feynman rules are derived from
the Lagrangian and tell us what factor should be assigned to each external particle,
vertex and internal propagator. All diagrams allowed by the Lagrangian must be
included in the sum, as they have a 1:1 correspondence with terms in the expansion
of eq. (1.1.10). Each vertex in a Feynman diagram contributes one or more factors
of the coupling constant. Comparing the two diagrams in fig. (1.2), it is easy to
see that these will have different orders of the coupling constant. For a coupling
constant that is much less than 1, the expansion of eq. (1.1.10) can be done to a

fixed order of the coupling, depending on the desired precision.

1.1.2 Loop Level

The diagram in fig. (1.2b) contains a closed loop of particles. In this case momentum
conservation is not enough to fix the momentum of the internal lines; each loop has
one unconstrained value of momentum, labelled as ¢ in fig. (1.2b). When calculating

loop diagrams it is therefore necessary to integrate over all possible values of the
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momentum,

oo d*
/m i (1.1.13)

These integrations, however, are often non-trivial and give rise to infinities: as £ — 0

(infrared) or ¢ — oo (ultraviolet).

Infrared divergences also arise when the momentum of an external particle goes to
zero, or when it becomes collinear with another of the external particles. In both of
these cases, an n-particle process becomes indistinguishable from an n — 1-particle
process. The KLN theorem [3,4] tells us that at any fixed order in the coupling
constant the infrared divergences will cancel when all components are included. This
means including diagrams with real corrections (the soft and collinear emissions) as

well as the virtual (loop level) corrections.

In the case of hadronic collisions this situation is slightly more complicated. We
describe the initial state using parton distribution functions (PDFs) [5-7], which
give the probability of a parton having a specific fraction of the hadron momentum.
To remove initial state collinear singularities we must therefore ensure to use a

renormalised PDF [8].

To remove the ultraviolet divergences we begin by assuming that all quantities
(fields, couplings, masses) are bare and therefore we are unable to measure them.
We can define their renormalised counterparts as, for example, ¢p = Z;/ Zgb and
mp = Z,,m, where the subscript B denotes the bare quantity. The constants
Z; are the renormalisation constants and must be included in the Feynman rules.
This allows us to remove UV divergences, however the couplings and masses are
now quantities that must be measured rather than predictions of the theory. As
mentioned in section 1.1, for a theory to be renormalisable we require every term in

the Lagrangian to have a mass dimension of four or less.

After renormalisation we have a theory where the ultraviolet divergences are removed
by cancelling them with equivalent divergences. This process can be better defined

by regularising the theory. This is commonly done by dimensional regularisation,
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where the theory is analytically continued to D = 4 — 2¢ dimensions, and the limit
e — 0 is then taken. Care is required in particular for any Dirac algebra as this must
also be done in D dimensions. Regularisation introduces an arbitrary parameter, f,

which physical results do not depend on.

There are various techniques for evaluating these integrals: for example Passarino-
Veltman reduction [9] and Feynman parameters among others. Beyond one-loop the
integrals become more complicated and several methods exist specifically for these:
differential equations, Mellin-Barnes and HyperInt for example. For reviews of these

techniques see refs [10,11]).

An additional effect of the process of renormalisation is that coupling parameters,
including masses, become dependent on the energy scale they are measured at. This

dependence is described by the g-function,

5) =135 (1.1.14)
I

where ¢ is the coupling parameter.

1.2 The Standard Model Lagrangian

The easiest way to describe the Standard Model is in terms of particle content:
the six quarks (up, down, charm, strange, top and bottom), six leptons (electron,
muon, tau and the three associated neutrinos), four types of gauge bosons (gluons
G, photon A, Z and W= bosons) and one scalar boson (Higgs boson). It is also
important to consider how these particles interact, for example photons interact
with any particle charged under electromagnetism while gluons interact only with

particles charged under colour: quarks and other gluons.

For the Standard Model to have any predictive power it is necessary for these
qualitative descriptions to be understood mathematically, in the language of quantum

field theory introduced in section 1.1. The Standard Model Lagrangian can be
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concisely written, at the classical level, as

1 v
'C:_ZF#VFM

+ iU PU
+ D, D"® —V(®)

+ 0,V 0,8 + he. (1.2.1)

The aim of this section is to describe this famous Lagrangian. The gauge group of the
Standard Model, before spontaneous symmetry breaking, is SU(3),xSU(2);, xU(1)y,

where the subscripts refer to colour, weak isospin and hypercharge respectively.

The Standard model contains three types of field: spin-0 scalar bosons &, spin-
1/2 fermions ¥ and spin-1 vector bosons W), and B,. The first line of eq. (1.2.1)
describes the kinetic and interaction dynamics of the vector (gauge) bosons, the
second line concerns the fermions, ¥, and their propagation as well as interactions
with the gauge bosons. The third line contains the terms describing the Higgs
boson’s, ®, propagation and interactions with the gauge fields and itself, and the
fourth line displays the Yukawa terms: interactions between the Higgs field and
fermions leading to quarks and charged leptons becoming massive after electroweak

symmetry breaking (EWSB), which will be discussed in section 1.2.1.

If we were to write down a Lagrangian that contains only matter fields it would
not be invariant under spacetime dependent transformations, a property that we
require of the Standard Model Lagrangian. This is fixed with the addition of gauge
bosons, including promoting partial derivatives to covariant derivatives which, for

the Standard Model, are

9s

V2

where G}, and t* are the SU(3). gauge bosons and generators respectively. We use

D,=0,+i

G, + i%W,faI +igdv1 (1.2.2)

the normalisation tr(t*t") = 6, t* = 1/v/2\* where \* are the Gell-Mann matrices.

Wlf and o are the gauge bosons and generators of SU(2)y,, o are the Pauli matrices,
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and ¢'Qy 1 is the U(1)y hypercharge. The number of generators of an SU(N) gauge
group, in the adjoint representation, is equal to N* — 1 and each generator has an

associated gauge boson. The SU(N) generators, T, satisfy,
[T° T") = if*T°, (1.2.3)

where f,;. are the structure constants of the group.

The field strength tensor, F*, contains terms describing the kinematics and self-

interactions of the gauge bosons,

1
J ag— ~7|:‘D/,,L7D1/j|
g

= 0, A, — 0,A, —ig |A, A (1.2.4)

where A" = AL'T® is a generic gauge field and A} are individual bosons. The presence
of the commutator leads to gauge boson self-interactions in the non-Abelian SU(V)
groups. For Abelian groups, such as U(1), this commutator disappears, and there

are no vector boson self-interactions.

The matter fields, fermions, denoted by ¥ in eq. (1.2.1), each transform differently
under the different gauge groups. To understand how fermions transform under

SU(2);, we must understand chirality: known as the left and right handed fields,

T+7s

1_
U, = P0 = 275\11 U, = PRl = v (1.2.5)

where 75 = i7°y'4?*y* and Py, i are the left and right handed projectors. W, p

are irreducible representations of the Lorentz group. The left-handed doublets,
qr, = (ur,dr) and £, = (v, ¢ ), transform under the fundamental representation
of SU(2)p, while the right-handed singlet fermions are uncharged under this group.
The quarks (left and right handed) are charged under colour, while the leptons are

uncharged. These representations are shown in table (1.1).

The last particle to discuss is the Higgs boson. The Higgs is a complex scalar

field that transforms as a doublet under SU(2);, has a hypercharge of 1/2 and is
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Matter Field | SU(3). | SU(2), | Y Q
1. ;) 1 2 1 (1/2-1/2)
s 1 1 -2 1
(ur,dy) 3 2 1/3 | (2/3,-1/3)
ug 3 1 | 4/3 |  2/3
dp 3 1 |23 -1/3

Table 1.1: The representation of each matter field in the Stand-
ard Model gauge groups, as well as the electromagnetic
charge () = %Y + I, where I3 is the third component of
the weak isospin.

uncharged under SU(3).,,

+ .
o |7 |2 LT (1.2.6)

¢° V2 O3 + iy
1.2.1 Electroweak Sector

Our description of the Standard Model gauge bosons, specifically the photon, W=
and Z bosons, only exists after spontaneous symmetry breaking (SSB) has occurred.
While the Standard Model Lagrangian is invariant under the full SU(2); x U(1)y
gauge group, the ground state is not. This leads to SSB of the unified SU(2);, xU(1)y
to U(1)en,

SU(3), x SU(2)p, x U(1l)y = SU3). x U(D)gy - (1.2.7)

Specifically, it is the presence of the Higgs boson that causes SSB. The Higgs potential,

V(®), is explicitly

V(®) = —p*d'd + A\(DTd)2. (1.2.8)
The minimum is at
2 2
7] v
dlp =L = 1.2.
oA~ 2 (1.2.9)

where v = 1/1/v/2Gr = 246 GeV is the vacuum expectation value (VEV) of the
Higgs boson. Since ®'® o ¢ + ¢y + ¢35 + ¢4, both V(®) and the minimum of

V(@) are invariant under four-dimensional rotations, and therefore the solutions to
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eq. (1.2.9) exist on the surface of a 4D sphere,

o = (1.2.10)

V2t
assuming 12 > 0. Tt is this non-zero minimum value that causes spontaneous sym-

metry breaking, since there are infinite possible values for ground state configuration.

When the system falls into one of these values the symmetry is broken.

To preserve the U(1) invariance we must have ¢* = 0, however we choose 6 = 0
without loss of generality. We can then expand the Lagrangian in eq. (1.2.1) around

the vacuum with

® = , (1.2.11)

which gives us the Higgs self-interactions
Ly, = ;auha“h — 1*h* — \h® — iw. (1.2.12)
The mass of the Higgs boson is therefore my;, = v/2v.
Defining
(@) = , (1.2.13)

we can study the terms in DMCIDTD“CD that are dependent on v,

2

D, (®)" D" () = % (942 (Wr =Wz ) (W 4 iw™)

/ /
+ (925’“ = gwj> (ZB“ - gw?’“)) . (1.2.14)

Redefining our gauge bosons to align with the mass basis,

2 /2 2
vo(g - )
D (@) D" (d) = — (W w ™+ L7, 7¢ 1.2.1
0 D @) = 5 (Gwiw e g2 (1215)
where the complex Wf bosons are defined by
1
W, = —Q(W/} FiWy3), (1.2.16)

and the Z, boson is defined by a combination of the Wi, from SU(2);, and the
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U(1)y boson B,

(1.2.17)

3 9
W”_EB

The one remaining degree of freedom is the photon, A,, which is defined by the

0

combination orthogonal to the Z boson,

cosfy, —sin by, WE (1.2.18)

sinfy,  cos Oy B

© I3

where 0y is the weak angle, tan y, = ¢'/g. These terms give us masses for the W

and Z bosons [12]:

My = % — 80.370 & 0.012 GeV

qu

M, —
Z 2 cos Oy,

= 91.1876 = 0.0021 GeV. (1.2.19)

The photon remains massless, since it did not appear in eq. 1.2.15. Examining the

Yukawa terms in eq. (1.2.1), for the first generation fermions,
Ly = =Y g Qup — Y,qp®dy — Yl el + hoc. (1.2.20)

where ® = i0,®*. After performing the expansion in eq. (1.2.11) we have terms that

couple the fermions to the Higgs boson, and terms that give the fermions masses,

o
%

There is no mass term in eq. (1.2.20) for the neutrino, since in the current formulation

my (1.2.21)

of the Standard Model there are no right-handed neutrinos.

1.2.2 Quantum Chromodynamics

While quarks are fundamental constituents of the Standard Model, they are only
found in bound states known as hadrons, held together by the strong force. The
theory describing the strong force is known as quantum chromodynamics (QCD).

Every quark has a colour charge denoting its charge under the SU(3), group: red,
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green or blue. The eight gluons, since they are in the adjoint representation, carry

a dual colour charge.

Two very interesting properties of QCD are asymptotic freedom and colour con-
finement. Due to colour confinement, we will only ever detect what are known as
“colourless states”, or more specifically colour singlets. The most common of these
hadrons are mesons (quark antiquark pair) and baryons (three quarks with different

charges under SU(3)).

Asymptotic freedom can be seen by studying the QCD [-function. We can rewrite

the definition of the S-function, eq. (1.1.14), in terms of a, = g2 /4,

oo > o
2 2 S s\n+2
pu— —_ - 1.2.22
ﬁ(as(:u )) H aﬂz Qg n§:0: ﬁn(4ﬂ_) ) ( )
and working to first order,
2
2P — 11 — 3N (1.2.23)

Since N, = 6, the QCD S-function is less than zero. The dependence of o, on the

energy scale u? is, to lowest order,

1
— |, (1.2.24)
1 + 5070151(23 )ln%

as (1) = a,(Q7)

where a,(Q?) is a known value. Conventionally, o, is measured at Q* = M3 [12],

as(m%) ~ 0.1179. (1.2.25)

The significance of ﬁg)CD

> 0 now becomes apparent. At low energies, below around
200 MeV, the size of a increases dramatically. Perturbation theory quickly becomes
inapplicable in this region. As the energy scale increases, however, the QCD coupling

strength decreases: known as asymptotic freedom. This allows us to use perturbation

theory for the processes we study at particle colliders.

In a hadron collider such as the LHC, QCD is a huge source of radiation since at
that scale it is the strongest of the four fundamental forces, and the initial hadronic

state supplies plenty of particles with colour charges. Even at the energy of the Z
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boson mass, «, is large enough to make higher order corrections significant when
studying the processes at current hadron colliders. The composite structure of
hadrons causes the results from hadron colliders to be much “messier” than those
from lepton colliders. However, due to the large amounts of energy lost by the light
electrons through Bremsstrahlung radiation, it is easier to achieve higher centre of

mass energies with protons.

1.3 Beyond the Standard Model

The Standard Model is an incredibly successful theory and has been extensively
tested. However we know that it is not complete. As previously mentioned there are
no mass terms for neutrinos, but the experimentally proven phenomenon of neutrino
oscillations tells us that they must in fact have masses (see, for example, ref. [13]).
Additionally, the Standard Model is currently inconsistent with general relativity
and we do not yet have a description of dark matter, generally thought to be an as

yet undiscovered particle or particles [14].

1.3.1 Supersymmetry

One popular extension to the Standard Model is based on the concept of super-
symmetry (SUSY): a spacetime symmetry that maps bosons onto fermions and

vice-versa, known as superpartners [15].

The popularity of SUSY stems from its potential ability to solve multiple issues
within high energy physics alongside it being the most general interacting QFT for
a theory containing a finite number of particles [16]. The simplest SUSY theories
predict a supersymmetric partner for each Standard Model particle at the same

mass, and with the same charges under the SM gauge group.

The Minimal Supersymmetric Standard Model (MSSM) is the supersymmetric ex-

tension of the Standard Model with the least number of additional particles and
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interactions. Experimental evidence tells us that the new superpartners must be
much heavier than their Standard Model counterparts, and therefore the supersym-
metry must be broken. In the MSSM this happens through soft supersymmetry
breaking [17].

The MSSM requires an additional Higgs field, as well as the Higgs superpartners, to

avoid gauge anomalies. This is described by the two Higgs doublet model:

o ¢
¢1 = ' ) ¢2 = ? ) ta‘nﬁ = ﬂ (131)
hitvit+ay hotvy+ay Vg
V2 V2

After soft SUSY breaking there are five physical particles: h°’, H, A’ = —a, sin 3 +
ascos f and two charged Higgs bosons HE. Either h° or H° is identified as the

previously discovered Higgs boson, and the Standard Model VEV is v? = v} + v2.

1.4 Structure of this Thesis

In chapter 2 we will study methods for calculating amplitudes within QCD. These
methods are applied to the processes 0 — ggggh, 0 — qgggh and 0 — ¢'¢'qq to
obtain compact analytic expressions. In chapter 3 we give results for the case where
these processes are mediated by a coloured scalar and in chapter 4 mediated by a
fermion. In chapter 5 we will use these analytic expressions to study the production

of a Higgs boson and two jets at hadron colliders, focusing on distinguishing between

the Standard Model and MSSM results.






Chapter 2

Amplitude Techniques for QCD

Scattering amplitudes are a basic building block of cross sections. While Feynman
diagrams are an incredibly useful tool for calculating amplitudes, the number of
diagrams can quickly become unmanageable. For tree-level processes with n external
gluons, the number of diagrams scales as n!. This complexity can hide the simplicity
of the final result. Computer programs can be used to evaluate each diagram,
however these codes may be slow to run or be susceptible to numerical instabilities,

for example due to spurious poles.

Possible solutions are to find methods of simplifying or reducing the diagrams that

must be calculated, or to avoid Feynman diagrams completely.

Looking specifically at QCD, one of the most effective simplification techniques is
colour decomposition. This involves separating the kinematic degrees of freedom of

the amplitude from the colour factors,
A=) CiA, (2.0.1)

where A is the full amplitude, C; the colour factors in terms of the SU(3), generators
t* in the fundamental representation and A, are the kinematic factors, known as the

colour ordered sub-amplitudes. For the matrix element it is necessary to sum over
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the colours,

S AP = Y Y AlcicA; =Y Al A, (2.0.2)

colours colours %,j %,]

where C;; = > colours CZ-T C;. There are common relations used to simplify these colour

factors such as the Fierz identity:

a y4a 1
tijtkl - <5il(5kj - ]\[céw(gkl> 5 (203)
with the normalisation chosen such that tr (t“tb> = 6. The number of sub-

amplitudes that need to be independently calculated can be reduced due to cyclic
symmetry and by using various identities and relations, for example the photon

decoupling identity, the Kleiss-Kuijf relations [18] and the BCJ identity [19].

We will now study some specific techniques in detail. Starting with spinor heli-
city notation in section 2.1 and then introducing BCFW recursion and generalised
unitarity in section 2.2. In section 2.4 we will discuss momentum twistors and high-
precision floating-point reconstruction as two methods for simplifying amplitude

expressions.

2.1 Spinor Helicity

The helicity of a particle is defined as the projection of its spin onto its momentum,

oy
ST

=
Il

i (2.1.1)

For a massless particle the helicity states coincide with the chiral left and right

|
Sy

handed particles defined in eq. (1.2.5). The Yukawa mass terms in the Standard
Model, eq. (1.2.21), mix the left and right handed chiral states for massive particles,

and so the equivalence of helicity and chirality no longer holds.

Kinematic factors can often be simplified by exchanging the 4-momentum pt" for
a smaller representation of the Lorentz group: helicity spinors. We will use the

conventional notation for these helicity spinors, reflecting that in ref. [20], and
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introduced below.

2.1.1 Massless Particles

For an on-shell massless momentum,

0,3 ,1_ .2
p+p p —wp

= (2.1.2)
P tip? P —pP

with ¢ = (1,—7), where & = (0,,09,03). The indices @ and & each transform

in a fundamental representation of SU(2) and are raised and lowered by the anti-

symmetric Levi-Civita tensor, eaﬁ)\’g = \,. Since det(p**) = p* = 0, the matrix can

be decomposed into bispinor form:
P = NN (2.1.3)

where A and X are both two-component Weyl spinors. For real momentum p*,
A = +\*, however if p" is complex then A and X are independent. One example of

an explicit expression for A and ) is,

~9gin ¢ cos g

2 and 5\? =V2F
9

%
COS 9 (&

—e
Ao = V2E (2.1.4)
0

2

¢ sin
for p" = FE (1, cos ¢sinf, sin ¢ sin 0, cos 0).

The spinor bra-ket notation is a convenient and common way of representing the A

and \ spinors:

1

= Paa =Aaha =p) [pl and p' = {plo”lp]. (2.1.5)

This notation is particularly convenient for spinor products:

(ij) = X'Njo and  [ij] = M A4, (2.1.6)

= (s +pj)2 =2p; - p; = —(ij) [ij] , (2.1.7)
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where 7 and j label particles with momenta p; and p; respectively. It is worth noting

that [i7] = (i4) = 0. Additionally we define spinor sandwiches as,
(@l716] = (i7)[5¢] and [i]j]€) = [i7}(5€)
(@l + R = @) + k) [k€] and [i|(5 + k)[6) = [i](G0) + [ik] (RO, (2.1.8)

where 7 and k label particles with massless momenta. A useful relation for the

simplification of amplitudes is the Schouten identity,

(ig)(kt) = (3k) (1) + (L7) (ki) , (2.1.9)

for four massless 4-momenta p;,...,p;. An equivalent expression holds for square

brackets.

We are able to build polarisation vectors of gauge bosons from these spinors by

solving the massless equation of motion, p,p, A" — pQAH =0,
1 ot 1 [qlo"

V2 (ap) V2 o lap]

where ¢ is a null reference vector that is not proportional to p. The final answer will

be independent of q,

L (dlo"lp] 1 (glo"|p]
(dp) V2 ()
1 {gp)lplo”|d") + {alo"|p)(pd’)
V2 {qp) {d'p)

V2

RITICTLe (2.1.11)

ei(p,q) —ei(p.q) =

S

where we have used the anti-commutation property of Dirac gamma matrices,

{o", 0"} =2¢"", or equivalently the Schouten identity defined in eq. (2.1.9).

2.1.2 Massive Particles

If the particle in question has a non-zero mass the matrix p,4 is no longer degenerate,

since det(png) = m?, and so cannot be written in the form A\, \4. It is, however,
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possible to expand it in terms of two degenerate matrices, following the notation of
ref. [21],

Paa = Aaa)\da, (2112)

where the little group indices a = 1,2 are raised and lowered by the antisymmetric
€qp- This momentum decomposition leads to the two-dimensional version of the

Dirac equation:

pda)\za = mS\g‘a, padﬂga =My, . (2.1.13)

Switching to spinor bra-ket notation,

Pac = 11"V Palas (0P") = —me™, [p"p"] = me™. (2.1.14)
An explicit spinor realisation is,
N VE—Pcos4 —\/E+pe*“sin?
pa T . )

E—Pewsmg \/E—i-pcosg

- —VE + Pe®sin? —\/E—pcos?

Ao = 2 R (2.1.15)
\/E—i-Pcosg — E—pe_“psing

for p* = (E,Pcosygsinf, Psinpsinf, Pcosf). Spinor helicity notation is more
natural for massless fermions, since they are readily described in terms of two
dimensional Weyl spinors. Massive fermions, on the other hand, are generally
described by Dirac spinors. It is therefore useful to be able to switch between the

two notations:

Apa “a

up =1 "= ’p>. : (2.1.16)
)\;a ’pa]a
_)\QCL _paa

w=| " |= 'l . (2.1.17)

‘|
&

)‘p% [p
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2.2 Constructing QCD Amplitudes

The simplest QCD amplitude is the tree-level three-point gluon amplitude. How-
ever, for three massless, on-shell particles all kinematic invariants vanish. There is
therefore no way to construct a massless, non-trivial three-point amplitude with real
momenta. If the momenta are complex, )\; and \; are independent, allowing us to

construct non-physical but mathematically useful three-point gluon amplitudes.

Studying the kinematics of three point amplitudes with complex momenta, it is easy
to show that if any [ij] # 0, then all (ij) = 0. The amplitude is therefore composed
of products of only ); (holomorphic) or ); (anti-holomorphic). Additionally, any
tree-level amplitude where all n gluons have the same helicity, or, for n > 3, only

one is different, is equal to zero.

The simplest physical, non-trivial amplitudes are therefore ones where two gluons
have a different helicity to the rest. Amplitudes where exactly two particles have
negative helicity are known as maximally helicity violating (MHV) amplitudes, and

those with exactly two positive helicity particles are anti-maximally helicity violating

(MHV).

These MHV and MHV amplitudes can be calculated for n > 3 gluons from the

Parke-Taylor formulae [22],

I (ig)"
A(1 VT IR )7 @)~ DT (2.2.1)

.14
A1, it gt n) = i) . (2.2.2)
( ) [12][23] ... [(n — 1) n] [n1]
The relation p,g = —|pla(pls is invariant under the scaling
p) = tlp), [p] = ¢7'p)], (2:2.3)

called little group scaling. When an amplitude contains massless particles only it

can be completely described by angle and square brackets, and we can therefore
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determine that,

An({|1>7 |1]7h1}7 ce 7{ti|i>7ti_l|i]v hz}v - )

=t AL 1 Y {10 1) hids ) (2.2.4)

where h; is the helicity of particle . Three point amplitudes are completely fixed
by this property. As already discussed, these amplitudes are either holomorphic or

anti-holomorphic. Assuming an amplitude is holomorphic we have,
Ag(1M 22 3hs) = (12)7(23)¥(13)* (2.2.5)
and little group scaling fixes
r+z=—-2h;, v+y=—-2hy and y+ 2z = —2h3. (2.2.6)
Studying the 3-gluon amplitude A;(1%,27,37) as an example,

r=-1, y=3 and z=—1

= A3(17,27,37) = <1<22>3<>13> (2.2.7)

Had we begun by assuming that A4(17,27,37) was anti-holomorphic we would
have found a solution with an incorrect mass dimension, which must therefore be
unphysical. However, the same reasoning can be applied to amplitudes with one
negative helicity and two positive helicity gluons to obtain the anti-holomorphic

relations.

Moving to 4-particle amplitudes, the presence of an internal propagator requires
us to consider locality in order to determine the structure of the amplitude. If an
intermediate particle goes on-shell, the singularity structure of the amplitude is 1/ P2,
and in this limit the amplitude factorises into a product of two on-shell processes
occurring at distinct points. This allows us to build higher point amplitudes from

the lower point amplitudes we already know.
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2.2.1 BCFW Recursion

Britto-Cachazo-Feng-Witten (BCFW) recursion uses lower point amplitudes to con-
struct higher point ones [23,24]. This method introduces fewer terms than results
from Feynman diagrams, as it uses only on-shell particles, while Feynman diagram ex-
pansions contain off-shell propagators. BCFW recursion is additionally a useful tool

in proving formulae for all n, such as the Parke-Taylor formulae, egs. (2.2.1, 2.2.2).

If we want to calculate an n-point QCD amplitude A,, using BCFW recursion we

first deform the momentum of two external particles: ¢ <n and n,

i = NN = Di(2) = N (S\Z — 25\,1) and

P = A = Dnl(2) = (A + 20) A, (2.2.8)

where z is a complex parameter, which allows us to construct non-trivial three
point amplitudes. We denote this deformed amplitude as fln(z) Choosing our
deformations such that

lim A,(z) =0 (2.2.9)

Z—00

then, according to Cauchy’s theorem,

74 dz An(z) _ A g s Az =0y =0 (2.2.10)
z=00 2Tl 2 Res(omzg) 2

and the residues are, with ¢ = \;\,,,

A(z) nll -1

dz =) — AL (z) A (z:)
Res(;:zo) < =8 %i2pi g s:zj;l
n—1 . 1 -
= A= > AL (Zi)]?AR<Zi>7 (2.2.11)
=3 s=+1 i

where s is the helicity of the internal particle linking the two amplitudes. The
full amplitude can therefore be computed by summing over products of deformed,
lower-point, on-shell amplitudes multiplied by undeformed propagators, i.e. where

z=0.
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(a) (b)

Figure 2.1: Diagrams for the BCFW calculation of two scalars (mo-
menta ¢ and ) plus one positive helicity gluon (11) and
one negative helicity gluon (27). (a) illustrates the out-
going particles, while (b) shows the one diagram that
contributes to the BCFW calculation. All momenta are
outgoing.

2.2.1.1 BCFW calculation of two scalar, two gluon scattering

As an illustration of BCFW recursion we can calculate the colour-ordered sub-
amplitude for the scattering of two gluons, one with positive helicity and one negative,
and two scalars. The scalar-gluon coupling is defined in the Lagrangian in eq. (3.2.1)
and the external particles are illustrated in fig. (2.1a). The standard Feynman
diagram expansion contains three diagrams, however using BCFW recursion requires
us to calculate only one diagram, shown in fig. (2.1b). We define the shifted momenta

as,

1) = 1) = 1) — 2[2),

2] = |2 =12] + 2[1], (2.2.12)

while |1] = [1] and |2) = |2). Applying eq. (2.2.11) to this example,

(Bal€l) 1 (206 [0

AYee(e1t,27:0) = - =
: )= "0y A by

: (2.2.13)

where d(¢,) = (£ + p1)* —m* and m is the mass of the scalar particle. b, and b,
are the polarisation vectors for gluons 1 and 2 respectively. We have used the three

particle amplitudes given in eq. (3.4.1). Setting b; = py and by = py,

@l 1 @ln))

A0 =T T By

(2.2.14)
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The choice of polarisation vectors leads to a particularly quick simplification, since
(1) = [ii] = 0,
(2]¢[1]*

Ay 1,27 0) = ——— =
2 )= 2@

(2.2.15)

2.3 Generalised Unitarity

2.3.1 Scalar Integral Basis

An n-point, one loop amplitude can be written as a sum of scalar' basis integrals
I with coefficients Cy (D),

n

Al—loop = Z ZCN;KN(D)[Je Z CN;KN(4)]£ + Ra (231)

N=1Ky N=1Ky

where D is the number of dimensions and R is the rational part. The K are the sets
of ordered external momenta grouping; defined by dividing the n external particles
into N groups. The rational terms arise from non-cut constructible integrals, and
contain no branch cuts in four dimensions [25]. An n-point integral is defined as cut

constructible in four dimensions if
r <max(n —1,2), (2.3.2)
where r is the rank of the integral [26]. Therefore, up to rank-3 pentagons, rank-2

boxes, rank-1 triangles and bubbles are cut-constructible.

We will use a common notation for these basis integrals, where pentagon integrals (1 b )
are denoted by Ej, box integrals (LP ) by Dy, continuing for the triangle and bubble
integrals. Additionally, we will use the lowercase letters to define the coefficients.

We define the denominators of the integrals as follows,

d(l) = 0> —m?* + ic. (2.3.3)

lthe term “scalar” is due to there being no dependence in the numerator of the integrand on
the loop momentum.
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The notation for the momenta running through the propagators we use is,

Li=l+p=L{+aq
lij=L+pi+pj=L+q

lij =L +Dp; +pj +pp =L+ qs (2.3.4)

and so on for any number of subscripts. The g; are the off-set momenta and the p;

are the external momenta. In terms of these denominators the scalar integrals are,

—4-D
RN S T Y YR
B0<p17m> - rr i7TD/2 /d ¢ d(€> d(gl) ’
) = [ !
Co(p1,p2;m) = i /d t d(0)d(ly)d(lys)
= L :
Do(p1, pa, p3;m) = 2 /d ¢ d(0) d(¢,) d(lyo) d(lr93)’

1 1
E e D) = / a‘e .
olp1sPosPos i) = oy | G G () d(azar)

(2.3.5)

where 1 = 1/T'(1 — €) + O(€*), i is an arbitrary mass scale and € is the dimensional
regularisation parameter, D = 4 — 2¢. These factors appear in the B, integral since

it contains divergences and must therefore be regularised.

Though in general an n-point amplitude will contain integrals up to I7, in four
dimensions all one loop amplitudes can be written as a linear combination of scalar

basis integrals with four or fewer external legs [27],
4
Al oop = Y Cn(4)IN + R. (2.3.6)
N=1

By reducing an amplitude to this basis we do not need to do complicated integrations,
since these integrals are well known and can be evaluated using existing libraries [28—
30]. Instead we must find only the coefficients and rational parts. These are all
rational polynomials in terms of the kinematic variables (e.g. Mandlestam variables,

masses and spinor products).

The reduction of an n-point amplitude to a sum of N < 4-point integrals arises due

to the external momenta becoming linearly dependent in 4 dimensions for n > 6, and
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for n = 5 one of the external momenta can be eliminated by momentum conservation.
N-point integrals can be recursively expressed in terms of N — 1-point integrals down
to N = 5. These N = 5 pentagon integrals can then be expressed as a sum of five

N =4 box integrals [31-33].

To demonstrate this reduction, we write the general integral In in the form,

PO lbl k?z / 57 1—25 1b; (k’l )] (237)

2= 1+, /cM

© " (kl —mj +z(5 L, kl mj +z5)
where we have made an ansatz that we can cancel denominators by writing propagat-
ors into the numerator with coefficients by,. k}' = ¢#'+r}" are the propagator momenta,

/" is the loop momentum and df = d"¢ / in?. Performing Feynman parametrisation

and the momentum shift /# = ¢* + Zf\il z;r;, where z; are the Feynman parameters,

on Iﬁna
1 — Z b 62 . m2
/ sz§<1—Zzl>/ { lf l<’N l)] (2.3.8)
(7 - )
with
2 1 .
R” = —52-5-2—2'5, 7 =€“+;(5ij — z)r, (2.3.9)
and
Sy = (ri —rj)* —mi —mj. (2.3.10)

If (S-b); = 1is fulfilled for all j = 1,..., N then eq. (2.3.8) reduces to,

I = (Zb,)/ sz5<1—Zzl>/dl l2+R2) (2.3.11)

After loop integration

- @} bl> (N—D—1)Ip*. (2.3.12)

We now have that b; = SN Si; ! and therefore,

Z biIN 1 [j (Z bl> — DIy, (2.3.13)
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where ( )
_ k2 — m?
1R} = [ di———

1Y (k7

We have required that det(S) # 0, which holds for N < 7. In this thesis we will

) 2.3.14
- m? + i&) ( )

be studying 5-point amplitudes and can safely assume that S is invertible. We will
use the notation |S|y9x3x4| for the determinant of S, which is related to the Gram

determinant, G,

16 |Sixaxsxa| = 512 S23 534 (314 Sog — (812 + 513) (894 + 534)) +m’ G,

2
G = (512 534 — S13 524 — 514 523)" — 4 513 S14 Sa3 524 - (2.3.15)

For pentagon integrals in D = 4 — 2¢ dimensions the factor of N — D — 1 in the
second term of eq. (2.3.13) is O(e) and the scalar pentagon integrals are finite in
D = 6 — 2e. When the limit € — 0 is taken this term vanishes, and we are left with

the pentagon integral being reduced to a sum over box integrals.

Returning to D = 4 — 2¢ dimensions we can identify the terms which contribute to
the rational coefficients [34]. Writing a general n-point one-loop amplitude in terms
of scalar integrals with N <5,
Altoop = D D iy (D)IX (2.3.16)
N=1Ky
and decomposing the loop momenta, ¢”, into a four-dimensional component ¢ plus

the —2¢ component,

v=0 4,

=P =040 =072, (2.3.17)

we can determine the dimensional dependence of the coefficients in terms of 1.
A renormalisable theory requires n to be the maximum rank in an n-point tensor
integral, so we have a maximum power of x* in box integrals and z* in both triangle

and bubble integrals.

Separating the integrals into 4 and D — 4 dimensions, and writing the D — 4 di-
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mensional integrals in terms of higher dimensional scalar integrals using [35, 36],

1 r—1
L ] = 71,?+2T[1] [1(D—4+2k), (2.3.18)
k=0

we have a new basis of integrals with explicit dependence on the space-time dimension

D,
Poise A D -4
Al—loop = T Z C5;K5[5D;;(_52 + Z C4§K4[£K4 + T Z CE]KLL[ZEI—QQ
K, e -
D —4)(D -2
Ky K,
D—-14 D4
K3 K, o
(2.3.19)
where
R . 5 1
C4;K4 = C4;K4 + Z Z SZ; C5;Kéi> ,
i=1 j
O5§K5 - C15;K5 Z Szgl ) (2320)
i?j

and K éi) represents the sets of momentum grouping obtained by “pinching” (see

fig. (2.2)) one of the pentagon propagators.

The scalar pentagon and box integrals are finite in 6 —2¢ dimensions, therefore, when

we take D — 4 — 2¢ limit, the rational terms are given by the remaining integrals

over (i,
- 1 e 1
A = 5 (2.3.21)
. 1
L2 = ~3 (2.3.22)
ol o7 eso 1
L] = -5 (s=3(mi+m3)), (2.3.23)
and the rational terms are [37-39],
1 1 1 2
R, =~ > Cik, — 5 S ol - 3 (K3 =3 (mi+m3))Cly, . (23.24)
K4 K3 KQ
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2.3.2 Unitarity Cuts

Generalised unitarity is a method used to calculate the coefficients Cy(D) of the
scalar integrals in eq. (2.3.1) [26,40-44]. The name of this technique comes from the

unitarity of the S-matrix, defined in eq. (1.1.11), which leads to

1=8'S=1+iT"(1 —iT)=1+T'"T +i(T -T")

= 2Im(T) = T'T. (2.3.25)
Sandwiching 77T between initial and final states,

(FIT'T|i) = S (FITYb:) (bs|T]3) (2.3.26)

b;
where 37, [b;) (b;| is a sum over all possible on-shell states b;. This is therefore a
sum over all possible cuts of a loop amplitude, where a cut is a replacement of the

off-shell propagator with an on-shell one,

—— — 2w (p?). (2.3.27)

Unitarity turns this process around and fuses on-shell tree amplitudes together to

build the loop amplitude.

A quadruple cut will single out that specific box coefficient (see ref. [40] for details
on quadruple cuts), however a triple cut will contain both the specified triangle
coefficient and any box coefficients that share the propagators [45]. Double cuts then

contain the bubble coefficient along with both triangle and box coefficients [46-48].

2.3.2.1 Box Diagrams

Box coefficients are straightforward to calculate. To begin with we express the loop

momentum, without loss of generality as,
v 14 14 ,‘)/ - v - 5 . 12 12
= api + Bpj + 5 (ilo"|5] + 5 (lo"ld] + € (2.3.28)

where ¢ and j are two external momenta.



46 Chapter 2. Amplitude Techniques for QCD

Putting the four propagators on shell determines «, 3, 7, ¢ and p*. On-shell cut
conditions are quadratic in nature, and therefore there are two possible solutions for

the loop momentum.
The box coefficient can then be calculated by taking the average of the results from
these two solutions for ¢,

1
d=33 AP AL AL 40 (2.3.29)

)

where the AEO) are the tree amplitudes at each corner and the sum is over the
two discrete solutions of the loop momenta ¢ = m?, where m is the mass of the

propagator, and all possible helicities, s, within the loop.

2.3.2.2 Triangle Diagrams

Triangle coefficients can be calculated using a method developed by Forde [45]. This

uses a parametrisation of the loop momentum of the form,
i wo Lo
‘g = tao + ;al + CL2 , (2330)

where ¢ is the only free parameter in the cut integral after evaluating the three delta
functions and a!" are orthogonal null vectors. Compared to a box coefficient that
contains the same three cuts, the fourth propagator will be inside the integrand,
corresponding to a pole of the form (¢ — q)z. In order to remove the contributions due
to box coefficients we will isolate the terms containing these poles, and discard them.

Here we will describe the method for massless internal propagators, for simplicity.

Taking the external outgoing momenta at each corner to be K, K, and K3, we can

expand the cut propagators as,

t xa a
= 2 K+ y B3+ S (Ko 3] + “5r (K3 o | ), (2:3.31)

where the “flat” momenta, KZ-b , are massless momenta that the external momenta
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can be expanded in terms of,

K2
K, =K{+—K;,
r’y
K3
Kzng‘f'?K?;

K K}
Ky = (1-%2>1(§—-<1-+1>_kg, (2.3.32)
gl ot
and where v = (K7 K3 K3).

The on-shell conditions for the three propagators, > = 0, give the constraints

necessary to derive the x, and y, coefficients,

_ Ki(y+KY) ~ Ki(y+ K3)
e e e
Y 12 1442
K7
rn=x0—1, y1=9——,
K?
952—9504‘7, Yo=Y+ 1. (2.3.33)

The pole due to the uncut propagator, when compared to a box coefficient, would
have two solutions if it were to go on shell. This gives us the following expression

for the triangle coefficient, after partial fractioning,
2 m )
/&LH&Q@AV%Ay:/ﬁL<§;mﬁ
a=0 1=0
2
+[aills@) | 2
a=0

poles t;

Rest:tj AlAQ A3
t—t,

), (2.3.34)

where J, contains the Jacobian due to transforming from an integral over ¢ to t
and factors obtained from the integrals over the three delta functions. The poles in
eq. (2.3.34) correspond exactly to the contributions from a triple-cut scalar box, and

therefore can be discarded.
. o : b, b+ b+ b+
We are left with a polynomial in ¢. Using that (K77 || Ky™), (K77 || Ky™) and

<K?’i|7“|Kg’i><K?’i|%|Kg’i> are all equal to zero and an argument similar to that

of Ossola, Papadopoulos and Pittau [49], we have that

/d4 KlmKQ

:0’
R
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(K K

/d4 QMZ') i (2.3.35)
Yt

Our parametrisation of the loop momentum therefore implies that all positive powers

of ¢t and all negative powers must integrate to 0. Therefore, only terms independent

of t will contribute to the triangle coefficient.

2.3.2.3 Bubble Diagrams

These are more complicated than the box and triangle coefficients due to the dual cut
not being sufficient to fully localise the cut integral, leaving a phase space integral
that must be evaluated. In addition, we must remove the contributions from boxes

and, in amplitudes with non-zero triple cuts, triangles that share the same cuts.

To calculate many of the bubble coefficients in this thesis we use a method developed
by Mastrolia [46], based on Stokes’ theorem. This method changes the phase space

integration to an integration over the conjugate variables z and z,

1 1
dzdz ——— 2.3.36
zm'//p Tt (2.3.36)

where the integration is over the whole complex plane D. We can then expand the

loop momentum ¢ as,

1 1.
¢ = (P +d" + 52{qlo"|p] + 52{plo"|q]). (2.3.37)

1+ 2z

To perform the integration we can use the Generalised Cauchy formula,

1 dzdz
d / / D, 2.3.38
271 /L Zz — 2 2w 2 — ZO J(z), 2 € ( )

where L is the boundary of D and

_of
f. = 5 (2.3.39)

Taking a function f that vanishes on the boundary L, the first term in eq. (2.3.38)

disappears and we are left with one term, which we can integrate by first doing an

indefinite integral over z and then finding the residues in z. In general, we will be
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left with an expression that contains rational terms and terms containing logarithms.
The double-cut of a two-point scalar function is rational, and since we want to isolate

this contribution we can discard the logarithmic terms.

2.3.3 Higgs Plus Four Quarks in the Heavy Quark Limit

As an example of the unitarity method we will calculate some coefficients for the
Higgs plus four parton processes. The Higgs boson does not couple directly to gluons,
the process is mediated by a quark loop. The mass of the top quark is much greater
than that of the other quarks and so will dominate this process, since the Higgs
coupling is proportional to the quark mass. Taking the limit m;, — oo, valid when
the quark mass is much heavier than other relevant scales, the loop can be replaced

with an effective gg — h vertex,

2

Log = —2 htr(G,,G") (2.3.40)

487%0

where we define G, = F),, as the field strength tensor for the gluon field. As an
example of generalised unitarity we will compute some integral coefficients with
massless propagators for 0 — hqqqq in this effective field theory (EFT). The

matching coefficients for this Lagrangian are known up to as [50-57].

The EFT in eq. (2.3.40) has been used extensively in the study of Higgs boson

production via gluon fusion. It has been used to calculate gg — h at N°LO [58-64].

Higgs plus 1-jet is known at NNLO in the heavy top limit [65,65-68] while Higgs

plus 2-jet results are known at NLO [69,70].

In order to improve the accuracy of these calculations as the transverse momentum

of the final state particles increases beyond the mass of the top quark, terms of

O(1/m;) have been calculated [71-74].
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Figure 2.2: Diagrams for the calculation of ditogyy in

Ay (h 17,25 35,4{2). (a) shows the full “uncut”

) +q ) “q
diagram, where the hgg effective vertex is denoted by

a solid circle. In (b) the pinched propagator has been
reduced to an effective vertex. All external momenta
are outgoing, and the notation is defined in eq. (2.3.4).

2.3.3.1 Two mass box coefficient in A, (h, 17, 2;, 35, 45)

We will calculate the box coefficient with external legs (17,27 + 35, 4g,h), labelled

as ditas. 4, for the amplitude A, (h, 17, 2;{, 32—2, 4{2), following the results in ref. [75].
The diagram for this coefficient is shown in figure (2.2b). It has two massless external
quark legs p?, p3 and two diagonally opposite massive legs m}, so3. There is only one
helicity configuration in this case that is non-vanishing, since the amplitude with
the Higgs and two gluons vanishes unless both gluons have the same helicity [76].

Additionally, the vertices containing legs 1 and 4 vanish for one of the loop momentum

solutions, so eq. (2.3.29) reduces to

1 _ _ _
dllaf;rsm = iAgO) (h> 612347 — > Ago) (—£1+2347 1q »@%4)

X AELO) <—£2_34, 22_7 357 g;) AZ(SO) (_Ei—? 4(57 €+> . (2341)

Inserting expressions for these tree amplitudes,

[N

7 iy / 2
Yy 234 =3 X (— (61234(_5»2) y [(—1234) Lo34]

[1£]
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[(—losa) 2] [36s] ) [(—a) 4]

The structure of 3-point kinematics requires that the positive chirality spinors ap-

X <— [23] ) X ()l (2.3.42)

pearing in the vertices containing legs 1 and 4 are proportional,
Alyyss X Abyy, X AL, Ay, 0C AL X Ay (2.3.43)

These relations, along with momentum conservation, allow us to remove all explicit
loop momenta,

(14)°

BGE (2.3.44)

W = 12 + 31112+ 34

2.3.3.2 Triangle Coefficients in A, (h, 17, 2;, 322—', 4[2)

There are no scalar three-mass triangle coefficients in the heavy quark limit for the
process 0 — hgqq'q’. This is due to the specific helicity configurations required for
the tree level amplitudes to be non-vanishing. Each tree level amplitude must have
two negative helicity particles, however with two external negative helicity particles

it is not possible to fulfil this condition.

The two- and one-mass triangles contain single log terms at order 1/¢, and therefore
the coefficients are completely determined by the known infra-red properties of the

amplitude, and can be found in ref. [75].

2.3.3.3 Two Mass Bubble Coefficient in A, (h, 17, 2;", 35, 45)

There are several methods for the calculation of bubble coefficients, here we will
write the cut loop momentum integral as an integral over the spinor variables ¢ = |¢)
and ¢ = |¢], a method proposed in refs. [41,42]. By transforming the integrand into a
total derivative in £ we are left with a single integral over ¢, which can then be solved
using the residue theorem. This method enables us to neatly separate the box and

triangle coefficients by using Schouten identities, eq. (2.1.9), to partial fraction the
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_6123

l 1=

q

Figure 2.3: The two mass bubble coefficient, bias, in the
Ay (h 17,25 3 45) amplitude. The notation for the

) g ) “q

momenta is deﬁned in eq. (2.3.4).
integrand. These terms must be discarded from the result for the bubble coefficient,
but can serve as an independent check of the box coefficients.

In general the coefficient will be given by an integral of the form

[ a 66D A0 AL
_ / Tt t / (edey[ede)s (P* — 0| PIe]) £(£,0), (2.3.45)
0
where ¢ is whichever of the cut momenta ¢, ¢5 is more convenient, P is the momentum
flowing out of one of the bubble vertices and f (¢, (7) is a product of the tree amplitudes.

We can use this process to calculate bigg in the A, (h, 1, 2;{, 35, 4Q> amplitude,

fig. (2.3), again following ref. [75],

BT =i [ ALIPS AL (h, s, £,45) x AY (6, 17, 25,35, 1)

q>9Q
_ 3 ()8’ (1(—0))? (23)
=i [ aups ( @ ) (12)(23) (3 (=00 (1) frz) (D)
B (01)° (£1934)°
= [ AP o o) (2.3.46)

where dLIPS is the Lorentz invariant phase space. We can eliminate ¢;93 by multiply-
ing the integrand by factors of [¢ £153]/[¢ ¢193]. Replacing dLIPS using eq. (2.3.45)
and performing the integral over ¢,

P? {(1)" (4| P|()?
(€1P10)* (12) (€3) (1] P[] {¢4)

— — [ eany e {P2 (01) (1P| (¢4) 2P (1) (14)
(0|Pl)° (12) (¢3)  (£|P|0)? (12) (£3)

BEET — _ / () [¢dl]
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P? (1) (14)?
+<€\P|€] (12) (£3) (1| P|€] (¢4) } ’ (2.3.47)

where the second step involved the use of the Schouten identities, eq. (2.1.9). The

term proportional to 1/(¢|P|¢] is the box coefficient to be discarded. The integral

over |{] can be transformed into a total derivative using the relation

"\ 11 [t
(i) = 00 (o rmn ) (2:345)

and setting |n] = |3] in the n = 0 term,

rr QPR aPM ) 43
5 = f e 000 (i e * T B 0 2

This integral has simple poles for |¢) = |3) in the first term and |¢) = P|3] in the

second term, therefore,

1(12)[23]%(34 23](14
2 (5123 — 512) S123 — S12
where we have used the notation
Sijom = Di+pj+ ... +Pn)2 . (2.3.51)

2.3.4 Unitarity with Massive Propagators

In order to calculate the full amplitude for any Higgs boson plus n-parton process we
must have massive propagators. Techniques for generalised unitarity with massive
internal propagators were pioneered in ref. [35] and comprehensive reviews can be
found in refs. [20,77]. Below we give an example calculation for a box coefficient in

the Higgs plus four gluon amplitude with a massive scalar mediator.

2.3.4.1 Two Mass Box Coefficient in A}*** (g™, g",g%,g7;h)

Here we will calculate the box coefficient d oy 3, With external legs (1;, 2;, 3;%—4;{, h)

and a coloured triplet scalar particle propagating in the loop, described by the

Lagrangian in eq. 3.2.1. As before, we begin by sewing together the tree amplitudes
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Figure 2.4: Diagrams for the calculation of djyox3s I
AP (gt 9T 9T 9T h). (a) shows the full “un-
pinched” diagram and in (b) the pinched propagator
has been reduced to an effective vertex. The notation
for the loop momenta is defined in eq. (2.3.4).

at each corner of the box,

~ 1
d1><2><34 = 5 Z —4 A3(_£7 1+7 ¢ — pl)A3(_£27 2+7 E)A4(_€2347 4+7 3+7 62)

1o 2@y mls
=327y (1) B

(2.3.52)

where the tree amplitudes are given in section 3.4 and the sum over ¢ is the sum
over the two solutions for the loop momentum. We are working with colour stripped
amplitudes, and have pulled out the factor of —iA/4 due to the Higgs-scalar-scalar
coupling. This is to be consistent with the results in chapter 3. We have set the
reference vectors in the three-point amplitudes to p, for the amplitude containing

17 and p; for the 27 amplitude.

In order to remove the dependence on the loop momentum, ¢, we can expand it as

(c.f. eq. (2.3.28)),
v v v ’7 v 5 v
0" = api + Bps + B (2|c” 1] + 3 (1l6"]2] . (2.3.53)
Using the requirement that the cut propagators are on-shell,

(E—p1)2:m2:>oz:0,



2.3. Generalised Unitarity 55

(0+py)? =m?= B =0,
2

P =m®= 6y = —:2, (2.3.54)

and from the final cut propagator o, = m°,

7 (13 +4)[2] + 7 5234 — 7:2 (2/(3+4)|1] =0. (2.3.55)

12
This gives us our two solutions for the loop momentum, from the two solutions for

~. The simplest approach, avoiding square roots, is to consider products and sums

of the two solutions,

m? (2|(3 4 4)[1]

== werop (2:3:50)
5234
V= . (2.3.57)
_21:2 (13 +4)2]
After expanding the loop momenta in the numerator of eq. (2.3.52),
~ 1 [12][34] 1
d =Y —dm* 2.3.58
bt = g 2 ) ) ) (2859
we can identify the effective pentagon coefficient as,
R 12|[34
€{1x2x3x4} = _4m4 <[12>] [<34]> s (2359)

which can also be obtained by calculating the pentagon coefficient in d dimensions

and taking the x> — 0 limit. The denominator factor d;(fs3) depends on ~;,

2
2|3|1

di(lag) = Cig3 — m’ = (1I312] i + 593 — w ) (2.3.60)
127%

and expanding the sum over o leaves us with the expression,

dy(lag) + dy(la3)
dy(los)dy(los)

(2.3.61)
which can be simplified using the relations,

[32] (2](3 + 4)|1] (13) = 95515 + [32] (24) [41] (13) , (2.3.62)
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and,

32](24) [41] (13) = p, P g, (2.3.63)

where Pp is the left-handed projector defined in eq. (1.2.5). We can then use the

relation,
tr{PLp1p2p3p4} =(12)[23](34)[41], (2.3.64)

to arrive at the final result,

J1><2><34<1+7 2+7 3+7 4+) = CYQ2><3><4 é{1+><2+><3+><4+ (2'3'65>

}

where C£ZJ>L<)2><3><4 is the relevant coefficient obtained from the reduction of the pentagon

integral to box integrals,

1 S

4

C£><)2><3><4 = [31234 S23 (5234 -2 334) + S234 (312 (3234 - 823)
216 ’81><2><3><4|

+ 534 (S123 + S23) — Sa3a S123)] 5 (2.3.66)

where |S|yax3x4| 1S defined in eq. (2.3.15).

2.3.4.2 Two Mass Bubble Coefficient in A;***(g*, g%, g7, 97 ;h)

In this example we will calculate the two mass bubble coefficient bs, with external

legs (3, + 45,15 + 27 + h), illustrated in fig. (2.5). We will calculate this with a

9719
massless coloured triplet scalar propagating in the loop, though the final result is

identical to the case with a massive scalar, or with a massive fermion, as will be

explained in section 3.3.

Here we give an example of the method developed by Mastrolia, described above,

for the bubble in fig. (2.5),

g’r=g> g’ g

) dz
b :/7A1+2+hA3+4+,
w = [ AT 2 AT

_ 4 dz (40 [BO* [ (1({—3-4))(20)
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_ {— pay ,h
4, —X
- = /
/’ N /
N \// +
\ 1g
/{ 2+

Figure 2.5: The two mass bubble coefficient, bsy, in the
Ag", g%, 9%, 97; h) amplitude.
where the tree diagrams are given in section 3.4 with m = 0, and we have again

pulled out a factor of —\/4. We expand ¢* as,

1

o= =z
2

1
(P5 + Pl + 52 (4lo"13] + 52 Blo"]4]) , (2.3.68)

1+ 2z

and perform some scaling to remove an overall factor,
(€ =V, 1] =V, (2.3.69)

where ¢t = 1/(1 + 2z). We then have,

i Iz 72 1
b34:4/(1+zz)3<12)2{_1+(Z_<2 )/ (23))(z+(13) / (14))

We then need to perform the integration over z. By using algebraic manipulation

such as,
. (+ez) -1
(1+ 25)3 B z(1+ 22)3 (2.3.71)
and
2= <Z —(24) (23) + gg) P (2.3.72)

where n > 1, the integration over z is then fairly straightforward. The next step is
to find the terms which come from the bubble coefficient only, that is those that do

not contain logarithms. To do this we calculate the residues with respect to z, for
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example our solution so far contains terms such as,
-1 —2
(13) (13) _
-1 2.3.73
o) (o) (2:3:79)
and therefore the pole is at,
z=——" Z=——". (2.3.74)
The result for eq. (2.3.73) is therefore,

A+ e

After finding the residues of the full calculation, and applying the Schouten identity

(eq. (2.1.9)) to terms containing (13) (24), we arrive at the final result,

4 (@aPamy (433
12340 = ot (Cba o) @870

2.4 Further Simplification Techniques

There are two additional techniques used in obtaining the results presented in
chapters 3 and 4: momentum twistors [78-81] and high-precision floating-point

arithmetic [82] to simplify the analytic expressions for scalar integral coefficients.

2.4.1 Momentum Twistors

Momentum twistors can simplify kinematic results by intrinsically satisfying mo-
mentum conservation and Schouten identities. These are built in part from dual

momentum coordinates [78],
k=i

where xf is a fixed point and SN . p; = 0. Each particle is described by a four-

component momentum twistor Z; 4(\q, u?), where ), is the two component holo-
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morphic Weyl spinor (eq. (2.1.3)) and p is defined as
M? = Aia(0 - %)ad ) (2.4.2)

so we use p$ instead of A¥ in our definitions of the kinematics. The dual twistor is

ABCD
_ xg € Zi-1)BZicZ(i+1)D
WA = (fie, \) = (—)BACA 2.4.3
= (Jiar A7) ST . (2.4.3)

which leads to a definition for the anti-holomorphic spinor that satisfies momentum

conservation,

o2 (D) g 4 () 6= D)y (6= 1)) s

(i@ +1)) (1 -1)9)

An n particle scattering amplitude therefore has 4n momentum twistor components,

(2.4.4)

however only 3n — 10 are independent. This is due to an overall Poincaré symmetry

and a U(1) symmetry for each particle.

For chapters 3 and 4 we will be using 6-point kinematics, so we require 8 momentum-

twistor variables (z1,...,xg). We have chosen to parameterise these variables as,
N R e T
Ky po Mg B4 M5 He
L0y v Ys Ya
0 1 1 1 1 1
= , (2.4.5)
0 0 0 T5Tg s 1
11—z 1+
0 0 1 1 N (?&:) N (I2x5$86)
where y; = 22:1 Hi:ﬂ /). The spinors involving particles 1 to 4 become,
(12) = —1, (13) = —1, (14) = —1,
1 + To 1
23) =1 24y = 34) = 2.4.6
< > /xlv < > T1Ts ) < > x1x27 ( )

for the A; and

[12] =2y, [13] = a5, [14] = _w’
Ty
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23] = — 17%552905%7 24] = 1’%1325567 [34] = —xixzxfﬂ??; (2.4.7)

for the );. We can invert the above equations to obtain

B B <3><14> (34) (15)

@B a6 (13)[23] (34) [24]

T e T a4 T T asy e
(13)[34] (13)[13]

The parametrisation of momentum-twistor variables is not unique; we have chosen
a parametrisation where the momenta ps; and pg appear only in the formulae for x5

and x4, and so these effectively decouple, similar to the method used in ref. [81].

The amplitude in question can now be simplified using simple algebra without having
to account for momentum conservation or Schouten identities. This especially helps

with identifying overall factors and denominator structures.

2.4.2 High-Precision Floating-Point Reconstruction

When lengthy expressions are hard to treat using momentum twistors variables, high-
precision floating-point arithmetic can be used to study the singularity structure
of integral coefficients, explained in detail in ref. [82]. After studying the singular
and doubly singular limits in complex phase space, the integral coefficients can
be reconstructed by solving linear systems for the rational coefficients of generic
spinor trial functions. It is a useful method of removing square roots and massless
projections of non-lightlike momenta that can occur as remnants of loop momentum
parametrisation [45,49]. In chapters 3 and 4 this method is particularly useful for

some triangle and bubble coefficients.



Chapter 3

Higgs Boson Plus Two Jets with a

Scalar Mediator

3.1 Introduction

Since the discovery of the Higgs boson at the LHC [83,84], one of the main goals
has been to study its properties in detail. On the theoretical side, this involves
doing higher order calculations to keep up with the ever improving experimental
precision. The dominant production mechanism for the Higgs at the LHC is gluon
fusion, gg — h. Key components of next-to-leading order (NLO) and next-to-next-
to-leading order (NNLO) calculations involve the processes gg — hg and gg — hgg.
These gluon fusion processes do not occur at tree level in the full theory, they are
all mediated by a loop of massive, coloured particles. In the Standard Model these
particles are the quarks, and since the coupling between quarks and the Higgs is

proportional to the mass of the quark, this process is dominated by the top quark.

The m; — oo effective field theory defined in eq. (2.3.40) holds when the py of the
final state gluons is less than the mass of the top quark, since the wavelength is too

long to resolve the loop. This EFT has been successfully used to calculate gg — h up
to NNNLO [58,61] and gg — hg to NLO [69,70]. As the energy and luminosity of the
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LHC increases we are beginning to probe regions where the EFT breaks down [85].
This offers us the opportunity to learn about the loop propagators, but requires a

calculation retaining the full dependence on the propagator mass.

These processes can be calculated numerically by several automatic procedures [70,
86-88|, however a numerical calculation may be unstable in certain areas of the
parameter space. Finding compact analytic expressions is more challenging, however

they are generally more stable and quicker to compute.

Though obtaining compact analytic expressions is not always straightforward, we can
exploit the relationship between the Higgs plus n parton processes with a fermion
propagating in the loop and those with a scalar mediator. Scalar processes do
not require the Dirac algebra present in fermion processes, therefore where these
two theories will give the same result we can instantly simplify our expressions by
calculating through the scalar theory. When the results are not equivalent, the

difference is simpler than the full fermion result, as will be shown in section 3.3.

In addition, a full calculation of the Higgs plus four parton processes with a scalar
mediator is an important tool in the search for evidence of new physics at hadron
colliders. Many beyond the Standard Model theories include colored-triplet scalars,

for example the quark superpartners in SUSY theories.

In this chapter we will give compact analytic expressions for the Higgs plus four
parton processes mediated by a coloured triplet scalar in the full theory. These
results were published in ref. [2], and are given assuming all particles are outgoing.
Section 3.2 outlines the structure of the calculation and in section 3.3 we study
the relationship between the scalar- and fermion-mediated theories. Section 3.4
contains the tree-level amplitudes used in our calculations and sections 3.5-3.7 contain
the integral coefficients for the Higgs plus four parton processes. We conclude in
section 3.8. Appendix A.1 contains numerical values for each coefficient, along with
the full amplitudes at a given phase-space point. This is intended as an aid for an

independent implementation of the formulae given here.
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3.2 Structure of the Calculation

3.2.1 Coloured Triplet Scalar Theory

The production of a Higgs boson from gluon fusion mediated by a massive complex
scalar field ¢ requires that scalar to transform as a triplet under SU(3),, i.e. be

charged under colour. The Lagrangian for this field then reads,

L= (D"))(Dud:) — Mpsdldih, Dy, = mwj%(azta)ij(pj, (3.2.1)

where the coupling of the Higgs boson to the scalar field is denoted by A,,s. The

SU(3) generators t* = \*/+/2 are normalised such that

tr(t*") = §°. (3.2.2)

3.2.2 Decomposition to Scalar Integrals

The 0 — hgggg, 0 — hgggq and 0 — hgqq'q' amplitudes can all be expressed as a
sum of colour ordered sub-amplitudes Aiﬁ'}, which can in turn be decomposed into

scalar integrals, as discussed in section 2.3,

n 2

A ({pis by e}) =iyt DD ()
167 v ’
{172 7777 TL}
X Aj:lci}(lhl’ 2h27 . nh’ﬂ; h) , (323)

where m is the mass of the particle circulating in the loop. The sum, (12

.....

over all (n — 1)! non-cyclic permutations of 1,2,...,n.

Explicitly for the 0 — hgggg case, eq. (3.2.3) becomes,

A () =i (m){

167°\ v
[tr (£ °2898%) o i (£ £0591%2) | AP (1" 22 3% alas )

 [tr (Er et 4 tr (g8t ) | AR (1 20, 3% 4Ms )
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+ [tr (t1Et24%) 4 tr (19 t03t02tc4)} A2 (1M 2he ghs gha h)} :
(3.2.4)

Squaring the amplitude eq. (3.2.4) and performing the sum over colours, for any one

specific helicity configuration,
1672\ v

> lAgep :[9‘3(7”2)]2(]@ - 1){2]\/2( a4 |age g

colours

N2

_3 2
_4( e )‘A};234+A}1342+Ai423’ }’ (3.2.5)

where N is the degree of the SU(N) colour group, i.e. N = 3.

Similarly for the two quark, two gluon amplitude 0 — hqqgyg,

4 2

Aqug<{pi, h‘ia Ci; ]Z}) =1 J: (m> |:<t03 tC4>j2j1A?14(1h17 2_h17 3h37 4h4; h)

1672\ v

+(t 1), 5, AP (1M 270 3 4t k)| L (3.2.6)

where we have dropped the colour structure 6“4, ; /N as it makes no net con-

201
tribution to the one-loop amplitude. This is likely due to some form of Furry’s
theorem [89], though we have not examined this in detail. In addition, A} can
be obtained from Aj}* through complex conjugation and permutation of momentum
labels, so it is only necessary to calculate one of these amplitudes. Squaring and
summing over colours yields

2

S - () ()

v

1
{N (19 + | AR2) — 1A+ AP (3.2.7)

The four-quark amplitude, for quarks of different flavours ¢ and ¢, takes the form,

4 2
. . Gs m ¢ c hi o— hs (—h
Al ({pis hi ji}) =i 6.2 (U ) (45,5, (15,5, 407 (13", 2™, 35, 4.™)  (3.2.8)

where the helicities of the quarks are fixed by those of the antiquarks. Performing
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the sum over colours we then have,

2

S 1A = (25) () -yt 329

1672 v

For the case of identical quarks, ¢ = ¢/, we first introduce the notation,
A (hy, hy) = Al (10 4 3l 90 (3.2.10)

the sum over the colours for the identical case is then

2

4 2 m 2 ’
SANE = () () o - (|Aiq<h1,h3>|2 + 1A ()

v

5 , ,
+’#"3 (Aia(hl, ha) AT (hy, hy) + A (e, hs)* AY (b, h3)> ) . (3.2.11)

Our results will be expressed in terms of the scalar integrals defined in eq. (2.3.5).
For example, for the 0 — ggggh sub-amplitude we have,

ﬁ4fD 1
AP (1 20 30 gt ) =

p, Num(¥)
/dﬁm%@

- Z éixjxkxl(lhlu2h273h374h4) EO(pijapk7pl7m>
1,5,k,1

+ Z Jixjxk(1h17 2h27 3h37 4h4) D()(pwp]’pku m)
1,5,k

+ Z 6i><j(1h1a 2tz 3ha gha) Co(pi,pjsm)
4,J

+ 3 b1, 22, 8% 4h) By(pism) + (17,202, 8% 474

. DJ/2
r m/

(3.2.12)

where Num(¢) is the numerator of the integrand, which in general depends on the
loop momentum ¢. We use a ~ to denote a coefficient from the scalar theory. The
sums run over groupings of external particles, excluding the Higgs. This expression
has been written in D dimensions, as dimensional regularisation is used to regulate

the UV singularities within the bubble integrals, though the end result is finite.

We choose to give our results in terms of the box, triangle and bubble integrals

only, and will therefore reduce all pentagon integrals to box integrals, following the
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procedure in section 2.3.1. Using eq. (2.3.13) to reduce the pentagon (N = 5) in

D = 4 dimensions,
al 4
Eo(pl,pg,p37p4;m) = ijf4 [J]
j=1

1 2
= C§><)2><3><4 Dy(p2, p3, pa;m) + C§><)2><3><4 Dy(p12, p3, pa;m)
3 4
+ C£X)2><3><4 Do(p1, p2gs Pasm) + Cfx)2x3x4 Dy(p1, P2, p3a;m)

+C{E>)<)2><3><4 Dy(p1,p2, p3;m) . (3.2.13)

The CYX)QX a4 are known as the pentagon reduction coefficients,

c® 1893534 (2519 894 + 513 594 + 534 512 — 523 514]
1x2x3x4 — 5 16 S
’ 1><2><3><4’
2) . 1 534
Ciloxsxs = — 5 —16 S [51234 523 (3123 - 2512) + S123 (534 (3123 - 523)
| 1><2><3><4’

+ 512 (S234 + S23) — Sa34 S123)]

c® _ 1 514 523 — (812 + S13) (524 + 534)] [S34 S12 + 523 S14 — S13 S24]
1x2x3x4 D) 16 ‘Sl><2><3><4|
(4) 1 S12
Clioxsxa = — s 7ata [31234 S93 (5234 —2 534) + S234 (312 (3234 - 523)
216 |Sl><2><3><4’

+ 534 (8123 + S23) — S234 S123)]

1x2x3x4 — )
2 16 |Sl><2><3><4|

o) 1 512 Sa3 [2 534 S13 + S13 So4 + 34 512 — Sa3 S14] (3.2.14)

where |S|xox3x4] is defined in eq. (2.3.15).

The rational terms, 7, are given by eq. (2.3.24), though since we have no box

coefficients with m* dependence and no bubbles with m?, this simplifies to

1
F(1M 2 3hs gha) = 5 a2 (10 ohe ghs ghs) (3.2.15)

1XJ
i?j

Some of the results presented here and in the following chapter use the simplification
techniques introduced in section 2.4. For both of these we can decompose the
momentum of the Higgs boson into two light-like momenta, ps and pg, which could
be considered as two massless decay products. This allows us to treat the processes

as having 6-point massless kinematics.
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This is where the usefulness of the decoupling of the x5 and x4 variables in eq. (2.4.8)
becomes apparent, since our amplitudes will not contain the ps; and pg momenta. In
addition, in order to use the momentum twistor parametrisation in eq. (2.4.5) we
must remove the overall phase of the coefficient that corresponds to the helicities

of the external gluons. For example, for the all-plus case we must multiply by

(12)% (342,

3.3 Relationship Between Fermion and Scalar

Theories

For simplicity it is useful to study the inclusive cross section to understand where
the scalar and fermion mediated loop processes are similar. The Standard Model
amplitude for inclusive Higgs boson production via gluon fusion, for a quark of mass
m in the loop, is
HE i 932 5AB (m2> {gw B plp’;]
167 v P1-P2
(@mi = 8m?) Colprpaim) 4] up)ap). (33)

where the gluons have colour labels A and B and e represents a polarisation vector.
Cy is the scalar triangle integral defined in eq. (2.3.5). The same process mediated
by a colour triplet scalar, mass m, has an amplitude of [90]
2 A v _ [t
gg __ - Js (5AB N uv P1 D2
2 =1 p) g -
16 4 P1-P2

{ — 8m® Cy(py1,pa;m) — 4} eu(p1)en(pa) - (3.3.2)

It is easy to see the similarities between these two amplitudes, especially when setting
(=\/4) = m®/v. The origin of this m? factor in eq. (3.3.1) is due to one factor of
m arising from the quark-quark-Higgs coupling and the other from the form of the

fermion propagator.

The coefficient of the triangle integral proportional to m* and the rational terms
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are identical. This correspondence extends to the 1- and 2-jet cases for specific

coefficients, which will be given explicitly at the end of this section.

Rewriting both of these amplitudes by extracting an overall factor,

2 v 2
- 9s cap[ly W P1DS mp,
299 — SAB | Z (g _ } () () F |
5 =1 1622 2(9 p1-p2) ” £u(p1)en(p2) Fija(T)
99 - g? AB 1 uy plljpg )\mi
AT 10 pl,pﬂ (2mz)€u(m)€u(pz) Fy(r),  (3.33)

where the scalar, Fy(7), and fermion, F} 5(7), functions are defined as

Fy(r) = 7'[1 — Tf(T)} , (3.3.4)

Fypp(7) = =27[14 (1= 7)f ()| = =2Fy(7) — 27 f(7), (3.3.5)

and T = 4m? / mi. Additionally we have defined the triangle function,

2
mp

f(r) = 5 Co(p1,p2;m)

(1

In the Standard Model, considering the top quark only, 7> 1, both Fj and F /5 are

) - mr +0(r — 1) [sin ' (1/vD)]" . (336)

in their asymptotic regions, illustrated in Figure 3.1. This validates the use of the
effective field theory in eq. (2.3.40). In this limit, m? > mj, a comparison of the
asymptotic values and the overall factors in eq. (3.3.3) shows that the two theories

are described by the same effective Lagrangian when \/8 = m?/v.

This asymptotic correspondence can also be seen by starting with the large mass

expansion for the triangle integral,

S
om?  24m*

1
Co(p1, py;m) — — O <m6> , S§= m;% =2py - Py (3.3.7)

and noticing that in both theories the terms within the square brackets in egs. (3.3.1,3.3.2)

2/ 2
scale as my, /m”.

More precisely, extracting the effective interactions for the fermion and scalar theor-
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1073 1072 1071 10° 10!
T=4m?/M}

Figure 3.1: The functions Fj, and F,, given in Egs. (3.3.4)
and (3.3.5) respectively, plotted as functions of 7 =
4m? /M7 . The dashed lines on the right hand side show
their asymptotes at large 7.

ies:

2

1 v 9s
Ehgg = _ECfGlaL Gm/aha Cf = _1271'21)’ (338)

for the fermion loop and

A 1 v g? A
‘Chgg = _ZCSGZL Gul/a h, Cs= A Zm?2 <_4> (339)

for the scalar one. Therefore, with (—\/4) = m? /v, the amplitudes are related by a

factor of —1/2 when the EFT is valid,

m2A(.h) > —;mQH(. R, (3.3.10)

3.3.1 Second Order Formalism

To study this correspondence in more detail we can use the second order formal-

ism [91]. It is a description of fermions that is similar to that of scalars, which
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Y% Uy Y%
7% 20
P1 4 p1 —/
(a) (b)

Figure 3.2: Triangle diagrams for Higgs boson production via gluon
fusion. The momenta are defined as ¢; = ¢ + p; and
{15 = £+ p; + py and flow in the direction of the fermion
arrows.

—ly

makes it an excellent tool to study the relationship between these two theories. The
starting point for the second order formalism is an internal fermion propagator line
interacting with a gauge boson, in our case a gluon. We will look at the numerator,

A" part of this expression,

AM(pr) = (f+mn® = (£ + 5p, = p, +m

= Q0 L~ A - g —m), (B3I

where £ is the momentum of the fermion propagator and p; is the momentum flowing
out of the vertex along the gluon line. The first term on the second line of eq. (3.3.11)

is similar to the vertex for a gluon interacting with a scalar field. Defining
1
B (L, 6) = (" + )1 - 3 7" and CU(f) =AML +p —m),  (3.3.12)

we have that

Au(&pl) = B#(& gl) o Cﬂ([l) : (3313>

We can generate a propagator-like factor by following C*(f;) by the factor A”(¢; +
¢ —4q),

CH(6) A"l + q,—q) = —d(l) x 9", (3.3.14)
where the denominator d(¢,) follows the same notation as eq. (2.3.4). General
fermion loops will contain chains of A" /d(¢;). We can use eq. (3.3.14) to cancel
denominators and to decompose the expression into terms equivalent to a scalar

theory plus a correction of lower rank.
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As an example, we can consider the relatively simple case of Higgs production via
gluon fusion, fig. (3.2). To begin with, the integrand for the diagram in fig. (3.2a)

is,
1 tr{(f+m)y" (h +m)y"? (e +m)}

(_1) w FCEC2 - d(g) d(ﬁl)d(fg) ’

(3.3.15)

where the minus sign is due to the fermion loop and the factor of 1/m is for conveni-

ence. After applying the decomposition in eq. (3.3.13) twice we have,

P tr{B“l (6, fl)Buz (61, 612)} tr{”}/ul’}/lb}
—1) x 7™ x - . 3.3.16
Y A0d) it d)dih (3310
Similarly, the result for the companion triangle in fig. (3.2b) is,
_ Mo (_ My (__
(—1) x 2t x 1 tr{(—=fo + m)y" (= + m)¥" (—f+m)}
m d(0) d(£y) d(£y,)
tr{B" (=, —)B" (=41, —0)}  tr{y"™}
— _1 < tCQtCI X [ — ] 3317
Y 200 d(6,) d(0) a0de) @0
Once the diagrams have been added together the full amplitude is,
(_1) tcltCQ % (gﬂl + £¥1)<£§L2 + Ellg)tr{l} + itr{[ﬂla 7“1][]/27 ’7M2]}
d(€) d(£y) d(t12)
L g [ B + B0+ ol 0,2}
d(€) d(£) d(t12)
tr{1}
— (2 2 gt — = 3 3.3.18
( 7 aw dwu)} (3319

The fermion loop can therefore be considered as a (suitably normalised) scalar
triangle with convection terms, e.g. ¢* + ¢}, plus spin flip terms (the commutators
of gamma matrices). These spin flip terms do not have any dependence on the
loop momentum so they are of lower rank than the scalar triangle contribution. In
addition, there is no explicit mass dependence in the expression in eq. (3.3.18). The

dependence appears when reducing to scalar integrals.

The same process can be applied to amplitudes with more gluons; the rank of the
spin flip terms is always at least two powers of the loop momentum lower than the

terms from the scalar theory.



72 Chapter 3. Higgs Boson Plus Two Jets with a Scalar Mediator

Therefore, the full fermion amplitude can be written as
Fermion theory = Scalar theory + AF, (3.3.19)

where the correction, AF', is of lower rank by at least two powers of £. Since the
fermion theory contains rank-4 pentagons, rank-3 boxes, rank-2 triangles and rank-1
bubbles, AF must contain at most rank-2 pentagons, rank-1 boxes, rank-0 triangles
and no bubbles; therefore AF' is cut-constructible. This means that the bubble
coefficients and rational terms can be fully calculated in the scalar theory. A further
simplification is that the bubble coefficients have no dependence on the mass, and

can therefore be calculated in the massless scalar theory.
Separating out the mass dependence in the triangle coefficients, we have

(0)

_ 2 (2)
Ci><j _Ci><j +m-c

1XJ

Ginj = O A m2 &, (3.3.20)

for the fermion and scalar theories respectively. AF does not contain any m? triangle

2 _ =2

coefficients, so we have ¢;3/; = ¢;3/;. In addition, AF makes no contribution at all to

certain triangle coefficients,

CBX4(1+72+73+74_) = 63X4<1+72+)3+74_)7
C2X34(]—+72+73+74_) = 62X34(1+72+73+74_)7

Cl><43(1+72+73+74_) = 51X43(1+72+73+74_)7 (3321)

C3><4(1+7 277 3+7 47) = E3><4(1+7 277 3+7 47) )

Cox3a(17,27,37,47) = &y,qa(17,27,37,47), (3.3.22)

CQ><3(1+72+73_74_) = é'2><3(1+724_73_74_)7

Cl><23(1+72+73_74_) = 61X23<1+72+73_74_)' (3323>

This is all ¢;,; that do not have a lone Higgs boson external leg.
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Though we refer to AF' as a correction, that does not mean its contribution to
the amplitude is small. It is a useful technique to simplify the calculations in the
fermion theory, however there is no constraint on the relative sizes of the two terms

in eq. (3.3.19).

3.4 Tree-Level Amplitudes with Massive Scalars

It is necessary to calculate several tree level amplitudes for the unitarity construction
of the loop amplitudes. We require amplitudes for a scalar—anti-scalar pair coupled
to n partons, where n < 3, both with and without a Higgs boson. These partons
consist of either n gluons or n — 2 gluons and a quark—anti-quark pair. For the
n gluon cases we will give the colour ordered sub-amplitudes (c.f. eq. (2.0.1)),

Alree (ﬁ; o(1),...,0(n); 57) and AMe (h,ﬁ; a(1),... ,a(n);@ for those including the
Higgs. ¢ (£) is the momentum of the (anti-)scalar and (i) is the momentum and
helicity label of particle 7. All momenta are taken to be outgoing, and the amplitudes

are labelled by the particles not including the two external scalar particles.

One gluon

The amplitudes for two scalars and a gluon are,

_ 1 —
arens = G g = O (3.4.1)

and the amplitude containing the Higgs is,

b1y (1)e1]  (o1) (Ljen]

B _4{<b|£7|1} (11¢]1] — (b]e|1] <1|12|1]}
) (b1) (11el1] (ajel] '

A (h, (;10) = —4{( (o Pl ]

In egs. (3.4.1,3.4.2), b is an arbitrary light-like momentum.
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Two gluons

The amplitudes for two gluons and two scalars are given by,

AT 1+ 9% ) = _m | (3.4.3)
AT (01 2 ) — _<1!<22\|1?‘1d](11)’ (3.4.4)
and with a Higgs boson,
a1 2750 = — 2 { s+ ]|
N SL [1 _ W} } , (3.4.5)

o e e (] (0] @
AT 617,270 = ‘4{d(fladwlﬁd(a»d(@)‘ iy | B0

Three gluons
The calculation of this amplitude using BCFW recursion leaves spurious poles in the

results [92], which can be removed by writing the results in the following form [93]

(31201 +2)11] (31212]
(12) s93d(fy) d(£y2)
[12) (3/(1 +2)|(]3)
(12) 593 5123
1 ql21)@iu s 31 (e (2143]
S12 523[ d(g)d(fu) d(€12)
B (2001(1 +3)[2) [13] ] 5.45)

5123

Agree(g; 1+, 2+’ 37 g) =

: (3.4.7)

AYee(0;17,27,37,0) =

We can then obtain AY*°(¢;1%,27,37;¢) by using charge conjugation on Eq. (3.4.7),

(3102 + 3)¢)1] (2]¢/1]
[2 3] s12.d({y) d(£12)
_(23) [1](2 + 3)[4[1]
23] 5125123 '

AYee(0;17,27,3750) =

(3.4.9)
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One gluon, two quarks

[13] (2/¢](1+ 2+ 3)[2)
(23) 5125123

» 1 21+ 2+ 3)[2)

- _(t )igs 03,5 — N (#) s 5“'_ (13) (23) s123

o L., 1 (2|€13]1] (2]¢3]
+ _(f )ig 03p5 — N(t )i 5j27j1_ (23) s19d({3)

A0 1F, 2,353 0) =iv/2g] { [(tcs)jjl 05,5 = (1%),7 953,

+

_ 1 1 (21[1] (2]¢195)3]

(#%)5,5 951 = 37 (1753 90y 23 s dll) } (3.4.10)

A3 (017 ,2,,3,50) = iv2g]
I (23) [1]¢)(1+2+3)|1]

[1 3] $12 5123

{ - _(tcs)ﬁl 0j,5 — (t%);,7 %1]

e IR (1 + 2+ 3)[1]
_(t )jgj 6J}j1 N (t )j2j1 6j’j} [1 3] [2 3] S1923
[ s LA (2]€125]1] [1]£]3)
_(t )1 95,3 N ()53 5j2’j1} [13] s15d(43)

[esy I (21011 [1]¢153]3)
_<t )ij 5j»j1 _N(t )jj j2’j1:| [13] S12d(4y3) }

(3.4.11)

3.5 Amplitude for 0 — ggggh with a Scalar

Mediator

3.5.1 Coefficients for A}***(g*,g",g%,g7;h)

The Higgs plus four gluon amplitude where all gluons have positive helicity is par-
ticularly simple, especially when the pentagon integral (Ej) is retained, rather than

being reduced to box integrals,

4m?
Ay(h; 15,2835 4) = — 1234}m*E, ;
4(h’? g ga3g7 g) [{ <12> <23> <34> <41> tI’+{ 3 }m 0(p17p27p37p4>m)

1
+ 5((312 + 513) (524 + S34) — S14523) Do (D1, Doz, Pa; M)
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1
+ 5512523D0(p1,p2,p3; m)

+ (812 + 813 + 514)Co(P1, P23a; m)} + 2<

S12 + S13 + S14
12)(23) (34) (41)

+ {3 cyclic permutations}] : (3.5.1)

where we have introduced the trace functions

tr {1234} =tr{yph vo, ¥5,u} = [12] (23) [34] (41) ,

tr_{1234} =tr{y, i o, 3. ¥a} = (12) [23] (34) [41] . (3.5.2)

The equalities on the far right hold only for lightlike momenta.

When presenting the results for the other helicity configurations we will, however,
reduce the pentagon integrals to box integrals. For simplicity we therefore give the
formulae once the pentagon integral has been reduced. This reduction of pentagon

integrals to box integrals leaves us with an effective pentagon coefficient,

tr, {1234}
(12) (23) (34) (41)
4 [12][34]

(12) (34)’

é‘1><2><3><4(1+7 2+7 3+7 4+) =—4 m4

= —4m (3.5.3)

which can be calculated by first calculating the coefficient in d dimensions and then

taking the p* — 0 limit.

It is not necessary to calculate every coefficient since many of these can be obtained
from permutations of the momentum labels. The minimal set of coefficients we must

calculate is shown in columns 1 and 3 of table 3.1.

3.5.1.1 Boxes

d1><2><34

7 + ot ot 4+) _ ~©@ =
d1x2><34(1 ;27,3 4 )—C1x2x3x46{1+X2+X3+X4+

, (3.5.4)
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Coefficient | Related coefficients Coefficient | Related coefficients
d1><2><34 652x3><41’6§3><4><127614><1><237 _ 61><234 52><341,63><412754><123
5 d~1><4><327C{2><1><437({3><2><147d4><3><21
6§1><23><4 Cg2><34><17~d3><41><21d4><12><3
d1><2><3 d2><3><47d3><4><17d4><1><2

Table 3.1: The minimal set of integral coefficients for

A}l234(g+, gt.gt g ). The related coefficients
can be obtained by simple permutations of momentum
labels.

d1><23><4

7 + ot ot 4+
d1><23><4(1 ,27,37,4 ) Cl><2><3><46{1+><2+><3+><4+}

d1><2><3

Jlx

3.5.1.2

~(0)
C1x2345

3.5.1.3

2m?

<1 2> <2 3> <3 4> <4 1> [(312 + 513) (824 + 834) — S14 323]

_|_

(3.5.5)

2><3(1+72+73+74+) C4><1><2><3e{4+><1+><2+><3Jr +C£§<)2><3><4é{1+><2+><3+><4+}
+ 2m” (3.5.6)
S19 8 0.
(12)(23) (34) (41) "27%
Triangle
5§2><)234
A0ass(17,27,374%) =0 (3.5.7)
1
~(2) + ot at 4+
17,227,374 4 3.5.8
Cixazal( ) = (512+313+314)<1 2y (23) (34) (41) ( )
Rational terms
~++++1(2)++++()++++
F(17,27,37,4 )25{“234(1 27,37, 4%) + &2 (27, 37,47, 1)
+ 6g2><)234(3+7 4+7 1+7 2+) + 6522234(44_7 1+7 2+7 3+>}
.y 51234 (3.5.9)

(12) (23) (34) (41)
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3.5.2 Coefficients for A;***(¢g", 97,97, 97 ;h)

The initial form of the effective pentagon coefficients for this helicity combination

contained spurious poles due to factors of 1/trs{1234}” in the denominator, where

trs {1234} = tr{vs ¥ Yo s Vs }
=[12] (23) [34] (41) —(12) [23] (34) [41], (3.5.10)

where the second equality holds for lightlike momenta. These poles are unphysical
since the factors of trs{1234} are cancelled in the full amplitude by corresponding
factors in the box coefficients. However, leaving the pentagon coefficients in this
form can lead to a loss of stability in calculations. To remove this unphysical pole

we can write,
trs{123 4}2 = (812 834 — 514 S23 — 513 324)2 — 4514 S93 824 513 = G, (3.5.11)
where G is as defined in eq. (2.3.15). We therefore have
s12523831 (1/(2 4 3)[4] (4] (2 + 3)[1] = m® trs {1234} — 16 |S1yanaeal - (3.5.12)

Using this equation to eliminate a factor of (4|(2 4 3)|1] in the numerator generates
two terms: one which is free from the denominator tr;{1234}* and one containing
a factor of |S]yax3x4|- The former we identify as the effective pentagon coefficient
and the latter cancels the denominator factor when reducing the pentagon to boxes
(eq. (3.2.14)), therefore explicitly absorbing the 1/tr;{1234}* factors into the box

coefficients and cancelling them.

We therefore arrive at the effective pentagon coefficients,

23] (4](2+3)[1]

2 - =—4m! 51
ety = T ) 1@+ 3 (3:0:15)
é{4’x1+><2+x3+} = é{1+x2+><3+x4’}{1 < 3}, (3.5.14)
N 23]% (34) (2|(3 + 4)[1]

é R : 3.5.15
{2+><3+><4 ><1+} <2 3>2 [3 4] <1‘(3 +4)|2] ( )

é{3+><4_><1+><2+} = é{2+><3+><4_><1+}{1 < 3}. (3.5.16)
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Coefficient | Related coefficients || Coefficient | Related coefficients
q5x2x34 qu2x14 63x4 E4x1
th4x32 qu4x12 62x34 62><14
42X1x43 @2x3x41 61><43 63x41
44x3x21 44x1x23 é4x123
d~2><34><1 C{sx41x2 Cix234 C3x412
q&x23x4 44x12x3 62x341
d~2><3><4 dyx1x2 Cl2x34 Co3x41
C{ 1x2x3 1334 {714 ~
d3xax1 13234 ba12, b3a1
bi234
Table 3.2: Minimal set of  integral coefficients for

AP gT g 97,975 h).

As before, not all coefficients need to be calculated separately, and the minimal set

is shown in columns 1 and 3 of table 3.2. The related coefficients can mostly be

obtained through symmetry properties and relabelling of momenta, except for the

coefficient b34;,

Z;?»41(1—’_7 2+a 3+74_) = _6234(2_'_7 3+a ]-+7 4_) - Z;234(2—i_a ]-+7 3+74_) :

(3.5.17)

Where a triangle coefficient has no mass dependence we will omit the superscripts

in eq. (3.3.20).

3.5.2.1 Boxes

d1x2x34

J1><2><34(1+7 2v.37,47)=¢C

d1x4x32

1x2x3x4

23] (12 +4)3]"

é{1+><2+><3+><4_}
[12] | (24)" (4|2 +3)]1]
(12) 1(23) (34) (2[(3+4)[1]

34) (1|3 +4)[2] (1/(2 +3)4]

~ _ 2 .
d1x4x32(1+72+73+74 )::cég3x4x1€{2+x3+x4_x1+}

(3.5.18)
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2 23] 3145334
+2m 5 (3.5.19)
(23)7 [34] (1](3 + 4)|2] (1](2 + 3) 4]
Ci2><1><43
J2x1x43(1+>2+a3+’47) C3><4><1><2 €{3+><4 ><1+><2+
2| 1+ 4)|3]
1 (2|(3 + 4)[1]
> (4](1 +3)[2]

* BTG 6 |<1+4>|21} (35:20)

CZ4><3><21
CZ4><3><21(1+7 2+73+>4_) :C£3<)2><3><4 é{1+><2+><3+><4*}
e (12) (23) (1{(2+3)[4] (3|(1 +2)[4]

(3.5.21)
J1x23><4

Ci1><23><4(1+7 2+7 3+7 4_> = Cfi)2x3><4 é{1+><2+><3+><4_} (3522>
J2x34x1

Ci2><34><1(1+72+73+7 _> :Céi)3x4><1é{2+><3+><4—><1+}
2 (24) |(14) (24) ({3 +4)[2] (2|3 +4)|1]
(12) (23) (12)% (34)
2 (o (14) (24) [12]  [13] [23] = (24) [14] [23]
o (3 PR A Y R CEN Y )]
(3.5.23)

d2><3><4

- _ 5 ~
d2><3><4(1+72+73+ ) Cl><2><3><4 €{1+><2+><3+><4*} +C§><)3><4><1 6{2+><3+><4*><1+}
2 S934 <34> [2 3]2

AR WG F 2 Al@ 3

(3.5.24)
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d1x2x3

37 — 5 ~ 1 ~
d1><2><3(1+a 2+7 3+74 ) :C§X)2><3><4 6{1+><2+><3+><4*} + C£><)1><2><3 6{4*><1+><2+><3+}
2 5123 [1 2] [2 3]

AR 1 (@ 3

(3.5.25)

d3><4><1

7 — 1 ~ 5 ~
d3><4><1(1+7 2+7 3+7 4 ) :Céx)3x4><1 e{2+><3+><4*><1+} + C§><)4><1><2 6{3+><4*><1+><2+}

o2 [ 23 34)° 510, [12](14) sy }

T @3 B+ (127 Bl(1+4)2]
(14) (34) >
12 0 3)2 23) {2 Si4 834 +6m 513] (3.5.26)
3.5.2.2 Triangles
h e (43
Cona(17,27,37,47) = 2544 12 23) (137 (3.5.27)
N Voot b g 14) (24)*
Coxza(17,27,37 4 )_—2(323+324)< 23 61 (3.5.28)

(12)(34) ) (13)
(3.5.29)
55&)12& 5512><)123
Ehas(17,27,37,47) =0 (3.5.30)
55122123<1+7 2t 3" 47) =4 S123 (514 + Soa + S34) (3.5.31)

(12) (23) (3[(1 +2)4] (1(2+3)4]
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~(0) ~(2)
C1x234y C1x234

N _ 14
3(2234(1+ 2%,37,47) = 2(s12 + 513 + S14) 12<

(3.5.32)

S (4)(2+ 3)1]
So34 (812 + S13 + s14) (23) (34) (2[(3 +4)[1]

(14)” [23]
(12)* (34) (1/(3+4)2] (1](2+3)|4]
23

65222340-—’—7 2+7 3+7 4_> -

—4(s12+ 813+ 514){

(12) (1[(2+3)[4] (13 +4)|2] (2[(3 + 4)[1]
(12)[13][23]  [12[{1
[34] 34>

IR R C 2+3 |1]}

L (12)

« | <24> ] (3.5.33)
L(12) (34) (1[(2+3)[4] (2|3 +4)[1]

X

~(0) ~(2)
C2x3419 C2x341

(14)* (23)* + (12)* (34)*
(12)° (23)° (14) (34)

(3.5.34)

55(2341(1+7 27,3%,47) = 2(s19 + So3 + S24) (2 4>2

4(812 + 83 + S24) S134 [12] [32)]
(12) (32) [14] [34] (1[(3+4)[2] (3[(1 +4)[2]
B 8 (4](1 +3)[2)"
(s12 4 893 + S24) 5134 (14) (34) (1{(3+4)|2] (3[(1 + 4)[2]
{ 4 (812 + Sa3 + 524)
[(s13 + S14) (523 + S24) — 512 534]

[13° 23] [12] (14) <24>2}}
(12) [14] [34]  (12)* (23) (34)

4 {1 o 3} (3.5.35)

é§2><)341<1+7 2+> 3+7 4_) =

+

X
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~(0) ~(2)
Ci2x34y Ci2x34

Eg%)x34(1+72+a3+a47) = 0 (3536)

[12]

~(2) + o9t ot 4—
&2 (17, 2% 3t 47 = —4
e (12) (3[(1+2)/4] [(313 + 514) (Sa3 + 524) — S12 834}

X [(<1 4) [13] —(24) [23]) (513 + 523 — 514 — 524)

+(12) (34) [13] [23] (2 B (813 + Sa3) (813 + S14 + So3 + 824))

S12 S34

+(14) (24) [12] [34] <2 (514t 524) (513 + 814 + 803 + 324)) ]

(3.5.37)
3.5.2.3 Bubbles
534
- o 4 (24)°(13)[23]  (14)*(23)[13]
by (1%,2%,3%,47) = 122(13) 23) < (5r F 520) T ) (3.5.38)
5234
i1t of at 4 4 (24)* (4/(2+3)|1]
baza(17,27,37,4 )_(23> <34><<12>2 (2[(3 4 4)[1]
B (42 +3)1)°
(2(3+ 4)[1] (S1234 — So34)°
_(24)% [23] (34) (3:5.30)
<12>2 (523 + S24) -
Z;1234

The full amplitude must be finite in four dimensions; and since the bubble integrals
are divergent, one bubble coefficient can be identified from the remainder of the

others,

61234(1+7 2+> 3+7 47) - _634 - 641 - Z~7234 - 6412 - 6341 ) (3540)
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Coefficient | Related coefficients Coefficient | Related coefficients
d4><3><21 C£2><1><43:C£3><2><147d1><4><327 é3><4 64><17é2><3,61><2
C{1><2><347C%2><3><417 é2><34 63><41754><12a51><23

_ 6£2’3><4><12acé4><1><23 _ 61><43752><14763><21764><32
C£1><23><4 C£2><34><17~di’>><41><21d4><12><3 612><34 623><41
d1><2><3 d2><3><4>d3><4><1>d4><1><2 §1><234 §2X3i11a5§><412754><123

1334 ?127 bg:)n b41

{)234 b341> b4127 b123

b1234

Table 3.3: Minimal set of  integral coefficients for
AP 9" 97,97, 975h).

where for the sake of readability the momentum and helicity labels have been ex-

cluded on the right hand side.

3.5.2.4 Rational terms

_ _ 1 _ . _
70(14_724—7?)—"_74 ) 2{653)x34<1+72+73+74 )+ng2)><34(3+72+71+74 )
_ ~(2 _

+C§x)234(1+72+,3+74 )+ng)234(3+72+71+a4 )

_ ~(2 _
+Cz(1><)123(1+72+a3+74 )+Cé><)341<1+72+73+a4 )] (3-5-41)

3.5.3 Coefficients for A1234(g+,g_,g+,g_; h)

The effective pentagon coefficients for this helicity combination are,

all2) 34 (4

S, (2 +3)|1°
{1"x2 x3"x4 } [ ]< 1

(24 3)[4)°

: (3.5.42)
é{3+><4_><1+><2_} {1+><2 %37 x4~ } l & 37 2 < 4} 5 (3543)

{
) ¢
Eluxitxa-x3t) = €t xa- 3t wam }{1 —4,2—-51,3—-2,4—-3,() < []}, (3.5.44)

152,253,354,4-1, <><—>H}. (3.5.45)

6{2_><3+><4_><1+} {1+><2 x3Tx47}

As before, not all coefficients need to be calculated separately, and the minimal set

is shown in columns 1 and 3 of table 3.3.
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3.5.3.1 Boxes

d4x3x21

J4><3><21<1+7 277 3+a 47) = Cg<)2><3><4 é{1+><2*><3+><4*}
N 2 (2[(1+3)[4] (23) (2[(1 + 3)|4] 5345723
(L2+3)[4 BI(L+2)[4] | (12) (3](1+2)[4]

b2 [ 1342+ 3] | [23]€2)( +3)|4] (412 + 3)[1]
[12] [12](1](2 + 3)l4]

(23) (2|(1 + 3)[4] (4](1 + 2)|3]
+3 NS )] (3.5.46)

d1X23X4

~ _ _ 3 N
d1><23><4(1+72 a3+74 ):C£X)2><3><46{1+><27><3+><47}

g3 (12) (24)° . [13]2[34]
(U +3)[4] | (14) (23) (34) ~ [12][14][23]

(3.5.47)

d1X2X3

= - _ 5 ~ 1 ~
d1><2><3(1+72 ;37,4 ):C{X)2><3><4 €{1+><2—><3+><4—}+C£><)1><2><3 €l x1tx2 %34}

(12) (23) 55125235123
(12 +3)|4] (3](1 + 2)[4] (13)°

+om? (2 [13] 5125

_|_

(13)

[12][23] (24)
(14) (34)
(23] (2[(1 + 3)]4] (4/(2
(34) (11(2+ 3)|4

(
)

— 13 +

3)[1]

_l’_
]
[12] (2|(1 + 3)[4] (4](1 + 2) 3]
(14) (3](1 + 2)4 )] (3:548)
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3.5.3.2 Triangles

C3x4

—283 {
512 (31(1 + 2) |4 (13)” [24P

Cana(17,27,37,47) = (3[1[4]? [524(514 + S24)

+ 519(S23 + S34)
+ <3|1|4]2 <3|2|4] {5%2 - 314(314 + 524) + 512(35234 - 5524)}
+ <3|2|4]3 [515(513 + S23) + S12(514 + S34)]

+ <3‘1|4] <3‘2’4]2 {332 - 823(313 + 523) + 512(33134 - 5513)} }
(3.5.49)

C2x34

Coxa(17,27,3%,47) = 2(s593 + 504)
soon (23 (12 + 03] (24 + 113 + 912 34))
(113 +4)[2]° [24] [34]

X

(3.5.50)

5§g)><34a C§22)><34

5502)X34(1+,27,3+,47)
{2 (23)" [34] (3(1+2)[3] ((3](1 +2)[3] [23] —[12] (14) [34])

(12) (1](3+4)[2] (3[(1 +2)[4]”

(23) [34] (4](1+2)[3] (—2595 — 504)

(12) (1/(3+4)12] (3](1+2)4)*

[12](23)" [34] (
(L1(3+4)[2] (3](1 +2)J4)°
+ 2853 + 514534 — S23534 + 2[12] (13) (24) [34])
147
(L1(3 + 4)[2] (3](1 +2)[4)"

— A(s12 + 523)) — 2(13) [23] (24)* + 3[13] (14)* (23))

+2

2519(S23 — S14 — S34) + 2513523

((14) (24) (2(513 — 524) — 3(534 + 514)

3%4 S12 (6 S13 — 2814 + 2893+ 2 824) - 3%4 + 3%4 3%3
(1](3 +4)|2]* (3|(1 + 2)[4]?
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(113 +4)[2]* (3](1+2)|4]"
514 81234 <2|(3+4)|1] <4|(1 +2)|3]
(1|34 4)[2] (3[(1+2)|4] As(1,2,3,4)
12) [13] (2[(3 4 4)[1] (4[(1 +2)|3] (3[(1 +4)[2]
(1|(3+4)|2] (3|(1+2)]4] As(1,2,3,4)
(1[(2+3)[4] (2[(3 +4)[1] (3|(1 +4)[2] (4](1 +2)|3]
(1B +4)12]” (3](1+2)[4]" A5(1,2,3,4)

+4

+4<

x (I1(4,3,2,1)T1(1, 2, 3,4) + Ay(1,2,3,4))

S1a34 (2|(3 4+ 4)[1] (4](1 + 2)|3]
- 2 (1](3 4+ 4)|2] (3](1+2)|4] A4(1,2, 374)21_[(47 3,2,1)11(1,2,3,4)

X (813 + S14 + So3 + So4)
51234 <2\(3‘|‘4)|1] (4](1 4 2)[3] (513 + 514 + S5 + S04)
2 (1|3 +4)[2] 3[(1+2)[4] As(1,2,3,4)
_4< (3 +4)[1] (4[(1 + 2)3]
(1(3+4)[2] (3[(1 + 2)[4]

+{1<—>3,2<—>4}+{1<—>2,3<—)4,<)<—>H}+{1<—>4,2<—>3,<>(—>H}

+5

(3.5.51)
where
(i, 5, k,1) = s, + 555 — 50— Sj1 - (3.5.52)
Rt + 9= at 47) — (2[(3 +4)[1] 23] (523 — S14)
(15,275,854 {4<1|<3+ NEIE |(1+2)|4][[12] G AP
3[13]23)
212][34]
+ 2y (B0 218 = (411 + D)

As3(1,2,3,4)
(- e
+{1<—>3,2<—>4}+{1<—>2,3<—>4,(><—>[]}

+{1<—>4,2H3,<>HH} (3.5.53)
where Aj is defined as

As(iy 3, k1) = (Siju — Sij — Sw)” — 48455k - (3.5.54)
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~(0) ~(2)
C1x234y C1x234

Saza (1](2 4 4)[3]?
23] [34] (1/(2+3)|4]* (1|3 + 4)|2°

« ([23]2 (11(2 + 3)[4]2 + [34]7 <1|(3+4)|2]2>

55(2234(1+7 27,37,47) = — 2(s12+ s13 + 514)

(3.5.55)
(2) ¥ oo ot 41—\ _ (512 + 813+ 514) (24)° [13]°
Coem(17:27, 870 47) = 4 e S o + 3/ [(( 23y (34)  [12] [14])
N (1(2 4 4)|3] ((14> (24) N [13] [23]>
(1/(3+4)[2] \(12) (34)  [12] [34]
<1!(2+4)\3] <<12> (24) N [13] [34]”
(1!(2+3)\4] (14) (23)  [14] [23]
[13]*
S o 14 23] B4 (2 o3 500 (3:5.56)

3.5.3.3 Bubbles
634
[13] (14)% 5134

(13) (134 s14) (1](3+4)[2°

4 1 4]2 (34) (513 + 514) (4](1 +2)[3] (25123 + 5124)
[12] (1(3+4)[2] (3[(1+2)4]* As(1,2,3,4)
(12) [14]” (34) (4](1+ 2)[3] 5134
(11(3 +4)[2] (3[(1+2)[4]* A4(1,2,3,4)
(4](1 +2)[3] (4](1 + 3)[4]
(1](3 +4)[2)* (3|(1 +2)[4]
[13] (34) (1[(2+ 3)[4] (4/(1 +2)|3] (5231 — S134)
(11(3+4)|2)* (3](1 +2)[4] As(1,2,3,4)
[14] (23) {4[(1 +2)[3]
(11(3+4)|2] (3](1 +2)]4)*
[14] (23) (s13 + s14) (4](1 +2)[3] (5125 — 5124)
(1)(3 +4)[2] (3[(1+2)[4)° As(1,2,3,4)
(2[(3+4)[1] (4](1 +2)[3]
(11(3 +4)]2] (3](1 +2)[4] A3(1,2,3,4)°

Z;34(1—"_7 2_7 3+a 4_) :{4

+3

X (8193 — S124) (5234 — S134) (S134 + S234)
(2[(3 4+ 4)[1] (4](1 +2)|3]
(1|34 4)[2] (3[(1+2)|4] As(1,2,3,4)
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X (513 — 5814 — D83 + Soq — 14334)}
+{1H2,3H4,<>HH} (3.5.57)

where Aj is given by eq. (3.5.54).

5234
N P Y (24) [34]
a1, 27,37, 4 >‘{ 24 ( (521 + 552) (112 + 3) AP
[13] (1](2+4)[3]
(1234 — S234) (1[(2+3)[4] [23] [34]
[t
(51234 — S234)  (1[(2+3)[4]
+ {2 o 4} (3.5.58)
51234

Similarly to eq. (3.5.40) we have,

61234(1+7 27,37,47) = —bgq — bio — bag — byy — baga — baar — baso — brag (3.5.59)
where we have again suppressed the momentum and helicity labels on the right hand
side for simplicity.

3.5.3.4 Rational terms

_ _ _ 17, _ N _ _
T(1+72 73+74 ) 25 0522)><34(1+72 73+74 >+C§22)><34(2+73 74+71 )’H<—><)
+ 5522234(1+7 277 3+7 47) + 5522234(2+> 3774+7 17)‘[]<—>(>

+ 5522234(3+7 47, 1+7 27) + 5522234<4+> L, 2+7 37)‘[]<—>(> (3-5-60)



90 Chapter 3. Higgs Boson Plus Two Jets with a Scalar Mediator

Coefficient | Related coefficients Coefficient | Related coefficients
C£1><2><34 C£2><1><437C£3><4><12aC§4><3><21 52><3 E4><1
C?1><4><32 q3x2x147d4x1x237d2x3x41 61><23 62><14763><41764><32
6£2><34><1 C{4><12><3 51><234 62><3417 63><4127 64><123
C£1><23><4 C£3><41><2 5 5 ?23><41 B
d1><2><3 d3><4><17d4><1><27d2><3><4 ?23 {741 ~ ~

13234 b341> b4127 b123

61234

Table 3.4: Minimal set of  integral coefficients for
AP 9" g 97,075 h).

3.5.4 Coefficients for A;***(¢g%,9",97,97;h)

The effective pentagon coefficients are given by,

i J12] (34

6{lJr><2Jr><37><47} - 4m [<12]><[34>]7 (3561)
i B 23] (34)% [41]

e{2+><3_><4_><1+} - 4m <2 3> [34]2 <4 1) ) (3562>
N B . [23] (34)° [41]

Clatxg xa 1ty = —4m (23) [34] (41) (3.5.63)
é{47><1+><2+><37} :é{2+><37><47><1+}{2 AN 47 L+ 37 <> A H} (3564>

The minimal set of coefficients that needs to be calculated is given in Table 3.4.

3.5.4.1 Boxes

d1><2><34

7 — — 4 ~
d1><2><34(1+72+73 a4 ): C'£><)2><3><4 6{lJr><2+><37><47} (3'5'65)

d1><4><32

Cil><4><32(1+7 2+’ 377 47) = Céi)3><4><1 é{2+><3*><4*><1+}
B [24)° s1a 5334 (1] (3 + 4)2]
(112+3)[4] [34] | [23] (1](2+ 3)|4]*
(1](3 +4)[2] (4/(2 + 3)|1]
23] (1](2 + 3)|4]

+m?|3
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1B s (34) <3l(2+4>’1]}} (3.5.66)

(23)[24][34] (23)[24]

d2><34><1

d2><34><1<1+7 2+, 3, 4_) = Céi)3x4><1 é{2+X3*X4*X1+}
2(34) ({3 +4)[2] 2|3 +4)|1]

—2m (12) (14) (23) [34]

(3.5.67)

d1><23><4

Cz1><23><4(1+7 2+7 3, 4_) :C£3>)<)2><3><4 é{1+><2+><3_><4_}

2 {412+ 3)[1]
(12) [34] (1](2+ 3)[4]

s12 [2 4]2 534 (1 3>2

[14] [23]  (23) (14)

+2m

(3.5.68)

d1><2><3

1 - = 5 ~ 1 ~
d1><2><3(1+72+73 4 ):C£><)2X3><4 e{1+><2+><3—><4—} +Ci><)1><2><3 6{4—><1+><2+><3_}

2 [12)" (23)

—2m %) 14 33 (3.5.69)
3.5.4.2 Triangles
b e S5 [13]" s14 (2/(3 +4)|1]
xs(17, 27,87, 47) = 2<2|<1+4>|3f’{ 14 34
(24)% 5104 (4](1 4 2)3]
+ RIE] } (3.5.70)
(15, 25,37,47) = 2 (513 + s35) 228 1 3" 301+ 2)4 (3.5.71)

(12) (23) (1](2+3)]4)°
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ég?’.)x417 6223)><41
A (17,27,37,47) = — &) 54(27,37,17,47)
(313 - 324) 2
— 2A(1,4,2,3)[ }
{ ’ (21(144)|3] (1](2+3)/4]

+4

Bl +4)[2] {42+ 3)1]
2l +4)[3] (1](2 +3)4]

(3.5.72)

(24) (3[(1 +4)|2]
(23) (14) (2[(1 +4)[3]

[ 1 <<2 4) (513 — Soa)

ég?x41(1+7 2+7 377 47) = {4

Qe+ 3 \ @u+a8 ‘2<34>>

(4[2+3)[1] ({12) 3[(1 +4)[2]
_A3(1,4,2,3)< (12 + 314 _<34>>”

+{1 2,34} +{1 3,2+ 4,() <[]}

T 1642630 o] (3.5.73)

Where Aj is given by Eq. (3.5.54).

~(0) ~(2)
C1x234y C1x234

(LI(3 +4)|2] [24]°

Aeams(17,27,87,47) = = 2 (s12 4 51+ 514) 5234 (112 +3)|4° [23] [34

(3.5.74)

So3 (1[4[3] 514(812 + S13 + 514)
At e+ 0+
_ (UG +4)12] (4](2 + 3)[1] (3[1]2]
(S12 + s13 + s14) (1](2 4 3)[4]
(1(3+4)[2]* (412 + 3)[1] (3[1]4] }
(s19 + 813+ s14) (1](2 + 3)[4]?

@ 1+ gt 3 4oy = {<4\1\2]2 (314]2] — (3[211)

(812 + 513 + 514)

S12

(2

(3.5.75)
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3.5.4.3 Bubbles
523
Tt ot a— 4y ) [24]” (34) 934
172584 )‘{ B4 @@ 3] (121 DT
4 [13)* (23) (1](2+ 3)[1] (3](4 + 1)]2] (2 5104 + S134 — 3 514)
[14] (1)(2+3)|4] (2(1 +4)[3]* As(1,4,2,3)
(14) [13]” (23)* [23] (3](4 + 1)[2]
(11(2 + 3)[4] (2(1 +4)[3]* As(1,4,2,3)
(24) [24] 3](4 +1)2]
(1)(2 4 3)[4]” (2[(1 +4)[3]
24] (23) (3[(4 +1)[2]
(1(2 + 3)[4]% (2|(1 +4)|3] As(1,4,2,3)

x ((14) [34] (4](2+3)[1] + (14) (23) [13] [23]

+(24) 23] (4](2+3)4])
(24) [13] 3|4 +1)[2]
(11(2+ 3)14] (2/(1+4)3)*
(14) [34] [13] (23) {4[(2+3)[1] (3](4+ 1)|2]
(1)(2 + 3)[4] (2|(1 +4)[3]* As(1,4,2,3)
(4)(2 +3)[1] (3[(4 + 1)[2]

)
2T )] 211+ 4)[3] Ay(1.4.2.3)°

X (3124 - 3134) (3123 - 3234) (3234 + 3123)
(4](2+3)[1] (3](4 + 1)[2]
(1[(2+3)[4] (2|(1 4+ 4)|3] As(1,4,2,3)

X (2823 + 5824 + 3834 + 3812 + 5513) }

+{1H£2H&O¢Hw (3.5.76)

where Aj is given by eq. (3.5.54).

b234

5234(1+7 2%,37,47) =

48234 <3 4> [2 4]2
[34] (1](2 + 3)[4]% \ (s24 + 534)
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[12] (1B +4)[2] [(1[(2+3)[4] [12] [24] ]
23] (s12+ 813+ 514)°  (S12+ 513 + 510)

(3.5.77)

b1234

Similarly to eq. (3.5.40) we have,

51234(1+, 2+, 37,47) = —523 - 541 - 5234 - 6341 — 5412 - 6123 . (3.5.78)
3.5.4.4 Rational terms

1
7(17,27,37,47) =3 &) (1t 2t 37 47)
&0 (17,27,87,47) + 205 (27, 17,47,37) (3.5.79)

(2 e (2 -
+ng)234(3+»4+a1 ;2 )|[]H<)+ng)234(4+73+72 1) g0

3.6 Amplitude for 0 —+ ggqggh with a Scalar

Mediator

3.6.1 Coefficients for A3*(q",q ,g7,9";h)

Moving to study amplitudes including two gluons, a quark and an antiquark alongside

the Higgs boson, the coefficients contained in these amplitudes are shown in table 3.5.

3.6.1.1 Boxes

dsy21x4
1. - 24) (23
d3><21><4(13_7 2q 73;_; 42_) = —2 <<12>><<34>>3

5| [13] [14] N (23) (24) [34]
[12] (34) (12) (34)°

{(513 + S93) (S14 + S24) — S12 334}

+2m (3.6.1)
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1;.,2,,3, .45 17,2,.3,,44 1;,2,,35,45
Coefficient | Related coefficient | Coefficient | Related coefficient | Coefficient
Cg3><21><4 5 C{3><21><4 5 §4><123
d4><3><21 d3><4><12 d4><3><21 d3><4><12 b123
C3x21 Cax12 C3x4
C12x34 C3x21 Cax12
Cax123 C12x34
C3x412 Cax123 C3x412
{712 934
13123 [312 B
Z3412 13123 bar2
bi234 bi234

Table 3.5: The coefficients required for the A3 (11,231, 47),

q14q19g>%g
Ai‘l(lj{, 2,.35,45) and Ai4(1;—r, 2,,34.4,) amplitudes.
The left-hand column shows the minimal sets that need

to be calculated.

d4><3><21

q°>=q97~-g9° "9

5 . 4 3 1
dixsn (15,2435, 49) =2m” oo -1

(3.6.2)
3.6.1.2 Triangles
C3x21
- _ 23) (24
(152755, 45) = 21 ) 2 09
égg)x349 6522)><34

5522)x34(1ir 24,34 4+) =

q°=q7~-g97 "9

4 [14]% (34)  (23) [34]

(34)" (3](1 +2)|4] [ 12 (12) ]

. 4 [[1 3 (34) (24 [34]]
(34)% (4(1 +2)[3]

[12] (12)

(3.6.5)
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é4(122123? 64(12><)123
+(0) - (s s sy | 23 (24)
G315 ,24 534,49 ) = =2 (514 + S04 + 534) [<1 %) <34>3] (3.6.6)
~(2) — . 4 (814 + S04 + 834) [(23) (24) [34]
fainla 2030 4) = i1 +2>|4]{ s | 2 B
[13] [14] (2/(1 +3)[4]°
* 2 (30)) T (e o T } 367
é§2<)412’ 6.‘53)2412
~(0) + 9= 3+ 4y _ _9 (s s s (23) (24)
C3xa12(1g+ 24,39, 45) = —2(S13 + Sa3 + S34) [ﬂ ) <34>3} (3.6.8)

5:(32>3412(1J*r 2,:34 4+) =4

qar=q9’~g9°7 79

(813 + 803+ 834) | (24) (23) [43] | [14] [13]
tr_{ps prava o} | (21) (4 3>2 [21] (43)
(2(1+4)[3]° (1](2 +4)|3]

TSy (1) (T 213 (s o + e om0
3.6.1.3 Bubbles
z;12
S o a4 T[3](23)  [14] (24)
(12354 = [ ) o oud (36.10)
5123
bios(15, 27,35 4F) = 1 [(34} (24) (2](1+ 3)[4]°
TR R 9y (23) (34)2 (S14 + Soq + S34)°
C(23) (24) 2I(1+3)14]  (12) [13] (23)° (3.6.11)
(514 + S24 + S34) (813 + S23)
6412
1 (23) (34) (2|(1+4)I3] (1](2 +4)|3]

5412(13_7 Q;a 32_7 4;) =4

(12) (14) (34)* (s13+ $23 + 531)°
L (13) 24) 1+ 9}3) (12) (24) ]

(513 + So3 + S34) (814 + S24)

(3.6.12)
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b1234

As before, we can calculate the remaining bubble coefficient using the relation

51234(1—"_ 24 3+ 4+) — —612 - 6123 - 6412. (3613)

qreqr9gr g

3.6.1.4 Rational terms

N - L _ (2 _
7"(1;, 2(1 9 32_7 45—;) = 5 [652)><34(13_7 2q 73;74;) + Ci><)123(13_a 2q 73;_74;—)

+ & na(17.2,, 35, 45)] (3.6.14)

qar=q~g9°7 79

3.6.2 Coefficients for A3*(q",q ,97,97;h)

3.6.2.1 Boxes

d3x21x4
bt <ot G EHG -R ] oo
dyxsxa
ocven (15,2535 45) = (e { ; 3][1%’ (<24E1311;>T§Tﬁ23

3 [13] (3I(1 +2)14] (4|2 +3)[1]
[12] (4](1 +2)[3]

(23) (2[(1 +3)J4]
(12)

+m?

} (3.6.16)

3.6.2.2 Triangles

C3x4

2534 [13] (23) | 2s34 [1 3]2 (34) (2512 + 513 +S23)}

Caxall7 24,34, 45) :{ (4)(1 4 2)|3? (12] (4](1+2)|3]°

—{1(—>2,3H4,<><—>H} (3.6.17)
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C3x21

[13] {42+ 3)[1]

Eao1 (15,27 ,35,45) = 2 (513 + $23) 5123 12 (4(1+ 2)[3]

(3.6.18)

~(0) ~(2)
Ci12x343 C12x34

ng)x34(1q 2,34, 49) 8 (5124 — S123) (512 + 534 + 2513 + 2 593)
(24) [13] (3](1 +2)[4]
(4/(1+2)[3]* A5(1,2,3,4)

+ ((9 S13 — T893 — S14 — Soq +4534) (24) [14]

- (9314—7324—313—523+4534) <23> [13])
1
X "3
4|(1 4 2)|3]

)
112 51234 (((513 -+ 523)2 — (814 + 524)2)
]

(4)(1 4 2)[3] As(1,2,3,4)?
(213 +4)[1] (3[(1 +2)[4]

4 ({3 (512 + 830) + 4 (515 + 525+ 510) } [13] (23)

- {3 (812 + 834) + 4 (S13 + 524 + 314)} [14] (2 4>>
(3[(1 +2)}4]
(4](1 + 2)|3] Ag(1,2,3,4)
gy (131 (24) BI(L+2)[4°  [14] (23) (3](1+2)[4]
(4](1 4 2)|3] As(1,2,3,4) Ag(1,2,3,4)
[14] (23)
{41 +2 |3]

+ 88—
{ (514 + 524)
[

4| 1 +2)[3
4) (514 + 524) (45124 — 2 534)
4@ +2)3°
2 (23) (24) [34] (514 + 524)
(12) (4](1 +2)[3]

~ (23) [13] (514 + 524 — S13 — 523) }

(41(1 +2)[3)°

—{1%2,3%4,<><—>H} (3.6.19)
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4 (23)? 4(24)* (3](1+2)[4]

~(2) + o9— 99— 4+\ _
Claxaa(lg, 24,35, 4 )—{<1m<3@<4u1+2ﬂ$ (12) (34) (4](1+2)J3)°

q°=q97-g97 "9

— 8 (813 + 593 + S14 + S24)
(23) (24) (3](1 +2)[4]
(12) (34) (4/(1+2)|3] A5(1,2,3,4)
[13] (23) (3](1 +2)[4] }
(4)(1+2)[3] As(1,2,3,4)

—{IHZ3H&O¢HG (3.6.20)

— 16

~(0) ~(2)
C4x1239 Cax123

2 (814 + Soa + S34) [13] (4/(24 3)|1] s193

~(0) — o= 4ty _
C4><123(1ji_72q 739’49) - [1 2] <4|(1+2)|3]3 (3621)
52 + o= a— 1) — 4 (5144 S04+ 534) [(23) (24) | [13] [14]
taazslle 20,8 4y) AT 2pP [12) 34 " [1234)
_g [14]" [24] (3.6.22)

[12] [23] [34] (514 + 524 + S34)

3.6.2.3 Bubbles
by
(31(1 + 2)[4]
2 QAL+ 23] An(1,2,3,1)
(2(3 4+ 4)[1] (5194 — S123) (S13 + S14 + S23 + S24)
Ag(1,2,3,4)

634(13_7 2q_7 3;74;) =2

X |3

(8124 = 8123)
(4(1 +2)[3]

x ((12) [13] (4](2+3)[1] — (24) [12] (2[(1 +4)3])

+2

— 3 (8123 + 5124) ((23) [13] — (24) [14]) (3.6.23)
512
e [ a2 nst a2
b12(1q 72qa3g 749) {<4|(1 +2)|3]2 |: [34] (313 + 823)

(3(1 +2)}4]
(34) A3(1,2,3,4)

[312 (24) [13] (34) — 2 (12) [13]? (34)°
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—(23) (4l(1 +2)[3] (4[(2 +3)[1]

— (24)% [12] (515 + 823 + 514 + 324)}]

— 12 (513 + 523) (2519 + 513 + S23)

213+ 4)[1] (3(1 + 2)J4] }
(4)(1 4 2)|3] A4(1,2,3,4)°

—{1<—>2,3<—>4,<><—>[]} (3.6.24)
5123
7 [14) (4](1+3)2]
b 2037, 4F) =45 [
el 2003 40) =490 | 5T 3T 10T 9) 3] (s + 500 1 500
N [14] (4](2 +3)[1]
[12] (4](1 + )‘3] (514 + S9q4 + S34)
2 1
(23) [13] 5 (3.6.25)
(513 + 593) (4](1+2)|3]
51234
As before, the final bubble coefficient can be found through the relation
51234( 7:2¢,3g ,49 ) = —612 - 534 - 5123 - 5412 . (3.6.26)
3.6.2.4 Rational terms
+ + e + +y 4 (2 +
(1q ) 2q 739 749 ) 2 { 12><34(1q 72q 73g 749 ) + C4><123(1q ) 2q 739 749 )
- 64(12><)123(2q ) 1q 74g 73 )|[]<—>(>} (3627)

3.6.3 Coefficients for A3*(g",q ,97,97;h)

The majority of the coefficients for this amplitude can be calculated from those
for A3 (q",q",97,9") by the simple operation 1 <+ 2,() « []. The remaining
coefficients are listed in the right-most column of table 3.5, and are given explicitly

below.
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3.6.3.1 Triangle

~(0) ~(2)
C4ix1239 Cax123

_ 2 (2]/(1 + 3)[4] 5193
(12) (3](1+ 2)[4]”

{ (24) — (34) M} (3.6.28)

(17,24 ,35.45)

9279779779

A as(15,2,,35,4,) = — 4

(514 + S04 +834) [ (23) (24) | [13] [1 4]]
Bl(1+2)[4]* [(12) (34)  [12] [34]
(24)"
(12) (23) (34) (514 + 524 + 534)

+8

3.6.3.2 Bubble

b123

(24)* (21(1 + 3)[4]
(12) (23) (3|(1+2)[4] (s14+ 524 + 534)°
(24) (2/(1 +3)4]
(12) (3](1+2)[4]” (514 + S04 + S34)
[13] (23)
(s13+ 523) (3|(1+2)[4]°

5123(1+ 24,3y 47) =453 | —

qr9qgr9gr=g

_|_

(3.6.30)

3.6.3.3 Rational terms

_ _ _ 1. o . _ _
7”(1;72(1,3;,49) =5 [0522)x34(2f 1,3 4+)|[]<—><> +c§2x)123(1f 24,3y ,4 )

2 q°’7q97-g97 "9 qar=q~g9°7 79

— i 1s(28 1547, 3;)![]H<>} (3.6.31)
3.7 Amplitude for 0 — gqqqgh

The calculation of this amplitude has previously been done for a fermion mediator in
ref. [94], and can be done in a similar fashion for a scalar mediator. We begin with

the tensor current for the process 0 — ggh, where the gluons have off-shell momenta
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kl and kQ,

2
Ty k) = —i07% P (S0 | By, ko) T 4 o, k) TE™) . (37.0)

The tensor structures are

T#l“? — kl . k2 gﬂlﬂz _ k/f2k§1 , (372)

TR = KRS g — K KK — K MR 4 - ey MR (373)

and the form factors

- 1
FT(]ﬁ, k?2) = - M{k%2 (Bo(k?l;m) + Bo(kz;m) - 2B0(k;12;m))

— 2k - kg kg - g OO(kla ko; m)
. 1 3k ky - k
FL(klakQ) = - A(/ﬁkz){[ - W} (Bo(kl;m) - Bo(/fm;m))

33 iy - Ko | |
{2 - A(l{:l,l@)] (Bo(kg;m) — By(ky9;m))
ki k3 k3
- [47”2 + kT + K3+ KTy — BA(k:l,k;g)] Co(k1, ky;m) — 2} . (3.7.5)

where kiy = k1 + ko and A(ky, ko) = ki k3 — (k; - k»)?. The amplitude can then be

found by contracting eq. (3.7.1) with currents for the quark-antiquark lines,

A(1F,24,35.45:h) = 2 (24) [13] Fp(pro, psa)
@I6 + I (10 + 203+ 24) (18] @pop| o

512 834

All the helicity combinations can be obtained from this single expression.

3.8 Conclusion

The results presented in this chapter are an important tool in calculations of Higgs
boson plus jets at hadron colliders in extensions of the Standard Model containing
coloured scalars. The compact analytic expressions retain the full dependence on the

scalar mass and have been derived using unitarity techniques. We additionally used
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momentum twistors and high-precision floating-point reconstruction to simplify many
of the resulting expressions. The relationship between fermion and scalar theories
leads to these results being useful for the equivalent Standard Model calculation
with a fermion mediator. The amplitudes given here are essential components of
NLO Higgs plus 1-jet and NNLO inclusive cross sections for any theory involving

colour-triplet scalars.






Chapter 4

Higgs Boson Plus Two Jets with
Full Mass Dependence

4.1 Introduction

This chapter is based on the work in [1] and presents compact analytic amplitudes,
retaining all mass effects, for all processes contributing to the Higgs plus four parton

amplitudes 0 — ggggh, 0 — qgqggh and 0 — 794 q'h.

At hadron colliders there are four main production modes for a Higgs boson with
a mass of around 125 GeV: gluon fusion, vector boson fusion, Higgs-strahlung (pro-
duced in association with a vector boson) and production in association with a top

quark pair.

Gluon fusion is the dominant production mode at the LHC [95], necessitating detailed
studies of the gg — h process. The NLO level calculation includes the Higgs plus
1-jet process, and at NNLO the Higgs plus 2-jet process. In addition to being an
integral part of the gg — h at NNLO calculation, the one-loop gg — hgg process is

an irreducible background to vector boson fusion [96].

Inclusive Higgs production, including mass effects, was recently calculated at NNLO [97],

while Higgs plus 1-jet is known at NLO [98-100]. For the production of Higgs plus
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2, or more, jets, results are only known to leading order [73,94,101,102].

Compact analytic expressions are known for processes involving the Higgs and three
partons [103,104], however previous results for Higgs plus four parton amplitudes
have contained expressions which were too long to report [73,94]. Initially, simple
analytic expressions were available for the 0 — hgggg process with four positive

helicity gluons only [105].

The calculation in this chapter is structured identically to the method given in
section 3.2. The full amplitude is again calculated through the colour-ordered sub-

amplitudes, for example HI*? ({p;, h;, ¢;}),

n 2
ngggg({pi’ hi7 C’L}) =1 I: 2 @ Z tr (tCItCQ T tcn)
167T (% /
{1,2,...,n}
% H;Eci}(lhl,Qh?,,,.nh";h). (4.1.1)

The formulae for the squared amplitudes are reproduced below to ensure the differ-

ence in notation is clear.

The squared matrix element for the process with four gluons is,

16w\ v

S [Hgf = [g? <mQ>r(N2 - 1){2N2( [ o | )

colours

(N?

-3) 2
—4 7 ’Hi234+Hi342+Hi423‘ }’ (4.1.2)

and the two gluon, two quark amplitude squared is

i L\2 22 1
SO = () () (N 1) [N (HEE o HER) -

1672/ \ v N
(4.1.3)
For the four quark amplitude with quarks of different flavours we have,
4 2 9;1 2rm*\? 2 4 2
SO )P = (125) () (VR DS )P (L)

while for identical quarks

4 2

N2 rmPN\2 ,
S = (125) (5) v - (1H2q<h1, )2+ [HLY (O, )

()
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) , /
s (00, g LY () o, o) () ) |

(4.1.5)

We give expressions for the tree-level amplitudes that we require for this calculation
in section 4.2 and in sections 4.3-4.5 we give the analytic results required to construct
the Higgs plus four parton amplitudes. Section 4.6 is a discussion of the large mass
limit and we conclude in section 4.7. In appendix A.2 we give the numerical results
for all coefficients in this chapter at a given phase-space point, the same as for
the scalar results in Appendix A.1. The full amplitudes for the fermion theory
contain many coefficients that are identical to the scalar theory, as already discussed.

Therefore in Appendix A.2 we only report results for the coefficients that differ.

4.2 Tree Amplitudes

The tree-level amplitudes containing 2 quarks and n — 2 gluons required for this

calculation can be calculated from the two formulae below [21],

A (1“,3+,4+,...,n+,§”) = (4.2.1)

m(1°2') 3|55 {py, #y0 + (1.5 =) | 7]
(s13 = m) (5131 = m%) ... (S13..00-1) — M*) (34)(45) ... (n =1 | m)

where all gluons have positive helicity, and

i(3[112 | 3) ((1°3) [2°11 4 2[3) + (2°3) [1°]1 + 2/3))
a $12(34) ... (n— 1| n) (3|11 +2| n)
im (3]p.,.,|3)
+y N ;
k=4 S3..k (513...k —m ) e <813...(n—1) —m )

((142") (3p,p, | 3) + (1°3) (2'3) 55..4)
(34)...- (k= 11K (3[p.py o[ F)

x <3 ‘pi’»k H;:;? {pl&..jpj-i—l + (Sl&-a‘ - m2)}’ n}
<3‘p1p3...k‘k+1><k+1 |k+2)...(n—1|n)

(4.2.2)

A(1n37 4%t D) =

X
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for those where one gluon has negative helicity.

4.3 Amplitude for 0 — ggggh with a Fermion

Mediator

4.3.1 Coefficients for H,***(g%, g7, 9", 9"; h)

These results were originally published in ref. [105], and are included for completeness.

The amplitude can be concisely written as

2
4m” — 51934

(12) (23) (34) (41)

Hi234(1+72+’3+’4+; h) — {

x | — tr {123 4}m°Ey(p1, pa, P3, pa;m)

1

+ 5((312 + 513)(Sa4 + S34) — S14523)Do(P1, P23, Pa; M)
1

+ 5812823D0<p17p27p3; m)

+ (s12 + S13 + 514)Co (D1, P23a; m)}

) S12 + 813 + S14 }

(12) (23) (34) (41)

+ {3 cyclic permutations} . (4.3.1)

However, as with the results in chapter 3, we will focus on a basis containing box,
triangle and bubble integrals only. The effective pentagon coefficient é for this
amplitude is,

m2 (31234 — 4m2)tr+{1 23 4}

[12) (23) (34 (41) (432)

é\1><2><3><4(1+a 2+7 3+7 4+) =

The remaining integral coefficients are shown in table 4.1.
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Coefficient | Related coefficients Coefficient | Related coefficients

d1x2x34 daxzxars A3xaxi2; daxix23; C1x234 C2x 3415 C3x4125 C4x123
d1><4><327 d2><1><437 d3><2><147 d4><3><21

d1><23><4 d2><34><1’ d3><41><27 d4><12><3

d1><2><3 d2><3><47 d3><4><17 d4><1><2

Table 4.1: Minimal set of integral coefficients for 1; 2; 3; 4;. The
rational terms are identical to the scalar case, given in

eq. (3.5.9).
4.3.1.1 Boxes
dyy2x34
dixoxaa(17,27,37,47) = Cii)2x3><4 €t xatxs* x4ty (4.3.3)
d1x23x4
3 .
dixasxa(17,27,37,47) :C§><)2><3><4 Crtxatxatxaty (4.3.4)
1 (4m® = s1934)
+ 9 (12) (23) (34) (41) [(812 + 513) (824 + S34) — S14 S23]
dyx2xs

+ ot o9t 4+ _ (D) 5 (5) 5
d1><2><3(1 ;27,374 )_C4><1><2><3e{4+><1+><2+><3+}+Cl><2><3><46{1+><2+><3+><4+}

1 (4 m® — 51234)

3 4.3.5
oy @3y (34) (a1) 120 (4.3.5)
4.3.1.2 Triangles
C§(1<)234a C§22234
(0) + ot ot 4+ 51234
17,27,37,47) = — 4.3.6
Cixgza(17,27,37,47) (312+513+814)<1 2y (23) (34) (A1) ( )
1
C§2>3234(1+:2+7 37,47) = 4(s12 + 513 + 514) (4.3.7)

(12) (23) (34) (41)
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Coefficient | Related coefficients || Coefficient Related coefficients
dix2x34 d3x2x14 Caxa (3.5.27) | caa
dixax32 d3xax12 Cox34 (3-5-28) Cax14
dox1x43 dyx3xa1 C1x43 (35-29) C3x41
dax3ax1 d3xa1x2 Cax123

dyx3x21 dax1x23 C1x234 C3x412
dix23x4 dyx12x3 Cax341

dax3x4 dgxix2 C12x34 Co3x41
d1><2><3 b34 (3538) b14
d3xax1 basgs (3.5.39) bar2, b3ar
d3><4><1 61234 (3540)

Table 4.2: Minimal set of integral coefficients for 19+ 2; 3; 4,. The
brackets give the equation numbers for the coefficients
that are identical to the scalar case, and hence have
already been given in chapter 3. In addition, the rational
terms are identical to the scalar case, eq. (3.5.41).

4.3.2 Coefficients for H;*** (g%, g7, 9", 97 ; h)

After removing spurious poles due to factors of 1/tr;{1234}? as described in sec-

tion 3.5.2, we have the effective pentagon coefficients,

: _ 2y 2 | 23] (4[(2+3)]1]

Clatxatxstxa™)y = (8123 — 4m”)m [<2 3y (1](2 + 3)’4]] ; (4.3.8)
Crax1t x2* xs™) :é{1+x2+x3+x4—}{1 © 3}, (4.3.9)
oo 21231 [[23]421G + ] 4+ 3)[2]

{2"x3" x4 x1"} <23> [34] <1|(3+4)|2]

23] (34) 2[3+ 4|1

+ [13] (4](2 + 3)[1] + 4m? (23) (1|/(3+4)|2]

) ., (4.3.10)
é{3+><4_><1+><2+} :é{2+><3+><4_><1+}~{1 AR 3} (4'3'11>

This creates very simple forms for the reduced pentagon contributions to the box
coefficients. As before, it is not necessary to calculate every coefficient, the minimum

set needed are given in columns one and three of table 4.2.

Many of these coefficients are identical to those with a scalar mediator, and these

will not be repeated here.
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4.3.2.1 Boxes

d1><2><34

d1><2><34(1+a 2+,3+>47) :Cylx)zxsle é{1+><2+><3+><4’}
1 [12][23] (1|(2+4)|3]
[34] (1](3 +4)12] (1](2 + 3)|4]

(12 +4>\3]m2)
(12]

X [2 3] S1934 — 4

[12](24) (4](2 +3)|1]
(23) (34) 2B +4)[1]

+

( (4)(2+3)|1] + 483%2)

(4.3.12)

d1><4><32

— 2 A
dl><4><32(1+7 2+, 3+, 4 ) :C§X)3X4><1 e{2+><3+><4_><1+}

+ 1 23] 3145234(4m28234 — 52351234) (4.3.13)

2(23)" [34] (1/(3 + 4)[2] (1](2 + 3)14]

d2><1><43

— 2 A
d2><1><43(1+7 2+7 3+7 4 ) :C§><)4><1><2 €{3+><4_><1+><2+}

1[12] (4](1 +3)[2)" (4m® (14) — (12) (4[(1 + 3)[2])
2 (12) (34) (1[(3 +4)[2] (3[(1 + 4)[2]
[12[13]° (4 (2|(1 + 4)[3] — (21) [13] 5124)

1
2 (12)[14][34] (2|(3 +4)|1]

(4.3.14)

d2><34><1

dyaax1 (127,37, 47) =Cs Cratxst x4 x1%) (4.3.15)

(24) 2<14><24><1\(3+4)|2]<2!(3+4)\1]
(12)(23) (12)*(34)
(4]/(1 +3)12] (4/(2 + 3)[1]
2 (34)
S1234 [13] [23] 2o (14)(24)[12]
LECIEYT -2 (3 s
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(24

~
—_
o
[\
)
—

d4><3><21

— 2 A
d4><3><21(1+7 2+7 3+7 4 ) = C§><)2><3><4 6{1+><2+><3+><4*}

(4 m? — 5193)534 5%23

2.(12) (23) (1{(2 +3)[4] 3[(1+2)|4]

n (4.3.16)

d1><23><4

d1><23><4(1+7 2+7 3+7 4_) - C§3;<)2><3><4 e{1+><2+><3+><47} (4'3'17>

d2X3X4

_ 1 ~ 5 ~
d2><3><4(1+7 2+7 3+7 4 ) :C§x)2x3><4 6{1+ x2t %37 x47} + C§X)3><4><1 e{2+><3+ x4~ x1T}

(4m25234 - 52351234> (3 4) [2 3]2

2(23) (1](3+4)[2] (12 + 3)|4 (4.3.18)

d1X2X3

_ 1
d1><2><3(1+a 2+7 3+7 4 ) = C%i)2x3><4 6{1+><2+><3+><4*} + C'4i><)1><2><3 6{4*><1+><2+><3+}
5123 [1 2] [2 3}
(3[(1+2)4] (1[(2 + 3)[4]

+ (4m? — 5193) 5 (4.3.19)

It is useful to note that this expression is symmetric under the exchange 1 <+ 3.

d3><4><1

d3><4><1(1+’ 2+7 3+7 4_) = Céi)3x4><l é{2+><3+><4*><1+} + C££>E>)<)4><1><2 é{3+><4*><1+><2+}
 1s14[23](34) ((41(1 4 3)[2] (23) + 4m” (34))
2 (13) (23)* (1/(3 + 4)|2]

1 [12](14) s34 ;
2022 13) 3|+ oy (A TIRIED +dm” (14))
1
2

(14) (34) 4514534

o sy 23y | (1)

+[13] (5123 — 12m2)
(4.3.20)

Which is again symmetric under the exchange 1 <» 3.
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4.3.2.2 Triangles

(0) (2)
C4ix1239 C4x123

0 + ot 9t 4=\ — _ STa3 (14 + S24 + S34)
2 " Ty gl o e

2) - N S123 (514 + Soa + S34)
BB = gy o e e 40

(0) (2)
C1x2349 C1x234

T || [c B [ R (R oI
v (152080 47) = =210 5T 19y (237 (34) (14

1 (2 (4](2 +3)]1] [23]?
(1/(2+3)/4]
B (s12+ 513)7 [34] + 595 (12) [23] 1 4])

2) (13) (23) [14] [34]
1+4)2] (14) 23] (42 +3)[1] [13)*
4)[2] (12) (13)[24] s34 (2](3+4)[1] (12) [14] s34
h(23)+2(1 ><24>[14]824>]
2)* (23) (13) (34) [24] [14]

+ (S12 + S13 + S14)
5345234

(1
3
{13+

)

3 (1

_ (14) (512 (23)
(1

(4.3.23)

8 (4(2 4 3)|1]°
8934 (S12 + 813 + 514) (23) (34) (2[(3+4)[1]

— 4510+ 513 + 514){ 4 4>2 23]

Cg2>2234(1+7 2+7 3+7 4_> =

(127 34) (16 + 2 1@+ 3
. 23)

(12) (1@ + 3)[] (116 + Dl 216 + D[]
ML e

[3 4] (34)

[ e o)

L (12)

- 24

a2 6o ae+ M <2l(3+4)|1]]} (324
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(0) (2)
C2% 3419 C2x341

c§‘2341(1+,2+,3+,4—):2(512+523+524) (24) ((14> (23)% + (12)%(34) )

(12)%(23)° (14) (34)
n (4](1 + 3)|2]4 n (512 + S93) [1 3]2
134 (14) (34) (1|3 +4)[2] (3|(1 +4)[2] = (12) [14](23) [34]

{<slz + 03 +520) [12][13]°  [12](24)% (43 +2)1]
siaa [14] [34] 2[(3+4)[1]  (12) (23) (34) (2/(3+ 4)[1]

1213 (24) }
(23) [34] (2[(3 + 4)[1]

+{1 &3} (4.3.25)

C§2>2341(1+7 2+,3+,47) =

4(s19 + 893 + So4) S134 [12] [32]
(12) (32) [14] [34] (1|(3+4)[2] (3](1+4)[2]
8
N (512 4 593 + S24) S134
(4/(1+3))2)*
(14) (34) (1](3+4)[2] (3[(1 +4)[2]

4 4 (512 + S93 + S94)
(513 + 514) (S93 + Sa4) — S12 S34]

X

y 137 23] [12)(14) (24)2]}
(12) [14] [34]  (12)* (23) (34)
4 {1 o 3} (4.3.26)

ng)x 34 C§22)>< 34
[13] (512 + s23) (4](2 + 3)[1]
(12) (23) [24] (2] +4)[1]
[12] (24)* (4](2+3)|1]
(12) (23) (34) (2/(3 +4)[1]
B [23] (4/(1 +3)[2]"
(12) [24] (34) (1(3+4)[2]
[23] S1234
(12) [24] [34] (1](3 +4)[2]
1 3] 23] 51934
(12) [24] [34] (2/(3 +4)[1]

ng>><34(1+7 2+7 3+7 47) =

(3123 - 3124)

2] s123
(12) (23) [24] (3|(1 + 2)[4]
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[12] (14) (4](2+3)|1]
©(12) (23) [24] (34) (4.3.27)

[12]

(2) + 9t ot 41—
c (1 ,27,3 ,4):—4
. (1 2> <3‘(1 + 2)|4] {(513 + 514) (523 + 824) — S12 334}

X [((1 4) [13] —(24) [23]) (513 + 523 — 514 — 524)

+(12) (34) [13] [23]
v (2 (813 + 593) (s13 + S14.+ S23 + 324))

512 534

+(14) (24) [12] [34]

y (2  (s1at524) (513 + S14 + S3 + 324)) ] (4.3.28)

512 534

4.3.3 Coefficients for H;***(g%, g7, 9%, 97 ; h)

The pentagon coefficients for gluons of alternating helicities also has spurious poles,
in this case due to factors of 1/tr;{1234}*. We can use a similar method as in
section 3.5.2 to remove them. After this modification we have just one necessary

expression for the pentagon coefficients,
R €Y T 2 [ R h)
o) [12](34) (1|2 +3)[4]

(08B eaTne LU +3)
( s Ty T <1’(2+3)|4]). (4.3.29)

The other coefficients are trivially related by symmetries:

€3t s x1tx27) :é{1+x2x3+x4}{1 — 3,2 4} (4.3.30)

é{47X1+X27X3+} :é{1+X2X3+X4}{1 —4,2—-1,3—>2,4—-3,() < []}
(4.3.31)

sttty =Ertaat {12 2233544510 6 [},

(4.3.32)
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Coefficient | Related coefficients Coefficient Related coefficients
dyx3x21 dax1xa3: A3x2x 145 Aixax32s || C3xa (3~5~49) Cax1,C2x3) C1x2
dix2x345 doxzxar; Cox34 (3-5-50) C3x41, Cax12, C1x23
d3xax12; daxix23 C1x43, Cax14, C3x21, Cax32
dix23x4 dox3ax1s d3xa1x2; dax12x3 C12x34 Ca3x41
dixax3 dox3xas A3xaxts daxix2 C1x234 Cax3415 C3x4125 Cax123
bsy (3.5.57) bi2, ba3, by
bass (3.5.58) b341, D12, b123
bia3s (3.5.59)

Table 4.3: Minimal set of integral coefficients for 1; 24 3; 4,. The
brackets give the equation numbers for the coefficients
that are identical to the scalar case, and hence have
already been given in chapter 3. In addition, the rational
terms are identical to the scalar case, eq. (3.5.60).

The minimal set of coefficients that must be calculated is shown in columns one and
three of table 4.3, though when calculating coefficients for other colour orderings it

is necessary to use functions given for Hi234(g+, g",97,9 ;h) in the next section.

4.3.3.1 Boxes

d4><3><21

d4><3><21(1+7 2, 3+7 47) = é{1+X2*X3+X4*} C£1)2X3><4
211 +3)[4]
(11(2+3)[4] 3I(1 +2)[4]
[_ ,(23) (21(1 + 3)4] sgasig
(12) (3[(1 +2)|4)°
1(24)2[34] 5105 1[13]%(34) 5103

2 (12) 2 [12]
o (2[13] (42 +3)]1]

+

12
23] (21(1 + 3)4] (4)(2 + 3)]1]
12/ {12+ 3)4]
L5 (23) 211+ 3] (41 +2>|3}>]

(12) B3I+ 2)[] (4.3.33)
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d1><23><4

_ _ N 3
d1><23><4<1+72 73+a4 ):6{1+><2*><3+><4*}C§><)2><3><4

1(24)° (4](2+ 3)|1] 2 (12)
* [2 23) (34) (4 1) (1+4m <24><1|(2+3)|4]>]

4 {1 6426300 []} (4.3.34)

The symmetrisation only applies to the terms in square brackets.

d1><2><3

_ _ 5 ~ 1 N
d1><2><3(1+72 73+74 ):ng)2x3><4 6{1+><2*><3+><4*} +Ci><)1><2><3 6{4*><1+><2*><3+}

(12) (23) 55125235123
11(2 + 3)[4] (3[(1 + 2)|4] (13)?

[12][23] (24)% (514 4 Sou + S34)
(14) (34)

+

[12] 23] (24)*
(14) (34)

[13] 5123
(13)

3)[1]

—[13]>+

+
= N

[1 3}2 S123 + 2m2 (2

—

23] (2|(1 + 3)|4] (4](2 +
(34) (12 +3)[4]
_|_

(
)
[12] (2] (1 + 3)]4] <4|§1 ] 2>|3])] (4.3.35)

(14) (3|(1+2)|4
As expected, this is explicitly symmetric under the exchange 1 <> 3.

4.3.3.2 Triangles

(0) (2)
Ci12x349 C12x34

The simplest way to write this coefficient is in terms of the corresponding coefficient

with a scalar loop, 5§2L34 (eq. (3.5.51)),

ng)x34<1+7 2_7 3+7 4_) = égg)x34(1+7 2_7 3+7 4_)

N (21)° [13]° (34)° — (24)° (1](3 + 4)|1] (4](1 +2)}4]
(12) (34) (1[(3 +4)[2] 3[(1+2)|4]

—|—{1H3,2H4}+ 1<—>2,3<—>4,(><—>[]}
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+{1<—>4,2<—>3,<><—>H} (4.3.36)
A2t 9= 3t 4 — 213 +4)1] [23]° (525 — 514)
a1, 25,374 {4<1I(3+4)I2] B+ 2] [[12} B (UG + 42
3[13][23]
2[12][34]
+ poay LBI0 23] = (41 -+ 2)p)

As(1,2,3,4)
(- e
+{1<—>3,2<—>4}+{1<—>2,3<—>4,(><—>[]}

+{1<—>4,2<—>3,<><—>[]} (4.3.37)

where Aj is given by eq. (3.5.54).

(0) (2)
C1x2349 C1x234

[13]*
[12] [14] [32] [34]
[13]* [34] [13]" [32]
(11(2+3)[4] [14] [23] [24] * (13 +4)[2] [12] [43] [42]

24)° (19 N (24)° (12
(TG +DR] (13) (12) 34 (1@ +3)H] (13) (14) (32)

o (12 + DBP (23 (1@+ 34 + 347 113+ 4)12°)
(112 +3)|4° (1|3 + 9)[21” [23] [34

C§O><)234(1+> 27: 3+7 47) = -2

+ (812 + 513 + S14) [

_|_

_9 ] (4.3.38)

MG+ 912 (12 +3)[4] 1
]2+ 49)3] ((14) 24)  [13] 23]\ | (1]2+ 93] ((12) 24) 1
RACETE ( - ) + ( i

A Doss(1t,27 37 47) =4 (812 + 513+ 514) [<<2<24>2 P )
[
[

(12) (34)  [12] [34] (112 +3)/4]
[13)*
"o 14 23] B4] (533 + 513 + 511) (4.3.39)
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Coefficient | Related coefficients Coefficient Related coefficients
dix2x34 A 1x435 A3xax12; daxsx21 || Coxs (3-5~70) Cax1
dixax32 d3x2x 14> Aax1x23, daxsxal || Cix23 (3-5-71) Cox145 C3x415 C4x32
dox3ax1 dyx12x3 Ca3x41
d1x23x4 d3xa1x2 C1x234 Cax3415 C3x4125 C4x123
d1><2><3 d3><4><17d4><1><2>d2><3><4 b23 (3576) b41

bass (3.5.77) b341, ba12, 123

biazs (3.5.78)

Table 4.4: Minimal set of integral coefficients for 1; 2; 34 4,. The
brackets give the equation numbers for the coefficients
that are identical to the scalar case, and hence have
already been given in chapter 3. In addition, the rational
terms are identical to the scalar case, eq. (3.5.79).

4.3.4 Coefficients for H,**(¢g%,g",97,97;h)

The effective pentagon coefficients for this amplitude do not contain any factors of

1/tr;{1234}?, and it is therefore straightforward to obtain,

é{1+><2+x3_x4_} = m2(812 + 834 — 47712)[1122])(;)1:)] (4.3.40)
5 _2(34) 2y [23] (34) [41] 2
Crotuz x4 x1ty =M m (834 —4m )<2 3y [34] (41) —[12] (4.3.41)

2641630 <[]} (4.3.42)

e{4_><1+><2+><3_} = e{2+><3_><4_><1+}

The minimal set of coefficients that must be calculated is shown in columns one and
three of table 4.4, though when calculating coefficients for other colour orderings it is

necessary to use functions given for Hi234(g+, g~ ,9", 9 ;h) in the previous section.

4.3.4.1 Boxes

d1><2><34

— 4= 4 A
d1><2><34(1+’2+73 74 ):Cfx)2><3><4 6{lJr><2Jr><37><47} (4343)

d1><4><32

_ 2 o
d1><4><32(1+72+73 4 ):CSX)3><4><16{2+><3_><4_><1+}
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B [24] 5 [24] s14 5334 (1](3 + 4)|2]
| [34] [

(1(2 + 3)[4 23] (1(2 + 3)|4]?
1 [14] (34)*  (14) [12)°
+25234{ 23) 23] ]
+2m2[3[24]<1|(3+4)|2]<4!(2+3)|1] [14] (34) 5034
23] (1](2 + 3) 4] (23) [34]
(34) (3[(2+4)[1]
+ 53 ] } (4.3.44)

d2><34><1

d2><34><1(1+a 2+7 3_7 4_) :Céi)3X4><1 é{2+><37><47><1+}
1(34) (1B +4)[2] 21 +4)[1] (s34 — 4m?)
2 (12) (14) (23) [34)°

(4.3.45)

d1><23><4

d1><23><4(1+72+73_’4_) :Cfi)2x3><4 é{1+><2+><3*><4*}
[21] [24] _Am® [24]
14 23] 34 <[2” <1I(2+3)I4])

(43) (13) _4m® (13)
)t 3| <1|<2+3)|4]>] (4:3.40)

— 5 @+ 3] x [

d1><2><3

_ _ 5 ~ 1 ~
d1><2><3(1+a2+73 74 ):C£><)2><3><4 6{1+><2+><3*><4*} +CA§><)1><2><3 6{4*><1+><2+><3*}
127 (23) (51— 4m?)
> [34] (12) [14]

(4.3.47)

4.3.4.2 'Triangles

(0) (2)
C23x 415 C23x41

The full coefficient for this integral is defined in terms of the coefficient with a scalar

running in the loop, éé?xm (eq. (3.5.72)),

Cg%)x41(1+7 2+7 377 47) = ég%)x41(1+7 2+7 377 47)
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n — (34)° (2/(1 +4)12] (412 +3)14]
4) 2/(1+4)[3] (A2 +3)[4]

/—/h\

12 3<—>4} {1%3 24, () + []}

{1 4,24 3,( ]} (4.3.48)

+4)12]
+4)13]

(
<2 813 _324 . <34>
1\2+3|4 2[(1+4)3]

@@+ 31 ({12 G0+ 1))
T A(L42,3 >< A2+ 3 ‘<34>>”

0(2) + ot a— 4-— < ><|(
23><41<1 72 73 74 ) {4< >< < 1

+{123c41+{132c4,() <[]}

+{l<4,2<3,() <[]} (4.3.49)

Where Agj is given by eq. (3.5.54).

Cg(;)2347 C§2><)234
(11(3+4)[2] [24)°
11(2+3)[4)° [23] [34]
I 2 12 (812 F 813+ s14)
[14] [23] [34]  (12) (1[(2+3)[4] [34]

05[2234(1+7 27,37,47) = — 2(s12 + s13 + s14) 3234<

(13) (34)% [34] (12) [12]° [24]
( (4 (23 (1429 ) (4:3.50)
(2) . 4 (411120 ((3]4]1] — (3]2/1])
D17, 2%, 37 4 )_523<1|4|3]{ 514(812 + 513 + 514)

(LB +4)[2] (4](2 + 3)[1] (3]1]2]
(512 + 513 + 514) (1](2 + 3) 4]
(113 +4)12)" (4|2 + 3)[1] (3]1]4] }
(s12 4 s13 + s14) (1(2 + 3)[4]

(4.3.51)
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17.2,,35 .44 17,2,,3; .44 17.2,,37 .4,
Coeflicient Related coeff. | Coefficient Related coeff. | Coefficient
d3x21x4 321 x4 C4x123
d4><3><21 d3><4><12 d4><3><21 d3><4><12 b123 (3630)
Cyx21 (3.6.3) | caxio Cax21 (3.6.18) | caxio
C12x34 C3x4 (3.6.17)

Cax123 C12x34

C3x412 C4x123 C3x412
b5 (3.6.10) b3y (3.6.23)

bias (3.6.11) b1y (3.6.24)

by1o (3.6.12) bio3 (3.6.25) b2
bio3s (3.6.13) bio3s (3.6.26)

Table 4.5: Minimal set of  integral coefficients for
H*1F,2.,3F,41), HY(1F,2,,3,,45) and

qr=q>-g97 "9 q°=q9>-g97 "9

H{*17,2.,37,4,) together with the related coef-

qr'=q97°~g1»~g
ficients that can be obtained from the base set. The

brackets give the equation numbers for the coefficients
that are identical to the scalar case, and hence have
already been given in chapter 3. In addition, the rational
terms are identical to the scalar cases (egs. (3.6.14,
3.6.27, 3.6.31)).

4.4 Amplitude for 0 — ggggh with a Fermion

Mediator

4.4.1 Coefficients for H3*(g",q ,9",9";h)
The coefficients that must be computed for this amplitude are shown in Table 4.5.

4.4.1.1 Boxes

d3><21><4

(24) (23) tr_{ps phro Pa 12}

dz()>0x)21x4(1J‘r 243 4+) = —2

q7r=qr~g g <12><34>3
1 [13] [14] s193¢ 1 (2[(1+3)]4] (2|(1 +4)[3]
2 121 (34) 2 (12) (34)
o| [13] [14]  , (23) (24) [34]
+ 2 12 (34) +3 [12) (32 ] (4.4.1)
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where

tr_{s pra va o} = B(1 + 2)|4] (4](1 + 2)[3] = (s13+523) (S14+524) =512 534 (4.4.2)

d4><3><21
Loay 13 ](2|(1—|—3)]4] 1 [13]° [34] 51054
dixsnon(15:24 39, 49) = 2 (1 <3‘ 1+2’4 7[ 2] (4](1 +2)|3]
] (2(1+3)[4]
2m’ ) ) (3](1+2)[4]
[ ] {4](2+3)[1]
~ 3 Gl 2 A
4.4.1.2 Triangles
Cgoz)x 34 C§22)>< 34
A9 + 4o L A7 (S195 — S124 — S3a) B (23)° [34)°
el 2030 4) = T 50 G0+ 21 (1) (34) G+ D[
[13]% (S124 — S195 — S34) B (24)° [34P°
[12] (34) (4|(1+2)[3]  (12) (34) {4](1 +2)[3]
ERENE
e (4.4.4)
B ke 4 [14]” (34)  (23)° [34]
ciznlle: 23,4 )_<34>2 <3|(1+2)|4][ [12] (12) ]
4 137 (34) (24)° [34]
T B4y <4|(1+2)|3]{ [12] (12) ] 449
04(1(;)123, Cz(12><)123
O et 2 (2](1 + 3)}aP
ax123(17,2¢,35,49) = (12) (23) (3|(1+ 2)|4] s123
et et (2(1+4)3] (2/(1 + 3)[4]
( 14 + Soq + 34) {<1 2> <34> tr,{]fgﬁmmljw}
[13] [14] 51934 2(23) (24) (4.4.6)

i [12] (34) tr_{ps pra s P12} " (12) (34)°
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0512123(1+ 2 3+ 4+)

4 (514 + So4 + S34)

@l +2)[4] | @)1 +2)3]

{(23) (24) [34] [13] [14]]
(12) (34)? [12] (34)

(2/(1 +3)J4)°
9 (12) (23) (514 + S24 + S34) 3123} (4.4.7)

(0) (2)
C3%4129 C3x412

211+ 413 (12 +4)13]
(21) (14) (4|1 +2)[3] s124
(24) (23)
(21) (43)°

) a(15,27,3545) = +2

+ (813 + S23 + 834) [_ 2

N [14] [13] [43] (43)
[21] (43) tr_{s Pra a2}

L (20 @3) 43P
(21) (43) tr_{gs P12 Va P12}

N [14] [13]°
21] (43) BI(1+2)4]  [21] (43) (4](1+2)[3]

(4.4.8)

tr_{s otutio}t | (21) (4 3>2 [21] (43)

2](1+4)[3]* 1|2+ 4)|3]
= S0 (1) (4] 1 2)[3] (513 + 25 + 501) 120 (4.4.9)

24) (23) |43 14113
CZ(’)2><)412(1;7211_73;_74;_) = 4(813+S23+S34> < >< >[ ]+[ ][ ]]

4.4.2 Coefficients for H3*(q",q ,9 ,9";h)

The coefficients that must be computed for this amplitude are shown in Table 4.5.

4.4.2.1 Boxes

d3><21><4




4.4. Amplitude for 0 — gqggh with a Fermion Mediator 125

d4><3><21

(23)° [34] | [14]° (34)

o 1 S
dz(xox):sxm(lir 2,,3 4+) = 122 <1 2> + [1 2]

A N R R IE)

EPNLEIRCICRE ]
[12] (4](1 +2)[3]°

2
m

DD

23) @I(1+3)14
T ]

3 [13] (3I(1 +2)4] (4|2 + 3)[1]
[12] (4](1 + 2)[3]

(4.4.11)

4.4.2.2 Triangles

(0) (2)
C12x349Ci12x34

ng)x34(1;7 24,345 4;) = 8 (5124 — 5123) (512 + 534 + 2513 + 2 593)
(24) [13] (3](1 +2)|4]

+ <(9 S13 — T So3 — S14 — Soq + 4 834) (24) [14]

1
A1+ 2)[3
s1a1 (515 + 823)” = (31 + 520)°) 2B+ )[1] (31 +2)|4]

(4)(1 4 2)[3] As(1,2,3,4)?

— (9514 — 7S94 — S13 — Sa3 + 4 534) (23) [13}) X

+12

+4 ({3 (512 + 834) + 4 (513 + 523 + 514)} [13] (23)
(3[(1 +2)[4]

(4[(1+2)[3] Ag(1,2,3,4)
_ gy 1131424) GBI+ [14](23) BIA+2)[4] o [14] (23)

(4|(1—|—2)|3] A3(1,2,3,4) A3(1,2,3,4) <4|(1+2)|3]
{2 (24)? [34] (514 + 594)>  [13] (24) (514 + S04) (4 5194 — 2 534)
(12) (4](1+2)[3]° (4)(1 +2)[3]
L (513 + S23) (23) (24) (514 + Soq — S13 — Sa3) n 2 (23) (24) [34] (514 + 824)}
(12) (34) (4](1+2)[3]" (12) (4](1+2)3]°

- {3 (s12 + 534) + 4 (513 + S04 + 314)} [14] (2 4>) X

—{1<—>2,3<—>4,(><—>[]} (4.4.12)

4 (23)? 4(24)* (3](1+2)[4]

{<12> (34) (4I(1+2)[3]  (12) (34) (4[(1 +2)3)°

0522)><34(1j_ 24,3, 4+) =

q°=q97-g97 "9
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(513 + 893 + S14 + 824) (23) (24) (3|(1 + 2)[4]
(12) (34) (4/(1 +2)[3] A3(1,2,3,4)
[13] (23) (3](1 +2)[4] }
(4](1 4 2)|3] Az(1,2,3,4)

-8

— 16

—{1<—>2,3<—>4,<><—>[]} (4.4.13)

04(1(;)12?,, 04(12><)123
2 (s14 + S24 + s34) [13] (4](2+ 3)[1] 123
[12] (4](1+2)[3)°
(2 3) (s14+ o4 + 3) [ 4] (s14 + 524 + 531)
(12) (34) (4](1+2)3]  [12] [34] (4](1+2)[3]
2 [14]* [24]

0 oA
0512123(1;’ 2q 739 74;) = -

Lo 23 B4 (4.4.14)
2 + oo o= 4+ 4 (514 + S04+ 534) [(23) (24)  [13] [14]
4><123<1q72q739749) <4’(1+2)‘3]2 [<12> <34> + [1 2] [34]
— 8 14]" [24] (4.4.15)

[12] [23] [34] (514 + S24 + S34)
4.4.3 Coefficients for H:*(q",q ,97,9 ; h)

We need only calculate one additional coefficient for this amplitude. Most can be

obtained from those for Hy*(¢", ¢, g ,¢") by performing the following operation:
12, ()«<]], (4.4.16)

exactly as for the scalar theory. Once we take into account the coefficients that are

identical to the scalar case there is only one triangle coefficient that remains.

4.4.3.1 Triangle

04(1(2129,, Cz(12><)123

(34) (2/(1+3)[4]° 5155 9 (24) (2(1 + 3)[4] 5193
(12) (3](1+2)[4]° (12) (3|(1+ 2)[4]°

(24)% (2|(1+3)/4] [13]% (514 + 594 + 534)

(12) (23) 3[(1+2)[4] ~ [12] [34] (3[(1 +2)4]

0510)2123(1Jf 2,:34 4;) = -2

qar=q~g9° 79
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(24)°
Ry (4.4.17)
(2) F oo oy (S spats3q) [ (23) (24)  [13] [14]
C4x123<1;72q73;—74g) =—4 <3|(1+2)’4]2 (1 2> <34> + [1 2] [34]
L3 (24)° (4.4.18)

(12) (23) (34) (814 + So4 + S34)

4.5 Amplitude for 0 — gqqqh

The results given in ref. [94], which we modified in section 3.7 for a scalar mediator,

are in this case exactly the amplitude we require.

Starting with the tensor current for 0 — ggh with two off-shell gluons (with momenta
kl and kg),

2
m

2
T (g hy) = —i61 % (U> [FT(/ﬁ, ko) TE¥2 4 Fy (ky, o) T2 | (45.1)

The two tensor structures have been given in eq. (3.7.3), while the form factors in

. 1
this case are’,

Frkike) = = 5 (K (Bolhaim) + Balho m) = 2B by m)
— 2ky - ko Cy(ky, ky;m))
+ (k% - k%) (Bo(k1;m) — By (ko; m))} — by -k Fr(ky, ky) (4.5.2)
Fp (ki k) = — M{ {2 - m] (Bo(ki;m) — Bo(kiz;m))
[2 - m} (Bo(kg; m) — Boy(kiz; m))
ki ks ki

_ {4m2+k:f+k§+k32 _3 ]Co(k:l,k:Q;m) —2} (4.5.3)

A(ky, ko)

where kip = ki + ky and A(ky, ko) = kT k3 — (ky - k)®. As expected, the bubble and
rational coefficients are identical to the case with a scalar mediator, eq. (3.7.5). As

before, we then contract eq. (4.5.1) with currents for the quark-antiquark lines to

!Note that to produce our standard overall normalisation for the helicity amplitude we have
changed the normalisation of the form factors by a factor of 2 with respect to ref. [94].
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arrive at,

H (15,27 35,475h) =

979>

(2((3 +4)[1] (4[(1+2)|3] + (24) [13] (2p12-Ps4) Fo(pro. pas)
+2(24) [13] Fr(pia, paa) - (4.5.4)

From which all helicity combinations can be calculated.

4.6 Large mass limit

Results for these processes in the effective field theory, eq. (2.3.40), are already

known, and can be obtained from our results by taking the limit m, — oo.

Due to the form of the scalar integrals in the large mass limit, only the triangle
integrals will contribute [106]. The large mass expansion for the triangle integral is

given in eq. 3.3.7.

For the 0 — hgggg process [107-109],

ML 208 40 o (16.1)
2771234 14 ot ot 4—. $234 [13]
me L2584 =g | = T T Rl + 08 @6+ ]
2+ 3
oot 213+ D)1 (34) (23)
e+
s G+ A3 (14 21) (46.2)
277123414+ oF 90— 4—. [12] <34>4
meH (17,27, 37,475 0) —>3 [12] [23] [34] [41] + (12) (23) (34) (41)

(4.6.3)

The amplitude for H. 1254(1+, 27,3%,47; h) can be calculated through the dual Ward
identity, or photon decoupling identity, which arises due to eq (4.1.1) being valid for
the gauge group U(Ng) = SU(N,) x U(1) in this limit [110],

HIP4H 1%, 27,37,47 k) + HIP4(3%, 17,27, 47 h) + HIP*(1%,3%,27,47;h) = 0.
(4.6.4)
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The dual Ward identity implies that the sub-leading colour term in eq. (4.1.2) is no

longer present. Similarly for 0 — hggqq in the large mass limit [108],

? HY(LE 2 3 4% h) -2 [<2I(1+4)I3]2 LEF RS

e e 3 3124<24> 3712 S14
(21 +3)4[13) (2(3 +4)[1)° ]
5123 S12 <23> [1 2] <2 3> <24> (34>
(4.6.5)
2 st e e o0 2] (24)° 13’
2080 At h) 2 o gy ) 9] [14] ] (4.6:6)
2 st o e e 2| (23)°(13) 14 [24]
2080 i) 2 oy ) () 28] ] (46.7)
and for 0 — hqqq'q,
2 g4 o ot 4. 2| [13° (24)
m® HY(17,2,35,4 ) = =5 T2 34 T 0D 6 (4.6.8)

The scalar mediated amplitudes in the large mass limit can be obtained by multiply-

ing the above equations by a factor of —1/2, c.f. eq. (3.3.10).

4.7 Conclusion

In this chapter we have presented compact analytic results for all helicity amplitudes
in the Higgs plus four parton processes where the interaction is mediated by a
massive fermion, retaining all dependence on the fermion mass. To calculate the
amplitudes we have decomposed them to sums of scalar integrals and used unitarity
techniques to obtain the integral coefficients. The correspondence between the results
here and those with a massive scalar mediator have reduced the number of integral
coefficients that must be calculated in the fermion theory. In addition we used
momentum twistors and reconstruction from high-precision numerical evaluations
to simplify our analytic results. These techniques enabled us to produce results for
every coefficient that are compact enough to print. All results were verified against

an in-house implementation of the D-dimensional unitarity method [111] as well as
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against a previous unitarity-based calculation [73]. Complete agreement was found
at the amplitude level. In addition our results for the squared matrix elements
are in full agreement with those produced by OpenLoops 2 [88]. The previous
implementation of the Higgs plus 2-jet process in MCFM [30-32] calculated the full
matrix element squared at a similar speed to OpenLoops 2. After implementing
these new, compact results the calculation time improves by at least an order of
magnitude. These results are a key component of the NLO calculation of the Higgs
plus 1-jet process and the NNLO inclusive cross section in the full theory, as well as

being useful in themselves for studying the structure of gauge-theory amplitudes.



Chapter 5

Searching for Stop Squarks

5.1 Introduction

Experiments searching for new particles can be divided into two types: direct and
indirect. Direct searches look for explicit evidence of a particle by detecting either
the particle itself or measuring its decay products. Direct detection experiments
are therefore model dependent, since we need to know exactly what we are looking
for. Many models of new physics, however, have many possible decay chains and
branching ratios for each particle, making direct searches more complicated since
the analysis must be performed over multiple different parameter spaces. Indirect
searches, on the other hand, look for measurements that don’t fit our predictions,
for example where a cross section may be increased due to an unknown particle
acting as a propagator. These experiments are therefore model independent: we do
not need to worry about the exact properties of the particle, only which particles it
couples to. In general, direct searches give us increased precision, but only when we

know the exact model we wish to study.

Gluon fusion production of the Higgs boson at hadron colliders gives us the oppor-
tunity to do model independent, indirect searches for the particles running in the
loop. The only requirements are that the particle must be charged under SU(3) (to

couple to the gluons) and massive (to couple to the Higgs).
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The stop squark, appearing as the super partner of the top quark in the Minimal
Supersymmetric Standard Model (MSSM), is one such particle that can be probed in
this way. Current indirect limits on the top squark are around m; 2 300 GeV, much
weaker than direct limits from specific decay chains, which are currently around the
1 TeV scale [112,113]. Searches for the stop squark have been comprehensive, however
there is one region that is particularly difficult to study. Known as the “splinter”
region, it is where m; ~ my; the presence of stop squarks pollutes measurements
of the top quark mass [114], making any prediction that depends on this parameter
much more uncertain. FExisting analysis of the effect of these loops has studied
the inclusive and 1-jet processes [115-117], including the improved discrimination
between the Standard Model and the MSSM that can be obtained from the 1-jet

process in certain regions of parameter space [117].

It is therefore interesting to explore the Higgs plus 2-jet processes, to investigate
whether any benefits can be gained over the inclusive and 1-jet processes. This
analysis was published in ref. [2], and the cross sections are calculated using the
results from chapters 3 and 4, adapted through crossing symmetry to obtain results
for two partons in the initial state and a final state of two partons plus the Higgs

boson.

All results presented in this chapter use the MMHT NLO PDF set [118], use the
on-shell top quark mass of m;, = 173.3 GeV and consider the LHC operating at

/s = 14 TeV. The normalisation and factorisation scales are set as

H. 1
[ = i, = TT =3 (x/mi + P+ > !pm-l) : (5.1.1)

where the sum is over the jets present in the final state.

To begin with we will recap the stop squark sector of the MSSM in section 5.2
before reproducing the results for the inclusive and 1-jet processes in section 5.3.
In sections 5.4 and 5.5 we present our results for the Higgs plus 2-jet process and
discuss the feasibility of searching for stop quarks in Higgs boson production. We

conclude in section 5.6.
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5.2 Stop Squarks in the MSSM

The MSSM contains two scalars in the top squark sector, ¢; and £,. We will assume
that the Higgs boson already observed is the lightest within the MSSM and that
it couples to the top squarks through a Lagrangian of the form in eq. (3.2.1). It is

useful to parameterise this sector, following ref. [117], by

(mz, , Am , 0), Am = \/mg2 — mtg1 , (5.2.1)

where mj; is the mass of the lightest stop quark and 6 is the mixing angle between

the two states, taking values between [—m/2, 7/2].

For simplicity we work in a model where the mass of the MSSM pseudoscalar (A) is
much greater than the weak scale, allowing us to work in the decoupling limit. This

leads to particularly simple form of the couplings between the (lightest) Higgs and

squarks:
2 2
A
)\hglfl G <a1 cos? 6 + Qs sin +2 — (ng) sin? 29) )
v my
2 2
A
)\hf2f2 = % (Oél Sin2 9 + (6% C082 9 -+ 2 + <2;’/:2) Sinz 29) ) (522)
t
where
2 2
4 4
o = m—g cos 23 (1 — —sin® HW) , Qg = fm—i cos 23 sin” Oy, (5.2.3)
mt 3 3 mt

where [ is defined in eq. (1.3.1). As an interesting aside, if tan 5 were very large,
the contribution from sbottom squarks would be significant. Here we will consider

the effect of stop squarks only.

For the Higgs plus 1-jet case we define jets by a minimum pr and the rapidity
requirement |y(jet)| < 2.4. When studying Higgs plus 2-jets we must implement a
full jet clustering algorithm; which we choose to be the anti-kz algorithm [119] with

a jet resolution parameter of R = 0.5.
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5.3 Inclusive and 1-jet results

To begin with we will reproduce, and analyse, the results present in the current

literature [115-117].

5.3.1 Inclusive cross section

Before doing a numerical study, it is useful to analytically derive the features we
hope to find. Using the notations introduced in egs. (3.3.4, 3.3.5) to abbreviate

Standard Model and supersymmetric amplitudes,

MM = H§ = O F jy(dmi/mi), (5.3.1)

METI = AP (1) + A (£)
(%

v
(2mz) Miyi, Fo(dmZ, /mj) + (2mz) )\ht;t;Fo(‘lmf;/mi)] ;

31 12

= C

where M3YSY contains the stop squark contributions only. In this analysis the value
of C' is unimportant, but can easily be determined. We are most interested in the
areas of parameter space where the SUSY contribution is very close to zero, as these
are the hardest to probe. For simplicity in the following derivation we can work
under the assumption that the heavy quark EFT in eq. (2.3.40) is always valid,
my, mg, , Mg, 3> my, so that Fy and F 1 take their asymptotic values. This is broadly
true for the regions we will study, though our numerical results are calculated in
the full theory. We can therefore also drop the terms proportional to a; and «, as

these are suppressed by m% / m7. This brings us to,

MSM _

SUSY
M
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C | mi ;o1 Am)*

= | e ~Linop! Qm)Q : (5.3.3)
3 |mg  mg mg my
1 2 1 2

after the simplifications discussed above have been applied (c.f. eq. (2.15) of ref. [117]).

This can be rewritten as

pmousy - O [sin® 20(Am)* — 4m7(Am)® — 8mim3 | | (5.3.4)

B 12mtglm52
so that the numerator depends only on the three parameters in eq. (5.2.1). We are

looking for values of Am where M°Y5Y =,

1+ \/1+2sin” 20m? /m;

, 5.3.5
sin® 20 ( )

Am = m, X QX\J

for # > 0. This gives regions where the mixing between the two SUSY states
effectively cancel and only the SM contribution to the amplitude remains. When

0 = 0 there is no mixing between the squark states.

Due to the nature of the cross section, containing the amplitude squared, there is
a second area of parameter space where the SM and MSSM results are equivalent.

That is when

(MSM+MSUSY)2 _ |MSM|2’

C 2 2 1 Am)t
Lo MSM Uy G ﬂzt i miz? _ Zgin? 29( 2m)2 +8| (5.3.6)
3 mg Mg, mg My,

= 0,

since in this case the interference between the SM and SUSY amplitudes cancels out
the contribution from |M®YSY |2 After manipulating eq. (5.3.6) as above to depend

on the three parameters in eq. (5.2.1),
sin® 20(Am)* — 4(mj + 8mt21)(Am)2 - 8mt21 (mi + 4mt21) =0. (5.3.7)
This equation has no solutions for small Am, however for large Am the solution is

Ama oVt T 0 (5.3.8)
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Figure 5.1: The deviation of the inclusive Higgs cross section from
the SM case, measured by ¢ defined in eq. (5.3.9), in
the full theory. The left panel shows ¢ as a function of
mg, and Am with stop squarks mixing in a maximal
fashion (¢ = 7). In the right panel ¢ is shown as a
function of ¢ and Am with m; = 400 GeV. In both

panels tan g = 10.

again for 6 > 0.

Following the analysis in ref. [117], we quantise the difference between the SM and

MSSM results with,

(5.3.9)

This allows us to search for sections of the parameter space where the SM and MSSM

cross sections are close to identical.

We know, from eq. (5.3.3), that for § = 0 the stop squark contribution is non-zero
and will increase the overall cross section, while § = 7/4 gives maximal mixing. We
will work in this case of maximal mixing so that we can focus on the (m; ,Am)
parameter space. However, as can be seen from fig. (5.1 (right)) there are regions of
the (Am,f) parameter space away from 6 = 7/4 where we still see ¢ vanishing. The
analysis in this chapter therefore is not dependent on maximal mixing in the stop

squark section.
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Figure 5.2: Lowest order predictions for Higgs plus 1-jet production
in the SM, computed in the EFT (dashed) and in the

full theory (solid). The lower panel shows the ratio
BT jgtull

In fig. (5.1 (left)) we can see the expected vanishing of § for

Am ~ mt\/Q (1+V2mg, /m,), (5.3.10)

as observed in ref. [117], across the centre of the plot. Additionally, the region
expected from eq. (5.3.8) can be seen in the top left corner, corresponding to Am =
6mg , since we are focusing on the parameter space where m; ~ m,. These results
are useful to confirm that, although our analytic derivation focused on asymptotic

values, it was sufficient to highlight the main features of the parameter space.
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Figure 5.3: The deviation of the Higgs+1-jet cross section from
the SM case, measured by § defined in eq. (5.3.9), as a
function of m; and Am. These results are calculated in
the full theory. Top squarks mix in a maximal fashion

(0 = %) and tan 3 = 10. Results are shown for two

choices of jet pr: 30 GeV (left) and 600 GeV (right).

5.3.2 Higgs plus 1-jet

When the Higgs is produced in conjunction with a jet, the EFT only holds for low
pr of the final state particles. Once the py of the jet, or Higgs, becomes high enough,
the EFT result begins to deviate from the full analytic cross section, shown for the
SM in fig. (5.2). By comparing the ratio of the cross sections in the EFT and full
SM, lower panel of fig. (5.2), we can see how quickly the two calculations diverge
once prmim > M. The same applies in the MSSM, though the relevant scales are
given by m; and Am. This means that, when the transverse momentum is less than
the relevant scales, the variation between the SM and MSSM cases is very similar
to the inclusive cross section result. We can see this by comparing fig. (5.3 (left))
for the Higgs plus 1-jet case with py > 30 GeV to fig. (5.1 (left)) for the inclusive
case. This is due to the jet (or equivalently the Higgs boson) having too little energy
to resolve the coloured particles in the loop; the same reason for the validity of the

EFT.
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We expect, therefore, any difference between the inclusive and 1-jet processes to
become visible when the transverse momentum is of order m; or larger. A compar-
ison of the two plots in fig. (5.3) shows the effect of a higher cut on the transverse
momentum. With py > 600 GeV, the jet is able to resolve the top quark as well
as the stop squark with masses of m; up to a similar scale. This region, where the
EFT is no longer valid, breaks the equivalence with the inclusive cross section and
leads to larger deviations from the SM prediction. This is demonstrated by the o
contours in fig. (5.3 (right)), which are more constraining than for pr > 30 GeV

(fig. (5.3 (left))). These results are discussed in detail in ref. [117].

This opens the possibility of studying the splinter region by comparison of the Higgs

plus 1-jet results at a large minimum pp cut with the inclusive results.

5.4 Higgs Boson plus 2-Jet Production

We have seen that the ability to distinguish the SM and MSSM cases is related to
the breakdown of the EFT, and therefore the ability of the final state particles to
resolve the loop propagators. When there are more than two particles in the final
state, as for Higgs plus 2 jets, the breakdown of the EFT is related to the py of the

hardest particle [87].

Applying a large minimum pr cut to the jets causes the cross section to fall off
quickly, since we are requiring two of the three final state particles to have high
energy, as shown in fig. (5.4). This also leads to the difference between the full theory
and EFT being less pronounced than for the 1-jet case. If however we require the
jets to have pr > 30 GeV and enforce a higher p; cut on the Higgs boson, we are
only requiring one hard final state particle. We therefore sacrifice less of the cross

section and the deviation from the EFT looks similar to the 1-jet case.

Using this pp cut on the Higgs boson we can study the effect of the scalar mass on the

breakdown of the EFT. For this we will consider a single scalar particle, with no top
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Figure 5.4: Rates for Higgs plus 2-jet production in the SM, as a
function of a minimum p;, computed in the full theory
(solid) and EFT (dashed). Jets are either subject to
this minimum pp themselves (orange), or they are only
required to satisfy a 30 GeV cut and the minimum pp
cut is applied to the Higgs boson pr (blue). The lower
panel shows the ratio o™ " /o™ for both cases.

quark contribution. In fig. (5.5) we plot the cross section with mgeap., = my = 173.3
GeV, for a direct comparison with the fermion theory, and mg.,,, = 600 GeV. The
breakdown of the EFT can be clearly seen for prmin 2 Mscalar- Lhe larger scalar
particle mass significantly reduces the cross section for the process, thus making
analysis of results much more difficult. This method of indirect searching is unable
to place limits on the stop squark mass that are competitive with the results from

direct searches.

An analysis of the effectiveness of the EFT in both the fermion and scalar mediated
theories is shown in fig. (5.6). Both lines follow a very similar pattern, with the EFT

showing to be marginally better in the scalar theory at high pz(min). The reverse is
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Figure 5.5: Rates for Higgs plus 2-jet production through a scalar
loop, as a function of a minimum p7 applied to the Higgs
boson, computed in the full theory (solid) and EFT
(dashed). The scalar mediator mass is either 173.3 GeV
(blue) or 600 GeV (orange). The lower panel shows the
ratio o™ /o™ for both examples of Myealar-

true for low py(min), as the fermion EFT is closer to the full theory. The EFT for
both quickly becomes less accurate once pp(min) 2 m. It is easy to calculate the

expected values of each as pp(min) — 0 from egs. (3.3.4, 3.3.5),

2
o™ (g9 — 1) /0™ (99 = B)ltermion = [F1j2(4mi /m})/(—4/3)]" = 1.065,

o™ (g9 — 1) /0" (99 = W)lsaar = [Fo(dm? fm3)/(~1/3)]” = 1.157.  (5.4.1)

These values are not equal to exactly 1 due to F}»(7) and Fy(7) never reaching
their respective asymptotic limits. The two curves will never reach the values in

eq. (5.4.1), though the Higgs plus 2-jet final state with two very soft gluons resembles

the final state with a lone Higgs.
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Figure 5.6: The ratio of the cross section in the full theory to that
in the effective theory, for Higgs plus 2-jet production
through a fermion (blue) and scalar (orange) loop, as a
function of a minimum p; applied to the Higgs boson.
The mass of the mediator is set to 173.3 GeV in both
cases.

The accuracy of the EFT for varying mediator mass, with a cut of p;r > 300 GeV
applied to the Higgs, is shown in fig. (5.7). As expected, for very large mediator

mass the EFT is a nearly perfect description.

Setting m; = 600 GeV and keeping to the case of maximal stop squark mixing,
fig. (5.8) shows the dependence of ¢ on the py cut applied to the Higgs boson for the
2-jet process. As a comparison the inclusive results are also shown. The deviations
in the 2-jet case are larger than for the inclusive case, however when compared to
the 1-jet case, c.f. fig. (2) of ref. [117], the results are very similar. This is further
illustrated in fig. (5.9), which shows that the deviations from the SM are almost

identical to the 1-jet results in fig. (5.3).
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Figure 5.7: The cross section for Higgs plus 2-jet production
through a fermion (solid) and scalar (dashed) loop, as
a function of the mediator mass m, after application of
a cut pp(h) > 300 GeV. The EFT result is shown as a
horizontal dotted line.

5.5 Discussion

Our ability to study these processes is dependent on getting enough experimental
data. For pp(jet) > 30 GeV, the leading order cross sections for the Higgs plus 0-, 1-

and 2-jet processes are,

o(gg — h) = 16240 fb
(g9 — h+ 1 jet) =7640 fb,
(g9 — h+ 2 jets) =2230 fb,
(g9 — h+1jet) =2 tb (pr(h) > 600 GeV),

(g9 — h+ 2 jets) =2 fb (pr(h) > 600 GeV). (5.5.1)

Therefore, although the 1- and 2-jet cases have larger deviations from the Standard

Model compared to the inclusive cross section, it is unlikely that the LHC will be
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Figure 5.8: 2-jet calculation of ¢ as a function of the cut on the
Higgs boson pp, for the parameters m; = 600 GeV,

¢ = 7 and tan 8 = 10. The corresponding inclusive

result is shown as a dashed line on the left of the plot.

able to discriminate between the two models. This applies even after considering
that h — bb decays may be identifiable for the highly-boosted Higgs; the number of
events would still be orders of magnitude smaller than for non-boosted Higgs. The

reduction in statistical power would still be too great to overcome.

Given the potential for higher order QCD corrections to be significant it is worth
considering the impact they will have on these processes. We can rescale our results

by corrections computed in the EFT,

K(gg — h) =191,

K(g9g — h+1jet )=1.78,

K(gg — h+2jets ) =1.72,

K (g9 — h+ 1 jet, pp(h) > 600GeV) = 1.85,

K (99 — h+ 2 jets, pr(h) > 600GeV) = 1.42, (5.5.2)
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Figure 5.9: The deviation of the Higgs+2-jet cross section from the
SM case, measured by 0 defined in eq. (5.3.9), as a
function of m; and Am. These results are calculated
in the full theory. Top squarks mix in a maximal fashion
(0 = 7) and tan 3 = 10. Results are shown in the cases
of no additional cut (left) and py(h) > 600 GeV (right).

where K = 6% /o

LO " These values in fact suggest that higher order corrections
will increase the gap in event numbers due to the K-factors for the 1- and 2-jet

processes being smaller than for the inclusive cross section.

Alongside our consideration of statistical uncertainties we must also take systematic
uncertainties into account. Events with a boosted Higgs, and therefore high en-
ergy decay products, have smaller systematic uncertainties. Theoretical predictions,
however, have larger systematic uncertainties for boosted Higgs production. For
inclusive production the uncertainties are at the percent level in the expansion up
to N’LO [59, 61], rising to 10% in the boosted case at NNLO [65,66,120-122]. It
is therefore evident that a good understanding of both statistical and systematic
errors is required to assess the value of Higgs plus multi-jet processes in the search

for supersymmetry.
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5.6 Conclusion

We have used the analytic expressions presented in chapters 3 and 4 to analyse
the potential of the Higgs plus 2-jet process to discriminate between the SM and
MSSM at the LHC. Analysis has previously been done for both the inclusive and
1-jet processes, demonstrating the improved sensitivity of the 1-jet case over the

inclusive analysis.

We have found that the 2-jet analysis does not offer an improvement over the 1-jet
case, giving very similar results. A high py cut on at least one of the final state
particles was required in order to effectively probe the loop particles. This leads to
a final state dominated by two hard particles and one soft, mimicking the 1-jet final

state.

It is unlikely that the relatively small gain in the 1- and 2-jet analyses will be able
to overcome the loss of statistical power at the high transverse momentum needed
in both cases in order to probe the loop mediators. If, however, a deviation from
the Standard Model prediction for Higgs boson production were to be observed,
a thorough understanding of both SM and beyond the SM predictions would be

required.



Appendix A

Numerical value of coefficients at

a given phase-space point

The following tables contain numerical results for the integral coefficients for the

ggggh and qqggh amplitudes in both the fermion- and scalar-mediated theories at

the phase-space point (p = (£, p,, py, p.))

p1 = (—15k, =10k, +11k, +2K) ,
po = (—9k, +8k, +1k, —4K) ,
ps = (—21k, +4k, — 13K, +16K) ,
py = (—7K,+2K, —6K, +3K) ,

pn = (+52k, —4K, +TK, —17kK) (A.0.1)

with k = 1/4/94 and p, = —p; — po — p3 — p4. This fixes S1934 = 25, m;, = 5 and we

further choose m = 1.5.
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Helicities | Coefficient | Real Part Imaginary Part | Absolute Value
+++4+ | dixoxsa -0.9840613828 | -0.5144323508 | 1.1104131883
dy 3% -3.3548957407 | -4.8432206981 | 5.8916985803
dyvoxs -6.7445910748 | -15.4663942318 | 16.8730216411
Clx234 -10.6368762164 | -31.6829840771 | 33.4208709592
T -6.4366316747 | -19.1721417745 | 20.2237792595
+++— | dixoxmn 23.4451295603 | 18.5996441921 | 29.9269254046
dy a2 20.5071688388 | 27.4451393815 | 34.2604677355
dose1xa3 -4.9009936782 | 42.1225176136 | 42.4066767047
doszixt -44.3845463184 | -38.3339964812 | 58.6471076705
dyyaxor -7.1203811993 | 0.6886216537 7.1536024635
dy 3% -1.8005835535 | 1.5351129014 2.3661514646
doyaa 0.8206155641 1.4735210192 1.6866161680
dyoxs -19.2397847846 | -1.4762925832 | 19.2963405429
dsseaxi -0.3316788675 | 1.6114692592 1.6452489309
C3x4 -0.0041638038 | 0.0115576710 0.0122848289
Cox3a 3.1035163815 | -0.1080335333 | 3.1053961381
C1x43 6.9656648763 | -0.8139894264 | 7.0130639492
Cax123 -11.0616538761 | -1.7916339105 | 11.2058082504
C1x234 18.9646702722 | 24.4510167733 | 30.9436736633
Cox341 -8.9934514290 | 11.1934355822 | 14.3588010899
Clax34 -3.7461389306 | 21.0493483972 | 21.3800988032
bsy -0.0409808246 | 0.1015477837 0.1095051613
basa 0.2936947594 | -0.0490382211 | 0.2977605730
b1oss -0.9341272666 | -0.1920882562 | 0.9536727156
T -3.8872487587 | 10.3025699409 | 11.0115235230
Table A.1: Numerical values of coefficients of the ggggh process
with gluon helicities of for + 4 4 4 and + + 4 — medi-
ated by a massive coloured scalar at the kinematic point
defined in eq. (A.0.1).
A.1 Coefficient Values in the Scalar-Mediated

Theory

The numerical values of the coefficients and the rational terms are given in Tables A.1,

A.2 and A.3.

At this kinematic point, once the integrals have been evaluated, the values of the

full colour-ordered sub-amplitudes are,

A1234(1+, 27 3%, 4%, h) = —26.50523303 — 3.722078577 1,
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Coefficient Values in the Scalar-Mediated Theory

149

Helicities | Coeflicient | Real Part Imaginary Part | Absolute Value

+-+- dyx3x21 -6.9368235764 -13.4220769362 | 15.1086621053
dy 3% -5.4005161311 3.8281939917 6.6197162870
dy o3 -21.0997803781 -62.3608308275 | 65.8336840341
Caxa -0.0785670511 0.1424216217 0.1626551563
Cox34 5.9965313107 -4.5593453199 7.5329952546
Clax34 -39.7403340718 22.2104113517 45.5257786814
C1x234 3.9682125956 13.4813791531 14.0532663489
bs, 0.0682767006 0.0433975227 0.0809015007
basa 2.3825660060 -0.8884219110 2.5428162074
broaa -4.2679248420 3.0120566624 5.2237599288
T 2.3606586680 0.8025702116 2.4933568319

++- dyxox34 -0.0267530609 -1.1100908623 1.1104131883
dy a3 22.6518970482 -458.1248398611 | 458.6845074097
dosesaxi 64.2316548189 -59.0233562841 | 87.2322306708
12354 -5.7450785528 3.2885735727 6.6197162870
dy s -10.8954346530 -12.8836471165 | 16.8730216411
Cox3 -41.9249189131 -23.3819669075 | 48.0043248295
C1x23 -1036.7850502032 | -480.4884415677 | 1142.7127297817
Co3xal 1075.3186068541 | 747.6290891424 | 1309.6791061854
C1x234 36.8856220760 -309.1172377677 | 311.3101601314
bos -5.3092820284 -9.1916846550 10.6148736429
basa -0.8234906782 5.4869406052 5.5483920285
brosa 26.7533037866 15.0643874405 30.7030134100
T 1.3340510134 0.8053633104 1.5583010518

Table A.2: Numerical values of coefficients of the ggggh process
with gluon helicities of +—+— and + + —— mediated by
a massive coloured scalar at the kinematic point defined
in eq. (A.0.1).
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Helicities | Coefficient | Real Part Imaginary Part | Absolute Value
+-—++ | d3xo1x4a 370.4335392027 | 1300.4704659852 | 1352.1998520434

dyysxorl 0.9220079194 -4.0077609078 4.1124501332
C3x21 -73.7590711176 | -242.0029027576 | 252.9936867102
Clax34 -13.7672899406 | -4.3871539915 14.4494080313
Cax123 25.1014609317 | 92.8813584055 96.2134610133
Caxa12 67.1532044289 | 252.1462326711 | 260.9353857094
bis 1.4197098901 0.3520351648 1.4627046624
bioa -0.5233075583 | -1.0058683561 1.1338527023
byos -0.7954324907 | -2.6428744805 2.7599815882
bio3s -0.1009698411 | 3.2967076718 3.2982535351
T -5.4119652752 | 0.7153882121 5.4590428130
+-—+ d3501x4 20.8960073185 | 19.9656478672 28.9010417911
dyzxan -0.4267971904 | -3.8149302668 3.8387301002
C3x21 -0.8475265952 | 2.4513967233 2.5937708504
C3x4 0.0094395944 0.0336984573 0.0349955993
Clax34 -9.0987353955 | -7.6314351405 11.8754279123
Cax123 1.9450686855 1.9314994054 2.7411643775
l~712 -0.1514791222 -0.2049070241 0.2548191770
bsy 0.0053272676 0.1024178437 0.1025562991
biog 0.2906270969 -0.1175213822 0.3134890504
D13 0.6201039140 0.1805231188 0.6458463135
biozs -0.7645791563 | 0.0394874437 0.7655981613
T -0.2305425036 | 1.4755649890 1.4934663983
+ -+ Cax123 5.2050785566 1.1864337667 5.3385829453
bios -1.0956687877 | 0.8092787161 1.3621388082

Table A.3: Numerical values of coefficients of the ggqggh process
mediated by a massive coloured scalar at the kinematic
point defined in eq. (A.0.1).
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|AM34 (1T, 2% 3% 4T h)| = 26.76529930

AT 27 3% 47 h) = 10.00550042 + 10.39130252 1,
|A34 (1T, 2% 3% 47 h)| = 14.42529746 ,

AT 27 3% 471 h) = 2.105330472 — 3.500785469 4,
|A™ (17,2737 47, h)| = 4.085084491 ,

AT 2% 37 47 h) = —0.788758613 + 0.151525137 4,
|A™ (17 27 37,47, h)| = 0.803181185.

(A.1.1)

A (17,2737 ,4T h) = —3.151452974 + 5.766222683 1,
|A%(17,27,3%,47; h)| = 6.571223621 ,

AP(17,27,37,4T h) = 1.375544184 + 1.088612645 1,
|A3(17,27,37,47; h)| = 1754194771,

AP (17,277,347 h) = 3.032201250 — 1.275260855 1,
|AY(1%,27,3%,47; h)| = 3.289458111 .

(A.1.2)

AM(17,27,3% 47 h) = 1.583011630 — 1.072246795 i,
|AM(17,27,3%,47; h)| = 1.911972544 .

(A.1.3)
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A.2 Coefficient Values in the Fermion-Mediated

Theory

Due to the correspondence of results between the scalar and fermion loop cases,
many of these values have already been listed in section A.1. Tables A.4 and A.5

therefore contain only the coefficients that differ from the scalar case.

At this kinematic point, once the integrals have been evaluated, the values of the

full colour-ordered sub-amplitudes are,

H'"4(1%, 27,37 47 h = 429.24088185 — 46.638920791,
|21, 27 3% 4% h)| = 55.04741687
H™¥ (127,37 47; h) = —28.10008864 + 9.8368582551,
1234 1+ o+ o+ 4—. —
|H'#4 (11 27 3% 47 h)| = 29.77211383
H'"4(1%,27,37,47; h) = +4.580787288 4 7.498254006 4,
|H'*4(1%,27,3%,47; h)| = 8.786775593
H™417,27,37,47;h) = 40.369177073 — 1.815728344 1,
|[H'"*(1%,2%,37,47; h)| = 1.852879146

(A.2.1)

H*(17,27,3" 47, h) = —8.998796972 — 13.02970981 i,
|H** (17,27, 3", 4™ h)| = 15.83514081

H*(17,27,37,4"; h) = —3.850947633 4 1.79115153014,
|H*(17,27,37,4"; h)| = 4.247119197

H*(17,27,3%,47; h) = —0.412185752 4 7.682564596 4,
|[H*(17,27,3%,47; h)| = 7.693613966

(A2.2)
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Helicities | Coefficient | Real Part Imaginary Part | Absolute Value
++++ | dixoxsa 1.7494424584 0.9145464014 1.9740678903
dyy93%4 5.9642590946 8.6101701300 10.4741308095
dywox3 11.9903841330 27.4958119676 29.9964829174
C1x234 18.9100021625 56.3253050259 59.4148817052
+++— | dixoxsa -24.3908884307 | -34.1026538098 | 41.9273948071
d1 5 4x32 -22.2037730441 | -29.7427434881 | 37.1165505885
Ao 1 %43 16.2217246906 -62.9923572563 | 65.0475320412
doyzaxt -66.4392574700 | 12.9335349956 67.6864185834
dynzxo1 8.2313626631 -0.7960661671 8.2697673869
d1 5234 2.0815256682 -1.7746340633 2.7353382179
doyzxa -0.9920798783 -1.5084323993 1.8054336843
d1xox3 22.2417370205 1.7066361068 22.3071170816
A3y ax1 0.8741489856 -5.3830902459 5.4536040418
Cax123 12.7875856866 2.0711796271 12.9542322327
Clx234 -41.8343835373 | -39.3169799861 | 57.4102827129
Cox34l -0.0578594858 -18.9964204402 | 18.9965085545
Clax34 12.4596639704 -35.5399553316 | 37.6607441672
+—+- dynzx21 -7.6953556408 -6.4085129013 10.0143664825
d1 234 -2.3752436126 1.8890031582 3.0348171528
dywoxs3 -14.9620839628 | -39.7624750054 | 42.4843309359
Clax34 -22.6495761599 | 21.1031361652 30.9571584004
Clx234 -9.2908649214 -2.0570320613 9.5158579166
++-— dyxox34 -0.0125227093 -0.5196169994 0.5197678754
d1 5 4x32 8.4132295790 -459.7920528912 | 459.8690186715
doyzaxt 62.3890431832 -51.7566409441 | 81.0625844095
d1 5234 -3.4240833144 4.6410747884 5.7674883386
dyxoxs3 -5.4385640586 -6.5811803202 8.5375589853
Co3xal 1080.7316959848 | 740.3414428401 | 1309.9948284984
Clx234 22.0281339875 -305.0638529285 | 305.8581256899

Table A.4: Numerical values of coefficients of the ggggh process,
that were not included in tables A.1 and A.2, mediated
by a massive fermion at the kinematic point defined in
eq. (A.0.1).



Appendix A. Numerical value of coefficients at a given phase-space
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Helicities | Coefficient | Real Part Imaginary Part | Absolute Value
+—++ | dix3xo1 4.0685161820 -4.0500901147 5.7407363517

dyxo1x3 425.5033072909 | 1294.6650310348 | 1362.7951449502
Clax34 14.7023801790 | -6.9563781545 16.2650293561
Cax123 32.6756691373 | 92.0151860555 97.6447326711
C3%412 87.6696567417 | 249.0681532719 | 264.0471807982
+-—+ dyxsx21 1.0782715488 -4.7280903169 4.8494852900
dyyo1x3 13.3402061977 | -3.4340877490 13.7751246842
Clax34 -3.7289304305 | -10.8894201371 | 11.5101864919
Cax123 1.7886984296 -1.6881229718 2.4595123988
C3x412 1.8223566626 0.0772529014 1.8239933708
+—+- Cax123 0.0795879764 -1.9432491013 1.9448782264

Table A.5: Numerical values of the coefficients for the +—++,
+——+4 and +——+— helicities of the ggggh process, that
were not included in table A.3, mediated by a massive
fermion at the kinematic point defined in eq. (A.0.1).

HY(1%,27,3%,47; h) = 0.620045806 + 4.7030845622 1,

|[H*(1%,27,3",47; h)| = 4.743781319

(A.2.3)
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