
FlatPack: Flexible Compaction of Compressed Memory

Downloaded from: https://research.chalmers.se, 2023-02-12 22:45 UTC

Citation for the original published paper (version of record):
Eldstål-Ahrens, A., Arelakis, A., Sourdis, I. (2023). FlatPack: Flexible Compaction of Compressed
Memory. Parallel Architectures and Compilation Techniques - Conference Proceedings, PACT.
http://dx.doi.org/10.1145/3559009.3569653

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



FlatPack: Flexible Compaction of Compressed Memory
Albin Eldstål-Ahrens

eldstal@chalmers.se
Chalmers University of Technology

Gothenburg, Sweden

Angelos Arelakis
angelos.arelakis@zptcorp.com
ZeroPoint Technologies AB

Gothenburg, Sweden

Ioannis Sourdis
sourdis@chalmers.se

Chalmers University of Technology
Gothenburg, Sweden

Abstract
The capacity and bandwidth of main memory is an increasingly
important factor in computer system performance. Memory com-
pression and compaction have been combined to increase effective
capacity and reduce costly page faults. However, existing systems
typically maintain compaction at the expense of bandwidth. One
major cause of extra traffic in such systems is page overflows, which
occur when data compressibility degrades and compressed pages
must be reorganized. This paper introduces FlatPack, a novel ap-
proach to memory compaction which is able to mitigate this over-
head by reorganizing compressed data dynamically with less data
movement. Reorganization is carried out by an addition to the mem-
ory controller, without intervention from software. FlatPack is able
to maintain memory capacity competitive with current state-of-the-
art memory compression designs, while reducing mean memory
traffic by up to 67%. This yields average improvements in perfor-
mance and total system energy consumption over existing memory
compression solutions of 31-46% and 11-25%, respectively. In total,
FlatPack improves on baseline performance and energy consump-
tion by 108% and 40%, respectively, in a single-core system, and
83% and 23%, respectively, in a multi-core system.

CCS Concepts
•Computer systems organization→Other architectures; •Hard-
ware→ Memory and dense storage.

Keywords
Memory system, Memory compression
ACM Reference Format:
Albin Eldstål-Ahrens, Angelos Arelakis, and Ioannis Sourdis. 2022. FlatPack:
Flexible Compaction of Compressed Memory. In International Conference
on Parallel Architectures and Compilation Techniques (PACT ’22), October
10–12, 2022, Chicago, IL, USA. ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/3559009.3569653

1 INTRODUCTION
Main memory is a critical resource in modern systems. Its capacity
must be sufficient to avoid frequent page faults and its bandwidth
high enough to accommodate the rates of requested data. The
demand for both memory capacity and memory bandwidth is in-
creasing as applications become more data-intensive and a larger
number of cores is integrated on a single chip. However, simply

PACT ’22, October 10–12, 2022, Chicago, IL, USA
© 2022 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in International
Conference on Parallel Architectures and Compilation Techniques (PACT ’22), October
10–12, 2022, Chicago, IL, USA, https://doi.org/10.1145/3559009.3569653.

scaling up memory size and bandwidth increases system cost and
power consumption [20].

Data compression has the potential to offer a better cost to perfor-
mance tradeoff in computing systems by more efficiently utilizing
the capacity and bandwidth resources of main memory. Previous
techniques are able to achieve improvements in either capacity
or bandwidth but usually not in both. Some designs use memory
compression to reduce memory traffic without considering capacity
improvement [10, 12]. Others aim primarily at memory compaction
to increase storage density and effective capacity [6, 28], exploit
free prefetching effects [28, 39], but introduce significant traffic
overheads to manage compacted memory [6].

There are several reasons for the traffic overheads of managing
a compressed and compacted memory. First, compressed blocks
require additional metadata to be accessed. Second, compressed
blocks have variable size and therefore may cross the boundaries of
a regular memory location requiring two split accesses. Even if they
do not span across the access boundaries, writing a compressed
block back to memory often requires a read-modify-write (RMW)
operation in order to preserve data of neighboring blocks. Another
source of traffic overheads and inefficiency is the change in com-
pressibility of data and hence in their size during execution, i.e.,
blocks growing (or even shrinking) during runtime. This variation
in compressibility leads to inefficiencies in existing compaction
systems, which compact blocks into sequential spaces of rigid size.
A growing block may be stored uncompressed as an exception, in
space specially reserved for this purpose [6, 28]. Alternatively, the
change causes a page overflow which requires the entire page to
be brought on-chip, repacked and migrated, inducing a memory
traffic overhead. In our experiments, an average of 15% of cache line
updates lead to an increase in compressed size, causing an exception
at the expense of memory capacity and traffic.

Although some of the above issues, e.g. metadata [16], have
been addressed in the past, the bandwidth benefits - if any - of
current state of the art memory compaction designs are far from
the achieved raw compression ratio. As illustrated in Figure 1, the
required memory traffic of such designs is comparable to the traffic
of a baseline with no compression, 2×-4× higher than the theo-
retical minimum indicated by the achieved compression ratio. In
effect, existing memory compaction techniques consume significant
bandwidth and so limit system performance and energy efficiency.

This work introduces FlatPack, a novel technique aimed at reduc-
ing the memory bandwidth overheads of memory compaction. The
key observation behind this work is that existing systems are unable
to efficiently handle dynamically varying compressibility of data,
which leads to excessive page overflows and hence excessive mem-
ory traffic. FlatPack mitigates this problem by allowing compressed
blocks to be fragmented within a physical page and share expan-
sion space providing the flexibility to be reorganized independently

https://orcid.org/0000-0001-9690-0801
https://orcid.org/0000-0002-0452-3664
https://doi.org/10.1145/3559009.3569653
https://doi.org/10.1145/3559009.3569653
https://doi.org/10.1145/3559009.3569653


PACT ’22, October 10–12, 2022, Chicago, IL, USA Eldstål-Ahrens, Arelakis and Sourdis

1 2 3 4
Footprint Reduction

1

2

3

4

Tr
af

fic
 R

ed
uc

tio
n

1
1

1
1.6

2.1
0.9

2.9
0.9

3.9
3.9

Baseline
L2C
LCP
Compresso
Ideal

Figure 1: State-of-the-art memory compression systems, clas-
sified by their traffic reduction and footprint reduction. Ideal
shows the achievable compression, LCP and Compresso are
compacting systems, L2C is a non-compacting system.

without disturbing other blocks. FlatPack’s flexible reorganization
can be performed in response to all size changes without intro-
ducing additional data movement. Furthermore, by fragmenting
blocks at the Memory Access Granularity (MAG), FlatPack reduces
RMW traffic, since most compressed memory writes only affect
one block. FlatPack’s reorganization is performed in hardware by
the memory controller, without intervention by system software
or the operating system. In effect, FlatPack’s flexibility to handle
variability in block size reduces data movement and memory traffic
improving system performance and energy efficiency.

Concisely, FlatPack is a novel flexible memory compaction ap-
proach that aims to reduce the traffic overheads and makes the
following contributions:

• a flexible format of compressed pages that allows compressed
blocks to be fragmented and share expansion space in the
physical memory region of the page offering efficient mem-
ory compaction;

• a hardware mechanism that enables the memory controller
to exploit the above format and dynamically reorganize data
within the page, without software intervention and with
minimal data movement;

• a thorough evaluation of FlatPack and comparison with cur-
rent state of the art memory compaction designs to measure
the significant reduction in memory traffic and impact of
FlatPack in system performance and energy.

The remainder of this paper is organized as follows. Section 2
discusses background and related work. Section 3 describes the pro-
posed FlatPack architecture. Section 4 presents evaluation results
and Section 5 draws our conclusions.

2 BACKGROUND AND RELATEDWORK
A number of systems have been proposed to compress and compact
main memory, to save bandwidth or increase memory capacity. Any
memory compression or compaction design is subject to a num-
ber of design choices, which are detailed below. The two designs
currently at the forefront of memory compaction are Linearly Com-
pressed Pages (LCP) [28] and Compresso [6]. This section outlines

the design parameters of these and other related approaches, as
well as a summary of the design choices employed by FlatPack.

2.1 Compression Algorithm
A number of algorithms have been proposed for compression in
the memory hierarchy. The primary requirement for a suitable
compression algorithm is low decompression latency, to minimize
performance impact. Lossless compression schemes typically offer
compression ratios up to 2× to 4× on real-world data [1–3, 5, 18, 29].
For applications which tolerate approximation, lossy compression
offers more aggressive compression ratios of up to 16× [10, 12,
30] or allows for bandwidth optimizations in combination with
lossless compression [19]. Deduplication has been proposed as an
alternative to compression [27]. The more complex Lempel-Ziv
algorithm has also been employed, using an additional cache to
hide its decompression latency [35].

FlatPack is compatible with any block compression algorithm,
without loss of generality. The system is evaluated here with the
SC2 compression scheme, which offers a competitive compression
ratio and low-latency operation [3].

2.2 Compression Granularity
One way to differentiate memory compression systems is based on
compression granularity, i.e. the size of the data block being com-
pressed as one unit. Two basic approaches are possible, each with
different characteristics. 1) Compressing individual cache lines at the
granularity of the Last Level Cache (LLC) [4, 6, 9, 26–28, 30, 34, 40].
The benefit of this is that there is no overhead from fetching un-
used compressed data. On the other hand, general purpose DRAM
is restricted to a minimum Memory Access Granularity (MAG),
which is typically tuned to be the size of one cache line. As a result,
single cache line compression has limited potential for bandwidth
reduction. Similarly, the MAG prevents individual, smaller than
MAG, compressed blocks from being updated in memory, forcing
the memory controller to perform a Read-Modify-Write (RMW)
sequence. Instead of fixing the compressed block size to the size
of the cache line, another alternative is to increase the cache lines
to the size of the compressed block. Then, the limitations to the
potential bandwidth reduction can be overcome, but excessively
large cache lines and a potentially large LLC are required. One such
example is MXT [35], which uses very large compressed blocks and
cache lines (1 KB each) requiring a large off-chip LLC.2) Compress-
ing multiple cache lines together, making up a larger compression
block [7, 10, 12, 15, 17, 19, 32, 35]. The benefit of this is that the com-
pressed block may exceed the MAG, and thus memory transfers are
more efficiently utilized. Conversely, these systems do not support
random access of individual cache lines within a compressed block.
This complicates writebacks to memory and enforces a form of
prefetching of all co-compressed cache lines.

LCP and Compresso both compress single cache lines. FlatPack
compresses blocks of four cache lines, in order to be able to im-
prove memory bandwidth utilization and reduce the need for RMW
operations. In addition, the larger compressed blocks are key to
enabling a flexible approach to block compaction.



FlatPack: Flexible Compaction of Compressed Memory PACT ’22, October 10–12, 2022, Chicago, IL, USA

Virtual
Address Space

OS Physical
Address Space

Machine Physical
Address Space

Page 0

Page 1

Page 2

Page 3

Figure 2: The three address spaces used for memory com-
paction. In a regular system, OSPA space is the physical space.

2.3 Block Compaction
While memory compression may give a bandwidth benefit, capacity
improvement requires compressed blocks to be compacted in phys-
ical memory. Some systems forgo compaction altogether, aiming
only to improve bandwidth utilization [10, 12, 17, 19, 30, 34] or to
make space for error correcting codes [26]. Several compaction
approaches have been proposed in literature. 1) LCP packing is the
simplest form of compaction, assigning an identically sized space
for each block within a page [7, 28, 40]. This simplifies address
calculation, at the expense of wasted space for blocks with higher
compressibility. 2) Line Packing is employed by Compresso and
others, packing the compressed blocks of a page together while sup-
porting more than one block size [4, 6, 9, 32]. This allows for greater
benefit when compressibility varies, eliminating more wasted space.
3) Block Fragmentation as employed by MXT and related designs
compresses very large blocks (1kB) and fragment compressed blocks
in fixed-size sectors (256 KB) in memory without limitation to their
page sharing relationships [15, 35]. Such free placement yields a
large number of physical memory addresses stored as metadata,
which can be a significant overhead. MXT’s high metadata over-
head is kept in check using coarse fragment granularity (128B half-
sectors), which however leads to compaction inefficiencies because
any data smaller than the fragment size wastes memory capacity.
4) BCD Deduplication divides physical memory into several large
arrays, each storing a different part of all compressed blocks [27].

FlatPack allocates a contiguous space for each logical page, thus
keeping a single physical address in its metadata. Compressed
blocks are fragmented at MAG granularity and placed freely within
that space. The fragmentation and location of compressed blocks is
dynamic, automatically adapting to the changing compressibility
of data. Furthermore, it allows blocks within a page to differ in
size. This automatic reorganization of blocks is performed by the
memory controller, in hardware. Since it occurs only on block write-
back, blocks are reorganized without any additional data movement.
FlatPack stores the first part of each compressed block in a fixed
location within the page, which allows memory access to begin in
parallel with further address calculation for the compressed block.

2.4 Address Translation and Page Compaction
A standard, uncompressed memory hierarchy has one level of ad-
dress translation. The Virtual Address (VA) space of each process is
translated into the Operating System Physical Address (OSPA) space,
where pages are the same size and uncompacted. Any memory com-
paction system must modify or supplement the address translation
by introducing an additionalMachine Physical Address (MPA) space,

as illustrated in Figure 2. This is a necessity to support blocks or
pages of non-uniform size and gain memory capacity.

The implementation of this additional MPA space depends on
the exact organization of compacted memory. Two principal ap-
proaches are taken by existing systems, illustrated in Figure 3. 1)
Contiguous pages are used by LCP and others, allocating contiguous
memory space for a single compressed page, smaller than the sys-
tem’s normal page size [7, 9, 28]. This approach requires only one
MPA to locate each page, but relies on a relatively static compress-
ibility. Reduced compressibility can cause page overflows, requiring
the full compressed page to be migrated to a larger allocation. 2)
Fragmented pages is an alternative approach, where a compressed
page is allocated as a set of smaller chunks. The benefit of this
organization is the ability to dynamically append chunks of phys-
ical memory to a given compressed page [4, 6, 40]. Employed by
Compresso and others, this approach is better able to deal with com-
pressibility changes, but requires more metadata to locate multiple
chunks in physical memory. An extreme example of this alternative
is MXT [35], where each compressed block fragment (sector) is
free to be placed anywhere in memory. Besides the high metadata
overhead, this significantly complicates address translation adding
latency overheads.

FlatPack uses fixed contiguous compressed pages for their sim-
plicity and reduced metadata. Compressibility changes are handled
by improved flexibility in block placement within each compressed
page. By allowing blocks to grow and shrink, FlatPack reduces the
number of page overflows.

2.5 Metadata Handling
All compression schemes require additional metadata to manage
compressed blocks and pages. This metadata describes block sizes,
compression methods, placement in physical memory and other
auxiliary compression information which is not application data.
A number of approaches exist for organization and transfer of
compression metadata. 1) Metadata in main memory, separated from
the compressed data is the most common organization [6, 7, 15, 17,
27, 30, 35, 40]. An on-chip metadata cache is typically employed
to reduce the traffic and latency overhead of finding the metadata
for accessed pages. To further reduce latency, the metadata table
can be accessed in parallel with the page table [9, 10, 12, 32]. 2)
Metadata embedded in the compressed block has been proposed as
a method to reduce the bandwidth overhead of metadata traffic
[16, 19, 26, 34]. This is unsuitable for memory compaction, as it
decouples the page-level metadata from some of the blocks within
the page. 3) Metadata embedded in the compressed page adds this
ability, and avoids fragmenting the physical address space [4, 28].

Compresso uses a separate metadata table accessed on demand,
LCP embeds metadata in its compressed pages. Both designs employ
a small metadata cache.

FlatPack uses a separate metadata table, accessed in parallel with
the page table. An on-chipmetadata cache is kept updated in tandem
with the TLB. This approach guarantees that when requests reach
the LLC or memory controller, the block and page compression
metadata is available on-chip.



PACT ’22, October 10–12, 2022, Chicago, IL, USA Eldstål-Ahrens, Arelakis and Sourdis

OSPA Contiguous
MPA Pages

Page 0

Page 1

Page 2

Page 3

OSPA Fragmented
MPA Pages

Page 0

Page 1

Page 2

Page 3

Figure 3: The two principal approaches to page compaction.
Contiguous pages require a single MPA, fragmented pages
may require multiple.

2.6 Last-Level Cache Support
A number of memory compression systems also modify or use the
LLC in ways designed to optimize or support memory compression.
One approach is to unify LLC and main memory compression by
storing only compressed blocks in the cache [15, 27]. This increases
the effective capacity of the LLC, without additional SRAM cost.
Another approach is to allow the LLC to store compressed blocks
alongside regular uncompressed cache lines [10, 12, 17]. This allows
large-block memory compression schemes to offset the traffic over-
head of reading large blocks from memory and benefit from spatial
locality. Compression systems which compress at the granularity
of single cache lines may pack multiple of these together, in order
to satisfy the memory access granularity. Such extra cache lines
can be decompressed into an otherwise unmodified LLC [6, 28] or
a small special-purpose cache [4] in order to gain some bandwidth
benefits. LCP and Compresso both work with an unmodified LLC,
and insert all valid overfetched data. MXT adds a large off-chip
cache level in order to hide the decompression latency of its large
blocks and support the required large cache lines [35].

FlatPack compresses blocks consisting of multiple MAGs of data.
Tomitigate the traffic overhead of LLCmisses, it employs amodified
Decoupled Sectored Cache [33] to co-locate both compressed blocks
and uncompressed cache lines in the LLC similarly to AVR, MemSZ,
and L2C [10–12].

2.7 Overheads of Existing Systems
Current state of the artmemory compaction systems, Compresso [6]
and LCP[28], suffer from two primary types of overhead. First,
rigid and static assignment of compressed space for each block
leads to deteriorating compaction as compressibility changes.While
Compresso allows for more than one block size per page, it is unable
to handle blocks changing size over time. Growing blocks are left
uncompressed while shrinking blocks continue occupying their
initially assigned space. Over time, this deterioration leads to a
page overflow forcing the system to recompress and recompact
the page. The second major source of overhead is the compression
granularity of single cache lines. Compresso and LCP both fetch
individual compressed cache lines from memory on an LLC miss,
which is rounded up to the memory access granularity (MAG). As
a result, one full MAG is transferred from memory for each cache
line, regardless of compressibility. In some cases, this overfetching
can be beneficial, if it contains additional complete compressed
cache lines. This gives a modest prefetching effect, which can offset
part of the bandwidth overhead.

Compressed
Physical
Memory

...

Core Priv
$

Core Priv
$

On-chip Interconnect

Shared
LLC

Compressor
&

Decompressor

Metadata $

M
e
m

. C
trl.

Figure 4: The FlatPack memory system utilizes a modified
LLC and adds compressor hardware and a metadata cache.

Another design with different design choices is MXT [35]. MXT
does not suffer from the first aforementioned overhead as it offers
flexibility to place fragments of compressed blocks anywhere in
memory, allowing shrinking and expansion without huge traffic
overheads. However, this flexibility in MXT has a high price as it
complicates address translation adding latency and causes metadata
inefficiencies requiring coarse granularity of compressed blocks and
block fragments affecting compaction efficiency. Moreover, MXT
suffers from the second aforementioned overhead in a different
way. Due to its metadata inefficiency and large compressed blocks,
it is forced to use a large LLC with large cache lines.

FlatPack mitigates capacity waste by compressing larger blocks
and fragmenting them in physical memory. Each page is divided
into slots at the memory access granularity. Each compressed block
is fragmented into MAG-sized parts and a number of slots are as-
signed to it. When a block’s compressed size changes, slots can be
released and reassigned as needed, without additional data move-
ment overhead. This maintains compaction efficiency, by dynam-
ically adapting space assignment to each block. FlatPack offers
this flexibility in a metadata-efficient manner, supporting fine com-
pressed block granularity while avoiding MXT’s LLC, translation
and compaction inefficiencies.

3 FLATPACK DESIGN
Currently published state-of-the-art memory compression systems
primarily target one of two bottlenecks of main memory: memory
bandwidth or memory capacity. Systems which maintain data com-
pacted in main memory do so at the expense of additional memory
traffic [6, 28]. This is mainly due to data movement, e.g., page migra-
tion required to reorganize a compressed page in order to eliminate
fragmentation and handle varying compressibility. Conversely, the
most straight-forward compression approach to reducing mem-
ory traffic leaves memory capacity unimproved [10, 17, 34]. This
eliminates the bandwidth overhead of page reorganization, and
simplifies address translation logic.

FlatPack aims to combine these approaches in order to gain the
benefits of both. Using a novel compaction scheme, FlatPack offers
memory capacity improvements on par with current state-of-the-
art systems. By being flexible to compressibility changes, as well as
allowing size skew between blocks, FlatPack is able to dynamically
reorganize physical memory on demand with fewer costly page
migrations.

The basis of this flexibility is the fragmentation of compressed
blocks, at the Memory Access Granularity (MAG) dictated by the
physical memory controller. MAG-sized slots in physical memory
are assigned and reassigned on demand, as blocks shrink and grow.



FlatPack: Flexible Compaction of Compressed Memory PACT ’22, October 10–12, 2022, Chicago, IL, USA

By compressing blocks which are larger than the MAG, the com-
pressed data can be fragmented and flexibly placed. This allows
a compressed page to support a wide variety of block sizes, and
allows blocks to change size over time as long as the average com-
pressibility across the page does not increase. Crucially, blocks are
able to change size independently of each other. Reorganization
of a block is performed on demand whenever the block is written
back to memory, and thus introduces no additional data movement.

Figure 4 shows a top-level overview of the FlatPack architecture.
A specialized compressor and decompressor hardware module is
added, as well as a small on-chip metadata cache. The shared Last-
Level Cache (LLC) is designed to store both uncompressed cache
lines and complete compressed blocks, using a Decoupled Sectored
Cache organization [33]. The flexible packing and organization is
performed in hardware by a module situated on the core side of the
Memory Controller. This module implements a Finite State Machine
which receives FlatPack block and page operations from the LLC
and uses metadata to translate them into individual requests to the
standard memory controller. Allocation of physical memory on the
page level is performed by a software runtime.

Similarly to other memory compaction systems, FlatPack intro-
duces an additional layer of address translation. Virtual addresses
are translated using a Page Table into the OS Physical Address
(OSPA) space. OSPA is used for cache tags, but does not represent
physical memory. FlatPack organizes data in the Machine Physical
Address (MPA) space, using variable-size compressed pages. In MPA
space, compressed pages are compacted to maximize the available
memory capacity.

3.1 Compression
The main feature of FlatPack is the ability to dynamically pack
and repack compressed blocks in physical memory on demand. To
avoid bandwidthwaste, compaction is performed atMemory Access
Granularity (MAG), which is typically 64 bytes and equal to an LLC
cache line. Lossless compression typically offers between 2× and
4× compression ratio on real-world data [1–3, 5, 18, 29]. In order to
generate compressed blocks which can be fragmented into multiple
MAGs, FlatPack compresses blocks of 256B into compressed sizes
between 32B (1/2MAG) and 256B. This gives a theoretical maximum
compression ratio of 8×.

FlatPack is compatible with any block compression algorithm
able to compress 256 bytes of data. In this paper, we evaluate using
SC2 [3]. SC2 uses a global Value Frequency Table (VFT) to assign
shorter encodings to frequently appearing bit sequences. The VFT
content is created dynamically by profiling a small random part of
memory, while encoding transition is implemented using a similar
mechanism presented in the original SC2 work. Originally designed
for cache compression, SC2 exhibits high compression ratio for real-
life datasets, as well as low-latency compression and decompression.
These properties make it suitable for memory compression as well.

3.2 Last-Level Cache
The use of multi-MAG memory blocks introduces a potential band-
width overhead from overfetching. Compressing multiple neigh-
boring cache lines as one block before writing to memory requires
the block to always be transferred in its entirety. Reading multiple
MAGs worth of compressed data from memory to serve a single

Tag Back-ptr Data

Uncompressed

Compressed

A1

B3

BC0
BC1

BC2

B

A

LLC

A0

Figure 5: The Decoupled Sectored Cache design employed by
FlatPack. The uncompressed cache lines 𝐵𝑥 share a tag with
the compressed version of the block stored in 𝐵𝐶𝑦 .

LLC miss trivially leads to additional data transfer(s) compared to
an uncompressed system. One way to alleviate this is to store the
compressed block on-chip, exploiting spatial locality to allow the
same block to serve future LLC misses. Similarly to previous works
[10, 12], FlatPack employs a Decoupled Sectored Cache (DSC) for
this purpose [33]. A DSC decouples the cache tags from the data,
allowing multiple cache lines to share a tag. This is accomplished
by introducing an array of Back Pointers, each associating a data
entry with its tag as illustrated in Figure 5. Our implementation is
extended with the ability to store both uncompressed single cache
lines and compressed blocks, co-located in the same data array
similarly to AVR and MemSZ [10, 12]. The main benefit of this
co-location is that LLC requests can be served either using uncom-
pressed data (like a regular set-associative LLC) or compressed data,
adding decompression in order to avoid a costly memory access.

3.3 Lazy Evictions
Another challenge introduced by large memory blocks is updates.
As the MAGs within a block are compacted completely, there is no
ability to update a single compressed cache line in memory without
also updating the full block. As a result, writebacks of dirty lines
from LLC directly into compressed memory cannot be performed.
In order to recompress a block which is not available on chip, the
full compressed block must be read from memory. Lazy Evictions
mitigate this overhead by delaying the actual recompression using
the empty space left in memory by compressed blocks [10]. If there
is free space in physical memory, the dirty cache line is written back
uncompressed and the block’s metadata is updated to reflect this.
The next time the block is fetched from memory, all lazily evicted
cache lines are also read, and the block is recompressed to include
the dirty data. The end result is that the dirty cache line is written
to memory once and read from memory once, which is a smaller
traffic overhead compared to reading the full compressed block
for recompression and then writing it back to memory. In other
words, lazy evictions are employed to reduce the traffic overhead of
evictions. If a compressed block is not available on-chip, but a dirty
line belonging to it is evicted, the compressed blockmust be updated.
Without lazy evictions, a read-decompress-modify-recompress-write
operation would be necessary, at a traffic cost. For a block of 𝑁
MAGs, this will incur 𝑁 reads and a similar number of writes. A
lazy eviction, on the other hand, writes the dirty cache line back to
memory uncompressed. The next time the block is read, the dirty
line is also read. The total traffic caused by the lazy eviction is one
write and one read.



PACT ’22, October 10–12, 2022, Chicago, IL, USA Eldstål-Ahrens, Arelakis and Sourdis

1/4-MAG minislot

0 1 2 3

...

...Native block space:

Compacted page:

MAG-sized slot

14 15 0 1 2 3 1415...

...

...Compressed page:

Available to block 0:

...Virtual page: Block 0 Block 1 Block 2 Block 14 Block 15

Reserved for
native block

Figure 6: The layout of a compacted physical page, compared
to an uncompacted compressed page. Slots native to a block
N are also available to neighboring blocks N-1 and N-2.

3.4 Block Compaction
The variable size of compressed memory blocks necessitates a dy-
namic method for compaction in physical memory. Assigning a
fixed space to each block risks introducing fragmentation as the
block changes size. A shrinking block will leave parts of its space un-
used. A growing block must be relocated, leaving its original space
unused. FlatPack breaks this fixed structure by dividing physical
space into MAG-sized slots and dynamically assigning one or more
slots to each block when needed. As blocks shrink and grow over
time, their slot allotments change as needed, while unused slots
remain available for other blocks within the same page. Crucially,
a compressed block which changes size can be moved without
affecting other blocks, and thus without additional data movement.

Figure 6 shows a FlatPack-compressed page of 16 compressible
blocks. The compressed page occupies a section of physical memory,
of a fixed size. This allocation is divided into MAG-sized slots. Each
logical block is assigned an equal number of slots where it is native.
The first of these slots is reserved for the native block itself. Any
other slot native to a block 𝑁 is made available to store the block 𝑁
or its neighboring blocks 𝑁 − 1 and 𝑁 − 2 in a circular fashion. For
example, parts of block 14 may be stored in a memory slot native
to blocks 14, 15 or 0.

By compressing blocks of four MAGs, FlatPack generates com-
pressed blocks which may exceed a single MAG. By dividing the
compressed block into MAG-sized pieces, placement is flexible
within the block’s native space and that of the two following blocks.
When a block is written to memory, on-chip metadata allows se-
lection of a suitable slot set for the block. These properties allow
a page’s physical allocation to be reorganized on the fly without
additional data movement.

Another advantage of this organization is that it supports pages
where block sizes are non-uniform and variable. A FlatPack com-
pacted page with a fixed size is able to support a wide variety of
block size combinations, as well as handling compressibility varia-
tion over time. As long as the average compressibility across the
entire page remains stable, the memory controller is able to manage
individual blocks growing and shrinking without incurring addi-
tional reorganization traffic or intervention by system software.

3.5 Minislots
Dividing blocks along the memory access granularity introduces
one important drawback, as all compressed sizes are effectively
rounded up to multiples of the MAG. In the worst case, this means
over-using and over-transferring (MAG-1) bytes per compressed
block, wasting memory capacity and bandwidth on the order of
one MAG per block. A majority of blocks will have some amount of
such granularity waste, as it is unlikely that the compressed size will
be an exact multiple of the MAG. FlatPack mitigates this problem
by supporting finer granularity in a subset of its slots in physical
memory. Depending on the allocated physical page size, each block
is allotted two or four minislots. Each minislot is one quarter of
the size of a regular slot, and made available to neighboring blocks
in exactly the same way as regular slots. Figure 6 illustrates a
compressed page with four minislots native to each block. Block 0
has compressed to two full-sized slots and the remainder fit within
a single minislot. Without minislot support, the block would occupy
three full-sized slots, with ¾ slot granularity waste. By prioritizing
minislots in the same MAG as existing data, free minislots are also
concentrated, reducing fragmentation. Contrary to full-sized slots,
updating a minislot may require a read-modify-write operation.

3.6 Slot Assignment
When a block is evicted from the last-level cache, it must be written
back to main memory. Due to data being updated, the block may
have changed its size. As a result, physical packing of compressed
blocks is updated on block writeback.

As explained in Section 3.4, the space of a compressed page in
physical memory is divided into slots, with each slot being assigned
to at most one block. Any given block is able to make use of slots
from three separate locations: its own native space, as well as the
respective native spaces of the following two blocks. For example,
block 5 of a page is able to use the slots native to blocks 5, 6, and
7. The very first slot native to block 5 is reserved for that block,
and thus always contains the first part of the block’s data. Succes-
sive MAG-sized parts of the block are placed greedily in the first
available slots. The fixed use of the first slot allows memory ac-
cess to begin immediately on a cache miss, in parallel with address
calculation for any remaining data.

After placing all full MAG-sized parts of the block in full-sized
slots, a remainder is likely to exist which requires less than a full
slot of physical space. To reduce granularity waste, FlatPack at-
tempts to place this remainder data in one or more of the minislots
reserved at the end of the page. Similarly to the full-sized slots, each
minislot has one native block, and is made available to the native
block and the two preceding ones. Placement of remainder data in
minislots prioritizes data packing, to leave as many slots as possible
unoccupied. Since the block is packed and written to memory in its
entirety, there is no need for additional metadata to maintain the
order of data within a block; slot are filled in their logical order.

3.7 Page Compaction
In order to maximize capacity gains, a memory compaction system
is designed to minimize the allocated space for any given page.
FlatPack uses fixed-size MPA pages with a set of predefined sizes
organized in accordance with Table 1. A pool of allocated and
free pages for each size is maintained by a software runtime. Each



FlatPack: Flexible Compaction of Compressed Memory PACT ’22, October 10–12, 2022, Chicago, IL, USA

Table 1: FlatPack compressed page sizes and organization.

Page Size 512B 1kB 1.5kB 2kB 2.5kB 3kB 3.5kB 4kB

Full Slots 0 0 16 16 32 32 48 64
Per Block 0 0 1 1 2 2 3 4

Minislots 32 64 32 64 32 64 32 0
Per Block 2 4 2 4 2 4 2 0

OSPA page is assigned one MPA page from one of these pools, and
the assignment is stored in a separate metadata table, leaving the
OSPA assignment in the regular page table. As a result, OS address
translation and cache tagging logic remain unmodified.

The assignment of MAG-sized slots to native blocks sets the
lower bound of a page’s size to one slot per block. Because an
uncompressed block fits in 4 MAGs, this would limit compression
ratio to 4×, and would leave no block size flexibility at that size. To
counteract these problems, FlatPack increases granularity for very
small pages and introduces a 512 byte page with a compression
ratio of 8×. Compressed pages of 512B or 1kB have no full-sized
slots, and are instead entirely composed of minislots. In a 512B
page, each block is native to two minislots. This finer granularity
allows small pages to remain flexible to block size variation.

One drawback of fixed-size compressed pages is Page Migration.
Page migrations occur when a compressed page exceeds its allo-
cated size (page overflow) or is deemed able to fit in a smaller size
(page shrink). To minimize the number of page size changes, Flat-
Pack employs a runtime mechanism to estimate the page’s future
size at the time of initial allocation. Page allocation occurs in two
stages. Initially, a new page is introduced into the page table by the
operating system, and mapped to a read-only zero-data page. On
the first writeback from the LLC (modifying the data in memory) a
unique compressed page is allocated in MPA space. The size of this
allocation is based on the compressibility of the written-back data.
The compressed size of that data is extrapolated to the full page’s
size. If this expected page size exceeds one slot per block, a margin
is added for flexibility. Finally, the estimate is rounded up to the
nearest supported page size and used for the initial allocation.

3.8 Interaction with the OS
FlatPack uses memory ballooning in order to handle the variable
memory size due to compression. Ballooning is a common feature in
virtualization environments [37], and has been used for compressed
memory by IBM [13] and more recently in Compresso [6].

In a virtualization environment, the Hypervisor controls the
amount of available memory to the guest OS through a memory
balloon software driver implemented in every guest OS. In essence,
the Hypervisor can use the balloon driver to reclaim memory from
one guest OS and provide it to others depending on the runtime
memory needs of the respective virtual machines. The reclaimed
memory from the respective guest OS is reserved by the balloon
driver and cannot be allocated by the OS itself.

In a compressed memory system, the OS starts with a memory
size 𝑀 = 𝐶 × 𝑃 , for maximum compression ratio 𝐶 and physical
capacity 𝑃 . In the beginning of execution the memory is still uncom-
pressed, thus the overcommitted memory (𝐶 − 1) × 𝑃 is reserved
by the memory ballooning software driver. As the system allocates
memory, the FlatPack runtime compresses the data and manages

Page Compaction
48b

MPA Location Size

3b

1b

96b

2b

Dirty Block #

Block Compaction

Slots Minislots

2b

Block #

64b

2b

Block Compression
32b

#Failed

Blocks

00

11

N
01 N-1
10 N-2
11 None

Figure 7: Metadata for a compacted FlatPack page. Two bits
are used to encode which block occupies any given slot.

pools of allocated and free memory pages. New free memory pages
are released to the OS by deflating the balloon driver. This way, free
memory pages can be directly allocated by the OS. If memory com-
pressibility deteriorates due to page overflows, the balloon driver
is inflated. This triggers the OS’s memory reclamation to free up
allocated memory using the paging mechanism. The reclaimed ad-
dresses are communicated to the FlatPack runtime system, freeing
the corresponding physical memory. If the system is under high
memory pressure and the expanded, due to compression, memory
has been exhausted the ballooning mechanism will be used again.
The balloon driver of the guest OS will be inflated triggering page
reclamation and causing possibly some pages to be swapped out.
This will further trigger FlatPack to move the swapped out pages
out of memory, releasing address space for accommodating new
pages that will be compressed when data is written to memory.

FlatPack can be combined with other transparent and less trans-
parent implementations to interact with the OS and release to it
the free space created from compression.

3.9 Metadata
The described flexibility of placement requires supporting metadata
to maintain page organization. Figure 7 summarizes the metadata
used by FlatPack, which can be divided into three parts. The first
part concerns page compaction. The MPA page location is 48 bits
wide and indicates where in physical memory the compressed page
resides. An additional 3 bits indicates the size of the physical page.

The second part of the metadata maintains block compaction.
Any full-size slot can be in one of three states: unused, used for
compressed data, or used for lazily evicted data. In addition, a slot
may be occupied by one of three blocks (the native block 𝑁 or one
of the nearby blocks 𝑁 −1 and 𝑁 −2). By limiting each slot to one of
three blocks, FlatPack can encode this information using three bits
per slot. A minislot, similarly, may be either unoccupied or contain
compressed data from one of three blocks. This requires two bits of
metadata per minislot. The most complex page size (3.5kB) contains
48 full-size slots and 32 minislots. 16 full-size slots are reserved for
their native blocks and always occupied, requiring no metadata.
Consequently, each page requires at most 32 × 3 + 32 × 2 = 160 bits
of page compaction metadata.

The third and final part contains metadata for individual blocks.
Each block has two bits associated with it, used to count failed
compression attempts in order to reduce the frequency of retries.
With 16 blocks in one page, this block metadata comprises 32 bits
per page. In total, FlatPack requires a maximum of 243 bits of
metadata per compressed page, roughly half of the 512 bits per
page used by Compresso, LCP and MXT with 1KB blocks. However,



PACT ’22, October 10–12, 2022, Chicago, IL, USA Eldstål-Ahrens, Arelakis and Sourdis

LLC
Eviction

Clear slots
for block

Page 
overflow

Assign
slots

Write block
to slots

Migrate
dirty block

Not enough
free slots

No
dirty data

Free slots
available

Dirty data
present

Figure 8: Overview of block writeback logic. Repacking of a
block occurs on LLC eviction, when the block changes size.

MXT would require 8× more metadata than FlatPack to support
the same fine granularity.

Metadata are managed on the page level, and cached on-chip in
a Metadata Cache which has the same capacity as the system Trans-
lation Lookaside Buffer (TLB). Metadata are fetched from memory
in parallel with TLB misses, which guarantees that block and page
metadata are readily available by the time a request reaches LLC.

3.10 Block Migration
Figure 8 illustrates the logic flow of block writebacks. In the com-
mon case, sufficient slots and minislots are available in main mem-
ory, and the block can be written back directly. However, If a block
cannot be packed successfully, slots must be freed up to accom-
modate it. The page metadata distinguishes compressed data from
lazily evicted cache lines (i.e. uncompressed, dirty data). Blocks
with lazily evicted cache lines consume more space in memory
than necessary, to delay costly recompression. If such data prevents
packing of a neighboring compressed block, the offending block
is brought on-chip for recompression immediately, as shown in
Figure 9. This way, physical space can be used for lazy evictions,
and made available for actual compressed data on demand.

3.11 Page Migration
If no slots can be freed to pack an evicted block, the size of the
compressed page is insufficient to contain its data. As a result, the
data must be migrated to a larger page. The process of page growth
is straight-forward. The page and block metadata are consulted to
determine the smallest sufficient allocation size. Similarly to the
initial allocation, an additional margin is added to the estimated size,
to allow for flexibility to future growth. A new compressed page is
set up and all blocks are read from physical memory. Finally, the
compressed blocks are transferred to the newly allocated location.

Conversely, data updates during execution may cause blocks
to shrink. In order to maximize the capacity gain of compaction,
it is beneficial to detect and adapt to such changes. Each page’s
metadata is sufficient to identify pages whose data could fit within
a smaller page allocation. When such a page is detected, FlatPack
migrates it to a region for smaller pages to improve compaction.

3.12 Memory Interleaving
So far, the description of FlatPack has considered systems with one
memory controller. However, address interleaving across multiple
memory controllers can also be supported as follows. The minimum
interleaving granularity is 4×MAG, keeping a single block access
to a single channel. In addition, interleaving across 𝑛 controllers
requires FlatPack to consider groups of𝑛 pages together, rather than
a single page as described above. Then, blocks within the group

Available to block 0:

0 1 2 3 ...Native block space:

Dirty

14

...Step 4:
Block 1 recompressed and
written back to memory.

15

...Step 3:
Block 0 success-
fully allocated.

...Step 2:
Block 1 has a lazily evicted
cache line and is brought in
for recompression.

...Step 1: Allocation of 3 slots
for Block 0 fails.

Figure 9: Block migration to support a growing block. Block
0 (3 MAGs) needs to be written back. In order to fit, block 1
is read from memory and recompressed to eliminate lazily
evicted data.

of pages with the same (𝑏𝑙𝑜𝑐𝑘_𝑖𝑑 𝑚𝑜𝑑 𝑛) are handled together as
described in Section 3.4 as if they belonged to the same page, stored
on the same channel. This requires metadata of all pages in the
same group to be brought on chip together.

3.13 Hardware Overhead
Overall, as shown in Figure 6, FlatPack requires the following hard-
ware changes: (i) modifications to the LLC, (ii) a Compressor [3], (iii)
Metadata cache, and (iv) a FlatPack module before the memory con-
troller. In particular, FlatPack employs a Decoupled-Sectored Cache,
similar to other memory compression designs [10, 12], adding a
3.2% SRAM overhead due to the longer tag entries and back-pointer
entries (18 bits per entry in total) with associated area and power
costs. There is no latency overhead compared to a regular cache
structure, because tag array and back-pointer array accesses are
performed in parallel, as are the subsequent tag and suffix matches.
Then, the logic for the final way-matching does not add additional
delay. The compressor block is the major hardware addition, as in
every memory compression design, causing the most significant
area, power, and delay costs, reported in Table 2. Furthermore, a
64KBmetadata cache is used as reported in Table 2. Finally, FlatPack
adds a hardware module situated on the LLC side of the memory
controller, which includes logic to issue memory requests to the
memory controller and a small structure that keeps track of out-
standing accesses and associated metadata arriving from the LLC.
The area and power costs of this module are negligible. More im-
portantly, it does not add latency to the memory access, although
it is in the critical path. This is because the first fragment (MAG)
of a compressed block is always at a fixed position and therefore
the initial request can be sent immediately, bypassing the logic. In
other words, no address calculation or other logic is required for
the first memory access of a compressed block. Subsequent mem-
ory accesses to retrieve any subsequent fragments of the block are
generated by the module and sent to the memory controller one
per cycle according to the metadata.



FlatPack: Flexible Compaction of Compressed Memory PACT ’22, October 10–12, 2022, Chicago, IL, USA

Table 2: Simulation parameters.

Parameter Configuration

Simulation Duration 1 × 109 instructions per core
CPU O-o-O, 4-way issue @ 3.2GHz

L1 cache 64kB per core, 4-way, 1 cycle latency
L2 cache 256kB per core, 8-way, 8 cycle latency
L3 cache 1MB per core shared, 16-way, 15 cycle latency

Main Memory 4GB DDR4 and ¼-channel per core, 800MHz
Avail. Memory 50% of application footprint, at least 8× LLC

Page Fault Latency 8.6µs [38]
Metadata Cache 2048 entries, 64kB

Compressor SC2 lossless, 16-bit values
SC2 comp/decomp leakage 33.6mW / 0.4mW

SC2 comp/decomp dyn. energy 0.576nJ / 0.592nJ per operation
SC2 VFT 7kB, 8-way, 16-bit values

3.14 Security Considerations
Compressed caches have been demonstrated to be susceptible to
information disclosure via side channel attacks. SafeCracker out-
lines a set of circumstances where a secret value can leak from a
process, to an attacker who is able to take measurements of the
shared LLC [36]. By injecting known input data into a compressed
victim cache line, the attacker is able to vary its compressibility
and draw conclusions about the rest of the line’s contents.

FlatPack presents a more complex target for this type of attack,
since cache lines in LLCmay be stored both compressed and uncom-
pressed. An attacker must be able to manipulate the access pattern
of the victim process to ensure that uncompressed copies of the
secret are evicted and recompressed. In addition, the larger block
size of FlatPack adds "noise" surrounding the secret data, reducing
the certainty of an attacker’s measurements.

4 EVALUATION
We evaluated FlatPack in an in-house simulator, implemented on
top of Pin [23]. The simulator employs an interval-based processor
model [14]. The memory hierarchy is modelled at cycle granu-
larity, using DRAMSim2 for main memory [31]. McPAT [22] and
CACTI [24] were used to model power and latency of the system
considering 32nm technology. Operating frequency, latency and
power consumption parameters for the SC2 compressor are based
on a place-and-route implementation for the same technology node
[3]. These factors are used as configuration information for the
simulations. The general properties of the simulated system are
listed in Table 2.

Besides the baseline system, FlatPack (F ) is further compared
with (i) Compresso [6], labeled C, and (ii) LCP [28], labeled L. All
three compressing designs use the same SC2 compressor. The SC2

compressor requires training data specific to each application to
be effective. For each application, a profiling run is performed,
where a randomized 10% subset of application data is gathered. This
dataset is used to train the compressor for all designs, ensuring
consistent compressor behavior. For evaluation we use the complete
set of applications of SPECspeed 2017 [8], Graph500 [25], as well
as ForestFire and PageRank from the SNAP suite [21].

Compression is applied to all non-code pages. This includes heap,
stack, and data segments of the application itself, as well as those
of shared libraries. All benchmarks use their respective ref_speed
input data provided with SPEC 2017.

Table 3: Benchmarks and their active memory footprints.

Application Footprint / core

bwav [8] 247MB
cact [8] 521MB

cam4 [8] 59MB
deep [8] 688MB
exc2 [8] 16MB
foton [8] 2320MB
gcc [8] 33MB

imag [8] 34MB
lbm [8] 292MB
leela [8] 16MB
mcf [8] 150MB
nab [8] 31MB

Application Footprint / core

omnt [8] 16MB
perl [8] 20MB
pop2 [8] 73MB
roms [8] 133MB
wrf [8] 48MB
x264 [8] 26MB
xbmk [8] 16MB

xz [8] 525MB
ffire [21] 11MB

gp500 [25] 255MB
pgrank [21] 10MB

A large benefit of memory compaction is the ability to avoid
costly page faults, when data is swapped into memory from the
slower nonvolatile storage. To investigate the effect of each design
on page faults, the uncompressed baseline is profiled to determine
its active footprint (the total number of unique pages in memory
actually read or written) during the simulated phase of execution,
as shown in Table 3. This baseline active footprint is used as a basis
for page fault modelling, where the available physical memory
is limited to 50% of the baseline footprint or at least 8× the LLC
capacity (a minimum capacity limit of 32MB). This capacity limit
is applied to all designs, including the baseline. Page faults are
modeled as memory traffic and an additional delay of 8.6µs to
account for OS handling and nonvolatile storage latency [38].

Each simulation is executed in the following steps: i) SC2 com-
pressor’s Value Frequency table (VFT) is populated with data from
the profiling run; ii) The application is run through its initialization
phase; iii) the application’s main phase is executed for one billion
instructions per core, and statistics are gathered. The end of the
initialization phase is manually selected such that statistics are
collected during the application’s primary processing phase.

In the following sections, we present our evaluation in two sepa-
rate sets, a single-core system and a multi-core system where four
instances of the same application are run on four processors.

4.1 Multi-Core Experimental Results
Performance benefits from memory compaction stem from the
reduction of costly page faults as well as reduced memory traffic
which leads to lower memory latency. Figure 10a shows the mean
IPC achieved by each design across execution. FlatPack increases
performance by 83%, with Compresso following at 34% and LCP
offering a performance benefit of 22% over the baseline.

System energy consumption benefits from the performance in-
crease as well as reduced memory activity. Figure 10b summarizes
energy consumption for the processor core and memory hierar-
chy. FlatPack brings the total system energy down to 77%, while
Compresso and LCP reach 87% and 92%, respectively.

The primary effect of memory compaction is a reduction in phys-
ical memory footprint. Figure 10c shows the achieved footprint for
each design, by category. The data footprint consists only of the
compressed data, excluding any compaction-related waste. Each
design also introduces somemetadata storage overhead, and a vary-
ing amount of capacity waste. Granularity waste stems from limited
block granularity. Shrink waste is caused by a compressed block
shrinking, leaving some of its original space unused. Growth waste



PACT ’22, October 10–12, 2022, Chicago, IL, USA Eldstål-Ahrens, Arelakis and Sourdis

F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L0
1
2
3
4
5

IP
C

10
.9 5.
0

1.
8

1.
3

1.
2

(a) Normalized Instructions Per Cycle (IPC).

F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L

1
2

En
er
gy

2.
3

0.
77

0.
87

0.
92

Core L1+L2 LLC Compressor/Decompressor DRAM

(b) Normalized system energy consumption.

F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L

1

M
em

. F
oo

tp
rin

t

0.
38

0.
34

0.
48

Data Metadata Waste Gran Waste Shrink Waste Grow Waste Uncompr Overalloc

(c) Normalized physical footprint.

F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L F C L

1

2

To
ta

l T
ra

ffi
c

2.
7

5.
3

3.
0

4.
1

0.
63 1.
08 1.
18

bwav
cact cam4

deep exc2 foton gcc imag lbm leela mcf nab omnt
perl pop2 roms wrf x264 xbmk

xz ffire gp500
pgrank

GM

Uncompr. Compr. Page Fault Page Table Meta RMW Page Mig Block Mig Lazy WB

(d) Normalized memory traffic.

Figure 10: Multi-core results for FlatPack (F), Compresso (C) and LCP (L).

is caused by a compressed block growing to become an exception,
leaving its old allocation entirely empty. Uncompressed waste rep-
resents blocks being left uncompressed for organizational reasons,
even though their actual compressibility is better than 1:1. Overal-
location is unused space due to the granularity of page allocation.

LCP’s normalized footprint is 48% of the baseline and larger than
competing designs mainly due to higher granularity waste. Com-
presso and FlatPack achieve similar totals, of 34% and 38%, respec-
tively. FlatPack’s flexibility introduces slightly higher compaction
overheads than Compresso. This is evident in some benchmarks,
e.g., xz, gp500 and is attributed primarily to higher granularity
waste and overallocation, as compressed pages appear to be smaller
than initially predicted.

The raw compression ratio (average 3.9× across all applications)
shows the average compressibility for the full memory footprint.
This compression ratio sets the upper bound of compaction, and
functions as an ideal reduction, as shown in Figure 11a. This ideal
serves to give an estimate of the capacity overhead of each design,
when compared to the achieved total footprint. The figure also
illustrates a non-compacting design, L2C [11], using the same com-
pressor as described above. L2C offers competitive traffic reduction,
but does not affect memory footprint. Compared to the ideal 3.9×
reduction, Compresso reaches 76%, FlatPack follows at 68% and
LCP at 54%.

Memory compression also has the potential to reduce off-chip
memory traffic, by transferring compressed blocks over the main
memory bus. Like the footprint, the extent of this reduction is
also bounded by the compression ratio. Many memory compaction
schemes do not target traffic reduction, instead using additional
traffic for the data movement required to support an adaptive com-
paction scheme. Figure 10d shows the volume of data transferred
across the bus, broken down by cause. Various overheads are intro-
duced by the evaluated compaction systems.Metadata traffic varies
both due to the size of the metadata itself and its access patterns.
Read-Modify-Write operations are necessary to update compressed
data in memory at a finer granularity than the MAG, and take the
form of additional reads from main memory. Page Migration is nec-
essary to grow compressed pages upon overflow, or shrink them
if possible. Block Migration traffic is induced by single compressed
blocks being brought on-chip to update them with dirty data. Lazy
Writebacks are used by FlatPack to delay block migrations. These
overheads of memory compaction also prevent compaction sys-
tems from reaching a traffic reduction proportional to the ideal
compression ratio. FlatPack page size estimation is successfully
able to assign the correct initial size to 75% of pages. An additional
15% of pages are overestimated, preventing their first migration.

In total, FlatPack achieves a 1.6× reduction in memory traffic.
This improvement is 20% compared to an ideal, theoretical traffic
reduction roughly estimated by the average raw compressibility of



FlatPack: Flexible Compaction of Compressed Memory PACT ’22, October 10–12, 2022, Chicago, IL, USA

1 2 3 4
Footprint Reduction

1

2

3

4
Tr

af
fic

 R
ed

uc
tio

n

1
1

1
1.6

2.1
0.9

2.7
1.6

2.9
0.9

3.9
3.9

Baseline
L2C
LCP

FlatPack
Compresso
Ideal

(a) Multi-core

1 2 3 4
Footprint Reduction

1

2

3

4

Tr
af

fic
 R

ed
uc

tio
n

1
1

1
1.8

2.0
1.0

2.7
1.9

2.9
1.3

3.9
3.9

Baseline
L2C
LCP

FlatPack
Compresso
Ideal

(b) Single-core

Figure 11: Traffic and Footprint improvements. L2C is a non-
compacting memory compression system, here configured
to use the same lossless SC2 compression.

the memory footprints (3.9×). Compresso and LCP both add traffic
overheads of 0.08× (4.2× ideal) and 0.13× (4.5× ideal), respectively.
Cam4 shows little spatial locality in its access pattern, illustrating
the drawback of FlatPack’s large compression blocks; while full
compressed blocks are read from memory, parts of the data remain
unused and become overhead. The same affects Compresso, to a
lesser extent, as compressed overfetching does not serve as use-
ful prefetching. A similar effect is seen in imag, where FlatPack’s
compressed traffic is increased by overfetching.

One significant traffic overhead from page compaction is page
migrations. Normalized to the baseline’s total memory traffic, Flat-
Pack spends 4.0% on page migrations. The corresponding metric for
LCP is 8.5% and for Compresso 16.3%. By reducing page migration
overhead by 2×-4×, and eliminating a majority of RMW traffic,
FlatPack offers a significant traffic benefit compared to the com-
peting designs. FlatPack reduces memory traffic by 42% compared
to Compresso, the next-best design. Finally, page faults make up
a large portion of baseline memory traffic. The principal goal of
reducing these page faults is achieved by all three designs. FlatPack
reduces the mean number of page faults to 40%, while Compresso
reaches 45% and LCP achieves a reduction down to 61%.

In summary, Compresso improves system performance and en-
ergy by 34% and 13%, respectively. FlatPack doubles these benefits,
offering 83% better performance and 23% lower energy consumption

FP
ac

k

Cp
ro

LC
P

FP
ac

k

Cp
ro

LC
P

FP
ac

k

Cp
ro

LC
P

FP
ac

k

Cp
ro

LC
P

1

2

Ge
om

ea
n 

(n
or

m
.) 5.

13

2.
08

2.
94

1.
41

1.
32

0.
60

0.
80

0.
83

0.
37

0.
35

0.
49

0.
52

0.
78 0.
98

IPC Energy Mem. Footpr. Mem. Traffic

Figure 12: Single-core results for all designs. Geometric stan-
dard deviation in black.

than a baseline system. FlatPack improves performance and energy
consumption by 36% and 12%, respectively, versus Compresso.

4.2 Single-Core Experimental Results
Figure 12 shows a summary of results from single-core experiments.
Each metric is presented as the geometric mean across all applica-
tions, normalized to the baseline system. Although the evaluation
of individual benchmarks is not depicted, most of them follow the
same trends as in the multi-core experiments. Overall, system per-
formance and energy, as well as memory footprint in single-core
experiments improve similarly to the multi-core ones for all designs.
On the other hand, memory traffic is slightly lower in single-core
experiments of all design and is attributed mostly to less metadata
traffic because the metadata cache size has not been scaled down.

Compresso yields a final memory footprint 35% of the baseline,
closely followed by FlatPack at 37%. LCP brings footprint down to
49%. The average raw compressibility is compared to the achieved
reduction in footprint and traffic in Figure 11b. Compresso achieves
65% of the ideal footprint reduction, FlatPack follows with 58%
and LCP manages 34%. FlatPack reduces the mean memory traffic
to 52% of the baseline. Compresso also reduces traffic, to 78% on
average. LCP achieves an average 2% reduction. Similarly to the
memory capacity, the raw compression ratio also indicates an ideal
memory traffic reduction. FlatPack reduces memory traffic by 1.9×,
which is 31% of the ideal. Compresso achieves a 1.3× reduction
in traffic, 10% of the ideal. LCP does not affect memory traffic
compared to the baseline. Page migration remains a significant
overhead in the single-core system. Normalized to the baseline’s
total memory traffic, FlatPack spends 2.3% on page migrations. The
corresponding metric for LCP is 4.9% and for Compresso 7.1%. LCP
reduces the average total number of page faults to 66%, Compresso
to 68% and FlatPack achieves a reduction to 72%. FlatPack increases
system IPC by an average 108%, Compresso by 41% and LCP by 32%.
The greatest performance boosts correlate to significant reductions
in total memory traffic, indicating memory-bounded applications.
FlatPack reduces average system energy to 60%. Compresso reaches
80% and LCP achieves an average of 83%.

In summary, the previous state-of-the-art Compresso improves
system performance and energy by 59% and 20%, respectively. Flat-
Pack exceeds these benefits, offering 108% better performance and
40% lower energy consumption than the baseline. FlatPack improves
performance and energy consumption by 31% and 25%, respectively,
compared to the second best design. Meanwhile, FlatPack maintains
a memory capacity improvement within 6% of Compresso.



PACT ’22, October 10–12, 2022, Chicago, IL, USA Eldstål-Ahrens, Arelakis and Sourdis

F C L F C L F C L F C L F C L0
1
2
3
4
5

IP
C

5.
13

2.
08

1.
41

1.
32

6.
29

2.
91

1.
90

1.
46

5.
72

3.
09

1.
92 2.
08

5.
13

2.
08

1.
41

1.
32

7.
41

3.
61 5.

68
2.

84
1.

58

50% 75% 100% 800 1600
Capacity (% of footpr.) Bus Freq (MHz)
(a) Normalized system performance

F C L F C L F C L F C L F C L

1

En
er

gy

0.
60

0.
80 0.
83

0.
47 0.

63 0.
78

0.
44 0.

62
0.

59

0.
60

0.
80 0.
83

0.
38 0.

46
0.

76

50% 75% 100% 800 1600
Capacity (% of footpr.) Bus Freq (MHz)

(b) Normalized system energy

Figure 13: Means of system metrics for FlatPack (F), Com-
presso (C), and LCP (L) with varying memory capacity and
bandwidth. All bars normalized to the 50% 800MHz baseline.
Corresponding baselines are shown as horizontal lines. Geo-
metric standard deviation in black.

4.3 Sensitivity to System Configuration
To further evaluate the impact of system parameters on FlatPack, we
also present the result of two separate sensitivity analyses, shown
in Figure 13. The first sweeps across available memory capacity,
with limits set at 50%, 75% and 100% of the baseline footprint. The
effect of this is a reduction in page faults, and thus an improvement
in baseline performance. As the number of baseline page faults
are reduced, the opportunity for memory compaction to improve
performance also shrinks. deep sees a 13× IPC improvement from
FlatPack at 50% memory capacity, which is reduced to 8× when
capacity reaches 100%.While the benefits of compaction are reduced
overall, the trend between the tested designs remains.

The second analysis illustrates the impact of memory bandwidth,
comparing an 800MHzmemory bus to a 1600MHz one. At the higher
bandwidth, the performance benefits of compression are reduced.
This is because compression primarily targets the bottleneck im-
posed by limited memory bus bandwidth. The effect is most notable
in bwav, where a 14× IPC boost for FlatPack is reduced to 8× when
memory bandwidth is doubled. As illustrated in Figure 13, the trend
between the three compressing systems remains.

5 CONCLUSION
FlatPack is a novel approach to memory compaction, which allows
compressed blocks to be packed fragmented within a page and share
expansion space. It uses a hardware mechanism to dynamically
reorganize pages when blocks are updated, without introducing
any additional data movement. FlatPack offers memory capacity
increases on par with state-of-the-art compaction systems, while
improving on their memory bandwidth utilization by up to 67%. By
leveraging compression and compaction to reduce data movement
and costly page faults, FlatPack is shown to improve performance
and energy consumption of a single-core system by 108% and 40%,
respectively and in a multi-core system, the improvements are
83% and 23%, respectively. Compared to the best previous work,
FlatPack improves performance by 31-46% and energy by 11-25%,
while achieving a comparable memory capacity.

Acknowledgements
This work was supported by the Swedish Foundation for Strategic
Research (contract number CHI19-0048) under the PRIDE project.

References
[1] Alaa R Alameldeen and David A Wood. 2004. Frequent pattern compression: A

significance-based compression scheme for L2 caches. Dept. Comp. Scie., Univ.
Wisconsin-Madison, Tech. Rep 1500 (2004).

[2] A. Arelakis, F. Dahlgren, and P. Stenstrom. 2015. HyComp: a hybrid cache
compression method for selection of data-type-specific compression methods. In
MICRO. IEEE, Waikiki, Hawaii, USA, 38–49.

[3] Angelos Arelakis and Per Stenstrom. 2014. SC2: A statistical compression cache
scheme. In 2014 ACM/IEEE 41st International Symposium on Computer Architecture
(ISCA). IEEE, Minneapolis, Minnesota, USA, 145–156.

[4] Yanan Cao, Long Chen, and Zhao Zhang. 2015. Flexible memory: A novel main
memory architecture with block-level memory compression. In 2015 IEEE Inter-
national Conference on Networking, Architecture and Storage (NAS). IEEE, Boston,
Massachusetts, USA, 285–294.

[5] Xi Chen, Lei Yang, Robert P Dick, Li Shang, and Haris Lekatsas. 2010. C-pack: A
high-performance microprocessor cache compression algorithm. IEEE transac-
tions on very large scale integration (VLSI) systems 18, 8 (2010), 1196–1208.

[6] E. Choukse, M. Erez, and A. R. Alameldeen. 2018. Compresso: Pragmatic Main
Memory Compression. In MICRO. IEEE, Fukuoka, Japan, 546–558.

[7] Esha Choukse, Michael B. Sullivan, Mike O’Connor, Mattan Erez, Jeff Pool, David
Nellans, and Stephen W. Keckler. 2020. Buddy Compression: Enabling Larger
Memory for Deep Learning and HPCWorkloads on GPUs. In 2020 ACM/IEEE 47th
Annual International Symposium on Computer Architecture (ISCA). ACM/IEEE,
Valencia, Spain, 926–939.

[8] Standard Performance Evaluation Corporation. 2017. SPEC CPU 2017. Retrieved
2021-07-30 from https://www.spec.org/cpu2017

[9] Magnus Ekman and Per Stenstrom. 2005. A robust main-memory compression
scheme. In SIGARCH C.A. News, Vol. 33. ACM, New York, New York, USA, 74–85.

[10] Albin Eldstål-Damlin, Pedro Trancoso, and Ioannis Sourdis. 2019. AVR: Reducing
Memory Traffic with Approximate Value Reconstruction. In ICPP. ACM, Kyoto,
Japan, 1–10.

[11] Albin Eldstål-Ahrens, Angelos Arelakis, and Ioannis Sourdis. 2022. L2C: Combin-
ing Lossy and Lossless Compression on Memory and I/O. ACM Trans. Embed.
Comput. Syst. 21, 1, Article 12 (jan 2022).

[12] Albin Eldstål-Ahrens and Ioannis Sourdis. 2020. MemSZ: Squeezing Memory
Traffic with Lossy Compression. ACM TACO 17, 4, Article 40 (Nov. 2020), 40:1–
40:25 pages.

[13] Peter A. Franaszek and Dan E. Poff. 2007. Management of Guest OS Memory
Compression In Virtualized Systems. Patent US20080307188A1.

[14] D. Genbrugge, S. Eyerman, and L. Eeckhout. 2010. Interval simulation: Raising
the level of abstraction in architectural simulation. In HPCA. IEEE, Bangalore,
India, 1–12.

[15] E.G. Hallnor and S.K. Reinhardt. 2005. A unified compressed memory hierarchy.
In 11th International Symposium on High-Performance Computer Architecture.
IEEE, San Fransisco, California, USA, 201–212.

[16] S. Hong, P. J. Nair, B. Abali, A. Buyuktosunoglu, K. Kim, and M. Healy. 2018.
Attaché: Towards Ideal Memory Compression by Mitigating Metadata Bandwidth

https://www.spec.org/cpu2017


FlatPack: Flexible Compaction of Compressed Memory PACT ’22, October 10–12, 2022, Chicago, IL, USA

Overheads. In MICRO. IEEE, Fukuoka, Japan, 326–338.
[17] Raghavendra Kanakagiri, Biswabandan Panda, andMadhuMutyam. 2017. MBZip:

Multiblock data compression. TACO 14, 4 (2017), 1–29.
[18] Jungrae Kim, Michael Sullivan, Esha Choukse, and Mattan Erez. 2016. Bit-plane

compression: Transforming data for better compression in many-core architec-
tures. In ISCA. ACM/IEEE, Seoul, Republic of Korea, 329–340.

[19] Sohan Lal, Jan Lucas, and Ben Juurlink. 2019. SLC: Memory access granularity
aware selective lossy compression for GPUs. In DATE. IEEE, IEEE, Grenoble,
France, 1184–1189.

[20] Charles Lefurgy, Karthick Rajamani, Freeman Rawson,Wes Felter, Michael Kistler,
and Tom W Keller. 2003. Energy management for commercial servers. Computer
36, 12 (2003), 39–48.

[21] Jure Leskovec and Rok Sosič. 2016. Snap: A general-purpose network analysis and
graph-mining library. ACM Transactions on Intelligent Systems and Technology
(TIST) 8, 1 (2016), 1–20.

[22] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen,
and Norman P. Jouppi. 2009. McPAT: An Integrated Power, Area, and Timing
Modeling Framework for Multicore andManycore Architectures. InMICRO. IEEE,
New York, New York, USA, 469–480.

[23] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
ACM SIGPLAN Notices, Vol. 40. ACM, New York, New York, USA, 190–200.

[24] Naveen Muralimanohar, Rajeev Balasubramonian, and Norman P Jouppi. 2009.
CACTI 6.0: A tool to model large caches. HP lab. 27 (2009), 22–31.

[25] Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010.
Introducing the graph 500. Cray Users Group (CUG) 19 (2010), 45–74.

[26] David J. Palframan, Nam Sung Kim, and Mikko H. Lipasti. 2015. COP: To Com-
press and Protect Main Memory. In 42nd Annual International Symposium on
Computer Architecture (Portland, Oregon) (ISCA ’15). ACM, 682–693.

[27] Sungbo Park, Ingab Kang, Yaebin Moon, Jung Ho Ahn, and G. Edward Suh.
2021. BCD Deduplication: Effective Memory Compression Using Partial Cache-
Line Deduplication. In Proceedings of the 26th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems (Virtual,
USA) (ASPLOS 2021). 52–64.

[28] Gennady Pekhimenko, Vivek Seshadri, Yoongu Kim, Hongyi Xin, Onur Mutlu,
Phillip B Gibbons, Michael A Kozuch, and Todd C Mowry. 2016. Linearly com-
pressed pages: a low-complexity, low-latency main memory compression frame-
work. In MICRO. IEEE, Taipei, Taiwan, 172–184.

[29] Gennady Pekhimenko, Vivek Seshadri, Onur Mutlu, Michael A Kozuch, Phillip B
Gibbons, and Todd C Mowry. 2012. Base-delta-immediate compression: Practical
data compression for on-chip caches. In PACT. ACM, Minneapolis, Minnesota,
USA, 377–388.

[30] Ashish Ranjan, Arnab Raha, Vijay Raghunathan, and Anand Raghunathan. 2020.
Approximate Memory Compression. IEEE TVLSI 28, 4 (2020), 980–991.

[31] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. 2011. DRAMSim2: A cycle
accurate memory system simulator. IEEE CAL 10, 1 (2011), 16–19.

[32] Larry Seiler, Daqi Lin, and Cem Yuksel. 2020. Compacted CPU/GPU Data Com-
pression via Modified Virtual Address Translation. Proc. ACM Comput. Graph.
Interact. Tech. 3, 2, Article 19 (Aug. 2020), 18 pages.

[33] A. Seznec. 1994. Decoupled sectored caches: conciliating low tag implementation
cost and low miss ratio. In ISCA. ACM/IEEE, Chicago, Illinois, USA, 384–393.

[34] Ali Shafiee, Meysam Taassori, Rajeev Balasubramonian, and Al Davis. 2014.
MemZip: Exploring unconventional benefits frommemory compression. InHPCA.
IEEE, Orlando, Florida, USA, 638–649.

[35] R Brett Tremaine, Peter A Franaszek, John T Robinson, Charles O Schulz, T Basil
Smith, Michael E Wazlowski, and P Maurice Bland. 2001. IBMmemory expansion
technology (MXT). IBM Journal of Research and Development 45, 2 (2001), 271–
285.

[36] Po-An Tsai, Andres Sanchez, Christopher W Fletcher, and Daniel Sanchez. 2020.
Safecracker: Leaking secrets through compressed caches. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems. 1125–1140.

[37] Carl A. Waldspurger. 2003. Memory Resource Management in VMware ESX
Server. SIGOPS Oper. Syst. Rev. 36, SI (dec 2003), 181–194.

[38] Jisoo Yang and Julian Seymour. 2018. Pmbench: A micro-benchmark for pro-
filing paging performance on a system with low-latency SSDs. In Information
Technology-New Generations. Springer, New York, New York, USA, 627–633.

[39] Youtao Zhang and Rajiv Gupta. 2003. Enabling partial cache line prefetching
through data compression. In 2003 International Conference on Parallel Processing,
2003. Proceedings. IEEE, IEEE, Lyon, France, 277–285.

[40] Jishen Zhao, Sheng Li, Jichuan Chang, John L Byrne, Laura L Ramirez, Kevin
Lim, Yuan Xie, and Paolo Faraboschi. 2015. Buri: Scaling big-memory computing
with hardware-based memory expansion. ACM Transactions on Architecture and
Code Optimization (TACO) 12, 3 (2015), 31.


	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Compression Algorithm
	2.2 Compression Granularity
	2.3 Block Compaction
	2.4 Address Translation and Page Compaction
	2.5 Metadata Handling
	2.6 Last-Level Cache Support
	2.7 Overheads of Existing Systems

	3 FlatPack design
	3.1 Compression
	3.2 Last-Level Cache
	3.3 Lazy Evictions
	3.4 Block Compaction
	3.5 Minislots
	3.6 Slot Assignment
	3.7 Page Compaction
	3.8 Interaction with the OS
	3.9 Metadata
	3.10 Block Migration
	3.11 Page Migration
	3.12 Memory Interleaving
	3.13 Hardware Overhead
	3.14 Security Considerations

	4 Evaluation
	4.1 Multi-Core Experimental Results
	4.2 Single-Core Experimental Results
	4.3 Sensitivity to System Configuration

	5 Conclusion
	References

